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Free resolutions of certain codimension three perfect radical
ideals

By

J. F. ANpDraDE?Y) and A. Smvis ')

Introduction. The original conception of this work included a complete study of certain
codimension three perfect ideals that arise naturally in a “determinantal” set-up, with the
purpose of enriching the present collection of such ideals. The ones we consider are
always radical and their syzygy-theoretic properties are relatively easy to describe. From
the viewpoint of the theory of graded resolutions, they share common numerical features
with (the projecting cones of) certain codimension two and three varieties in projective
space. Their resolutions being seldom pure, they seemed largely convenient for testing the
sharpness of some calculations made in the pure case (cf. [19], [25], [26]). Moreover, they
vield a large class suited for testing recently developed concepts, such as the notion of
strong obstruction, that have its natural place in the theory of linkage ([loc. cit.]) or the
more general theory of residual intersection developed in [16]. The authors did not pursue
this line of thought, but it seemed worthwhile pointing it out.

A brief description of the present contents is as follows. In the first section one obtains
the explicit free resolution of a large class of codimension three ideals that appear as
presentation ideals of normal cones associated to determinantal ideals fixing a submatrix.
As it turns out, the resolutions of these presentation ideals are given by a mapping
cylinder of a suitable map to the resolution of the original determinantal ideals.

The second section is concerned with deriving some ideal-theoretic results from the
knowledge of the presentation given in section one. This procedure, by and large, follows
the techniques developed by various authors ([17], [14], [23] and [24]).

In the third section one gives the resolution of the determinantal ideal J, associated to
amap R™ — R"(m = n), fixing R" < R", in the case of the datar =rn —2and m = n + 2.
This case not only extends the previous known ones [1],[2], but mainly gives some
genuine clue for the general situation. The construction follows closely the spirit of the
“scandinavian” complex [9] in that one is led to tensor suitable complexes and then to cut
down the resulting size by an use of “trace” maps. This method seems to generalize well
in various contexts {21].

Last one establishes exact values for the codimension of the complete intersection locus
of the ideals considered in the previous sections. The reason for doing so is that the known
estimates to present [11], [27] would give no real grasp, in this case, of the locus.

1y Both authors were partially supported by CNPq (Brazil)
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1. Free resolutions of normal cones associated to determinantal loci fixing a submatrix.
Let (X) be an nx m (n < m) matrix of indeterminates over a field k. Set R:= k[X] and let
J, = J.(X) stand for the ideal of R generated by the minors of (X) that fix the first r
columns. A thorough study of J, was the theme of [2], while a detailed account of the
properties of the Rees algebra R (J,) and of the associated graded ring gr; (R), in the cases
r=n-—1and m=mn+ 1, was provided in [6]. Thus, for instance, if r =n — 1, R(J,) is
given by the determinantal ring of maximal minors of the matrix

X
X/T: = .
0..0TT,.,...T,

From this one sees that the Eagon-Northcott complex yields a free resolution of R(J,)
over the polynomial ring R{T']. The resolution of gr; (R) over R[T]is a little harder.

In this section one sticks to the case where r =n — 1 and m = n + 2 both because
of its simplicity and the fact that the presentation ideal over R[T] has codimension
three. On the other hand, the original set-up will be slightly extended. Namely, let
R be a noetherian ring, let f: R**? — R" be a map and let there be given a splitting
RY2=R"'®R3 Let f' stand for the restriction of f to R*" ! and Ilet
J,.1=J,1(f) € A" R" = R denote the image of the map A" f restricted to the module
An—l Rn~1 ® Al R3.

According to [1], if grade (I, (f")) = 2 and grade (I,(f)) = 3 then R/J,_; admits a

finite free resolution:
F - 04)/1"+2Rn+2®S1(Rn)&)An+1Rn+2LR3LR’
with the identifications A" "' R""1 ® A' R® = R® and ¢, = A" f restricted to R>.
One also has the acyclic (provided grade (I,_, (") = 2) complex
9¥0— R4 R™ L5 Rrtt
where § = (A" L fY=A""1f,R"=A""'R" R=A""'R"" !,

The maps ¢ and ¢, are easy to describe and one refers to [1] for the details. The exact
knowledge of ¢, and @, are inessential for the construction we are about to consider —
it suffices to realize that the restriction of ¢, to A" ! R"" 1 ® A2R® < A"*! R"*2 s given
by the Koszul map 42 R® — R? on the three generators of J,_,.

