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Generalized Bogoliubov transformation for confined fields: Applications for the Casimir effect
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The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature
guantum field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting
with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is
written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and nonzero
temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field.
This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in
the studies of confined fields, including interacting fields.
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[. INTRODUCTION densate. This possibility finds support and should be useful
in different contexts, in particular when associated with the
A way to treat the effect of temperature in quantum fieldvacuum properties of the electromagnetic field via the Ca-
theory is, for instance, through the Matsubara formalismsimir effect.
[1,2], which is based on a formal substitution of time, $ay The Casimir effect arises from the fluctuation of the
by a complex time, say7. In this imaginary time scheme, vacuum state of fields defined in space-time manifolds with
the temperature emerges as a consequence of a compactifontrivial topologies|19—27. Nowadays there is a promi-
cation of the field in a finite interval on the time axis<@  nent interest in the Casimir effect, as a consequence of the
<, where 8 is the inverse of temperatur@ve take the fact that in 1997 the Casimir force was measured with a
Boltzmann constant akg=1; thus 8=1/kgT=1/T). This  Precision of a few_percer[t28—32. This result points in
compactification effect of time coordinates has been genefR@rticular to a practical use of the Casimir force in nano- and
alized and associated with space confinement, for instancg}icrotechnologies [30,32. Nevertheless, the finite-

of the electromagnetic field through the notion of the imagd€MPerature corrections in the Casimir effect are one aspect
method for a Green functiof8,4]. In addition, in the realm which still demands more theoretical development and needs

of Euclidean theories, a generalization of the Matsubara forgreater experimental accuracy. Indeed, for example, only re-

malism has been carried out to take into account spatial corffgt(%gé \:(? Lﬁetﬁrgrﬂ;gggﬁ r:; ﬁ;ﬁfrgfpﬁ]r:tgfsﬁﬁneﬁgggfed n

finement of the scalafr field ;E' thqu')“ approach using the 35], although, as emphasized by Mehra long #86], the

Epstein-Hurwitz zeta functionNd-7]. ' ' o ! -
On the other hand, as an alternative finite—temperaturtemperature effect is significant for plates separated by a dis

fance of the order of micrometers
guantum field theory, Takahashi and Umezawa introduceda : : o
the so-called thermofield dynami€SED) approach8—17, Brown and Maclay 3] treated temperature in the Casimir

. . ; ) effect from a full finite-temperature quantum field theor
in order to handle finite temperatures with a real time opera- b d y

. . point of view. In their approach the energy-momentum ten-
t_or forma]lsm [17'123' T'.:D is based on two elemer_1t§. The sor for the electromagnetic field is written in the context of
first one is a doubling in the Fock spagé¢ of the original

field system, giving rise to an expanded Fock space denotet € Imaginary time formalism and the image method proce-
~ _ S i re is used to calculate the propagator between two parallel
by Hy="H&®H. This doubling, in terms of mappings #ir,  plates. As a result the temperature effect emerges on the time
iS defined by What are Ca“ed the t||(ﬂer dua) Conjugation axis by using a set of images for the propagator. In th|s
rules, associating each oEeratoer saya, to two operators  cajculation, all infinite images are summed up. A set of them
in Hy, sayA=a®1 andA=1®a, such that the physical (also infinite in number and called odd imageassociated
variables are described by the nontilde operators. The nextith an attempt to make the formalism somewhat covariant,
basic ingredient of TFD is a Bogoliubov transformation, in- gives zero contribution by a resummation of the infinite se-
troducing a rotation in the tilde and nontilde variables, suctries but only at the end of the calculation. This remains as a
that the temperature effect emerges from a condensed statdifficulty, elucidated in the present formalism, since the al-
When TFD is compared with the imaginary tirfdatsub-  gebraic manipulations are numerous and there is no available
arg formalism, the Bogoliubov transformation works by criterion to specify which set of images gives the proper
confining the field in a restricted region of the time axis viacontribution in any specific cage,4]. Here we overcome
the notion of a condensate. Here, our main goal is to develothese difficulties by using a generalization of TFD via an
a generalization of TFD to extend the compactification of amanalytic continuation of the Bogoliubov transformations. In
arbitrary field for regions in space through the notion of con-this case, we are not concerned with images, such that the
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sum over odd images is no longer needed. Furthermore, th@ya) conjugation rules are then a mappingA—A, speci-

