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A two-spacial dimension electronic system characterized by a plasma parameter F ~< 1 is 
analyzed; then, by using a rigorous non-equilibrium statistical mechanical theory, the 
evolution of distribution function is considered. A generalized Vlasov equation (GVE) is 
derived. Compared to the usual Vlasov equation, GVE presents an additional velocity- 
dependent correlation term. Taking as a starting point the GVE, the phenomenological 
approximation to two-particles function, f 2 ( r l r 2 p t p 2 ;  t) = f~(rlp~; t)fl(r2P2; t)g(r~ - r 2 )  , pro- 
posed by Singwi, Tosi, Landi and Sjolander is analyzed. 

1. Introduction 

Properties of low-dimensional electronic systems have been extensivcly 
studied in the literature [1-5]. Particularly important in this area is the system 
formed by electrons on a helium surface. Such a system we will call in this 
paper TDES (two-dimensional electronic system). 

TDES is a system with correlational properties; it is characterized by an 
electron density c in the experimental range 105 ~<C~<10 9 [4 ,5 ] .  In this 
situation the range of electrostatic energy per particle (2x  10 -16 ergs to 
7 x 10 -15 ergs) is comparable to a typical thermal energy (--1.4 x 113 -16 ergs). 
Then, the quantum effects are not important and TDES exhibits a classical 
behaviour, i.e. TDES can be treated as a classical plasma. Indeed, the electron 
system behaves like a non-degenerate plasma described by a two-dimensional 
Boltzmann distribution as a limit of the Fermi distribution at experimental 
densities and temperatures. 

From a theoretical standpoint, the TDES has been studied by several 
authors [6-11]. In particular, Studart and Hip61ito [12, 13] have considered the 
correlation effects by using the self-consistent field approximation proposed by 
Singwi, Tosi, Land and Sjolander (STLS) [14]. In the STLS approximation, the 
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two-particle distribution function f2(rt, r2, Vl, V2; t) iS written as 

f2(rt, r2, vl, V2; t ) =  f l ( r l ,  vl; t) fl(r2, V2" ~ t) g ( ! r l -  r2l), (1) 

where f~ (r, v; t) is the single-particle distribution function and g(lr  I - r2l ) is the 
static pair correlation function. 

The STLS method is strongly based on the relation (1) which is a 
phenomenological hypothesis. Indeed, in this scheme the equation of motion 
of the one-particle distribution function is truncated under the assumption that 
the coupling of the particle to the medium is given by the function g(r). 

It is known that the main object of a partly intuitive or semi-phenomenologi- 
cal model is the calculation of the physical quantities from its fundamental 
equations, which are accepted more or less a priori. In c~nsequence, one has 
no~ an analytical method to modify the equations of such models in order to 
obtain the best results for a given problem. The STLS model as it is presented 
in the literature can be included in this category of phenomenological models. 

In the present paper, by using a rigorous non-equilibrium statistical mechani- 
cal theory, we will analyze relation (1). Our starting point is the dynamics of 
correlations (DC) developed mainly by Prigogine and Balescu [15, 16]. The 
DC has, at least, two aspects which are interesting to the study of the STLS 
approximation: (i) the DC has been used with success in the study of plasma 
[16, 17] (ii) by using DC theory one obtains the same diagrammatical repre- 
sentation for both classical and quantum plasmas [16]. This aspect (ii) can be 
useful in the analysis of the classical limit of a quantum system. 

We will consider here the TDES characterized by a plasma parameter F = 1. 
The parameter F is defined as F =  ( V ) / ( K )  where (V) and ( K )  d¢~ot,~ the 
averages of the potential and kinetic energies respectively. We will show that 
the correlation effects will be related to diagrams we will call 2nd order 
diagrams. Our analysis concerns to derivation of an equatinn which describes 
the behavior of the plasma over short periods of time, i.e., for t = (~(tp), where 
t r is the plasma oscillation period, but since we will consider the case in which 
r is no longer very small we will need to include terms of order e2(e2c) ''. As a 
r ~ ¢ t t | ~  , v , ~ , ~ r , , . , - , l ' , . , , ~ , 4  ~ t l l  . . . . .  f / ' ~ t  T r T \  I ' ~ _ ~  ..I L _  ...ou,,, we obtain a ~;~,,~,,~,~,~u v,,~t,v equation ~ jv r . ) .  ~un~pmcu to the 
usual Vlasov equation our equation presents an additional velocity-dependent 
correlation term. Taking as a starting point the GVE we will obtain, as a 
particular case, the equation related to hypothesis (1). Hence, we can show the 
principles guiding the choice of the diagrams in the STLS model; this feature 
allows to us to indicate as the STLS model can be improved. 

