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Generalized Bogoliubov transformation for confined fields: Applications for the Casimir effect
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The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature
quantum field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting
with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is
written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and nonzero
temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field.
This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in
the studies of confined fields, including interacting fields.
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I. INTRODUCTION

A way to treat the effect of temperature in quantum fie
theory is, for instance, through the Matsubara formali
@1,2#, which is based on a formal substitution of time, sayt,
by a complex time, sayi t. In this imaginary time scheme
the temperature emerges as a consequence of a comp
cation of the field in a finite interval on the time axis, 0,t
,b, where b is the inverse of temperature~we take the
Boltzmann constant askB51; thus b51/kBT51/T). This
compactification effect of time coordinates has been ge
alized and associated with space confinement, for insta
of the electromagnetic field through the notion of the ima
method for a Green function@3,4#. In addition, in the realm
of Euclidean theories, a generalization of the Matsubara
malism has been carried out to take into account spatial c
finement of the scalar field in thelf4 approach using the
Epstein-Hurwitz zeta functions@5–7#.

On the other hand, as an alternative finite-tempera
quantum field theory, Takahashi and Umezawa introdu
the so-called thermofield dynamics~TFD! approach@8–17#,
in order to handle finite temperatures with a real time ope
tor formalism @17,18#. TFD is based on two elements. Th
first one is a doubling in the Fock spaceH of the original
field system, giving rise to an expanded Fock space den
by HT5H^ H̃. This doubling, in terms of mappings inHT ,
is defined by what are called the tilde~or dual! conjugation
rules, associating each operator inH, saya, to two operators
in HT , say A5a^ 1 and Ã51^ a, such that the physica
variables are described by the nontilde operators. The
basic ingredient of TFD is a Bogoliubov transformation, i
troducing a rotation in the tilde and nontilde variables, su
that the temperature effect emerges from a condensed s

When TFD is compared with the imaginary time~Matsub-
ara! formalism, the Bogoliubov transformation works b
confining the field in a restricted region of the time axis v
the notion of a condensate. Here, our main goal is to deve
a generalization of TFD to extend the compactification of
arbitrary field for regions in space through the notion of co
1050-2947/2002/66~5!/052101~8!/$20.00 66 0521
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densate. This possibility finds support and should be us
in different contexts, in particular when associated with t
vacuum properties of the electromagnetic field via the C
simir effect.

The Casimir effect arises from the fluctuation of th
vacuum state of fields defined in space-time manifolds w
nontrivial topologies@19–27#. Nowadays there is a promi
nent interest in the Casimir effect, as a consequence of
fact that in 1997 the Casimir force was measured with
precision of a few percent@28–32#. This result points in
particular to a practical use of the Casimir force in nano- a
microtechnologies @30,32#. Nevertheless, the finite
temperature corrections in the Casimir effect are one as
which still demands more theoretical development and ne
greater experimental accuracy. Indeed, for example, only
cently have the implications of temperature been analyze
the context of the classical limit of the Casimir effect@33–
35#, although, as emphasized by Mehra long ago@36#, the
temperature effect is significant for plates separated by a
tance of the order of micrometers.

Brown and Maclay@3# treated temperature in the Casim
effect from a full finite-temperature quantum field theo
point of view. In their approach the energy-momentum te
sor for the electromagnetic field is written in the context
the imaginary time formalism and the image method pro
dure is used to calculate the propagator between two par
plates. As a result the temperature effect emerges on the
axis by using a set of images for the propagator. In t
calculation, all infinite images are summed up. A set of th
~also infinite in number and called odd images!, associated
with an attempt to make the formalism somewhat covaria
gives zero contribution by a resummation of the infinite s
ries but only at the end of the calculation. This remains a
difficulty, elucidated in the present formalism, since the
gebraic manipulations are numerous and there is no avail
criterion to specify which set of images gives the prop
contribution in any specific case@3,4#. Here we overcome
these difficulties by using a generalization of TFD via
analytic continuation of the Bogoliubov transformations.
this case, we are not concerned with images, such that
©2002 The American Physical Society01-1
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sum over odd images is no longer needed. Furthermore
calculations are carried out in a natural covariant way. Th
aspects represent an ease of calculation, following a rigo
procedure, with an unexpected elucidation of the whole p
cess in a confined space; the Casimir force, derived via
Bogoliubov transformation, can be thought of as a vacu
condensation effect of the electromagnetic field.