Next, let I':=1T,,T,,,, T, , be a set of three indeterminates over R, so numbered for
convenience. Set B:= R[T]. We will define a (degree preserving) map of complexes

7: 9 Q@rB > % ®gB. For this, one uses the Koszul complex on T, whose differentials
will be denoted y; (i = 1, 2, 3), and the map

. f
f/T'_[O...O %1

n—1

]:B"‘1®B3 > B ®B.

We will also use the following identifications in addition to the above:
(Bngl)* — An—ZBn—l
— (An—ZBn—l ®A3B3)®An+l Bn+1 c An+1 Bn+2®An+1 Bn+1
(B3)*:A2B3; B:An—an—l; A2B3=An_1Bn_1®A2B3.
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One is now ready for the definition of the map #, which is very simple. Namely, set
fo:=restriction of A"*1(f/T) to (B" Y)*
Ni:=u,°150(f*® B), where 1,:B® - B*"*? s the inclusion
Myi=2%3

Here is the main result of this section:

Proposition 1.1 (i) 1: 9 ® ;. B > % ®y B is a map of complexes.

(i) If grade (I,.,(f") =2 and grade (I,(f)) = 3, then the mapping cylinder C(n) is
a free B-resolution of S(J,_ /Ji_1), the symmetric algebra of the conormal module of
Jo_1-

Proof. First we show that # is indeed a map of complexes, i.e., that

) A" f @ Blgs°ny o 13 (f¥*®@B) = (A" f/T)| gn-1y° (f ® B) |31
and
) P2 @Bl un-1pn-19 4289 ° %3 =%, ° 13 ° (f* ® B)° (6 ® B).

Now, (1) is just a fancy way of writing the Cramer-Laplace relations for the
(n + 1) x(n + 1) minors of the map f/T, along its rows. As to (2), it expresses the elemen-
tary fact to the effect that, in order to write down the (n + 1) x (n + 1) minors of f/T fixing
the first n — 1 columns, one can first expand by Laplace along the (n + 1)-th row and then
expand the corresponding cofactors (= generators of J,_,) along the column comple-
mentary to the first n — 1 columns. Incidentally, of course, (1) and (2) are also expressions
of higher order Laplace relations or expansions.

Next, since 4 ® B and & ® B are cyclic under the given hypotheses, it follows that the
mapping cylinder C(y) is also acyclic. Therefore, C(y) is a free B-resolution of
coker (B® @ (B")* Wi @ET B). An easy inspection shows that this cokernel is isomor-

phic to S(J,_/J>_)).

Corollary 1.2. Let f: R"*? — R" be a generic (say, over a field) map. Then C(n)is a free
B-resolution of gr; _ (R).

Proof. By[2](cf also [6]), J,_; is of linear type, i.e., its symmetric and Rees algebras
coincide. [
Remark. As a graded B-module — where B is graded in the usual way, R being its
piece of degree zero — S(J,_,/J?_,) admits a graded resolution
0->B"®B(-3)>B"?®B(-2"->B®B(—1)""'>B.
Perhaps more interesting is the generic case: one regrades B so as to have the entries of

the map f of degree one. Then S(J/J?) = gr;(R) admits the graded homogeneous reso-
lution

0> B(—Q2n+ 1) > B(—= 20" 2@ B(—(n + 2))°
- B(—n¥@®B(—(n+ 1)) - B.
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The case n = 2 gives a presentation ideal I < B which is an almost complete inter-
section. Moreover, I admits a minimal B-sequence which is part of a minimal set of
generators. Therefore, I is linked to a Gorenstein ideal, necessarily generated by the
Pfaffians of a skew-symmetric matrix over B [4]. This ideal was explicitly given in [22]
in order to test a formula for the multiplicity of B/I. For n =4, I has deviation
n+2—3=n-—12z 3. It seems natural to ask whether I is strongly obstructed — i.e.,
whether the twisted conormal module wy,; ® I is Cohen-Macaulay — or, even more,
whether I is in the linkage class of a complete intersection.

