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Levinson-Type Extensions for Non-Toeplitz Systems 
Milton Porsani and Tad J. Ulrych 

Abstract-We show that Levinson's basic principle for the solution 
of normal equations which are of Toeplitz form may he extended to 
the case where these equations do not possess this specific symmetry. 
The use of Levinson's principle allows us to obtain a compact ( 2  x 2 )  
form to express a system of equations of arbitrary order. This compact 
form is the key expression in the development of recursive algorithms 
and allows a compact representation of the most important Levinson- 
type algorithms which are used in the analysis of seismic and time se- 
ries data in general. In the case when the coefficient matrix does not 
possess any type of special structure, the number of multiplications 
and divisions required in the inversion is n3 - 2n2 + 4n. We illustrate 
the described method by application to various examples which we have 
chosen so that the coefficient matrix possesses various symmetries. Spe- 
cifically, we first consider the solution of the normal equations when 
the associated matrix is the doubly symmetric non-Toeplitz covariance 
matrix. Second, we obtain the solution of extended Yule-Walker equa- 
tions where the coefficient matrix is Toeplitz but nonsymmetric. Fi- 
nally, we briefly illustrate the approach by considering the determi- 
nation of the prediction error operator when the NE are in fact of sym- 
metric Toeplitz form. 

I. INTRODUCTION 
EVINSON'S recursion (LR) [ I ]  finds application in all L cases where predictive or autoregressive systems are en- 

countered. Specific examples are predictive deconvolution and 
maximum entropy spectral analysis. A large number of impor- 
tant recursive algorithms, ([2]-[6]) have as their basis the LR 
which linearly combines the forward and backward solutions of 
subsystems of lesser order. In the case when the coefficient ma- 
trix is symmetric Toeplitz, all the subsystems which occur along 
it's principal diagonal are equal and this fact greatly simplifies 
the establishment of a recursive solution. The LR approach has 
recently been extended to nonsymmetric Toeplitz matrices by 
G. Rybicki (cited in [7]) and as far as we are aware constitutes 
the only extension of the LR approach to matrices other than of 
symmetric Toeplitz form. When the coefficient matrix is no 
longer Toeplitz, on the other hand, subsystems of equal order 
are not necessarily the same and the LR cannot be applied in 
it's usual form. The insertion of the linear relationship which 
exists between solutions of lesser order directly into the quad- 
ratic form associated with the normal equations, NE, allows us 
to establish a form for the solution in terms of a single coeffi- 
cient which must be determined. In this manner we obtain a 
compact (2  x 2 )  form to represent the NE of arbitrary order. 
This compact representation and the associated expressions are 
the key to the development of recursive algorithms. Using the 
Levinson principle for all the minor subsystems we develop a 
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Levinson-type approach for the solution of systems of equation 
which do not necessarily possess the Toeplitz structure. In 
keeping with the LR, the solution is obtained without need of 
the explicit knowledge of the inverse of the coefficient matrix. 
The methodology for the solution of NE developed in this paper 
is applied to the solution of NE with a coefficient matrix which 
possesses various symmetries. Specifically, we first consider the 
solution of the NE when the coefficient matrix is the doubly 
symmetric non-Toeplitz covariance matrix which is the case in 
the spectral estimation approach suggested in [8]. Next we de- 
velop an efficient algorithm for the solution of extended Yule- 
Walker equations, a nonsymmetric Toeplitz form. Finally, we 
apply our approach to illustrate the solution of the well-known 
prediction error problem where the matrix is symmetric Toe- 
plitz. Appendix C gives Fortran listings of the subroutines de- 
scribed in this paper. 

11. THEORY 
A .  Compact Form and Recursive Expressions 

pressed by 
We consider the set of overdetermined linear equations ex- 

Xl,nh, = d (1)  

where is any m x n, m 2 n,  nonsingular matrix and d is 
the known ( m  X 1 ) data vector. The required solution is the ( n  
x 1)  vector h, = (hI ," ,  h,,,,  . . * , h , , n ) T .  The subscript n 
designates the number of columns of X which have been used 
in the solution. In general we define X, . ,  = (x,, x,+ I ,  * * . , x!). 