We have also applied the method to the situation of o
plate made of metal and the other of permeable material~the
Casimir-Boyer model! @37#. The interest for this system lie
in the fact that we have a repulsive Casimir force, and t
type of force has not been satisfactorily studied, althoug
is a fundamental ingredient for using the Casimir effect
sociated with technological nanodevices@38#. Furthermore,
the Casimir-Boyer model has been only recently addresse
more detail in the literature, in particular in the study
temperature effects@37,39,40#. Regarding this system, th
results derived here include an explicit expression for
energy-momentum tensor and an analysis of thermodyn
ics functions such as the Helmholtz free energy and entr
The results thus obtained open the interesting perspectiv
using this procedure as an effective scheme for calculat
in the studies of different confined fields, including no
Abelian gauge fields like QCD. In other words, this gener
ized TFD formalism identifies the Casimir effect as giving
direct and clear picture of the vacuum as it displays its pr
erties for differents fields including the non-Abelian field.

In order to proceed, in Sec. II the notation describing
basic elements of TFD is set forth, and the generalized
goliubov transformation is introduced for the scalar and
electromagnetic field. The subsequent sections are dedic
to applications. In Sec. III, a thermal stress-energy tensor
the electromagnetic field is derived, and the results are c
pared with those from the imaginary time formalism. In S
IV, the Casimir effect at zero and nonzero temperature
derived. In this case we consider the field constrained
tween two parallel plates~both made of either conducting o
permeable material!. The mixed situation, the Casimir-Boye
model @37,39,40#, in which there is one conducting and on
permeable plate, is discussed in Sec. V. Our final rema
and conclusions are presented in Sec. VI.

II. TFD AND GENERALIZED BOGOLIUBOV
TRANSFORMATION

Thermofield dynamics is introduced by assuming that
set of operators in a field theory can be given in the fo
LT5$A,B,C, . . . ,Ã,B̃,C̃, . . . %, defined in the Hilbert space
HT5H^ H̃ with elementsuF&5uf,f̃&. The action of ge-
neric operatorsA and Ã on uF& is specified by

AuF&[a^ 1~ uf& ^ ^fu!5~auf&) ^ ^fu, ~1!

ÃuF&51^ a~ uf& ^ ^fu!5uf& ^ ^fua†, ~2!

where the operatora is defined in the usual Hilbert spaceH
with uf&PH ~we follow the usual notation, which is intro
duced via the identificationA5a and Ã5ã). The tilde ~or
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dual! conjugation rules are then a mapping˜:A→Ã, speci-
fied by the relations~which can be derived from genera
algebraic properties@41,42#!

~AiAj !˜5Ãi Ãj , ~3!

~cAi1Aj !˜5c* Ãi1Ãj , ~4!

~Ai
†!˜5~Ãi !

†, ~5!

~Ãi !˜5Ai , ~6!

@Ãi ,Aj #50. ~7!

The physical variables are described by the nontilde
erators and thermal variables are introduced by a Bogoliu
transformation defined by the following procedure. For
arbitrary bosonic operatorA we define

~Aa!5S A

2Ã†D , ~ Aa†!5~A†,Ã!. ~8!

The Bogoliubov transformation is defined as a 232 matrix,

B5S u~a! 2v~a!

2v~a! u~a!
D , ~9!

whereu2(a)2v2(a)51, with a being a parameter specify
ing the rotation between tilde and nontilde variables. F
instance, for the case of the creation (a†,ã†) and destruction
(a,ã) boson operators, we have the extended~doubled! al-
gebra

@a,a†#5@ ã,ã†#51, ~10!

@a†,ã#5@a†,ã†#5@a,ã#5@a,ã†#50. ~11!

Then the algebraic rules for the thermal bosonic opera
are written as@aa(a),ab†(a)#5dab, a,b51,2, such that
aa5(B 21)abab(a) andaa†5ab(a) B ba. Writing explicitly,
we have

a5u~a!a~a!1v~a! ã†~a!, ~12!

