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Boundary effects on the mass and coupling constant in
the compactified Ginzburg–Landau model: The
boundary dependent critical temperature
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We consider the Euclidean D-dimensional N-component ����4 ���0� model with d
�d�D� compactified dimensions. Introducing temperature by means of the
Ginzburg–Landau prescription in the mass term of the Hamiltonian, this model can
be interpreted as describing a second-order phase transition for a system in a region
of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the
coordinates axis x1 ,x2 , . . . ,xd. The planes in each pair are separated by distances
L1 ,L2 , . . . ,Ld. Making the appropriate boundary corrections to the coupling con-
stant, we obtain in the large-N limit the transition temperature as a function of the
size of the system, Tc��Li��, i=1,2 , . . . ,d. For D=3 we particularize this formula,
taking L1=L2= ¯ =Ld=L for the physically interesting cases d=1 �a film�, d=2 �an
infinitely long wire having a square cross section�, and d=3 �a cubic grain�.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3204079�

I. INTRODUCTION

Studies on field theory applied to second-order phase transitions have been done in literature
for a long time. A thorough account on the subject can be found in Refs. 1–10. Recent applications
of similar ideas to bounded systems can also be found in Refs. 11 and 12. Under the assumption
that information about general features of the behavior of systems undergoing phase transitions
can be obtained in the approximation which neglects gauge field contributions in the Ginzburg–
Landau model, investigations have been done with an approach different from the
renormalization-group analysis. Phase transitions in bounded systems, in particular, the system
confined between two parallel planes �a sample of a material in the form of a film�, have been
considered and the dependence of the critical temperature on the film thickness has been
established,13–16 in particular, in comparison with experimental data using ideas from Refs. 17–19.

In this paper, starting from the formalism developed in Refs. 20 and 21, the way in which the
critical temperature for a second-order phase transition is affected by the presence of confining
boundaries is investigated on general grounds. We focus, in particular, on the mathematical aspects
of the formalism, which furnish the tools to study boundary effects on the phase transition. We
consider the D-dimensional N-component Ginzburg–Landau model compactified in d ��D� of the
spatial dimensions. Taking the large-N limit, which allows to take into account nonperturbatively
corrections to the coupling constant, we obtain expressions for the transition temperature in the
general situation. For D=3 and d=1, d=2, and d=3, we have the critical temperature �Tc�L�� for
the system in the form of a film of thickness L, an infinitely long wire having a square cross
section L2, and for a cubic grain of volume L3. We show that Tc�L� decreases as the size L is
diminished in a slightly nonlinear way. The minimal size for the suppression of the second-order
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transition is lower than the one obtained without considering coupling-constant corrections. These
results generalize previous works dealing with transitions in low-dimensional compactified
subspaces.21–23

It is worth to emphasize that this generalization can be done by using nontrivial extensions to
several dimensions of the one-dimensional mode-sum regularization described in Ref. 24. These
extensions require, in particular, the definition of symmetrized multidimensional Epstein–Hurwitz
zeta functions with no analog in the one-dimensional case.21,25 This allows one to get general
formulas for the critical temperature as a function of the size of the system.

II. EFFECTIVE POTENTIAL WITH COMPACTIFICATION OF A d-DIMENSIONAL
SUBSPACE

In the absence of geometrical restrictions, the N-component vector model is described by the
Ginzburg–Landau Hamiltonian density,

H =
1

2
� �a · ��a +

1

2
m0

2�T��a�a +
�

N
��a�a�2, �1�

where � is the coupling constant, m0
2�T�=��T−T0� is the bare mass �with T0 as the bulk transition

temperature�, and summation over repeated indices a is assumed. In the following, we will con-
sider the model described by the Hamiltonian �1� with N components and take the large-N limit.

We here consider the system in D dimensions confined to a region of space delimited by d
�D pairs of parallel planes. Each plane of a pair j is at a distance Lj from the other member of the
pair, j=1,2 , . . . ,d, and is orthogonal to all other planes belonging to distinct pairs �i�, i� j. This
may be pictured as a parallelepiped box embedded in the D-dimensional space, whose parallel
faces are separated by distances L1 ,L2 , . . . ,Ld. We use Cartesian coordinates r= �x1 , . . . ,xd ,z�,
where z is a �D−d�-dimensional vector, with corresponding momentum k= �k1 , . . . ,kd ,q�, q is a
�D−d�-dimensional vector in momentum space. The Hamiltonian thus becomes

H =
1

2
� �a · ��a +

1

2
m̄0

2�T;L1, . . . ,Ld��a�a +
�

N
��a�a�2, �2�

where m̄0
2�T ;L1 , . . . ,Ld� is a suitably defined boundary-modified mass parameter such that

lim
�Li�→�

m̄0
2�T;L1, . . . ,Ld� = m0

2�T� � ��T − T0� . �3�

The �Li�-corrections entering in the coupling constant � are one of the main subjects of this paper
and will be considered in detail later.