One even lacks the information as to whether the first Koszul homology module
on the generators of I is Cohen-Macaulay — a negative answer to this would discard
any hopes to extending Vasconcelos conjecture (A) [26] beyond the realm of pure resolu-
tions.

2. Analytic behaviour of the normal cone. The following generality will serve our
purpose in this section: B is a normal quasi-unmixed domain and I < B is an ideal of
finite homological dimension and codimension at least two.

We recall that, quite generally, for a normal domain B and an ideal I = B of codimen-
sion at least two, such that the Rees algebra R (I) is normal, there is the so called exact
sequence of divisor class groups [23], [18]:

027 - ClL(R(I)) > CL(B) > 0,

where 7 is the number of height one primes of the exceptional divisor IR (I).

As a notation, v(E) will stand for the minimal number of generators of a finitely
generated module over a local ring.

For the reader’s convenience, we collect out of various sources the pertinent results.

Theorem 2.1. Let B be a normal quasi-unmixed domain and let I = B be a radical ideal
of codimension at least two and finite homological dimension. If 1 is of linear type then the
following conditions are equivalent:

(i) The symmetric algebra S (I) is a normal domain and ker (C1(S(I)) — CI1(B)) is (a free
group) of rank equal to the number of associated primes of B/I.
(i) gr;(R) is R/I-torsion free.
(iii) gr;(R) is reduced.
(iv) v(I,) < max {ht(I,), ht (P) — 1}, for every prime P > I.
(v) For a presentation F, > F,— I—0, one has ht (L) ztk() —t+ 3, for
1<t <dev(l):=rk(F,)— ht(I).

Proof. The equivalences (i) <> (ii) <> (iii) are in [17] (cf. also [23] for further generality
in (i) <> (ii)). We refer to [14] for the equivalences (ii) < (iv) <> (v). O

Lemma 2.2. Let I « B:= R[T], R = k[X], stand for the presentation ideal of the ring
gry, . (R) as in Section 1 (generic case). Then v(I,) < max {ht(I,), ht (P) — 1} for every
P>

29*
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Proof. By the results of Section 1 as applied in this case, one has a minimal presentation

BZn+2 B"+2@Bn‘—>B"+2 BB@Bn 1_)1__)0

_|e.®B Ny e
W—[‘O—‘W} fii=flgn-t.

First observe that v(I) = n + 2, so one may assume that ht(P) £ n + 2. Induct on n. Let n = 3.
Then ht(I; (f' ® B)*) = n(n — 1) > n + 2, hence, say, X, ¢ P. By inverting this element and per-
forming elementary transformations on the matrlx X/ 7, one obtains a matrix of the same form on
in new indeterminates_Y;= X, — X, X, X| ! in a new ring B~ B[X] 1] and, moreover,
I[X7 1= T < B, where Tis the 1deal of maximal minors of the new matrix. Also, the ring gry (R)
is presented over B by I, where J,_, = R = R[X[!]is the corresponding ideal of maximal mlnors
of (Y) fixing the initial (n — 1) x(n — 2) submatrix. Letting P:= PB, we have I, =15 p and
ht(P) = ht(P).

In this way, we have reduced the entire argument to the case n = 2. Here, we are assuming that
ht (P) = 4. Looking closer at the presentation of I, one sees that I, (¢, ® B|n,) contains the cofac-
tors of the 3 x 3 matrix

X12 X13 X14
XZZ XZ3 X24-
T, T, T,

Further, I, (f' ® B* = (X, X,,) B, a regular sequence modulo the previous cofactors. Therefore,
one can invert a coefficient of some relation among the generators of I. This shows our con-
tention. [

Corollary 2.3. Keeping the hypotheses of Lemma 2.2, if n = 2, 3 then S(I) is normal and
CHS(I) = Z*

Proof. Forn=2,3,]I has deviation at most 2, hence is strongly Cohen-Macaulay
[26]. Applying the above lemma, it follows that I is of linear type [14]. The result now
follows from Proposition 2.1. ]

Remark. Evenif I happens not to be of linear type, one can still derive similar results
for the Rees algebra. However, the authors expect Corollary 2.3 to be valid for any value
of n. A question remains as to whether one can prescribe, in the non-generic case,
sufficient estimates for the grades of the Fitting ideals in order to obtain results along the
same line.