ã5u~a!ã~a!1v~a!a†~a!, ~13!

a†5u~a!a†~a!1v~a!ã~a!, ~14!

ã†5u~a!ã†~a!1v~a!a~a!. ~15!

The thermal average is given by taking the vacuum av
ageu0,0̃& of the thermal nontilde variables. For instance, f
the particular case of the bosonic number operatorn5a†a,
the thermal distribution is given by
1-2
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n~b!5^0,0̃&ua†~a!a~a!u0,0̃&[
1

ebe21
5 (

n51

`

e2b«n.

~16!

This result is readily derived if the parametera is taken to be
the temperature,a5b, such that

u~b!5
1

@12e2be#1/2
, ~17!

v~b!5
1

@ebe21#1/2
. ~18!

However, observe thata5b is a particular choice, and othe
possibilities fora can be considered as will be seen in t
next sections.

The same scheme is generalized for a quantum field
the case of the free scalar field, since we have equation
motion for the tilde and nontilde variables, thea-dependent
Klein-Gordon field theory is given by the Lagrangian

L̂5
1

2
]mf~x;a!]mf~x;a!2

m2

2
f~x;a!2

2
1

2
]mf̃~x;a!]mf̃~x;a!1

m2

2
f̃~x;a!2,

where the metricgml is such that diag(gml)5(1,21,21,
21). This Lagrangian gives rise to the equations of mot

~]m]m1m2!f~x;a!50 and ~]m]m1m2!f̃~x;a!50.

Therefore, in TFD the Lagrangian can be written asL̂5L

2L̃ and in consequence the Hamiltonian isĤ5H2H̃ ~this
is a general result that can be used for every field!. The
two-point Green function for thea scalar field is defined
then, by

G~x2x8;a!(ab)5^0,0̃uT@f~x;a!af~x8;a!bu0,0̃&

5
1

~2p!4E d4kG~k;a!abeik(x2x8),

~19!

where

G~k;a!(ab)5B 21~k0 ;a!G0~k!abB~k0 ;a!,

with

B~k,a!5S u~k,a! 2v~k,a!

2v~k,a! u~k,a!
D ~20!

and
05210
In
of

n

~G0~k!ab!5S G0~k! 0

0 G̃0~k!
D

5S 1

k22m21 i e
0

0
21

k22m22 i e

D . ~21!

Then we have

G~k;a!(ab)5B~k,a!G~k!(ab)B~k,a!

5S G~k;a!11 G~k;a!12

G~k;a!21 G~k;a!22D ,

with

G~k;a!115G0~k!1v2~k,a!@G0~k!1G̃0~k!#,

G~k;a!125G~k;a!21

5v~k,a!@11v2~k,a!#1/2@G0~k!1G̃0~k!#,

G~k;a!225G̃0~k!1v2~k,a!@G0~k!1G̃0~k!#.

The physical information is given byG(k;a)11.
Using the definition ofB(k0 ,a) given in Eq.~20!, with

n(k,a5b)5v(k,a5b)251/@ebk021#, and u(k,a5b)2

5v(k,a5b)21151/@12e2bk0#, the components of
G(k;b)ab read

G~k;b!(11)5
1

k22m21 i e
22p in~k0 ;b!d~k22m2!,

G~k;b!(22)5
21

k22m22 i e
22p in~k0 ;b!d~k22m2!,

G~k;b!(12)5G~k;b!21

522p i @n~k0 ;b!1n~k0 ;b!2#1/2d~k22m2!,

wheren(k0 ;b)5u(k,a5b)2 is the boson distribution func
tion. Notice that the physical propagatorG(k;b)11 is a well
known result derived by the Matsubara method.

The components of

G~x2x8!(ab)5^0,0̃uT@f~x!af~x8!bu0,0̃&

for a massless bosonic field can be explicitly written,
using Eq.~21!, as

G0
(11)~x2x8![G0~x2x8!52

i

~2p!2

1

~x2x8!21 ih
,

~22!
1-3
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G0
(22)~x2x8![G̃0~x2x8!5

i

~2p!2

1

~x2x8!22 ih
,

~23!

and G0
(12)(x2x8)5G0

(21)(x2x8)50. These results will be
useful in the following development.