The generating functional of the correlation functions is written in the form

Z =	 D� exp
− 	
0

L1

dx1¯	
0

Ld

dxd	 dD−dzH����, ������ , �4�

with the field ��x1 , . . . ,xd ,z� satisfying the condition of confinement inside the box, ��xi�0,z�
=��xi�Li ,z�=0. Then, following the procedure developed in Ref. 21, we are allowed to introduce
a generalized Matsubara prescription, performing the following multiple replacements �compacti-
fication of a d-dimensional subspace�:

	 dki

2�
→

1

Li
�

ni=−�

+�

, ki →
2ni�

Li
, i = 1,2, . . . ,d . �5�

Notice that compactification can be implemented in different ways, as, for instance, by imposing
specific conditions on the fields at spatial boundaries. We here choose periodic boundary condi-
tions. We emphasize, however, that we are considering a Euclidean field theory in D purely spatial
dimensions. Therefore, we are not working within the framework of finite-temperature field
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theory. Here, the temperature is introduced in the mass term of the Hamiltonian by means of the
usual Ginzburg–Landau prescription.

In principle, the effective potential for systems with spontaneous symmetry breaking is ob-
tained, following the analysis introduced in Ref. 26, as an expansion in the number of loops in
Feynman diagrams. Accordingly, to the free propagator and to the no-loop �tree� diagrams for the
coupling, radiative corrections are added with increasing number of loops. Thus, at the one-loop
approximation, we get the infinite series of one-loop diagrams with all numbers of insertions of the
�4 vertex �two external legs in each vertex�.

At the one-loop approximation, the contribution from ��0�4 vertices to the effective potential is
obtained directly as an adaptation of the Coleman–Weinberg expression after compactification in
d dimensions. In this case, we start from the well-known expression for the one-loop contribution
to the zero-temperature effective potential in unbounded space,

U1��0� = �
s=1

�
�− 1�s+1

2s
�12��/N��0

2�s	 dDk

�k2 + m2�s , �6�

where m is the physical mass.
Then to deal with dimensionless quantities in the regularization procedures, we introduce

parameters c2=m2 /4�2	2, bi= �Li	�−2, g= �� /N� /4�2	4−D, and 
0
2=�0

2 /	D−2, where m is the
physical mass in the absence of boundaries, �0 is the normalized vacuum expectation value of the
field �the classical field�, and 	 is a mass scale �naturally, the results do not depend on 	�.
Performing the replacement �5�, the compactified ��Li�-dependent� one-loop contribution to the
effective potential can be written as

U1�
0,�bi�� = 	Db1 ¯ bd�
s=1

�
�− 1�s+1

2s
�12g
0

2�s �
n1¯nd=−�

+� 	 dD−dq�

�b1n1
2 + ¯ bdnd

2 + q�2 + c2�s , �7�

where �bi�= �b1 ,b2 , . . . ,bd� and q�=q /2�	 is dimensionless.
The integral over the D−d noncompactified momentum variables is performed using the

well-known dimensional regularization formula,9

	 dlp

�2��l

1

�p2 + M�s =

�
s −
l

2
�

�4��l/2��s�Ms−l/2 �8�

for l=D−d, we obtain

U1�
0,�bi�� = 	Db1 ¯ bd�
s=1

�

f�D,d,s��12g
0
2�sZd

c2
s −
D − d

2
;�b1�� , �9�

where

f�D,d,s� = ��D−d�/2 �− 1�s+1

2s��s�
�
s −

D − d

2
� �10�

and Zd
c2

�� ; �ai�� are Epstein–Hurwitz zeta functions, valid for Re����d /2, defined by

Zd
c2

��;�ai�� = �
n1,. . .,nd=−�

+�

�a1n1
2 + ¯ + adnd

2 + c2�−�. �11�

This multidimensional Epstein–Hurwitz function possesses the following analytical extension to
the whole complex � plane:27,28
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Zd
c2

��;�ai�� =
�d/2

a1 ¯ ad����
�
� −

d

2
�cd−2� +

2��

a1 ¯ ad����
�

n1,. . .,nd=−�

+�� 
1

c
n1

2

a1
+ ¯ +

nd
2

ad
��−d/2

 Kd/2−�
2�cn1
2

a1
+ ¯ +

nd
2

ad
� , �12�

where the prime attached to the summation symbol means that n1=n2= ¯ =nd=0 is excluded
from the indices and Kd/2−��z� is a Bessel function of the third kind. This analytical extension is the
generalization to several dimensions of the mode-sum regularization prescription described in Ref.
24, as used in Ref. 21.

