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Free resolutions of certain codimension three perfect radical 
ideals 

By 

J. IF. ANDRADE 1) and A. SIMIS 1) 

Introduction. The original conception of this work included a complete study of certain 
codimension three perfect ideals that arise naturally in a "determinantal" set-up, with the 
purpose of enriching the present collection of such ideals. The ones we consider are 
always radical and their syzygy-theoretic properties are relatively easy to describe. From 
the viewpoint of the theory of graded resolutions, they share common numerical features 
with (the projecting cones of) certain codimension two and three varieties in projective 
space. Their resolutions being seldom pure, they seemed largely convenient for testing the 
sharpness of some calculations made in the pure case (cf. [19], [25], [26]). Moreover, they 
yield a large class suited for testing recently developed concepts, such as the notion of 
strong obstruction, that have its natural place in the theory of linkage ([loc. cit.]) or the 
more general theory of residual intersection developed in [16]. The authors did not pursue 
this line of thought, but it seemed worthwhile pointing it out. 

A brief description of the present contents is as follows. In the first section one obtains 
the explicit free resolution of a large class of codimension three ideals that appear as 
presentation ideals of normal cones associated to determinantal ideals fixing a submatrix. 
As it turns out, the resolutions of these presentation ideals are given by a mapping 
cylinder of a suitable map to the resolution of the original determinantal ideals. 

The second section is concerned with deriving some ideal-theoretic results from the 
knowledge of the presentation given in section one. This procedure, by and large, follows 
the techniques developed by various authors ([17], [14], [23] and [24]). 

In the third section one gives the resolution of the determinantal ideal Jr associated to 
a map R m ~ R" (m > n), fixing R r c R m, in the case of the data r = n - 2 and m = n + 2. 
This case not only extends the previous known ones [1], [2], but mainly gives some 
genuine clue for the general situation. The construction follows closely the spirit of the 
"scandinavian" complex [9] in that one is led to tensor suitable complexes and then to cut 
down the resulting size by an use of "trace" maps. This method seems to generalize well 
in various contexts [21]. 

Last one establishes exact values for the codimension of the complete intersection locus 
of the ideals considered in the previous sections. The reason for doing so is that the known 
estimates to present [11], [27] would give no real grasp, in this case, of the locus. 

1) Both authors were partially supported by CNPq (Brazil) 
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1. Free resolutions of normal cones associated to determinantal loci fixing a submatrix. 
Let (X) be an n x m (n =< m) matr ix  of indeterminates over a field k. Set R : =  k [X] and let 
Jr = J, (X) s tand for the ideal of R generated by the minors of (X) that  fix the first r 
columns. A thorough study of Jr was the theme of [2], while a detailed account of the 
propert ies  of the Rees algebra R (Jr) and of the associated graded ring grsr (R), in the cases 
r = n - I and m = n + 1, was provided in [6]. Thus, for instance, if r = n - 1, R (J,) is 
given by the determinantal  ring of maximal  minors of the matr ix 

x r~l. X / T : = [ O . . . O  T, Tn+I... 

F r o m  this one sees that  the Eagon-Nor thco t t  complex yields a free resolution of R (Jr) 
over the polynomial  ring R [T].  The resolution of grsr(R ) over R [T] is a little harder.  

In  this section one sticks to the case where r = n - 1 and m = n + 2 both because 
of its simplicity and the fact that  the presentat ion ideal over R [T] has codimension 
three. On the other hand, the original set-up will be slightly extended. Namely,  let 
R be a noetherian ring, let f :  R" § 2 _, R" be a map and let there be given a splitting 
R " + 2 = R " - l O R 3 .  Let f '  s tand for the restriction of f to R "-1 and let 
J , -  1 = J , -  1 ( f )  c A" R" = R denote the image of the map  A" f restricted to the module  
A"-IRn-1 @A1R 3. 

According to [1], if grade ( / ,_  1 (f ' ))  > 2 and grade (I, (f)) > 3 then R/J,_ 1 admits  a 
finite free resolution: 

~-: O ~ A , + 2 R , + 2 |  ~O3~ A,+lR,+2 O2~R 3 ~~ 

with the identifications A "-1 R"-a  | A 1 R 3 = R 3 and q~l = A" f  restricted to R 3. 
One also has the acyclic (provided grade (I ,_ a (f ' ))  > 2) complex 

~ " 0  ~ R ~ : R " * ~  R "-1. 

where ~ = (A "-1 f'*) = A"- l f ', R"* = A "-1R", R = A "-1R "-1. 
The maps ~03 and q)2 are easy to describe and one refers to [1] for the details. The exact 

knowledge of ~03 and q)2 are inessential for the construct ion we are about  to consider - 
it suffices to realize that  the restriction of @2 to A n- 1 R n- 1 @ A 2 R 3 ~ An+ 1 R n +  2 is given 
by the Koszul map  A 2 R 3 ~ R 3 on the three generators of J ._  1. 

