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The fact that the classical Liouville equation can be analyzed as a dynamical 
equation in Hilbert-Koopman (HK) space is used in order to develop a perturba- 
tive method for the wave mechanics in phase space: an explicit solution of the 
Liouville equation in qp representation is exhibited. The connection between 
the solution obtained and the dynamics of correlations is established by comput- 
ing the qp-kp transformation function in HK space. To elucidate the method, 
an application is presented and the result compared to that available in the 
literature. 

1. I N T R O D U C T I O N  

The s tudy  o f  c lass ical  s ta t is t ical  mechan ics  by  using me thods  spec ia l ly  
d e v e l o p e d  in quan tum theory  has been  ca l led  by  De l l a  Ricc ia  and  Wiene r  
(1966) wave mechanics  in c lass ical  phase  space  ( W M C P S ) .  This fo rmula t ion  
o f  s ta t is t ical  mechan ics  has a ma themat i ca l  s t ructure  based  on the H i l b e r t -  
K o o p m a n  ( H K )  space  ( K o o p m a n ,  1931; Mis ra  and  Prigogine,  1983; Misra ,  
1978; G e o r g e  and  Pr igogine,  1979; Twareque  and  Prugove~ke,  1977; Matos  
Neto  and  Vianna  1984, 1985); it has been  e m p l o y e d  in different  vers ions  
by  Sch6nberg  (1952, 1953a, b) in the analys is  o f  G i b b s '  p a r a d o x ,  Del la  
Ricc ia  and  Wiene r  (1966) in the s tudy o f  Brownian  mot ion ,  and  Pr igogine  
and  co-workers  (Pr igogine ,  1962, 1980, Pr igogine et al., 1973) in several  
works  on nonequ i l i b r i um prob lems .  

In the  app l i ca t ions  o f  Pr igogine  fo rmula t ion  the essent ia l  s tep is the 
e x p a n s i o n  o f  the phase  d i s t r ibu t ion  func t ion  in a Four i e r  series in the 
coord ina te s  q = (q l ,  q~, q3 . . . .  , qN). In terms o f  H K  space  this amoun t s  to 
a change  o f  r ep resen ta t ion  in which  the coord ina te s  q are r ep l aced  as 
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independent variables by the Fourier indices or "wave vectors" k=  
( k ~ , k 2 , . . . ,  k u ) ;  we call this development the kp representation of the 
WMCPS. However, it is possible to study the WMCPS by using the 
(q l ,  q2, �9 �9 �9 qN, Pl ,  P2, �9 �9 �9 PN) = qP representation directly. Della Riccia 
and Wiener (1966) and Sch6nberg (1952, 1953a, b) have utilized in their 
work the qp representation to discuss general aspects of the theory. In 
present report, our objective is to use the qp representation to determine 
an explicit solution of the Liouville equation. 

The Liouville equation is a natural starting point for studies of non- 
equilibrium statistical mechanics (Prugove~ki, 1986; Balescu, 1975). 
Moreover, it is known that the dynamical equation in the quantum phase 
space approach (Bohm and Hiley, 1981; Prugove~ki, 1986; Aharanov et al., 

1981; Moyal, 1949) is a generalized Liouville equation, i.e., the Wigner- 
Moyal transform F ( Q ,  P, t) of a quantum density matrix p(q ' ,  q)  satisfies 
a Liouville-type equation; and in this approach the connection between 
quantum mechanics and Liouville's equation is made by considering the 
solutions of the Liouville equation as constants of the motion (Bohm and 
Hiley, 1981). A method to determine these solutions of the motion in the 
qp representation has been presented by Bohm and Carmi (1964a, b) in 
connection with a classical treatment of collective coordinates and by Bohm 
and Hiley (1981) in a quantum algebraic approach to generalized phase 
space. Unlike Bohm's method, our solution of the Liouville equation follows 
closely the propagator approach employed by Feynman and Hibbs (1965) 
in quantum theory; we show that each term of the Liouville equation 
propagator expanded in powers of the coupling constant can be represented 
uniquely by a diagram which describes a global process. In order to elucidate 
the method, we study the motion of an incident flow corresponding to a 
Maxwell distribution and we compare the results with those obtained by 
other authors (Prigogine, 1962). 

