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Abstract

The random average process is a randomly evolving d-dimensional surface whose heights
are updated by random convex combinations of neighboring heights. The !uctuations of this
process in case of linear initial conditions have been studied before. In this paper, we analyze
the case of polynomial initial conditions of degree 2 and higher. Speci8cally, we prove that the
time !uctuations of a initial parabolic surface are of order n2−d=2 for d= 1; 2; 3; log n in d= 4;
and are bounded in d¿ 5. We establish a central limit theorem in d = 1. In the bounded case
of d¿ 5, we exhibit an invariant measure for the process as seen from the average height at
the origin and describe its asymptotic space !uctuations. We consider brie!y the case of initial
polynomial surfaces of higher degree to show that their time !uctuations are not bounded in
high dimensions, in contrast with the linear and parabolic cases.
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1. Introduction

The random average process (RAP) was introduced by Ferrari and Fontes (1998) as
a model of a randomly evolving d-dimensional surface in d+ 1 space. The evolution
consists of the heights of the surface getting updated, at either discrete or continuous
time, by random convex combinations of neighboring heights (see (1) below). In this
way, starting out with a given surface, which can be deterministic or itself random,
we get at all times evolved surfaces which are random (as functions of the random
convex weights and possibly random initial condition).
Closely related processes are the harness process introduced by Hammersley (1965/

1966) (see also Toom, 1997) and the smoothing process (Andjel, 1985; Liggett and
Spitzer, 1981; Liggett, 1985), where height updates consist of deterministic convex
combinations of neighboring heights plus an additive (for the former process) or mul-
tiplicative (for the latter one) random noise. The RAP (as well as the smoothing
process) is a special case of Liggett’s linear processes (Liggett, 1985, Chapter IX).
A much studied special case of the RAP (one which we discuss only brie!y in this

paper) is the voter model (Liggett, 1985; Durrett, 1996). This corresponds to having
the random convex combination almost surely assign total mass to a neighbor chosen
at random. As discussed by Ferrari and Fontes (1998), the behavior of the voter model
is rather diKerent from the more general case treated in that paper and also here.
In this paper, we study at length the discrete time RAP with a parabolic initial

condition. One of our main results are upper and lower bounds of the same leading
order to the time !uctuations of the evolving surface. Under suitable assumptions on the
distribution of the convex weights, we obtain n2−d=2 as the leading order of the variance
(as a function of time n) of the height of the surface at a given site in dimensions
d = 1; 2; 3; log n in d = 4; and constant for d¿ 5 (see Theorem 2.1). This compares
8rstly to the case of linear initial conditions (Ferrari and Fontes, 1998), where the
analogous variance is of order

√
n in d=1; log n in d=2; and constant for d¿ 3. The

approach and techniques here are also comparable with those of Ferrari and Fontes
(1998). Here, as there, we have a dual process with the same single time distribution
as the RAP (see (3) and (2)) which, when centered, is a martingale. It is enough then
to study this process (as far as single time distributions are concerned). Variances are
then also shown to be related to moments of a space-inhomogeneous Markov chain,
here in 2d-space (see (8), (14), (23) and (25)), rather than in d-space. In view of
the extra complication, we keep the analysis simple by making extra assumptions on
the distribution of the convex weights vis-a-vis Ferrari and Fontes (1998) (see the 8rst
paragraph of the next section). We also take a convenient concrete form for the initial
condition (see (5)). The problem is then further reduced to one involving the same
d-dimensional Markov chain that enters the analysis of the linear case in Ferrari and
Fontes (1998), but via a diKerent, if related, quantity (see (31)). The analysis proceeds
indirectly (as in the linear case) by taking generating functions. The argument for
the parabolic case will actually involve also the derivative of the generating functions
entering the analysis of the linear case. As in Ferrari and Fontes (1998), we compare
with the analogous quantity for a d-dimensional space-homogeneous Markov chain (a
random walk), and then get the upper bounds (see (33), (39), (41), (42) and (43)).
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The argument for the lower bounds is similar, but simpler. It involves a d-dimensional
random walk directly (see (46) and (51)).
We also prove, in one dimension, a central limit theorem for the time !uctuations

of the surface (see Theorem 2.3). As in Ferrari and Fontes (1998), we verify the
hypotheses of a martingale CLT in Hall and Heyde (1980).
The boundedness of the height variance of the RAP in high dimensions seems to

be a distinguishing feature of linear and parabolic initial conditions, among polynomial
ones. We show in Theorem 5.1 that, starting out with a cubic, the heights have variance
of order of at least n2 in all high enough dimensions. This divergence in time of the
!uctuations can be argued for initial polynomials of higher degree as well.
One diKerence between the initial linear and parabolic cases is the following. Due to

the martingale property of the dual processes, mentioned above, and the L2-boundedness
in high dimensions, the RAPs as seen from the average height at the origin with initial
linear and parabolic surfaces converge weakly to invariant measures for the dynamics as
seen from the average height at the origin, in those dimensions. The spatial !uctuations
of these measures can be then studied and they are found to be bounded for linear initial
conditions. This is not the case for the initial condition here. We show in Theorem
4.1 that the non-trivially scaled space !uctuations of the invariant measures converge
weakly to a non-trivial limit. The variances also converge to the variance of the limit.
This paper grew out of the Ph.D. research of the second author, which consisted

of the RAP with a parabolic initial condition of a diKerent form from the one treated
here. Medeiros (2001) shows essentially the same results we present here, except for
the ones in Sections 5 and 6, obtained with the same approach and techniques, and
more: sharp bounds were obtained in one dimension (see Theorem 2.2); !uctuations
of the surface as seen from the height at the origin (of a slightly modi8ed process)
were shown to be bounded for d¿ 3, the scaled spatial !uctuations of the limiting
invariant measures for the process as seen from the height at the origin arising in
this context were proved to converge to non-trivial weak limits; and continuous time
analogs of the discrete time results were established. The assumptions on the convex
weights distribution made in Medeiros (2001) are less restrictive than the ones here.
Some of the extra results will be the object of a future paper.
We close this introduction with a comparison to the harness process mentioned above.