Next,  let T: = T., T,+ 1, T,+ 2 be a set of three indeterminates over R, so numbered  for 
convenience. Set B : =  R [T]. We will define a (degree preserving) map  of complexes 
t/: N | B ~ o ~ | B. F o r  this, one uses the Koszul complex on T, whose differentials 
will be denoted )~i (i = 1, 2, 3), and the map  

f / T : =  0 . .  )~1 

n--1  

We will also use the following identifications in addi t ion to the above: 

( B n - 1 ) *  = A n -  Z B " - 1  

= ( A . - 2 B . - t  |  3B 3) | A.+I B.+I c A.+I B.+2 | A.+I B.+I 

(B3)* =A2B3; B=A"-aB" -a ;  A 2 B 3 = A , - 1 B , - I |  3. 
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One is now ready for the definition of the map ~/, which is very simple. Namely, set 

t /o:=restriction of A"+*(f/T) to (B"-I) * 

~/1 : =  ~2 o z* o ( f*  | B), where z2:B3 -+ B"+2 is the inclusion 

Here is the main result of this section: 

Proposition 1.1 (i) t/: ~ @g B -+ ~ @R B is a map of complexes. 

(ii) I f  grade (I._ 1 (f')) > 2 and grade (I. (f)) __> 3, then the mapping cylinder C (tl) is 
a free B-resolution of S (J._ 1/J 2_ a), the symmetric algebra of the conormal module of 
Jn-l" 

First we show that q is indeed a map of complexes, i.e., that 

A"f| ~2 o z* ( f*  |  -- (A"+lf/T)I~B.-I;o ( f  | B) I~. 

P r o o f .  

(1) 

and 

(2) 

Now, (1) 

@2 @ B [(An-lBn-I | ~ ~3 = ~2 o I~ o ( f *  | B) o (3 | B ) .  

is just a fancy way of writing the Cramcr-Laplace relations for the 
(n + 1) x (n + 1) minors of the map f /T ,  along its rows. As to (2), it expresses the elemen- 
tary fact to the effect that, in order to write down the (n + 1) x (n + 1) minors of f i T  fixing 
the first n - 1 columns, one can first expand by Laplace along the (n + 1)-th row and then 
expand the corresponding cofactors (=  generators of J ,_ a) along the column comple- 
mentary to the first n - 1 columns. Incidentally, of course, (1) and (2) are also expressions 
of higher order Laplace relations or expansions. 

Next, since ~ | B and Y | B are cyclic under the given hypotheses, it follows that the 
mapping cylinder C(t/) is also acyclic. Therefore, C(t/) is a free B-resolution of 
coker (B 3 @ (B"- a), (~1 | ~,,o)' B). An easy inspection shows that this cokernel is isomor- 
phic to S (J._ j j 2_  1). []  

Corollary 1.2. Let f: R "+2 ~ R" be a generic (say, over a field) map. Then CO1) is a free 
B-resolution of grs._l (R). 

P r o o f. By [2] (cf. also [6]), J ,_ 1 is of linear type, i. e., its symmetric and Rees algebras 
coincide. []  

R e m a r k. As a graded B-module - where B is graded in the usual way, R being its 
piece of degree zero - S (J,_ 1/J 2_ 1) admits a graded resolution 

0 --+ B" @ B ( -  3) --+ B"+2 @ B(- -  2)" ~ B 3 @ B ( - 1 )  ~ --* B. 

Perhaps more interesting is the generic case: one regrades B so as to have the entries of 
the map f of degree one. Then S (j/ j2) = grj (R) admits the graded homogeneous reso- 
lution 

0 --+ B( - -  (2.n + 1)) "+* --+ B ( - - 2 n )  n+2 @ B ( - ( n  + 2))" 

-~ B(-n)a~@B(--(n + 1)) 0-1 -+ B. 
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The case n = 2 gives a presentat ion ideal I c B which is an almost  complete inter- 
section. Moreover,  I admits a minimal  B-sequence which is par t  of a minimal  set of 
generators.  Therefore, I is l inked to a Gorenstein ideal, necessarily generated by the 
Pfaffians of a skew-symmetric matr ix  over B [4]. This ideal was explicitly given in [22] 
in order  to test a formula for the multiplici ty of B/I. F o r  n > 4, 1 has deviat ion 
n + 2 - 3 = n - I > 3. I t  seems natura l  to ask whether I is s trongly obstructed - i.e., 
whether the twisted conormal  module  wB/I | I is Cohen-Macaulay  - or, even more, 
whether I is in the l inkage class of a complete intersection. 

One even lacks the information as to whether the first Koszul homology  module  
on the generators of I is Cohen-Macaulay  - a negative answer to this would discard 
any hopes to extending Vasconcelos conjecture (A) [26] beyond the realm of pure resolu- 
tions. 

2. Analytic behaviour of the normal cone. The following generality will serve our 
purpose  in this section: B is a normal  quasi-unmixed domain  and I c B is an ideal of 
finite homological  dimension and codimension at least two. 

