A GENERALIZED VLASOV EQUATION

Ademir E. SANTANA, A. MATOS NETO and J.D.M. VIANNA ${ }^{1}$
Universidade Federal da Bahia, Instituto de Física, Campus de Ondina, 40210, Salvador, BA, Brazil

Received 1 April 1989

Abstract

A two-spacial dimension electronic system characterized by a plasma parameter $\Gamma \leqslant 1$ is analyzed; then, by using a rigorous non-equilibrium statistical mechanical theory, the evolution of distribution function is considered. A generalized Vlasov equation (GVE) is derived. Compared to the usual Vlasov equation, GVE presents an additional velocitydependent correlation term. Taking as a starting point the GVE, the phenomenological approximation to two-particles function, $f_{2}\left(r_{1} r_{2} p_{1} p_{2} ; t\right)=f_{1}\left(r_{1} p_{1} ; t\right) f_{1}\left(r_{2} p_{2} ; t\right) g\left(r_{1}-r_{2}\right)$, proposed by Singwi, Tosi, Landi and Sjolander is analyzed.

1. Introduction

Properties of low-dimensional electronic systems have been extensivcly studied in the literature [1-5]. Particularly important in this area is the system formed by electrons on a helium surface. Such a system we will call in this paper TDES (two-dimensional electronic system).

TDES is a system with correlational properties; it is characterized by an electron density c in the experimental range $10^{5} \leqslant c \leqslant 10^{9}[4,5]$. In this situation the range of electrostatic energy per particle $\left(2 \times 10^{-16}\right.$ ergs to $7 \times 10^{-15} \mathrm{ergs}$) is comparable to a typical thermal energy ($\sim 1.4 \times 10^{-16} \mathrm{ergs}$). Then, the quantum effects are not important and TDES exhibits a classical behaviour, i.e. TDES can be treated as a classical plasma. Indeed, the electron system behaves like a non-degenerate plasma described hy a two-dimensional Boltzmann distribution as a limit of the Fermi distribution at experimental densities and temperatures.

From a theoretical standnoint, the TDES has been studied by several authors [$6-11]$. In particular, Studart and Hipólito [12,13] have considered the correlation effects by using the self-consistent field approximation proposed by Singwi, Tosi, Land and Sjolander (STLS) [14]. In the STLS approximation, the

[^0]two-particle distribution function $f_{2}\left(r_{1}, r_{2}, v_{1}, v_{2} ; t\right)$ is written as
\[

$$
\begin{equation*}
f_{2}\left(r_{1}, r_{2}, v_{1}, v_{2} ; t\right)=f_{1}\left(r_{1}, v_{1} ; t\right) f_{1}\left(r_{2}, v_{2} ; t\right) g\left(\left|r_{1}-r_{2}\right|\right), \tag{1}
\end{equation*}
$$

\]

where $f_{1}(r, v ; t)$ is the single-particle distribution function and $g\left(\left|r_{1}-r_{2}\right|\right)$ is the static pair correlation function.

The STLS method is strongly based on the relation (1) which is a phenomenological hypothesis. Indeed, in this scheme the equation of motion of the one-particle distribution function is truncated under the assumption that the coupling of the particle to the medium is given by the function $g(r)$.

It is known that the main object of a partly intuitive or semi-phenomenological model is the calculation of the physical quantities from its fundamental equations, which are accepted more or less a priori. In consequence, one has no: an analytical method to modify the equations of such models in order to obtain the best results for a given problem. The STLS model as it is presented in the literature can be included in this category of phenomenological models.

In the present paper, by using a rigerous non-equilibrium statistical mechanical theory, we will analyze relation (1). Our starting point is the dynamics of correlations (DC) developed mainly by Prigogine and Balescu [15, 16]. The DC has, at least, two aspects which are interesting to the study of the STLS approximation: (i) the DC has been used with success in the study of plasma [16,17] (ii) by using DC theory one obtains the same diagrammatical representation for both classical and quantum plasmas [16]. This aspect (ii) can be useful in the analysis of the classical limit of a quantum system.