The underlying space is Zd. For the case of a deterministic initial surface (as here),
translation invariant convex weights (in here, that is the case in the distributional sense)
and i.i.d. L2 mean zero noise, the surface (height vector) at time n can be written as

Xn =UnX0 +
n∑

k=1

Un−kZk ;

where Zk , k¿ 1, are i.i.d. vectors of i.i.d. L2 mean zero noise components and U is
the convex weights matrix satisfying that U(i; i+j)¿ 0 does not depend on i for all j,∑

j U(i; j) = 1 for all i and
∑

j ‖j‖2U(0; j)¡∞. It is clear then that, in this context,
the height variances do not depend on X0. With the same approach and techniques used
by Ferrari and Fontes (1998) and here, it is possible to show that those variances have
the same order of magnitude as the ones of the RAP with linear initial conditions in all
dimensions (the argument is actually quite straightforward in this case). We conclude
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that the !uctuations of the RAP and the harness process behave rather diKerently for
parabolic (and higher degree polynomial) initial conditions of the kind considered in
this paper.

2. De�nitions and main results

We brie!y review the de8nition of the discrete time random average process. See
Ferrari and Fontes (1998) for more details. Let X0 ∈RZd

be a initial surface and de8ne,
for n¿ 1,

Xn(i) =
∑
j∈Zd

un(i; j)Xn−1(j); n¿ 1; (1)

where U = {un(i; i + ·); n¿ 1; i∈Zd} is a family of i.i.d. random probability vec-
tors independent of the initial con8guration X0, all of which are de8ned in a suitable
probability space {;G;P}.
Then, for all n¿ 0,

Xn := {Xn(x); x∈Zd} d= {Ln(x); x∈Zd}= : Ln; (2)

where d= means identity in distribution and, for n¿ 0 and x∈Zd,

Ln(x) = E[X0(Y x
n )|F] (3)

and (Y x
k )k¿0 is a random walk de8ned in {;G;P} with transition probabilities

P(Y x
k = j|Y x

k−1 = i;F) = uk(i; j): (4)

The results of this paper will be stated and argued for Ln. By (2), they hold for Xn

as well.
Let �n(k) be the mean of un(k; k + ·) and ej, j=1; : : : ; d, the jth positive coordinate

vector. Let N = {±ej; j = 1; : : : ; d}. We make the following assumptions on the
distribution of u1(0; ·):

1. Nearest-neighbor range: u1(0; i) = 0 almost surely for i 
∈ N.

2. Symmetry: {u1(0; i); i∈N} d= {u1(0;−i); i∈N}.
3. Coordinate exchangeability: {u1(0; �(i)); i∈N} d= {u1(0; i); i∈N} for all permu-

tations of coordinates �.
4. Non-voter model case: P(u1(0; i) = 1 for some i∈N)¡ 1.
5. Non-degeneracy: �2 := E{[1�1(0)]2}¿ 0,

where 1∈Rd; 1 = (1; : : : ; 1). The 8rst and third assumptions are for simplicity. The
fourth one is to rule out a simpler (and qualitatively diKerent) case, namely the voter
model (but see Remark 4.1). The last one involves the particular initial condition we
will consider (see (5)) and, for that case, rules out a trivial case, where there are no
!uctuations.



L.R.G. Fontes et al. / Stochastic Processes and their Applications 103 (2003) 257–276 261

In this paper we consider a parabolic initial condition of the form

X0(x) = (1x)2 =

(
d∑

k=1

xk

)2
(5)

for any x∈Zd. This satis8es (2.4) of Ferrari and Fontes (1998), so that the process is
well de8ned.

Remark 2.1. Other parabolic forms, like (�x)2=(
∑d

k=1 �kxk)2, where �∈Rd is a 8xed
non-null vector, can be handled, with essentially the same results and techniques. The
form ‖x‖2 =∑d

k=1 x
2
k was analyzed by Medeiros (2001).

With the choice (5), we have

Ln(x) = E[(1Y x
n )

2|F]: (6)

Since Y x
n is a random walk starting from x and the u’s are symmetric, we have

E(Ln(x)) = E((1Y x
n )

2) = E((1(Y 0
n + x))2) = (1x)2 + E((1Y 0

n )
2). Writing Y 0

n =
∑n

i=1 �i,
where �1; : : : ; �n are i.i.d. random vectors such that P(�1 = ±ei) = 1=2d, for i =
1; : : : ; d, we have E((1Y 0

n )
2)=

∑n
i=1 E((1�i)2)= n, since 1�1 =±1 almost surely. Thus

E(Ln(x))= (1x)2+n. Let OY x
n=Y x

n −E(Y x
n )=Y x

n −x. Then, (1Y x
n )

2=(1 OY x
n)
2+2(1x)(1 OY x

n)+
(1x)2 and

Ln(x) = OLn(x) + 2(1x) OZn(x) + (1x)2; (7)

where OLn(x) = E((1 OY x
n)
2|Fn) and OZn(x) = E(1 OY x

n|Fn). Note that, by translation invari-
ance, the distributions of OLn(x) and OZn(x) do not depend on x. Let OLn := Ln(0)= OLn(0)
and OZn := Zn(0) = OZn(0). So,

V(Ln(x)) =V( OLn) + 4(1x)2V( OZn) + 4(1x)Cov( OLn; OZn): (8)

Below, c1; c2; : : : will always denote positive real numbers which may depend only
on d. One of our main results is the following:

Theorem 2.1. For all x∈Zd, there exist c1; c2 such that

c1O(n; d)6V(Ln(x))6 c2O(n; d)

for all n, where

O(n; d) =




n2−d=2 if d= 1; 2; 3;

log n if d= 4;

constant if d¿ 5:

(9)

The proof of Theorem 2.1 will be presented in Section 4.
In dimension 1, it is possible to get a stronger result, for which we do not present

a proof here, but rather refer to Medeiros (2001, Theorem 3.1.3):
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Theorem 2.2. If d= 1, then there exists c3 such that for all x∈Zd

V(Ln(x))
n3=2

→ c3 when n → ∞:

We establish also a Central Limit Theorem for OLn=Ln(0) in dimension 1 (the proof,
sketched in Section 6, does not use Theorem 2.2). Let Vn := V( OLn).

