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Entropy of entangled states and SU„1,1… and SU„2… symmetries
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Based on a recent definition of a measure for entanglement@Plenio and Vedral, Contemp. Phys.39, 431
~1998!#, examples of maximum entangled states are presented. The construction of such states, which have
symmetry SU~1,1! and SU~2!, follows the guidance of thermofield dynamics formalism.

DOI: 10.1103/PhysRevA.65.032119 PACS number~s!: 03.65.Ud
th
th
o
ic
c

ay
re
v

c

te
um
ci
h
ho

le
th

la

m
t

ty

th
o

iz
he

e

-

rive

he

he

k
g

e
-
tes,

by
I. INTRODUCTION

Due to the structure of the Hilbert space as well as
superposition principle, quantum mechanics gives rise to
notion of entangled states, which are states of two or m
systems correlated with each other, but without a class
analog. In particular, this entanglement may have nonlo
features. Bell@1,2# was the first to present a systematic w
to analyze such entangled states, by comparing such cor
tions to the classical correlated states, that are defined
classical probability distributions.

A renewed interest in entanglement arose because it
be used for teleporting quantum states, from one locus
another, which is a basic ingredient in quantum compu
@3,4#. In order to progress with such a program of quant
communication, the measure for entanglement is a cru
aspect of the theory that should be fully developed. And t
aspect has been approached in several different met
@5–7#.

The conditions for teleporting require specific entang
states characterized by a maximum entanglement. In
sense, Barnett and Phoenix@8# and Plenio and Vedral@9#,
using the notion of thermal-like states with quantum corre
tions ~see also the paper by Ekert and Knight@10# for a
detailed account of two-mode squeezed states and ther
like states!, have suggested that a consistent measure of
entanglement of two subsystems, sayA andB, described by
a pure stateuc(A,B)&, is the entropy of the reduced densi
operatorrA , where

rA5TrB~ uc~A,B!&^c~A,B!u!, ~1!

with TrB standing for the trace over the coordinates of
subsystemB. In other words, a measure of entanglement
the stateuc(A,B)& is given by

S~rA!52TrrAln rA . ~2!

Here our goal is to set forth examples of states that maxim
the entanglement. We use as a guide the formalism of t
mofield dynamics~TFD! @11–14#, in order to build such
~maximum entangled! states that will be associated with th
SU~1,1! and SU~2! symmetries.

Let us go a bit further with the Barnett and Phoenix@8#
and Plenio and Vedral@9# ideas. Notice thatS(rA) is a ho-
mogeneous function of first degree in its dependency onEA ,
1050-2947/2002/65~3!/032119~6!/$20.00 65 0321
e
e

re
al
al

la-
ia

an
to
rs

al
is
ds

d
is

-

al-
he

e
f

e
r-

the energy of the subsystemA. Then since we wish to maxi
mize S(rA) we requiredS(EA)50, under the constraints

EA5^HA&5TrrAHA , TrrA51, ~3!

where HA is the energy operator of systemsA. Following
methods similar to those of statistical mechanics, we de
then a constraint equation forrA , that is,

ao211a1HA1 ln rA50, ~4!

whereao anda1 are the Lagrange multipliers attached to t
given constraints. Using Eq.~4! we get a Gibbs-like density
operator, that is,

rA5
1

Z
exp~a1HA!, ~5!

whereZ5exp(12ao). Multiplying Eq. ~4! by rA , taking the
trace and using Eqs.~3! and ~5!, we derive

ln Z1a1EA1S50.

For the sake of convenience, let us writea1521/t, then
we havet ln Z5EA2tS. The functionF(t)5t ln Z describes
the Legendre transform ofS since we assume thatt
5]E/]S. Here t is an intensive parameter describing t
fact that the averageEA5^HA&, given by Eq.~3!, is constant
in the state described byrA . Although the fluctuations can
exist, these are not a result of any heat bath~or ensemble of
states! but rathera consequence of the entanglementof the
stateA with B. Therefore, now we are in a position to loo
for an entangled stateuc(A,B)& such that the correspondin
reduced matrix as defined in Eq.~1! is explicitly given by
Eq. ~5!, such that

Z5Tr exp~2tHA!. ~6!