Now, using Eq. �12�, expanding the prime summation, and coming back to the original
variables �Li ,m ,� ,�0�, the one-loop contribution to the effective potential becomes

U1��0,�Li�� = �
s=1

�

�12��/N��0
2�sh�D,s��2s−D/2−2��s − �D/2��mD−2s

+ �
i=1

d

�
ni=1

� 
 m

Lini
�D/2−s

KD/2−s�mLini�

+ 2 �
i�j=1

d

�
ni,nj=1

� 
 m

Li
2ni

2 + Lj
2nj

2�D/2−s

KD/2−s�mLi
2ni

2 + Lj
2nj

2� + ¯

+ 2d−1 �
n1,. . .,nd=1

� 
 m

L1
2n1

2 + ¯ + Ld
2nd

2�D/2−s

KD/2−s�mL1
2n1

2 + ¯ + Ld
2nd

2�� ,

�13�

where

h�D,s� =
1

2D/2+s−1�D/2
�− 1�s+1

s��s�
. �14�

The mass and the coupling constant are obtained from the normalization conditions

� �2

��0
2U��0��

�0=0

= m2 �15�

and

� �4

��0
4U��0��

�0=0

=
�

N
, �16�

where U is the sum of the tree-level and one-loop contributions to the effective potential.

III. BOUNDARY EFFECTS ON THE COUPLING CONSTANT IN THE LARGE-N LIMIT

In the following, we consider the four-point function at zero external momenta, which we take
as the basic object for our definition of the renormalized coupling constant. At leading order in
1 /N, it is given by the sum of all chains of one-loop diagrams, which has the formal expression9

�D
�4��p = 0,m,�Li�� =

�/N
1 + ���D,m,�Li��

, �17�

where, after using the prescription �5�, ��D ,m , �Li��=��p=0,D ,m , �Li�� corresponds to the
single bubble four-point diagram with compactification of a d-dimensional subspace.
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To proceed, we use the renormalization condition �16� from which we deduce formally that
the single bubble function ��D ,m , �Li�� is obtained from the coefficient of the fourth power of the
field �s=2� in Eq. �13�. Then, using Eq. �16�, we can write ��D ,m , �Li�� in the form

��D,m,�Li�� = H�D,m� + �R�D,m,�Li�� , �18�

where the �Li�-dependent term �R�D ,m , �Li�� comes from the second term between brackets in
Eq. �13�,

�R�D,m;�Li�� =
1

�2��D/2��
i=1

d

�
ni=1

� 
 m

Lini
�D/2−2

KD/2−2�mLini� + 2 �
i�j=1

d

�
ni,nj=1

� 
 m

Li
2ni

2 + Lj
2nj

2�D/2−2

 KD/2−2�mLi
2ni

2 + Lj
2nj

2� + ¯ + 2d−1 �
n1,. . .,nd=1

� 
 m

L1
2n1

2 + . . . + Ld
2nd

2�D/2−2

 KD/2−2�mL1
2n1

2 + . . . + Ld
2nd

2�� �19�

and H�D ,m� is a polar term coming from the first term between brackets in Eq. �13�,

H�D,m� � �
2 −
D

2
�mD−4. �20�

We see from Eq. �20� that for even dimensions D�4, H�D ,m� is divergent due to the pole of the
�-function. Accordingly, this term must be subtracted to give the renormalized single bubble
function �R�D ,m , �Li��. In order to have a coherent procedure for a generic dimension D, the
subtraction of the term H�D ,m� should be performed even in the case of odd dimensions, where
no poles of �-functions are present �finite renormalization�. From the properties of Bessel func-
tions, it can be seen from Eq. �19� that for any dimension D, �R�D ,m , �Li�� satisfies the conditions

lim
Li→�

�R�D,m,�Li�� = 0, lim
Li→0

�R�D,m,�Li�� → � . �21�

We also conclude, from the properties of Bessel functions, that �R�D ,m , �Li�� is positive for all
values of D and �Li�.

Taking inspiration from Eq. �17�, let us define the �Li�-dependent renormalized coupling
constant �R�m ,D , �Li��, at the leading order in 1 /N, as

�D,R
�4� �p = 0,m,�Li�� �

1

N
�R�D,m,�Li�� =

��/N�
1 + ��R�D,m,�Li��

�22�

and let �R�D ,m�, the renormalized coupling constant in the absence of constraints, be defined by

�R�D,m�
N

= lim
Li→�

�D,R
�4� �p = 0,m,�Li�� . �23�

From Eqs. �21�–�23�, we simply get �R�D ,m�=�. In other words, we have done a choice of
renormalization scheme such that the constant � introduced in the Hamiltonian corresponds to the
renormalized coupling constant in the absence of boundaries. From Eqs. �22� and �23� we obtain
the �Li�-dependent renormalized coupling constant

�R�D,m,�Li�� =
�

1 + ��R�D,m,�Li��
. �24�
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IV. BOUNDARY EFFECTS ON THE CRITICAL BEHAVIOR

Criticality is attained from the ordered phase when the inverse squared correlation length,
�−2��Li� ,
0�, vanishes in the large-N gap equation