Theorem 2.3. In d = 1, the distribution of V
−1=2
n ( OLn − n) converges to a standard

Gaussian as n → ∞.

Our analysis yields that in dimensions 5 or more there exists an invariant measure
for the dynamics of the surface as seen from the average height at the origin. This is
related to the almost sure existence of the limits of OLn−n and OZn as n → ∞. In Section
4.2, we discuss this and prove a result about the asymptotic shape and magnitude of
the space !uctuations of this measure.
In Section 3, we state and prove auxiliary results for the arguments of the proofs

of our main results. In Section 5, we discuss the case of higher order polynomial
initial conditions and prove a result that indicates a substantial diKerence with the
linear and parabolic cases, namely the unboundedness of the time !uctuations at high
dimensions.

3. Preliminaries

To prove Theorems 2.1 and 2.3 we will need some lemmas.

Lemma 3.1. The process OLn − n is a martingale with respect to {Fn; n¿ 0}.

Proof. Let Yn = Y 0
n . So E( OLn) = E((1Yn)2) = n. We have

OLn = E[(1Yn)2|Fn]

=
∑
k∈Zd

∑
j∈Zd

(1j)2P(Yn = j|Yn−1 = k;Fn)P(Yn−1 = k|Fn)

=
∑
k∈Zd

∑
j∈Zd

{1[k + (j − k)]}2un(k; j)P(Yn−1 = k|Fn−1)

=
∑
k∈Zd

(1k)2P(Yn−1 = k|Fn−1)

+ 2
∑
k∈Zd

(1k)


∑

j∈Zd

[1(j − k)]un(k; j)


P(Yn−1 = k|Fn−1)
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+
∑
k∈Zd


∑

j∈Zd

[1(j − k)]2un(k; j)


P(Yn−1 = k|Fn−1)

= E[(1Yn−1)2|Fn−1] + 2
∑
k∈Zd

(1k)(1�n(k))P(Yn−1 = k|Fn−1) + 1;

since [1(j − k)]2 = 1 every time un(k; j) 
= 0, due to the nearest-neighbor character of
the u’s.
Letting Wn = E[(1Yn−1)(1�n(Yn−1))|Fn], we have OLn = OLn−1 + 2Wn +1; n¿ 1, with

OL0 = 0. Thus

OLn − n= 2
n∑

i=1

Wi: (10)

Note that the distribution of �n(k) does not depend on n or k and E(�1(0)) = E(
∑

j∈Zd

ju1(0; j)) = 0. We have then

E[Wn|Fn−1] = E{E[(1Yn−1)(1�n(Yn−1))|Fn]|Fn−1} (11)

= E[(1Yn−1)(1�n(Yn−1))|Fn−1]

=
∑
k∈Zd

E[(1k)(1�n(k))|Yn−1 = k;Fn−1]P(Yn−1 = k|Fn−1)

=
∑
k∈Zd

(1k)(1E[�n(k)])P(Yn−1 = k|Fn−1) = 0; (12)

since �n(k) is independent of Fn−1 for all n; k. Thus, OLn − n is a martingale with
respect to {Fn; n¿ 0} and Lemma 3.1 is proved.

Lemma 3.2. Let (Ŷ n)n¿0 be an independent copy of (Yn)n¿0 given F. Then (Yn; Ŷ n)
is a Markov chain in Zd × Zd with the following transition probabilities:

P(Yn = kn; Ŷ n = ln|Yn−1 = kn−1; Ŷ n−1 = ln−1) = �[u1(kn−1; kn)u1(ln−1; ln)]; (13)

where � denotes the marginal distribution of u1(·; ·) and �(X ) means expectation of
a random variable X with respect to �.

Proof. Straightforward.

Corollary 3.1. Let Dn = Yn − Ŷ n and Sn = Yn + Ŷ n. Then (Dn; Sn)n¿0 is a Markov
chain in Zd × Zd with transition probabilities

P(Dn = dn; Sn = sn|Dn−1 = dn−1; Sn−1 = sn−1)

= �
[
u1

(
sn−1 + dn−1

2
;
sn + dn

2

)
u1

(
sn−1 − dn−1

2
;
sn − dn

2

)]
: (14)

Proof. Straightforward from Lemma 3.2.
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Remark 3.1. Corollary 3.1 and the assumptions on the u’s imply that

P(Dn = dn−1 + d; Sn = sn−1 + s|Dn−1 = dn−1; Sn−1 = sn−1)

=

{
�[u1(0; s+d

2 )u1(0; s−d
2 )] if dn−1 = 0;

�[u1(0; s+d
2 )]�[u1(0; s−d

2 )] if dn−1 
= 0
(15)

and thus (Dn; Sn) is space homogeneous in {0} × Zd and (Zd\{0}) × Zd separately,
but not in Zd × Zd.

Remark 3.2. It follows from (15) that Dn, n¿ 0, is a Markov chain with transition
probabilities (see also Ferrari and Fontes, 1998, Lemma 2.5)

"(l; k) =




∑
j∈Zd

�[u1(0; j)u1(0; j + k)] if l= 0;

∑
j∈Zd

�[u1(0; j)]�[u1(l; j + k)] if l 
= 0:
(16)

Our assumptions on the u’s make the jumps of Dn have length only either 0 or 2, with
"(0; 0)¡ 1. The jumps of length 2 can be (only) in any of the coordinate positive and
negative directions. All of these possibilities have equal probabilities (which do not
depend on the starting point, provided it is in Zd\{0}), that is

"(l; l± 2ej) = (1− "(l; l))=(2d) for all l∈Zd and j = 1; : : : ; d;

"(l; l) = "(l′; l′) if l; l′ 
= 0:

Remark 3.3. Remark 3.1 allows us to construct (Dn; Sn) in the following way. Let
{(#n(i); $n(i)); i∈Zd\{0}; n¿ 1} and {(#n(0); $n(0)); n¿ 1} be two independent
families of i.i.d. random vectors such that (#1(0); $1(0)) are distributed as the incre-
ments of (Dn; Sn) in {0} × Zd, and (#1(i)); $1(i)) (i 
= 0) as those in (Zd\{0})× Zd,
that is,

