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In this paper, acoustic scattering in shallow and deep inhomogeneous waveguides is analyzed. 
The full acoustic wave equation that describes the scattered and reflected wave fields, as well as 
all multipathing within the scatterer and the waveguide, is employed. The explicit finite 
difference time integration and the k-w transform in the space domain (pseudospectral 
method) were utilized. Properly chosen boundary conditions enabled the authors to model 
both shallow and deep oceans. The pseudospectral method was compared with the explicit 
finite difference technique (see Appendix). The pseudospectral method can be valuable for 
modeling different underwater wave phenomena: It is characterized by much smaller 
numerical dispersion than the conventional finite difference method. The results show that in 
shallow ocean, strong resonance coupling between the underwater scatterer and the waveguide 
may occur. An important conclusion of this paper is that in a limited aperture experiment 
when the acoustic reflections are beyond the recording aperture (due to the finite length of the 
recording cable), the measured data are mainly represented by the primary diffraction arrivals 
and "diffraction resonances." In this paper, a detailed discussion will be given on the acoustic 
scattering in an inhomogeneous waveguide. (For the sake of simplicity, an acoustic scatterer of 
the rectangular shape was considered. ) Different complexities (elastic scatterers, more 
complicated structures of the index of refraction in the water, etc. ) will be compounded in the 
original model and reported elsewhere. 

PACS numbers: 43.30.Gv, 43.30.Hw, 43.30.Bp, 43.20.Mv 

INTRODUCTION 

Propagation of sound in the ocean can be treated as a 
waveguide problem. The sea surface can be considered with 
a great deal of accuracy as a pressure-release surface, so all 
acoustic energy generated below the sea surface is reflected 
back with opposite polarity (for pressure). These reflections 
are called ghosts. The sea surface, due to its roughness, may 
generate significant noise that is imposed on the returned 
signals. The propagation speed in the water can be rather 
complex: this leads to additional scattering and diffraction 
on large- and small-scale inhomogeneities (large-scale inho- 
mogeneities are much greater thdn the predominant wave- 
length, whereas small-scale inhomogeneities are of the order 
or less than the characteristic wavelength). Recall that 
small-scale scattering is related to the so-called apparent at- 
tenuation. As the result of apparent attenuation, a pulse 
propagating through a loss-free medium with a highly dis- 
continuous sound-speed profile is getting broader in width 
and smaller in amplitude. 

The recorded underwater signals are typically nonsta- 
tionary; their stochastic properties are functions of time. The 
effects of nonstationarity of the returned signals can be well- 
estimated in the t-w domain. • 

When the generated sound reaches the sea bottom, it is 
reflected or scattered from marine sediments. The backpro- 
pagating signal goes back to the sea surface and is totally 
reflected by the sea surface regardless of the angle of inci- 
dence. This signal will be bouncing between the sea surface 
and the sea bottom causing waveguide resonances. The reso- 
nance characteristics depend upon the angle of propagation, 

the reflection coefficient at the marine sediments, and the 
refraction index in the ocean. 

Carrion and Satkowiak, 2 using the cepstrum analysis, 
showed recently that in the range of 20-80 kHz, marine sedi- 
ments behave as a stack of continuous scatterers rather than 

discrete reflectors. This means that there are no distinct in- 

terfaces in the subbottom medium that reflect the generated 
energy, rather the incident energy is scattered by continu- 
ously distributed scatterers in the marine sedimentary envi- 
ronment. Carrion and Wilbur, • using the coherency measure 
between the sea-surface and the sea-bottom reflections, 

found that for mid- and small-grazing angles, the sea bottom 
behaves like the sea surface that reflects virtually all energy 
regardless of the frequency content of the initially generated 
signal. For larger grazing angles, the coherence between 
these signals fails for the range of high frequencies, which are 
attenuated in marine sediments. This means that the wave- 

guide resonances will be especially significant if the incident 
angle is near or exceeds the critical angle. For angles below 
the critical angle, the amplitudes of waveguide bouncing 
waves decrease due to transmission losses in the subbottom 

environment (quasiresonances). 
Theoretical aspects of acoustic and elastic resonance 

scattering was studied by different authors. Important con- 
tributions to this subject include Flax eta/., TM Gaunaurd, 5 
Frisk and Uberall, 6 and Werby and Green 7 among others. 

