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Critical concentration for the doping-induced metal-nonmetal transition
in cubic and hexagonal GaN
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C. Persson
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The critical concentration for the metal-nonmetal transition has been calculatedtyfpe and

p-type GaN. Both cubic and hexagonal structures of GaN have been considered. Three different
computational methods have been utilized: the first is the original Mott model, the second is an
extended Mott—Hubbard model, and the third method is based on total energy of the metallic and
the nonmetallic phases. All three methods show a similar value of the critical concentration, about
10*® and 16° cm 3 for n-type andp-type doped materials, respectively. Z02 American
Institute of Physics.[DOI: 10.1063/1.1499202

I. INTRODUCTION knowledge of the electronic structure of the intrinsic materi-

. . . Is is thus required. In the present work, the electroni n
The GaN materials are wide-band-gap semlconductorgS S thus required © prese ork, the electronic band

with low compressibility, good thermal stability, and with Structure has been determined from a relativistic, full-
chemical and radiation i,nertnek'%.Comprehensi\;e investi- potential linearized augmented plane wave method, using the

. . local density approximation in the density functional theory.
gations of the wurtzitdWZ) structures have led to commer- nsity app y . Y
. . . . ) - . Further information about the band structure calculation can
cial optoelectronic devices like GaN-based light-emitting di-

) . e ° . be found in Refs. 8 and 9. Throughout this article,
odes and detectors working in the visible—ultraviolet . .
1-3 centimeter-gram-second units have been employed. The

region,”” as well as metal-semiconductor field-effect . X
. . three models below are described fetype materials, but
transistors’. Due to the recent progress in crystal growth, one

L . h rr nding expression materials ar il
can now also produce thin films of zinc-blengB) GaN>® the correspo d g expressions flatype aterials are easily
, . o found by treating the holes as particles and the electrons as
which opens up further technological applications. In order_ . ~ - 0
. : Lo antiparticles-
to design GaN-based devices properly, it is important to
know at which dopant concentration the material transforms
from a semiconductor into a metallic state, the so-called
metal-nonmeta{MNM) transition or alternatively the Mott A. Model no. 1: Original Mott model
transition’ - i,
) ) ) ) In the original Mott model, the MNM transition occurs
This article describes three different methods for calcu- g

. - . : A5t the critical impurity concentratioN, given by
lating the critical concentration at which the MNM transition purity cd y

occurs. The first two models are based on the probability for 0.253

the donors to be ionize@lescribing the transitiognwhereas < ¥ @
the third model is based on a comparison between the total . _ ) )

energy before and after the MNM transiti¢and does thus Here,ay is the effective Bohr radius. The effective Bohr

not describe the actual transitioWe present the calculated "adius can be calculated from the ionization enegyof a

critical concentratiorN, for n-type andp-type ZB-GaN as Single-donor electron

well asn-type andp-type WZ-GaN. Although, we utilize two e2

essentially different types of theories, all three models give aj= , 2

. e L . 2koEp

fairly similar results. Furthermore, it is shown thii, is

about 1.10'®® cm 3 for n-type GaN and above 7.0 since the donor electron wave function is associated with

X 10*° cm™2 for p-type GaN. only one conduction-band maximum, i.e., there are no many-
valley effects. In Eq(2), g is the static limit of the fre-
quency dependence screening of the host matérial:

1. COMPUTATIONAL METHODS

i N 1 1 ( Ko— Kx) w0 1
All three models are derived within the zero-temperature =—— .
, . oo k(w) Ky 2KoKo wtwp—id
formalism. The effective-mass approximation is used, and
1
a . - . . - — . ’ (3)
Electronic mail: ferreira@fis.ufba.br w—wotid
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where é is an infinitesimal, positive number ang g is the
frequency of the longitudinal opticélLO) phonons. We have
employed experimental valuefor the lattice dielectric func-
tion of WZ-GaN: w, =92 meV, «;,=9.98, andx,.=5.60.
Calculations of the phonon frequencies by Kétnal1* are in

A. Ferreira da Silva and C. Persson 2551

Equations(5) to (8) show that the values dfi and the
donor impurity concentratiohly are both related to the ion-
ization energyEp. Using these equations, we have calcu-
lated the values of the critical concentratiNg. The transi-
tion is obtained by Eq4).