We will consider here the TDES characterized by a plasma parameter $\Gamma \approx 1$. The parameter Γ is defined as $\Gamma=\langle V\rangle /\langle K\rangle$ where $\langle V\rangle$ and $\langle K\rangle$ dinote the averages of the potential and kinetic energies respectively. We will show that the correlation effects will be related to diagrams we will call 2 nd order diagrams. Our analysis concerns to derivation of an equation which describes the behavior of the plasma over short periods of time, i.e., for $t=\mathscr{O}\left(t_{\mathrm{p}}\right)$, where t_{p} is the plasma oscillation period, but since we will consider the case in which Γ is no longer very small we will need to include terms of order $e^{2}\left(e^{2} c\right)^{n}$. As a result, we obtain a generalized Vlasov equation (GVE). Compared to the usual Vlasov equation our equation presents an additional velocity-dependent correlation term. Taking as a starting point the GVE we will obtain, as a particular case, the equation related to hypothesis (1). Hence, we can show the principles guiding the choice of the diagrams in the STLS model; this feature allows to us to indicate as the STLS model can be improved.

In section 2 we present the notation we have used in the paper, the characteristic properties of TDES and the diagrams necessary to describe TDES by using DC theory. In section 3 we will derive the GVE. Section 4
contains an analysis of the STLS approximation seen as a particular case of our GVE. In section 5 we present final remarks and conclusions.

2. Notation and preliminaries

The TDES will be considered here as a two-dimensional N-particle system with interaction potential given by

$$
\begin{equation*}
V_{i j}=e| | r_{i}-r_{j} \mid, \quad r=\hat{i} x+\hat{\jmath} y, \quad i, j=1, \ldots, N \tag{2}
\end{equation*}
$$

where $e=e_{0}[2 /(1+\varepsilon)]^{1 / 2}$ with e_{0} the electronic charge and ε the dielectric function. The system occupies a volume Ω. The perturbative solution of the Liouville equation in Fourier representation is, according to DC theory [16], given by

$$
\begin{equation*}
\rho_{\{k\}}(v ; t)=-\frac{1}{2 \pi \mathrm{i}} \sum_{\left\{k^{\prime}\right\}} \sum_{n=0}^{\infty}\left(-e^{n}\right)\langle\{k\}| R_{0}(\omega)\left[L^{\prime} R_{0}(\omega)\right]^{n}\left|\left\{k^{\prime}\right\}\right\rangle \rho_{\left\{k^{\prime}\right\}}(v ; 0) . \tag{3}
\end{equation*}
$$

The coefficients $\rho_{\{k\}}$ are factored as [16]

$$
\begin{equation*}
\rho_{k_{1}, k_{2}, \ldots, k_{s}}(1, \ldots, s)=\prod_{j=1}^{s} \rho_{k_{j}}(j)+\rho_{\left[k_{1} \ldots k_{s}\right]}(1, \ldots, s) . \tag{4}
\end{equation*}
$$

The first term in eq. (4) is a product of s non-homogeneous factors. The second is the sum of all possible correlation patterns of s particles.

Fig. 1. Vertices which compose the relevant diagrams for calculation of ρ_{11} and ρ_{k}.

Associated with eq. (3) there is a set of diagrams [15, 16]. The choice of relevant diagrams must be consistent with specifications of the studied system. In our case, the TDES is characterized by $\Gamma \leqslant 1$, and we will be interested here in a short-time process. Thus, the main contributions at eq. (3 , will be diagrams corresponding to order $\left(e^{2} c\right)^{n}$, which we will call first order diagrams, and $e^{2}\left(e^{2} c\right)^{n}$, which we will call second order diagrams, being $c=N / \tilde{s} L$. The vertices of thece diagrams are presented in fig. 1. Once the relevant diagrams have been chosen, we can make their summation in order to determine their contribution to $\rho_{0}(t)$ and $\rho_{k}(t)$.

