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Confinement in the 3-Dimensional Gross-Neveu Model at Finite Temperature
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We study the N-component (2+1)-dimensional Gross-Neveu model bounded between two parallel planes sep-
arated by a distance L at finite temperature (7'). We obtain a closed expression for the large-N effective coupling
constant g = g(L, T, ). Different behavior depending on the magnitude of the fixed coupling constant A is found
to lead to a “critical” value A.. If A < A., only short-distance and/or high-temperature asymptotic freedom is
found. For A > A. one also observes spatial confinement, which is destroyed by temperature effects. We find
a confining length, L, ~ 1.61 fm, that is close to the proton charge diameter (= 1.74 fm) and a deconfining

temperature, ~ 138 MeV, which is comparable to the estimated value of ~ 200 MeV for hadrons.
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Effective models in quantum field theories have been em-
ployed over the last decades in trials to obtain clues about the
behavior of strongly interacting particles. Among them, the
Gross-Neveu model [1], dealing with the direct four-fermions
interaction, has been analyzed at finite temperature as an ef-
fective model for QCD and for superconducting systems (see
for instance Ref. [2, 3]). Calculation of the effective potential
of the ¢* theory at finite temperature has also been performed
[4].

Recently, we have studied the N-components tridimen-
sional Gross-Neveu model at zero temperature, bounded be-
tween two parallel planes [5]. A closed expression was de-
rived for the large-N effective coupling constant g(L,A) as a
function of the distance L between the planes. From this re-
sult, the behavior of g(L,A) depending on the magnitude of
the free space fixed coupling constant A was found, such that
for small A, the model presents asymptotic freedom at short
distances. On the other hand, for large enough values of A
both spatial confinement and short distance asymptotic free-
dom are simultaneously present. In this context, the analysis
of the effect of temperature is crucial, since it affects the con-
finement properties. The main objective of the present Letter
is to study the spatial confinement and thermal deconfinement
properties of the Gross-Neveu model.

We recall that even though it is perturbatively non-
renormalizable for dimensions D > 2, the massive Gross-
Neveu model in Euclidean tridimensional (3-D) space has
been shown to exist and has been explicitly constructed in
the large-N [6]. A decisive physical point that brings con-
sistency to this derivation is a theoretical result [7] supporting
the idea that perturbatively non-renormalizable models do ex-
ist and have a physical meaning. For the N = 1 case, some op-
erators can be made more relevant in the low energy region if
the fermionic field is minimally coupled to the Chern-Simons
field [8, 9].

We consider the N-component 3-D massive Gross-Neveu
model, in the large-N limit, compactified along the imaginary-
time axis and also along one of the spatial directions. From a

physical point of view, in terms of a generalized Matsubara
formalism [10], the model is intended to describe fermions
bounded between two parallel planes, a distance L apart from
one another and in thermal equilibrium with a reservoir at tem-
perature 7 = B~'. From the four-point function, we define
an effective renormalized coupling constant g(L,B,A) in the
large-N limit, which presents different behavior with L and B
if the fixed coupling constant A is below or above some “criti-
cal” value A.: high-T and short-distance asymptotic freedom,
if A < A.; with A > A, we obtain simultaneously asymptotic
freedom and spatial confinement, for low enough tempera-
tures. As the temperature is increased, a deconfining transi-
tion occurs. This is the first time, to our knowledge, that such
an analytical calculation has been performed for an effective
ab initio model.

Considering the Gross-Neveu model as an effective theory
for the strong interaction between quarks and taking the con-
stituent quark mass (m ~ 350 MeV) as the fermion mass, we
find a confining length of 1.61 fm which is close to the proton
charge diameter of ~ 1.74 fm. Also, the temperature destroy-
ing the confinement, 138 MeV, is comparable to the estimated
deconfinement temperature for hadrons (== 200 MeV).