P(#1(0) = d; $1(0) = s) = �
[
u1

(
0;

s+ d
2

)
u1

(
0;

s− d
2

)]
(17)

and

P(#1(i) = d; $1(i) = s) = �
[
u1

(
0;

s+ d
2

)]
�
[
u1

(
0;

s− d
2

)]
: (18)

Then

(Dn; Sn) =
n∑

i=1

(#i(Di−1); $i(Di−1)): (19)

Remark 3.4. Remark 3.1 implies also that for all n, given Dn−1 and #n(Dn−1),

$n(Dn−1)
d= − $n(Dn−1).
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Let Hn be a space homogeneous Markov chain (random walk) with transition
probabilities

"H (l; k) =
∑
j∈Zd

�(u1(0; j))�(u1(l; j + k)) for all l; k ∈Zd: (20)

Remark 3.5. The transition probabilities of Hn and Dn diKer only at the origin. We
have also that 0¡"H (0; 0)¡"(0; 0)¡ 1.

For 0¡s¡ 1, let f(s) and g(s) be the power series of P(Dn = 0|D0 = 0) and
P(Hn = 0|H0 = 0), respectively; that is, for 06 s¡ 1

f(s) =
∑
n¿0

P(Dn = 0|D0 = 0)sn and g(s) =
∑
n¿0

P(Hn = 0|H0 = 0)sn:

Let " := "(0; 0), O" := "H (0; 0) and, for 06p¡ 1,

h(s; p) := {1− )(s; p)}−1; Oh(s; p) := {1− O)(s; p)}−1

with

)(s; p) := ps+ (1− p) (s); O)(s; p) := ps+ (1− p) O (s)

and

 (s) :=
∑
n¿0

P(T = n)sn+1; O (s) :=
∑
n¿0

P(T ′ = n)sn+1;

where T is the time of the 8rst return to the origin of Dn after 8rst leaving it, and T ′

is the analogous return time for Hn. In Ferrari and Fontes (1998), (3.7)–(3.9), it was
shown (with a diKerent notation) that

f(s) = h(s; ") =
1

1− "s− (1− ") (s)

and

g(s) = Oh(s; O") =
1

1− O"s− (1− O") O (s)
:

Note that, from the nearest-neighbor and exchangeability assumptions we made, T has
the same distribution as the return time starting from 2e1, say, since, after leaving the
origin, Dn necessarily jumps to a site of the form ±2ei for some i = 1; : : : ; d, and
the distribution of this latter return time does not depend on which of these sites Dn

starts from, by the coordinate exchangeability assumption on the u’s. By the same

considerations and Remark 3.5, we conclude that T d=T ′ and, thence, Oh(s; p) ≡ h(s; p).

Lemma 3.3. Let f(k) and g(k) denote the kth derivatives of f and g, respectively.
Then, for k = 0; 1; 2; 3; 4

lim
s↑1

f(k)(s)
g(k)(s)

¡∞: (21)
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Remark 3.6. (21) holds for all k. We give proof of the cases we explicitly use in this
paper. The general argument is similar.

Proof. The case k = 0 was proved by Ferrari and Fontes (1998, Lemma 3.2). The
argument in our case is much simpler, so we give it in the next paragraph, for
completeness.
For 06 s¡ 1

f(0)(s)
g(0)(s)

=
f(s)
g(s)

=
O"(1− s) + (1− O")[1−  (s)]
"(1− s) + (1− ")[1−  (s)]

=
O"ps + (1− O")qs

"ps + (1− ")qs
; (22)

where ps=(1− s)={(1− s)+ [1−  (s)]} and qs=1−ps. Since ps ∈ [0; 1], the result
for k = 0 follows from Remark 3.5.
We thus have a positive constant M such that f(s)6Mg(s) for all 06 s¡ 1. We

can also have M which satis8es 1− "6M (1− O"), "6M O".
For the case k = 1, notice 8rst that

f(1)(s) = [f(s)]2 d)(s; ")=ds= [f(s)]2["+ (1− ") (1)(s)]

and, analogously,

g(1)(s) = [g(s)]2 d)(s; O")=ds= [g(s)]2[ O"+ (1− O") (1)(s)]:

It follows that lims↑1 f(1)(s)=g(1)(s)6M 3.
For the next case, notice that

f(2)(s) = [f(s)]2
d2)(s; ")
ds2

+ 2[f(s)]3
(
d)(s; ")
ds

)2

= [f(s)]2(1− ") (2)(s) + 2[f(s)]3["+ (1− ") (1)(s)]2

and a similar expression holds for g(2)(s), with O" replacing " and g replacing f. From
the above considerations, it follows that lims↑1 f(2)(s)=g(2)(s)6 3M 5.
Similarly, we 8nd that

lim
s↑1

f(3)(s)=g(3)(s)6 13M 7 and lim
s↑1

f(4)(s)=g(4)(s)6 75M 9:

4. Fluctuations of Ln

4.1. Proof of Theorem 2.1

By Lemma 3.1 and (10),

V( OLn) = 4
n∑

i=1

V(Wi): (23)

Now

V(Wi) = E(Wi)2 = E




∑

k∈Zd

(1k)(1�i(k))P(Yi−1 = k|Fi−1)



2
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= E
∑

k;r∈Zd

(1k)(1r)(1�i(k))(1�i(r))P(Yi−1 = k|Fi−1)P(Yi−1 = r|Fi−1)

=
∑
k∈Zd

(1k)2E{(1�i(k))2P2(Yi−1 = k|Fi−1)}

=
∑
k∈Zd

(1k)2�[(1�i(k))2]E[P2(Yi−1 = k|Fi−1)]

= �2
∑
k∈Zd

(1k)2E[P2(Yi−1 = k|Fi−1)]; (24)

by the independence between �i(·) and Fi−1, between �i(k) and �i(r) when k 
= r,
and the zero mean of the latter.
We have that

