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INFLUENCE OF VALLEY-SPLITTING IN THE SPECIFIC HEAT OF Si : P 
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We report a calculation of the electronic specific heat near 0 K for the 
Si : P system, taking into account the characteristic valley-splitting of 
the impurity levels near the conduction band minima. This effect is 
shown to describe properly the deviations from the free-electron model 
around the metal-to-nonmetal transition. This is a strong argument 
towards the picture of an Anderson-type (disorder-dominated) tran- 
sition in indirect gap semiconductors. Our results account very well for 
the experimental-findings. 

IT IS WELL known that thermodynamic and electri- 
cal properties of doped semiconductors exhibit 
characteristic features due to electron correlation and 
disorder effects. The degree of interplay between them 
varies with the impurity concentration N, [1, 21. The 
influence of the host characteristics, such as the exist- 
ence of many equivalent conduction band minima at 
k # 0, is also believed to be of central importance in 
the behavior of the physical properties and has been 
the subject of many recent investigations [1, 31. This 
inference applies to indirect-gap semiconductors (e.g. 
Si and Ge). However, the relative importance of all 
these effects is still not completely understood [I, 91. 
Within the effective-mass approximation for shallow 
donor states in silicon, the 1s state is sixfold degen- 
erate (excluding spin degeneracy) [lo]. Infrared absorp- 
tion experiments [1 I] indicate that this degeneracy is 
lifted, with the ls(A,) forming the ground-state and 
the Is(E) lying slightly above the ls(T?). One then 
may speculate about the role of this splittiug in Si : P 
in the way of Kohn-Luttinger (KL) scheme [IO], i.e., 
considering the lowest energy level set at 44meV 
separated by a 5 degenerated energy level at 32meV, 
giving a split of A = 12meV. The impurity band 
being considered as formed from these levels will give 
the information we are looking for. Traces of such 
splitting remain in Si: P all the way up to metal- 
nonmetal (MNM) transition where they fade away [9]. 
Too little attention has been given to such effects in 

connection with e.g., calculation of specific heat in 
n-doped Si. Kamimura [3] and Takemori and Kami- 
mura [5] with a Gaussian model calculated the suscep- 

tibility and the specific heat reproducing fairly well the 

characteristic features observed in experiments in 
Si : P for 1.7 x lO’8 cm -‘. For the specific heat they 
have taken into account the many-valley effects by 
multiplying by a factor of 6, in the final results, corres- 
ponding to the degeneracy. Franz&n and Berggren [6]. 
with their calculations based on random cluster, 
account well‘ for the observed susceptibility and spec- 
ific heat in the low concentration region, well below 
the critical concentration Nc for MNM Transition in 
Si : P. They have used, for the exchange interaction, a 
many-valley KL wave function. Specific heat has 
been also calculated with a correlated electron-gas 
model by Berggren and Sernelius and Berggren [12]. 
This model is valid only in the metallic region, and 
gives a good agreement with experiment for N, > N,. 

In d.c. conductivity one observes a dramatic drop 
at the MNM transition [23]. In the susceptibility there 

is neither a sharp jump nor even a sharp change at N, 
[2]. That feature is also a characteristic of the specific 
heat. The thermodynamic density of states at the 
Fermi energy E, suffers no dramatic change, whatso- 
ever, and obviously continues finite for a large range 
of impurity concentration below N, [14]. 

Searching for a mechanism which would enable us 
to take into account the disorder and the degeneracy 
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of the indirect-gap semiconductors and its influence 
on the impurity states in a large range of n-type doping 
regime, namely Si : P, we report here our recent cal- 
culation of the electronic specific heat y based on the 
enhancement density of states, and compare it with 
the experimental data. 

For doped semiconductors with monovalent 
impurities, the one-electron Hamiltonian for a given 
impurity configuration is expressed as 

H = - g V’ + q(r) + 1 V(r - R,), (1) 
/ 

where m is the electron mass, l,.(r) is the potential to 

which an electron in the host conduction band is 
subjected and V(r - R,) is the attractive potential due 
to an impurity located in the position R,. The corres- 
ponding one-electron Green function is defined by 

(E - H)G(r. r’) = 6(r, r’). (2) 

Let us suppose that Fo and F’ respesent, respec- 
tively, the ground state and the first excited level of an 
isolated impurity atom. Then, in a tight binding 
scheme and neglecting the hibridization between the 
two levels, the matrix elements of the Green function 
obey the following equations 

