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Entropy of entangled states and SU(1,1) and SW(2) symmetries
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Based on a recent definition of a measure for entanglefi®anio and Vedral, Contemp. Phy39, 431
(1998], examples of maximum entangled states are presented. The construction of such states, which have
symmetry SW1,1) and SU2), follows the guidance of thermofield dynamics formalism.
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[. INTRODUCTION the energy of the subsystefn Then since we wish to maxi-
mize S(pp) we requiredS(E,) =0, under the constraints
Due to the structure of the Hilbert space as well as the
superposition principle, quantum mechanics gives rise to the Ea=(HA)=TrpaHa, Trpa=1, (3)
notion of entangled states, which are states of two or more

systems correlated with each other, but without a ClaSSiC%hereHA is the energy operator of systems Following

analog. In particular, this entanglement may have nonlocghethods similar to those of statistical mechanics, we derive
features. Bel[1,2] was the first to present a systematic Way ihen a constraint equation fep, that is

to analyze such entangled states, by comparing such correla-
tions to the classical correlated states, that are defined via
classical probability distributions.

A renewed interest in entanglement arose because it can o
be used for teleporting quantum states, from one locus tg\{hereao and‘.ll are the Lagrange mult|pllgrs at;ached to the
another, which is a basic ingredient in quantum computerQ'Ven constraints. Using E@4) we get a Gibbs-like density

[3,4]. In order to progress with such a program of quantumPPerator, that is,

communication, the measure for entanglement is a crucial
aspect of the theory that should be fully developed. And this _
aspect has been approached in several different methods pA_ZeXp(alHA)’ ©)
[5-7].

The condition_s for teleporting_ require specific e”tangle%herez=exp(l—ao). Multiplying Eq. (4) by pa, taking the
states characterized by a maximum e_ntanglement. In thig;zce and using Eq¢3) and (5), we derive
sense, Barnett and Phoerji&] and Plenio and Vedrdl9],
using the notion of thermal-like states with quantum correla-
tions (see also the paper by Ekert and KnidghO] for a
detailed account of two-mode squeezed states and thermal- ] )
like state, have suggested that a consistent measure of the FOr the sake of convenience, let us write= — 1/7, then
entanglement of two subsystems, gapndB, described by ~We haverIn Z=E,—7S The functionF(7) = 7In Z describes
a pure statéy(A,B)), is the entropy of the reduced density the Legendre transform 0B since we assume that

a0_1+ alHA+|I’IpA=0, (4)

operatorp, , where =JE/JS. Here 7 is an intensive parameter describing the
fact that the averagé,=(H ), given by Eq.(3), is constant
pa=Tra(|(A,B)Y ¥ (A,B)|), (1) in the state described ky,. Although the fluctuations can

_ _ _ exist, these are not a result of any heat lathensemble of
with TrB Stand|ng for the trace over the coordinates of thestate$ but rathera consequence of the entang'emehthe
subsystenB. In other words, a measure of entanglement ofstate A with B. Therefore, now we are in a position to look

the state¢/(A,B)) is given by for an entangled state/(A,B)) such that the corresponding
_ reduced matrix as defined in E€L) is explicitly given by
Slpa) == Trpalnpa. 2) Eq. (5), such that

Here our goal is to set forth examples of states that maximize

the entanglement. We use as a guide the formalism of ther- Z=Trexp(—7Hp). (6)

mofield dynamics(TFD) [11-14, in order to build such

(maximum entangledstates that will be associated with the In this way we show in the following that, using the scheme

SU(1,2) and SU2) symmetries. of TFD for the SU1,1) and SU2) symmetries, we can ex-
Let us go a bit further with the Barnett and Phoef plicitly construct examples of maximum entanglement states,

and Plenio and VedrdB] ideas. Notice tha8(p,) is @ ho-  such that the measurement of the entanglement is given by

mogeneous function of first degree in its dependencizpn  Eq. (2).
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II. MAXIMUM ENTANGLED STATES
AND SU(1,1) SYMMETRY