Now we consider the case of an electromagnetic fie
Following the tilde conjugation rules, the doubled opera
describing the energy-momentum tensor of the electrom
netic field is, then, given by

Tml(ab)52Fma(ab)Fa
l(ab)1

1

4
gmlFba

(ab)Fab(ab), ~24!

where the nontensorial indicesa,b51,2 are defined accord
ing to the doubled notation given in Eqs.~8!,

Fmn
(ab)5]mAn

a2]nAm
b .

The doubled free-photon propagator is thus given by

iD ab
(ab)~x2x8!5^0,0̃uT@Aa

a~x!Ab
b~x!#u0,0̃&

5gabG0
(ab)~x2x8!, ~25!

where the nonzero components ofG0
(ab)(x2x8) are given in

Eqs.~22! and ~23!.
The vacuum average of the energy-momentum ten

reads

^0,0̃uTmn(ab)u0,0̃&52 i H Gmn~x,x8!G0
(ab)~x2x8!

12S hmhn2
1

4
gmnD d~x2x8!dabJ U

x→x8

,

wherehm5(1,0,0,0) and

Gmn~x,x8!52~]m]8n2 1
4 gmn]r]r8!.

Inspired by the usual Casimir prescription, at this po
we introduce the tensorTml(ab)(a) by

TCas
ml(ab)~x;a!5^0,0̃uTml(ab)~x;a!u0,0̃&

2^0,0̃uTml(ab)~x!u0,0̃&, ~26!

where

^0,0̃uTml(ab)~x;a!u0,0̃&52 i H Gml~x,x8!G(ab)~x2x8;a!

12S hmhl2
1

4
gmlD

3d~x2x8!dabJ U
x→x8

.

As a consequence
05210
.
r
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TCas
ml(ab)~x;a!52 i $Gml~x,x8!Ḡ(ab)~x2x8;a!%ux→x8 ,

~27!

where

Ḡ(ab)~x2x8;a!5
1

~2p!4E d4keik(x2x8)Ḡ(ab)~k;a!,

such that

Ḡ(11)~k;a!5Ḡ(22)~k;a!5v2~k,a!@G0~k!1G̃0~k!#,

Ḡ(12)~k;a!5Ḡ(21)~k;a!

5v~k,a!@11v2~k,a!#1/2@G0~k!1G̃0~k!#.

Let us write a general form for the Bogoliubov transfo
mation by assuming the following analytical continuation f
v2(k,a), given originally in Eq.~16!:

v2~k,a![(
l 51

`

e2 ia l•k, ~28!

where the notation is

(
l 51

`

e2 ia l•k5 (
l 0 ,l 1 ,l 2 ,l 351

`

exp@2 i ~a0l 0k01a1l 1k11a2l 2k2

1a3l 3k3!#,

with a5(a0 ,a1 ,a2 ,a3) representing a set of parameters
be specified. In the following we use this definition for ca
culating the physical components of the energy-momen
tensorTml(11)(x;a) in different situations.

III. TFD STRESS-ENERGY TENSOR AND TEMPERATURE

As a basic result let us first calculate the temperature
fect for the electromagnetic field using this TFD approa
For this proposal we assume thata05 ib5 i /T anda15a2
5a350 in Eq. ~28!. In this case we have

Ḡ(11)~x2x8;a!5
1

~2p!4E d4keik(x2x8)Ḡ(11)~k;a!

5
1

~2p!4E d4keik(x2x8)(
j 51

`

eb jk0@G0~k!

1G̃0~k!#52(
j 51

`

G0~x2x82 ib jn !,

wherenm5(1,0,0,0). Using this result in Eq.~27! we find
1-4
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Tml(11)~x;a!52 i $Gml~x,x8!Ḡ(11)~x2x8;a!%ux→x8

52 i H 4S ]m]8l2
1

4
gmn]r]r8D

3(
j 51

`

G0~x2x82 ib jn !J U
x→x8

52
2

p2 (
j 51

`
gml2nmnl

~ j b!4

52
1

45
p2T4~gml2nmnl!. ~29!

