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This work analyzes the emergence of log-periodic oscillations in thermodynamic functions of Ising
models on hierarchical lattices. Several situations, where the exchange interactions are periodic
or aperiodic, are taken into account. High precision values for the thermodynamic functions are
numerically obtained with the method of transfer matrices. Fitting the curves close to the critical
temperature leads to the values of the critical exponents and to the period and amplitude of the
oscillations. The first two quantities are found to agree with the results predicted by the renormal-
ization group. The amplitude of oscillations, which are minute for both periodic systems and those
with aperiodic irrelevant fluctuations, are significantly enhanced for systems with aperiodic relevant
fluctuations. Distinct morphologies of the oscillating pattern are discussed, where oscillations are
respectively sinusoidal and with a significant contribution of higher order harmonics.

I Introduction

Log-periodic oscillations constitute a general property
of systems with discrete scale invariance [1]. They have
been reported in many different systems in which there
is discrete scale invariance in the lattice on which the
model is defined (e.g. geometric fractals [2, 3]), or in
the way coupling constants appear over a Euclidean
lattice [4], or both [5, 6]. Their presence has been dis-
cussed since the early days of the renormalization group
(RG) approach to phase transitions in spin models [7],
as a multiplicative log-periodic factor in terms of the
reduced temperature appears in the general solution of
the renormalization transformation. Despite this, only
recently has this phenomenon received due attention,
in the form of detailed analyses of some models and
reviews.

This can be understood by the fact that these oscil-
lations generally have such minute amplitudes that they
are hardly detected in the most usual analyses, e.g., in
the evaluation of the critical exponents. However, the
recent investigation of a large number of determinis-
tic aperiodic models, where fluctuations in the value of
the coupling constants alter the system from the orig-
inal periodic counterpart, has brought this subject to
light. The reason can be better discussed in the light of
Luck’s criterion for relevant or irrelevant fluctuations
[8]. According to it, relevant fluctuations are able to
promote a structural change in the RG flow diagram of
the model, so that the properties at the critical point
are no longer described by the fixed point (FP) of the
original homogeneous model. On the other hand, irrel-

evant fluctuations leave unchanged the flow diagram, so
that the critical exponents remain the same as in the
homogeneous case. The relevant or irrelevant character
depends on the spin model, on the lattice used, and on
the geometric properties of the aperiodic sequence that
is used to define the new values of the coupling con-
stants. The important feature herein is the fact that
relevant fluctuations have a general tendency to weaken
criticality. So they enhance the magnitude of the log-
periodic oscillations of the aperiodic systems which can
be identified and conveniently analyzed.

The above observations will be illustrated in this
work, which analyzes log- periodic oscillations in peri-
odic and aperiodic Ising models on hierarchical lattices.
We proceed with the evaluation of all thermodynamic
functions of the models with a transfer matrices (TM)
scheme [9], which amounts to iterating a series of maps
for such functions at the successive steps of construction
of the lattice until numerical convergence is achieved.
This work is the third of a series of papers; in the for-
mer two [5, 6], we developed the method for the case
of hierarchical lattices, investigated the general proper-
ties of some models and characterized the oscillations
for a situation with aperiodic relevant fluctuations. We
concentrate now in the characterization of oscillations
for two other cases, one with periodic interactions, the
other with aperiodic irrelevant fluctuations. We show
that, despite much smaller amplitudes than in the for-
mer case, oscillations are present for all thermodynamic
functions. Their period can be expressed in terms of the
eigenvalues of the critical sets (fixed points or higher
period cycles) within the RG analysis. Regarding their
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morphology, we show that, for the periodic cases, os-
cillations are almost sinusoidal for both T' > T, and
T < T.. On the other hand, for the irrelevant aperi-
odic case, oscillations have significant contributions of
at least two harmonics for T below and above T, . In
both cases, the morphology of the oscillations is distinct
from those in the model with relevant fluctuations.

The rest of the work is organized as follows: In Sec.
II we define the hierarchical lattices and aperiodic se-
quences used to induce fluctuations in the spin-spin ex-
change couplings; in Sec. III we discuss the key steps
of the transfer matrix formalism; in Sec. IV we present
the results obtained from fitting the data, where we em-
phasize the question of single or higher order harmonic
contributions in the periodic function; finally, Sec. V
closes with concluding remarks.