The expression for the quadratic form, I Q h , , ,  associated with 
the least squares solution which is based on the j columns of 
the matrix X I , , , j  5 m, is 

In keeping with the spirit of the Wiener estimation problem 
which makes use of the LR, we designate ( 1  - 'h,?) as the 
modeling error operator (MEO) of orderj, and, for the sake of 
simplicity, we let -'h, = 'h,. The superscript "1" is required 
to differentiate between solutions of minor subsystems as ex- 
plained below. For the complete solution we will have h, = 
Ih,. In all that follows, the subscript h refers to quantities as- 
sociated with the forward solution and the subscript f refers to 
quantities associated with the backward solution. 

Minimizing (2) and grouping the NE into an expression for 
the minimum IQ,,,, = 'E,, ,  we obtain the NE in expanded form 
as 

where Oj = (01 ,  . * - , 0,)'. Let us assume knowledge of the 
forward and backward MEO's of order j - 1, ( 1 ' h f -  ) and 
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( yf- I 1 ), which are the solutions to the two subsystems of (3) 
expressed by 

and 

Applying Levinson's basic principle, where we wish to em- 
phasize that the coefficient matrix is no longer necessarily Toe- 
plitz, we establish the linear relationship between the MEO's 
of order j - 1 and j ,  as follows: 

Substituting (6) in (2) and using (4) and (5) we obtain the sim- 
plified form for IQh,/ as a function of 'hJ, written as 

The coefficient I in (7) is obtained using 

or 

Minimizing IQh, in (7) with respect to 'hj, and expanding, we 
obtain [9] 

This simplified representation of (2) is the heart of all of the 
algorithms (for example, [2]-[6]) which use Levinson's basic 
principle to construct the solution of orderj  based on the solu- 
tion of orderj  - 1 .  From (9) we immediately obtain 

= I E h , J - l  + l h J , J I A h , J - l '  (11) 
When the coefficient matrix is equivalent to the symmetric Toe- 
plitz autocorrelation matrix, the above expressions become 
equal to those resulting from the Levinson recursion [lo]. 

Using the same principle, only now in order to obtain the 
backward M E 0  ( 'ff 1 ), we write the relationship as follows: 

where 
(14) expressed below: 

and ' h j - ]  are obtained as the solutions of (13) and 

367 

In a manner analogous to obtaining (9) we obtain a form for the 
backward ME0 and we can immediately obtain expressions for 
'A, and 'Ef, analogous to expressions (10) and (1 1). We pro- 
ceed recursively to obtain the full solution Ih,. 

B. Algorithm for  Solving the NE 

We present in this section details of the algorithm which 
solves the NE described by (3). Using the basic methodology 
of decomposing our system of equations into subsystems of 
lesser order and coupled with the compact form for the forward 
and backward MEO's, we can establish a recursive Levinson- 
type procedure for the solution. In order to illustrate the general 
recursion we begin with a system of order 2 as illustrated be- 
low. We designate dTd by a, elements of the vector dTX,,  by 
bk and elements of the matrix X:,X,. by s,,, 4. Consequently 

Assuming knowledge of ( 1  ' h I ,  and ( yl, I 1 )  which are the 
solutions of the forward and backward subsystems expressed by 

and 

we obtain ( 1  Ih2, I lh2 ,2 )  from 

[ ; h 2 . 1 ]  = [ + ....[ 
h2,2 

where IhZ, is determined using the expression 

We can now express the solution for order 3 as 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991 368 

- - 
a bl b2 

b l  s l , I  s l , 2  s1,3 

b2 s2,1 s2,2 s2,3 s2,4 

s3,1 s3,2 s3,3 s3,4 s3,5 

s4,2 s4,3 s4,4 s4,5 

- ss.3 ss.4 s5,5 

Once we know the forward ME0 of order 2 we need obtain the 
backward ME0 ( lf2,2 lf2, I 1 ) which solves the system below: 