Therefore, the energy density of the photon gas is the w
known resultE(T)5T00(11)(x;a), which leads to the rela
tion for blackbody radiation, i.e.,

E~T!5
1

15
p2T4. ~30!

We find that the condensation effect introduced via the B
goliubov transformation is equivalent, in the imaginary tim
formalism, to images displaced in time byi j b, giving rise to
a cutoff in the time axis@3,4#. In the next section we will see
that this condensation produces a cutoff on the space ax

IV. COMPACTIFICATION IN SPACE-TIME AND THE
CASIMIR EFFECT

In this section we use the formalism developed in Sec
to derive the Casimir effect at zero and nonzero temperat
We proceed with the same prescription for the ener
momentum tensor but with a proper definition of the para
etera.
gy

05210
ll

-
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A. Casimir effect at zero temperature

In the last section we derived the temperature effect
the electromagnetic field with a proper choice for the para
etersa l , which leads to a Green functionḠ(11)(x2x8;a l)
written in terms of a modified free Green functionG0(x
2x82 ib jn). Let us now assume thata05a15a250 and
a3, is a real parameter. In this case we have

Ḡ(11)~x2x8;a!5
1

~2p!4E d4keik(x2x8)Ḡ(11)~k;a!

5
1

~2p!4E d4keik(x2x8)(
l 51

`

eilk 3a3@G0~k!

1G̃0~k!#52(
l 51

`

G0~x2x82a3lz!.

~31!

Observe from this expression that if we definea352d the
sum overl defines the nontrivial part of the Green functio
that leads to the Dirichlet boundary condition for the elect
magnetic field, considering two conducting parallel plat
one atx350 and the other atx35d ~see Refs.@3,4#!. Here
the sum is equivalently interpreted as being over half
even images of a photon propagating between two para
plates~the factor 2 in the sum takes into account the oth
half of the even images whenx→x8). This result was first
derived by Brown and Maclay, who showed that the con
butions due to odd images add to zero@3,4#. In our approach
this fact is obtained explicitly without reference to image
and the cancellation of the equivalent odd images is a re
of the tilde-propagator contribution. Then the nature of t
boundary conditions over the electromagnetic field and
associated Green function are the prescription to define
physical content of the parametersa.

Using Eq.~31! in Eq. ~27!, with a352d, we find for the
energy-momentum tensor
Tmn(11)~x;d!52 i $Gmn~x,x8!Ḡ(11)~x2x8;a!%ux→x852 i H 2S ]m]8n2
1

4
gmn]r]r8D2(

l 51

`

G0~x2x822dlz!J U
x→x8

52
2

p2 (
l 51

`
gmn14zmzn

~2ld !4
52

1

23p2d4
~gmn14zmzn!(

l 51

`
1

l 4
52

p2

180d4 S 1

4
gmn1zmznD . ~32!
In particular, the component of the Casimir ener
T00(11)(x;a)5E(d) is then given as

E~d!52
p2

720d4
. ~33!
B. Casimir effect at nonzero temperature

Consider the casea05 ib,a15a250, a352d, nm

5(1,0,0,0), andzm5(0,0,0,n3). In this case we have
1-5



-

q

m

for

ov
een

t
e
-
e

da SILVA, et al. PHYSICAL REVIEW A 66, 052101 ~2002!
Ḡ(11)~x2x8;a!5
1

~2p!4E d4keik(x2x8)Ḡ(11)~k;a!

5
1

~2p!4E d4keik(x2x8) (
j ,l 51

`

eb jk01 i lk 3(2d)

3@G0~k!1G̃0~k!#

52 (
j ,l 51

`

G0~x2x82 ib jn22dlz!.

Using this result in Eq.~27! we find that the energy
momentum tensor is

Tmn(11)~x;d,b!52 i $Gmn~x,x8!Ḡ(11)~x2x8;a!%ux→x8

52 i H 2S ]m]8n2
1

4
gmn]r]r8D2

3 (
j ,l 51

`

G0~x2x82 ib jn22dlz!J U
x→x8

.

~34!