II Hierarchical lattices and ape-
riodic sequences

Hierarchical lattices [10, 11, 12] are graphs which are
constructed by starting from a single line segment link-
ing two (root) sites and following a substitution rule
that amounts, for all subsequent generations, to replac-
ing any single segment by a unit cell composed of a
set of line segments and intermediate sites. Their im-
portance for the analysis of phase transitions of mag-
netic systems is mainly due to two facts: i) they are
exactly scale invariant, so that they are suitable for
the use of mathematical tools based on this key prop-
erty, as RG and the adapted TM; ii) despite the fact
that they cannot be realized in any finite dimensional
Euclidean space, magnetic models defined upon such
lattices constitute approximations, within the Migdal-
Kadanof renormalization group, to the corresponding
models on Euclidean lattices, so that they may lead to
results with some relevance for actual physical models.
For the present work we concentrate on models where
the basic cell is constituted by p parallel branches, each
one containing a series of b segments. The fractal graph
dimension of such lattice is expressed by

_ log(pb)

so that, if we take b = p, we will keep dy = 2 constant.
We define the formal Hamiltonian for our investiga-
tion by

H:—ZJijUin _hzgia (2)
(4,9) i

where o; = %1 indicates Ising spin variables, the double
sum (i, 7) is performed over pairs of first neighbor sites.
The bonds J;; are either constant or defined with the
help of the aperiodic sequences which we will discuss
soon. In this case, they assume the same values for any
p% path linking the root sites at the G-th generation
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of construction of the lattice. Finally the field h is uni-
form for all sites of the lattice, independent of its local
coordination.

Inflation or substitution rules of 2 or more symbols
are a convenient way to generate sequences which may
be periodic or aperiodic. We consider herein two sym-
bol (A and B) inflation rules which are described by

(4,B) —» (AB"*, 4%) (3)

where the sequence starts with one single A symbol.
With exception of the trivial b = 1 case, all other se-
quences are known to be aperiodic. These sequences are
very convenient to generate aperiodic models on the hi-
erarchical lattices just discussed. For this purpose it is
important to choose the same value for b in (1) and (3),
in such a way that the length of the paths between the
root sites of the lattice matches with the length of the
sequence for any generation G. So, choosing J;; to be
either J4 or Jp, according to the corresponding symbol
in the aperiodic sequence, warrants that an aperiodic
model will be generated in the lattice.

The fluctuations in the exchange constants have a
relevant (or irrelevant) character, according to Luck’s
criterion, adapted to hierarchical lattices [13, 14], if the
following condition is satisfied:

1
w>we=1——, 4
e > (4)
where v is the correlation length exponent of the uni-

form model. w is the wandering exponent

" log | Az

Tog Ay ()

where A\; and )\ are the eigenvalues of the substitution
matrix defined as

MZ(bLS) ©)

It is well known that, for the sequences defined in (2.3),
corresponding fluctuations on the hierarchical lattices
discussed above will be irrelevant for b = 2 and relevant
for b = 3. So, if we restrict ourselves to the situations
b = p = 2 and 3 we can conveniently characterize the
two different situations, keeping constant the value of
the fractal dimension dj .

IIT1 Transfer matrix formulation

The details of the TM method for the evaluation of ther-
modynamic functions of fractal and hierarchical lattices
have been presented in earlier works [5, 6], so that we
will discuss here only its main steps. Since the hier-
archical lattices are bounded by two root sites in any
generation GG, the effect of all interactions on the way
from one root site to the other can be described by a
2x2 TM T, which depends only on the 4 distinct states
this pair of spins may assume. In such a formulation,
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T incorporates the contribution of the interaction be-
tween all intermediate spins. This can easily be done if
we recognize that the matrices of two subsequent gen-
erations, T and Tg41 , have the same structure, so
that a matricial map expressing Tay1 = Ta+1(Ta) can
be obtained. This implies, in turn, that the matrix el-
ements of T¢41 can be expressed in terms of those of
Tg by nonlinear maps. The derivation of such maps
constitutes the essential step for the implementation of
the method. It must be pointed out that any model
on a given lattice will obey the same matricial map,
whereas the map for the matrix elements will assume
different forms according to the characteristics of the
different models. The nonlinear maps can not be in-
tegrated exactly, but it is quite easy to integrate them
with a numeric algorithm.

The matrix elements are Boltzmann weights that
grow very quickly with G leading to numerical over-
flows. To sidestep this problem, it is wise to use more
convenient variables, that are expressed in terms of the
matrix elements. So we define, for any generation G,
the free energy per spin fg and correlation length &g,
in terms of ng and eg, the eigenvalues of T , as

fa = =5 logna
(7)
§a = Mg/ log (nc/ec) -

where N¢ counts the number of lattice sites in genera-
tion G, and Mg = b is the shortest distance between
the root sites.