In Section 2 we present our development and the diagrammatic tech- 
nique in the qp representation. In Section 3 we apply this theory to the 
problem of Maxwell flow. In Section 4 we present our conclusions and the 
connection between our development and the work of Prigogine (1962). 

2. PERTURBATION THEORY AND DIAGRAMMATICAL 
REPRESENTATION 

Using the mathematical structure of HK space (Matos Neto and Vianna, 
1984; Misra, 1978; Prigogine, 1980), we can write the Liouville equation as 

i 3,[Os(t)) = LslOs(t)) (1) 

where lOs(t)) is the classical state of the system whose Hermitian Liouville 
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operator is Ls. The subscript S signifies the classical Schr6dinger picture 
(CSP) (Matos Neto and Vianna, 1984). 

We assume that Ls can be written as Ls = Lo+L1, where Lo is the 
kinematic part of Ls and L~ contains the interaction terms. Then, in the 
classical interaction picture (CIP) (Matos Neto and Vianna, 1984) the vector 
state of the system satisfies the equation 

10(t))-- Ul( t, to)lO( to)) (2) 

with 

i 8tUi(t, to)= LIUI(t, to) (3) 

where L~ is given by L~ = exp[iLo(t- to)]L~ exp[-iLo(t-to)]. 
The formal solution of (3) is obtained by an iterative procedure, which 

gives 

d t l ' "  dt. 3-[L,(t,) �9 �9 �9 L,(t.)] (4) 
n = 1 �9 J t  0 t 0 

where ~- is the Wick chronological ordering operator (Matos Neto and 
Vianna, 1985). 

In the qp representation, (2) is written as 

0(~:1,  �9 �9 � 9  ~N,  t ) =  f (~: l ,  �9 �9 - ,  ~N[U,(t, to)ls176 s 

x 0 o ( ( , . .  o -, ~:N; to) d~ : ~  d~ :~ (5) 

The notation that we use is ~:j = (qj, pj), and (s = (~:~, s  ~cN) = (P; q) 
are the coordinates of an N-particle phase space. To obtain 0(~:~,..., ~%; t) 
in (5), we use equation (4): 

0 ( ~ , , . . . ,  ~:N; t) 

= I d{(}<{r176162176 to) 

I I ' f '  f' . . . .  

+ d{~ ~ E (-1)  N t, dt2"" dt. ({~}l[L,(t,) 
n = 1 t o t o t o 

x L , ( t 2 ) . . .  Zx(tN)]l{~~176 to) 
o o  

= 0~~ to)+ • 0("~({sc}; t) (6) 
n = l  

We compute each term in (6): 
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For  n = 0 

O(~ q; t) 

= f @ l  @2" " dpNdq l  " " d q N S ( p l - - p  ~ 8 ( p 2 - - p  ~ 

x .  . . x 8 ( p N - - p O )  8 (q l - -qO)  X" " " X 8(qN--qO)Oo(qO" " " pO; to) 

= O0(p, q; to) (7) 

Fo r  n = 1 

I' 
o " ) =  - &x F(.~lo)r~oOo(p, q; to)= &0o(p, q; to) (8) 

to 

where  we used  

- i (  pqlL~lp'  q ' )=  ~( q - q') ~( p -  p ')  F (  q', p ')  Vp 

cgHv p N OH 0 

F (  q, p )Vp  = Oq i=l 0qi 0pi 

H is the Hami l t on i an ,  ~'ab = ta - tb, and  

=r~ql•177 / (9) 

The o p e r a t o r  Fab = V p  - - ( r a b / m )  Vq is such that  Vp acts on the func t ion  in 
phase  space  with expl ic i t  p dependence .  