E[P2(Yi−1 = k|Fi−1)] = E[P(Yi−1 = k|Fi−1)P(Ŷ i−1 = k|Fi−1)]

= E[P(Yi−1 = k; Ŷ i−1 = k|Fi−1)]

=P(Yi−1 = Ŷ i−1 = k) = P
(
Si−1

2
= k; Di−1 = 0

)
;

by the de8nition of Sn and Dn (see Lemma 3.2 and Corollary 3.1 above). Thus,

V(Wi) = �2
∑
k∈Zd

(1k)2P
(
Si−1

2
= k; Di−1 = 0

)
=

�2

4
E[(1Si−1)2;Di−1 = 0]: (25)

Thus from (25) and (23), we get

V( OLn) = �2
n−1∑
i=0

E[(1Si)2;Di = 0]: (26)

4.1.1. Upper bound for V( OLn)
Writing Si as a sum of its increments, we get

E[(1Si)2;Di = 0] = E




 i∑

j=1

1$j(Dj−1)



2

; Di = 0




=
i∑

j=1

E{[1$j(Dj−1)]2;Di = 0}

+2
i∑

1=k¡j

E{[1$k(Dk−1)][1$j(Dj−1)];Di = 0}: (27)

Since $j(Dj−1) = (Yj − Yj−1) + (Ŷ j − Ŷ j−1), we have |1$j(Dj−1)|6 |1(Yj − Yj−1)|+
|1(Ŷ j − Ŷ j−1)|6 2. So, (1$j(Dj−1))26 4 and E[(1$j(Dj−1))2;Di = 0]6 4P(Di = 0).
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Thus, for the 8rst term on the right-hand side of (27), we obtain
i∑

j=1

E[(1$j(Dj−1))2;Di = 0]6
i∑

j=1

4P(Di = 0) = 4iP(Di = 0): (28)

The expectation in the second term on the right-hand side of (27) can be written as

E[(1$k(Dk−1))(1$j(Dj−1));Di = 0]

=
∑
l∈Zd

∑
r∈Zd

E[(1$k(r))(1$j(l));Dk−1 = r; Dj−1 = l; Di = 0]

=
∑

l; r∈Zd

∑
w1 ;w2∈Zd

E[(1$k(r))(1$j(l));Dk−1 = r; Dk = r + w2;

Dj−1 = l; Dj = l+ w1; Di = 0]

=
∑

l; r∈Zd

∑
w1 ;w2∈Zd

∑
z1 ; z2∈Zd

(1z1)(1z2)P($k(r) = z2; $j(l) = z1;

Dk−1 = r; Dj−1 = l; Dk = r + w2; Dj = l+ w1; Di = 0): (29)

By the Markov property of Dn and the identities {Dj = l + w1; Dj−1 = l} = {Dj−1 =
l; #j(l) = w1}, {Dk = r + w2; Dk−1 = r} = {Dk−1 = r; #k(r) = w2}, we get that, for all
k ¡ j, the latter probability equals P(Di = 0|Dj = l+ w1) times

P($j(l) = z1; #j(l) = w1; $k(r) = z2; #k(r) = w2; Dj−1 = l; Dk−1 = r)

=P($j(l) = z1; #j(l) = w1)P($k(r) = z2; #k(r) = w2; Dj−1 = l; Dk−1 = r)

and thus the right-hand side of (29) can be written as∑
l; r∈Zd

∑
w1 ;w2∈Zd

∑
z1 ; z2∈Zd

(1z1)(1z2)P($j(l) = z1; #j(l) = w1)

×P($k(r) = z2; #k(r) = w2; Dj−1 = l; Dk−1 = r)P(Di = 0|Dj = l+ w1)

=
∑

l; r∈Zd

∑
w1 ;w2∈Zd

∑
z2∈Zd

1



∑
z1∈Zd

z1P($j(l) = z1; #j(l) = w1)


 (1z2)

×P($k(r) = z2; #k(r) = w2; Dj−1 = l; Dk−1 = r)P(Di = 0|Dj = l+ w1):

Now, Remark 3.4 says that

P($j(l) = z1; #j(l) = w1) = P($j(l) =−z1; #j(l) = w1)

and thus the expression within braces above vanishes and consequently so does the
second term on the right-hand side of (27). Using this and (28) in (27), we get that

V(Wi)6 �2(i − 1)P(Di−1 = 0): (30)
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Now, from (23),

V( OLn)6 4�2
n−1∑
i=1

iP(Di = 0): (31)

(a) This is already enough to obtain an upper bound of the form (9) in d=1, if we
use the following bound. For some c4

n−1∑
i=0

P(Di = 0)6 c4n1=2: (32)

This was established in Ferrari and Fontes (1998, Lemma 3.3). From this and (31),

V( OLn)6 4�2
n−1∑
i=1

iP(Di = 0)6 4�2n
n−1∑
i=1

P(Di = 0)6 4c4�2n3=2: (33)

In d¿ 2, this argument does not give the correct order. We also do not know
the asymptotic behavior of P(Di = 0) as i → ∞ (which we do in d = 1 (see
Lemma 6.1); this would give another argument for (a) above). We thus make a more
circuitous argument, via Lemma 3.3. By the latter result, there exists c5 such that for
all 06 s¡ 1∑

i¿1

iP(Di = 0)si6 c5
∑
i¿1

iP(Hi = 0)si: (34)

We also use the well-known result that for every d¿ 1, there exists c6 such that

P(Hi = 0) ∼ c6i−d=2; (35)

where, as usually, an ∼ bn means that limn→∞ an=bn = 1 (see, for example, Spitzer
(1976, P7.9)). So, we get that for some c7∑

i¿1

iP(Di = 0)si6 c5c7
∑
i¿1

i1−d=2si= : c5c7’d(s): (36)

Now notice that
n∑

i=1

iP(Di = 0)6 4
∑
i¿1

iP(Di = 0)(1− 1=n)i (37)

for all n¿ 2. From this, (36) and (31), we get

V( OLn)6 4�2
n∑

i=1

iP(Di = 0)

6 16c5c7�2
∑
i¿1

i1−d=2(1− 1=n)i = 16c5c7�2’d(1− 1=n): (38)