calculations are carried out in a natural covariant way. Thesged by the relationgwhich can be derived from general
aspects represent an ease of calculation, following a rigorousigebraic propertief41,42)

procedure, with an unexpected elucidation of the whole pro-

cess in a confined space; the Casimir force, derived via the (AA) =AA 3)
Bogoliubov transformation, can be thought of as a vacuum o R

condensation effect of the electromagnetic field.

We have also applied the method to the situation of one (CAITA)) =C*AitA;, (4)
plate made of metal and the other of permeable matéhel
Casimir-Boyer modél[37]. The interest for this system lies (A=A, (5)
in the fact that we have a repulsive Casimir force, and this
type of force has not been satisfactorily studied, although it (Ai)~=Ai, 6)

is a fundamental ingredient for using the Casimir effect as-

sociated with technological nanodevide38]. Furthermore, ~

the Casimir-Boyer model has been only recently addressed in [Ai Aj1=0. @)
more detail in the literature, in particular in the study of ) ) ] )
temperature effect§37,39,40. Regarding this system, the The physical varlablgs are des_cnbed by the nontlld(_e op-
results derived here include an explicit expression for theérators and thermal variables are introduced by a Bogoliubov
energy-momentum tensor and an analysis of thermodynarﬁ[ar]Sformat'O” .deflned by the folllowmg procedure. For an
ics functions such as the Helmholtz free energy and entropyPitrary bosonic operatck we define

The results thus obtained open the interesting perspective of

using this procedure as an effective scheme for calculations a A
in the studies of different confined fields, including non- (A%)= _At
Abelian gauge fields like QCD. In other words, this general-

ized TFD formalism identifies the Casimir effect as giving aTpe Bogoliubov transformation is defined as & 2 matrix,
direct and clear picture of the vacuum as it displays its prop-

), ( AT =(AT/A). (8

erties for differents fields including the non-Abelian field. ua) —u(a)
In order to proceed, in Sec. Il the notation describing the B=( (a) u(a) )’ 9
—vla o

basic elements of TFD is set forth, and the generalized Bo-
goliubov transformation is introduced for the scalar and the ) 5 ) ] )
electromagnetic field. The subsequent sections are dedicat¥fiereu”(a) —v(«)=1, with a being a parameter specify-
to applications. In Sec. Ill, a thermal stress-energy tensor fof?d the rotation between tilde and nontilde variables. For
the electromagnetic field is derived, and the results are coninstance, for the case of the creatiai @) and destruction
pared with those from the imaginary time formalism. In Sec.(a,a) boson operators, we have the extendedubled al-

IV, the Casimir effect at zero and nonzero temperature igebra

derived. In this case we consider the field constrained be-

tween two paralle_l plateéb(_)th mgde (_)f either con_du_cting or [a,a’]=[3,at]=1, (10)
permeable materialThe mixed situation, the Casimir-Boyer

model[37,39,4Q, in which there is one conducting and one pe - ~ ~t

permeable plate, is discussed in Sec. V. Our final remarks [a'a]=[a",a']=[a,a]=[a,a’]=0. 1D

and conclusions are presented in Sec. VI. ) )
Then the algebraic rules for the thermal bosonic operators

are written as[a?(a),a”'(a)]=6%%, a,b=1,2, such that

IIl. TFD AND GENERALIZED BOGOLIUBOV at= (Bfl)abab(a) andaaT:ab(a) Bbha Writing explicitly,