3. The free resolution of the maximal minors fixing a submatrix: the unmixed case.
Referring to the notation of Section 1, recall that J, = J,(f) stands for the ideal
(A" )(A"R"® A" "R™™") = R, where f: R™ — R" is a map and there is given a splitting
R'=R@®R" "mzn+1,n=r+ 1).If fis “generic” then one of the results of [2] is
to the effect that the codimension of J, equals the minimum value between m — n + 1 and
n —r + 1, while the homological dimension of R/J, is m — r.

In general, one would like to prove:
Conjecture. (R noetherian) If grade I,(f)Zm —n+ 1,grade [,(f|[R)Y=Zn—r + 1 and

if I,(f)+ 1,_,(f | ) is a proper ideal of grade at least m — r, then R/J, has homological
dimension m — r.
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We observe that in earlier works [1], [2] the third grade requirement was automatically
subsumed in the first two. In general, however, this additional bound is essential, as the
following example shows: let R = k[X, Y, Z] and let f be represented by the 3 x 5 matrix,
where we fix the first column:

X Y Z 0 0
Y X Y Z O
Z 0 X Y Z
Here, I, (M) = (X, Y, Z) and I,(M) = (X, Y, Z)® have grade three, but of course, the
homological dimension of any R-module is at most three, whereas 5 — 1 = 4.

Clearly, one would like to conjecture about the actual structure of a finite free resolu-
tion of J, under the above conditions. Once an explicit presentation of J, is at hand,
finding the codimension of J, is, in principle, an easy task. A good candidate is given by
a variation of the Cramer map (cf. the proof of Theorem 3.1). It is much harder to guess
the remaining maps of a (potential) free resolution. The authors believe that there is such
a resolution obtained by tensoring well-known free complexes and by cutting the faulty
sizes by suitable trace maps.

In this section, we illustrate this expectation in a particular case which, nevertheless,
is believed to keep the main features of the general unmixed case, that is to say, the case
where m —n + 1 =n —r + 1. The reason we focus on unmixed ideals, at this stage, is
that, among other nice properties, they enjoy the (rare?) phenomenon that their associat-
ed graded ring is Gorenstein while not being a domain (a general account of such
phenomena is to be found in [15]).

First, one has the well-known Buchsbaum-Rim complexes that, under the present
hypotheses, resolve the cokernel of the maps R**2 /5 R" and (R")* £ (R"~2)*, respec-
tively (cf. [5]). We are particularly interested in the tail maps of these complexes, namely,
0— R" - A""1R*"*? and 0 — (R"~2%)* — A"~ *(R™*. The tensor product of these maps
yields a complex

0 R'® (R 5 (R'® A" (R'))
@((R"_z)*®A"+1R"+2)—%—> An+1Rn+2®An—1(Rn)*

M:=

which we modify as follows: project the module 4”*! R"*2 onto its direct summand
A" P R*" 2 ® A* R* and compose with the trace map (V, W) — tr V + tr W, where the
module R" ® A" ! (R")* (respectively, (R"™2)* ® A*"* R"~2) is identified with the free
R-module whose elements are the n X n (respectively, (n — 2) x (r — 2)) matrices over R.
The result of this composition clearly maps onto R, hence its kernel K is a free R-module
of rank 2n? — 5. It is easy to see that im (p,) < K.

This takes care of the “trace” modification of the tensor product of the maps. We
further introduce the following variation of the “Cramer map” associated to the map
f: Rn+2 —> R”:

An+1 Rn+2 ®(An*1 Rn)* N AZRn+2

wid. . Aw,, ® P > 5(j1>j2)@(f(Wil)A-~-Af(Win,1))Wj1AWj2,

1=2j12j28n+1
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where o (j;,j,) is the sign of the permutation 1 —i,,...,n—j,n+1—j,, with
{L,..on+ 1} ={i, .0 iy 1,dis o)

Composing this map with the canonical projection of 4% R"*? onto its summand
A*R* = A" 2 R""% ® A% R*, we obtain a map @, . Finally, set ¢, : = restriction of A" f to
An—Z Rn—Z ® AZ R4.