Let us consider a two-mode bosonic system described by

bosonic operatora,a’,b, andb' satisfying the algebraic re-
lation

[b,bT]=[a,a"]=1, ()
8

Following the TFD approachll,12), with these two-boson

[a,b]=[a,b']=[a',b]=[a’,bT]=0.

operator, we can construct a two-mode linear canonical

transformation presenting an §1)1) symmetry. First, con-
sider the following operators:

S+ = aTbT,

S_=ab,

1
S, E(aTaerbT),
which satisfy the sii,1) algebra, namely[S,,S.]=S-,
and[S, ,S_]=-S,. Introducing then a canonical transfor-
mation by

U(y)=exd ¥(S;—S.)],

with the vacuum |0,,0,)=]0,)®|0,), such thata|0,)
=b|0,)=0, we have

10(y))=exf ¥(S. —S-)1|04,0), 9

where y is a parameter to be specified later. The canonical

nature of U(y) maintains the invariance of the algebra
given by Egs.(7) and (8) for the transformed operators
given by

a(y)=U(y)aU(y),

b(y)=U(y)bU(y),

a'(y)=U(ya'u(y),

bT(y)=U(y)b'U(y).

Here we use the notatid®(y))=|#(A,B)) in order to em-
phasize that we have two bosonic systems, suchAhde-
scribes the degrees of freedom of the bosonic operatansl
a', andB the operatord andb. It is convenient to write Eq.

(9) by
|4(A,B))=exd tanhya'b"]exy — In coshy(bb'
+a'a)]exd tanhy(—ba)]|0,,0,)

=exp(—Incoshy) Y, (—tanhy)™
m

1 Thtym
x—r@ab’) |04,0)- (10)
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Considerp(A,B) =|#(A,B) ) #(A,B)| and take the trace
in the B variables, that is,

pa=Tra[|4(A,B)){¥(A,B)|]
1 1
- m mn ‘T min!
X (—tanhy)™ "(a")"[0,)(0,|
xa™(1](b")"0p)(0p|b™Op)

1
= W % (—tanhy)zmlm)(m|.
Define
COShy( T)Z m,
tanhy(r)=e" ™72,
such that

pA=(1—8”W)§ e” ™M m)(m|.

This expression can be written in the canonical Gibbs en-
semble form by definingd,=wa"a and Z(7)=Tre ™A
=(1—e ™)1 Then we have

1
Az

e~ THp

showing that the states(A,B))=exd 1S, —S.)]|0,,0,) is a
maximum entangled state with symmetry @\1). In the fol-
lowing section we discuss a situation of an entangled state
with SU(2) symmetry.

IIl. MAXIMUM ENTANGLED STATES
AND SU(2) SYMMETRY

In order to construct a state of two systedsand B of
maximum entanglement with §B) symmetry, we use the
two-boson Schwinger representation for thé2su.ie alge-
bra, given[14,15

S,=ala,, (11)
S_=aja, (12)
1 T T

So=5(a;a1—aza,), (13

2
wherea; anda, are two bosonic operators. Then we have

[SOISi]:iSii (14)

Following the scheme delineated in the introduction, we

show that the statp/(A,B)) is a maximum entangled state.

[S,,S.]1=2S,. (15)
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With these two bosondulfilling the same algebra as that n;=1n,=0=m=1/2. (26)
given in Eqgs.(7) and(8)] the number operators

N,=ala;, Ny=ala,, (16) Or in another way,
have the spectrum S.|s=12m=-1/2=S,|n;=0n,=1)=[1,0), (27
Nan,n2) =na|ny,nz), S,|s=12m=1/2)=S,|n;=1n,=0)=0, (29