TRANSFORMATION

we have
Thermofield dynamics is introduced by assuming that the
set of operators in a field theory can be given in the form a=u(a)ala)+v(a) al(a), (12
£r={A,B,C, ... AB,C, ...}, defined in the Hilbert space
Hr=H®H with elements|®)=|¢,%). The action of ge- a=u(a)a(e)+v(a)a’(a), (13)
neric operatorsA andA on |®) is specified by
a'=u(a)a’(a)+v(@)ala), (14)
AlP)=ae1(|p)a(d)=(al$)) (4], D
B a'=u(a)a’(a)+v(a)ala). (15)
Al®)=10a(|¢)e(s))=|s)o(s|a, 2

The thermal average is given by taking the vacuum aver-

where the operataa is defined in the usual Hilbert spageé  age|0,0) of the thermal nontilde variables. For instance, for
with [$) € H (we follow the usual notation, which is intro- the particular case of the bosonic number operatom'a,
duced via the identificatio=a andA=a). The tilde(or  the thermal distribution is given by
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(B)=(0D)a (a(@)]0D)=— 2 “pen (Go(K)™) o O
n(B)=(0,0)|a a 0= = e Pl = ~
p L 1 =t 0 0 Bk
(16)
_ 0
This result is readily derived if the parameteis taken to be K2—m2+ie
the temperatureg= 3, such that = . (21
-1
1 0 k2 2__;
-m°—ie
UB)= -~ e (17
Then we have
) (@b) — (ab)
0B s 18 G(k; @)@ =B(k,a)G(k) @I B(k,a)
el Gk Glk;a)?
However, observe that= g is a particular choice, and other G(k;a)? G(kia)??)’
possibilities fora can be considered as will be seen in the
next sections. with

The same scheme is generalized for a quantum field. In _
the case of the free scalar field, since we have equations of G(k;a)= Go(K) +v2(k,@)[Go(K) + Go(K)],
motion for the tilde and nontilde variables, thedependent
Klein-Gordon field theory is given by the Lagrangian G(k;a)*?=G(k;a)?

.1 m? =v(k,a)[1+v?(k, )" Go(k) +Go(K)],
L=30,b(xa)d"d(X; @) = = b(X;)?

. 2 G(k;a)??=Gy(k) +v2(k,a)[Go(k) + Go(K)].
— =3, b(X; @) " P(X; )+ —5-p(X; a)?,

5 0ud(X ) GOGa)+ 5 P(x ) The physical information is given b@(k;a)™

Using the definition of3(ky,«) given in Eg.(20), with
where the metriag#* is such that diag{*")=(1,—1,—1, n(k,a=p)=v(k,a=p)2=1[e"*-1], and u(k,a=p)?
—1). This Lagrangian gives rise to the equations of motion=y (k,a=B)?>+1=1[1—e %], the components of

G(k;B)?" read
(9,0"+m?) p(x;a)=0 and (9,9*+m?) p(x;a)=0.

1
" e Y U, P . 2_ 2
Therefore, in TFD the Lagrangian can be writtenlas L G(kiB) K2—m2+ie 2min(ko; £) S(k"—mr),
~TL and in consequence the HamiltoniarAs=H—H (this
is a general result that can be used for every fiekhe -1
two-point Green function for ther scalar field is defined,  G(k;8)®=————— —2min(ky; 8) S(k?—m?),
then, by k*—mP—ie
1. @b) — /0 . \a 1. oAbIAT G(k; )(12)=G(k' )21
G(x—x"; @)@ =(0,0T[ ¢(x; a)2p(x";a)?|0,0) B B

=—2mi[n(ky; B) +n(ky; B)?1Y28(k?—m?),

— f d4kG(k;C¥)abeik(X_Xl),
(2m)* wheren(kq; 8)=u(k,a= B)? is the boson distribution func-
(199  tion. Notice that the physical propagat@(k; 8) ! is a well

known result derived by the Matsubara method.