In this way we show in the following that, using the schem
of TFD for the SU~1,1! and SU~2! symmetries, we can ex
plicitly construct examples of maximum entanglement sta
such that the measurement of the entanglement is given
Eq. ~2!.
©2002 The American Physical Society19-1
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II. MAXIMUM ENTANGLED STATES
AND SU„1,1… SYMMETRY

Let us consider a two-mode bosonic system described
bosonic operatorsa,a†,b, andb† satisfying the algebraic re
lation

@b,b†#5@a,a†#51, ~7!

@a,b#5@a,b†#5@a†,b#5@a†,b†#50. ~8!

Following the TFD approach@11,12#, with these two-boson
operator, we can construct a two-mode linear canon
transformation presenting an SU~1,1! symmetry. First, con-
sider the following operators:

S15a†b†,

S25ab,

So5
1

2
~a†a1bb†!,

which satisfy the su~1,1! algebra, namely,@So ,S6#5S6 ,
and @S1 ,S2#52So . Introducing then a canonical transfo
mation by

U~g!5exp@g~S12S2!#,

with the vacuum u0a,0b&5u0a& ^ u0b&, such that au0a&
5bu0b&50, we have

u0~g!&5exp@g~S12S2!#u0a,0b&, ~9!

whereg is a parameter to be specified later. The canon
nature of U(g) maintains the invariance of the algeb
given by Eqs.~7! and ~8! for the transformed operator
given by

a~g!5U~g!aU~g!, a†~g!5U~g!a†U~g!,

b~g!5U~g!bU~g!, b†~g!5U~g!b†U~g!.
.

Here we use the notationu0(g)&5uc(A,B)& in order to em-
phasize that we have two bosonic systems, such thatA de-
scribes the degrees of freedom of the bosonic operatorsa and
a†, andB the operatorsb andb†. It is convenient to write Eq.
~9! by

uc~A,B!&5exp@ tanhga†b†#exp@2 ln coshg~bb†

1a†a!#exp@ tanhg~2ba!#u0a,0b&

5exp~2 ln coshg!(
m

~2tanhg!m

3
1

m!
~a†b†!mu0a,0b&. ~10!

Following the scheme delineated in the introduction,
show that the stateuc(A,B)& is a maximum entangled state
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Considerr(A,B)5uc(A,B)&^c(A,B)u and take the trace
in the B variables, that is,

rA5TrB@ uc~A,B!&^c~A,B!u#

5
1

~coshg!2 (
m,n

(
l

1

m!n!

3~2tanhg!m1n~a1!nu0a&^0au

3am^ l u~b†!nu0b&^0bubmu0b&

5
1

~coshg!2 (
m

~2tanhg!2mum&^mu.

Define

coshg~t!5
1

~12e2tw!1/2
,

tanhg~t!5e2tw/2,

such that

rA5~12e2tw!(
m

e2twmum&^mu.

This expression can be written in the canonical Gibbs
semble form by definingHA5wa1a and Z(t)5Tre2tHA

5(12e2tw)21. Then we have

rA5
1

Z~t!
e2tHA,

showing that the stateuc(A,B)&5exp@g(S12S2)#u0a,0b& is a
maximum entangled state with symmetry SU~1,1!. In the fol-
lowing section we discuss a situation of an entangled s
with SU~2! symmetry.

III. MAXIMUM ENTANGLED STATES
AND SU„2… SYMMETRY

In order to construct a state of two systemsA and B of
maximum entanglement with SU~2! symmetry, we use the
two-boson Schwinger representation for the su~2! Lie alge-
bra, given@14,15#

S15a1
†a2 , ~11!

S25a2
†a1 , ~12!

So5
1

2
~a1

†a12a2
†a2!, ~13!

wherea1 anda2 are two bosonic operators. Then we hav

@So ,S6#56S6 , ~14!

@S1 ,S2#52So . ~15!
9-2
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With these two bosons@fulfilling the same algebra as tha
given in Eqs.~7! and ~8!# the number operators

N15a1
†a1, N25a2

†a2 , ~16!

have the spectrum

N1un1 ,n2&5n1un1 ,n2&,

N2un1 ,n2&5n2un1 ,n2&,

where

un1 ,n2&5
1

~n1!n2! !1/2
~a1

†!n1~a2
†!n2u0,0&.

Therefore, the operators defined in Eqs.~11! and ~12! are
such that

S1un1 ,n2&5@n2~n111!#1/2un111,n221&, ~17!