We recall that, quite generally, for a normal  domain  B and an ideal I ~ B of codimen- 
sion at least two, such that  the Rees algebra R (I) is normal,  there is the so called exact 
sequence of divisor class groups [23], [18]: 

0 ~ 2~ ~ ---, C1 (R (I)) ~ C1 (B) ~ O, 

where r is the number  of height one primes of the exceptional  divisor 1R (1). 
As a notat ion,  v (E) will s tand for the minimal  number  of generators of a finitely 

generated module  over a local ring. 
F o r  the reader 's  convenience, we collect out  of various sources the pert inent  results. 

Theorem 2.1. Let B be a normal quasi-unmixed domain and let I c B be a radical ideal 
of  codimension at least two and finite homological dimension. I f  I is of  linear type then the 
following conditions are equivalent: 

(i) The symmetric algebra S (I) is a normal domain and ker (C1 (S (I)) ~ C1 (B)) is (a free 
group) of  rank equal to the number of  associated primes of  B/I. 

(ii) gri  (R) is R/1-torsion free. 
(iii) grr (R) is reduced. 
(iv) v(Ip) < max (ht (Ip), ht (P) - 1}, for every prime P ~ I. 
(v) For a presentation F2 ~ F1 ---* I ~ O, one has ht (I, 0P)) > rk (~) - t + 3, for 

1 < t < dev ( I ) : =  rk(F1) - ht(I) .  

P r o o f. The equivalences (i) , ~  (ii) ~ (iii) are in [17] (cf. also [23] for further generality 
in (i) ~:> (ii)). We refer to [14] for the equivalences (ii) ~ (iv) -~  (v). [ ]  

Lemma 2.2. Let  I ~ B : =  R [T],  R = k [X], stand for the presentation ideal of  the ring 
grs, 1 (R) as in Section 1 (generic case). Then v (Ip) < max {ht (Ip), ht  (P) - 1} for every 

P ~ I .  

29* 
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P r o o f. By the results of Section 1 as applied in this case, one has a minimal presentation 

B 2n+2 = B n+2 @ B n ~ B n+2 = B 3 @ B n-1  ~ I ---+ O, 

First observe that v(I) = n + 2, so one may assume that ht(P) < n + 2. Induct on n. Let n > 3. 
Then ht(I 1 ( f '  | B)*) = n(n - 1) > n + 2, hence, say, X l l  r P. By inverting this element and per- 
forming elementary transformations on the matrix X/T, one obtains a matrix of the same form on 
in new indeterminates Yi-= X v -  X I I X I 1 X ; 1 1  in a new ring B ~ B[X;1 l] and, moreover, 
I [X~-i i] --- I c B, where I is the ideal of maximal minors of the new matrix. Also, the ring grj. ~ (/~) 
is presented over/~ by I, where J,_ 1 ~ / ~  = R [X~-i l] is the corresponding ideal of maximal minors 
of (Y) fixing the initial (n - 1 )  x (n - 2) submatrix. Letting /~:= P/~, we have l e ~ - T  p and 
ht (P) = ht (P). 

In this way, we have reduced the entire argument to the case n = 2. Here, we are assuming that 
ht (P) = 4. Looking closer at the presentation of I, one sees that I~ (q~2 | B[th) contains the cofac- 
tots of the 3 x 3 matrix 

I 
Xl2 X13 Xl4-]  

X22 X2a X 2 4 [  . 

T~ T~ T~ d 

Further, I 1 ( f '  | B)* = (X i l ,  X2i)B, a regular sequence modulo the previous cofactors. Therefore, 
one can invert a coefficient of some relation among the generators of I. This shows our con- 
tention. [] 

Corollary 2.3. Keep i ng  the hypotheses  o f  L e m m a  2.2, i f  n = 2, 3 then S (I) is normal  and 

Ct (S (I)) - Z 2. 

P r o o f. F o r  n = 2, 3, 1 has dev ia t ion  at mos t  2, hence is s t rongly C o h e n - M a c a u l a y  

[26]. App ly ing  the above  lemma,  it fol lows tha t  I is of  l inear type [14]. The  result  now 

fol lows f rom P ropos i t i on  2.1. [ ]  

R e m a r k. Even  i f / h a p p e n s  no t  to be of  l inear  type, one  can still derive s imilar  results 
for the Rees algebra.  However ,  the au thors  expect  Coro l l a ry  2.3 to be val id for any value  

of  n. A ques t ion  remains  as to whe ther  one  can prescribe,  in the non-gener ic  case, 

sufficient es t imates  for the grades of  the F i t t ing  ideals in o rder  to ob ta in  results a long  the 
same line. 