Notice that if we take in the sum given in Eq.~34! l 50 or
j 50, we recover the terms of the blackbody radiation, E
~30!, and the Casimir effect at zero temperature, Eq.~33!.
Thus in this case the energy-momentum tensor is

Tmn(11)~x;d,b!52
4

p2 (
j ,l 508

` H gmn

@~2ld !21~ j b!2#2

1
4~2ld !2zmzn2~ j b!2nmnn

@~2ld !21~ j b!2#2 J , ~35!

where the notationj ,l 508 is used to emphasize that the ter
for l 5 j 50 is not included in the sum@actually this is a
divergent term that was subtracted in Eq.~26!#.

Following Brown and Maclay@3#, we definej5d/b,
05210
.

f ~j!52
1

4p2 (
j ,l 508

`
~2j!4

@~2l j!21~ j !2#2
,

and

s~j!52
d

dj
f ~j!5

24

p2 (
j ,l 508

`
j3 j 2

@~2l j!21~ j !2#3
,

resulting in

Tmn(11)~x;d,b!5
1

d4
f ~j!~gmn14zmzn!

1
1

bd3
~nmnn1zmzn!s~j!.

In particular, the componentT00(11)(x;d,b)5E(d,b) gives
rise to the energy density

E~d,b!5
1

d4
@ f ~j!1js~j!#.

Here f (j) describes the Helmholtz free-energy density
photons ands(j) is the entropy density.

V. CASIMIR-BOYER MODEL

In the last section we applied the generalized Bogoliub
transformation to treat the Casimir effect, such that the Gr
function fulfilled the Dirichlet~Neumann! boundary condi-
tion for two conducting~permeable! parallel plates, one a
x350 and the other atx35d. In this section we consider th
Casimir-Boyer model@37#, corresponding to a mixed situa
tion of plates in which atx350 we have a conducting plat
~Dirichlet boundary conditions! and atx35d a permeable
plate ~Neumann boundary conditions!. In order to have a
Green function satisfying these conditions, we considera0
5 ib,a15a250, a352d1p/k3 , nm5(1,0,0,0), andzm

5(0,0,0,1). In this case we have
Ḡ(11)~x2x8;a!5
1

~2p!4E d4keik(x2x8)Ḡ(11)~k;a!5
1

~2p!4E d4keik(x2x8) (
j ,l 51

`

~21! leb jk01 i lk 3(2d)@G0~k!1G̃0~k!#

52 (
j ,l 51

`

~21! lG0~x2x82 ib jn22dlz!.

Using this result in Eq.~27! we find the energy-momentum tensor to be

Tmn(11)~x;d,b!52 i $Gmn~x,x8!Ḡ(11)~x2x8;a!%ux→x8

52 i H 2S ]m]8n2
1

4
gmn]r]r8D2 (

j ,l 51

`

~21! lG0~x2x82 ib jn22dlz!J U
x→x8

. ~36!
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As before, if we take the sums starting froml , j 50, we
include the Casimir effect at zero temperature and the bla
body radiation. Hence, carrying out the calculations in E
~36!, we find that

Tmn(11)~x;d,b!52
4

p2 (
j ,l 508

`

~21! l H gmn

@~2ld !21~ j b!2#2

1
4~2ld !2zmzn2~ j b!2nmnn

@~2ld !21~ j b!2#2 J . ~37!

Observe that for the terml 50 the componentT00(11)(x;d,b)
is the blackbody radiation term given in Eq.~30!, and for j
50 we haveT00(11)(x;d,b)5E(d),

E~d!5
7

8

p2

720d4
,

which is the Casimir energy for the Casimir-Boyer mod
@37,39,40#. Notice that this energy corresponds to an attr
tive force which is27/8 of the Casimir energy for plates o
the same material.

Using j5d/b, we introduce

f̂ ~j!52
1

4p2 (
j ,l 508

`

~21! l
~2j!4

@~2l j!21~ j !2#2
,

and

ŝ~j!52
d

dj
f ~j!5

24

p2 (
j ,l 508

`

~21! l
j3 j 2

@~2l j!21~ j !2#3
,

resulting in

Tmn(11)~x;d,b!5
1

d4
f̂ ~j!~gmn14zmzn!

1
1

bd3
~nmnn1zmzn!s~j!.