In section 2 we present the notation we have used in the paper, the 
characteristic properties of TDES and the diagrams necessary to describe 
TDES by using DC theory. In section 3 we will derive the GVE. Section 4 
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contains an analysis of the STLS approximation seen as a particular case of our 
GVE. In section 5 we present final remarks and conclusions. 

2. Notation and preliminaries 

The TDES will be considered here as a two-dimensional N-particle system 
with interaction potential given by 

E j  = e / l r ,  - r,[ , r = ix + jy ,  i, j = 1 , . . . ,  N ,  (2) 

where e = eo[2/( l  + e)] 1/2 with e 0 the electronic charge and e the dielectric 
function. The system occupies a volume ~ .  The perturbative solution of the 
Liouville equation in Fourier representation is, according to DC theory [16], 
given by 

(v; t)= 1 ~, ~ (_e~)({k}[Ro(a,)tL,Ro((O)]. l{k,})  p(k,,(v;O). 
2~i (k') ,--o 

(3) 

The coefficients P(k} a r e  factored as [16] 

$ 

Pk,,k2 . . . . .  k s ( l ' ' ' "  ,S) = I-I Pk; (1) + Plk,... k~! ( 1 , . . . ,  s) .  
]=1 

(4) 

The first term in eq. (4) is a product of s non-homogeneous factors. The second 
is the sum of all possible correlation patterns of s particles. 

A 

J 

f C 

Fig. I. Vertices which compose the relevant diagrams for calculation of p,, and p,. 
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Associated with eq. (3) there is a set of diagrams [15, 16]. The choice of 
relevant diagrams must be consistent with specifications of the ,studied system. 
In our case, the TDES is characterized by F ~< 1, and we will be interested here 
in a short-time process. Thus, the main contributions at eq. C3~ will be 
diagrams corresponding to order (e2c) n, which we will call first order diagrams, 
and e2(e2c) ", which we will call second order diagrams, being c = N/£1. The 
vertices of the~e diagrams are presented in fig. 1. Once the relevant diagrams 
have been chosen, we can make their summation in order to determine their 
contribution to po(t) and p~(t). 

3. A generalized Vlasov equation 

3.1. First and second order contributions to Po 

The contributions to Po are derived from diagrms that have not external lines 
at left, i.e. the relevant diagrams are composed by A, B and C vertices shown 
in fig. 1. The vertices A and C are connected to B as is indicated in fig. 2. 

Considering the summation of all the diagrams of fig. 2 the B vertices at the 
left can be factorized and we obtain for po(t) the result 

where 

1 e2 f ei., t Po(I---  ; t ) =  - 2rr i ( - )  dw ~ ~'~-4 F#,(-k')(k',, • v j  

x J l . . .  ; O) 

+ (--e2) 2 E F/,,(-k'n) ( k ~ • V n  - k'. • Va - -  o)) -1 
a,b 

X g a b ( - k ; )  (ktn • v n - ktn o Ub --  tO) -1 p kn,k;~ ( b ,  n [ . . .  ;0)  

f 2x, 3 } + , - e )  ~] . . .  , (5) 
a.b.c 

4T¢ 2 
a (m-'kj.a;.) 

and we have used the notation of ref. [16]. 
We now differentiate Eq. (5) with respect to time and integrate over all 

velocities except v,,. The result is 
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o 

Fig. 2. Diagrams which give the relevant first and second order contributions to po,. 

0,po (Iv. ;  t) = 0 ,  

i.e., to this order of approximation, P0 remains constant in time. 