�−2��Li�,�0� = m̄0
2 + 12�R�D,�Li���0

2

+
24�R�D,�Li��

L1 ¯ Ld
�

�nj�=−�

� 	 dD−dq

�2��D−d

1

q2 + � j=1
d 
2�nj

Lj
�2

+ �−2��Li�,�0�
. �25�

In the ordered-disordered border, �0 vanishes and the inverse correlation length equals the physi-
cal mass. The physical mass is obtained at the one-loop order from Eqs. �13� and �15� �again
suppressing the polar term of U1�; after performing the change �→�R�D ,m , �Li��, where
�R�D ,m , �Li�� is the renormalized �Li�-dependent coupling constant �Eq. �24��, we get

m2�D,T,�Li�� = m̄0
2�T,�Li�� +

24�R�D,m,�Li��
�2��D/2 ��

i=1

d

�
ni=1

� 
 m

Lini
�D/2−1

KD/2−1�mLini�

+ 2 �
i�j=1

d

�
ni,nj=1

� 
 m

Li
2ni

2 + Lj
2nj

2�D/2−1

KD/2−1�mLi
2ni

2 + Lj
2nj

2� + ¯

+ 2d−1 �
n1,. . .,nd=1

� 
 m

L1
2n1

2 + ¯ + Ld
2nd

2�D/2−1

KD/2−1�mL1
2n1

2 + ¯ + Ld
2nd

2�� ,

�26�

where, also in the right-hand side, m=m�D ,T , �Li��. Besides, the renormalized coupling constant
�R�D ,m , �Li�� is itself a function of m�D ,T , �Li��, as given by appropriate versions of Eqs. �19�
and �24�, i.e.,

��R�D,m,�Li��� =
�

1 + ��R�D,m�D,T,�Li��,�Li��
, �27�

with

�R�D,m�D,T,�Li��;�Li�� =
1

�2��D/2��
i=1

d

�
ni=1

� 
m�D,T,�Li��
Lini

�D/2−2

KD/2−2�m�D,T,�Li��Lini�

+ 2 �
i�j=1

d

�
ni,nj=1

� 
 m�D,T,�Li��
Li

2ni
2 + Lj

2nj
2�D/2−2

 KD/2−2�m�D,T,�Li��Li
2ni

2 + Lj
2nj

2� + ¯

+ 2d−1 �
n1,. . .,nd=1

� 
 m�D,T,�Li��
L1

2n1
2 + . . . + Ld

2nd
2�D/2−2

 KD/2−2�m�D,T,�Li��L1
2n1

2 + . . . + Ld
2nd

2�� . �28�

Therefore, to determine m�D ,T , �Li��, one has to solve a set of complicated, transcendental,
coupled equations since m�D ,T , �Li�� appears in the right-hand sides of Eqs. �26� and �28� as part
of the argument of KD/2−s and �R�D ,m , �Li�� depends on m�D ,T , �Li��. This set of equations has no
analytical solutions in general.
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Nevertheless, if we restrict ourselves to the neighborhood of criticality �m2�D ,T , �Li���0� for
high enough values of D, we can get a solution by taking the limit m→0 in the sums of the
right-hand sides of Eqs. �26� and �28�. Indeed, for D /2−s such that these sums are convergent and
have finite limits for m=0, we can use the asymptotic formula for small values of the argument of
the Kelvin function

K��z� �
1

2
����
 z

2
�−�

�z � 0; Re��� � 0� �29�

to show that, in the limit m→0, the factors m�D ,T , �Li�� present in the coefficients and in the
arguments of the Kelvin functions in the sums cancel out exactly giving mass-independent ex-
pressions, that is,

� �
n1,. . .,np=1

� 
 m�D,T,�Li��
L1

2n1
2 + ¯ + Lp

2np
2�D/2−s

KD/2−s�m�D,T,�Li��L1
2n1

2 + ¯ + Lp
2np

2��
m→0

= 2D/2−s−1�
D

2
− s�Ep
D

2
− s;L1, . . . ,Lp� , �30�

where s=1 and s=2 for, respectively, the mass in Eq. �26� and the renormalized one-loop bubble
function in Eq. �28�. In both cases, p=1,2 , . . . ,d and Ep�D /2−s ;L1 , . . . ,Lp� is one of the gener-
alized Epstein zeta functions defined, in symmetric form,21 by

Ep��;L1, . . . ,Lp� =
1

p!��
�
n1=1

�

¯ �
np=1

�

��1
2n1

2 + ¯ + �p
2np

2�−�, �31�

where �i=��Li�, with � running in the set of all permutations of the parameters L1 , . . . ,Lp, and the
summations over n1 , . . . ,np being taken in the given order. Notice that, for p=1, Ep reduces to the
Riemann zeta function, i.e.,

E1��,L1� =
1

L1
2���2�� . �32�

Also, one can construct analytical continuations and recurrence relations for these multidimen-
sional Epstein functions which permit to write them in terms of Kelvin and Riemann zeta
functions;21,25 one gets