N,|nq,nyy=nyNng,N,),
2I1.M2) =NalN1.N2) S_|s=1/2m=—1/2=S_|n,=0n,=1)=0, (29

where
S |s=1/2m=1/2)=S_|n;=1hn,=0)=(0,1), (30
————(a})"(a})"(0,0).
(nyIny!) where we have used Eq4.7), (20), (23), and(24). Then, as
] . we have observed before, the vacuum state for the spin sys-
Therefore, the operators defined in E¢l) and (12) are e js|0)=|0,1).
such that In order to construct the entangled state following the
_ 2 _ TFD procedure, we analyze another system of two bosons,
SiIngnz)=[na(my+ 1)y +1n,-1), (A7) denoted byb,; andb,, such that these operators commute
(18) among themselves and also with the boson opewatand
a,, giving rise to the doubling of the &) algebra. That is,

Ing,ny)=

S_Iny,nyy=[ny(ny+1)1¥34n - 1n,+ 1),

1
Solnl,n2>=E(nl—n2)|n1,n2>. (19 [S,,S:]=*S., (31
Observe that [S,,S_]=2S,, (32
S_|n{,n,)=S_|n;=0,n,=1)=0, 20 - ~ ~
Iny.np) In 2=1) (20 5 5.1 +5. . 33

that is, the statén,=0,n,=1)=|0,) is the vacuum state for
S_. The connection with the original &) algebra and the [5,.,3.1=2% (34)
value of spin is obtained if we define T o’

ny=s+m, (21)  such that the tilde operato& ,S, , andS, commute with
the nontilde operators and are now given by
n,=s—m, (22
% _pt
wheres andm are related to the usual results S+=baby, (35
&|s,my=s(s+1)|s,m), 3_=blb,, (36)
So|/S,M)y=m]|s,m). 1
2 —Zihth. —nt
Let us study now the particular case s£1/2 andm So=75 (P1by = b3by). 37

=1/2, —1/2. Or in terms of the two-boson spectrum
=0,1 andn,=0,1. Therefore, the action &, andS_ on Consider the statpy(A,B)) given by
such states is

| 4(AB))=exd (S, 5, +5.5.)1|0,,0),

s. (a})"(a})™|0)[0),
23) =exd "}’(aIbIazbZ_a;bZTalbl)“Oava)

= (cosy+sinyalbla,b,)|0,,0,), (39

S,my=S,|ny,Ny)=S,—————
> +| 1 2> +(n1!n2!)1’2

1
S_|s,m)=S_|n;,n,)=S_ ————(a})"(a})"2|0)|0),
ny!ny)2

(

whereA represents the degrees of freedom described by the
(24)  variablesS,B represents the other system described by the
variables S, and [0,,0,)=]0,)®|0,)=0,1),®|0,1),
E|O>al|1>az|0>b1|1>b2' The gquantityy is an arbitrary con-
stant to be specified. Defing(A,B)=|¢(A,B)){¢(A,B)|,
n;=0n,=1=m=—-1/2, (25  and take the trace in th® variables, that is,

such that, according to Eg&l7) and(20), we have only two
possibilities,
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pa=Trg|(A,B))(¢(A,B)]
:mZn ®)(mly, (nlp, (cosy+sinyaibla,b,)

X[0)a,11)a,/0)6,/1)b,{1]p,{0lp,(Ola,(1la,
X (cosy+sinyajblayb,) T[Ny, [M)p,,

where the indices in the states g in [1),, or (1], are
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spin systems. Accordingly, since we define a fixedt arbi-

trary) value for the spin, we have to analyze more closely the
consequences of that, over the Schwinger representation that
is usually introduced for arbitrary spin.