(b) ’2(s) =
∑

i¿1 s
i = s=(1− s). Thus, ’2(1− 1=n) = n− 1 and from this and (38)

we have

V( OLn)6 16c5c7�2n if d= 2: (39)
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(c)

(’3(s))2 =

(∑
n¿1

1√
n
sn
)2

=
∑
n¿1

(
n−1∑
i=1

1√
i
√
n− i

)
sn

=
∑
n¿1

(
n−1∑
i=1

1√
i=n
√
1− i=n

1
n

)
sn: (40)

Notice that the expression within parentheses on the right-hand side of (40) is a
Riemann sum for a de8nite integral which equals �. Thus, there exists c8 such that

(’3(s))26
∑
n¿1

c8sn = c8 s=(1− s):

Thus ’3(1− 1=n)6 c1=28 n1=2 and from this and (38) we have

V( OLn)6 16c5c7c
1=2
8 �2n1=2 if d= 3: (41)

(d) ’4(s) =
∑

i¿1 s
i=i = log[1=(1− s)]. Thus ’4(1− 1=n) = log n and from this and

(38) we have

V( OLn)6 16c5c7�2 log n if d= 4: (42)

(e) Finally, if d¿ 5 and 06 s¡ 1, then

’d(s) =
∑
i¿1

i−(d=2−1)si6
∑
i¿1

i−3=2 ¡∞:

We get from this and (38) that

V( OLn) is bounded in n if d¿ 5: (43)

Gathering (33), (39) and (41)–(43), we have that there exists c2 such that

V( OLn)6 c2O(n; d): (44)

4.1.2. Lower bound for V( OLn)
We only need to consider d6 4. By Jensen’s inequality, the expectation in (24) is

bounded from below by

E2[P(Yi−1 = k|Fi−1)] = P2(Yi−1 = k) = P(Yi−1 = Y ′
i−1 = k); (45)

where Y ′ is an independent copy of Y . It follows that

V( OLn)¿ 4�2
n−1∑
i=1

∑
k∈Zd

(1k)2P2(Yi = k): (46)

Thus, if 4¿ 0

V( OLn)¿ 4�24
n−1∑
i=1

i
∑

k∈Zd:(1k)2¿4i

P2(Yi = k)

= 4�2 4
n−1∑
i=1

i


∑

k∈Zd

P2(Yi = k)−
∑

k∈Zd:(1k)264i

P2(Yi = k)


 : (47)
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Notice that Yn − Y ′
n is a random walk distributed as Hn from the previous subsection.

Thus, ∑
k∈Zd

P2(Yi = k) =
∑
k∈Zd

P(Yi = Y ′
i = k) = P(Yi = Y ′

i ) = P(Hi = 0): (48)

Using (48) in (47), we obtain

V( OLn)¿ 4�24
n−1∑
i=1

i
{
P(Hi = 0)− sup

k
P(Yi = k)P((1Yi)26 4i)

}
: (49)

Using (35) again, there exists c9 such that P(Hi=0)¿ c9i−d=2 for all i. It is also well
known that there exists c10 such that supkP(Yi = k)6 c10i−d=2. Thus

V( OLn)¿ 4�24
n−1∑
i=1

i1−d=2
[
c9 − c10 P((1Yi=

√
i)26 4)

]
: (50)

Now, by Berry–Esseen, applied to 1Yi, which is a one-dimensional simple symmetric
random walk, the above probability is bounded above by O(4)+O(1=

√
i). We conclude

that there exists 4¿ 0 for which the expression in brackets on the right-hand side of
(50) is bounded below by a positive constant c11 for all large enough i. Thus, for some
c12, c1, all n and d= 1; 2; 3; 4,

V( OLn)¿ 4c124
n−1∑
i=1

i1−d=2¿ c1O(n; d): (51)

Now, by Proposition 2.3 of Ferrari and Fontes (1998),

V( OZn) = �2
n−1∑
j=0

P(Dj = 0): (52)

Corollary 3.4 of the same paper states that

V( OZn) is of order




n1=2 if d= 1;

log n if d= 2;

constant if d¿ 3:

(53)

Thus, from (51), for all d¿ 1, V( OLn) dominates V( OZn). Since the order of Cov( OLn; OZn)
is intermediate to the orders of V( OZn) and V( OLn), it is also dominated by the latter.
Thus, by (8), the order of V(Ln(x)) is the same as the order of V( OLn) and, from (51)
and (44), the proof of Theorem 2.1 is complete.
Note that by (31) and (52), if the non-degeneracy assumption on the u’s does not

hold, then V( OLn(x)) and V( OZn) vanish identically and thus so does V(Ln(x)).

Remark 4.1. In the case of the voter model, " = "(0; 0) = 1 and thus D ≡ 0. From
(26), we get that V( OLn)= �2

∑n−1
i=0 E[(1Si)2], which one then easily estimates to be of

the order of n2 in all dimensions. From (52), we have that V( OZn) is of the order of n
in all dimensions. Thus, by (8), V(Ln(x)) is of the order of n2 in all dimensions for
all x.
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4.2. Invariant measure in high dimensions and its @uctuations

Since in 5 and higher dimensions OLn − n is an L2-bounded martingale, it converges
almost surely as n → ∞. The same holds for OZn (see Ferrari and Fontes (1998,
Lemma 2.2), and (53) above). We thus have from (7) that Ln − n converges almost
surely as n → ∞, say to L̃. We thus have that the distribution of L̃ is invariant for the
surface dynamics corresponding to applying the random averaging (1) and subtracting
1 at each site. A similar argument as that for Proposition 5.2 in Ferrari and Fontes
(1998) can be made for that. We omit it here. From these facts and (7), we are able
to argue the following:

Theorem 4.1. The distribution of (L̃(x)− (1x)2)=|x| converges weakly to the distribu-
tion of 25Z̃ as |x| → ∞, where Z̃ is a non-trivial random variable and 5 is a real
number, provided 1x=|x| → 5 as |x| → ∞. The variance of (L̃(x)−(1x)2)=|x| converges
to the variance of the weak limit.