3. A generalized Vlasov equation

3.1. First and second order contributions to ρ_{0}

The contributions to ρ_{0} are derived from diagrms that have not external lines at left, i.e. the relevant diagrams are composed by A, B and C vertices shown in fig. 1. The vertices A and C are connected to B as is indicated in fig. 2.

Considering the summation of all the diagrams of fig. 2 the B vertices at the left can be factorized and we obtain for $\rho_{0}(t)$ the result

$$
\begin{align*}
\rho_{0}(\mid \ldots ; t)= & -\frac{1}{2 \pi} ;\left(-e^{2}\right) \int \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega t} \sum_{k_{n}^{\prime}} \sum_{n, j} F_{j n}\left(-k_{n}^{\prime}\right)\left(k_{n}^{\prime} \cdot v_{n}-k_{n}^{\prime} \cdot v_{j}-\omega\right)^{-1} \\
& \times\left\{\rho_{k_{n}^{\prime}-k_{n}^{\prime}}(n, j \mid \ldots ; 0)\right. \\
& +\left(-e^{2}\right)^{2} \sum_{a, b} F_{j a}\left(-k_{n}^{\prime}\right)\left(k_{n}^{\prime} \cdot v_{n}-k_{n}^{\prime} \cdot v_{a}-\omega\right)^{-1} \\
& \times F_{a b}\left(-k_{n}^{\prime}\right)\left(k_{n}^{\prime} \cdot v_{n}-k_{n}^{\prime} \cdot v_{b}-\omega\right)^{-1} \rho_{k_{n}^{\prime}, k_{n}^{\prime}}(b, n \mid \ldots ; 0) \\
& \left.+\left(-e^{2}\right)^{3} \sum_{a, b, c} \ldots\right\} \tag{5}
\end{align*}
$$

where

$$
F_{j n}\left(\boldsymbol{k}_{j}\right)=-\frac{4 \pi^{2}}{\Omega} V_{k j}\left(m^{-1} \boldsymbol{k}_{j} \cdot \boldsymbol{\partial}_{j n}\right)
$$

and we have used the notation of ref. [16].
We now differentiate Eq. (5) with respect to time and integrate over all velocities except \boldsymbol{v}_{α}. The result is,

Fig. 2. Diagrams which give the relevant first and second order contributions to ρ_{0}.

$$
\begin{equation*}
\partial_{t} \rho_{0}\left(\mid v_{\alpha} ; t\right)=0, \tag{6}
\end{equation*}
$$

i.e., to this order of approximation, ρ_{0} remains constant in time.

3.2. First and second order contributions to ρ_{k}

The contributions to ρ_{k} are derived from diagrams ending at the left with one line. Then, the relevant diagrams are composed by A and C vertices. A general diagram in this case is represented in fig. 3 and its corresponding mathematical expression is

Fig. 3. A general diagram for first and second order contributions to ρ_{k}.