Returning to the Schwinger bosonic representation as pre-
sented in Sec. Il, imposing the conditions on the spectrum of
n, andn, as is the case of Eq&5) and(26) (and so defin-
ing s with a fixed valug, then we are led to a situation of
redefining the algebra of the auxiliary operatagsand a,.
Summarizing first our results, originally the operasgrand

used to speC|fy the action of the different operators, so tha, satisfy the bosonic algebra, say

|1)p,=
we get,

Pa= C05‘2')’|0>al| l>a2<1|a2<0|a1+5in27| 1>a1|0>a2<0|a2<1|a1-
(39

In the case of spin 1/2 we havi), |1),,=|s=1/2m
= —1/2=[-1/2), and|1), |0), =|s=1/2m=1/2)=|1/2).

Defining
1 . e—7‘w/2
O e T Tre

Eg. (39) can be written as

—TwS, 1

1)/
2/\2|"z

e~ TOS,

PAZ 7

1 1
2 2
since the eigenvalue o8, is *3. As Trp,=1 thenZ

=e "2+ e Or still

P e 7S m)(m|
Z m=in-112

— 1 e TwSy

m){(m
Z m:1/2,—1/2| (mi

— —7H
= —e "A,

whereH = wS,. Therefore, the state given by E®8) is a

2|O>b and so on. With some algebric manipulation,

[a;,al]=[a,,ab]=1, (40)

[a;,8,]=[a;,a}]=[a],a,]=[a],a}]=0. (41

In addition, for the spin 1/2, we have the subsidirary condi-
tions (allowing the fixed value for the spin

[a;,a]], =[az,a}], =1, (42)

[a1.8,].=[a;,8]], =[a],a,], =[a],a}]. =0, (43

where[,], stands for the anticommutator. A solution that
fulfills all these conditions, Eqg40)—(43), is found by as-
suming the algebra for the operat@risandaiT(i =1,2) to be

aa =1, (44)
[Ni,al]=a, (45)
[N, ai]=—a, (46)

with a;a;= a a, T=0 andn;= a ;. Indeed it is a simple mat-
ter to show that in this caQ‘d 0,1, wherei=1,2.

For the case of spin 1, we consider the basic algebra
given by Eqs.(44)—(46) with N; given by

Nj=g; a+aTaTaa,,

such thaaTaTaT:a a;a,=0, that is, three and higher mono-
mials of a and a; are zero. In this case we derivg

maximally entangled state. The generalization for any value=0.1.2, and with Eqgs(21) and (22) we find s=1 andm

of spin is straightforward.

IV. ENTANGLEMENT OF SYSTEM WITH FIXED SPIN:
SCHWINGER METHOD REVISITED

In the preceding sectiohy(A=S,B=7S;y)) was used to
describe a maximally entangled state. If we consider an ar-

bitrary spin(arbitrary values for the number operatorsand

n,) value,| y(A=S,B=T; 7)) is a maximum entangled state

=-1,0,1.

The above procedure can be generalized for an arbitrary
but fixed value of spin. That is, for a sps such thatn;
=2s, we consider Eq944)—(46) supplemented by a proper
definition of N;, which reads

2s

Ni=2, (a)(a)'. (47)
P

of two systems, each one with two bosons. However, for thé=or the particular situation in whick—c, we derive the
system of two(defined spin 1/2, for instance, we have the approach of infinite statistics proposed by Greenldsj,

eigenvalues of the number operatorrgs=0,1 andn,=0,1,

and Chund 17]. In the general situation presented here, it is

which are no longer the spectrum of bosonic number operawvorthy of noting that the algebra given in Eqg4)—(46)
tors, but rather fermioniclike operators. In such a situatioralso satisfies a Hopf structure. Let us investigate this aspect
the bosonic algebra does not describe physical bosons batosely.

works as auxiliary variables to treat the entanglement of two Defininga;=a®l,

a,=l®a, we can see that writing
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A'(a)=1®a, way we could find a physical interpretation for the Green-
berg infinite-statistics approag¢hs].