Fo r  n = 2 

0 (2) = dtl dt2 {F(~ho)F(~%)F~oF2o 
to to 

+ F(z,o)[r,2F(~2o)]}Oo(q, p; to) 

= S20o(q, p; to) (10) 

and  so on. 
Fo r  any value  o f  n we can write 

O(n)(q, p; t ) =  ShOo(q, p; to) (11) 

so that  

O(q, p; t) = SOo(q, p; to) = Y, ShOo(q, p; to) (12) 
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Obviously, So, $1, and S, are known from equations (7), (9), and (10). The 
generic term S, is given by 

I f  f o s~ = ( -1)"  d t ,  d t 2 .  �9 �9 d t .  E' r~rs  F(r~o) (13) 
0 to r l - - - r n  = 0  s = l  s = l  

The prime in the summation symbol means that s ~ 0; s >  r. The 
operators Frs in (13) have the following properties (p): 

p-l:  r ~ s f o r a n y r ,  se(O, 1 , 2 , . . . , n ) .  
p-2: m a x ( r ) = n ,  m a x ( s ) = n ;  m in ( r )=0 ,  m i n ( s ) = l ;  where max(t)  

and min(t) mean maximum and minimum value, respectively, 
for t. 

p-3: when s < r, Fsr operates on the functions F(zro); when s >  r, 
F~r =- F~0 and Fso operates on the functions 0o only when the 
operation O(q, p; t) = S, Oo(q, p; to) had been performed. 

p-4: [F~, Fs,r,]_ = FsrF~,r,- F,,,,F~r = 0. 

Owing to these properties, we are able to obtain a diagrammatic 
representation for the term S,. Thus, we have the following rules (r) to 
compose the diagrams: 

r-l: For the nth term we enumerate the n + l  vertex of a regular 
polygon from 0 to n in the clockwise direction (Figure 1). 

r-2: Each vertex is connected to another by an orientated line rep- 
resenting an operator Fsr (Figure 2). 

r-3: Only one line leaves a vertex, but there is no limitation to the 
number of  lines entering a vertex. 

r s 

Fig. 2 
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r-4: A line leaving vertex s can enter a vertex 0 or another  vertex 
r # 0, with r > s. 

r-5: No  line leaves the vertex zero (receptor, vertex), which we rep- 
resent by @. The other vertex we will represent by 0 .  

r-6: There are n ! different ways to connect  n + 1 given vertexes such 
that one line leaves each vertex. Each one o f  these ways represents 
in the integral in equat ion (13) a term of  the form 

Flr, F2r2 " " " F .... 

We calculate, as examples, the terms $2 and $3 which will be used in 
the application. 

For  n = 2 (see Figure 3) 

r l , s2= at, dt2 [rlor2o+r2or,~]F(-~lo)F(-~o) (14) 
. I t  o t o 

From equat ion (14) and properties (p-l)  to (p-4) we obtain equat ion (10). 
For  n = 3 (see Figure 4) 

S 3 = ( - 1 )  dt I dt2 dt3 [FloF20F30+ F12F23F30+FIoF23F30 
d t  o t o t o  

+r12r:or3o+r,3F23r3o+r,2F3or2o]F(rlo)F(~'2o)F(r3o) (15) 

We remark that by consistency the vertex n is always connected to the 
receptor vertex. 

The diagrams that we introduce are interpreted in terms of  the whole 
process. Indeed,  we observe that the diagrams, in accordance  with rules r-1 
and r-2, are such that each line represents an opera tor  Fs ,  These Fsr are 
N-part icle  operators.  The operators F,o modify  the wave functions 
0o(q, p;  to), and Fsr (s r r ~ 0) change the interaction term F(zro), among  
the particles. 