S2,I s2 .2  s2 .3  

s3,1 s3,2 s3,3 

The same procedure used to obtain the forward ME0 of order 
2 may now be employed such that the reverse ME0 ( 'j2,2 'j2, 
1 )  is determined as 

where 

where ( 1 'h,, I ) and ('fi, 
MEO's corresponding to the subsystem equations 

1 ) are the forward and backward 

and 

Knowing the forward and backward MEO's of order 2, ( 1  
1h2,1 1h2,2)and(!f2,2 !f2,1 l ) ,  wedetermineIh,,,using(lO)and 
obtain ( 1 Ih;) using (6) fo r j  = 3. The schematic representation 
for the coefficients khJ, and %, is shown below: 

Following this development for order 4 we obtain schematic 
representation for the coefficients 'hJ, and x., which follow the 
structure: 

For order 5 we have 

The large arrow in the diagram above indicates the direction of 
growth of the structure. 

The coefficients 'h,, and "fi, I are related to the solutions of 
the forward and backward systems of order 2 which occur along 
the diagonal of the expanded form of the NE: 

s2 ,I  s2,2 s 2 , 3  

We note that equal subsystems imply that the solutions are 
necessarily equal. The number of multiplications and divisions 
Nmd, which are additionally required to increase the order j to j 
+ 1 is of orderj'. The total number of operations for a system 
of order n is Nmd = n3 - 2n2 + 4n. 

C. The Inverse and the Determinant of the Coeficient Matrix 

We have presented a method of solving the NE which, in 
keeping with the Levinson principle, does not require the 
knowledge of either the inverse or of the determinant of the 
coefficient matrix which we will denote by Sf,". In this section 
we would like to show that the inverse of the coefficient matrix 
can be expressed as a function of the reverse MEO's ( 7; 1 ) j 
= 1, * , n - 1. The procedure which follows is an extension 
of the approach presented by Burg [3] for the case where the 
coefficient matrix is symmetric Toeplitz. Given the reverse 
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MEO's we can write 

The above equations may be combined into a matrix form as 
follows: 

'Er. 1 

Letting FT represent the matrix which premultiplies S,,  and 
letting E, represent the diagonal matrix, we obtain 

FTSf.,F, = En (15) 
and consequently 

S,, = [FT]-IE, , [F, ] - I .  

Taking the inverse in (16) 

[S f , , ] - '  = F,[E,]-IFz.  

Considering the fact that det [ F,] = 1 we may obtain the de- 
terminant from (16) as 

n -  I 

det [ S , , ]  = det [ E n ]  = 'Er,J. (17) J = o  

Appendix A presents a numerical example of the procedure out- 
lined above for a ( 3  X 3 ) Symmetric non-Toeplitz matrix. 

111. APPLICATIONS 

In this section we illustrate our general LR approach by con- 
sidering three examples in which the coefficient matrix exhibits 
different structures. 

A.  Normal Equations with Doubly Symmetric Non-Toeplitz 
Covariance Matrices 

The general expressions which we have derived take on a 
particularly simple form when the coefficient matrix possesses 

a doubly symmetric structure. In this section we explore the 
solution of NE when the matrix is the doubly symmetric non- 
Toeplitz covariance matrix which arises in the forward and 
backward least squares method of spectral analysis proposed in 
[81. 

We represent the expanded form of the NE of orderj  as 
-l 

where 

r 1 

l o  

is the reverse identity matrix of orderj  - 1 and Sf, i - ,  are dou- 
bly symmetric non-Toeplitz covariances matrices-. 

doubly symmetric systems results in 
The relationship between solutions of order j and j 1 for 

and the compact form of the NE becomes 

with 

Following the procedure presented earlier we may determine 
solutions for each subsystem of (18). The schematic represen- 
tation for the coefficients %,, and "f, for order 5 is shown be- 
low: 
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We remark that the axial symmetry in the diagram is the result 
of the double symmetry of the expanded form of the NE. 

B. Nonsymmetric Toeplitz Systems 

Extended Yule-Walker equations, where the coefficient ma- 
trix is Toeplitz but not symmetric, are of central importance in 
time series modeling [ 1 11. Specifically, most algorithms for de- 
termining autoregressive-moving-average (ARMA) models rely 
on the fact that the AR and MA coefficients decouple depending 
on the order of the MA component. This decoupling is ex- 
pressed by the nonsymmetric Toeplitz covariance matrix. The 
LR approach was extended to the solution of equations contain- 
ing nonsymmetric Toeplitz matrices by G. Rybicki. His devel- 
opment and algorithm are presented in [7]. Our approach and 
algorithm are quite different. 