where The components of
G(k: @)@ = B~1(ky; @) Go(K)B(ko; @), G(x—x")@=(0,0T[ (x)?¢(x')?|0,0)
with for a massless bosonic field can be explicitly written, by

using Eq.(21), as

. uk,a) —v(k,a) 20
( ,a)— —v(k,a) u(k,a) ( ) Ggll)(X—X,)EGO(X_X')Z— | 1

(2m)2 (x—x")2+inp’
and (22)
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. wh(@b) . N i uh NG@b) (v - ,
ngz)(X—X')Eéo(X—X’)Z I 1 — TCas (X ) H{IT#M(x,x") G (x—x -a)}lxﬂx 1(27)
(2m)? (x=x')?~iy
(23)
where

and G (x—x')=GY(x—x")=0. These results will be
useful in the following development. - 1 o

Now we consider the case of an electromagnetic field. G@Y(x—x';a)= fd“keik(X*X’)G(ab)(k;a),
Following the tilde conjugation rules, the doubled operator (2m)*
describing the energy-momentum tensor of the electromag-
netic field is, then, given by such that

THMNED) = — Fra@D)EiED 4 %Q”AF%""C?)F“B(“’, (24) GU(K; @) = G@(k; @) =v2(K, @)[ Go(k) +Go(K)],

where the nontensorial indicesb=1,2 are defined accord- =2 Y — = (21,
. . ; | GH(k; a) =G (k;
ing to the doubled notation given in Eq8), (kia) (ka)

a a =v(k,a)[1+0v2(Kk,a) ¥ Go(k)+ Gy(K)].
F@—5,A2—g,A%. ° °

The doubled free-photon propagator is thus given by Let us write a general form for the Bogoliubov transfor-
mation by assuming the following analytical continuation for
iD%’)(x—x’)=<0@|T[A2(X)A%(X)]|Ob> v?(k,a), given originally in Eq.(16):
:gaBG(()ab)(X_X,)! (25) *
2(k,a)=2, e 'K, 28
where the nonzero components®{” (x—x') are given in vik.a) ;1 8

Eqgs.(22) and(23).
The vacuum average of the energy-momentum tensofnere the notation is

reads
(0,0 T#"2"]0,0) = _i[FW(X,X/)Ggab)(X—X') 21 e_ia"kzl | lEI L exf —i(aolokot asl ks + asl ks
= 0:11,12+137
1 + aslsks) ],
+2 7]’“7]’/_ Zg,uv) 5(X_x/)5ab] ' 3!3 3)]
o with a=(«aq,aq,a5,a3) representing a set of parameters to
where »#=(1,0,0,0) and be specified. In the following we use this definition for cal-
culating the physical components of the energy-momentum
THY(x,X)=2(3"0 = § g**3"3)). tensorT“*()(x; ) in different situations.

Inspired by the usual Casimir prescription, at this point

. Ill. TFD STRESS-ENERGY TENSOR AND TEMPERATURE
we introduce the tensof“*@P(q) by

As a basic result let us first calculate the temperature ef-

TEMAD) (- ) =(0,0] T“M@D)(x; )| 0,0) fect for the electromagnetic field using this TFD approach.
~ _ For this proposal we assume thaj=iB=i/T and ay=«a,
—(0,0 T2 (x)[0,0), (26)  =a3=0 in Eq.(29). In this case we have
where
GUD(x—x":a)= jd“ke‘k(x‘xl)a“)(k;a)
AT (ab) - BN — il Par iy vy (@b) . (2m)*
(0,0]T#Ma)(x: 0)|0,0) = —i{ T#M(x,x")G@)(x—x"; )

1 = f e )Y bk Gk
+2 77#77)\_ ng.)\) (27T)4 jzl [ O( )
< a0cx1%) +Bok)]=23, Golx—x' ~igin)

X—X'
As a consequence wheren”=(1,0,0,0). Using this result in E427) we find
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TENID(x: ) = —i{F’”‘(X,X’)E(“)(X—X’;a)}|xﬂx, A. Casimir effect at zero temperature