close agreement with the measured val®s°The anisot-
ropy of the dielectrig function of Fhe Wz sFructures has been- vodel no. 3: Total energy approach
shown to be small in the materials considered Kéreand
we, therefore, use isotropic lattice dielectric functions. More-
over, we assume that the ZB structures have the same lattidigls and Berggrer where the total energlfy’ of the local-
dielectric function as the corresponding WZ structures. Thigzed donor electrons in the nonmetallic phase is determined
assumption is supported by calculations of the optical propand compared with the total energy), of the electron gas in
erties of WZ and ZB lll-nitrides in Refs. 20-23, and by the metallic phase. For low donor concentrations, the total
spectroscopic ellipsometry measurements of Logothetidi§nergy of the localized electrons is lower than the corre-
et all® sponding energy of the electron gas, and thus the non-
metallic phase is favored. For high donor concentrations the
situation is the reversed, unless the ionization energy is not
too large. The critical concentration for the transition can be
estimated as the concentration at which the total energies of
Through the use of a Mott—Hubbard tight-binding the two phases are equal, i.Ef'=Ef;.
Hamiltonian, the impurity density of states associated with it ~ The total energy for the nonmetallic phase is directly
present two subbands that overlap with increasing concentraelated to the dielectric function of the localized electrons
tion. This would occur at an impurity concentration for associated with the donors. Leroux Hugon and Gh¥zali
which?4-26 have derived the dielectric function of the donor electrons as
AW/U=1.15, @ a function 'of impurity concentration, where a hyd.roge'znllc
wave function was presumed. When the concentration is in-
whereAW is the unperturbed impurity bandwidth in units of creased, the donor electrons screen the Coulomb potential of
Ep, andU is the intraimpurity Coulomb interaction energy, the impurities more strongly, whereby the dielectric function
also known as the Hubbatd; given by U=0.96 E;.?"?® is increased. The change in the dielectric function will
Such a scenario is well known as the Mott—Hubbard picturenodify the ionization energy of the electrons, and thereby
for the MNM transition. AW is related to the hopping inte- also the total energy. The total ener@gxpressed in energy
gral energyT, between adjacent sitésandj, as®?’ per electronsof the donor electrons in the nonmetallic phase
is obtained as3!

The third model follows a method expounded by Serne-

B. Model no. 2: Mott—Hubbard description

AW=2(T)|, ) ,
*
where(T) is defined as the average hopping ené&tgy ENM_ g 1 (0.214y)
tot D 2 3ND
<T>:J T(R)P(R)dR. (6) N 312
X 1—(1——'33) ) 9)
P(R) describes the distribution of the donors. Moreover, (0.214})

T(R) andU are given by The total energy of the electron gas in the metallic phase

has been calculated using a many-particle Green’s function
formalism. The total energy can be divided into the kinetic
energyE,;,, the exchange—correlation energy,, and the
energy from the electron—ion interacti&n,, caused by elec-
tron relaxation near the donor ions. Since lattice vibrations
are not taken into account in the intrinsic band structure, one
also has to included the polaron eneigy, describing the

T(R>=f (N Hyg(r =Ry)dr,

2

e
U:f |¢1(r1)|2|l/f2(|'2)|2K0|T

=1y

dr,dr,. (7)

I:|1 is the one-particle Hamiltonian in the effective-mass

theory, including the kinetic energy operator and the COUjyieraction between the electrons and the optical phonons.
lomb interaction of the positively charged donor ion and therpa total energy is thu€M =E,, +E, .+ E;o + E
tot in Xc ion p-

electron.;(r—R;) is the simple hydrogenic wave function The kinetic energy(per electroh of a noninteracting
for the donor ground state at the rar_1dom|y_ Iocate(_j 5te _ electron gas is given by

Moreover, we have used a randomlike Poisson distribution

P(R) of the donors with the probability that the nearest do- 2 D j dk
kin™ 5 5 _\3
n-j

0 N
nor neighbor lies at a distané(in units of a,): (2m)3 Ej (k) m; (), (10

_3R? R2\ 1 wheren= Nj, is the electron concentration, angi(k) is one

P(R)= R_% 1+ R_% » where (zero if the k state in thg th band is occupiethot occupied

s (8) by an electron. The summation runs over Xaltonduction

_(47TND> bands which are populated by the electron @as-1 for
b~ 3 ' n-type GaN.
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The exchange and the correlation contributions to the A dg (> do [ IN(&(q, )
total energy are directly related to tiiestparticle—particle Eye=— 3 — =
dielectric function&(q,w), describing the response of the 2nJ (2m)° J—=2mi | 1—f(q)/\
electron gas to perturbations in the electron distributfoi?.