$$
\begin{align*}
\rho_{k_{\alpha}}^{(g)}= & \frac{-\left(-e^{2}\right)^{n+m}}{2 \pi \mathrm{i}} \int \mathrm{~d} \omega \mathrm{e}^{-\mathrm{i} \omega t} \\
& \times \sum_{a_{1}, \ldots, a_{n-1}, b} \sum_{b_{1}, \ldots, b_{m}} \sum_{k_{b_{1}}, \cdots, k_{b_{m}}}\left(k_{\alpha} \cdot v_{\alpha}-\omega\right)^{-1} \\
& \times F_{\alpha, a_{1}}\left(k_{\alpha}\right)\left(k_{\alpha} \cdot v_{a_{1}}-\omega\right)^{-1} F_{a_{1} a_{2}}\left(k_{\alpha}\right) \cdots \\
& \cdots F_{a_{n-1}, b}\left(k_{\alpha}\right)\left(k_{\alpha} \cdot v_{b}-\omega\right)^{-i} D_{b, b_{1}}\left(k_{\alpha}-k_{b_{1}} ; k_{\alpha}\right) \\
& \times\left[\left(k_{\alpha}-k_{b_{1}}\right) \cdot v_{b}+k_{b_{1}} \cdot v_{b_{1}}-\omega\right]^{-1} D_{b, b_{2}}\left(k_{\alpha}-k_{b_{1}}-k_{b_{2}} ; k_{\alpha}-k_{b_{1}}\right) \cdots \\
& \cdots D_{b, b_{m}}\left(k_{\alpha}-k_{b_{1}}-\cdots-k_{b_{m}} ; k_{\alpha}-k_{b_{1}}-\cdots-k_{b_{m-1}}\right) \\
& \times\left[\left(k_{\alpha}-\sum_{j=1}^{m} k_{b_{i}}\right) \cdot v_{b}+\sum_{j=1}^{m-1} k_{b_{j}} \cdot v_{b_{j}}-\omega\right]^{-1} \\
& \times \rho_{k_{\alpha}-k_{b_{1}}} \cdots-k_{b_{m}, k_{b_{m}}, \ldots, k_{b_{1}}}\left(\boldsymbol{v}_{b}, v_{b_{1}}, \ldots, v_{b_{m}} \mid \ldots, 0\right), \tag{7}
\end{align*}
$$

where

$$
D_{i n}\left(k_{j}^{\prime}, k_{j}\right)=-\frac{4 \pi^{2}}{\Omega} V_{\left|k_{j}^{\prime}-k_{j}\right|} m^{-1}\left(k_{j}^{\prime}-k_{j}\right) \cdot \partial_{i n}
$$

The other relevant diagrams are obtained inserting A vertices between C vertices in fig. 3. Correspondingly we must introduce the mathematical expression associated with the A vertex in eq. (7). As an example, in fig. 4, some general diagrams in this case are shown. We can add all those diagrams and we obtain ρ_{k} given by

$$
\begin{aligned}
\rho_{k_{\alpha}}(\alpha \mid \ldots ; t)= & -\frac{1}{2 \pi \mathrm{i}} \int \mathrm{~d} \omega \mathrm{e}^{-\mathrm{i} \omega t}\left(k_{\alpha} \cdot v_{\alpha}-\omega\right)^{-1} \rho_{k_{\alpha}}(\alpha \mid \ldots ; 0) \\
& +\frac{\left(-e^{2}\right)}{2 \pi \mathrm{i}} \int \mathrm{~d} \omega \mathrm{e}^{-\mathrm{i} \omega t}\left(k_{\alpha} \cdot v_{\alpha}-\omega\right)^{-1} \sum_{a_{1}} F_{\alpha 1} a_{1}\left(k_{\alpha}\right)
\end{aligned}
$$

Fig. 4. Examples of diagrams obtained inserting A vertices between C vertices in the diagrams of fig. 3.