Ep��;L1, . . . ,Lp� = −
1

2p
�
i=1

p

Ep−1��; . . . ,Li
̂, . . .� +

�

2p����
�
� −

1

2
��

i=1

p
1

Li
Ep−1
� −

1

2
; . . . ,Li

̂, . . .�
+

2�

p����
Wp
� −

1

2
,L1, . . . ,Lp� , �33�

where the hat over the parameter Li in the functions Ep−1 means that it is excluded from the set
�L1 , . . . ,Lp� �the others being the p−1 parameters of Ep−1�, and

Wp��;L1, . . . ,Lp� = �
i=1

p
1

Li
�

n1,. . .,np=1

� 
 �ni

Li
�¯+ Li

2ni
2̂ + ¯�

��

K�
2�ni

Li

�¯+ Li
2ni

2̂ + ¯�� ,

�34�

with �¯+Li
2ni

2
̂

+¯� representing the sum � j=1
p Lj

2nj
2−Li

2ni
2.

Inserting the appropriate versions of Eq. �30� into Eqs. �26� and �28�, we obtain expressions
for the physical mass and the renormalized coupling constant at criticality �m2�0�,
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m2�D,T,�Li�� � m̄0
2�T,�Li�� +

6�R�D,�Li��
�D/2 �
D

2
− 1���

i=1

d
1

Li
D−2��D − 2� + 2 �

i�j=1

d

E2
D

2
− 1;Li,Lj�

+ ¯ + 2d−1Ed
D

2
− 1;L1, . . . ,Ld�� �35�

and

�R�D,�Li�� �
�

1 + �C�D���i=1
d Li

4−D��D − 4� + 2�i�j=1
d E2
D − 4

2
;Li,Lj� + ¯ + 2d−1Ed
D − 4

2
;L1, . . . ,Ld��

,

�36�

where

C�D� =
1

8�D/2�
D

2
− 2� . �37�

Substituting Eq. �36� into Eq. �35� and imposing the criticality condition, m2�D ,T , �Li��=0, we
obtain the critical temperature as a function of the distances between the parallel plane boundaries
�Li�. This allows us to analyze, taking d=1,2 , . . . ,D, finite size effects on the critical temperature
for the cases where Eqs. �35� and �36� are both well defined.

The cases of physical interest, D=3 with d=1,2 ,3 corresponding respectively to films, rect-
angular wires, and parallelepiped grains undergoing second-order phase transitions, however, can-
not be considered by taking D=3 directly in Eq. �35�; doing so, one faces the divergence of
��D−2� as D→3. Notice that the same sort of problem would appear if one tries to use Eq. �30�
with D=3 and d=1, for example.

To get meaningful results for D=3, we have to perform an additional mass zeta-function
renormalization. First, we analytically extend the expressions of m2 and �R close to criticality
�Eqs. �35� and �36�� to generic dimension D by considering the analytic extensions of the gamma
function and the generalized Epstein and Riemann zeta functions; in this way, m2�D ,T , �Li�� and
�R�D , �Li�� become meromorphic functions of D, as usually happens in dimensional and zeta-
function regularization techniques. Then, we choose the bare mass parameter, m̄0

2�T , �Li��, in such
way that it eliminates the divergence coming from the pole that might exist at D=3. This proce-
dure is applied in Secs. V–VII to obtain the dependence of the critical temperature on �Li� for
films, wires, and grains, respectively.

V. BOUNDARY EFFECTS ON THE TRANSITION TEMPERATURE FOR FILMS

Let us now consider the case of films, where we have one spatial dimension compactified
�d=1� and make L1�L. In this case, Eqs. �35� and �36�, using Eq. �37�, reduce to

m2�D,T,L� � m̄0
2�T,L� +

6�R�D,L�
�D/2LD−2 �
D

2
− 1���D − 2� �38�

and

�R�D,L� �
8�D/2�

8�D/2 + ���D/2 − 2���D − 4�L4−D . �39�

In these equations, the �- and �-functions are to be taken as their usual analytic extensions.
As D→3, Eq. �39� is finite, and using ��−1 /2�=−2� and ��−1�=−1 /12, we get
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�R�L� =
48�

48� + �L
. �40�

On the other hand, ��D−2� has a single pole at D=3 and Eq. �38�, as it stands, is meaningless for
D=3. However, it can be made physically meaningful if we perform a mass renormalization
procedure to suppress this divergence, as follows.

In a vicinity of D=3, ��D−2� possesses the following Laurent expansion:

��D − 2� =
1

D − 3
+ �

n=0

�
�− 1�n�n

n!
�D − 3�n, �41�

where �n are the Stieltjes constants, �0���0.5772 being the Euler–Mascheroni constant. Thus,
using that ��1 /2�=�, for D�3, Eq. �38� can be written as

m2�D,T,L� � m̄0
2�T,L� +

6�R�L�
�L

� 1

D − 3
+ � − �1�D − 3� + ¯� . �42�

We then define the L-dependent bare mass m̄0
2�T ,L�, for D�3, in such a way that the pole at D