S2un1 ,n2&5@n1~n211!#1/2un121,n211&, ~18!

Soun1 ,n2&5
1

2
~n12n2!un1 ,n2&. ~19!

Observe that

S2un1 ,n2&5S2un150,n251&50, ~20!

that is, the stateun150,n251&5u0a& is the vacuum state fo
S2 . The connection with the original su~2! algebra and the
value of spin is obtained if we define

n15s1m, ~21!

n25s2m, ~22!

wheres andm are related to the usual results

s2us,m&5s~s11!us,m&,

sous,m&5mus,m&.

Let us study now the particular case ofs51/2 and m
51/2, 21/2. Or in terms of the two-boson spectrumn1
50,1 andn250,1. Therefore, the action ofS1 and S2 on
such states is

S1us,m&5S1un1 ,n2&5S1

1

~n1!n2! !1/2
~a1

†!n1~a2
†!n2u0&u0&,

~23!

S2us,m&5S2un1 ,n2&5S2

1

~n1!n2! !1/2
~a1

†!n1~a2
†!n2u0&u0&,

~24!

such that, according to Eqs.~17! and~20!, we have only two
possibilities,

n150,n251⇒m521/2, ~25!
03211
n151,n250⇒m51/2. ~26!

Or in another way,

S1us51/2,m521/2&[S1un150,n251&5u1,0&, ~27!

S1us51/2,m51/2&[S1un151,n250&50, ~28!

S2us51/2,m521/2&[S2un150,n251&50, ~29!

S2us51/2,m51/2&5S2un151,n250&5u0,1&, ~30!

where we have used Eqs.~17!, ~20!, ~23!, and~24!. Then, as
we have observed before, the vacuum state for the spin
tem is u0&[u0,1&.

In order to construct the entangled state following t
TFD procedure, we analyze another system of two boso
denoted byb1 and b2, such that these operators commu
among themselves and also with the boson operatora1 and
a2, giving rise to the doubling of the su~2! algebra. That is,

@So ,S6#56S6 , ~31!

@S1 ,S2#52So , ~32!

@S̃o ,S̃6#56S̃6 , ~33!

@S̃1 ,S̃2#52S̃o , ~34!

such that the tilde operatorsS̃2 ,S̃1 , and S̃o commute with
the nontilde operators and are now given by

S̃15b1
†b2 , ~35!

S̃25b2
†b1 , ~36!

S̃o5
1

2
~b1

†b12b2
†b2!. ~37!

Consider the stateuc(A,B)& given by

uc~A,B!&5exp@g~S1S̃11S2S̃2!#u0a,0b&,

5exp@g~a1
†b1

†a2b22a2
†b2†a1b1!#u0a,0b&

5~cosg1singa1
†b1

†a2b2!u0a,0b&, ~38!

whereA represents the degrees of freedom described by
variablesS,B represents the other system described by
variables S̃, and u0a,0b&5u0a& ^ u0b&5u0,1&a^ u0,1&b
[u0&a1

u1&a2
u0&b1

u1&b2
. The quantityg is an arbitrary con-

stant to be specified. Definer(A,B)5uc(A,B)&^c(A,B)u,
and take the trace in theB variables, that is,
9-3



th
n

lu

a

e
th
e

er
io

b
tw

the
that

pre-
of

f

di-

at

bra

-

rary

r

is

pect

A. E. SANTANA, F. C. KHANNA AND M. REVZEN PHYSICAL REVIEW A 65 032119
rA5TrBuc~A,B!&^c~A,B!u

5(
m,n

(b)^mub1
^nub1

~cosg1singa1
†b1

†a2b2!

3u0&a1
u1&a2

u0&b1
u1&b2

^1ub2
^0ub1

^0ua2
^1ua1

3~cosg1singa1
†b1

†a2b2!†un&b1
um&b2

,

where the indices in the states asb2 in u1&b2
or ^1ub2

, are
used to specify the action of the different operators, so
u1&b2

5b2
†u0&b2

, and so on. With some algebric manipulatio
we get,

rA5cos2gu0&a1
u1&a2

^1ua2
^0ua1

1sin2gu1&a1
u0&a2

^0ua2
^1ua1

.
~39!