Hackman and Sammelmann 8 have recently presented a 
rigorous study of acoustic scattering in range-independent 
waveguides based on the T-matrix formalism. Their model 
included an elastic spherical shell in inhomogeneous layered 
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waveguides whose square of the index of refraction was lin- 
ear with respect to depth. In the previous work, Sammel- 
mann and Hackman 9 computed scattering responses from 
the elastic shell in a homogeneous waveguide bounded by the 
pressure-release sea surface and the rigid sea bottom. (The 
rigid sea bottom was chosen to avoid the branch cuts of 
Green's functions. ) 

In a typical sonar experiment, a horizontal array of hy- 
drophones is towed behind a ship and used as sonar receiv- 
ers. lO Thus it is necessary to analyze resonance scattering in 
waveguides detected by a towing array of sonar receivers 
with limited recording aperture. 

In this paper, we study scattering in waveguides using a 
string of hydrophones both in shallow and deep ocean. The 
numerical algorithm used in the paper is neither limited by 
the choice of frequencies nor by the geometry of the model. 
In fact, this study can be extended without much difficulty to 
range-dependent waveguide resonances and more compli- 
cated geometry of the underwater object. 

The method described in the paper can be an alternative 
to the T-matrix formalism since it is rather flexible with re- 

gards to the choice of the boundary conditions for deep and 
shallow ocean. 

Usually, the towing arrays are characterized by a limit- 
ed aperture so a significant portion of the reflections from 
the target might be missing. In this paper, we studied effects 
of the limited aperture and introduced the concept of the 
diffraction resonances that constitute a significant contribu- 
tion to the recorded data. 

An important conclusion of this paper is that in shellow 
ocean, strong resonance coupling between the waveguide 
and the scatterer may occur. Our results show that the reso- 
nance coupling in deep ocean is small and typically can be 
ignored. 

Although the examples presented in the paper are limit- 
ed by acoustic scattering, different complexities will be in- 
cluded in the model to make it more realistic. 

In the Appendix, we will compare the Fourier method 
with the conventional finite difference modeling. It will be 
shown that the pseudospectral method can be very valuable 
for modeling different underwater wave phenomena. For ex- 
ample, for the same frequencies, numerical dispersion in the 
pseudospectral method does not depend on the angle of 
propagation and is usually much smaller than in the conven- 
tional finite difference techniques. 

I. SCATTERING THEORY 

Usually acoustic/elastic scattering is analyzed using the 
Green's-Betty theorem, where the scattering response is 
found by integration of Green's function, pressure, and their 
normal derivatives along the surface of the scatterer. The T- 
matrix formalism can then be employed. 4 The T-matrix ap- 
proach can be efficiently used for objects of different shapes 
whose basis functions are not complicated. For targets of 
arbitrary shapes, basis functions are no longer simple and 
this can lead to cumbersome calculations. Another ap- 
proach to acoustic/elastic scattering is based on numerical 
solutions of the acoustic/elastic wave equations with appro- 
priate initial (IC) and boundary (BC) conditions. 

In this paper, we will consider the complete (full wave- 
forms) acoustic wave equation that governs the propagation 
of pressure in liquids. 

Wave propagation in a 2-D acoustic medium can be 
written as follows: 

•P • 1 • 2p •P = 1 
•x p•x q-•zz p& Pc 2 •t 2 +S(t)6(x)6(z), (1) 

where P(x,z,t) is the pressure field, c(x,z) is the propagation 
speed, p(x,z) is the density, S(t) is the source time function 
(sonar generted pulse), and 6 2 (.) describes the location of 
the sonar. 