3. The free resolution of the maximal minors fixing a submatrix: the unmixed case. 
Referr ing to the n o t a t i o n  of  Sect ion 1, recall  that  Jr = J r ( f )  s tands for the ideal  
( A " f )  ( A ' R  r | A " - r R " - O  c R, where  f :  R m --+ R" is a m a p  and  there  is given a spli t t ing 
R m = R r O) R " - r  (m > n + 1, n > r + 1). I f f  is "gener ic"  then  one of the results of [2] is 

to the effect tha t  the cod imens ion  of  J ,  equals  the m i n i m u m  value  be tween  m - n + 1 and 

n - r + 1, while the homolog i ca l  d imens ion  of  R / J  r is m - r. 

In  general,  one  wou ld  like to p rove :  

Conjecture. (R n o e t h e r i a n ) I f  grade I ,  ( f )  => m - n + 1, g rade  I t ( f i R  r) > n - r + 1 and 

/ f  I ,  ( f )  + I , _  2 ( f i R  r) is a proper ideal o f  grade at  least m -- r, then R / J  r has homological  

dimension m - r. 
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We observe that in earlier works [1], [2] the third grade requirement was automatically 
subsumed in the first two. In general, however, this additional bound is essential, as the 
following example shows: let R = k [X, Y,, Z] and let f be represented by the 3 x 5 matrix, 
where we fix the first column: 

X Y Z 0 i l  
M : =  Y X  Y Z  . 

Z 0 X Y 

Here, I i (M') = (X, Y, Z) and 13 (M) = (X, Y,, Z) a have grade three, but of course, the 
homological dimension of any R-module is at most three, whereas 5 - 1 = 4. 

Clearly, one would like to conjecture about the actual structure of a finite free resolu- 
tion of J, under the above conditions. Once an explicit presentation of Jr is at hand, 
finding the codimension of J, is, in principle, an easy task. A good candidate is given by 
a variation of the Cramer map (cf. the proof of Theorem 3.1). It is much harder to guess 
the remaining maps of a (potential) free resolution. The authors believe that there is such 
a resolution obtained by tensoring well-known free complexes and by cutting the faulty 
sizes by suitable trace maps. 

In this section, we illustrate this expectation in a particular case which, nevertheless, 
is believed to keep the main features of the general unmixed case, that is to say, the case 
where m - n + I = n - r + 1. The reason we focus on unmixed ideals, at this stage, is 
that, among other nice properties, they enjoy the (rare?) phenomenon that their associat- 
ed graded ring is Gorenstein while not being a domain (a general account of such 
phenomena is to be found in [15]). 

First, one has the well-known Buchsbaum-Rim complexes that, under the present 
n + 2  f n n *  f n 2 *  hypotheses, resolve the cokernel of the maps R - ~  R and (R)  ~ (R - ) , respec- 

tively (cf. [5]). We are particularly interested in the tail maps of these complexes, namely, 
0 --)" R n - 4  A n + 1 R n + 2 and 0 -~ (R n- 2), ~ A"-1 (R")*. The tensor product of these maps 
yields a complex 

0 ~ R" | (R n- 2), ~04 (g" | A"-  a (Rn).) 

@ ( ( R , - Z ) . |  ~3 A n + i R n + Z |  

which we modify as follows: project the module A n+ 1 Rn+2 onto its direct summand 
A n - 3 R  n-2 @ A 4 R  4 and compose with the trace map (V, W) -~ tr V + tr W, where the 
module R " |  A " - i  (R")* (respectively, (Rn-2)*  @ A n-a R n-z)  is identified with the free 
R-module whose elements are the n x n (respectively, (n - 2) x (n - 2)) matrices over R. 
The result of this composition clearly maps onto R, hence its kernel K is a free R-module 
of rank 2n 2 - -  5. It is easy to see that im (q~4) c K. 

This takes care of the "trace" modification of the tensor product  of the maps. We 
further introduce the following variation of the "Cramer map" associated to the map 
f :  R "+2 ~ Rn: 

An+l Rn+z @ (A n-a Rn)* ~ AZ R n+z 

w l A . . . A w n + l |  Y~ a ( j x , j z ) c b ( f ( w l l ) A . . . A f ( w l ,  1))w;1Awj2, 
i<=jl < - j 2 ~ n + l  
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w h e r e  a ( J a , J 2 )  is t h e  s ign  o f  t h e  p e r m u t a t i o n  1 ~ i t . . . . .  n ~ j a , n  + I ~J2 ,  w i t h  

{1 . . . . .  n + 1} = {i 1 . . . .  , i n - l , j l , j z } .  
C o m p o s i n g  t h i s  m a p  w i t h  t h e  c a n o n i c a l  p r o j e c t i o n  o f  A Z R  n+z o n t o  i ts  s u m m a n d  

A 2 R 4 ~ A n-2 R n-2 @ A 2 R 4, we  o b t a i n  a m a p  (P2. F i n a l l y ,  se t  cp~ : =  r e s t r i c t i o n  of A " f  t o  
An- Z R n- 2 @ Aa R 4. 