Consider the set of nonsymmetric Toeplitz linear equations 

where we let yn = ( y I ,  y 2 ,  . . . , y,) be any known vector and 
where k is not necessarily equal to 0. We may rewrite (23) as 
follows: 

In this case we can abandon the superscript since subsystems of 
R,,, j +  I are all equal. The Levinson relation between the forward 
and backward solutions of subsystems of order j + I is 

Assuming known the solution of subsystems of order j ,  the 
compact form for (24) may be written as 

where 

and h, + I , I  + I is given by 

- h,+l , ,+l  - 
Eb, i  

Since we need the backward solutions we initially set up the 
recursion to solve the forward and backward systems repre- 

sented below: 

The Levinson relations for forward and backward solutions of 
order j are 

Assuming that the M E 0  of order j - 1 are known, we obtain 
the cpmpact representation for (25) 

where 

& , j -  I = [ r k + j  r k + j - l  

Ab,,- ,  = [rk--l  . . . r k - j + l  

It turns out that for this specific 
(Appendix B) and the coefficients 
using 

structure E,.j = Eb, ,  = E, 
aj, , and b,, are calculated 

Ab. i -  I 

The schematic representation for the coefficients a,,,, b,,,, and 
h,,, for order 5 is presented below: 
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We remark that the simplification is due to the fact that sub- 
systems of the same order are equal. In the case when the matrix 

+ I is in fact symmetric, as occurs for the Wiener shaping 
filter, aJ, = b,, I and the algorithm is further simplified. 

Below we present the full recursion to solve R,h, = y,. A 
Fortran listing of the subroutine is given in Appendix C. 
Initialization: 

EO = rk ,  Aa.0 = rk+l, &,o = r k - l >  Ah,O = -YI 

D O j  = 1, n 

E, = + a j , J A b , j - l  = Ej-I  + b j , jAa , j - l  

J 

& , j  = I k + j + l  + a j , I r k + j - i + l  
i =  I 

i 

Ah, ]  = -Yj+I  + h ~ , l r k + ~ - , + l  
I =  I 

ENDDO. 
3n2 + n multiplichtions and divisions are required. If it is 

required to solve (25)  for the vector ( 1 a T ,  the above algorithm 
is simplified somewhat requiring only 2n2 + n operations. 

C.  The Unit Delay Prediction Error Operator 
In this particularly well-known case, the coefficient matrix is 

symmetric Toeplitz and we wish to very briefly illustrate how 
the general LR solution simplifies. 

Defining ( 1 g f )  = ( 1, g,. I ,  . * we may write (1) as , g,, 
- -  

where ex, , is the vector of prediction errors and 

is the regressor matrix corresponding to the input trace x, of 
length m. The corresponding NE (equivalent to (3) in this case), 
where the superscript is not required since minor subsystems 
are all equal, are 

where 
m -  I 

r, = c x:  is the energy of x, 
f =o 

rm, = ( r l ,  . . . , r,) is the autocorrelation of X, 

m -  I 

r k  = c x,x,-k 
, = O  

Rg,j  = X T , l X l , j  and is symmetric Toeplitz. 

The equivalent compact form of the expanded NE is 

Since the Toeplitz symmetry implies that all minor subsystems 
are equal, we may immediately obtain the Levinson recursive 
relationships. From (28) we obtain gj, , as 

where 

We now simply update the error energy by 

Eg.j = ~ g , j - I ( l  - g ; , j )  ( 30 )  

and we compute the full solution in the traditional manner 

We remark at this stage that adding or subtracting  ex^ to 
Ax, - allows us to write 

A8,j-l f Ex.j-1 = (ro. r l ,  . * * , T I )  

(32)  

The symmetry, in the case of addition, and the antisymmetry, 
in the case of subtraction, of the term in brackets, may be uti- 
lized to reduce the number of multiplications necessary to ob- 
tain Ax, - I .  This is the basic idea behind the split-Levinson 
algorithm [ 121. The schematic representation for the reflection 
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coefficients for order 5 is 

a l .  I 

a1.1 a2,2 a3.3 

a1,1 a 2 . 2  a3.3 a4.4 a 5 . 5 .  

a1,1 a 2 . 2  a3.3 a4.4 

al,l a 2 , 2  a3.3 

al,I a 2 . 2  

al, I 

In this particular case, due to the symmetric Toeplitz structure 
of the coefficient matrix, we obtain the simplest possible form 
in the diagramatic representation of the recursion. 