In the last section we derived the temperature effect for
the electromagnetic field with a proper choice for the param-
etersa,, which leads to a Green functicBV(x—x"; &)
written in terms of a modified free Green functi@y(x
—x"—iBjn). Let us now assume thaty= a;=a,=0 and
az, is a real parameter. In this case we have

1
— 2N v 4
——|{4((9“0 —Zg” apap)

le Go(x—x’—i[g’jn)]
=

X— X'

2 & g —n#nt 1
= — ; jgl —(Jﬁ)4 G(ll)(x_xl;a): 4f d4keik(x—x’)G(ll)(k;a)
(27)
1 %
= — — 22T4(g*M — n#n 1 . , :
457T T(g n“n). (29 _ 4f d4kelk(x—x )E ellk3a3[GO(k)
Therefore, the energy density of the photon gas is the well (2m) =1
known resultE(T)=T%(x; ), which leads to the rela- o
tion for blackbody radiation, i.e., +éo(k)]:22 Go(X—X'— aslz).
=1
(3D
- Observe from this expression that if we defing=2d the
EM=37T" (30 sum overl defines the nontrivial part of the Green function

that leads to the Dirichlet boundary condition for the electro-

magnetic field, considering two conducting parallel plates,
We find that the condensation effect introduced via the Boone atxz=0 and the other at;=d (see Refs[3,4]). Here
goliubov transformation is equivalent, in the imaginary timethe sum is equivalently interpreted as being over half the
formalism, to images displaced in time Hy3, giving rise to ~ €Ven images of a photon propagating between two parallel
a cutoff in the time axi§3,4]. In the next section we will see plates(the factor 2 in the sum takes into account the other

that this condensation produces a cutoff on the space axed)alf of the even images when—x"). This result was first
derived by Brown and Maclay, who showed that the contri-

butions due to odd images add to z€8x4]. In our approach
IV. COMPACTIFICATION IN SPACE-TIME AND THE this fact is obtam_ed explicitly vx_nthout refer_ence to images,
and the cancellation of the equivalent odd images is a result
CASIMIR EFFECT . P
of the tilde-propagator contribution. Then the nature of the
In this section we use the formalism developed in Sec. lboundary conditions over the electromagnetic field and the
to derive the Casimir effect at zero and nonzero temperaturassociated Green function are the prescription to define the
We proceed with the same prescription for the energyphysical content of the parametets
momentum tensor but with a proper definition of the param- Using Eq.(31) in Eq. (27), with a3=2d, we find for the
etera. energy-momentum tensor

_ 1 -
TN d) = — {4 (X )G (X=X )y g = i { 2( I~ Zgwaﬂa,;) 2>, Go(x—x' —2d|z)}
|

Il
i

X—X'

2 g grr+4z47" (gt )i 1 ? (1 o ) @
=—— =— V+4zM7" —=— —gtr+zHZ").
w2 =1 (21d)* 232t =14 18 4”
|
In particular, the component of the Casimir energy B. Casimir effect at nonzero temperature

T x; ) =E(d) is then given as

2 Consider the casexy=iB,a;=a,=0, az=2d, n*

4" (33 =(1,0,0,0), andz*#=(0,0,0n3). In this case we have
720d

E(d)=—
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— 1 L 1 < 2¢)*
GU(X—x": o) = 4f d4kek G k: ) O D (25) —
(2m) 47 ji=o [(216)°+())7]
_ d4kelkx—x") E eBikotilks(2d) and
(27)* jI=1 d 24 £3j2
. @)= fO=0 ¥
X[Go(k)+Go(k)] d¢ s [(219%+ ()]
- resulting in
=2 Go(x—x'—iBjn—2dlz). g
=1
1
v(11)/,- - v v
Using this result in Eq.(27) we find that the energy- THE0Gd,B) d4f(§)(gf‘ +4257")
momentum tensor is
_ 1
T A(x;d, B) = —i{T#"(x,x" ) GI(x—x"; a) }|x.x + ﬁ(n”n”ﬂ“z”)s(g).
= —iiz(aﬂa”— ngaﬂa;j)z In particular, the componert®*(x:d, 8)=E(d,B) gives
4 rise to the energy density