Proof. Let L′ = limn→∞ OLn − n and Z ′ = limn→∞ OZn. Then, from (7), L̃(x) = L′(x) +
2(1x)Z ′(x) + (1x)2 and thus (L̃(x)− (1x)2)=|x|= (L′(x)=|x|) + 2[(1x)=|x|]Z ′(x).
The distributions of both L′(x) and Z ′(x) do not depend on x, since they are the

limits of distributions that do not depend on x, and L′(x) and Z ′(x) have 8nite second
moments, by the L2-Martingale Convergence Theorem. We conclude that L′(x)=|x| → 0
as |x| → ∞ in L2. We take Z̃=Z ′(0). The non-triviality of Z̃ follows from the positivity
of the variance of Z ′(0) (which equals �2

∑∞
i=0 P(Di=0); see (52) above). The result

follows.

5. Remark on higher degrees

The boundedness of the !uctuations in high dimensions, characteristic of the cases of
parabolic (studied above) and linear initial conditions (Ferrari and Fontes, 1998), does
not necessarily occur for a polynomial initial condition of higher degree. We illustrate
this with the case of a cubic.

Proposition 5.1. Let L̂n(x) = E[(1Y x
n )

3|Fn]; x∈Zd. For all high enough dimensions,
there exists c13 such that for all n¿ 1

V(L̂n(0))¿ c13n2: (54)

Proof.

L̂n(0) = E[(1Yn)3|Fn] =
∑
k∈Zd

d∑
j=1

∑
6=±1

[(1k)3 + 36(1k)2 + 3(1k) + 6]

×un(k; k + 6ej)P(Yn−1 = k|Fn−1)

= L̂n−1 + 3 OZn−1 + 3E[(1Yn−1)2(1�n(Yn−1))|Fn]

+E[1�n(Yn−1)|Fn];
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where OZn is as in the previous sections. Since the distribution of the un’s are sym-
metric and independent of Fn−1, E(L̂n|Fn−1) = L̂n−1 + 3 OZn−1. From this and the
fact that OZn is a martingale we get that L̂n − 3n OZn is a martingale. So L̂n − 3n OZn =
3
∑n

i=1 E[(1Yi−1)2(1�i(Yi−1))|Fi] +
∑n

i=1 E[1�i(Yi−1)|Fi]. The latter sum equals OZn

(see Ferrari and Fontes, 1998, (2.24)). We thus get that L̂n − 3(n + 1) OZn is also a
martingale with L̂n − 3(n+1) OZn=3

∑n
i=1 Ŵ i, where Ŵ i := E[(1Yi−1)2(1�i(Yi−1))|Fi].

The variance of Ŵ i can be (roughly) estimated as follows:

V(Ŵ i) = �2E
∑
k∈Zd

(1k)4P2(Yi−1 = k|Fi−1)

= �2E[(1Si−1)4;Di−1 = 0]6 16�2(i − 1)4 P(Di−1 = 0);

where in the above inequality we used the fact that S has jumps of length at most
2. Thus V(L̂n) is bounded above by constant times

∑∞
i=1 i

4P(Di = 0). From Lemma
3.3, we can obtain an upper bound for the latter sum by replacing P(Di = 0) in it
by constant times P(Hi = 0). We conclude that the sum is bounded by constant times∑∞

i=1 i
4−d=2, which is 8nite if d¿ 11. On the other hand, (52) and (53) above tell us

that the !uctuations of OZn are positive and bounded for d¿ 3 and thus V(L̂n) is of
order n2, if d¿ 11.

Remark 5.1. It is possible, with a similar estimation as the one done in Section 4.1.1,
to get a sharper estimate of the variance of

∑n
i=1 Ŵ i and then obtain an upper bound

of constant times
∑n

i=1 i
2−d=2 for V(L̂n). This and (53) above would imply that the

term 3(n+1) OZn gives the dominating contribution for the variance of L̂n in d¿ 2 and
thus the conclusion of Proposition 5.1 would hold for these dimensions. (The case of
d=1 would demand further analysis, since the contributions of 3(n+1) OZn and

∑n
i=1 Ŵ i

would be of the same order and one would have to rule out cancellations.) We chose
not to make an exhaustive analysis here, but rather to indicate the phenomenon of
unboundedness of the !uctuations in all high dimensions as simply as possible.

Remark 5.2. Unboundedness of the !uctuations in high dimensions should also occur
for higher degree initial polynomials such as X0(x) = (1x)k , k¿ 4. Results similar to
Proposition 5.1 should hold for those cases, with similar arguments.

6. Central limit theorem

In d= 1, the following holds:

Lemma 6.1. Let D be as in the previous sections. Then

P(Dn = 0|D0 = 0) � n−1=2: (55)

From here on, an � bn means that limn→∞ an=bn exists and is positive.
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Proof. This is loosely argued in Remark 3.3 of Ferrari and Fontes (1998). We repeat
that argument. The result follows from P20.2 of Spitzer (1976), Lemma 3.3 and the
fact that (1) of P20.2 of Spitzer (1976) holds for H . We leave more details to the
reader.

Proof of Theorem 2.3. To prove Theorem 2.3, it is enough that we verify the two
conditions of the corollary to Theorem 3.2 of Hall and Heyde (1980). In the notation of
that reference, Xni=V

−1=2
n (2Wi+1) and Fni=Fi for all i; n. We will be sketchy, since

most of the arguments are either standard or have been employed (in essence) by Ferrari
and Fontes (1998). We recall that Wi = E[Yi−1�i(Yi−1)|Fi] =

∑
k k�i(k)P(Yi−1 =

k|Fi−1).

6.1. First condition

Since Vn is of the order of n3=2, it is enough to show that

1
n3=2

n∑
i=1

E(W 2
i ; |Wi|¿4n3=4|Fi−1) → 0 (56)

in probability as n → ∞ for any 4¿ 0. For that, it suRces to prove that

1
n3=2

n∑
i=1

E(W 2
i ; |Wi|¿4n3=4) → 0 (57)

as n → ∞, and this can be achieved by repeated use of the Cauchy–Schwarz inequality
and the Chebyshev inequality, together with standard bounds on moments of the simple
symmetric random walk and (55). We leave details to the reader.