$$
\begin{align*}
& \times\left\{(k _ { \alpha } \cdot v _ { a _ { 1 } } - \omega) ^ { - 1 } \left[\rho_{k_{\alpha}}\left(a_{1} \mid \ldots ; 0\right)+\cdots\right.\right. \\
& +\left(-e^{2}\right) \sum_{a_{2}} F_{a_{1} a_{2}}\left(k_{\alpha}\right)\left(k_{\alpha} \cdot v_{a_{2}}-\omega\right)^{-1} \rho_{k_{k_{r}}}\left(a_{2} \mid \ldots ; 0\right)+\ldots \\
& +\left(-e^{2}\right) \sum_{k^{\prime}} \sum_{a_{2}} D_{a_{1} a_{2}}\left(k_{\alpha}, k^{\prime}\right)\left[k^{\prime} \cdot v_{a_{2}}+\left(k_{\alpha}-k^{\prime}\right) \cdot v_{a_{1}}-\omega\right]^{-1} \\
& \left.\left.\times \rho_{k_{\alpha}-k^{\prime}, k_{\alpha}}\left(a_{1}, a_{2} \mid \ldots ; 0\right)+\cdots\right]\right\} \\
& -\frac{\left(-e^{2}\right)}{2 \pi \mathrm{i}} \int \mathrm{~d} \omega \mathrm{e}^{-\mathrm{i} \omega t}\left(k_{\alpha} \cdot \boldsymbol{v}_{\alpha}-\omega\right)^{-1} \sum_{k^{\prime}} \sum_{a_{1}} D_{\alpha a_{1}}\left(k_{\alpha}, k^{\prime}\right) \\
& \times\left\{\left[k^{\prime} \cdot v_{\alpha}+\left(k_{\alpha}-k^{\prime}\right) \cdot v_{a_{1}}\right]^{-1}\right. \\
& \left.\times \rho_{k^{\prime}, k_{\alpha}-k^{\prime}}\left(\alpha, a_{1} \mid \ldots ; 0\right)+\cdots\right\} \tag{8}
\end{align*}
$$

We can now differentiate the two sides of (8) with respect to time, integrate over all velocities except \boldsymbol{v}_{α} and take the 'imit $N, \Omega \rightarrow \infty ;(N / \Omega) \sim c<\infty$. As a result we obiain

$$
\begin{align*}
& \partial_{t} \rho_{k}\left(\alpha_{i} t\right)+\mathrm{i} k \cdot v_{\alpha} \rho_{k}(\alpha ; t) \\
& \quad-4 \pi^{2} e^{2} c m^{-1}\left\{V_{k} \mathrm{i} k \cdot \partial_{\alpha} \int \mathrm{d} v_{j} \rho_{k}\left(v_{j} \mid v_{\alpha} ; t\right)\right. \\
& \left.\quad+\partial_{\alpha} \cdot \int \mathrm{d} k^{\prime} \mathrm{d} v_{j} \mathrm{i}\left(k-k^{\prime}\right) V_{\left|k-k^{\prime}\right|} \rho_{k^{\prime}}(\alpha ; t) \rho_{k-k^{\prime}}(j ; t)\right\} \\
& \quad=I_{\text {cor }}\left(k, v_{\alpha} ; t\right) \tag{9}
\end{align*}
$$

with

$$
\begin{align*}
I_{\text {cor }}\left(k, v_{\alpha} ; t\right)= & 4 \pi^{2} e^{2} c m^{-1} \partial_{\alpha} \cdot \int \mathrm{d} k^{\prime} \mathrm{d} v_{j} \mathrm{i}\left(k-k^{\prime}\right) \\
& \times V_{\left[k-k^{\prime} \mid\right.} \rho_{\left[k^{\prime}, k-k^{\prime}\right]}\left(v_{\alpha}, v_{j} ; t\right) \tag{10}
\end{align*}
$$

where we have used eq. (4) to obtain eq. (9) and eq. (10).
Eq. (9) can be transformed to phase space, by multiplying both sides with $\left(\Omega / 4 \pi^{2}\right) \exp \left(\mathrm{i} k \cdot x_{\alpha}\right)$ and integrating over k. Hence, we obtain

$$
\begin{align*}
& \partial_{t} f_{1}\left(v_{\alpha}, r_{\alpha} ; t\right)+v_{\alpha} \cdot \partial_{\alpha} f_{1}\left(v_{\alpha}, r_{\alpha} ; t\right) \\
& \quad-e^{2} m^{-1}\left[\partial_{\alpha} f_{1}\left(v_{\alpha}, r_{\alpha} ; t\right)\right] \cdot \nabla_{\alpha} \int \mathrm{d} r_{j} \mathrm{~d} v_{j} V\left(\left|r_{\alpha}-r_{j}\right|\right) \\
& \quad \times\left[f_{1}\left(r_{i}, v_{j} ; t\right)-c \varphi\left(v_{j} ; t\right)\right] \\
& \quad=I_{\text {cor }}\left(r_{\alpha}, v_{\alpha} ; t\right) \tag{11}
\end{align*}
$$