Lemma 3.1. The above construction yields a complex
(g:O_-)Rn®(Rn—2)*&>K¢3—|K)An+1Rn+Z
®(An—1Rn)* %2 An—ZRn—2®A2R4 A R.

Proof. We are to verify that ¢, © @3], and @, ° @, are the zero maps. The fact that ¢, c ¢, =0

is a base-{ree restatement of the straightening relations of the n x n minors of f fixing the submodule
R""2 = R*"2. As for the other composition, the argument goes as follows. Choose bases 5, ..., f,
ande,,..., e, , of R"and R"*?, respectively. Then, a basis of K is given by the following collection
of elements

(1) [ ®fFAARXA . Af*, i+l 1<Zilgn

(2 ef®ed..AéA. ... Ae,,, j*k 1=2j<n—-2 1ZkZn+2

B) fi®FFA AFFA L AfF — [ QFFASFAAL*, i+l 1<iZn
@) er@ed..A8A. . Ae,,, —[LQFFASFA.Af¥, 1<j<n—2,

To prove our contention, we compute the value of ¢, © @5 on each class as above of basis elements.
Leaving out the details of the computation for space reasons, we obtain that the vanishing of ¢, © @
on class (1) expresses the Cramer-Laplace relations of the (m — 1) x (m — 1) minors of an (im — 1) xm
submatrix of f withrows 1,...,[ ..., n, along the i-th row (i = I); on elements of class (2), it expresses
the same provided “row” is changed to “column”. On class (3), the vanishing of ¢, ° ¢, translates
into the fact that an n x n minor of f can be developed along the i-th row (i & 1) or along the first
row. A similar translation applies in the case of class (4). [

Lemma 3.2. If grade I,(f) = 3, grade In—2(f|Rn-z) = 3 and grade (I,(f) + I,,_Z(fan_
=4, then the complex € is acyclic.

Proof. By the “lemme d’acyclicité” [20], it suffices to establish the acyclicity of €, for a prime
ideal P = R of height at most three. For such a prime, by hypothesis, we must have either I, (f) ¢ P
orelse I,_,(f) & P(with f* =f|R,ﬁz).

Let I(f) ¢ P and let 4 denote an n x n minor not lying in P. If such a minor involves the first
n — 2 columns of f, then {¢,), splits and, therefore, &, is split exact all the way through. Thus, we

assume 4 does not involve all of the first # — 2 columns of f”. In this case, by applying suitable
elementary column transformations on f that do not affect the ideals im (¢,) and I,_, (f"), one can

2))

assume that A is the n x #n minor with columns 2,...,n + 1 or the one with columns 3,...,n -+ 2.
Then, by inverting 4 (in R,) and applying further e]ementary transformations, one can represent Jes
respectively, by the matrices =
Ay 013 1
[ agy 1 Q31 43z 1
Azy 1 a3y 3, 1
a3 1 41 Gap 1
or
1 1
1 q J
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where all unspecified entries are zero. Next, a convenient choice of bases sets the complex %, in a
form suitable for applying the criterion of Buchsbaum-FEisenbud [3]. Thus, if I (/) denotes the ideal
of (rk ¥) x (tk ) minors of a matrix i, one obtains in both cases that, up to radical, I(¢,), and
I,_,(f#) are one and the same ideal for 1 <i < 3 and I(¢,)p = Rp. Therefore, €, is acyclic.

Let now I,_,(f’) ¢ P. Assume, as we may, that the (n — 2) x(n — 2) minor of f with rows

1,...,n — 2 and columns 1, ..., n — 2 does not belong to P. By a similar token, the matrix of f, can
be set in the form
In* 2

an—l,n~1 an—l,n an\l,n+1 an*l,n+2

Ay n—1 A, n Ay n+1 Ay n+2

Again, by computing the depths of I(¢,)p, one sees that €, is acyclic. [

The main theorem of this section can be stated as follows.
Theorem 3.3. The following conditions are equivalent:

(i) grade 1,(f) =3, grade I, ,(f |gn-2) 2 3 and grade (I, (f) + 1, (f [g=-2)) 2 4
(iiy The complex € is acyclic.