We have calculated the dielectric function according to the _ v(q) Ej dk
random phase approximation with an average local-field cor- k(w) i J (2m)2
rection of Hubbard?313334

o _ . y 7i(K)

€(q,0)=1+[1-(f(q)/N)]a"(q, ) ] w+[E?(k+Q)—E?(k)]/ﬁ_l5

1« EY (1

f0=52 s e 7,(K)

o [E%k+q)—EXK) /A +is

] : (14

WhereE(F’ is the Fermi energy of the electron gas. The polar-

izability a°(q,») is defined a&**~° where the second term is the electrostatic self-interaction en-
—2v(q) dk do’ o ergy of the electrons.
a%(q,w)= Fr(@) (277)3j o= 2 Gj(k,0") The relaxation of the electrons around the donor ions is
o ! taken into account through the electron—ion interaction. This
% G?(k+ O +o), (12)  is mainly a correlation contribution, describing the difference

o . _ in the electron density between a system with uniform dis-
neglecting intervalley scatterings;(k,») is the Green's tripution of the donor—ion charges and a system with point-

function for noninteracting particles: like ions. In the second-order perturbation theory the
. . . 1,32
ko) 7, (K) . 1- (k) 13 electron—ion energy is given by
P w—E)(/fi—i8 o—Ej(K)/fi+is “Np [ dg v(q) «%q.0)
Eion= (15

The exchange—correlation energy of an electron gds’is? 2n ) (2m)® k, €0’

TABLE I. The critical concentratiomN, for the MNM transition for differenin-type andp-type GaN materials with different donoEf) or acceptor E,)
ionization energies. Three calculations models have been employed: the Mott model, an extended Mott—Hubbard model, and a total energy model based on
a many-particle Green’s function formalism.

N, cm™3
Epa Total
Dopant (meV) Mott Mott—Hubbard energy Ref. 37
n-type
ZB-GaN 250 6.5% 107 5.3x 10" 4.9x 10"
3¢ 1.4x10'® 1.1x 10 1.4x10'8
WZ-GaN Si 36" 1.1x 108 9.1x 10Y 7.0x 10V ~1.0x10'
0 33 1.5x 10'® 1.2x 108 1.0x 10'8
0 34N 1.6x10'® 1.3x10'® 1.2x 108
p-type
ZB-GaN 130 9.1x 10" 7.4x 10 2.8x 10
166 1.9 10%° 1.5 10%° 6.8x 10
C 218 4.1x 1070 3.3x 107 1.7x10%°
Mg 2300k 5.0 10%° 4.1x 10%° 2.2x 10%°
WZ-GaN Si 208 3.5x10%° 2.8x10%° 1.8 10%°
Mg 209 3.8x10%° 3.1x10%° 2.1x107°
o) 23¢™ 5.0 10%° 4.1x 107° 3.0x 107
Mg 250" 6.4x 10%° 5.2x 107 4.1x10%°
aSee Ref. 38.
bSee Ref. 39.
‘See Ref. 40.
dSee Ref. 41.
€See Ref. 42.
See Ref. 43.
9See Ref. 44.
"See Ref. 45.
iSee Ref. 46.
ISee Ref. 47.
kSee Ref. 48.
'See Ref. 49.
MSee Ref. 50.
"See Ref. 1.
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presuming that the donors are randomly distributed and have
infinitely large masses.

Finally, in ionic materials there is also an additional con-
tribution from the electron optical phonon interactitri-—>2

h dq wdw(u(q) v(q))Z dk
P"2n (2w)3f_wﬁ %) (2m)3

X2

J

Kk(w) Koo

7;i(K)
w+[E)(k+a)—E)(K) /h—id

B 7;(K)
w—[E)(k+a)—E)(K)]/fi+id

e’ [ 2my ( 1 1
* 2 w0\ ke Ko f
This polaron energy is independent of impurity concentra- 20F p-type
tion, and can be seen as a modification of the electrostatic wz-GaN E,,
self-interaction in the intrinsic crystal.