2 GO(X‘X"“””‘Z("Z)] E(d,B)= é[f(§)+55(§)]-

X—X'

(34 Here f(£¢) describes the Helmholtz free-energy density for
Notice that if we take in the sum given in E@4) 1=0 or  photons and(¢) is the entropy density.
j=0, we recover the terms of the blackbody radiation, Eq.
(30), and the Casimir effect at zero temperature, ). V. CASIMIR-BOYER MODEL

Thus in this case the energy-momentum tensor is In the last section we applied the generalized Bogoliubov

4 = gr transformation to treat the Casimir effect, such that the Green
T (x:d, B) = — — 2 [ function fulfilled the Dirichlet(Neumanfn boundary condi-
% jizo ([(21d)2+(jB)*)? tion for two conducting(permeablg parallel plates, one at

Duy (¢ a2y x3=0 and the other at;=d. In this section we consider the
N 4(2ld)z*z"=(j B)n*n (35 Casimir-Boyer mode[37], corresponding to a mixed situa-
[(21d)2+(j B)?]? ' tion of plates in which ak;=0 we have a conducting plate
(Dirichlet boundary conditionsand atx;=d a permeable
where the notatiof,| =0’ is used to emphasize that the term plate (Neumann boundary conditionsin order to have a
for I=j=0 is not included in the sunfactually this is a Green function satisfying these conditions, we consiggr
divergent term that was subtracted in E26)]. =iB,a1=a,=0, az=2d+w/k;, n*=(1,0,0,0), andz*
Following Brown and Maclay3], we define¢=d/g, =(0,0,0,1). In this case we have

1
(2m)*

1

GI(x—x";a)= o)
a

j d4keik(x7x’)€(11)(k;a): f d4keik(x—x’) 2 (_l)leﬁjk0+ilk3(2d)[Go(k)+éo(k)]
j,I=1

=2 (—1)'Go(x—x'—iBjn—2dlz).
jir=1
Using this result in Eq(27) we find the energy-momentum tensor to be

T/ d, B) = = I{T " (x,x") G I(x=x"; @)}y

(36)

1 o]
= —i|2( o'V — Zg‘”apﬁ; 2> (—1)'Go(x—x’—iﬁjn—2dlz)]
jiT=1

X— X'
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As before, if we take the sums starting frdgj=0, we Our aim with the applications was to demonstrate that our
include the Casimir effect at zero temperature and the blacksalculational method simplifies the study of the Casimir ef-
body radiation. Hence, carrying out the calculations in Eqfect considerably, using the notion of covariance throughout

(36), we find that the calculations. Furthermore, the case that gives rise to a
" repulsive force, which is of some interest in the most recent
(A1) - 4 | g” literature[38—40, is dealt within detail, resulting in the fol-
T B = — X (—1 . . . o .
72 =0 [(21d)2+(j B)?]? lowing results: (a) an exphcﬁ expression for the energy-
momentum tensortb) an explicit calculation of the expres-
4(2Id)22“zV—(j,8)2n“nV] @7 sions for the Helmholtz free energy, the internal energy, and
. the entropy.
[(21d)2+ (] B2 Py

In this TFD generalization, the Casimir effect is inter-
Observe that for the terin=0 the componert®(x:d, 3) preted as a process of condensation of the electromagnetic
is the blackbody radiation term given in EO), and for| field. In the case of the Casimir effect at zero temperature,