IV. DISCUSSION 

earth, the extension of this approach to other than symmetric 
Toeplitz systems may find application in the modeling of phys- 
ical problems. 

APPENDIX A 

In this Appendix we present a small example illustrating the 
steps in the algorithm and the computation of the determinant 
and the inverse. 

Consider the expanded NE presented below: 

The corresponding coefficient diagram and the expressions 
for the coefficients 3, and khj,,, becomes 

1 
3 

2f - -- 
1 . 1  - 

1 .  2h. , = -- 

lh3.3 = - 
[4 2 61 h2.2  

We have presented a Levinson-type approach to the solution 
of NE where the coefficient matrix need not have the Toeplitz 
structure. The methodology which has been presented reduces 
to LR when the coefficient matrix is symmetric Toeplitz. In the 
case where the matrix is partially Toeplitz, the approach makes 
use of LR inasmuch as the partially Toeplitz structure permits. 

Another interesting aspect of the method is that, in a manner 
similar to the growth of crystals, the structure formed by the 
series of the coefficients hhJ, J ,  x ,  augments with the addition 
of new coefficients to the already existing structure. This prop- 
erty implies that the computation of the solution for order j + 
1 is not a separate problem, requiring only j 2  additional oper- 
ations to the solution for order j .  This interesting property is of 
great practical value when we wish to solve a system of NE of 
the same order n which contains a common nucleus. In the case 
when the only difference between them is the last line and col- 
umn, once that one of the NE is resolved, the remainder may 
be resolved using approximately n2 operations. For all minor 
subsystems the values of kEh, J -  I and kEf,J I ,  present in the 
denominator of the coefficients "f,, and khJ, supply informa- 
tion about the linear independence of the traces and conse- 
quently allow a measure of the relative importance of each 
vector in the modeling. 

The presence of a great number of zeros in the coefficient 
matrix may also be utilized in our approach by omitting unnec- 
essary multiply and add operations. As an example, considering 
tridiagonal matrices, only subsystems of order 2 along the prin- 
cipal diagonal possess nonzero elements and only a single mul- 

2 
Ihl,l = 7 

[ :2.1] = [i/7] - [:/7] = [ 0.0296] 

tiply and add operation is required for the computation of the 
quantities kAh, - I ,  kAf, - I ,  kEh, - I and 'Ef. - I .  

Finally we wish to point out that the use of the expressions 
and 'Af . , -  I in the algorithm which we have de- 

scribed makes the method also applicable to the solution of non- 
symmetric systems. In this case S,  corresponds to the nonsym- 

hand side vector of the equations which are to be solved and h, 

Inasmuch as LR is not only an important time saving algo- 
rithm but also reflects, for example, the physical aspect of the 
problem of the reflection of acoustic energy in a plane layered 

where 

1 
for 

-0.072 
metric coefficient matrix, the vector b, corresponds to the right- h 2 . 2  

= -h, will become the solution vector. -0.24 
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~ 

313 

and 

[ h 3 . 2  = [ 
h 3 , 3  

1 0 

43: [-.- 
-0.072 -0.32 

0 1 .  

The determinant and the inverse of the coefficient matrix de- 
pend on the reverse MEO's and on the quantities 'Ef, 

'Ef.0 = 7 

lEf , l  = [ l  18]/:/7] = 

The determinant is now obtained as 

and the matrix inverse as 

1 1/7 -0.24 

[Sf,,l-1 = [: -y)I] 
0 

. [ :/7 1 

-0.24 -0.32 

0 7/125 0 

0 0 5/18 

"1 1 

0.013333 0.084444 -0.088888 

0.159999 0.013333 -0.066666 

-0.066666 -0.088888 0.277777 

APPENDIX B 

We prove in this Appendix that E,, = Eb, in the LR for 
nonsymmetric Toeplitz matrices. 

