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JOSÉ F. ALVES, STEFANO LUZZATTO, AND VILTON PINHEIRO

(Communicated by Svetlana Katok)

Abstract. We consider non-uniformly expanding maps on compact Riemann-
ian manifolds of arbitrary dimension, possibly having discontinuities and/or
critical sets, and show that under some general conditions they admit an in-
duced Markov tower structure for which the decay of the tail of the return
time function can be controlled in terms of the time generic points needed to
achieve some uniform expanding behavior. As a consequence we obtain some
rates for the decay of correlations of those maps and conditions for the validity
of the Central Limit Theorem.

1. Dynamical and geometrical assumptions

Let M be a compact Riemannian manifold of dimension d ≥ 1 with a normalized
Riemannian volume | · |, which we call Lebesgue measure. Let f : M → M be a
C2 local diffeomorphism for all x ∈ M \ C, where C is some critical set, which
may include points at which the derivative Dfx is degenerate, as well as points
of discontinuity and points at which the derivative is infinite. We assume the
following natural non-degeneracy condition on C, which generalizes the notion of
non-flat critical points for smooth one-dimensional maps.

Definition 1. The critical set C ⊂ M is non-degenerate if |C| = 0 and there is a
constant β > 0 such that for every x ∈M \ C we have dist(x, C)β . ‖Dfxv‖/‖v‖ .
dist(x, C)−β for all v ∈ TxM , and the functions log detDf and log ‖Df−1‖ are
locally Lipschitz with Lipschitz constant . dist(x, C)−β .

We now state our two dynamical assumptions: the first is on the growth of the
derivative and the second is on the approach rate of orbit to the critical set. Notice
that for a linear map A, the condition ‖A‖ > 1 only provides information about
the existence of some expanded direction, whereas the condition ‖A−1‖ < 1 (i.e.,
log ‖A−1‖−1 > 0) implies that every direction is expanded.
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Definition 2. We say that f is non-uniformly expanding if there exists λ > 0 such
that

(∗) lim inf
n→∞

1
n

n−1∑
i=0

log ‖Df−1
fi(x)‖

−1 ≥ λ

for almost every x ∈M .

Definition 3. We say that f satisfies the property of subexponential recurrence to
the critical set if for any ε > 0 there exists δ > 0 such that for Lebesgue almost
every x ∈M

(∗∗) lim sup
n→+∞

1
n

n−1∑
j=0

− log distδ(f j(x), C) ≤ ε.

Here dδ(x, C) denote the δ-truncated distance from x to C defined as dδ(x, C) =
d(x, C) if d(x, C) ≤ δ, and dδ(x, C) = 1 otherwise.

For the proofs of some technical lemmas (in particular, Lemma 4) we need to
fix ε satisfying certain conditions, and some of the definitions below (in particular,
Definition 4) depend on this choice. We suppose therefore that some suitable ε and
the corresponding δ are fixed for the rest of the paper.

Remark 1. It was proved in [2] that conditions (∗) and (∗∗) imply the existence
of an absolutely continuous invariant probability measure µ on M . Once such a
measure is given, both conditions admit very natural equivalent formulations

(∗)⇔
∫

log ‖Df−1
x ‖−1dµ > 0

and

(∗∗)⇔
∫
| log dist(x, C)|dµ <∞.

2. Measuring the non-uniformity

The asymptotic, non-uniform, nature of conditions (∗), (∗∗) is one of the main
reasons for the difficulties in studying the finer geometric structures and dynamical
properties of f . To gain some control over this non-uniformity we introduce the
following

Definition 4. Let Γn = {x : E(x) > n or R(x) > n}, where

E(x) = min
{
N ≥ 1 : 1

n

∑n−1
i=0 log ‖Df−1

fi(x)‖−1 ≥ λ/2 ∀n ≥ N
}

is the expansion time function, and

R(x) = min
{
N ≥ 1 : 1

n

∑n−1
i=0 − log distδ(f j(x), C) ≤ 2ε, ∀n ≥ N

}
is the recurrence time function.

We think of E(x),R(x) as the waiting times before the asymptotic behaviour
kicks in. By (∗) and (∗∗), E and R are defined and finite a.e., and therefore
|Γn| → 0 as n→∞. The rate at which |Γn| decays is, in some sense, a measure of
the non-uniformity of f . Our main result shows that this intuition is reflected in
certain geometrical properties of the dynamics of f .
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3. Generalized Markov Partitions

Before stating our main theorem we introduce the geometric structures in which
we are interested.