We use the explicit discretization in time (explicit-time 
scheme). The second-order time derivative can be presented 
as 

•2p! pt+ 1 2p• t-1 
• = ' .... + O(•t 2), (2) 

•t 2 •t 2 

where n and m represent sampling in the x and z directions 
and l is the sampling rate in time. The time step was con- 
formed to the LCF stability condition. • 

We use the FFT method previously discussed by Kos- 
loft and Baysal. •2 This method requires fewer number of grid 
points to achieve the same accuracy than other techniques 
and consists of the following steps: 

(a) apply the FFT to the wave field (e.g., pressure); 
(b) multiply the results by ik• and ik•; 
(c) apply the FFT- •, giving 8P/Sx and 8P 
(d) multiply 8P/Sx and 8P/& by 1/p; 
(e) apply the FFT to the products and multiply them by 

ikx and ik•; 
(f) apply the FFT- i and obtain (8/Sx) ( 1/p) (SP/&) 

and (8/&) (l/p) (SP/&). 
Remark: Due to the finite discretization of the model 

space, finite difference or finite element numerical schemes 
are characterized by the apparent numerical dispersion that 
is expressed by the difference in the phase and group veloc- 
ities. • For pseudospectral methods, this dispersion can be 
negligibly small. Initial conditions evolve the causality prin- 
ciple, whereas the boundary conditions at the sea bottom for 
the deep ocean are chosen to be absorbing and for shallow 
ocean, express the continuity of pressure across the bound- 
ary. 

Usually, acoustic scattering is considered in the WKBJ 
approximation. In the high-frequency approximation, the 
large portion of data can be described in terms of the WKBJ 
(geometrical optics) approximation using the phase and the 
amplitude functions. The phase function satisfies the eikonal 
equation, whereas the amplitude function is governed by the 
transport equation. For the refraction index of different 
complexity, solutions to the transport equation are typically 
singular due to occurrence of caustics in the medium of con- 
sideration. In this study, we do not operate in the WKBJ 
approximation and thus we do not expect that caustics do 
occur. 

We will consider limited aperture towing arrays that do 
not detect the reflections from the scatterer that are beyond 
the recorded aperture. We advocate an interesting result, 
that in the case of limited aperture array, the recorded data 
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mainly contain diffraction and diffraction resonance arri- 
vals. 

In the next section, we will give the description of the 
acoustic numerical experiment in deep ocean where the reso- 
nance coupling is small. 

II. RESONANCE SCATTERING IN INHOMOGENEOUS 
DEEP OCEAN 

In this section, we will consider deep ocean. In order to 
better understand resonance scattering, the model was cho- 
sen in such a way that the reflections from the boundaries of 
the underwater object placed in the waveguide were missing 
due to the limited recording aperture. The sea surface is pre- 
sented by the free surface (pressure-release surface). At the 
free-surface pressure vanishes at all points. 

In order to eliminate the influence of the sea bottom, 
absorbing boundary conditions were incorporated. 

Absorbing boundary conditions were set up in the coat 
layer. The loss-free acoustic wave equation in this "layer" 
was substituted by the viscoacoustic equation with a damp- 
ing parameter. When this parameter is large, and the coat 
layer is small, we may anticipate some reflections from the 
"absorbing" boundaries. The best results turn out if the com- 
promise between the value of the damping parameter and the 
size of the coat layer is achieved. Properly chosen damping 
parameter and the thickness of the coat layer enable one to 
suppress unwanted reflections from the sea bottom and thus 
to accurately analyze the deep-ocean responses. This can be 
done using the trial and error method. In our case, 30 grid 
points were assigned to the coat layer. The pressure field Pc 
in the coat layer is presented by 

Pc •exp[ -- a(N-- i) ], (3) 

where N is the total number of the grid points in the coat 
layer and a is a damping parameter. 

Let us introduce the dimensionless quantity Ka (where 
a is the size of the scatterer). For our model, Ka = 4.86. 
Along with Ka, we will consider another parameter KL (L is 
the range for the sonar experiment). In our case, KL is 61.83, 
so KL >> Ka (this defines the farfield region). 

Figure 1 is the model where the source is located at 
depth 90 rn below the sea surface. The scatterer that has the 
shape of a square is placed inside the sound layer at a depth of 
330 rn below the sea surface. The side of the scatterer is 30 m. 

The width of the sound layer is 190 m. The receivers were 
placed at the same depth with the source. The nearest offset 
(the distance between the source and the first hydrophone) 
was 60 m, so the length of the towing array was 150 m. The 
source signature is presented in Fig. 2 that shows the zero- 
phase Ricker-type wavelet. The high cutoff frequency was 
245 Hz. Figure 3 shows the discretization of the model scat- 
terer. The target has 10 grid points per side. 