2 2 

1 0 1 0 

Fig. 3 
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3. S C A T I ' E R E D  P A R T I C L E  BY A P O T E N T I A L  A V(q) 

As an applicat ion o f  our  method,  we study a particle scattered by a 
potential  AV(q).  For  the sake o f  simplicity, we consider here only the 
one-dimensional  case. Let the initial state be 

Oo(p, to) = OM(p, to = O) = A e -~pV2 

which gives the Maxwell  velocity distribution when we calculate I 0]2, where 
we have used m = 1, A =  ( r rkT /2 )  1/4, and /3 = 1/kBT. Thus we obtain for 
the first terms of  the expansion (13): 

For  n = 0  

0 (~ OM(p) (16) 

For  n = 1 

fo 8 (1)= - dtl F(rlo)FloOM(p) 

= - A A f l [  V(q +pt )  - V(q)]  e -~p2/2 

For n = 2 

0 (2) = �89 aft2 V2(q) e-r --k AA2fl 2 V(q +p t )  e -r 

+ Aa2 f l2V(q )  V(q  +p t )  e -~p2/z 

(17) 

(18) 
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For n = 3 

O(3) = ( -~AA 3 ~T. V3( q + pl) - fl3AA 3 [ - 1  V3(q) 

1 2 1 ] +~ V (q) V(q +pt) -~  V(q) V2(q +pt 

~-~[VqV(o)] fotdtl V2(qdyp,l) 

' d II 

+~[VqV(q)]Iodt l -~lV(q+pq)fo  dt2V(q+pt2)} 
AA 3f12p2 { - + [ V q  V( q)]V2(q + pt)t 

Io +21p3[~qg(q)] dr1 V2(q+ptl) 

' d t, V(q+pt2) I +~3[VqV(q)]fo dtl-d-~l V(q+ptl) fo dt2 ) 

;o ;o" } x dt tl dt--~ V(q+pq) dt2 I/(q+pt2) 

2 2 f l  
-AAS(-/3 +fl p )~-~ V(q)[VqV(q)]V(q+pt)t 

' fo }) -p--5 V(q)[VqV(q)] dt~ V(q+pt,) e -~p2/2 (19) 

We suppose that the potential V(q) is a sufficiently smooth function 
in order to give to expression (13) a mathematical meaning. 

When V(q) is a short-range potential, such that l i m , ~  V(q-p t )~  0, 
we can calculate the asymptotic state lim,~o Os(q, p; t). In this case, from 
our expressions (16)-(19), it follows that in CPS we obtain 

Os( q, p, t ~ oo) = OMa( q , p) = A e -[3[p2/2+ A V(q)] 
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We have, therefore, that the system is a nonstationary state after the 
collision, but evolves to a stationary state in the asymptotic limit. This 
conclusion is the starting point for the dynamical derivation of equilibrium 
statistical mechanics using a long-time interaction effect on the Maxwell 
equilibrium distribution in the method developed by Prigogine and co- 
workers (Prigogine, 1962). 

4. CONCLUDING REMARKS 

In this report we have presented a perturbative method in classical 
phase space in order to obtain a solution of the Liouville equation. Our 
method uses the fact that the classical Liouville equation can be formulated 
as a dynamical equation in Hi lber t -Koopman space. In consequence, our 
development can be applied also to Liouville-type equations derived in the 
quantum phase approach (Bohm and Hiley, 1981; Prugove~k, 1986). 

We have used the qp representation. Nevertheless, we can transform 
our solution to other representations of the HK space and in particular to 
the kp representation. In this sense, the dynamic of correlations (Prigogine, 
1962; Balescu 1975) can be derived directly from our approach. Indeed, 
using [kp)=[kl ,k2 , . . . ,kN,  p l " ' ' pN) ,  so that (kp]O(t))=pk(p;t), we 
obtain from equation (2) 

pk(p;  t) = (kpl u, lOo(to)~ (20) 

Using a complete set of  eigenkets {Ikp)}, it is an easy matter to show that 
(20) coincides with the result derived by the correlation dynamics theory 
when one chooses as solution of (1) L-integrable real-valued functions. We 
note, however, that each diagram in the qp representation corresponds to 
several diagrams in the kp representation. 

As a final remark, we note that by our method we have obtained the 
complete solution of the Maxwell flow problem, i.e., the vector state ]O(t)) 
at any time, and showed that its asymptotic value coincides wi th  that 
obtained by Prigogine (1962) using an approximate master equation for Pk. 
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