(6) 

3.2. First and second order contributions to Pk 

The contributions to Pk are derived from diagrams ending at the left with one 
line. Then, the relevant diagrams are composed by A and C vertices. A general 
diagram in this case is represented in fig. 3 and its corresponding mathematical 
expression is 
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o~ 9 O.t o o40  . . .~ . - ,~ ,  / 

0,~ ,, b 

b 

b ~ ~ b 4 
b J _ b~, 

Fig. 3. A general diagram for first and second order contributions to p,. 

p(g) - - ( - -e2)  n+m f 
4. = 2~ i dco e - i ' t  

× E F, 
a i . . . . .  a n _ l , b  b I . . . . .  b m k b  I . . . . .  kbm 

X Fa,a,(ka) (k  a .Oa, -- to ) - lFa ta2(ka) . . .  

. .  "Fa,_,,b(k~) (k~ " v b - tO)-'Db,b, (k~ - kb,; k~) 

x [(,,,,, - k , , , ) ,  v,, + ,,% . v , , , -  , , , ] - ' o , , . , , f l , ~ ,  - k , , , -  

"'" Db.bm(k,~ - k b l  . . . . .  k b , , ;  k~, - kb, . . . . .  kb,,_,) 

[ (  m kb/) m - I  kb, ]-1 
× k o - Y  - ~  + Y~ - ~  

1 = 1  j = l  " O b j  

x p,, _,,,,, . . . . .  ',,,,.,. ',b,.,. . . . .  k,,, (vb, vb , ,  • • • ,  v b , , , I . . . ,  0 ) ,  

kh2; k~ - k b , ) ' ' "  

(7) 

where 

4,11.2 
Oi~(k ;, k j ) -  ~ Vik)_,, I m - ' ( k ;  - k i ) .O/~ . 

The other relevant diagrams are obtained inserting A vertices between C 
vertices in fig. 3 Corre.~nondinolv we mtl~zt intrndtle~ th,~ mathr~mat;o~l expres- ~ - - - - r -  . . . . . . .  ~ - j  - .  ~ - , - ~  ~ A . ~ a  ~ . - ~ . - ~ . , J ~ , , t . ,  Las't,. alll.L1. Zal.,'Sal~1.1'm,..U.l 

sion associated with the A vertex in eq. (7). As an example, in fig. 4, some 
general diagrams in this case are shown. We can add all those diagrams and we 
obtain p, given by 

1 f -icot 
P k ~ ( ~ l . . . , ' t ) =  2~ri J d t ° e  ( k , . v , , - w )  ' p , , , ( a l . . . , ' O )  

+ (-e2--~)2-rri f doJ e -i°'' (k,, .v~, - o~)-' ~ ,  F~,a , (k , , )  
a I 
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___/  
\ \. 

0 0 

0 0 o /  
o fl o a a 

Fig. I. Examples of diagrams obtained inserting A vertices between C vertices in the diagrams of 
fig. 3. 

X {(k a "Va,-  ¢o)-'[pk~(a,I... ;0)  + . - .  

+ ( - e  2) ~ F,,,,,2(k,,)(k,, "Va2- oJ)-' p<(a2l..- ; 0 )  + . . .  
a2 

+ ( - e  2) ~ ~'~ D~,.2(k~., k') [k"  v,, 2 -~ (k~ - k')" v , , , -  to]-' 
k' a2 

x Pk.-k'.k. (a , ,  a 2 l . . .  ;0)  + "-" ]} 

( - e 2 )  f dto e -i~'' 
2-¢ri (k. k' al 

x {[k' • v,, + (ko - / , ' ) .  Vaj - '  

X Pk'.k,-k' (a, a , I . . .  ;0)  + --" }.  (8) 

We can now differentiate the two sides of (8) with respect to time, integrate 
over all velocities except v,  and take the qmit N, g]--> ~; (N/O) ~- c < ~. As a 
result we obtain 

Otp,(ait ) + ik" v~ pk(a;  t) 

--4~r2e2cm-'{Vk i k .  O~ f dvj p,(vjlv~; t) 