Moreover, in that case, the homological dimension of R/J,_,(f) is exactly four if and
only if the ideal 1,(f)+ 1,_,(f | re-2) is proper.

Proof. Lemma 3.2 above takes care of the implication (i) = (ii). To prove the con-
verse implication we argue as follows. Let 7 be the corresponding generic map whose
entries are indeterminates over R; let f', J, etc. stand for the corresponding data. Since
the conditions in (i) are well-known to be satisfied in this generic situation, the corre-
sponding complex € is acyclic by the first implication and, moreover, grade J = 3 as
J=1,(f)nI,_,(f"). This shows easily that we have equality, up to radicals, of the ideals
I($3) and I(@,) respectively taken “at the rank” of the matrices). By specialization, we
have at least I (p,) = /I (p,), hence grade I(¢p,) = grade I (¢,) = 3 (the latter by exact-
ness of ¥). Since, in any case, grade J,_, = grade I (¢,), the upshot is that grade J, _, = 3.
Therefore, also grade I,(f) = 3 and grade I, _,(f") = 3.

In order to finish the proof of the implication (ii)=>(i), we claim that

\/ I{p,) = \/ L(f)+I,_,(f"). Again, by a specialization argument, it suffices to look
at the generic situation. Let P be a minimal prime of I, (f) + I,_,(f’) and assume n = 4.
Clearly, I, ;(f’) ¢ P (recall we are now dealing with the generic case). By the
usual procedure of inverting a minor in I,_5(f’) and applying elementary transforma-
tions to f over R[X]p, we reduce the question to verifying that I (¢,) is P-primary when
n=3. But in this case, a straightforward computation yields directly that
VI = Li(f) +1,(f)

The claim about the homological dimension is standard and we leave to the reader the
verification that it follows simply from the preceding arguments. []

We close this section with some results about the analytic behaviour of the ideal J. We
let R:= k[X], where k is a field and X an n x(n + 2) generic matrix. Set J:= J,_, (X).
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As before, v( ) will denote minimal number of generators. The analytic spread of an ideal
I in a local ring will be denoted by I(I).

Proposition 3.4. (i) v(Jp) < max {ht (P) — 1, ht (Jp)} for every prime ideal P distinct from
LX)+ I,_,(X), while v(Jp) = 5 for P =I,(X) + I,_,(X)).

() I(Jp) < max {ht(P) — 1, ht (J,)}.

Proof. Since J itself is generated by six elements, we may assume that ht (P) < 6. We
first prove (i):if n = 4 then ht (I, (X")) = n(n — 2) = 8 > ht (P), so by inverting an entry
of X' and applying suitable elementary transformations to the resulting matrix, one
reduces the question to the case n = 3 — we leave out the case r = 2 which is well-known
to be a complete intersection in the punctured spectrum.

Now, for n = 3 we may assume that P = I, (X) + I;(X) as otherwise Jp = I, (X)p ot
Jp = I3(X)p, which are well-known complete intersections (the latter because P $ I, (X)
as ht (I, (X)) > 6). Since even P P I,(X"), where X” denotes the submatrix complemen-
tary to X" in X, we may further assume that the 2 x 2 minor § corresponding to rows 1, 2
and columns 2, 3 does not belong to P. Inverting § and applying suitable elementary
transformations to X over R[6™ 1], we obtain a matrix

Y, 10 0 0
vi=|y, 01 0 o
;00 1 Y%

>

where ¥, (i = 1, ..., 5) are indeterminates in a new ring R. But J(Y) = J (X);as Y;, Y, Y,
are the result of elementary transformations applied solely to X,,, X,,, X5,. There-
fore, J(X)p=J(Y)p, where P:=PR. A direct calculation shows that J(Y)
=Y, VY, Y,Y,Y,Y,, Y;), which proves our contention.