Definition 5. We say that f admits a Markov Tower or Generalized Markov Par-
tition if there exists a ball ∆ ⊂ M , a countable partition P (mod 0) of ∆ into
topological balls U with smooth boundaries, and a return time function R : ∆→ N
piecewise constant on elements of P , satisfying the following properties:

1. Markov: for each U ∈ P and R = R(U), fR : U → ∆ is a C2 diffeomor-
phism. We let F (x) = fR(x)(x).

2. Uniform expansivity: ∃ λ̂ > 1 such that ‖DF (x)−1‖−1 ≥ λ̂ for a.e.
x ∈ ∆. In particular, the separation time s(x, y) = max{k : F i(x), F i(y)
belong to the same element of P , ∀ i ≤ k} is finite for a.e. pair x, y.

3. Bounded volume distortion: ∃ K > 0 such that
∣∣∣detDF (x)

detDF (y) − 1
∣∣∣ ≤

Kλ̂−s(F (x),F (y)) ∀ x, y with s(x, y) ∈ [1,∞).

The main difference between this and a standard Markov partition is that here
the partition is not defined on the whole manifold M but only on some possibly
small subset ∆, and that the Markov property is not verified after a single iterate
of f but after a variable, unbounded, number of iterates which depend on the
partition element. These weaker conditions make it possible to prove the existence
of Generalized Markov Partition in much more general situations than those for
which standard Markov partitions exist.

4. Statement of results

Theorem 1. Let f : M → M be a transitive C2 local diffeomorphism outside a
non-degenerate critical set C satisfying conditions (∗) and (∗∗), and suppose that
there exists γ > 0 such that

|Γn| = O(n−γ).
Then f admits a Generalized Markov Partition, and the return time function sat-
isfies

|{x : R(x) > n}| = O(n−γ).

There are several possible motivations for the construction of Generalized Markov
Partitions; we refer to [3, 4] for a detailed discussion and references. We mention
here one implication for statistical properties of the maps, which follows from our
result and from [7, 8].

Corollary 1. Let f : M → M be a transitive C2 local diffeomorphism outside a
non-degenerate critical set C satisfying conditions (∗) and (∗∗), and suppose that
there exists γ > 0 such that |Γn| = O(n−γ). Then there exists an absolutely con-
tinuous, f -invariant, probability measure µ. Some finite power of f is mixing with
respect to µ, and for any Hölder continuous functions ϕ, ψ on M we have

Cn =
∣∣∣∣∫ (ϕ ◦ fn)ψdµ−

∫
ϕdµ

∫
ψdµ

∣∣∣∣ = O(n−γ+1).

Moreover, if γ > 2, then the Central Limit Theorem holds.

In particular, we obtain the following results for the two-dimensional non-uni-
formly expanding Viana maps [6, 1].
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Corollary 2. The Viana maps satisfy the Central Limit Theorem and exhibit
super-polynomial decay of correlations, i.e.,

Cn = O(n−γ) ∀ γ > 0.

5. Basic strategy

We restrict ourselves here to the outline of the main steps of the proof of the
theorem; the details will appear in [3] and [4]. We observe first of all that the
transitivity assumption implies the existence of a point p with dense preimages,
and choose some sufficiently small ball ∆0 centred at p. This will be the domain
of definition of our induced map. The idea is to consider iterates of ∆0 until we
find some n0 such that fn0(∆0) completely covers ∆0 and some bounded distortion
property is satisfied. Then there is U ⊂ ∆0 such that fn0(U) = ∆0, and U
is by definition an element of the final partition P with associated return time
R = n0. We then continue iterating the complement ∆0 \ U until more good
returns occur. By taking some care in the construction, this does indeed yield a
Generalized Markov Partition with the required bounds on the tail of the return
times. For this purpose we need some more concrete geometrical and combinatorial
information regarding the time it takes for given domains to grow in size and
eventually cover ∆0, and on the geometry of the complement ∆0 \ U . Indeed,
iterating the construction, at time n we will be dealing with the complement of
an increasing number of domains corresponding to regions which have had good
returns up to time n.

6. Returning to a given domain

Our first observation implies that it is sufficient for a domain to grow large
enough with bounded distortion, to guarantee that a good return to ∆0 will then
occur within some fixed maximum number of iterates.