+ O,~-f  dk '  dvj i(k - k')Vik_k, I &, ( a ;  t) &-k'(J;  t)} 

= l~o,(k ,  v~ ; t ) ,  (9) 
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with 

f 
Icor (k, v..; t)=4ar2e2cm -l  0 . . - j  dk' dvj i ( k -  k') 

x VIIA:_A:o I p[,,. k-k'l (V,+, Vj; t ) ,  (10) 

where we have used eq. (4) to obtain eq. (9) and eq. (10). 
Eq. (9) can be transformed to phase space, by multiplying both sides with 

(n/4+r2) exp(ik • x~) and integrating over k. Hence, we obtain 

atf,(v,~, r~; t) + v~ .O, , f ; (v~,  r~; t) 

- eZm-t[cg~f~(v~, r~; t)] +V~ f drj dvj V(Ir  - rjl) 
x [f~(r~, vj; t ) -  c,p(vj; t)] 

= l c o r ( r ~ , v , , ; t ) ,  ( 1 1 )  

where +(v; t) is the one-particle velocity distribution function and 

. - -  f _ i k ' r a r  l¢or(r a 0 a t )=  O j d k e  /¢or(k,v~" t) (12) 
, , 4 ~ 2  ~ • 

The left-hand side in eq. (11) is the equation first proposed by Vlasov [18]. 
The right-hand side represents a correction to the Vlasov equation. By our 
development this term is originated from Ply, ~-~'I, i.e, it is asssociated with 
true correlations. Eq. (11.) we will call generalized Vlasov equation (GVE). 

4. Relation between the GVE and the STLS approximation 

Considering eq. (1), the first BBGKY equation [19] can be written as 

O,fl(r,~, o,~; t) + v o .V~ f~(r,~, v~,; t) 

_ e2m -,  0 ° " f  drdoj[V~V(Ir~ - 

X [A(rj, v/; t) - c~p(V/, t)] 
? 

=Icor ( r~ , v~ ; t ) ,  

where 

(t3) 



A . E .  Santana et al. / A general ized V lasov  equat ion  479 

and 

t 

Icor(r~, v~; t) = ½e2cm -10~.  f drj dvj [V~ V(Ir  rjl)] G(r~ - rj; v~, vj; t) 

(14) 

2 
G(r~ - rj, v~, vj; t)= c [g(r~ - r j ) -  1][fl(r~, v,,; t)fl(r j, vj; t) 

- cf~(r~, v~; t)q~(vj; t)l. (15) 

The function G ( r . - r j ,  v~, vj; t) is the correlation function [16] in the 
approximation (1). 

We can write eq. (14) in terms of a r-Fourier transform, i.e. 

f 
t . ~ | ik .ra, , t  z .  

l cor(r ~ v,, t )=  /2 j d k e  t coA~,v~" t) , , 4,rr2 , , 
(16) 

where 

Z~or(k, va ; t) = 
47r2 1 f f2 e2cm- 04.  dk' dvjFk_k,pk+k,,_k_k,~(k ) (17) 

and Fk-k, is the Fourier transform of the function V,,V(Ir, - r~!). 
Comparing eq. (12) with eq. (14), we obtain that the equation proposed by 

STLS is derived from GVE if 

Plk',k-k'l = P*+k',-k-*'6(k) , (18) 

where 8(k) is the ~-Dirac function. 
Eq. (18) shows that in the STLS approximation the true correlation coeffi- 

cient Plk ' ,k-k ' l ,  a s  a function of k, is sharply peaked at k = 0. This fact is in 
agreement with the general analysis of the Fourier components in DC theory. 
Indeed, in this analysis, the two-particle correlation functions G(r,,, r e, v~, 
v~; t) is w~itten in terms of the center of mass (R) and relative (r) coordinates 
by [16] 

f 
G(R, r, v~, v~; t) = J dk~ dk 2 exp{i(k, + k2)" R + i(kt 

x ptk,,k~i(v~, v ~ ; : ) .  