(E - Ed E!,!, = 4nn + c v,‘,: GA’ (4) 

where E,” is the energy of the ground state, E,; is the 

energy of the excited level and 

VIZ = P(R,,,) 

= 
I 

F;‘(r - R,) V(r - R,,) F7(r - R,) dr, 

7 = 0,l (5) 

are the hopping matrix elements. In the derivation of 
the above equations we have neglected the three- 
centre integrals as well as the ionic terms. By applying 
the well-known Matsubara-Toyosawa diagrammatic 

method [S, 151 we obtain 

E-El-$ = i”” To WI 
(2n)3 1 - N,G” T,(k) 

- V”(O), 

(6) 
where ?? is the configurational average of the diag- 
onal Green function matrix element G,?, ND is the 
number of impurity sites per unit volume and 

To(k) = 1 VP” cmlk’R’ d,, (7) 

is the Fourier transform of the hopping matrix. Since 
the system is assumed to be statistically homogeneous 
G;lpo is independent of i. Similar equations hold for z. 

For the representation of the two levels p and F’ 
we first examine the six KL wavefunctions given by 

[lOI 
F”‘(r) = c c$‘qS~;‘(r) $,,(r). (8) 

/I 

where $a(r) is the Bloch function at the /J-th conduc- 
tion-band minimum, #‘l(r) is the envelope function 
which satisfies the effective-mass Schrodinger equation 
and the coefficients Cl;) are given by 

C’: l/J6 (I, I, 1, 1. 1, 1) (A,) (9.1) 

c’: l/2 (1, 1, - 1, - I, 0, 0) (9.2) 

c?: l/J? (1, 1, 0, 0, - 1, - I) 
(E) 

cJ: l/J? (I, - I, 0, 0, 0, 0) 

c5: I/$ (0, 0, 1, - 1, 0, 0) (T,) 

P: I/$ (0, 0, 0, 0, 1, - 1) (9.6) 

The main effect of intervalley scattering is to lift 
the six-fold degeneracy of the above levels, so that the 
ground state (symmetry A,) is non-degenerated at 
Ei = 44meV below the conduction-band (CB) 
unperturbed minimum and the excited level is very 
nearly five-fold degenerated, A = 12meV above Ei 

(EC; = A + E,:‘). For the ground-state wavefunction 
we take. neglecting the anisotropy of the CB minima. 

F’ (r) = 1 CA+;{(r) i!&(r). 
/I 

(10) 

with 

dB(r) = (x3/~)“’ * exp (- ar). (11) 

The excited level is handled in an approximative 
way: we consider the level Ed as being described by 
only one eigenfunction, which is taken as a suitable 
linear combination of the five states (9.2) to (9.6) 
disregarding differences in the various envelope func- 

tions: 

F”‘(r) = T Ci &(r)tiB(r)’ (12) 

Z$: l/G (1, - I, 1, - 1, 1. - 1). (13) 

The five-fold degeneracy of Ed is taken into 
account a posteriori by simply multiplying the DOS 
obtained with (12), (I 3) by a factor of 5. The envelope 
function &(r) is also taken to be the same as @k(r); in 
this manner, the impurity band originated from Ed in 
the tight-binding model is exactly the same as the one 
originated from Ei, apart from a multiplicative factor 
(it is easy to see that the hopping matrix elements V,I: 
are equal to VJF in this approximation). Further com- 
ments about these simplifications and the neglecting 
of hybridization terms will be done subsequently. 
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Now equation (7) yields 

2 T,,(k) 3271 
w= _- 

6 “il + i*‘; k,r); (14) 

where k, is the wave-vector associated to minimum I. 
Taking into account equation (14), equation (6) can be 
approximated to [8] 

T,*(k) 
I - A&ST,,*(k) 

- V’“(O), 

where 

(15) 

T,*(k) = _ % ’ 
6 (1 + k’)? 

(16) 

Solving%uation (I 5) for G” and the correspond- 
ing one for G’ we obtain the configuration averaged 
density of states per particle as 

I - - 
D(E) = - - I,,,((?’ + rc’). (17) 

n 

The factor i = 5 in the above equation is due to 
the fivefold degeneracy of level I. 

