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THE LOG-BURR XII REGRESSION MODEL
FOR GROUPED SURVIVAL DATA
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1Departamento de Ciências Exatas, Universidade de São Paulo,
São Paulo, Brazil
2Departamento de Estatística, Universidade Federal de Pernambuco,
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The log-Burr XII regression model for grouped survival data is evaluated in the
presence of many ties. The methodology for grouped survival data is based on life
tables, where the times are grouped in k intervals, and we fit discrete lifetime regression
models to the data. The model parameters are estimated by maximum likelihood and
jackknife methods. To detect influential observations in the proposed model, diagnostic
measures based on case deletion, so-called global influence, and influence measures
based on small perturbations in the data or in the model, referred to as local influence,
are used. In addition to these measures, the total local influence and influential
estimates are also used. We conduct Monte Carlo simulation studies to assess the
finite sample behavior of the maximum likelihood estimators of the proposed model
for grouped survival. A real data set is analyzed using a regression model for grouped
data.

Key Words: Burr XII distribution; Censored data; Grouped survival data; Regression model;
Sensitivity analysis.

1. INTRODUCTION

Survival data are very common in clinical, chemical, and agronomic assays,
among others. However, in practice, experiments are conducted so that all sample
units are evaluated at the same time. These data are referred to as grouped survival
data, which are a particular case of interval censoring and are characterized by
an excessive number of ties. Grouped survival data have been studied by several
authors and some more recent applications on grouped survival data can be found
in the literature; for example, Thompson (1977) studied the treatment of grouped
observation in life studies, Johnson and Koch (1978) proposed linear models
analysis of competing risks for grouped survival times, Prentice and Gloeckler
(1978) proposed a regression model for grouped survival data with application to
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142 HASHIMOTO ET AL.

breast cancer data, Allison (1982) discussed discrete-time methods for the analysis
of event histories, Holford (1980) described analysis of rates and of survisorship
using log-linear models, and Baker et al. (1993) presented regression analysis of
grouped survival data considering informative censoring and double sampling.
Further, Hertz-Piccioto and Rockhill (1997) studied the efficiency of approximation
methods for tied survival times in Cox regression, Lam and Ip (2003) reported
group-based modeling, Yu et al. (2004) proposed models with a cure fraction for
grouped survival data under the parametric approach in the absence of explanatory
variables, and Giolo et al. (2008) showed different basic methods to analyze grouped
survival data.

In this article, we combine the works and propose a regression model for
grouped data using the log-Burr XII distribution, “which is considered an extension
of the work carried out by Silva et al. (2008).” In this work, the likelihood function
has been modified to include failing individuals, at-risk individuals and censored
individuals. We consider a classic analysis for regression models fitted to grouped
survival data. The inferential part was carried out using the asymptotic distribution
of the maximum likelihood estimators (MLEs), which may present difficult results
to be justified when the sample size is small. As an alternative to the classic analysis,
we explore the use of the jackknife estimator for the regression model. In such a
case, it is not necessary to use the asymptotic distribution of the MLEs.

After modeling, it is important to check assumptions in the model and to
conduct a thorough study in order to detect influential or extreme observations
that can cause distortions in the results of the analysis. Numerous approaches have
been proposed in the literature to detect influential or outlying observations. An
efficient way to detect influential observations was proposed by Cook (1986). He
suggested that more confidence can be put in a model that is relatively stable
under small modifications. The best known perturbation schemes are based on case
deletion introduced by Cook (1977), in which the effect of completely removing
cases from the analysis is studied. This reasoning will form the basis of our global
influence, introduced in section 3.1, and in doing so, it will be possible to determine
which subjects might be influential for the analysis (see, e.g., Cook and Weisberg,
1982; Xie and Wei, 2007). Also, some authors have investigated the assessment
of local influence in survival analysis models. For example, Carrasco et al. (2008)
investigated local influence in log-modified Weibull regression models with censored
data, Silva et al. (2008) adapted global and local influence methods in log-Burr
XII regression models with censored data, and Ortega et al. (2009) investigated
local influence in generalized log-gamma regression models with cure fraction. We
develop a similar methodology to detect influential subjects in regression models for
grouped survival data.

The article is organized as follows. In section 2, we suggest a log-Burr
XII regression model for grouped survival data in addition to the maximum
likelihood and jackknife estimators. We derive the score functions and the observed
Fisher information matrix and propose an algorithm for estimating the regression
coefficients and the remaining parameter. In section 3, we discuss the global and
local influence methods. The likelihood displacement is used to assess the influence
of the observations on the maximum likelihood estimator (MLE). Section 4 contains
Monte Carlo simulations on the finite sample behavior of the MLEs and an analysis
of a real data set. Some conclusions are given in section 5.

D
ow

nl
oa

de
d 

by
 [

17
7.