Given the system for order 1 

we obtain 
rk+ I rk -  I 

> b1.1 = -- a I , I  = -- 
rk . rk 

and 
Ea.1 = r k  + al,lrk-l, Eb.l = rk + bl,lrk+l. ( B . l )  

Substituting the expressions for a l .  I and b l ,  I in (B. 1) we im- 
mediately verify that E,, I = Eb, I .  Considering now the second- 
order system 

or in terms of the compact representation 

we obtain 

and 

Ea,2 = E , , I  + a2,2Ab,Ir  Eb,2 = Ea,I + b2 .2Aa ,1 .  (B.2) 

In an analogous manner, substituting the expressions for u2, 
and b2,2 in (B.2) we can verify that Ea,2 = 
procedure it is clear that E,, = Eb,J for all j .  

Following this 

APPENDIX C 
This Appendix presents a Fortran listing of the algorithms 

which are discussed in the text. 

SUBROUTINE SOLNE (n, Ch, h,  Eh, Ha) 
C 
C 

C 

C 
C Input parameters: 
C 
C 

Purpose: Least squares solution of system of equations 

Method: Levinson extension for symmetric non-Toeplitz 
normal equations 

SOLNE requires HFILT and FFILT 

n - Number of coefficients 
Ch - Expanded coefficient matrix 

X1,nhn = d 

C Output parameters: 
C 
C Eh - Modeling energy 
C Work space: 
C Ha(n+ l ,n+ l )  
C 

h = (h( l ) ,  . * . , h(n)) - Solution vector 

DIMENSION h( l ) ,  Ch(n + 1 ,  l ) ,  Ha(n + 1 ,  1) 
D O l k = l , n  
DO 2 i = 2, k - 1  

DO 3 j  = 2, k 
2 CALL HFILT(n, k ,  k - i ,  i ,  Ch, Ha) 
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3 
1 

4 

1 

2 

1 

2 

C 
C 

C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

CALLFFILT(n+l,k+2, n+2, n , j -1 ,k - j+ l ,  Ch, Ha) 
CALL HFILT(n, k + l ,  k ,  1, Ch, Ha) 

Eh = Ch(1, 1) 

h( i )  = -Ha(i, n) 
Eh = Eh - h(i)*Ch(l, i+ 1) 

D 0 4 i =  l , n  

RETURN 
END. 

SUBROUTINE HFILT(n, k l ,  i ,  j ,  Ch, Ha) 
DIMENSION Ch(n+l,  l ) ,  Ha@+ 1, 1) 

SN = Ch(j,  kl)  
SD = Ch(k1, k l )  

SN = SN + Ch(j- l+k,  kl)*Ha(k-1,i-1) 
SD = SD + Ch( j - l+k ,  kl)*Ha(n-i+k, n - i + l )  
Ha(i, i )  = -SN/SD 

Ha(k, i )  = Ha(k, i-1) + Ha(i, i)*Ha(n-i+l+k, 
n - i +  1) 

DO 1 k = 2, i 

DO 2 k = 1, i-1 

RETURN 
END. 

SUBROUTINE FFILT(m, n2, n3, n ,  i , j ,  Ch, Ha) 
DIMENSION Ch(m, l ) ,  Ha(m, 1) 

SN = C h ( j + l , j + l + i )  
SD = C h ( j + l ,  j + l )  

SN = SN + C h ( j + l ,  n2-k)*Ha(n3-k, n - i+ l )  
SD = SD + Ch(j+l, j+k)*Ha(k-1,  i-1) 
Ha(n-i+l,  n - i )  = -SN/SD 

Ha(rn-k, n- i )  = Ha@-k, n - i+ l )  + Ha(n-i+1, 
n-i)*Ha(i-k, i -  1) 

DO 1 k = 2, i 

D 0 2 k =  1 , i - 1  

RETURN 
END. 