A central ingredient in our approach is the topological na-
ture of the Matsubara imaginary-time formalism. To calculate
the partition function in a quantum field theory, the Matsub-
ara prescription is equivalent to a path-integral approach on
RP=1 x S1, where S! is a circle of circumference = 1/T. As
a consequence the Matsubara formalism can be thought, in a
generalized way, as a mechanism to deal also with spatial con-
straints in a field theory model. In this situation, for consis-
tency, the fields fulfill periodic (anti-periodic) boundary con-
ditions for bosons (fermions). We infer from this discussion
that we are justified to consider in this paper the Matsubara
mechanism as a path-integral formalism on RP~2 x §' x §! to
deal simultaneously with temperature effects and spatial con-
straints. These ideas have been applied in different physical
situations: for spontaneous symmetry breaking in the com-
patified ¢* model [10, 11]; for second-order phase transitions



F. C. Khanna et al.

in films, wires and grains [12]; for the Casimir effect for
bosons [13] and for fermions in a box [14]; and, in partic-
ular, for the Gross-Neveu model at zero temperature [5]. It
is worth emphasizing that for the fermionic field, the bound-
ary (anti-periodic) conditions coincide with the physical bag-
model conditions [5, 15, 16].

Our starting point is the Wick-ordered massive Gross-
Neveu Lagrangian in a D-dimensional Euclidean space,

L= Y)Y +my(): +5C V@V % (D)
where m is the mass, u is the coupling constant, x is a point of
RP and the y’s are either 2 X 2 or 4 x 4 matrices. The quantity
V(x) is a spin 5 | field having N (flavor) components, y*(x),
a=172,.,N. Summatlon over flavor and spin indexes is
understood. Here we consider the large-N limit (N — oo),
which permits considerable simplification. We use natural
units, h=c= kg = 1.

We consider the system bounded between two parallel
planes, normal to one of the spatial axis, a distance L apart
from one another and in thermal equilibrium with a reser-
voir at temperature T = B~!. We work with Cartesian co-
ordinates x = (xo,x1,Z), where xo corresponds to the imag-
inary time-coordinate, x; is the constrained spatial coordi-
nate of the system, and z is a (D — 2)-dimensional vector.
The corresponding momenta are specified by the notation
k = (ko,k1,q), where kp = w is the frequency and q is a
(D —2) -dimensional vector in momentum space. We as-
sume that the field y(xg,x;,z) satisfies the bag-model anti-
periodic boundary condition [15, 16]. This constraint of the
x1-dependence of the field to be restricted to a segment of
length L allows us to proceed, with respect to x;, in a manner
analogous to the imaginary-time in the Matsubara formalism
in field theory. That is, the Feynman rules should be modified
following the prescription [5, 10, 11],

1y

Z kHT, )

n——oo

for each one of the components kp and k;, where § = L in
the case of the spatial constraint (k = k;), and & = B, with
B =1/T, for the time constraint (for k = k).

Then the L and T-dependent four-point function, at leading
order in 1/N and at zero external momenta, from which we
will define an effective coupling constant between the fermi-
ons, has the following formal expression:

u

QI = Ty TR
[y (0:LBu) = 1= NuX(D,L,B)’

3)

where X(D,L,B) is the expression for the L and T-dependent
Feynman one-loop subdiagram,

Z / dP2q [ m*—q¢*— o) -V}
(2m)P- 2 Q2+ @2 + V7 +m?)?

lnffoo

X(D,L,B) =

“4)
with @, = 2(n+ $)n/p and v, = 2(I + })n/L. For the sake
of regularization, let us introduce the followmg dimensionless
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quantities: ¢} = g;/2mm (i = 1,2,...,D—2); a = (mL)~2 and
= (mB)~?

To proceed we extend the method developed in [10] to gen-
eralize the results presented in [5] for the Gross-Neveu model
at zero temperature. We use a modified minimal subtrac-
tion scheme, employing concurrently dimensional and ana-
lytical regularizations, where the counterterms are poles of
the Epstein-Hurwitz zeta—functions [5]. The calculations go
through the following steps: (i) using dimensional regulariza-

tion techniques, Eq. (4) becomes

Y(D,a,b) = mD2<51)\/cE[47152UD(s;a,b)

D-2
C2(s—1)

1 d d
tiTT ( 8+bab> pls—1Lia ”)Lz@

Up(s—1;a,b)

with
nD/272u+1 F(,u— % 4 1)
22(u=1) T(u)
i 1
ni=— [a(n+3)2+b(l+1)2 4 (2m)2

Up(u;a,b) =

X

] ,IJ*D/2+1
(©)

(ii) transforming the summations over half-integers into sums
over integers, Eq. (6) can be written as

D/2=2ut1 D(y— 2 4 1)
) _ T H—3 [v 42
UD(:u’a7b) = 201 F(y) 4'Z, (V,a,b)
—4¥737 (v,4a,b) —4'Z3" (v,a,4b)
+75 (V,a.b)] | )
_ 2
where v =pu—D/2+1, r= (2n)"! and ZV (v,z,p) =
Y7 e _wlzn®+ pl? +h?] 7Y is the double Epstein-Hurwitz zeta-

function, which possesses the following analytical extension
to the whole complex v-plane [10],

T I'iv—1)
h2(v-1)

2
¥ (v,z,p) =
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where Ky (x) is the Bessel function of the third kind; and (iii)
the first term in Eq. (8) leads to a contribution for ¥ which is



278

divergent for even dimensions D > 2 due to the pole of the I'-
function. We renormalize ¥ by subtracting this contribution,
corresponding to a finite renormalization when D is odd.