where $\varphi(v ; t)$ is the one-particle velocity distribution function and

$$
\begin{equation*}
I_{\text {cor }}\left(r_{\alpha}, v_{\alpha} ; t\right)=\frac{\Omega}{4 \pi^{2}} \int \mathrm{~d} k \mathrm{e}^{\mathrm{i} k \cdot r_{\alpha}} I_{\text {cor }}\left(\tilde{\kappa}, v_{\alpha} ; t\right) \tag{12}
\end{equation*}
$$

The left-hand side in eq. (11) is the equation first proposed by Vlasov [18]. The right-hand side represents a correction to the Vlasov equation. By our development this term is originated from $\rho_{\left[k^{\prime}, k-k^{\prime}\right]}$, i.e, it is asssociated with true correlations. Eq. (11) we will call generalized Vlasov equation (GVE).

4. Relation between the GVE and the STLS approximation

Considering eq. (1), the first BBGKY equation [19] can be written as

$$
\begin{align*}
& \partial_{t} f_{1}\left(r_{\alpha}, v_{\alpha} ; t\right)+v_{\alpha} \cdot \nabla_{\alpha} f_{1}\left(r_{\alpha}, v_{\alpha} ; t\right) \\
& \quad-e^{2} m^{-1} \partial_{\alpha} \cdot \int \mathrm{d} r \mathrm{~d} v_{j}\left[\nabla_{\alpha} V\left(\left|r_{\alpha}-r_{j}\right|\right)\right] f_{1}\left(r_{\alpha}, v_{\alpha ;} t\right) \\
& \quad \times\left[f_{1}\left(r_{j}, v_{j} ; t\right)-c \varphi\left(v_{j} ; t\right)\right] \\
& \quad=I_{\text {cor }}^{\prime}\left(r_{\alpha}, v_{\alpha} ; t\right) \tag{13}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{I}_{\text {cor }}^{\prime}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{v}_{\alpha} ; t\right)=\frac{1}{2} e^{2} c m^{-1} \boldsymbol{\partial}_{\alpha} \cdot \int \mathrm{d} \boldsymbol{r}_{j} \mathrm{~d} \boldsymbol{v}_{j}\left[\nabla_{\alpha} V\left(\left|\boldsymbol{r}_{\alpha}-\boldsymbol{r}_{j}\right|\right)\right] G\left(\boldsymbol{r}_{\alpha}-\boldsymbol{r}_{j} ; \boldsymbol{v}_{\alpha}, \boldsymbol{v}_{j} ; t\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
G\left(r_{\alpha}-\boldsymbol{r}_{j}, \boldsymbol{v}_{\alpha}, \boldsymbol{v}_{j} ; t\right)= & \frac{2}{c}\left[g\left(\boldsymbol{r}_{\alpha}-\boldsymbol{r}_{j}\right)-1\right]\left[f_{1}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{v}_{\alpha} ; t\right) f_{1}\left(\boldsymbol{r}_{j}, \boldsymbol{v}_{j} ; t\right)\right. \\
& \left.-c f_{1}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{v}_{\alpha} ; t\right) \varphi\left(\boldsymbol{v}_{j} ; t\right)\right] . \tag{15}
\end{align*}
$$

The function $G\left(\boldsymbol{r}_{\alpha}-\boldsymbol{r}_{j}, \boldsymbol{v}_{\alpha}, \boldsymbol{v}_{j} ; \boldsymbol{t}\right)$ is the correlation function [16] in the approximation (1).