In the case of spin 1/2 we haveu0&a1
u1&a2

5us51/2,m

521/2&[u21/2&, and u1&a1
u0&a2

5us51/2,m51/2&[u1/2&.
Defining

cosg5
1

A11e2tv
, sing5

e2tv/2

A11e2tv
,

Eq. ~39! can be written as

rA5
1

Z
e2tvSoU12L K 1

2U1 1

Z
e2tvSoU2 1

2L K 2
1

2U,
since the eigenvalue ofSo is 6 1

2 . As TrrA51 then Z
5e2tv/21etv/2. Or still

rA5
1

Z (
m51/2,21/2

e2tvSoum&^mu

5
1

Z
e2tvSo (

m51/2,21/2
um&^mu

5
1

Z
e2tHA,

whereHA5vSo . Therefore, the state given by Eq.~38! is a
maximally entangled state. The generalization for any va
of spin is straightforward.

IV. ENTANGLEMENT OF SYSTEM WITH FIXED SPIN:
SCHWINGER METHOD REVISITED

In the preceding sectionuc(A5S,B5S̃;g)& was used to
describe a maximally entangled state. If we consider an
bitrary spin~arbitrary values for the number operatorsn1 and
n2) value,uc(A5S,B5S̃;g)& is a maximum entangled stat
of two systems, each one with two bosons. However, for
system of two~defined! spin 1/2, for instance, we have th
eigenvalues of the number operator asn150,1 andn250,1,
which are no longer the spectrum of bosonic number op
tors, but rather fermioniclike operators. In such a situat
the bosonic algebra does not describe physical bosons
works as auxiliary variables to treat the entanglement of
03211
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spin systems. Accordingly, since we define a fixed~not arbi-
trary! value for the spin, we have to analyze more closely
consequences of that, over the Schwinger representation
is usually introduced for arbitrary spin.

Returning to the Schwinger bosonic representation as
sented in Sec. II, imposing the conditions on the spectrum
n1 andn2 as is the case of Eqs.~25! and~26! ~and so defin-
ing s with a fixed value!, then we are led to a situation o
redefining the algebra of the auxiliary operatorsa1 and a2.
Summarizing first our results, originally the operatora1 and
a2 satisfy the bosonic algebra, say

@a1 ,a1
†#5@a2 ,a2

†#51, ~40!

@a1 ,a2#5@a1 ,a2
†#5@a1

† ,a2#5@a1
† ,a2

†#50. ~41!

In addition, for the spin 1/2, we have the subsidirary con
tions ~allowing the fixed value for the spin!,

@a1 ,a1
†#15@a2 ,a2

†#151, ~42!

@a1 ,a2#15@a1 ,a2
†#15@a1

† ,a2#15@a1
† ,a2

†#150, ~43!

where @ ,#1 stands for the anticommutator. A solution th
fulfills all these conditions, Eqs.~40!–~43!, is found by as-
suming the algebra for the operatorsai andai

†( i 51,2) to be

aiai
†51, ~44!

@Ni ,ai
†#5ai

† , ~45!

@Ni ,ai #52ai , ~46!

with aiai5ai
†ai

†50 andni5ai
†ai . Indeed it is a simple mat-

ter to show that in this caseNi50,1, wherei 51,2.
For the case of spin 1, we consider the basic alge

given by Eqs.~44!–~46! with Ni given by

Ni5ai
†ai1ai

†ai
†aiai ,

such thatai
†ai

†ai
†5aiaiai50, that is, three and higher mono

mials of ai
† and ai are zero. In this case we deriveni

50,1,2, and with Eqs.~21! and ~22! we find s51 and m
521,0,1.

The above procedure can be generalized for an arbit
but fixed value of spin. That is, for a spins, such thatni
52s, we consider Eqs.~44!–~46! supplemented by a prope
definition of Ni , which reads

Ni5(
j 51

2s

~ai
†! j~ai !

j . ~47!

For the particular situation in whichs→`, we derive the
approach of infinite statistics proposed by Greenberg@16#,
and Chung@17#. In the general situation presented here, it
worthy of noting that the algebra given in Eqs.~44!–~46!
also satisfies a Hopf structure. Let us investigate this as
closely.