Using the Sommerfeld expansion the specific heat 
at low temperatures can be shown to be expressed by 

C,. = i’T (18) 

NC 

, llJLLLIIiI-~,L Ai 
10'8 N,Lcmm3) IO ‘9 KP 

Fig. 1. Electronic specific-heat coefficient y for Si : P as 
a function of the impurity concentration N,. Full 
circles with error bars are the experimental data 
measured by Sasaki and co-workers [14]. Solid line is 
the present calculation. Dashed line (-- -) is the 
undisturbed conduction-band of Si. Dotted line (. . .) 
is the calculation neglecting valley-splitting (A = 0). 
Dot-dashed line (-.-.-e-) is the result of the cor- 
related electron-gas model [l2], valid for N > N, N, 
is the critical concentration. 

where 

1’ = f k;Nr,D(E,), (19) 

k, is the Boltzmann constant and E, is the Fermi 
energy, defined by 

I F 

J 
2QE) = I, (20) 

I 

where the factor 2 is due to spin degeneracy. 
The experimental data, full circles with error bars, 

for Si : P by Sasaki and co-workers [l4], are shown in 
Fig. I with our results (solid line). It is seen that ; 
gradually decreases with decreasing phosphorus con- 

centration N,, from the metallic region somewhere 
around N, = 3.7 x IO” cm ’ [I 31. Below N, it drops 
rapidly, remaining finite down to N, = 4 x IO” cm ’ 
where E, lies in a continuum of localized states. At 
concentrations somewhat around N, the experimental 
values as well as our results lie around IO-30 percent 
higher than the dashed line; this line represents the 
values for the undisturbed conduction band (free elec- 
tron model) with the effective-mass density of states 
and the valley degeneracy of pure Si. For comparison. 
we also show in Fig. I the results obtained by the 
correlated electron-gas model [ 131 and the calculations 
we did with valley-splitting neglected at all (A = 0). 

The relative small enhancement of ;’ above the 
dashed line suggests, furthermore. the influence of the 
energy-splitting in the impurity states. In Fig. 2 we can 

see clearly the behaviour of the impurity density of 
states D(E) due to such splitting, for various values of 

N,. 
It is to be noted that the good experimental agree- 

ment obtained by the present model indicates that 
intervalley scattering effects are important up to high 
concentrations, but disorder effects can give rise to 
impurity bands which dictate the behaviour of E, (the 

Fermi energy) versus N (the impurity concentration). 
In fact, intervalley terms are essential to maintain the 
level splitting at such high concentrations; at the same 
time. these terms have minor influence on the diagonal 
elements of the Matsubara-Toyozawa’s Green func- 

tion when Kohn-Luttinger wavefunctions are con- 
sidered [8]. These facts are in perfect accordance with 
the apparent contradictory findings of Selloni and 
Pantelides [16] and Berggren and Sernelius [ 171. 

Some comments about the approximations here 
employed are in order. The first remark concerns the 
neglecting of hybridization terms in equation (3); this 
is likely to imply some quantitative corrections in the 
position of the Fermi energy E, and therefore in the 
value of y around N, We see no serious reason to 



VALLEY-SPLITTING IN THE SPECIFIC HEAT OF Si:P Vol. 73, No. 4 310 

-64 - 0.2 0.0 02 0.4 06 

E(Ry*) 

12 

E(Ry*) 

E(Ry*‘) 

-30 -20 -1.0 0.0 IO 20 

E(Ry”) 

Fig. 2. (a) Impurity density of states D(E), of Si : P for N, = 7.3 x IO” cm ‘. E, is the Fermi energy. The 
bottom of the conduction band is set at !Rr = 44meV. The lowest energy state is set at the origin. (b) Impurity 
density of states for N,, = 3.6 x IO” cm-‘. (c) Impurity density of states for N,, = 1.0 x IO’” cm I. C.B. is 
the conduction band. (d) Impurity density of states for N,, = 2.0 x IO” cm ‘. 

believe in any qualitative change this approximation 

might cause in the behaviour of 7 x N; the state of 
affairs is such that the same imprecision is caused by 
the lack of an exact value for l/z, the effective Bohr 
radius to be used at N, Some details of the DOS are 
of course sensible to such simplification: for example, 
the singular (non-differentiable) points seen in Fig. 2 
should disappear in a more precise calculation. Over- 

lap corrections in the matrix elements, equation (3), 

were also neglected. There are a lot of reasons to suspect 
that overlap corrections to the Is basis (equation (IO)), 
when applied to the simple one-electron Hamiltonian 
(equation (l)), does not give physical meaningful 

results [ 181; but here it suffices to mention that such 
corrections are small when applied to the Kohn- 
Luttinger basis [8]. 