99
.5

5.
21

9]
 a

t 2
1:

27
 0

2 
N

ov
em

be
r 

20
12

 



BURR XII REGRESSION MODEL 143

2. THE LOG-BURR XII MODEL FOR GROUPED SURVIVAL DATA

For modeling a lifetime T , Zimmer et al. (1998) considered the Burr XII
distribution with parameters �, �, and �, having a density function given by

f�t� �� �� �� = ��

��
t�−1

[
1+

(
t

�

)�]−��+1�

� t > 0

Here, � > 0 and � > 0 are shape parameters and � > 0 is a scale parameter. The
associated survival function is S�t� �� �� �� = [

1+ �t/���
]−�

and then the failure rate
function reduces to h�t� �� �� �� = ���t/���−1��	1+ �t/���
�−1. According to Zimmer
et al. (1998), the failure rate function of this distribution can be decreased for � ≤ 1.
If � > 2, the failure rate function reaches a maximum value and then decreases. The
range of values for which it is increasing can be described by �. If � is between 1
and 2, the failure rate function can be essentially constant over much of the range
of the distribution, which depends on � values. The failure rate function has a
unimodal shape property. Besides, h�t� → 0 for t → 0 or t → �. When 1/� = m
and � = 1, the Burr XII distribution reduces to the log-logistic distribution.

In many practical applications, the lifetimes are affected by variables that
are referred to as explanatory variables, such as cholesterol level, blood pressure,
and many others. It is important to explore the relationship between lifetime and
explanatory variables. An approach based on a regression model can be used. We
consider a class of location-scale models, where the vector x = �x1� x2� � � � � xp�

T of
explanatory variables is related to the response Y = log�T� through a regression
structure. The density function of Y in terms of a re-parameterization � = 1/ and
� = exp��� can be rewritten as

f�y� �� � �� = �


exp

(
y − �



)[
1+ exp

(
y − �



)]−��+1�

� −� < y < � (1)

where � > 0,  > 0 and −� < � < �. The distribution (1) is referred to as the log-
Burr XII distribution. Its survival function is

S�y� =
[
1+ exp

(
y − �



)]−�

We can write the preceding distribution as a log-linear model,

Y = � + Z (2)

where the random variable Z has the density function (for � > 0)

f�z� = � exp�z�	1+ exp�z�
−��+1�� −� < z < � (3)

The model (2) opens new possibilities for fitted many different types of data.
For example, if Z has an extreme value (log-Weibull) distribution, then f�z� (for
 > 0) is given by

f�z� = −1 exp	z− exp�z�
� −� < z < �
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144 HASHIMOTO ET AL.

Figure 1 Plots of the density function (3) for selected parameters. (Color figure available online.)

In this article, we focus on the log-Burr XII model. Figure 1 shows that the log-
Burr XII density function (3) is asymmetrical and that the parameter � modifies the
location and scale of the distribution.

The scale parameter �i depends on the explanatory vector xi = �xi1� � � � � xip�
T

by �i = xT
i �. We consider a regression structure based on the log-Burr XII

distribution (1) relating the response variable Y to the vector of explanatory
variables x, so that the model Y � x can be represented by

yi = xT
i � + zi� i = 1� � � � � n (4)

where � = ��1� � � � � �p�
T ,  > 0 and � > 0 are unknown parameters and zi follows

the distribution (3). In this case, the survival function of Y � x is given by

S�y � x� =
[
1+ exp

(
y − xT�



)]−�

For � = 1, the log-logistic regression model is obtained as a special case.
Applications of the log-Burr XII regression model in reliability and survival studies
were investigated by Silva et al. (2008). On the other hand, if the observed data set,
in addition to censoring, presents an excessive number of ties, the observed times
are grouped in intervals.

The intervals are constructed such that the time axis is divided into k intervals
defined by the cut points a1� � � � � ak, so that the jth interval is denoted by Ij =
	aj−1� aj� for j = 1� � � � � k, and the logarithms of the lifetimes yi are grouped in k
intervals. The survival functions of log�aj� � x and log�aj−1� � x are given by

S
[
log�aj� � x

] = {
1+ exp

[
log�aj�− xT�



]}−�

and
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BURR XII REGRESSION MODEL 145

S
[
log�aj−1� � x

] = {
1+ exp

[
log�aj−1�− xT�



]}−�

(5)

respectively. This model will be referred to as the log-Burr XII regression model
for grouped survival data. For � = 1, the log-logistic regression model for grouped
survival data is obtained as a special case. This model is an extension of the
accelerated failure time model using the Burr XII distribution for grouped survival
data.

2.1. Maximum Likelihood Estimation

Let �y1� x1�� � � � � �yn� xn� be an observed sample of n independent observations,
where yi represents the failure-time logarithm or the censoring-time logarithm
and xi = �xi1� � � � � xip�

T is the vector of explanatory variables associated with the
ith individual. Consider that the times yi are grouped in k intervals denoted by
Ij =

[
log�aj−1�� log�aj�

)
for j = 1� � � � � k. The likelihood function can be obtained

by considering explanatory variables xi such that the contribution from the ith
individual in the jth interval is given by:

• If the ith individual failed in the jth interval, its contribution to the likelihood
function is given by 1− S

[
log�aj� � x

]
/S
[
log�aj−1� � x

]
.