In order to prove (i) it suffices, by (i), to show that [(J,) <4 for the prime
P=1,X)+1,.,(X). As above, after the standard identifications, we have J(X),
=Y, )N Y, Y¥5) + (Y3))y). The relation of analytic dependence given by
Y, - ,Y;=Y,YY,Y shows that I[(J,) £4. [J

Corollary 3.5. With same notation as above, one has:

(i) dim S(J)=dim R + 1 and S(J) is not Cohen-Macaulay.
(i}) dim S(J/J?) = dim R.
(i) gr;(R) is R/J-torsion free.

Proof. (i) According to the formula of [13], the inequalities v(Jp) < ht (P) + 1, for
every prime P, already imply the required value for dim S(J). By [14], in this case, S(J)
cannot be Cohen-Macaulay unless it is a domain. However, the generators of J are
analytically dependent, a relation of dependence being given by straightening the product
of the minors corresponding, respectively, to columns 1,....,n —2, n — 1, n+ 2 and
1,...,n—2,n,n+ 1.
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(i)) This follows again from [13] and the earlier proposition.
(i) From the estimates for the local analytic spreads given in the proposition and from
[10], one has the required torsion-freeness. For a different proof, in greater generality,

see [7]. O

The following points seemed to us worthwhile addressing:

1. Is there an “expected” free resolution of S(J/J?) over R[T] that comes from natural
subcomplexes of (graded) Koszul complexes?
2. Is §(J/J% Cohen-Macaulay?

The authors do not have the answer to the questions.

4. The complete intersection locus. For a noetherian ring R and an ideal I = R, we
consider the complete intersection locus of I. This is given by an open set D (L) = Spec R
such that Pe D(L) if and only if I, is generated by an Rp-sequence. Assuming some
“regularity” condition, such ideal is easy to describe.

Lemma 4.1. Let R be a Cohen-Macaulay noetherian ring and let I < R be an ideal of
finite homological dimension. If F; % Fy— I — 0 is a free presentation of I, then the
open set D (I;(¢)) < Spec R is the complete intersection locus of I, where 3 stands for the
deviation of I:= rank (F;) — ht (I).

Proof. The argument can be transcribed from the proof of Corollary (1.2) in [27], by
recalling that, in the presence of finite homological dimension, I, is a complete intersec-
tion if and only if I,/I% is R/P-free.  []

The estimates for ht (L) given in the literature ([8], [11], [27]), however sharp for some
classes of ideals, are nearly inocuous in our present context. We shall derive the exact
value of the codimension of the complete intersection locus, as well as a complete
description of the generic components of Spec R\D (L), for the ideals studied in the earlier
sections. Following the notation of [27], we set c¢(I):= ht (L) = ht (I;(p)), where
d = deviation of I.

For completeness, we treat other cases of ideals of maximal minors fixing a set of
columns. Only the generic case is considered, but presumably one could also deal with
the general case as long as enough grade bounds are given.

Proposition 4.2. Let R:=k|[X] and let J:=J,_;(X) < R be the ideal generated by
the maximal minors of the nxm matrix X fixing the nx(n — 1) initial submatrix X'.
Then:

0 V@) =...= (@) =1, (X)L (X)

(i) c)=min{6m—n+1}ifnz3;c)=m—1ifn=2
Proof. (i) We refer to the presentation given in [1], to wit,

An+1Rmi)An\1Rn—1®A1Rm—n+l =Rm—n+1_)J\_)0,
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where ¢ is the composition of the Cramer map A"*' R™ — R™, given by

WAoo Ay o S (=1 (XW) A AXW)A . AX Wy ) W,

with the canonical projection R™ = R* ! @ R™~"*! — Rm~n*1,

Now, obviously, I, (¢) = I,(X). A closer inspection in the map ¢ shows that also
I,(¢) = I,_,(X'). Clearly, then I;(¢) < I, ,(X)nI,(X). Conversely, let P<R be a
prime such that I;(¢) = P. Suppose I, _,(X’) & P. Then, by inverting a minor in I, _, (X)
and performing suitable elementary transformations, one reduces the problem to the
case where n = 2. But, here it is easy to see that I, (X) = I, (¢) = P. This means that
the original prime had to contain I, (X) if it did not contain I, _, (X"). We must conclude

that /I;(p)=1I,_,(X)nI,(X). Of course this implies /I,(¢)=...=./1;(9)
=1I,_,(X)n1,(X) all the way through.