Our assumption of an impurity band without 
electron correlation fits the data equally well in a large 
range of concentration, suggesting the central role of 
the energy splitting due to the valley degeneracy in the 
investigation of the thermodynamic and transport 
properties of indirect-gap doped semiconductors. 

It is to be noted that a very distinct picture is 
expected for the behaviour y x NL) when the host is a 
direct-gap semiconductor. In this case, one should 

rather expect a true Mott transition around N,. the 
Fermi energy lying in a Coulomb gap for N,, < N,. 

Measurements of C, at low temperatures for heavily 
doped n-type direct-gap semiconductors (such as 
CdS : Cl) would elucidate this point. 

I. 

2. 

3. 

4. 

5. 

6. 

REFERENCES 

The Metal-Insulutor Trunsition in Disordered 
Systems (Edited by L.R. Friedman and D.P. 
Tunstall), Scottish Universities Summer School 
in Physics, Edinburgh (1978). 
Localization and Interaction in Disordered 
Metals und Doped Semiconductors (Edited by 
D.M. Finlayson) Scottish Universities Summer 
School in Physics, Edinburgh (1986). 
H. Kamimura, in Modern Problems in Con- 
densed Mutter Sciences (Edited by M. Pollack 
and A.L. Efros) North-Holland, Amsterdam 
(1985). 
G.A. Thomas, M. Capizzi, F. De Rosa, R.N. 
Bhatt & T.M. Rice, Phvs. Rev. B23,5472 (1981). 
R.N. Bhatt & T.M. Rice, Phys. Rev. B23, 1920 
(1981). 
T. Takemori & H. Kamimura, J. Phys. C16, 
5167 (1983). 
N.-I. Franzen & K.-F. Berggren, Philos. Mug. 
B23, 29 (198 1); Phys. Rev. B25, 1993 (1982). 



. 
Vol 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

73, No. 4 VALLEY-SPLITTING IN THE SPECIFIC HEAT OF Si:P 311 

M. Fabbri & A. Ferreira da Silva, Phys. Rev. 14. 
B29, 5764 (1984). A. Ferreira da Silva, Phys. 
Rev. B37, 4799 (1988). 
M. Fabbri and A. Ferreira da Silva, H. Non- 15. 
Cryst. Solids 55, 103 (1983); 70, 143 (1985). 
K. Jain, S. Lai & M.V. Klein, Phys. Rev. B13, 16. 
5448 (1976). 
W. Kohn & J.M. Luttinger, Phys. Rev. 98, 915 
(1955); W. Kohn, in Solid State Physics (Edited 17. 
by F. Seitz and D. Turnbull), Vol. 5, Academic, 
New York (1957). 18. 
R.L. Aggarwall & A.K. Ramdas, Phys. Rev. 
140, Al246 (1965). 
K.-F. Berggren, Phys. Rev. B17, 2631 (1978); 

B.e. Sernelius & K.-F. Berggren, Philos. Mug. 
B43, I15 (1981). 
T.F. Rosenbaum. K. Andres. G.A. Thomas & 
R.N. Bhatt, Phys. Rev. Left. 45, 1723 (1980). 

N. Kobayashi, S. Ikehata, S. Kobayashi & W. 
Sasaki, Solid State Commun. 24, 67 (1977); 32, 
1174 (1979); W. Sasaki, private communication. 
T. Matsubara & Y. Toyozawa, Prog. Theor. 
Phys. 26, 739 (1961). 
A. Selloni & S.T. Pantelides, Phys. Rev. Lett. 
49(E), 586 (1982) and Physica 117B-118B, 78 
(1983). 
K.-F. Berggren & B. Sernelius, Phys. Rev. 
B29( lo), 5575 (1984). 
J.A. Pople & D.L. Beveridge, “Approximate 
Molecular Orbital Theory”, McGraw-Hill, New 
York, 1970; M. Fabbri, “Correlation and Disor- 
der in Doped Semiconductors”, Doctoral Thesis, 
Instituto Tecnolbgico de AeronAutica, Sgo Jest 
dos Campos, SP, Brazil (1984). 