For D = 3, using the formula for the Bessel functions
Ki12(2) = /me™?/ /27 and performing explicitly the calcu-
lations, we obtain the following expression for the L and T-
dependent renormalized single-loop subdiagram:

>x(L,B) 1 I | _
SO = 2| —log(l+e ™)+ —log(14+¢ ™
- | rlog(l+e )er[3 og(l+e™)

—2H(L,B) +4H(L,2B) +4H (2L, )

_8H(2L,2B)]
B 472 +1 e—mL efml.’)
4n | 1+e ™ 1 4emP
_ZG(La B) + 4G(La 26) + 4G(2L7 13)
—8G(2L,2p)] , ©)

where the functions G and H are defined by

oo

G(y,z) = Z exp (—\/(my)ZnZ + (mz)212> ; (10)

nl=1

o exp (—\/(my)zn2 + (mz)212>
HOO = Y P s

Now, taking as usual Nu = A fixed and using Eq. (3), we
find the large-N effective (L and T-dependent) renormalized
coupling constant, for D = 3, as

(1)

() _ A
g(LaBa;\‘) _NF3R (O,L,B,M) - l+}\«ER(L7B) (12)

This is the basic result for subsequent analysis. We notice im-
mediately that the behavior of g(L,,A) is dictated by the de-
pendence of Xg on L and P and the value of the fixed coupling
constant.

The numerical computation of Xg(L,B) is greatly facili-
tated by the fact that the double series defining the functions
G(L,B) and H(L,) are rapidly convergent. ;From Egs. (9-
12), we see that lim g_.., Xz (L, B) = 0 and therefore g reduces
to A, the renormalized fixed coupling constant in free space
at zero temperature. On the other hand, for either L — O or
B — 0, Xg(L,B) diverges implying that we have ultraviolet as-
ymptotic freedom for short distances and/or for high temper-
atures, irrespective of the value of A. The overall behavior of
the renormalized subdiagram can be acquainted from Fig. 1,
where we draw contour plots of Xg(L,3) /m, taking L and B in
units of m~!. The full line in Fig. 1 is the locus of the points
such that Xg(L,B) = 0, which for large L (B) approaches the
straight line B =2.07m~! (L =2.07m™"); Zz(L,B) is positive
below this curve, negative above it, and reaches an absolute
minimum, £#" ~ —0.0624 m, at the point L = p ~3.13m™ .
This minimum (negative) value of Lg(L,P) defines a “critical
value” for A, Ayin = —(Zm)~1 ~ 16.03m™!, for which the
denominator of Eq. (12) vanishes and the effective coupling
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constant diverges; for A < A, this never occurs. Also, if we
take L and B different from 3.13m~! (but still in the region of
negative values of Xg), 0 > Xg(L,B) > E}’g”’, the denominator
of Eq. (12) vanishes for larger values of A (A > Ayyin)-
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FIG. 1: Contour plots of Xg(L,B)/m, with L and B in units of m~'.
The open dashed line corresponds to Xg(L,B)/m = 0.2, the full line
gives the points where g = 0, while the closed curves are for neg-
ative values of Xg/m, —0.053, —0.058 and —0.061 (dashed-dotted,
dashed and dotted lines respectively). The dot is the location of the
absolute minimum of Xg.

The existence of a region in the parameter space (L,[3)
where X is negative leads naturally to the onset of spatial
confinement and thermal deconfinement, if the fixed coupling
constant is high enough.