We can write eq. (14) in terms of a r-Fourier transform, i.e.

$$
\begin{equation*}
\boldsymbol{I}_{\text {cor }}^{\prime}\left(\boldsymbol{r}_{\alpha}, \boldsymbol{v}_{\alpha} ; t\right)=\frac{\Omega}{4 \pi^{2}} \int \mathrm{~d} k \mathrm{e}^{\mathrm{i} k \cdot \boldsymbol{r}_{\alpha} I_{\text {cor }}^{\prime}\left(k, v_{\alpha} ; t\right), ~} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{\text {cor }}^{\prime}\left(k, \boldsymbol{v}_{\alpha} ; t\right)=\frac{4 \pi^{2}}{\Omega} e^{2} c m^{-1} \boldsymbol{\partial}_{\alpha} \cdot \int \mathrm{d} k^{\prime} \mathrm{d} \boldsymbol{v}_{j} F_{k-k^{\prime}} \cdot \rho_{k+k^{\prime}-k-k^{\prime}} \delta(\boldsymbol{k}) \tag{17}
\end{equation*}
$$

and $F_{k-k^{\prime}}$ is the Fourier transform of the function $\nabla_{\alpha} V\left(\left|r_{\alpha}-r_{\beta}\right|\right)$.
Comparing eq. (12) with eq. (14), we obtain that the equation proposed by STLS is derived from GVE if

$$
\begin{equation*}
\rho_{\left[k^{\prime}, k-k^{\prime}\right]} \equiv \rho_{k+k^{\prime},-k-k^{\prime}} \delta(k), \tag{18}
\end{equation*}
$$

where $\delta(k)$ is the δ-Dirac function.
Eq. (18) shows that in the STLS approximation the true correlation coefficient $\rho_{\left[k^{\prime} \cdot \boldsymbol{k}-\boldsymbol{k}^{\prime}\right]}$, as a function of \boldsymbol{k}, is sharply peaked at $\boldsymbol{k}=\boldsymbol{0}$. This fact is in agreement with the general analysis of the Fourier components in DC theory. Indeed, in this analysis, the two-particle correlation functions $G\left(r_{\alpha}, r_{\beta}, v_{\alpha}\right.$, $\boldsymbol{v}_{\beta} ; t$) is witten in terms of the center of mass (\boldsymbol{R}) and relative (\boldsymbol{r}) coordinates by [16]

$$
\begin{align*}
G\left(\boldsymbol{R}, \boldsymbol{r}, \boldsymbol{v}_{\alpha}, \boldsymbol{v}_{\beta} ; t\right)= & \int \mathrm{d} k_{1} \mathrm{~d} k_{2} \exp \left\{\mathrm{i}\left(k_{1}+k_{2}\right) \cdot \boldsymbol{R}+\mathrm{i}\left(k_{1}-k_{2}\right) \cdot \boldsymbol{r}\right\} \\
& \times \rho_{\left|k_{1}, k_{2}\right|}\left(v_{\alpha}, v_{\beta} ; t\right) . \tag{19}
\end{align*}
$$

The variation of G with the coordinate \boldsymbol{R} of the center of mass of the couple of particles ((ε, β) is slow in molecular scale, L_{m}, if $L_{\mathrm{h}} \geqslant L_{\mathrm{m}}\left(L_{\mathrm{h}}\right.$ is the hydrodynamic length scale and L_{m} the largest characteristic molecular length scale).

Thus, $\rho_{\left[k_{1}, k_{2}\right]}\left(v_{\alpha}, v_{\beta}\right)$ as a function of $k_{1}+k_{2}$ is sharply peaked around $k_{1}+$ $\boldsymbol{k}_{2}=0$, with a width of order L_{h}^{-1} [16]. In our case, $\boldsymbol{k}_{1}=\boldsymbol{k}^{\prime}$ and $\boldsymbol{k}_{2}=\boldsymbol{k}-\boldsymbol{k}^{\prime}$. Then, we have $k_{1}+k_{2}=k$, i.e. $\rho_{\left[k^{\prime}, k-k^{\prime}\right]}$ must be sharply peaked at $k=0$, as indicated in eq. (18).