A'(ah=1®al,

V. CONCLUDING REMARKS
A" (N)=N®1+1®N,

In this paper we have improved the Barnett and Phoenix
[8] and Plenio and Vedrdl9] definition for a measure of
entanglement among states, based on a Liouville-von Neu-
whereA" provides a representation for the algebra given bymann entropy. We then explore the similarity with the usual
Egs. (44)-(46) for any value ofs in Eq. (47). Actually this  definition of entropy in statistical mechanics to construct
fact has been shown in the particular situation in whsch states max|ma||y entang'ed using the approach of ther-
—©, in the context of the Greenberg operatft$,17. A mofield dynamics. As TFD is a thermal formalism essentially
Hopf structure is introduced by using’ as the coproduct founded on algebraic baséduplication of the usual Hilbert
and defining the couni¢ and the antipods by space and Bogoliubov transformationis has been used as a

compass to give the proper direction to build maximum en-
e()=1, e(a)=a, e@H=a', eN)=0, (49 tangled states with a well-defined symmetry. We have stud-
ied the case of two bosons with §1)1) symmetry and four
s(N)=—N. (49 bosons(actually two systems, each one with two bogons
with symmetry SW2). Still in the case of S(2) symmetry,

o we have studied the entanglement of two systems with fixed
Another Hopf algebra is introduced, however, for the operay,gjue of spin, using a modified version of the two-boson

_ _ ot o
torsa,=a®| anda;=a'®l, defining the coproduct, say, Schwinger representation for the(8)Lie algebra.

AT(H=1®l,

s()=1, s(a)=a, s(a’)=a',

by The usual way to describe a fixed value of spin using
boson operators was proposed by Holstein and Primakof

Al(a)=a®1, [20]. However, such a method works if we are interested in

describing a system with spin via one bosonic operator. But
Al@ah=a'e1, this has not been the case here, since it has needed two

operators associated to each spin to introduce the state of
maximum entanglement through TFD. Obviously that for a

A'(N)=A"(N), finite spectrum, the couple of Schwinger operators loose the
bosonic characteristi@p to now, an aspect not investigated
Al(H=A"(1). in the literature, to the best of our knowledgsiving rise to

a new algebra. What we have shown were some properties of
the new operators.
With these results we can set forth some final conclusions:

the Hopf-algebra axioms. Indeed, for the coproduct(i) the TDF states, seen as pure states, are naturally maxi-
axiom we have i@A)Al(a)=(iwA)(a®1l)=awl®1l mum entangled statesii) the SU1,1) symmetry could be
=(A'®i)(a®1), and so (® A)A'=(Al®i)A!. Following written in terms of a doubled bosonic algebra, such that it

the same procedure we can verify the counit axiomC@n be derived from elements of a coproduct given by

(e2A)A'=(A'@e)Al as well as the antipode axiom A(8)=a®ltlea=(A'+Aa and A(ah=a'el+l

(ios)Al=(s®i)A" ®a’=(A'+A"Na" associated with the Weyl-Heisenberg al-
Closing this section let us emphasize, first, that a motivagebra, induced from the bosonic algebra. This is similar to

tion for studying the Hopf-algebra structure attached to théhe case of the S@2) symmetry. As a consequence, the struc-

entangled states with ) symmetry is for the sake of ex- ture of Hopf algebra is at the bottom of all the construction,

periments. Actually, in the way as the algebra given in Eqssince the left ') and the right A") parts of coproducts

(44)_(46) has emerged in our formalism, the Hopf-a|gebrahave been used to find SpeCifiC representations for tl"(Q)SU

induced by that can be used to introduce a deformation paahd SU1,1) symmetries and also to the TDF statesich

rameter, sayj, associated with S() [18,19. Thisq param-  are here synonymous with the maximum entangled states

eter in turn can be useful for fitting experimental results.

Second any representation of thgZualgebra can be de-

composed in terms of operatossand a' satisfying Egs. ACKNOWLEDGMENTS

(44)—(46) with N given in Eq.(47) for some fixeds, such a
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The counite and the antipods are the same as those given
in Egs.(48) and(49). It is then a simple matter to verify all
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