6.2. Second condition

In the notation of Hall and Heyde (1980), it can be written as

V 2
n := V−1

n

n∑
i=1

(E[(2Wi + 1)2|Fi−1]− E[(2Wi + 1)2]) → 0 (58)

in probability as n → ∞. Since Vn is of the order of n3=2, and also noting that
E(Wi|Fi−1) = 0 for all i¿ 1, it is enough to show that

n−3=2
n∑

i=1

[E(W 2
i |Fi−1)− E(W 2

i )] → 0 (59)

in probability as n → ∞. The above expression can be written as

�2n−3=2
n−1∑
i=0

(E(S2i ;Di = 0|Fi)− E(S2i ;Di = 0)): (60)
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We will argue that the variance of the latter expression tends to 0 as n → ∞. We
write the variance of the sum as

n−1∑
j=1

E
(

n−1∑
i=j

[E(S2i ;Di = 0|Fj)− E(S2i ;Di = 0|Fj−1)]

)2
:

After some calculation, the inner sums on the right-hand side of (61) can be rewritten
as ∑

l;l′
[An

j; l; l′uj; l′(1− uj; l)− An
j; l; l′−2uj; l′ + An

j; l+2; l′uj; l′uj; l]

×P(Yj−1 = l; Ŷ j−1 = l′|Fj−1); (61)

where

An
j; l; l′ :=

n−1∑
i=j

(E(S2i ;Di = 0|Sj = l+ l′; Dj = l− l′ − 2)

− E(S2i ;Di = 0|Sj = l+ l′ − 2; Dj = l− l′)) (62)

and bar means centering (that is, OX = X − E(X )).
We present next an estimation of An

j; l; l′ . After that, the rest of the argument of the
proof of the second condition, which relies on standard use of the Cauchy–Schwarz
inequality, bounds on moments of the simple symmetric random walk and (55), will
be left to the reader.
We begin by observing that, by Remark 3.4, we can represent Sn in one dimension

as
∑n

i=1 $̂i9i(Di−1), where $̂1; $̂2; : : : are i.i.d. with P($̂1 = 2) =P($̂1 =−2) = 1=2 and

9i(l)
d= 5($i(l) 
= 0) for all i; l, where 5(·) is the indicator function. Clearly, 9i=5(Si 
=

Si−1). Now, from the nearest-neighbor character of the jumps of Y; Ŷ , we have that
5(Si 
= Si−1) = 5(Di = Di−1). We can thus rewrite the summands of (62) as

E[(l+ l′ + Si − Sj)2;Di = 0|Dj = l− l′ − 2]

− E[(l+ l′ − 2 + Si − Sj)2;Di = 0|Dj = l− l′]

= (l+ l′)2[P(Di = 0|Dj = l− l′ − 2)− P(Di = 0|Dj = l− l′)]

+ 4(l+ l′ − 1)P(Di = 0|Dj = l− l′)

+ 4
i∑

k=j+1

[P(Di = 0; Dk = Dk−1|Dj = l− 2)

−P(Di = 0; Dk = Dk−1|Dj = l)]:

From now on, we leave it to the reader to verify that the absolute value of the sum
in i from j to n− 1 of the above terms is bounded above by constant times (l+ l′)2,
for the 8rst term; |l + l′ − 1|√n, for the second one; and n, for the third one. Two
ingredients one can use for this is the uniform boundedness of

∑n
i=j ai; j; l; l′ in l; l′, j
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and n, where ai; j; l; l′ := P(Di = 0|Dj = l− l′ − 2)−P(Di = 0|Dj = l− l′) and the fact
that P(Dn =0|D0 =m)6P(Dn =0|D0 = 0) for all m (as shown in Ferrari and Fontes,
1998).
We conclude that |An

j; l; l′ | is bounded above by constant times
(l+ l′)2 + |l+ l′ − 1|√n+ n (63)

and the estimation of An
j; l; l′ is complete.

Acknowledgements

We thank P. Ferrari for many discussions on these and related questions and models.
We also thank an anonymous referee, whose suggestions led to improvements in this
presentation.

References

Andjel, E., 1985. Invariant measures and long time behaviour of the smoothing process. Ann. Probab. 13,
62–71.

Durrett, R., 1996. Stochastic Spatial Models, PCMI Lecture Notes. IAS, Princeton.
Ferrari, P.A., Fontes, L.R.G., 1998. Fluctuations of a surface submitted to a random average process. Electron.

J. Probab. 3 (6), 1–34.
Hall, P., Heyde, C.C., 1980. Martingale Limit Theory and its Application. Academic Press, New York.
Hammersley, J.M., 1965/1966. Harnesses, Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Berkeley, California, Vol. III: Physical Sciences. University of California Press,
Berkeley, CA, pp. 89–117.

Liggett, T.M., 1985. Interacting Particle Systems. Springer, Berlin.
Liggett, T.M., Spitzer, F., 1981. Ergodic theorems for coupled random walks and other systems with locally

interacting components. Z. Wahrsch. Verw. Gebiete 56, 443–468.
Medeiros, D.P., 2001. Processo de mUedias aleatUorias com con8guraVcão inicial parabUolica. Ph.D. Thesis,

University of São Paulo, 151pp (in Portuguese). Version in http://www.ime.usp.br/∼lrenato/tese.ps, 128pp
(in Portuguese).

Spitzer, F., 1976. Principles of Random Walk. Springer, New York.
Toom, A., 1997. Tails in harnesses. J. Statist. Phys. 88, 347–364.

http://www.ime.usp.br/~lrenato/tese.ps

	Time fluctuations of the random average process with parabolic initial conditions
	Introduction
	Definitions and main results
	Preliminaries
	Fluctuations of Ln
	Proof of Theorem 2.1
	Upper bound for V(Ln)
	Lower bound for V(Ln)

	Invariant measure in high dimensions and its fluctuations

	Remark on higher degrees
	Central limit theorem
	First condition
	Second condition

	Acknowledgements
	References