The maps for the new variables, which follow from
the original maps for the matrix elements, are written
in terms of the same set of variables in the preceding
generation. In the iteration process, the initial condi-
tion is a temperature dependent state which describes
the single interaction between the two root spins in the
zero-th order (G = 0) generation. The maps are iter-
ated until the desired precision (usually 107'%) is ob-
tained. Moreover, we can define a generation depen-
dent entropy and specific heat by the derivatives of the
specific free energy with respect to the temperature,
i.e., sG = —6fg/8T and cqg = =T 62fG/6T2 . Thus,
the enlarged set of maps includes new components for
the derivatives of fo and &g, which will depend on fg
and g and on the same derivatives in the former gen-
eration. The same is valid for the derivatives of fg
with respect to the magnetic field, so that maps for the
magnetization and susceptibility can be derived. The
solutions of the maps are numerically very stable, as
evidenced by the reproduction of known properties and
critical exponents of the homogeneous systems. The ex-
plicit form of the maps for the two situations explored
in this work is given in Ref. [5].

IV Results

The formal solution for the free energy in RG indicates
that

s === p (L) ©

where t = |T' — T,| /T, and A is the largest (thermal)
eigenvalue of the RG flow close to the critical FP (or
other critical set). The function P is an arbitrary pe-
riod 1 oscillating function, which includes the possi-
bility P =constant. To uncover and analyze the log-
periodic oscillations, we integrate the maps in a very
narrow t-neighborhood of the critical temperature T,
, the value of which can be evaluated within the TM
approach by following the value of T" where £ — oco. In
order to follow oscillations over several orders of magni-
tude, we choose discrete values of T}, such that ¢, /t,—1
is constant and the values log 10(t,,) are equally spaced
on the log10(t) axis. From the resulting values we eval-
uate the numerical derivative of log1o(g) with respect
to log 10(t), where g is any of the thermodynamic func-
tions mentioned above, and graph it as a function of
IOg 10 (t) .

We have analyzed models on the two hierarchi-
cal lattices discussed in Section II, with b = p = 2
and 3 . As to the choice of the sequences controlling
the exchange constants, we have considered the follow-
ing distinct situations: i) the homogeneous models for
b=p=2and 3 ;ii) the period 2 model described by
the sequence A — AB, B — AB on the lattice with
b =p = 2; iii) the aperiodic model (with irrelevant
fluctuations) induced by the sequence (3) with p = 2
on the lattice with b = p = 2. Note that the case of rel-
evant fluctuations induced by the same sequence with
p = 3 has already been treated on Ref [6]. Typical
resulting plots are shown in Figures 1-4.
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Figure 1. Logarithmic derivative of |¢(T) — ¢(T¢)| with re-
spect to log1o(t) wvs. log1o(t) for the period 2 sequence
(A — AB,B — AB). The very small vertical scale neces-
sary to show the very small amplitude of oscillations causes
makes it necessary to introduce a decay term in 9. Here
and in all other illustrations, open circles indicate the eval-
uated points and solid line the resulting fit according to the
expression 9.
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Figure 2. Logarithmic derivative of ¢ with respect to

log 10(t) vs. log 10(t) for the homogeneous model on the lat-
tice with b = p = 3. Here again a very small vertical scale
is necessary in order to make the oscillations visible.
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Figure 3. Logarithmic derivative of x with respect to

log 10(t) vs. log 10(t) for the homogeneous model on the lat-
tice with b = p = 2. Note that it has the same period as the
curve in Figure 1. Here the amplitude is larger than in the
former cases, so that a decay term is not necessary to fit the
curve.

To obtain quantitative values for the critical expo-
nents and characterize the morphology of the oscillatory
part of the curves, we fit the data with the function

N
c
y(z) = a+ E+Z b, cos(nwz + ¢y,), x = log10(t),

n=1

(9)
where we have taken N = 2 in almost all fitting proce-
dures. The results are summarized in the Table 1. The
parameters ¢ and d in (9) have no precise meaning, but
this extra term is necessary to obtain very precise re-
sults for some of the functions, expressed by the very
low x2 values for all fittings. They are related to the
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distance from the region where the points are evaluated
to the very small neighborhood of T, where the curves
are described only by the critical exponent (a) and the
amplitudes and phases (b, and ¢,) of the oscillatory
function. For some curves we have already reached this
neighborhood, so that ¢ = 0.