(i) This is just reading heights in (i). [J

Proposition 4.3. Let J:=J, ,(X) © R:=k[X] be the ideal generated by the maximal
minors of the nx (n + 2) matrix X, fixing the initial n x (n — 2) submatrix X'. If n = 3, one
has:

0 Is(e) =1, 3(X)n L, (X)",->(X) + I,(X)).
) c(J)=S5.

Proof. Werefer to the presentation of J given in Section 3. A close reading of the map
@ in that presentation reveals that I, (¢) < I,_3(X)n I, _,(X). It is much subtler to see
that I, (¢) < I,_,(X") + I,(X). Actually, we will prove a stronger statement, namely, that
L, (p) = I,_,(X') + I,(X). To see this, one writes the matrix of ¢ in convenient bases, thus
detecting two kinds of 2 x 2 minors: the ones whose terms contain a factor which is an
(n — 1) x(n — 1) minor of X fixing X’ — these belong then to I,_,(X’) — and the ones
containing terms whose factors do not all fix X" — these can be expressed as sums of
products of (n — 2) x (n — 2) minors of X by nxn minors of X (in the way of classical
identities), hence belong to I, (X).

Summing up, we have /I (@) = I, 3 (X)n 1, (X)n{,_,(X') + I,(X)). In order to
prove equality, since I, (¢) defines the complete intersection locus of J, it is sufficient to
show that J is a complete intersection along those primes not containing any of the three
above primes. Let P be such a prime. If n = 4, we may invert a minor belonging to
I,_; (X") and perform elementary transformations on X, thus reducing the question to the
case where n = 3. Here we are assuming that either I, (X") ¢ P or I;(X) ¢ P. Note,
however, that J = I, (X') n I5(X). On the other hand, I, (X") is even globally a complete
intersection, while the complete intersection locus of I;(X) is given by I, (X). Since
P & 1,(X) as well, one is through.

(i) This is reading heights above: ht(l, ;(X)=8=ht(I,_,(X))(n=4) and
ht (I, (X)) + I,(X)) =5 (cf, e.g, [12]).
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We close the section with the computation of the complete intersection locus of the
presentation ideal of the associated graded ring studied in sections one and two.

Proposition 44. Let X be an nx(n + 2) matrix (n = 2) and let 1 < R[T] be the
presentation ideal of the associated graded ring of the ideal J,_,(X) < R:= k[X]. Then:

W) 1o (@) =(,— (X)) + L(X|T) (], z(X')+(T))
@i c()=6.

Proof. We refer to the presentation of I given in the earlier sections. As we saw there, the
deviation of I is n — 1. From the presentation, one easily checks that I, ,(p) = (I,_,(X)
+I,(X|T)(,_,(X") + (T)). Conversely, let P o I be a prime ideal containing neither I,,_, (X")
+ 1, (X|T)nor I, ,(X)+(T) Note that [ =1I,,,(X|T)+ J,_;(X). Therefore, we must have
I,.;(X") ¢ P.Ifn = 4, invert a minor in I, _ 5 (X"), etc., so as to reduce the question to the case n = 3.
We are now given a prime P o I such that P does not contain either 1,(X")+ [,(X|T) or
I, (X') + (T'). The case where I, (X") ¢ P can be further reduced to n = 2; but, here an inspection
shows that I, (¢) =I1,(X)+ I,(X|T) and we are through. Otherwise, let I, (X") = P (back to
n = 3). In this case, we must have (T) ¢ P and I,(X"|T) ¢ P, where X" is the complementary
matrix of X relative to X'. One can check that, by inverting suitable elements and performing
elementary transformations, the matrix X | T can be brought to one of the following forms

and, therefore, locally at P, I is generated by the minors [23]12], [1345] and [2345].
(ii) Reading heights once more, one has:

ht(l, ,(X)+(T)=6+3=9 @23
ht(I, (X)) + I,(X|T)) =6 (for this, note that I, , (X") + I,(X|T) is an associated prime of
LX|T).

A side curiosity about the ideals considered in this work is that the codimension of their
complete intersection locus is very nearly the minimum between their analytic spread and
twice the codimension of their component of largest codimension — this is far better than
the additive bound of [11].
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