• If the ith individual survived (that is, it is at risk) in the jth interval, its
contribution to the likelihood function is given by S

[
log�aj� � x

]
/S
[
log�aj−1� � x

]
.

• If the ith individual censored at time ci in the jth interval, its contribution
to the likelihood function is given by S

[
log�ci� � x

]
/S
[
log�aj−1� � x

]
, for which

log�ci�∈ Ij .

Thus, the likelihood function for the parameter vector � = ��� � �T �T

reduces to

L��� =
k∏

j=1

{ ∏
i∈Fj

[
1− S

[
log�aj� � x

]/
S
[
log�aj−1� � x

]]
× ∏

i∈Rj

[
S
[
log�aj� � x

]/
S
[
log�aj−1� � x

]] ∏
i∈Cj

[
Si
[
log�ci�

]/
Si
[
log�aj−1�

]]}
(6)

Here, Fj denotes the set of failing individuals in the jth interval, Rj denotes the
number of individuals at risk in the jth interval, and Cj denotes the censored
individuals in the jth interval. In practice, Eq. (6) is too complicated to be
used, since the times log�ci� are unknown if the data are grouped in intervals.
In this case, an alternative is to associate a uniform distribution in the interval[
log�aj−1�� log�aj�

)
to log-censoring time log�ci� and consider the failing rate as a

constant in the jth interval (see, e.g., Thompson, 1977). The contribution of the
censored individuals in the jth interval can be expressed as

S
[
log�ci�

]
S
[
log�aj−1�

] =
{

S
[
log�aj�

]
S
[
log�aj−1�

]}1/2

(7)
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146 HASHIMOTO ET AL.

According to Colosimo and Giolo (2006), the interpretation of the quantity 1/2 is
that observations for which censoring occurred in the interval Ij are treated as if
they were at risk during half of the interval under consideration. Inserting Eq. (7)
in Eq. (6) and considering the survival function (5), the log-likelihood function for
the parameter vector � = ��� � �T �T becomes

l��� =
k∑

j=1

{∑
i∈Fj

log
{
1−

[
1+ exp�zij�

1+ exp�zij−1�

]−�}
− �

∑
i∈Rj

log
[

1+ exp�zij�

1+ exp�zij−1�

]

− �

2

∑
i∈Cj

log
[

1+ exp�zij�

1+ exp�zij−1�

]}
(8)

where zij = 	log�aj�− xT
i �
/ and zij−1 = 	log�aj−1�− xT

i �
/.
The MLE �̂ of the model parameters in � = ��� � �T �T can be obtained

by maximizing the log-likelihood function (8). We use the matrix programming
language Ox (MaxBFGS function) (see Doornik, 2006) to compute the estimate �̂.
Under conditions that are fulfilled for the parameter vector � in the interior of the
parameter space but not on the boundary, the asymptotic distribution of

√
n��̂ − ��

is multivariate normal Np+2�0� K���
−1�, where K��� is the information matrix. The

asymptotic covariance matrix K���−1 of �̂ can be approximated by the �p+ 2�×
�p+ 2� inverse of the observed information matrix −L̈��. Thus, the asymptotic
inference for the parameter vector � can be based on the normal approximation
Np+2�0�−L̈−1

�� � for �̂. The elements of the observed information matrix are

L̈�� =
L̈�� L̈� L̈��m

� L̈ L̈�m

� � L̈�m�s


where m� s = 1� � � � � p, and the submatrices are given in the appendix.

The approximate multivariate normal Np+2�0�−L̈−1
�� � distribution can be used

to construct confidence regions for some parameters in � and for the hazard and
survival functions. In fact, a 100�1− ��% asymptotic confidence interval for each
parameter �v is given by

ACIv =
(
�̂v − z�/2

√
−̂̈Lv�v

� �̂v + z�/2

√
−̂̈Lv�v

)

where −̂̈Lv�v

denotes the vth diagonal element of the inverse of the estimated

observed information matrix −̂̈L−1

�� and z�/2 is the �1− �/2�th quantile of the
standard normal distribution, for v = 1� � � � � p+ 2. We now investigate the use of
the log-logistic regression model for grouped survival data, which is a simpler model
than the proposed one. Since the log-Burr XII and log-logistic regression models for
grouped survival data are embedded, the likelihood ratio (LR) test can be used to
discriminate between such models. In this case, the hypotheses are H0� � = 1 versus
H1� � �= 1. The LR statistic is given by w = 2�l��̂�− l��̂0��, where �̂0 is the MLE
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BURR XII REGRESSION MODEL 147

of � under H0. The null hypothesis is rejected if w > �21−��1�, where �21−��1� is the
quantile of the chi-squared distribution with one degree of freedom.

2.2. Jackknife Estimator

The idea of jackknifing can be thought of as a method for converting the
problem of estimating any population parameter into the problem of estimating
a population mean. An important work for implementing the jackknife method
is given by Lipstiz et al. (1990), who suggested an alternative robust estimator of
the covariance matrix based on the jackknife for analyzing data from repeated
measurement studies. Here, we use this method as an alternative to estimate �.

