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The scattering of a harmonic electromagnetic plane wave by a plane of induced dipoles has been rigorously treated by 
means of the Hertz vector. We have shown that only a self-consistent solution, which takes into account cooperative effects 
among scatterers, is able to conserve energy. 

1. The scattering problem of an electromagnetic 
plane wave by a plane of induced dipoles has 
previously been treated in the scalar approxima- 
tion by Darwin [1], using the Fresnel construction, 
and in the vector approximation by Pearson [2], 
for right angle incidency. In both works the 
scattering was regarded as due to radiation from 
classical dipoles, activated by an external field 
exclusively. 

In section 2 of this paper we discuss the more 
general situation in which the unique source of the 
field forcing the dipole oscillation is an electro- 
magnetic plane wave incident at an arbitrary 
glancing angle O. Thus, we are able to reconsider 
the earlier calculations, without making any ap- 
proximations. In section 3 of the paper we extend 
these considerations to the self-consistent solution. 

2. In an orthonormal coordinate system, where 
the wave is incident at a general angle /9 and the 
scattering plane is the plane defined by x = 0, we 
calculate the outgoing dipole fields for a point 
P =  (xp, Ye, zp) outside that plane. We assume 
that the dipole plane is uniformly filled up by 
scattering electrons which behave as classical 
harmonic oscillators, vibrating without energy loss. 
The surface density of electron distribution is 
described by o 0 and the electric part of the inci- 

dent electromagnetic wave A l is given by 

E • ( r , t ) = e x p [ i ( e p  o + , . , t - k l A ' r ) ] A l  E, (1) 

where A~ =AI (0 ,  0, 1) is the polarisation vector 
of the incident wave and k~ = k(sin 0, cos 0, 0) is 
the wave vector with magnitude k = 2,~/X. 

The combined field due to dipoles oscillating in 
the same direction and with the same frequency 
can be most conveniently handled by means of the 
Hertz vector. The infinitesimal dipole moment at 
the point Q = (0, y, z) is given by 

d M (  O. ) = -(e2oo/"c2k2) 
×exp[i(@ o + c o t -  ky  cos 0)] d y  dz A 1, 

(2) 

and the resultant Hertz vector at the observation 
point P, due to the whole plane of dipole oscilla- 
tion, is defined by 

Z ( P )  = - r e k - 2 o o  exp[i(~b o + ~ot)] 

ff+  × R I e x p [ i ( R + c o s 0 ) ]  d y d z A ~ .  
oO 

(3) 

where r e is the classical electron radius and R = P 
- Q .  Through two consecutive substitutions 

y - y p  = v, 
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Z -  Z p = W, W = (Xp  2 + /)2 )1/2 sinh t ,  

the relevant double integral is rewritten as 

2 e x p ( - i k y p  cos O) 

× f f _ T e x p ( i k [  v c o s  0 + + o 2)1/2 

×cosh ,]) d, (4) 

Subsequently, using the solution for the integral 
in parentheses given by Watson [3], the above 
double integral is transformed into a single in- 
tegral 

-i~exp(-ikyecosO)f H~o2)k(x2 e +v2)  1/2 
- - 00  

× e x p ( - i k v  cos 0) do. (5) 

Finally, under the conditions ~r/2 > 0 > 0 and x e 
0, according to McLachlan [4], the resultant 

Hertz vector is given by 

Z(  P) = ik-2re( h/sin O )o o 

× exp(i[q~0 + o~/ 

-k(sine[xpl+cosey )])A . (6) 

It will be convenient to define a scattering 
factor fp characterising the scattering power of the 
plane of dipoles: 

fp = re(X/sin 0 )o  0. (7) 

The respective resultant electric and magnetic 
vectors are readily derived from the known rela- 
tions: 

E( P, t)  = W(W" Z )  - (1/c2)(O2Z/Ot 2) 