L e m m a  3.1. The above construction yields a complex 

c~: 0 - - +  R"  @ ( R " -  2) * % ~ K  ~31K ) A n + l R n + 2  

|  ~ % , A n - 2 R n - 2 @ A 2 R 4  ~~ 

P r o o f .  We are to verify tha t  ~0 a o ~0at K and  (Pl ~ q'2 are the zero maps.  The  fact tha t  q~t ~ ~~ = 0 

is a base-free res ta tement  of the s t ra ightening relat ions of the n x n minors  of f fixing the submodule  
R " -2  c R "+2. As for the o ther  composi t ion,  the a rgumen t  goes as follows. Choose  bases f l , . . - , f ,  
and  e 1, . . . ,  e, + 2 of R" and  R" + 2, respectively. Then,  a basis of K is given by the following collection 
of elements:  

(1) f ~ |  i=t=l, l<=i,l<=n 
(2) e * |  z, j=t=k, l < j < = n - 2 ,  l _ < k _ < n + 2  

(3) f ~ | 1 7 4  i=[=l, l<_i<_n 
(4) e * | 1 7 4  * , . 1 1  Jz 1 <=j<=n-2. 

To prove  our  content ion,  we compute  the value of (~2 o (03 on  each class as above  of basis elements. 
Leaving out  the details of the compu ta t i on  for space reasons,  we ob ta in  tha t  the vanishing of ~o z o q~3 
on class (1) expresses the Cramer-Laplace  relat ions of the  (m - 1) x (m - 1) minors  of an (m - 1) x m 
submat r ix  o f f  with rows 1 . . . . .  r, . . . ,  n, a long the i-th row (i =t = l); on  elements of class (2), it expresses 
the same provided " row" is changed  to "column".  On  class (3), the vanishing of (P2 ~ (~ t ranslates  
in to  the fact tha t  an  n x n m i n o r  o f f  can be developed a long the i-th row (i 4= 1) or a long the first 
row. A similar t rans la t ion  applies in the case of class (4). [ ]  

L e m m a  3.2. I f  g r a d e  I n ( f )  > 3, g r a d e  I n_ a ( f iR--  ~) > 3 and g r a d e  (I  n ( f )  + I n_ 2 ( f i r  n - z)) 
> 4, then the complex cg is acyclic. 

Pr  o o f. By the " lemme d'acyclicit6" [20], it suffices to establ ish the acyclicity of cg v for a pr ime 
ideal P c R of height  at  mos t  three. For  such a prime, by hypothesis ,  we mus t  have either I,, ( f )  ~: P 
or  else I , - 2 ( f ' )  ~ P (wi th  f '  = fiR._2). 

Let Io ( f )  r P and  let A denote  an  n x n m i n o r  not  lying in P. If  such a mino r  involves the first 
n - 2 columns of f, then ((Pl)v splits and, therefore, cg v is split exact all the way through.  Thus, we 
assume A does not  involve all of the first n - 2 columns of f ' .  In this case, by applying suitable 
e lementary  co lumn t rans format ions  on  f tha t  do not  affect the ideals im (~ol) and  In_ 2 (f'), one can 
assume tha t  A is the n x n mino r  with columns 2 . . . . .  n + 1 or the one with columns 3 . . . . .  n + 2. 
Then,  by inver t ing A (in Re) and  applying fur ther  e lementary  t ransformat ions ,  one can represent  fv, 
respectively, by the matrices 

l - 1  al l  a12 I al t  1 a21 a22 1 

a21 ] a31 a32 1 ] 

a31 1 a,,1 a~2 [ 
I 1 

1 
or 

1 I 

; ] 
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where all unspecified entries are zero. Next, a convenient choice of bases sets the complex c~p in a 
form suitable for applying the criterion of Buchsbaum-Eisenbud [3]. Thus, if I (0) denotes the ideal 
of (rk 0) x (rk ~) minors of a matrix 0, one obtains in both cases that, up to radical, 1(%)p and 
I,_ 2 (f~) are one and the same ideal for 1 _< i _< 3 and I (~04) P = Rp. Therefore, ~p is acyclic. 

Let now I,_ z (f') r P. Assume, as we may, that the (n - 2) x (n -- 2) minor of f with rows 
1 . . . . .  n - 2 and columns 1 . . . .  , n - 2 does not belong to P. By a similar token, the matrix offv can 
be set in the form 

I ,  2 1 
an- l ,n-1  an-l ,n an-l ,n+l a n - l , n + 2 | "  

_1 an, n-1 an,n an, n+ l an, n+2 

Again, by computing the depths of I (q~i)P, one sees that c~p is acyclic. [] 

The main theorem of this section can be stated as follows. 

Theorem 3.3. The following, conditions are equivalent: 

(i) grade I , ( f )  > 3, grade I , -  2 ( f  lR,- 2) > 3 and grade (In(f) + I , -  2 ( f  [ R"- 2)) > 4. 
(ii) The complex c~ is acyclic. 