=0 we haveT®( ) x:d, 8)=E(d), the quasiparticles are describédr an arbitrary modeby
7 2 a(a)=u(a)a—v(a)?iT,
E(d)=<2 , ~ ~
(D=5 720d* al(a)=u(a)a’™v(a)a,

which is the Casimir energy for the Casimir-Boyer model. . ~ - .
[37,39,4Q. Notice that this g)rﬂergy corresponds toyan attrac—WIth a(a) anda fulfilling the canonical algebra of the cre-

. . ) +
tive force which is— 7/8 of the Casimir energy for plates of at|o~n arldT destruction operators, that fa(a),a'(a)]
the same material. =[a(a),a'(a)]=1. From these operators a vacuum state

Using é=d/ 8, we introduce |0(a)) can be defined, such thata)|0(«))=0. Therefore,
regarding the operatomanda’, the statd0(«)) describes
R (2&€)% a condensate, as is the case for the temperature in the usual
f(o=—— 2 Plyﬁ, TFD. This provides an unusual insight into the role of the
4m ji-o [(216)™+ ()] vacuum in developing the Casimir force. Thus not only the
notion of the vacuum but also its structuigeen as a con-
P - densatg is crucial_ in p(oducing the Casimir effect. In a
5(8)=— if(g): 2" S (—1) & broader sense, this notion of condensate is a central aspect
dé 72 o [(216)2+ ()% throughout the paper, which cannot be derived in the context
' of the Matsubara formalism.
resulting in In Ref. [6], using a modification of the Matsubara ap-
1 proach to treat spontaneous symmetry breaking in compacti-
T# () (x:d, B) = _f(g)(gwq_ 47+7") fied \ ¢* theory and the superconducting transition tempera-
d* ture in thin films, it is shown how to describe a general space
confinement of a field, not necessarily in the ground state as
is the case of the Casimir effect. However, our contention is
that a more refined understanding of that modified Matsubara
method would be interesting, considering theoretical and
In particular, the component®*(x;d, 8)=E(d,B) gives practical applications. This aspect has been achieved here by
rise to the energy density using a generalization of TFD, which can be used as well for
the systems studied {i6].
1. - The Matsubara formalism has also been applied in the
E(d,p)= @[f(g)J"gs(g)]' derivation of the so-called Lifshitz formula, describing the
Casimir force in real media(x,8) (not e,=1) [32]. Re-
cently, this formula has been successfully used with the di-
electric permittivity, as is given by the Drude model func-
tion, to describe the Casimir force at nonzero temperature
VI, CONCLUDING REMARKS between real metalBé_M]. Thus, it would be interesting to
' analyze the connection of our method and the Matsubara

Summarizing, in this work a generalization for the ther-approach more closely. This can be carried out by using
mofield dynamics formalism is presented, via an analytidunctional methods in TFID43]. In our case, considering the
continuation of the usual Bogo”ubov transformation, in or- scalar f|e|d, we can start with the fO”OWing definition for the
der to describe a field in a confined region in space. We applgenerating functional:
the method to calculate the energy-momentum tensor of the 3
electromagnetic field in different situations associated with ab_ —|! _ o
the Casimir effect, such that in each case some peculiar as- Z7=N ex% 7] (I=DG(x=x ’a)( -J dxdy,
pect of the approach is emphasized. (39

©

and

+ %(n“nu z*z")s(€).

Here f(£) describes the Helmholtz free-energy density for
photons and(¢) is the entropy density.
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where the matrixG(x—x’, ) is given in Eq.(19). FromZ2®  analyze the Casimir effect in the case of non-Abelian gauge
an effective action, sayV, can then be introduced by®  fields like quantum chromodynamics. In this case the Ca-
=—iIn 2235 Takinga=b=1, we recover the Matsubara simir effect affects the formation of the quark-gluon plasma,
method, and in particular the results given in E8.10 of  and as a consequence the phase transition from a confined to
Ref. [32], for the effective action under the zeta-functional a deconfined state.

regularization, the starting point for deriving the aforemen-
tioned Lifshitz formula. These aspects regarding the use of
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