=3 in Eq. �42� is suppressed, that is, we take

m̄0
2�T,L� � M�T� −

1

�D − 3�
6�R�L�

�L
, �43�

where M�T� is the finite part. Inserting Eq. �43� in Eq. �42� and taking the limit D→3, we obtain

m2�T,L� � M�T� +
6��R�L�

�L
. �44�

To get the renormalized mass close to criticality, for D=3, we need to fix the finite term M�T�.
This has to be done ensuring that condition �3� is satisfied. From Eq. �43�, it follows that
m̄0

2�T ,L�→M�T� as L→� so that the simplest choice that guarantees �3� is

M�T� = m0
2�T� = ��T − T0� , �45�

where T0 is the bulk critical temperature. This leads to the renormalized mass m2, close to
criticality, in the Ginzburg–Landau form

m2�T,L� � ��T − Tc�L�� , �46�

where

Tc�L� = T0 −
48�C1�

48��L + ��L2 �47�

is the modified, L-dependent, transition temperature of the film and

C1 =
6�

�
� 1.1024. �48�

The dependence of the critical temperature on the thickness of the film �Eq. �47�� has two
important features. First, Tc�L�→T0 as L→� recovering the bulk sample critical temperature.
Second, Tc�L� decreases as L diminishes and there is a minimal allowed film thickness for the
existence of the transition, obtained by solving Tc�L�=0,
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Lmin� =
24�

�
�1 +

�Lmin

12�
− 1� , �49�

where

Lmin =
C1�

�T0
�50�

is the corresponding minimal allowed thickness when no boundary corrections to the coupling
constant are taken into account.22

VI. BOUNDARY EFFECTS ON THE TRANSITION TEMPERATURE FOR WIRES

We now focus on the situation where two spatial dimensions are compactified, d=2. Close to
criticality �m2�0�, for dimension D high enough to ensure that both sides of Eq. �30� are finite,
Eqs. �35� and �36�, using Eq. �37�, become

m2�D,T,L1,L2� � m̄0
2�T,L1,L2� +

6�R�D,L1,L2�
�D/2 �
D

2
− 1�

�
 1

L1
D−2 +

1

L2
D−2���D − 2� + 2E2
D

2
− 1;L1,L2�� �51�

and

�R�D,L1,L2� �
8�D/2�

8�D/2 + ��
D − 4

2
���i=1

2 ��D − 4�
Li

D−4 + 2E2
D

2
− 2;L1,L2��

, �52�

where the two-dimensional Epstein zeta function E2 is defined by Eq. �31� with p=2.
Using Eq. �33�, the analytical extension of E2�D /2−s ;L1 ,L2�, for s=1,2 is

E2
D

2
− s;L1,L2� = −

1

4

 1

L1
D−2s +

1

L2
D−2s���D − 2s�

+
�

4�
D

2
− s�


1

L1L2
D−2s−1 +

1

L1
D−2s−1L2

��
D − 2s − 1

2
���D − 2s − 1�

+
�

�
D

2
− s�W2
D

2
− s −

1

2
;L1,L2� , �53�

which is a meromorphic function of D, symmetric in the parameters L1 and L2. The function
W2�D /2−s− 1

2 ;L1 ,L2�, appearing in the finite part in Eq. �53�, is the particular case of Eq. �34� for
p=2 and �=D /2−s− 1

2 . The poles of E2�D /2−s ;L1 ,L2� are the poles of the �- and �-functions in
�53�. However, in handling the second term in Eq. �53�, one has to be aware of the fact that the
analytical extensions of the �- and �-functions are constructed in such a way that the reflection
formula,

�
 z

2
���z� = �z−1/2�
1 − z

2
���1 − z� �54�

is satisfied; it should be used to calculate the limiting behavior as D→3.
For s=2, taking the limit D→3 in Eq. �53� and using that ��3 /2�=� /2, we obtain

083304-10 Malbouisson, Malbouisson, and Pereira J. Math. Phys. 50, 083304 �2009�

Downloaded 06 Jul 2012 to 200.128.60.103. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



E2
−
1

2
;L1,L2� =

1

48
�L1 + L2� −

��3�
16�2
L1

2

L2
+

L2
2

L1
� −

1

2
W2�− 1;L1,L2� , �55�

where

W2�− 1;L1,L2� =
1

�
�

n1,n2=1

� �L1
n1

n2
K1
2�

L1

L2
n1n2� + L2

n2

n1
K1
2�

L2

L1
n1n2�� . �56�

Since ��D−4� is finite for D→3, this shows that expression �52� for �R�D ,L1 ,L2� is finite in this
limit. On the other hand, using Eq. �41� and the analytical extension of ��D−3 /2�,