=ifp exp(i[4~o + ~t 

cos A - k ( s i n 0 1 x ~ l +  0 y e ) ] }  E, (8) 

e (  P,t)  = (1 /c ) (O/Ot ) r×  Z 

=alp exp{i[O 0 +a~t 

- k ( s i n O l x e l + c o s O y e ) ] } A ~ ,  (9) 

where A~ = A[(cos 0, sign(x) sin 0, 0). 
The solutions obtained above represent two 

electromagnetic plane waves due to the oscillating 
dipoles. The first dipole wave A °, for x > 0, is 

travelling in the direction of the incident wave A I 
since we have that k°A = klA. When A ° is added to 
A x, a refracted or forward scattered wave A s is 
generated according to 

ES(r, t)  = (1 + i fp)E~(r,t) ,  

BS(r , , )  = (1 + i fp)BS(r, , ) .  (10) 

The second resultant dipole wave B °, for x < 0, 
is leaving symmetrically the scattering plane at the 
same angle as follows from k ° = k ( - s i n  0, cos 0, 
0), and is equivalent to the reflected or scattered 
wave BS: 

E°(r , t )  = i fpEI(r, t) ,  

ns(r,t) = ifpBIA(r,t). (11) 

Both dipole waves A ° and B ° are formed im- 
mediately and suffer a ,phase shift 6 = ~r/2 in 
relation to the incident wave A I. It is readily noted 
from fig. 1 that in this solution the energy is not 
conserved, since 

Ig 'l = IESl = I = < +l  Es  (12) 

3. Due to this defect in the theory we look for 
the self-consistent solution, in which fields of 
neighbouring radiating dipoles are also included. 
It can be most easily done if we use the conclusion 
from the second section of the paper that the 
combined dipole fields take a plane waveform 
immediately. Extending this result over the 
scattering plane itself we assume now that the 
total forcing field includes a mean value of self- 
consistent dipole fields 0 0 E~,self and EB,self which 
are observed in two points separately below and 
above the scattering plane, respectively, as travel- 
ling dipole waves. At the plane itself, however 
they are counted as a part of the total forcing, 
self-consistent field F~,lf. It means that in the same 
calculation as made in section 2, we should sub- 
stitute A[ in eq. (2) by the following sum: 

1 0 0 
A I "~ ] ( A  E,self ÷ BE,self ) ,  ( 13 )  

0 0 0 where AE.self = AE.self(0, 0, 1) and BE.self = 
0 BE.self(0, 0, 1) are the looked for dipole polarisa- 

tion vectors. On the other hand the Hertz-vector 
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Fig. 1. Polarisation vectors of the relevant waves are repre- 
sented in the phase space by the dotted and full lines, respec- 
tively. 

approach  provides a set of  two equations derived 
for the ment ioned observation points as 

1 0 i/p[A  +  (AE ,f + B° e,f)] 0 A E,self ,  

1 0 0 0 ( 1 4 )  if,>[Al~ + d J ~ . . l f  + nE,.lf)]  = BE,self- 

The solution is readily obtained in the form 

o o _ [ i f j ( l _ i f p ) ] A t E ( O , O ,  1 ) _ D  o A E.self ~ BE,se l f  - -  - -  self" 

(~5) 

It may  noted that the self-consistent dipole 
field D~°lf is related to the self-consistent forcing 
field Fsetf=AIE+D~°tf in the same way as D O is 
related to F = A 1 that is, with the same ratio of  E,  
ampli tude and the same phase shift, as follows 

f r o m  

Ds°el f -~ 

Fself  

D~Ol, [ i f p / ( 1 - i f p ) ] A ~  

Ai+D2°if A t E + [ i f p / ( 1 - i f p ) ] A ~  

_ ifpA~ = D (16) 
A~ F"  

The above situation is illustrated in fig. 1. The 
fight angle is now in the new position represented 
as 8 s in the figure, and refers to the self-consistent 
forcing field F~elf. This assures that energy is con- 
served according to the formula 

I e l  12 = I e212 + le. l 2, (17) 
S = A I  0 S _ 0 where ,4~elf + A~elf and B~elf - B,'el f. 

Thus for the scattering problem discussed here, 
the self-consistency of the fields is equivalent to 
the conservation of  energy. 
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