In particular, the componentT00(11)(x;d,b)5E(d,b) gives
rise to the energy density

E~d,b!5
1

d4
@ f̂ ~j!1j ŝ~j!#.

Here f̂ (j) describes the Helmholtz free-energy density
photons andŝ(j) is the entropy density.

VI. CONCLUDING REMARKS

Summarizing, in this work a generalization for the the
mofield dynamics formalism is presented, via an analy
continuation of the usual Bogoliubov transformation, in o
der to describe a field in a confined region in space. We ap
the method to calculate the energy-momentum tensor of
electromagnetic field in different situations associated w
the Casimir effect, such that in each case some peculia
pect of the approach is emphasized.
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Our aim with the applications was to demonstrate that
calculational method simplifies the study of the Casimir
fect considerably, using the notion of covariance through
the calculations. Furthermore, the case that gives rise
repulsive force, which is of some interest in the most rec
literature@38–40#, is dealt within detail, resulting in the fol
lowing results: ~a! an explicit expression for the energy
momentum tensor;~b! an explicit calculation of the expres
sions for the Helmholtz free energy, the internal energy, a
the entropy.

In this TFD generalization, the Casimir effect is inte
preted as a process of condensation of the electromag
field. In the case of the Casimir effect at zero temperatu
the quasiparticles are described~for an arbitrary mode! by

a~a!5u~a!a2v~a!ã†,

ã†~a!5u~a!ã†2v~a!a,

with a(a) and ã fulfilling the canonical algebra of the cre
ation and destruction operators, that is,@a(a),a†(a)#

5@ ã(a),ã†(a)#51. From these operators a vacuum sta
u0(a)& can be defined, such thata(a)u0(a)&50. Therefore,
regarding the operatorsa anda†, the stateu0(a)& describes
a condensate, as is the case for the temperature in the u
TFD. This provides an unusual insight into the role of t
vacuum in developing the Casimir force. Thus not only t
notion of the vacuum but also its structure~seen as a con
densate! is crucial in producing the Casimir effect. In
broader sense, this notion of condensate is a central as
throughout the paper, which cannot be derived in the con
of the Matsubara formalism.

In Ref. @6#, using a modification of the Matsubara a
proach to treat spontaneous symmetry breaking in compa
fied lf4 theory and the superconducting transition tempe
ture in thin films, it is shown how to describe a general spa
confinement of a field, not necessarily in the ground state
is the case of the Casimir effect. However, our contention
that a more refined understanding of that modified Matsub
method would be interesting, considering theoretical a
practical applications. This aspect has been achieved her
using a generalization of TFD, which can be used as well
the systems studied in@6#.

The Matsubara formalism has also been applied in
derivation of the so-called Lifshitz formula, describing th
Casimir force in real mediae(x,b) ~not e051) @32#. Re-
cently, this formula has been successfully used with the
electric permittivity, as is given by the Drude model fun
tion, to describe the Casimir force at nonzero temperat
between real metals@44#. Thus, it would be interesting to
analyze the connection of our method and the Matsub
approach more closely. This can be carried out by us
functional methods in TFD@43#. In our case, considering th
scalar field, we can start with the following definition for th
generating functional:

Z ab5N expH 2 i

2 E ~J2J!G~x2x8,a!S J

2JD J dxdy,

~38!
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where the matrixG(x2x8,a) is given in Eq.~19!. FromZ ab

an effective action, sayW, can then be introduced byWab

52 i ln Z ab. Taking a5b51, we recover the Matsubar
method, and in particular the results given in Eq.~3.10! of
Ref. @32#, for the effective action under the zeta-function
regularization, the starting point for deriving the aforeme
tioned Lifshitz formula. These aspects regarding the use
the generalized Bogoliubov transformation associated w
the Casimir effect for real~not only ideal! media will be
discussed in more detail elsewhere.

Ending these remarks, it is worth adding that, as t
method based on the Bogoliubov transformation is indep
dent of the type of field involved, it should be useful
-

,

na

ys

s.

hy

a

-
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analyze the Casimir effect in the case of non-Abelian ga
fields like quantum chromodynamics. In this case the C
simir effect affects the formation of the quark-gluon plasm
and as a consequence the phase transition from a confin
a deconfined state.
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