Suppose that Y1� � � � � Yn is a random sample of n values. Let �̂ be the parameter
vector estimator of � based on all n observations and �̂−l, for l = 1� � � � � n, be the
estimator of � obtained by eliminating the lth observation. Thus, the pseudo-values
are calculated by

�̂∗l = n�̂ − �n− 1��̂−l� l = 1� � � � � n

Therefore, the jackknife estimator of � is given by

�̂∗ =
∑n

l=1 �̂
∗
l

n

Manly (1997) studied the pseudo-values as a random sample of independent
estimates and then suggested that a 100�1− ��% confidence interval for � is given
by �̂∗ ± t�/2�n−1s/

√
n, where t�/2�n−1 is the upper �1− �/2� point of the t distribution

with �n− 1� degrees of freedom, which has the effect of removing the bias term of
order 1/n. The jackknife estimate calculations for the log-Burr XII regression model
for survival grouped data are performed for � = ��� � �T �T and confidence intervals
are calculated separately for each parameter.

3. SENSITIVITY ANALYSIS

3.1. Global Influence

The first tool to perform sensitivity analysis, as previously stated, is by means
of global influence by starting from the case deletion (see Cook, 1977). Case deletion
is a common approach to study the effect of dropping the ith case from the data
set. Case deletion for model (4) is given by

Yl = xT
l � + zl� l = 1� � � � � n� l �= i (9)

Accordingly, a quantity with subscript “(i)” means the original quantity with the ith
observation deleted. For model (9), the log-likelihood function is denoted by l�i����.

Let �̂�i� = ��̂�i�� ̂�i�� �̂
T
�i��

T be the MLE of � obtained by maximizing l�i����. To
assess the influence of the ith observation on the MLE �̂ = ��̂� ̂� �̂T �T , the basic
idea is to compare the difference between �̂�i� and �̂. If deletion of an observation
seriously influences the estimates, more attention should be paid to that observation.
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148 HASHIMOTO ET AL.

Hence, if �̂�i� is far away from �̂, then the case is regarded as an influential
observation. A first measure of global influence is defined as the standardized norm
of �̂�i� − �̂ (generalized Cook distance)

GDi��� = ��̂�i� − �̂�T
{− L̈��

}
��̂�i� − �̂�

Another alternative is to assess values GDi���, GDi��, and GDi���, which
reveal the impact of the ith observation on the estimates of �, , and �, respectively.
Another popular measure of the difference between �̂�i� and �̂ is the likelihood
displacement,

LDi��� = 2
{
l��̂�− l��̂�i��

}
3.2. Local Influence

Another approach is suggested by Cook (1986), giving weights to the
observations instead of removing them. Local influence calculation can be carried
out for model (4). If likelihood displacement LD��� = 2�l��̂�− l��̂��� is used, where
�̂� denotes the MLE under the perturbed model, the normal curvature for � at
direction d (	d	 = 1) is given by Cd��� = 2�dT�T L̈−1

�� �d�, where � is a �p+ 2�×
n matrix that depends on the perturbation scheme, whose elements are given by
�vi = �2l�� ���/��v��i, for i = 1� � � � � n and v = 1� � � � � p+ 2, evaluated at �̂ and �0,
where �0 is the no perturbation vector. For the log-Burr XII regression model,
the elements of L̈��� are given in the appendix. We can also calculate normal
curvatures Cd��� to perform various index plots, for instance, the index plot of dmax,
the eigenvector corresponding to Cdmax

, the largest eigenvalue of the matrix B =
−�T L̈−1

�� �, and the index plots of Cdi
���, so-called the total local influence (see, e.g.,

Lesaffre and Verbeke, 1998), where di represents an n× 1 vector of zeros with one in
the ith position. Thus, the curvature at direction di takes the form Ci = 2��T

i L̈
−1
�� �i�,

where �T
i denotes the ith row of �. It is usual to point out those cases such that

Ci ≥ 2�C, where �C = 1
n

∑n
i=1 Ci�

Next, we calculate, under model (4), the log-likelihood function (8) for two
perturbation schemes and the matrix

� = ��vi��p+2�×n =
(
�2l�� ���
��i��v

)
�p+2�×n

� v = 1� � � � � p+ 2 and i = 1� � � � � n�

We define the vector of weights � = ��1� � � � � �n�
T .