�
D − 3

2
� =

2

D − 3
− � +

1

4

�2 +

�2

6
��D − 3� + ¯ , �57�

we obtain, for D�3,

E2
D

2
− 1;L1,L2� = −

1

2

 1

L1
+

1

L2
�
 1

D − 3
+

�

4
� + W2�0;L1,L2� + O�D − 3� , �58�

with the function W2�0;L1 ,L2� given by

W2�0;L1,L2� = �
n1,n2=1

� � 1

L1
K0
2�

L2

L1
n1n2� +

1

L2
K0
2�

L1

L2
n1n2�� . �59�

One sees that E2�D /2−1;L1 ,L2� has a simple pole at D=3, which, in principle, would require a
mass renormalization to give meaning to Eq. �51�. However, this divergence is exactly canceled
out by the divergence of the �-function of the first term in the square bracket of Eq. �51� and no
mass renormalization is really needed; in this case, we can choose any finite bare mass that
satisfies condition �3�, but the simplest choice is

m̄0
2�T,L1,L2� = m0

2�T� . �60�

We could proceed substituting Eq. �55� into Eq. �52� to get �R�L1 ,L2� and inserting Eqs. �41�
and �58� into Eq. �51� to obtain a finite expression for m2�T ,L1 ,L2� when D=3; the condition
m2=0 would then produce an expression for the �L1 ,L2�-dependent transition temperature for a
rectangular wire, Tc�L1 ,L2�. However, the resulting expression has a very complicated dependence
on the lengths L1 and L2 because their ratios appear in the arguments of the Kelvin functions in the
infinite double sums of Eqs. �56� and �59�, which define the functions W2�−1;L1 ,L2� and
W2�0;L1 ,L2�. Instead, we consider a wire with square transversal section for which these double
sums can be performed, leading to much simpler expressions for the W2-functions.

For a square wire, taking L1=L2=L=A, Eqs. �51� and �52� reduce, in the limit D→3, to

m2�T,A� = m0
2�T� + C2

�R�A�
A

, �61�

�R�A� =
48��

48� + E2�A
, �62�

where

C2 =
9�

�
+

24

�
�

n1,n2=1

�

K0�2�n1n2� � 1.660 62, �63�
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E2 = 1 +
3��3�

�2 +
24

�
�

n1,n2=1

�
n1

n2
K1�2�n1n2� � 1.372 41. �64�

With m0
2�T�=��T−T0� and using Eq. �62�, we can rewrite Eq. �61� as

m2�T,A� = ��T − Tc�A�� , �65�

where

Tc�A� = T0 −
48�C2�

48��A + E2���A�2
. �66�

Similar to the case of films, we infer from Eq. �66� that there is a minimal area for transversal
section of a square wire below which the ordered phase is not sustained

Amin� = �24�

E2�

1 +

E2�Amin

12�
− 1��2

, �67�

where

Amin = 
 C2�

�T0
�2

�68�

is the corresponding quantity with no boundary corrections to the coupling constant.22

VII. BOUNDARY EFFECTS ON THE TRANSITION TEMPERATURE FOR GRAINS

We now turn our attention to the case where three spatial dimensions are compactified,
corresponding to the system confined in a box of sides L1 ,L2 ,L3. For high enough D, close to
criticality �m2�0�, taking d=3 in Eqs. �35� and �36�, we get

m2�D,T,L1,L2,L3� � m̄0
2�T,L1,L2,L3� +

6�R�D,L1,L2,L3�
�D/2 �
D

2
− 1�

��
i=1

3
��D − 2�

Li
D−2 + 2 �

i�j=1

3

E2
D

2
− 1;Li,Lj� + 4E3
D

2
− 1;L1,L2,L3��

�69�

and using Eq. �37�,

�R�D,L1,L2,L3�

�
8�D/2�

8�D/2 + ��
D − 4

2
���

i=1

3
��D − 4�

Li
D−4 + 2 �

i�j=1

3

E2
D − 4

2
;Li,Lj� + 4E3
D − 4

2
;L1,L2,L3��

.

�70�

The analytical extensions of the functions E2 are given by Eq. �53�, for s=1,2, while the analytical
structure of the functions E3 can be obtained from the general symmetrized recurrence relation
given by Eqs. �33� and �34�; explicitly, one has
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E3
D

2
− s;L1,L2,L3� = −

1

6 �
i�j=1

3

E2
D

2
− s;Li,Lj� +

��
D

2
− s −

1

2
�

6�
D

2
− s�

 �
i,j,k=1

3 ��ijk�
2Li

E2
D − 1

2
− s;Lj,Lk� +

2�

3�
D

2
− s�W3
D − 1

2
− s;L1,L2,L3� ,

�71�

where �ijk is the totally antisymmetric symbol and the functions W3, particular cases of Eq. �34�,
are given by