-0,16172

-0,16174 - 1

-d(log,o(m)))/d(logy (1))

1 1 " 1

-8 -7 -6
Iogm(t), T<TC

Figure 4. Logarithmic derivative of m with respect to
log 10(t) vs. log 10(t) for the aperiodic model (A — AB, B —
AA) on the lattice with b = p = 2. Note that the period has
doubled in comparison to that in Figures 1 and 3. Here
again the amplitude is very small.

IV.1 Periodic cases

The present discussion applies to situations i) and
ii). The clear periodic oscillations over 3 decades shown
in Figures 1-3 have very small amplitudes (1075 or
smaller) for the specific heat and correlation length,
while only for the magnetic susceptibility do we observe
larger amplitudes. As the specific heat curve is charac-
terized by a cusp at T, the critical behavior is analyzed
for the difference |¢(T") — ¢(T%)| . For larger values of ¢ ,
the curve is still far away from the region where it has
the form of a constant value superimposed on periodic
oscillations. For smaller values of ¢, round-off errors and
the very small differences between neighboring function
values induces the presence of large fluctuations in the
derivatives, so that the resulting points become mean-
ingless.

The results in Table 1 corroborate the known val-
ues for the critical exponents (b = p = 2) as well as
those for (b = p = 3) obtained by Haddad [15] and in
our previous work [6]. As visually anticipated by the
Figures, the computed values for the oscillation ampli-
tude are indeed very small. Comparison of these results
with those obtained for relevant aperiodic oscillations
indicates that the later are at least two orders of mag-
nitude larger than the corresponding value for the pe-
riodic case. The comparison of the contribution of the
two Fourier components indicates that the oscillations
are indeed very sinusoidal for 7" below and above 7., as
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ba/b; < 1072. The evaluation of the period of oscilla-
tions indicate that our results are in best accord with
those indicated by RG analyses, where A = 1.678 and
2.250 for b = p = 2 and 3 respectively.

The graphs and fittings for the periodic AB case (ii)
indicate that it shares the main features of its homo-
geneous counterpart. This is not surprising as scaling
arguments indicate that, after a finite number of steps,
related to the intrinsic period of the sequence, the sys-
tems evolves asymptotically to the same situation as
the homogeneous model. The above evaluation for an
explicit situation corroborates the expected results.

IV.2 Aperiodic irrelevant case

This situation is illustrated in Figure 4 for the mag-
netization, but periodic oscillations are found for all
thermodynamic functions. The values for the fitting
parameters in Table 1 indicate that the critical expo-
nents remain the same as in the homogeneous case. The
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magnitude of the oscillations has slightly increased in
comparison to the former case. However, the most im-
portant difference regards to the period of oscillations.
We observe that its value has doubled in comparison to
the previous value, i.e., if we write the free energy in the
form (8), then P becomes a period 2 function. To bring
P back to a period 1 function, the eigenvalue in the de-
nominator of (8) should be squared. In any case the
physical meaning is the same: the system only returns
to its original configuration after two renormalization
steps. Besides that, we also observe that the nearly si-
nusoidal character of the oscillations has been lost, as
now by > by always. This constitutes another impor-
tant change in the morphology of the oscillations, al-
ready observed in the case of relevant fluctuations with
T < T.. However, in the present case, it indicates that
some 50% (or more) of the amplitude of the oscillations
results from the system trying to follow the original pe-
riod dictated by the FP eigenvalue. This suggests an