Consider initially the situation at 7 = 0. In this case,
Yr(L) has a zero at L ~2.07m™", is negative for larger

values of L, reaching a minimum (Zl(emmin ~ —0.052m) at
L ~2.82m~'. We present in Fig. 2 Lx(L) as a function
of L. The existence of such a minimum implies that, for

A > A=~ =1~ 19.16m!, A/g(L,\) has a non-

positive minimum value and vanishes for a length LY (M) be-
longing to the interval (L™, L7]. This means that the sys-

tem will be confined in a length L£0> (M), that is, starting with

L small (in the region of asymptotic freedom) the length can
not go above LY (M) since g(L,A) — o0 as L — LY (A) [5].

In Fig. 3, we show the effective coupling constant g(L,A) as
a function of L, for some values of A. We see clearly that, in
the strong coupling regime, we have simultaneously asymp-
totic freedom and spatial confinement, in the sense described
above.

Let us now consider the effect of temperature, taking
A > Ac. For low (fixed) T, A/g(L,B,A) vanishes at a value

LY A) < LY (A), its minimum (negative) value being slightly
lower than the zero temperature case. Further raising the

temperature, P (A) and the minimum value of A/g increase

and, at the temperature 7;(A) = B;'(A), the minimum of
A/g(L,B,A) vanishes. The behavior of A/g, as a function of
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FIG. 2: Plot of § = Xz(L) /m, with L in units of m~!.
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FIG. 3: Plots of the effective coupling constant g(L,A) as a function
of L (in units of m~1), for some values of A (in units of m~!): 5.0
(dashed line), 8.0 (dotted line), 11.0 (dotted-dashed line) and 19.16
(full line). The dotted vertical line, passing by L*** ~2.82, is plotted
as a visual guide.

L, is shown in Fig. 4 where we take A = 25.0 m~! and some
values of . Therefore, for B < Bs(A), A/g(L,B, L) becomes
positive for all values of L and then the system is unconfined.
Thus, T;(A) corresponds to the deconfining temperature for
the given fixed coupling constant A > A.

Our finding that fermion spatial confinement exists in the
strong coupling regime of the compactified Gross-Neveu
model, being destroyed by raising the temperature, may ac-
quire a physical meaning if we consider the Gross-Neveu
model as an effective theory for the strong interaction between
quarks. This corresponds to shrinking the gluon propagator
similarly to the Fermi treatment of the weak force between
leptons. In this sense, we will take the fermion mass as the
constituent quark mass, m ~ 350 MeV ~ 1.75 fm~! [17], in
order to estimate the confining length and the deconfining
temperature. We also take the fixed coupling constant with
the minimum strength for confinement, A = A, ~ 19.16m !,
corresponding to the maximum confining length at zero tem-
perature, L, ~ 2.82m~ L. For this case, we find Ba =~ 2.54m™ L.
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This choice leads to L. >~ 1.61 fm and T; ~ 138 MeV. These

-0.02¢

FIG. 4: Inverse of the effective coupling constant g~! (in units of
A1), with A = 25.0m™~! fixed, as a function of L (in units of m~1),
for some values of B (in units of m~1): 3.2, 2.356 and 2.2 (dashed,
full and dotted lines respectively).

values are of the order of the experimentally measured pro-
ton charge diameter (= 1.74 fm) [18] and the estimated de-
confining temperature (= 200 MeV) for hadronic matter [19],
respectively. It should be noticed that, despite of the crude-
ness of this estimate, our result is in the range of the expected
deconfining temperature of QCD.

In summary we have shown that, in the weak coupling sit-
uation (A < A.), the 3-D Gross-Neveu model presents only
short-distance and high-temperature asymptotic freedom. For
the strong coupling regime (A > A.), we analytically demon-
strate the simultaneous existence of asymptotic freedom and
(for low enough temperatures) a singularity in the effective
renormalized coupling constant at a length L. (), signalizing
spatial confinement. This means that, if we start with a system
of a quark-antiquark (understood as quanta of the fermionic
Gross-Neveu model) pair bounded between two planes a dis-
tance L (< L.(A)) from one another (at some, low enough,
temperature), it would not be possible to separate them a
distance larger than L.(A). This spatial confinement of the
quark-antiquark pair could be interpreted as the existence of
bound states (“baryon-like” states), characteristic of the model
in the strong coupling regime. By raising the temperature, we
find that the spatial confinement disappears at the deconfin-
ing temperature T;(A). Notice that we refer to this property
of the Gross-Neveu model as confinement, understood in the
sense described above, not of color confinement as it should
happen for QCD. To account for color confinement we should
consider a model that would accommodate gauge bosons, for
instance Large-N QCD. This is the subject of a future investi-
gation.
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