Figure 4 shows the numerical result of scattering in deep 
ocean recorded by 50 hydrophones spaced 3 rn apart. The 
first arrival (marked by "1") is the direct wave traveling 
from the source to the receivers. The second arrival is the 

ghost (reflection from the sea surface), the third arrival is 
the reflection from the top of the sound layer. The fourth 
arrival is the second-order (first-order multiple) reflection 

ß Towing orroy of hydrophones 

source 

V = 1482.25 

p= t.O 

V = t 475.00 

p=t.O 

V= 2 000,00 

4 p= 5.0 
target 

V = 1482.25 

p=t.O 

absorbing boundary conditions 

FIG. 1. Model of the sonar experiment in deep ocean. Towing array of hy- 
drophones is placed above the target. Absorbing boundary conditions are 
imposed on the sea bottom to suppress reflections from the sea floor. 

FIG. 2. Zero-phase Ricker 
wavelet used in the numerical 

modeling. 

FIG. 3. Discretization in the 

model space. The size of the 
cell was 3 m: 10 grid points per 
side of the scatterers. 
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.4 

.6 

FIG. 4. Response of the towing array (at the 50th hydrophone). Arrows 
indicate the resonance scattering. Letter d indicates diffraction arrivals 
from the corners. 

from the top of the sound layer. Number "5" marks the 
reflection from the bottom of the sound layer. Number "6" 
stands for the diffraction curve from the first corner of the 

scatterer and the seventh arrival is the diffraction arrival 

coming from the second corner of the scatterer (see Fig. 1 ). 
Number "8" depicts the diffraction event from the third cor- 
ner and finally number "9" is the diffraction event from the 
fourth corner. It is important to note that the scatterer shows 
strong resonance pattern (events between arrows in this fig- 
ure). Figure 5(a) depicts the first hydrophone reading. It 
shows that all events below the 0.55 s correspond to internal 
resonances within the scatterer. Figure 5 (b) is the response 
recorded by the last hydrophone located at 210 m away from 
the source. Events below 0.5 s are the resonances within the 

scatterer. Our results computed for the deep-ocean model 
indicate that the resonance coupling between the scatterer 
and the waveguide is negligibly small. 

III. DIFFRACTION RESONANCES 

When the generated waves impinge on the boundaries of 
the scatterer, the scatterer excites the so-called Huygens' 
secondary sources. The transmitted energy can be decom- 
posed into the vertically and laterally propagating pressure 
fields. This means that internal resonances can be considered 

as a combination of horizontal and vertical resonating 
waves. In accordance with the chosen geometry presented in 
Figs. 1 and 3, one can realize that due to the limited aperture 
of the recording cable, internal vertical and horizontal re- 
sonances will be not recorded by the towing array of hydro- 
phones. This means that only nondirectional perturbations 
will be recorded. The only areas that generate nondirectional 
energy are corners of the scatterer. Thus internal resonances 
within the scatterer will be detected due to point diffractors 
(corners). These events we call the diffraction resonances 
that are well seen in Fig. 4 where the geometry of the diffrac- 

0.4 

0.5 

0.6 

(a) 

0.4 
(b) 

0.5 

0.6 

FIG. 5. (a) Recorded signal at the first hydrophone shows rather compli- 
cated resonance signature (marked between arrows). (b) Recorded signal 
at the 50th (the furthest) hydrophone shows the resonant signature of 
bounced waves. 

tion response coincides exactly with the geometry of the dif- 
fraction resonances marked by two arrows. This suggests 
that the resonance pattern recorded by the towing array 
comes from the resonating corners of the target. Figure 6 
demonstrates this concept. One can observe that recorded 
resonances have large amplitudes and a steady pattern in 
time. These are characteristics of standing waves. The re- 
sponse from underwater objects in a limited aperture experi- 
ment with missing reflections is therefore mainly character- 
ized by the diffraction arrivals and the internal resonance 
pattern. 