SUBROUTINE SOLCOV(n, Ca, a, Ea, Ha) 

Purpose: Least squares solution of forward and backward 

Method: Levinson extension for doubly symmetric non- 

SOLCOV requires FFILT and HFILT 
Input parameters: 
n - Number of coefficients 
Ca - Expanded coefficient matrix 

P E 0  

Toeplitz normal equations 

Output parameters: 
a = (1, a( l), * . * , a(n)) - Prediction error operator 
Ea - Forward and backward modeling energy 
Work space: 
Ha(n + 1, n + 1) 

C 
DIMENSION a( l ) ,  Ca(n + 1, l ) ,  Ha(n + 1, 1) 

D O l k = l , m l  
DO 2 i = 2, k-1 

D 0 3 j  = 2 , k  

ml = INT((n+1)/2) 

2 

3 

CALL HFILT(n, k,  k-i, i ,  Ca, Ha) 

CALLFFILT(n+l. k + 2 .  n + 2 .  n. i-1. k- i+l .  Ca. Ha) 

1 CALL HFILT(n, k +  1, k, 1, Ca, Ha) 
D O 4 k =  1 ,n -ml  
DO 5 i = 1, n-ml-k 

DO 6 i = 1, 2*ml-n-l+2*k 
Ha(n+ 1 - i ,  2*(n-k-ml)+ 1) 
= Ha(i, 2*ml-n-l+2*k) 

5 

6 

CALL HFILT(n, ml +k,  rnl +k-  1 -i, i+ 1, Ca, Ha) 

DO 7 j  = 1, n-ml-k 
7 

4 

CALL FFILT(n+l, rn1+2+k, n+2,  n ,  
2*ml -n- 1 +2*k+j, n-ml - k +  1 - j ,  Ca, Ha) 
CALL HFILT(n, m l + k + l ,  ml+k,  1, Ca, Ha) 

a(1) = 1 
Ea = Ca(1,l) 

Ea = Ea + a(i+l)*Ca(l ,  i + l )  
D O 8 i =  l , n  

RETURN 
END. 

SUBROUTINE EXTYW(n, r ,  y. a,  6, h )  

8 

C 
C Purpose: Resolve system of non-symmetric Toeplitz 

equations 

C Input parameters: 
C 
C 

C 
C Output parameters: 
C h = (h(l), . , h(n))  - solution vector 
C a forward M E 0  
C b backward M E 0  
C 

n - number of coefficients 
r - ( r ( l ) ,  . . * , r (2n-  1)) autocorrelation vector with 
2n - 1 elements 
y - right-hand side of system of equations 

DIMENSION r ( l ) ,  y(l), a( l ) ,  b(l), h(1) 
DELTa = r (n  + 1) 
DELTb = r ( n -  1) 

E = r ( n )  

a ( j )  = -DELTa/E 

DELTh = -y(l) 

DO l j  = 1, n 

b ( j )  = -DELTb/E 
h ( j )  = -DELTh/E 
E = E + a(j)*DELTb 

j i  = j - i +  1 
h(i- 1) = h(i- 1) + h ( j ) * b ( j i )  
SAVE = a(i-1) 
a(i-1) = a(i-1) + a( j )*b(j i )  
b( j i )  = b(j i )  + b(j)*SAVE 

, IF(j.EQ. n)RETURN 
DELTa = r ( n + j +  1) 
DELTb = r ( n - j -  1) 

D 0 2 i = 2 , j  

2 

DELTh = - y ( j + l )  
DO 3 i = 1 , j  

j l  = j + l - i  
DELTa = DELTa + a(i)*r(n+jl)  
DELTb = DELTb + b(i)*r(n-il) 
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1 CONTINUE 

RETURN 
END. 

DELTh = DELTh + h ( i ) * r ( n + j l )  [lo] M. J .  Porsani and W.  J.  Vetter, “An optimal formulation for 
(Levinson) recursive design of L-lagged minimum energy fil- 
ters,” in Proc. 54th Ann. Int. Soc. Exploration Geophys. (SEG) 
Meeting (Atlanta, GA), 1984, pp. 604-606. 

11 11 B. Friedlander and B. Porat, “The modified Yule-Walker method 
of spectral estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 

[I21 P. Delsarte and Y. V. Genin, “The split Levinson algorithm,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, 
pp. 470-478, June 1986. 
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