- k 2 ) - r }  

(19) 

The variation of G with the coordinate g of the center of mass of the couple of 
particles (t.~,/3) is slow in molecula, scale, L m, if L h >> L m ( L  h iS the hydro- 
dynamic length scale and L m the largest characteristic molecular length scale). 
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Thus, ptkt.k2](V,,, V#) as a function of k 1 + k 2 is sharply peaked around k 1 + 
k 2 = 0, with a width of order Lff I [16]. In our case, k I = k' and k 2 = k - k ' .  
Then, we have kl + k 2 = k, i.e. Plk'.k-k'l must be sharply peaked at k = 0, as 
indicated in eq. (18). 

On the other hand, pt~..,_k.l, as function of k', has for k = 0 the behaviour of 
P,..-k,, i.e., Pt~'.,-*'l has for k =  0 the same physical nature as the Fourier 
components, which describe correlations in a homogeneous system. It follows 
from our development, by using DC theory, that the STLS approach corre- 
sponds to the study of a non-homogeneous system by considering the correla- 
tions as given in a homogeneous system. 

5. Concluding remarks 

We have derived a generalized Vlasov equation (GVE) by using the DC 
theory developed mainly by Prigogine and Balescu. From GVE we have 
obtained the condition which the true correlation coefficient Plk'.~-k'l must 
satisfy in STLS approximation, i.e., 

Plk',~-k'! = Pk+~' -~-k,8(k).  

This relation shows that in STLS approximation Plt' .t ,-k'l is sharply peaked 
around k = 0 and that, for k = O, Plk'.k-k'l = Pk'.-k" Hence, we can say that 
STLS approximation describes a non-homogeneous system by considering the 
correlations as a homogeneous system. 

Our development shows also by analyzing the term I¢or(r, v; t), in eq. (11), 
that it is possible to use other approximations. For example, we can consider a 
velocity-depending true correlation coefficient. Such an approximation will be 
an improvement to the STLS approach. 

Acknowledgement 

One of  [ A ~ : : ~  s s , , " i o  t.~.~t-@~n[l . . . . . . . . .  4 - ~ A  L . .  l f " ~ T r ~ _  / ' _  ] - l l _ _ _ : l : _ _  P . . . . .  .. us  ~Juveri i i i ie i i t  I L I ~ U L  l ~ d  D l d L l l l d I l  

Agency). 

References 

[1] T. Ando, Rev. Mod. Phys. 54 (1982) 437. 
[2] M.W. Cole, Rev. Mod. Phys. 46 (1974)451. 
[3] V.B. Shikin and Yu.P. Monarkha, Soy. J. Low Temp. 1 (1975) 459 (Fiz. Nizk. Temp. 1 (1975) 

95'7). 



A.E.  Santana et al. / A generalized Vlasov equation 481 

[4] 
[51 
[61 
[71 
[81 
[91 

[101 
[11] 
[121 
[13] 
[141 
[151 
[161 
[171 
[181 
[19] 

N. Studart and O. Hip61ito, Rev. Bras. Fis. 16 (1986) 194. 
C.G. Grimes, Surface Science 73 (1978) 379. 
A.L. Fetter, Phys. Rev. B 10 (1974) 3739. 
EM. Platzmann and N. Tzoar, Phys. Rev. B 13 (1976) 3197. 
H. Totsuji, J. Phys. Soc. Japan (Lett.) 39 (1975) 253. 
H. Totsuji, J. Phys. Soc. Japan 40 (1976) 857. 
M. Bauss, J. Stat. Phys. 19 (1978) 163. 
L. Sjogren, J. Phys. C; Solid State Phys. (Lett.) 13 (1980) L841. 
N. Studart, O. Hipolito, Phys. Rev. A 19 (1979) 1790. 
N. Studart, O. Hipolito, Phys. Rev. A 22 (1980) 2860. 
K.S. Singwi, M.E Tosi, R.H. Land and A. Sjolander, Phys. Rev. 176 (1968) 589. 
I. Prigogine, Non-equilibrium Statistical Mechanics (Wiley, New York, 1962). 
R. Balescu, Statistical Mechanics of Charged Particles (Interscience, New York, 1963). 
Y. Soulet and A. Gomes, J. Stat. Phys. 25 (1981) 695. 
A.A. Vlasov, Zh. Exp. Teor. Fiz. 8 (1938) 231. 
L.E. Reichl, A Modern Course in Statistical Physics (Univ. Texas Press, Austin, 1984). 