Case-Weight Perturbation. In this case, the log-likelihood function becomes

l�� ��� =
k∑

j=1

{∑
i∈Fj

�i log�1− b
−�
ij �− �

∑
i∈Rj

�i log�bij�−
�

2

∑
i∈Cj

�i log�bij�
}

where bij = 	1+ exp�zij�
/	1+ exp�zij−1�
, 0 ≤ �i ≤ 1, and �0 = �1� � � � � 1�T . We
omit the matrix � = ��T

���
T
 ��

T
� �

T in this work.
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BURR XII REGRESSION MODEL 149

Explanatory Variable Perturbation. Here we consider an additive
perturbation on a particular continuous explanatory variable, say xt, by making
xit� = xit + �iSx, where Sx is a scaled factor and �i ∈ R. This perturbation scheme
leads to the log-likelihood function

l��� =
k∑

j=1

{∑
i∈Fj

log�1− b
∗−�
ij �− �

∑
i∈Rj

log�b∗ij�−
�

2

∑
i∈Cj

log�b∗ij�
}

where b∗ij =
[
1+ exp�z∗ij�

]
/
[
1+ exp�z∗ij−1�

]
, z∗ij =

[
log�aj�− x∗T

i

]
/, z∗ij−1 =[

log�aj−1�− x∗T
i

]
/, and x∗T

i = �1xi1 + · · · + �t�xit + �iSx�+ · · · + �pxip. We omit
the matrix � = ��T

���
T
 ��

T
� �

T in this work.

4. APPLICATIONS

4.1. Simulation Study

We conduct Monte Carlo simulation studies to assess the finite sample
behavior of the MLEs of �, , �0, and �1. The sample sizes were generated by taking
n = 20, n = 75, and n = 150. The log-lifetimes denoted by log�T1�� � � � � log�Tn�
were generated from the log-Burr XII distribution (3) by considering the re-
parameterization � = −1 and � = exp��� and by assuming �i = �0 + �1xi, where xi
was generated from a uniform 	0� 1
 distribution. The true parameter values used in
the data-generating processes are � = 1,  = 0�25, �0 = 2, and �1 = 3. The censoring
times denoted by C1� � � � � Cn were generated from a uniform distribution 	0� �
,
where � was adjusted until censoring percentage of 0.30. Then we fix the number of
intervals at k = 5 and k = 10 for n = 20, and k = 5, k = 10, and k = 20 for n = 75
and n = 150. To construct the intervals, we consider the minimum and maximum
log-lifetime generated to be the extremes of the interval. Sorting the log-lifetimes
that were not censored, we obtained the remaining values to compose each interval.

For each configuration of n and k, all results were obtained from 1000
Monte Carlo replications and the simulations were carried out using the Ox matrix
programming language. In each replication, a random sample of size n is drawn
from the log-Burr XII regression model (4) for survival grouped data and the BFGS
method (see, e.g., Press et al., 1992) was used for maximizing the total log-likelihood
function l���. For each fit, the mean estimates, standard errors (SEs), and mean
square errors (MSEs) were calculated.

The figures in Table 1 indicate that the biases, SEs, and MSEs of the MLEs
of �, , �0, and �1 decrease toward zero as the sample size n increases, as expected.
Future research should be conducted to obtain the bias corrections for these
estimators.

4.2. Vitamin A Data

We consider a data set provided by the Instituto de Saúde Coletiva–
Universidade Federal da Bahia. This data set was designed to assess the effect of
vitamin A supplementation on recurrent diarrheal episodes in small children; see, for
example, Barreto et al. (1994) and Silva et al. (2008). The data from a randomized
community trial were designed to assess the effect of vitamin A supplementation on
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150 HASHIMOTO ET AL.

Table 1 Mean estimates, standard errors, and mean squared
errors of the MLEs �̂, ̂, �̂0, and �̂1 in the log-Burr XII
regression model for grouped survival data

n Interval �k� Parameters Mean SE MSE

20 5 � 0.589 0.012 0.313
 0.170 0.170 0.015
�0 2.063 0.012 0.148
�1 2.766 0.019 0.415

10 � 0.568 0.010 0.287
 0.155 0.002 0.013
�0 2.028 0.010 0.101
�1 2.738 0.021 0.509

75 5 � 0.767 0.011 0.175
 0.212 0.002 0.005
�0 2.075 0.007 0.055
�1 2.780 0.010 0.148

10 � 0.831 0.010 0.128
 0.217 0.002 0.005
�0 1.998 0.006 0.036
�1 2.926 0.008 0.069

20 � 0.799 0.010 0.140
 0.211 0.002 0.006
�0 1.966 0.006 0.037
�1 2.941 0.009 0.084

150 5 � 0.793 0.010 0.143
 0.221 0.002 0.005
�0 2.095 0.006 0.045
�1 2.743 0.007 0.115

10 � 0.903 0.009 0.090
 0.231 0.001 0.001
�0 2.017 0.004 0.016
�1 2.932 0.005 0.030

20 � 0.905 0.009 0.090
 0.231 0.001 0.001
�0 1.990 0.004 0.016
�1 2.969 0.005 0.026

diarrheal episodes in 1207 pre-school children, aged 6–48 months at the baseline,
who received either placebo or vitamin A in a small city in the northeast of Brazil
from December 1990 to December 1991. The total time was defined as the time from
the first dose of vitamin A until the occurrence of an episode of diarrhea. An episode
of diarrhea was defined as a sequence of days with diarrhea, and a day with diarrhea
was defined when 3 or more liquid or semiliquid movements were reported in a 24-
hour period. The information on the occurrence of diarrhea collected at each visit
corresponds to a recall period of 48–72 hours. The number of liquid and semiliquid
movements per 24 hours was recorded. It was observed that of the 1207 children
under study, 925 showed a diarrheal episode, which means that 282 children showed
censored times. The explanatory variables considered in the models are: xi1: age at
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BURR XII REGRESSION MODEL 151

Figure 2 (a) TTT plot on vitamin A data. (b) Estimated survival function by fitting the Burr XII,
log-logistic, and Weibull distributions and the empirical survival function for vitamin A data. (Color
figure available online.)

baseline (in months); xi2: treatment (0 = placebo, 1 = vitamin A); and xi3: gender
(0 = girl, 1 = boy).