Defining a15a^ I , a25I ^ a, we can see that writing
9-4
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D r~a!51^ a,

D r~a†!51^ a†,

D r~N!5N^ 111^ N,

D r~ I !5I ^ I ,

whereD r provides a representation for the algebra given
Eqs. ~44!–~46! for any value ofs in Eq. ~47!. Actually this
fact has been shown in the particular situation in whichs
→`, in the context of the Greenberg operators@16,17#. A
Hopf structure is introduced by usingD r as the coproduc
and defining the counite and the antipodes by

e~ I !51, e~a!5a, e~a†!5a†, e~N!50, ~48!

s~ I !51, s~a!5a, s~a†!5a†, s~N!52N. ~49!

Another Hopf algebra is introduced, however, for the ope
torsa15a^ I anda1

†5a†
^ I , defining the coproduct, sayD l ,

by

D l~a!5a^ 1,

D l~a†!5a†
^ 1,

D l~N!5D r~N!,

D l~ I !5D r~ I !.

The counite and the antipodes are the same as those give
in Eqs.~48! and~49!. It is then a simple matter to verify al
the Hopf-algebra axioms. Indeed, for the coprod
axiom we have (i ^ D l)D l(a)5( i ^ D l)(a^ 1)5a^ 1^ 1
5(D l

^ i )(a^ 1), and so (i ^ D l)D l5(D l
^ i )D l . Following

the same procedure we can verify the counit axi
(e ^ D l)D l5(D l

^ e)D l as well as the antipode axiom
( i ^ s)D l5(s^ i )D l .

Closing this section let us emphasize, first, that a moti
tion for studying the Hopf-algebra structure attached to
entangled states with SU~2! symmetry is for the sake of ex
periments. Actually, in the way as the algebra given in E
~44!–~46! has emerged in our formalism, the Hopf-algeb
induced by that can be used to introduce a deformation
rameter, sayq, associated with SU~2! @18,19#. This q param-
eter in turn can be useful for fitting experimental resu
Second any representation of the su~2! algebra can be de
composed in terms of operatorsa and a† satisfying Eqs.
~44!–~46! with N given in Eq.~47! for some fixeds, such a
formalism can be used to describe not only fixed spin
also, for instance, isospin. In the case of pion, isospin 1
would be thought as being composed of~at least, auxiliary!
objects described by the operatorsa1 ,a1

† ,a2, anda2
† . In this
03211
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way we could find a physical interpretation for the Gree
berg infinite-statistics approach@18#.

V. CONCLUDING REMARKS

In this paper we have improved the Barnett and Phoe
@8# and Plenio and Vedral@9# definition for a measure o
entanglement among states, based on a Liouville-von N
mann entropy. We then explore the similarity with the usu
definition of entropy in statistical mechanics to constru
states maximally entangled using the approach of th
mofield dynamics. As TFD is a thermal formalism essentia
founded on algebraic bases~duplication of the usual Hilbert
space and Bogoliubov transformations!, it has been used as
compass to give the proper direction to build maximum e
tangled states with a well-defined symmetry. We have st
ied the case of two bosons with SU~1,1! symmetry and four
bosons~actually two systems, each one with two boson!
with symmetry SU~2!. Still in the case of SU~2! symmetry,
we have studied the entanglement of two systems with fi
value of spin, using a modified version of the two-bos
Schwinger representation for the su~2! Lie algebra.

The usual way to describe a fixed value of spin us
boson operators was proposed by Holstein and Prima
@20#. However, such a method works if we are interested
describing a system with spin via one bosonic operator.
this has not been the case here, since it has needed
operators associated to each spin to introduce the stat
maximum entanglement through TFD. Obviously that for
finite spectrum, the couple of Schwinger operators loose
bosonic characteristic~up to now, an aspect not investigate
in the literature, to the best of our knowledge!, giving rise to
a new algebra. What we have shown were some propertie
the new operators.

With these results we can set forth some final conclusio
~i! the TDF states, seen as pure states, are naturally m
mum entangled states;~ii ! the SU~1,1! symmetry could be
written in terms of a doubled bosonic algebra, such tha
can be derived from elements of a coproduct given
D(a)5a^ 111^ a5(D l1D r)a and D(a†)5a†

^ 111
^ a†5(D l1D r)a† associated with the Weyl-Heisenberg a
gebra, induced from the bosonic algebra. This is similar
the case of the SU~2! symmetry. As a consequence, the stru
ture of Hopf algebra is at the bottom of all the constructio
since the left (D l) and the right (D r) parts of coproducts
have been used to find specific representations for the S~2!
and SU~1,1! symmetries and also to the TDF states~which
are here synonymous with the maximum entangled state!.
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