IV. SHALLOW OCEAN SCATTERING IN 
INHOMOGENEOUS WAVEGUIDES 

A. Resonance coupling 

Remark: By definition, resonances are determined by 
bouncing waves between two boundaries. A perfect example 
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DECOMPOSED 
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FIG. 6. Internal resonances are not detected due to the limited aperture of 
the towing array. Responses from the resonating corners have the same 
travel time geometry as primary diffraction arrivals. 

of the resonance is the wave traveling between the sea surface 
and the sea bottom. In fact, the number of resonance cycles 
depends on the reflection coefficients. If the reflection coeffi- 
cient of the sea bottom is small, one deals with damping 
resonances. The resonance coupling is an event that is a sum 
of two resonances. Its signature contains periodic wave- 
forms of different periods. In the frequency domain, reson- 
ances correspond to singular solutions for the amplitude 
function (regular poles) for frequencies in the neighborhood 
of the natural frequency of the waveguide. Resonances can 
be expressed in terms of the multiple generator operator. Let 
us consider the multiple generator that corresponds to nor- 
mal incidence. Bouncing energy in the waveguide can be 
expressed by the following periodic function: 

M= • (-- 1)Jaj•5(t -- rj.), (4) 
j=l 

where 

fo a dZ Tj=2/ c(z) (5) 
is the two-way travel time and a• are the reflection coeffi- 
cients. For example, a• = R, where R is the reflection coeffi- 
cient from the sea bottom and a 2 -- R 2 and so on. So (4) can 
be rewritten as 

M= (- lYR,(t- (6) 
j=l 

475 D V = 2 000 p=t p=5 
V=i482.25, p=t 

2 000 
p=5 

V = 2 50O 

p=5 

absorbing boundary conditions 

FIG. 7. Model of the shallow ocean with the target placed in the sound 
layer. 

Suppose now that the multiple generator corresponding 
to the scatterer is 

Mx = • (-- 1)•b•&(t -- Tj), (7) 
j=l 

where b• is the reflection coefficient from the target boundar- 
ies and T• is the period of internal resonances. If 

Tj -- m T•., (8) 
where rn is an integer, the internal resonances and the reson- 
ances in the waveguide will then be tangled. Our results 
show that this coupling can be substantial, since the ampli- 
tudes of the internal resonances match the amplitudes of the 
waveguide resonances. In order to untangle these reson- 
ances, the waveguide ringing can be suppressed. 13 For multi- 
channel sonar experiments, the resonances can be decoupled 
using the differences in the geometries of the detected re- 
sponses. The problem of decoupling needs separate treat- 
ment and thus is beyond the scope of the paper. 

One of the most important problems in underwater 
acoustics is to deduce acoustic sources Of energy and to de- 
termine the propagation characteristics of acoustic waves. 
For example, the sea bottom is transparent for acoustic 
waves. However, for near critical reflections, it resembles the 
sea surface. The sea-bottom response is not only a function of 
the angle but also depends on frequency: namely high fre- 
quencies can be absorbed in marine sediments at rather shal- 
low depths so the reflection response will not contain the 
high-frequency component of its spectrum. As the first ap- 
proximation, we will model the sea bottom as a two-layer 
acoustic medium. 

Let us consider the following model. The scatterer of the 
square shape was placed in the sound layer whose width was 
60 m. The sonar was placed above the sound layer so the 
range was 300 m. The depth of the ocean was 120 m. The sea- 
bottom structure was modeled by two sediment layers with 
the sound speed being 2000 and 2500 m/s, respectively. The 
thickness of the first sediment layer was 45 m. Figure 7 de- 
scribes the model. Figure 8 is the reflection response record- 

FIG. 8. Acoustic response from the shallow-ocean waveguide with the tar- 
get. Letters SL mark the reflections from the sound layer. This figure shows 
strong coupling between the waveguide and the target resonances. 
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FIG. 9. Resonance coupling between the target and the waveguide for time 
greater than 0.4 s. 

0.2 

0.4 

0.6 

FIG. 10. Resonance coupling for time greater than 0.3 s. 