In many applications, there is qualitative information about the failure rate
function shape which can help us in selecting a particular model. In this context,
a device called the total time on test (TTT) plot (Aarset, 1987) is useful. The TTT
plot is obtained by plotting G�r/n� = 	�

∑r
i=1 Ti�n�+ �n− r�Tr�n
/�

∑n
i=1 Ti�n� against

r/n, where r = 1� � � � � n and Ti�n, i = 1� � � � � n, are the order statistics of the sample
(Mudholkar et al., 1995). The TTT plot for these data given in Fig. 2(a) indicates
a unimodal-shaped failure rate function. In order to assess whether the distribution
is appropriate, the plot comparing the empirical survival function and the estimated
survival function by fitting the Burr XII, log-logistic, and Weibull models is given
in Fig. 2(b). Based on Fig. 2(b), it is reasonable to consider that the logarithms of
the times to events follow the log-Burr XII distribution.

In order to have an idea about the behavior of the vitamin A data, Fig. 3
gives a histogram of the times of diarrhea. It shows a high frequency of observations
at the initial time and near the end of the study. It can also be seen from Fig. 3
that the minimum value for the response variable is 4 and the maximum value is
185. This fact indicates that a significant number of ties exist, and also that the
log-Burr XII model can fit these data. For this reason, the log-Burr XII regression
model for grouped data is an interesting alternative to model the vitamin A data.
The lifetimes were categorized in eight intervals ��4� 21
� �21� 38
� � � � � �126� 185
�.
No criterion exists to establish the number of intervals. The only assumption is the
presence of at least one failure in each interval. Hence, for the sake of convenience,
k = 8 intervals was adopted. Table 2 lists the lifetime logarithms in intervals, and the
numbers of failures, censoring, and individuals at risk in each of the eight intervals.

Maximum Likelihood and Jackknife Estimation. The MLEs of the
parameters in the log-Burr XII regression model fitted to the grouped survival data
were computed using the subroutine MaxBFGS in Ox and the results are given
in Table 3. In addition, in Table 3 we report the jackknife estimates of the model
parameters.
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152 HASHIMOTO ET AL.

Figure 3 Histogram of the vitamin A data.

The figures in Table 3 indicate that the explanatory variable treatment (x2) is
significant in the log-Burr XII model for grouped survival data at the level of 6%.
On the other hand, the explanatory variable x3 is not significant in the model at
the level of 5%. For the sake of illustration, Table 4 shows the tests to compare the
survival curves by the log-rank and Wilcoxon nonparametric tests by considering
the explanatory variable “treatment.” Results similar to those obtained in Table 3
can be observed.

Global Influence Analysis. In this section, we use Ox to compute the case-
deletion measures GDi��� and LDi��� presented in section 3.1. The results of such
influence measure index plots are displayed in Fig. 4. From this figure, we note that
the cases 461 and 1030 are possible influential observations.

Local and Total Influence Analysis. In this section, we perform an analysis
of local influence for the vitamin A data using the log-Burr XII regression model
for grouped survival data. By applying the local influence theory developed in

Table 2 Life table for vitamin A data

Interval Ij Number of failures Number of censoring Number at risk

	4� 21� 292 0 1207
	21� 38� 243 4 915
	38� 55� 138 6 668
	55� 73� 101 2 524
	73� 90� 46 3 421
	90� 108� 49 6 372
	108� 126� 46 11 317
	126� 185� 10 250 260
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BURR XII REGRESSION MODEL 153

Table 3 Maximum likelihood and jackknife estimates for the parameters of the log-Burr XII model
for grouped survival data fitted to vitamin A data

MLEs Jackknife estimates

� Estimate SE p-Value 95% CI Estimate SE 95% CI

� 1.049 0.347 — (0.370; 1.729) 0.893 0.430 (0.049; 1.737)
 0.829 0.115 — (0.603; 1.055) 0.828 0.144 (0.545; 1.111)
�0 2.602 0.328 <0.001 (1.960; 3.245) 2.577 0.350 (1.890; 3.264)
�1 0.042 0.005 0.000 (0.033; 0.051) 0.042 0.006 (0.030; 0.054)
�2 0.174 0.090 0.053 (−0.002; 0.350) 0.178 0.092 (−0.002; 0.358)
�3 0.071 0.089 0.425 (−0.103; 0.245) 0.072 0.089 (−0.103; 0.247)

Table 4 Testing for homogeneity of survival curves for
treatment to vitamin A data

Test Chi-squares Degrees of freedom p-Value

Log-rank 3.7559 1 0.0526
Wilcoxon 3.0021 1 0.0832

section 3.2, where case-weight perturbation is used, the value Cdmax
= 1�80 was

obtained as a maximum curvature. Figure 5(a) plots the eigenvector corresponding
to �dmax�, and the total influence Ci is shown in Fig. 5(b). The observation 461 is
very distinguished in relation to the others.