These equations are fortype materials with parabolic
conduction-band minimum. Corresponding expressions hold
for p-type doped materials. However, since the uppermost
valence bands are very nonparabolic in the vicinity of khe
point, we have used dopant dependent effective hole masses
in the case ofp-type materials. The masses are chosen in
such way that the Fermi energy for the parabolic bands al-
ways coincides with the Fermi energy obtained by using the
numerical energy dispersion from a band structure calcula- " . A
tion. This approximation and the used effective hole masses 10”7 10" 10" 10®
are rigorously described in Refs. 35 and 36. ®) Donor concentration (cm)

EnY(Ep=25meV)

Energy per particle (meV)

a 5. bk

1027 1018 1019

(16) (a) Donor concentration (cm )

1 020

W o-

| Epy (Eg;=30meV)

Energy per particle (neV)

FIG. 1. Total energies per particle of the metaffi, (dashed lingand the
nonmetallicENY (solid line) phases im-type GaN as functions of dopant
IIl. RESULTS concentration, obtained from Eq¢®)—(16).

The calculated critical concentrations for MNM transi-
tion in n-type andp-type ZB-GaN as well as im-type and
p-type WZ-GaN are presented in Table I. There are two In the Mott model, the critical concentration is propor-
model calculations for the ionization energiesneype Wz-  tional to E3. The same relation holds, with fairly good ac-
and ZB-GaN'*2 and many discussions about their valuescuracy, also in the Mott—Hubbard model. For the total en-
obtained experimentalfy?’~40:42:444548-51The yalues ob- ergy calculation, however, this is not longer true, especially
tained for Si, O, and C levels lead By <Eo<E.. More-  not for large ionization energies. For sufficiently large ion-
over, Mooreet al*? have recently claimed to find an uniden- ization energyestimated to be 50—100 meV intype GaN,
tified donor level,E ., in WZ-GaN which leads toEg;  the total energies per particle in the metaH:i{?ﬁ',t and in the
<E n<Eg, or 30.2 me\K31.2 me\k 33.2 meV. We use in nonmetallicE{g’t\" phases do not become equal at any concen-
the calculation the values obtained experimentally, which arération since the average kinetic energy of the free electron
in the range of 25—-34 me¥~%942Gotz et al* with a Hall ~ gas(in the single conduction bahds too high, which im-
measurement have found a metallic regimeridgype WZ-  plies too large screening for a transition. That can be seen in
GaN in a range of 7810"<N,<2.0x 10" cm™ 3. The na-  Fig. 1, where we shou&},, andE} of n-type GaN. For high
ture of the involved shallow donor and acceptor in ZB-GaNdonor concentrationsl?.t“(",t is increasing drastically due to
has not yet been identified clearly, but &sal®®4" have large kinetic energy of the electrons in the electron @as
identified C and Mg as acceptors. large kinetic energy is directly related to the small effective

From Table I, one can notice that the extended Mott—electron mass of the single conduction-band minimuror
Hubbard model gives a slightly smallbl, that the original p-type GaN, as presented in Fig. 2, the flat band structure the
Mott model for the materials considered here. Furthermoreyalence-band maximurtconsisting of three valence bands
the method based on the total energy results in even loweesults in relatively low kinetic energies of the hole gas also
critical concentrations, except fortype ZB-GaN withEy  at high hole concentrations. Hence, the transitiop-type
=32 meV. But the three computational methods give theGaN can occur at relatively high acceptor concentrations.
same order oN,, although two of the models are derived by However, the resulting critical concentrations fetype GaN
using rather different approaches. are high for Mg as acceptor in WZ-GafWith large ioniza-

Downloaded 12 Dec 2012 to 200.128.60.106. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



2554 J. Appl. Phys., Vol. 92, No. 5, 1 September 2002

-100

Energy per particle (meV)

=250 F

~150 F (B =130me V) y
AY
200 / . b

ENM(E, =215meV)

p-type 1
zb-GaN

\

\
i F1Y

1017

10"” 10™

@) Acceptor concentration (cm ™)

p-type A
wz-GaN

A. Ferreira da Silva and C. Persson

as hydrogenlike wave functions. The main reason for the
high values ofN, in p-type GaN originates from the large
ionization energies.

It is worth mentioning that the reliability of the Mott—
Hubbard approach, expressed by E4), is very well dis-
cussed in Refs. 52-55 in terms of two different Hubbard
bands touching each other, leading to the MNM transition.
The total energy approach has been described-fgpe ma-
terials in Refs. 13 and 31.
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