Moreover, in that case, the homological dimension of R/J,_ 2 ( f )  is exactly four if and 
only if the ideal I , ( f )  + I . - 2 ( f [ R - - 2 )  is proper. 

P r o o f. Lemma 3.2 above takes care of the implicat ion (i) ~ (ii). To prove the con- 
verse implicat ion we argue as follows. Let f be the corresponding generic map  whose 
entries are indeterminates over R; let f ' ,  J,  etc. s tand for the corresponding data. Since 
the condit ions in (i) are well-known to be satisfied in this generic situation, the corre- 
sponding complex ~ is acyclic by the first implicat ion and, moreover,  grade Y = 3 as 
Y = I . ( y )  ~ - '  I ._  2 ( f ) .  This shows easily that  we have equality, up to radicals, of the ideals 
I (~3) and I ((}2) respectively taken "at the rank"  of the matrices). By specialization, we 

have at least I (q~3) c / x / ~ z ) ,  hence grade I((P2) => grade I ((P3) > 3 (the lat ter  by exact- 
ness of cg). Since, in any case, grade J , - 2  = grade I(~o2), the upshot  is that  grade J , - 2  > 3. 
Therefore, also grade I , ( f )  > 3 and grade I , - 2  ( f ' )  > 3. 

In order  to finish the proof  of the implicat ion (ii)=~(i), we claim that  

x / I  ((o4) = x/1.  ( f )  + I ,_  2 (f t )"  Again, by a specialization argument,  it suffices to look 
at the generic situation. Let P be a minimal  prime o f I , ( f )  + 1 , -2  ( f ' )  and assume n > 4. 
Clearly, I ,_3( f '  ) dg p (recall we are now dealing with the generic case). By the 
usual procedure  of inverting a minor  in I . _  a ( f ' )  and applying elementary t ransforma- 
tions to f over R [X] e, we reduce the question to verifying that  I ((04) is P-pr imary  when 
n = 3. But in this case, a s t raightforward computa t ion  yields directly that  

x / I  (qo~) = 13 ( f )  + I1 ( f ' ) .  
The claim about  the homological  dimension is s tandard  and we leave to the reader  the 

verification that  it follows simply from the preceding arguments.  [ ]  

We close this section with some results about  the analytic behaviour  of the ideal J. We 
let R : = k [X], where k is a field and X an n x (n + 2) generic matrix. Set J : = J ,_  2 (X). 
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As before, v ( ) will denote minimal number of generators. The analytic spread of an ideal 
I in a local ring will be denoted by l(I). 

Proposition 3.4. (i) v (Je) < max {ht (P) - 1, ht (Je)} for every prime ideal P distinct from 
I ,  (J0 + I ,_  2 (X'), while v (Je) = 5 for P = I n (X) + I n 2 (X'). 

(ii) l(Je) < max {ht (P) - 1, ht (Je)}. 

P r o o f. Since J itself is generated by six elements, we may assume that ht (P) < 6. We 
first prove (i): if n > 4 then ht (11 (X')) = n(n - 2) > 8 > ht (P), so by inverting an entry 
of X '  and applying suitable elementary transformations to the resulting matrix, one 
reduces the question to the case n = 3 - we leave out the case n = 2 which is well-known 
to be a complete intersection in the punctured spectrum. 

Now, for n = 3 we may assume that P ~ 11 (X ~) + 13 (X) as otherwise Je = I1 (X')P or 
Je = 13 (X)e, which are well-known complete intersections (the latter because P :~ 12 (X) 
as ht (I2 (X)) > 6). Since even P qb 12 (X"), where X" denotes the submatrix complemen- 
tary to X'  in X, we may further assume that the 2 • 2 minor 6 corresponding to rows 1, 2 
and columns 2, 3 does not belong to P. Inverting 6 and applying suitable elementary 
transformations to X over R [~5-1], we obtain a matrix [ 00 001 

Y : =  Y2 0 1 0 

Y3 0 0 Y4 Y5 

where Y/, (i = 1, . . . ,  5) are indeterminates in a new ring/~. But J (Y) = J (X)~ as Y1, Y2, Y3 
are the result of elementary transformations applied solely to X l l ,  X21, X3~. There- 
fore, J ( X ) e = J ( Y ) p  , where /~:=P/~.  A direct calculation shows that J ( Y )  
= (Y1 V4, I11 Ys, Y2 Y4, Y2 I15, Y3), which proves our contention. 

In order to prove (ii) it suffices, by (i), to show that l(Jp)__< 4 for the prime 
P = In (X) - } - In_2(X '  ). As above, after the standard identifications, we have J(X)F 
=((Y1, YE)nY4,  Ys)+(Y3))~r). The relation of analytic dependence given by 
Y1 Y4" I72 Y5 -- Y~ Ys' Y2 Y4 shows that l(Jp) < 4. [] 

Corollary 3.5. With same notation as above, one has: 

(i) dim S(J)  = dim R + 1 and S(J)  is n o t  Cohen-Macaulay. 
(ii) dim S ( J / J  2) = dim R. 