The perturbation of the vector for the explanatory variable age (x1) is
investigated here. For perturbation of the explanatory variable age, the value
Cdmax

= 0�43 was obtained as a maximum curvature. Plots of �dmax� and the total
local influence Ci against the observation index are shown in Figs. 6(a) and 6(b),
respectively. In these two plots, we can see no influential observation.

Figure 4 (a) Index plot of GDi��� (generalized Cook’s distance) and (b) index plot of LDi���

(likelihood distance) from the fit of the log-Burr XII model to vitamin A data.
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154 HASHIMOTO ET AL.

Figure 5 (a) Index plot of dmax for � (case-weight perturbation) and (b) total local influence for �

(case-weight perturbation) from the fit of the log-Burr XII model to vitamin A data.

4.3. Impact of the Detected Influential Observations

From the diagnostics analysis (global and local influence) we can consider the
observations 461 and 1030 as possibly influential points. Observation 461 represents
the individual grouped in the eighth interval; she is a female and shows one of the
youngest ages in the set of observations that were censored when receiving treatment
with placebo. Observation 1030 represents the individual grouped in the seventh
interval with one of the youngest ages in the group treated with placebo and being
a female, nevertheless belonging to the set of observations that failed.

Figure 6 (a) Index plot of dmax for � (age explanatory variable perturbation) and (b) total local
influence on estimate �̂ (age explanatory variable perturbation) from the fit of the log-Burr XII model
to vitamin A data.
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Table 5 Relative changes (RC, %), estimates, and the associated p-values in parentheses for the
regression coefficients to explain the log-survival time from the fit of the model to vitamin A data

Dropping �̂ ̂ �̂0 �̂1 �̂2 �̂3

None — — — — — —
1.049 0.829 2.602 0.042 0.174 0.071
(—) (—) (0.000) (0.000) (0.053) (0.425)

Set I1 [−6] [−2] [−2] [0] [−3] [−4]
1.115 0.847 2.647 0.042 0.180 0.074
(—) (—) (0.000) (0.000) (0.045) (0.403)

Set I2 [0] [0] [0] [0] [−2] [−6]
1.052 0.829 2.593 0.042 0.177 0.075
(—) (—) (0.000) (0.000) (0.049) (0.401)

Set I3 [−7] [−2] [−1] [−2] [−6] [−10]
1.119 0.847 2.638 0.043 0.184 0.078
(—) (—) (0.000) (0.000) (0.041) (0.379)

In order to reveal the impact of these two observations on the parameter
estimates, we refitted the model under some situations. First, we individually
eliminate each one of these two cases. Next, we remove the totality of potentially
influential observations from the original data set. In Table 5, we give the relative
changes (in percentages) of the parameter estimates defined by RC�j

= 	��̂j −
�̂j�I��/�̂j
× 100, and the corresponding p-values, where �̂j�I� denotes the MLE of
�j after “set I” of observations being removed. Note that in Table 5 the sets are
I1 = ��461�, I2 = ��1030� and I3 = ��461� �1030�.

From Table 5, we note that the MLEs from the log-Burr XII regression model
for grouped survival data are not highly sensitive under deletion of the outstanding
observations. In general, the significance of the parameter estimates does not change
(at the level of 5%) after removing set I .

Final Model. The LR statistic for testing the null hypothesis H0� �3 = 0
versus H1� �3 �= 0, that is, to verify the contribution effects of the explanatory
variable x3, is w = 0�392 (p-value = 0�996), and then we conclude that the parameter
�3 is not significant for the model. Based on this analysis, we conclude that the
log-Burr XII regression model for grouped survival data is more appropriate for

Table 6 Maximum likelihood estimates from the log-Burr
XII regression model for grouped survival data fitted to the
final vitamin A data (final model)

MLEs

� Estimate SE p-Value 95% CI

� 1.071 0.358 — (0.368, 1.774)
 0.836 0.116 — (0.608, 1.064)
�0 2.661 0.328 <0.001 (2.018, 3.305)
�1 0.042 0.005 0.000 (0.033, 0.051)
�2 0.176 0.090 0.050 (0.000, 0.352)
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156 HASHIMOTO ET AL.

fitting these data. The MLEs of the parameters in the final model are given in
Table 6.

From the fitted log-Burr XII regression model, we note that the explanatory
variables “age” x1 and “treatment” x2 are significant at �5%�. According to the final
model, one possible interpretation is that there is a significant difference between
“placebo” and “vitamin A” for survival times.