.6 

FIG. 11. Resonance coupling for the first 10 channels. 

ed by the towing array of 90 hydrophones spaced 3 m apart. 
The direct wave was eliminated. Arrivals marked by letters 
SL correspond to the reflections from the sound layer. Since 
the sound layer is a low-velocity zone and thus does not have 
critical and supercritical reflections, the energy that corre- 
sponds to the critical reflections is missing. This figure shows 
strong resonance coupling between the waveguide and the 
internal scatterer resonances (waveguide resonances are 
marked by letter W and the scatterer resonances are marked 
by letter T). Figure 9 is the recorded signal that shows the 
resonance coupling below 0.4 s. Figure 10 is the resonance 
pattern for the channel No. 70 showing the resonance coa- 
pling for times later than 0.3 s. Figure 11 demonstrates the 
resonance coupling marked by letter R between the target 
and the waveguide for the first 10 channels, whereas Fig. 12 
depicts the resonance coupling between the scatterer and the 
waveguide for the last 20 channels. One can see that this 
coupling is rather strong and obscures the scatterer reson- 
ances (compare with the deep-ocean results, Fig. 4). It is 
important to note that for a single channel, the waveguide 

.9, 

FIG. 12. Resonance coupling for the last 20 channels. 
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and the .scatterer resonances are difficult to separate. They 
can be better identified by a multichannel recording since the 
geometry (moveouts) of the scatterer resonances is typically 
different from the geometry of the waveguide resonances 
(see Fig. 12). 

V. CONCLUSION 

In this paper, we presented the results of the resonance 
scattering in inhomogeneous range-independent waveguides 
for both shallow and deep ocean. It was shown that acoustic 
scatterers can exhibit strong resonance patterns. We intro- 
duced a new concept of diffraction resonances that are 
caused by resonating point diffractors of th• scatterer. The 
diffraction resonances occur despite the complexities of all 
multipathing within the target and have the same geometry 
in the t-x domain as the primary diffractions. 

In order to model deep ocean, we used absorbing bound- 
ary conditions at the sea bottom. The numerical method 
used in the paper is fast and allows one to increase the accu- 
racy without increasing the number of grid points in the 
model space. Our results show that there is strong coupling 
between the internal scatterer resonances and the resonances 

in shallow waveguides. 
In the Appendix, we compared the pseudospectral 

method and the finite difference technique. The main con- 
clusion is that although the finite difference method can be, 
computationalwise, more economical, the numerical disper- 
sion effects in the pseudospectral method are much less ob- 
served. 
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APPENDIX: FINITE DIFFERENCE AND 
PSEUDOSPECTRAL METHODS 

In the previous section, we computed the resonance re- 
sponses from the acoustic scatterer using the pseudospectral 
method. Let us compare this technique with the convention- 
al finite difference method based on the explicit time-space 
integration. The finite difference technique has been well de- 
veloped in underwater acoustics. 14 

Let us consider the stability and numerical dispersion of 
both schemes. The stability condition is usually expressed as 

At <]?c/H, ( A 1 ) 

where c is the minimum propagation speed, His the grid size, 
and At the time step. Alford et al.'5 showed that for finite 
difference schemes/3-- 3x/3•, while Kosloff and Baysa112 
showed that/3 = x•/•r for the Fourier method. This means 
that a finer discretization is needed in the psuedospectral 
method to obtain the same stability. 

Let us consider the numerical dispersion effects of the 
pseudospectral method. Figure A 1 (a) shows the numerical 
dispersion for/3•0.45. The dotted curve shows the group 
velocity, whereas the solid line is the phase velocity. Figure 
A 1 (b) shows the numerical dispersion for/3 = 0.2. One can 
see that in this case the numerical dispersion effects are al- 
most missing. When we use the finite difference FD tech- 
nique, the dispersion curve [Fig. A2(a) ] for/3•0.61 shows 
significant dispersion for kH > 2. It is interesting to see what 
happens when we use/3 = 0.2. Figure A2 (b) shows that the 
difference between the group and the phase velocity remains 
almost the same whereas the adverse effects of dispersion 
appear at lower frequencies. It is very interesting to under- 
score that in the FD method, the numerical dispersion is a 
function of angle of propagation while the pseudospectral 
method does not have this drawback. 
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Dispersion curves in the finite difference 
method for/3 = 0.2. Dotted line is group 
velocity. Solid line is the phase velocity 
plotted versus KH. 
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