W3
D − 1

2
− s;L1,L2,L3� = �

i,j,k=1

3 ��ijk�
2Li

�
n1,n2,n3=1

� 
 �ni

Li
Lj

2nj
2 + Lk

2nk
2��D−1�/2−s

K�D−1�/2−s
2�ni

Li

Lj
2nj

2 + Lk
2nk

2� . �72�

Using Eqs. �55�, �56�, �58�, and �59�, together with Eqs. �72� and �77�, in Eqs. �69� and �70� leads
to big expressions for the mass and the renormalized coupling constant which have very compli-
cated dependence on the compactification lengths L1 ,L2 ,L3. For this general case, in the limit
D→3, one finds results similar to those for wires: it follows directly that �R�L1 ,L2 ,L3� is finite,
while the divergences �pole parts� of the terms in the square bracket of Eq. �69� cancel out exactly
�as D→3� leaving m2�T ,L1 ,L2 ,L3� finite. Then, fixing the bare mass as

m̄0
2�T,L1,L2,L3� = m0

2�T� = ��T − T0� , �73�

one would obtain the critical temperature for a parallelepiped grain. The expression of
Tc�L1 ,L2 ,L3� is a very complicated formula, involving infinite multiple sums, which makes almost
impossible a general analytical study for arbitrary parameters L1 ,L2 ,L3. Instead of treating the
general case, we restrict ourselves to the simplest situation where all the compactification lengths
are equal, the system corresponding to a cubic grain.

For a cubic grain, we take L1=L2=L3=L=V1/3 and Eqs. �69� and �70� reduce, in the limit
D→3, to

m2�T,V1/3� = m0
2�T� + C3

�R�V1/3�
V1/3 , �74�

�R�V1/3� =
48��

48� + E3�V1/3 , �75�

where

C3 = 1 +
9�

�
+

12

�
�

n1,n2=1

�
e−2�n1n2

n1
+

48

�
�

n1,n2=1

�

K0�2�n1n2� +
48

�
�

n1,n2,n3=1

�

K0�2�n1
n2

2 + n3
2� � 2.6757

�76�

and
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E3 = 1 +
�

15
+

3��3�
�2 +

48

�
�

n1,n2=1

�
n1

n2
K1�2�n1n2� +

24

�
�

n1,n2=1

� 
n1

n2
�3/2

K3/2�2�n1n2�

+
48

�
�

n1,n2,n3=1

� n1
2 + n2

2

n3
K1�2�n3

n1
2 + n2

2� � 1.5996. �77�

Using condition �73�, Eq. �74� can be rewritten as

m2�T,V1/3� = ��T − Tc�V1/3�� , �78�

where the boundary dependent critical temperature is given by

Tc�V1/3� = T0 −
48�C3�

48��V1/3 + E3���V1/3�2 �79�

We find that the minimal volume of the grain allowing the transition is

Vmin� = �24�

E3�

1 +

E3��Vmin�1/3

12�
− 1��3

, �80�

where

Vmin = 
 C3�

�T0
�3

corresponds to the minimal volume for the situation where boundary corrections to the coupling
constant are ignored.22

VIII. GENERAL REMARKS AND CONCLUSIONS

In all cases studied, there exist lowest lengths, Lmin, Amin and �Vmin�1/3, below which the
broken phase cannot be sustained and the dependence of Tc on these lengths follows the same
pattern. Let us take the minimal film thickness as the length scale, L0=Lmin=C1� /�T0 and define
the reduced critical temperature tc and the reduced length l, respectively, by

tc =
Tc

T0
, l =

L

L0
. �81�

We know from Ref. 22 that the reduced transition temperature as a function of the reduced length,
in the case where no correction to the coupling constant is included, for films, square wires, and
cubic grains �d=1,2 ,3, respectively�, can be written in the form

tc
�d��l� = 1 −

C�d�

l
�82�

with C�1�=1, C�2�=C2 /C1�1.5064, and C�3�=C3 /C1�2.4272; that is, for all values of d, the reduced
temperature tc scales with the inverse of the reduced length l−1. In other words, the overall
behavior of the reduced temperature does not depend on the number of compactified dimensions
but only on the dimension of the Euclidian space, here D=3.

Considering the coupling-constant correction, the reduced transition temperatures are written
as,
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tc
�d��l� = 1 −

48�C�d�

48�l + Ed�l2 , �83�

where E1=1, E2�1.3724, E3�1.5996, and �=�Lmin. In Fig. 1, we plot the reduced transition
temperature as a function of the reduced length for all cases �films, square wires and cubic grains�,
fixing �=25. We also plot for comparison the corresponding curves for the cases where no cor-
rections to the coupling constant are considered.

We have presented in this paper a general formalism which, in the framework of the
Ginzburg–Landau model, is able to describe phase transitions for systems defined in spaces of
arbitrary dimension, some of them being compactified. Such a generalization is not trivial since it
involves the extension to several dimensions of the one-dimensional mode-sum regularization
procedure of Ref. 24. This extension requires, in particular, the definition of symmetrized multi-
dimensional Epstein-Hurwitz functions with no analog in the one-dimensional case. When com-
bined with the boundary dependent coupling constant, this generates sets of coupled equations for
the renormalized mass, which can be solved only at criticality. This leads to the critical tempera-
ture as a function of the size of the system. It is this kind of mathematical framework that allows
us to obtain the general formulas �26�–�28�, which are particularized to films, wires and grains,
thereby implying the peculiar forms of the critical temperature as a function of the size of the
system for these three physically interesting cases.
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