(iii) gr s (R) is R/J-torsion free. 

P r o o f. (i) According to the formula of [13], the inequalities v (Jp) < ht (P) + 1, for 
every prime P, already imply the required value for dim S(J). By [14], in this case, S(J)  
cannot be Cohen-Macaulay unless it is a domain. However, the generators of J are 
analytically dependent, a relation of dependence being given by straightening the product 
of the minors corresponding, respectively, to columns 1, ..., n - 2, n - 1, n + 2 and 
1 , . . . , n -  2, n,n + l. 
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(ii) This follows again from [13] and the earlier proposition. 
(iii) F rom the estimates for the local analytic spreads given in the proposit ion and from 

[10], one has the required torsion-freeness. For  a different proof, in greater generality, 
see [7]. []  

The following points seemed to us worthwhile addressing: 

1. Is there an "expected" free resolution of S(J/J 2) o v e r  R [T] that  comes from natural  
subcomplexes of (graded) Koszul complexes? 

2. Is S ( j / j 2 )  Cohen-Macaulay?  

The authors do not have the answer to the questions. 

4. The complete intersection locus. For  a noetherian ring R and an ideal I c R, we 
consider the complete intersection locus of I. This is given by an open set D (L) c Spec R 
such that  P e D (L) if and only if Ip is generated by an Re-sequence. Assuming some 
"regularity" condition, such ideal is easy to describe. 

Lemma  4.1. Let  R be a Cohen-Macaulay noetherian ring and let I c R be an ideal of  
finite homological dimension. I f  F i ~ F o --+ I --~ 0 is a free presentation of  I, then the 
open set D (I~ (q~)) ~ Spec R is the complete intersection locus of  I, where ~ stands for the 
deviation of  I : =  rank (Fo) - ht (I). 

P r o o f. The argument  can be transcribed from the proof  of Corollary (1.2) in [27], by 
recalling that, in the presence of finite homological  dimension, Ip is a complete intersec- 
tion if and only if Ip/I 2 is R/P-free. [] 

The estimates for ht (L) given in the literature ([8], [11], [27]), however sharp for some 
classes of ideals, are nearly inocuous in our present context. We shall derive the exact 
value of the codimension of the complete intersection locus, as well as a complete 
description of the generic components  of Spec R \ D  (L), for the ideals studied in the earlier 
sections. Following the notat ion of [27], we set c ( I ) :=h t (L )=h t ( I6 (qo ) ) ,  where 
6 = deviation of I. 

For  completeness, we treat other cases of ideals of maximal minors fixing a set of 
columns. Only the generic case is considered, but presumably one could also deal with 
the general case as long as enough grade bounds are given. 

Proposition 4.2. Let  R : = k [X] and let J : = Jn- 1 (X) c R be the ideal generated by 
the maximal minors of  the n x m matrix X fixing the n • ( n -  1) initial submatrix X'. 
Then: 

(i) ~ . . . . .  ~ (q~) = I._ 2 (X') c~ I. (X) 
(ii) c ( J ) = m i n ( 6 ,  m - n +  l} i f n > _ - 3 ; c ( J ) = m - l i f n = 2 .  

P r o o f. (i) We refer to the presentation given in [1], to wit, 

A ~+ iR  m ~  A ~ - i R  ~- i  | A 1R m-~+l = R m-~+i ~ J - ~  0, 
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where ~0 is the composition of the Cramer map A "+ 1 R m __, R", given by 

w I A . . .  A w,+ 1 ~ Y~ ( -  1) t (X(wl)  A . . .  A X(wt) A . . .  A X(w,  + 1)) wt, 
t 

with the canonical projection R m = R" 1 | Rm- ,+ l  ~ Rm-,+l  

Now, obviously, 11 ((p) c I ,  (X). A closer inspection in the map co shows that also 
Ii(qo ) c I , _ 2 ( X '  ). Clearly, then Io(qo) c I , _ z ( X ' ) r ~ I , ( X  ). Conversely, let P ~ R be a 
prime such that Ia (~0) c P. Suppose I ,_  2 (X') ~: P. Then, by inverting a minor in I ,_  z (X') 
and performing suitable elementary transformations, one reduces the problem to the 
case where n = 2. But, here it is easy to see that 12 (X) = I 1 (~0) c P. This means that 
the original prime had to contain I ,  (X) if it did not contain I ,_  2 (X'). We must conclude 

that I ~ o ( ~ ) = I n _ z ( X ' ) c ~ I , ( X  ). Of course this implies ~ . . . . .  
= I ,_  2 (X') c~ I ,  (X) all the way through. 