Lemma 2. ∀ δ > 0, ∃ N0 ∈ N such that
⋃N0
j=0 f

−j({p}) is δ-dense in M and
disjoint from C.

Thus any sufficiently large ball will contain a preimage of p close to its centre,
and the statement made above holds true. In paricular, it is sufficient to concentrate
on the rate at which small regions grow to some fixed large scale.

7. Growing to large scale

We approach this problem through the notion of hyperbolic times introduced in
[1]. We say that for a given δ1 > 0, k is a hyperbolic time for x if there exists a
neighbourhood Vn of x, called a hyperbolic preball, such that fn(Vn) is a ball of
radius δ1 and the volume distortion of fn on Vn is uniformly bounded by a given
constant independent of n or x. In particular, if δ � δ1, using Lemma 2, it is
possible to prove

Lemma 3. ∃ c > 0 such that if n is a hyperbolic time for x, ∃ a neighbourhood
U ⊂ Vn of x with |U |/|Vn| ≥ c such that fn+i(U) = ∆0 for some i ≤ N0, and fn+i

has bounded volume distortion on U .

Thus, the return time is controlled locally by the occurrence of a hyperbolic time.
This is naturally related to the expansion and recurrence time functions through
the following
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Lemma 4. ∃ θ > 0 such that ∀ x and n ≥ max{E(x),R(x)} ∃ θn hyperbolic times
n1 < · · · < nθn < n.

8. Global rate of returns

Ideally we would like to be able to cover the set ∆n = ∆0 \{R < n} with disjoint
hyperbolic preballs corresponding to some controlled sequence of hyperbolic times.
However, we do not have enough information to carry out such a strategy and
there are some technical issues as well. First of all we need to avoid points which
are too close to the boundary of ∆n. We write ∆n = An ∪ Bn, where Bn is a
small neighbourhood of ∆0 \ ∆n in ∆n, a kind of buffer zone to smooth out the
complicated geometry given by the history of previous returns. In particular, the
definition of Bn essentially guarantees that any hyperbolic preball Vn(x) for x ∈ An
is completely contained in ∆n. We let Hj denote the set of points in ∆0 for which
j is a hyperbolic time.

Lemma 5. ∃ c > 0 such that ∀ n ≥ 1 we have |
⋃N
i=0{x : R(x) = n + i}| ≥

c0|An−1 ∩Hn|.

This says that the proportion of An−1 which has return time between n and
n+ N is uniformly comparable to the proportion of points in An for which n is a
hyperbolic time. From this we get

Lemma 6. ∃ b > 0 such that |∆n+N | ≤ |∆n|e−b
∑n
j=1 |Aj−1∩Hj |/|Aj−1|.

Thus the rate of decay of the |∆n|, which is precisely the rate of decay of the tail
of the return times, depends on the proportion of each Aj−1 which has a hyperbolic
time at time j. In the uniformly expanding case every iterate j is a hyperbolic time
for every x, and therefore |Aj−1 ∩Hj |/|Aj−1| ≡ 1, giving an exponential decay of
the tail of the return times as expected. In our case we can only get that for all
n ≥ 1 and A ⊂M \Γn, we have

∑n
j=1 |A∩Hj |/|A| ≥ θn, as a corollary of Lemma 4.

9. Conclusions

Thus, intuitively, if the complement of Γn has many hyperbolic times, good
returns occur exponentially fast. If |Γn| decays slowly, then there will come a time
that most points which have not yet returned belong to Γn, implying that the
exponential rate of returns cannot continue until |Γn| has become sufficiently small
again. Thus Γn is a bottleneck slowing down the return times. This idea cannot
be completely implemented in practice however, mostly because of the difference
between the terms

∑n
j=1 |A ∩ Hj |/|A|, which appear in Lemma 4, and the terms∑n

j=1 |Aj−1 ∩ Hj |/|Aj−1|, which appear in Lemma 6. Given the abstract nature
of our assumptions and the definitions of the sets Aj and Bj , the Aj may vary
much more irregularly than may be expected at first sight. For example, it is
possible to envisage a situation in which

⋂n
j=1 Aj = ∅. This means that it is not

possible to apply the conclusions of Lemma 4 directly to conclude that returns are
occurring exponentially fast outside Γn. By considering various possible cases, it
is nevertheless possible to obtain some good bounds in the case in which Γn is
decaying polynomially fast, as stated in the theorem.
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