On the other hand, $\rho_{\left[k^{\prime} ; k-k^{\prime}\right]}$, as function of k^{\prime}, has for $k=0$ the behaviour of $\rho_{k^{\prime},-k^{\prime}}$, i.e., $\rho_{\left[k^{\prime}, k-k^{\prime}\right]}$ has for $k=0$ the same physical nature as the Fourier components, which describe correlations in a homogeneous system. It follows from our development, by using DC theory, that the STLS approach corresponds to the study of a non-homogeneous system by considering the correlations as given in a homogeneous system.

5. Concluding remarks

We have derived a generalized Vlasov equation (GVE) by using the DC theory developed mainly by Prigogine and Balescu. From GVE we have obtained the condition which the true correlation coefficient $\rho_{\left[k^{\prime}, k-k^{\prime}\right]}$ must satisfy in STLS approximation, i.e.,

$$
\rho_{\left[k^{\prime}, k-k^{\prime}\right]} \equiv \rho_{k+k^{\prime},-k-k^{\prime}} \delta(k)
$$

This relation shows that in STLS approximation $\rho_{\left[k^{\prime}, k-k^{\prime}\right]}$ is sharply peaked around $k=0$ and that, for $k=0, \rho_{\left[k^{\prime}, k-k^{\prime}\right]}=\rho_{k^{\prime},-k^{\prime}}$. Hence, we can say that STLS approximation describes a non-homogeneous system by considering the correlations as a homogeneous system.

Our development shows also by analyzing the term $I_{\text {cor }}(r, v ; t)$, in eq. (11), that it is possible to use other approximations. For example, we can consider a velocity-depending true correlation coefficient. Such an approximation will be an improvement to the STLS approach.

Acknowledgement

One of us (AES) was partially supported by CNPq (a Brazilian Government Agency).

References

[1] T. Ando, Rev. Mod. Phys. 54 (1982) 437.
[2] M.W. Cole, Rev. Mod. Phys. 46 (1974) 451.
[3] V.B. Shikin and Yu.P. Monarkha, Sov. J. Low Temp. 1 (1975) 459 (Fiz. Nizk. Temp. 1 (1975) 957).
[4] N. Studart and O. Hipólito, Rev. Bras. Fis. 16 (1986) 194.
[5] C.G. Grimes, Suriace Science 73 (1978) 379.
[6] A.L. Fetter, Phys. Rev. B 10 (1974) 3739.
[7] P.M. Platzmann and N. Tzoar, Phys. Rev. B 13 (1976) 3197.
[8] H. Totsuji, J. Phys. Soc. Japan (Lett.) 39 (1975) 253.
[9] H. Totsuji, J. Phys. Soc. Japan 40 (1976) 857.
[10] M. Bauss, J. Stat. Phys. 19 (1978) 163.
[11] L. Sjogren, J. Phys. C; Solid State Phys. (Lett.) 13 (1980) L841.
[12] N. Studart, O. Hipolito, Phys. Rev. A 19 (1979) 1790.
[13] N. Studart, O. Hipolito, Phys. Rev. A 22 (1980) 2860.
[14] K.S. Singwi, M.P. Tosi, R.H. Land and A. Sjolander, Phys. Rev. 176 (1968) 589.
[15] I. Prigogine, Non-equilibrium Statistical Mechanics (Wiley, New York, 1962).
[16] R. Balescu, Statistical Mechanics of Charged Particles (Interscience, New York, 1963).
[17] Y. Soulet and A. Gomes, J. Stat. Phys. 25 (1981) 695.
[18] A.A. Vlasov, Zh. Exp. Teor. Fiz. 8 (1938) 231.
[19] L.E. Reichl, A Modern Course in Statistical Physics (Univ. Texas Press, Austin, 1984).

[^0]: ${ }^{1}$ Permanent adúress. Departamento de Física, Instituto de Ciencias Exatas, Universidade de Brasília, 70910, Brasilia, DF, Brazil.