y T a w by by c d x2
b=p=2 A— AA
¢ >Te  1.33826(0) 27.92(0) 2.(9) x 1077 1.(4) x 107 2.(6) x 10 12.(1) 1.45 x 10~
X <T. 2.35306(0) 27.932(8) 1.04(0) x 10~3 7.(5) x 1077 0.0 3.42 x 10712
m <T. 0.16173(0) 27.9(2) 1.2(1) x10-% 3.(3) x 108 0.0 1.24 x 10714
¢ >T.  -0.67648(9) 27.9(2) 1.0(4) x 107° 1.(4) x 1077  9.(1) x 10!  5.7(3) 4.04 x 10~3
b=p=2 A— AB B — AB
¢ >T,  1.338266
X <T. 2.35306(0) 27.93(2) 1.04(0) x 103 3.(9) x 107 0.0 4.35 x 10712
m <T. 0.16173(0) 27.9(0) 1.2(5) x 107% 2.(9) x 10~8 0.0 - 479 x 10718
c >T. -0.67647(5) 27.9(4) 1.0(4) x 10~® 2.(6) x 10~7 1.3(7) 4.2(8) 3.37 x 10713
b=p=34— AAA
¢ >T, 1.35475(0) 17.8(8) 6.(0)x 1075 6.(0) x 107 0.0 3.12 x 1071
X <T.  2.3736(8) 17.840(8) 6.13(8) x 1072 1.(5) x 104 0.0 1.93 x 1078
m <T. 0.16794(0) 17.84(0) 1.7(0) x 10~* " 3.(8) x 10~7 0.0 9.67 x 10713
c >T.  -0.707(3) 17.83(8) 1.25(0) x 1073 5.(3) x 1076 —1.7(0) x 10~% 1.0(3) 8.06 x 10~1°
b=p=2 A— AB B — AA
3 >T.  1.33826(0) 13.8) 6.(7)x 107 3.(4) x 1077  2.(0) x 10! 7.8(1) 2.92 x 10~
X <T. 23530(4) 13.9(6) 1.(7)x10™* 1.0(3) x 103 0.0 - 6.86x107°
m <T. 0.16173(0) 13.8(9) 9.(8)x 1077 1.2(9) x 1076 9.(7) x 10"  8.(7) 1.16 x 10~13
c >T.  -0.6763(6) 13.(9) 3.(9)x1077 1.(1)x 107> 2,(2)x10° 6.9(2) 3.88 x 10~
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interpretation for the observed period doubling: as the
FP (and its dynamic properties), which depends only
on the lattice and the homogeneous model, is not af-
fected by the aperiodic fluctuations, the critical expo-
nents remain the same, but the period of oscillations is
affected by the way the J4 and Jp couplings renormal-
ize back into their own new images. This extra effect
seems to be not included in the RG general solution (8).
In any case, the contradiction between our results and
those predicted by RG needs to be investigated more
deeply.

This behavior should be also compared to that ob-
served in the case of relevant fluctuations, where the
FP looses its attractive manifold and the period of os-
cillations becomes related to the eigenvalue of a period
2 cycle in the renormalization flow diagram. In this sit-
uation, as in the case of a periodic sequence, our results
agree with those of RG. But it should be observed that
in this case, the new period 2 cycle directly depends on
the fluctuations, which constitutes a crucial difference
to the former case.

V Conclusions

In this work we have carefully analyzed the emergence
of log-periodic oscillations for periodic and aperiodic
(with irrelevant fluctuations) Ising models on hierar-
chical lattices. Our investigation is based on the TM
method, which leads to numerically very precise values
for the thermodynamic functions after the iteration of
a set of maps. Although these oscillations have been
predicted from the solution of the RG maps for sys-
tems with discrete scale invariance, they have not been
explicited evaluated, except for a few examples where
relevant fluctuations are present. Indeed, spin models
on hierarchical lattices have been investigated by a large
number of authors [12] but, to the best of our knowl-
edge, no explicit evaluations of oscillations, as shown in
the previous Section are available in the literature.

Our results show that the magnitude of the oscilla-
tions is rather small, which explains the fact that they
have been overlooked in the many investigations of the
model. The period of oscillation is found to be in ac-
cordance with that predicted by RG, for the case of
periodic (or homogeneous) systems: it depends only on
the eigenvalue of the critical FP. The oscillations are al-
most sinusoidal for T' both below and above T, as can
be measured by comparing the two Fourier coefficients
obtained in the fitting procedure.

The case with aperiodic irrelevant fluctuations
presents many differences. Whereas the critical expo-
nents are still controlled by the same FP as the homo-
geneous case, our investigation shows a slight increase
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in the magnitude of the oscillations, and a doubling of
the period. This result stands in opposition to that
offered by RG, according to which the period remains
the same and is controlled only by the properties of
the homogeneous system. Our result suggests that, in
the case of irrelevant sequences, the period depends as
well on the modulating sequence. This is supported by
the fact that the second Fourier component, which now
oscillates with the period of the homogeneous system,
has a contribution that is of the same magnitude as the
first component. We suggest that the period doubling
may be caused by the fact that, whereas the geomet-
rical properties of the lattice and of the homogeneous
system favors period 1 oscillations, the renormalization
of the J4 and Jp constants back to their original con-
figuration demands a higher number of renormalization
steps.
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