5. CONCLUDING REMARKS

In this article, we propose a log-Burr XII regression model for grouped
survival data as an alternative to model lifetime data in the presence of many ties.
We use the matrix programming language Ox (MaxBFGS subroutine) to obtain
the maximum likelihood estimates (MLEs), and asymptotic tests are performed for
the parameters based on the likelihood ratio (LR) statistics. On the other hand,
as an alternative analysis, we discuss the use of the jackknife estimator in the
log-Burr XII regression model for grouped survival data. In the application to
a real data set, we observe that both estimators present similar results. We also
discuss applications of influence diagnostics in the log-Burr XII regression models
for grouped survival data. Further, we perform a general model checking analysis
that makes it a very attractive option for modeling grouped survival data. Also, we
discuss the robustness aspects of the MLE from the fitted log-Burr XII regression
model for grouped survival data through sensitivity analysis.

APPENDIX MATRIX OF THE SECOND DERIVATIVES L̈���

Here we derive the necessary formulas to obtain the second order partial
derivatives of the log-likelihood function. After some algebraic manipulation,
we obtain:

L̈�� = −
k∑

j=1

∑
i∈Fj

log�bij�
2
(
1− b

−�
ij

)−1
b
−�
ij

[(
1− b

−�
ij

)−1
b
−�
ij + 1

]

L̈� =
k∑

j=1

{∑
i∈Fj

	ḃij

(
1− b

−�
ij

)−1
b
−��+1�
ij

[
− (

1− b
−�
ij

)−1
�b

−�2�+1�
ij log�bij�

+ 1− � log�bij�
]
− ∑

i∈Rj

(
	ḃij


bij

)
− ∑

i∈Cj

(
	ḃij


bij

)}

L̈��m
=

k∑
j=1

{∑
i∈Fj

	ḃij
�m
(
1− b

−�
ij

)−1
b
−��+1�
ij

[
− (

1− b
−�
ij

)−1
�b

−�2�+1�
ij log�bij�

+ 1− � log�bij�
]
− ∑

i∈Rj

(
	ḃij
�m
bij

)
− ∑

i∈Cj

(
	ḃij
�m
bij

)}

L̈ =
k∑

j=1

{∑
i∈Fj

�
(
1− b

−�
ij

)−1
b
−��+1�
ij

[
−�

(
1− b

−�
ij

)−1
b
−��+1�
ij 	ḃij


2
 − ��+ 1�b−1

ij 	ḃij

2
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+ 	b̈ij


]
− �

∑
i∈Rj

(
	b̈ij
bij − 	ḃij


2


b2ij

)
− �

2

∑
i∈Cj

(
	b̈ij
bij − 	ḃij


2


b2ij

)}

L̈�m
=

k∑
j=1

{∑
i∈Fj

�
(
1− b

−�
ij

)−1
b
−��+1�
ij

[
−�

(
1− b

−�
ij

)−1
b
−��+1�
ij 	ḃij
�m	ḃij


− ��+ 1�b−1
ij 	ḃij
�m	ḃij
 + 	b̈ij
�m

]
− �

∑
i∈Rj

(
	b̈ij
�mbij − 	ḃij
�m	ḃij


b2ij

)

− �

2

∑
i∈Cj

(
	b̈ij
�mbij − 	ḃij
�m	ḃij


b2ij

)}

L̈�m�s
=

k∑
j=1

{∑
i∈Fj

�
(
1− b

−�
ij

)−1
b
−��+1�
ij

[
−�

(
1− b

−�
ij

)−1
b
−��+1�
ij 	ḃij
�m	ḃij
�s

− ��+ 1�b−1
ij 	ḃij
�m	ḃij
�s + 	b̈ij
�m�s

]
− �

∑
i∈Rj

(
	b̈ij
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�m	ḃij
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b2ij

)

− �

2

∑
i∈Cj

(
	b̈ij
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�m	ḃij
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)}

where

bij =
1+ exp�zij�

1+ exp�zij−1�
� zij =

log�aj�− xT
i �


� zij−1 =

log�aj−1�− xT
i �



	ḃij
 = −
[
zj exp�zj�− bijzj−1 exp�zj−1�

	1+ exp�zj−1�


]
� 	ḃij
�m = −xim

[
exp�zj�− bij exp�zj−1�

	1+ exp�zj−1�


]

	b̈ij
 =
zj exp�zj��1+ zj − �ij�− zj−1 exp�zj−1�

[
bij�1+ zj−1 − �ij�− 	ḃij


]
2	1+ exp�zj−1�


− −1	ḃij


	b̈ij
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xim

{
exp�zj��zj − �ij�− exp�zj−1�

[
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]}
2	1+ exp�zj−1�
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�m

	b̈ij
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ximxis

{
exp�zj��1− z−1

j−1�ij�− exp�zj−1�
[
bij�1− z−1

j−1�ij�− x−1
is 	ḃij
�s

]}
2	1+ exp�zj−1�


	ḃij
�s = −xis

[
exp�zj�− bij exp�zj−1�

	1+ exp�zj−1�


]
and �ij =

zj−1 exp�zj−1�

1+ exp�zj−1�

where m� s = 1� 2� � � � � p�
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