(ii) This is just reading heights in (i). [ ]  

Proposition 4.3. Le t  J : = J,_ 2 (X) ~ R : = k [X] be the ideal generated by the maximal 
minors o f  the n x (n + 2) matrix X, f ix ing the initial n x (n - 2) submatrix X'.  I f  n > 3, one 
has: 

(i) ~ (q)) = I ._  3 (X') c~ I .  1 (X) c~ (I ._  2 (X') + I .  (X)). 
(ii) c(J) = 5. 

P r 0 0 f. We refer to the presentation of J given in Section 3. A close reading of the map 
(p in that presentation reveals that 11 (q)) c I ,_  3 (X') c~ I ,_  1 (X). It is much subtler to see 
that 13 ((p) c I ,_  2 (X') + I ,  (X). Actually, we will prove a stronger statement, namely, that 
12 (~0) ~ I ,_  2 (X') + I ,  (X). To see this, one writes the matrix of ~o in convenient bases, thus 
detecting two kinds of 2 x 2 minors: the ones whose terms contain a factor which is an 
(n - 1)x (n - 1) minor of X fixing X'  - these belong then to I n _ z ( X '  ) and the ones 
containing terms whose factors do not all fix X'  - these can be expressed as sums of 
products of (n - 2) x (n - 2) minors of X by n x n minors of X (in the way of classical 
identities), hence belong to I ,  (X). 

Summing up, we have ~ c I ,_  3 (X') ('1 I ,_  1 (X) c~ (I,_ 2 ( X ' )  -[- I n (X)). In order to 
prove equality, since 13 (q)) defines the complete intersection locus of J, it is sufficient to 
show that J is a complete intersection along those primes not containing any of the three 
above primes. Let P be such a prime. If n > 4, we may invert a minor belonging to 
I ._  3 (X') and perform elementary transformations on X, thus reducing the question to the 
case where n = 3. Here we are assuming that either 11 (X') qk p or 13 (X) r P. Note, 
however, that J = I 1 (X') ra 13 (X). On the other hand, 11 (X') is even globally a complete 
intersection, while the complete intersection locus of 13 (X) is given by I2(X). Since 
P q~ 12 (X) as well, one is through. 

(ii) This is reading heights above: h t ( I ,_3(X') )  = 8 = ht (I,_ a (X)) (n > 4) and 
ht (1,-2 (X') + I,(X)) = 5 (cf., e.g., [12]). 
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We close the section with the computation of the complete intersection locus of the 
presentation ideal of the associated graded ring studied in sections one and two. 

Proposition 4.4. Let X be an n • (n + 2) matrix (n >= 2) and let I ~ R [ T ] be the 
presentation ideal of the associated graded ring of the ideal J,_ 1 (X) ~ R : =  k [X]. Then: 

(i) ~ /~ ,_1  ((p) = ( I ,_I  (X') + I , (X]  T))c~(I ,_ E(X') + (T)) ,  

(ii) c ( I )  = 6. 

P r o o f. We refer to the presentation of I given in the earlier sections. As we saw there, the 
deviation of I is n -  1. From the presentation, one easily checks that I ,_ 1 (q~)c (I,_ 1 (X') 
+ I,(XI T)) n (In_ 2 (X') -+- (T)).  Conversely, let P = I be a prime ideal containing neither I ,  1 (X') 
+ I,(X[ T) n o r  In_E(X')  -]- ( / ' ) .  Note that I -- I,+I(X I T) + J,_I(X). Therefore, we must have 
In- 3 (X') ~z P. If n > 4, invert a minor in I ,_ 3 (X'), etc., so as to reduce the question to the case n = 3. 
We are now given a prime P ~ I such that P does not contain either I2 (X ' )+  I3(X] T) or 
I~ (X') + (T). The case where 11 (X') ~ P can be further reduced to n = 2; but, here an inspection 
shows that 11 ((p)= 11 (X')+ I2(X I T) and we are through. Otherwise, let 11 (X ' )~  P (back to 
n = 3). In this case, we must have (T)c~ P and I3(X" I T)~z p, where X" is the complementary 
matrix of X relative to X'. One can check that, by inverting suitable elements and performing 
elementary transformations, the matrix X ] T can be brought to one of the following forms 

X' 0 1 ' 0 0 l 

0 0 ' 0 1 

0 1  u~ 0 1 o  

and, therefore, locally at P, I is generated by the minors [23112], [1345] and [2345]. 

(ii) Reading heights once more, one has: 

ht(I ,  2(X r) -~ (T)) = 6 + 3 = 9 (n > 3) 

ht(I ,  I(X') + I , (X I T)) = 6 (for this, note that I ,_I(X'  ) + I , (X I T) is an associated prime of 
L(xI  r)). 

A side cur ios i ty  a b o u t  the ideals cons idered  in this w o r k  is tha t  the cod imens ion  of their  

comple te  in tersec t ion  locus  is very near ly  the m i n i m u m  be tween  their  analyt ic  spread and 

twice the cod imens ion  of  their  c o m p o n e n t  of  largest  cod imens ion  - this is far bet ter  than  

the addi t ive  b o u n d  of  [11]. 
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