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In this paper we describe a multiagent crime simulation model that resorts to concepts of self-organizing
bio-inspired systems, in particular, of the Ant Colony Optimization algorithm. As the matching between
simulated and real crime data distributions depends upon the tuning of some control parameters of the
simulation model (in particular, of the initial places where criminals start out), we have modeled the
calibration of the simulation as an optimization problem. The solution for the allocation of criminals into
gateways is also undertaken by a bio-inspired method, namely, a customized Genetic Algorithm. We show
that this approach allows for the automatic discovery of gateway configurations that, when employed in the
simulation, produce crime distributions that are statistically close to those observed in real data.
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1. Introduction

Recently, an extensive analysis conducted over real crime data
related to a large Brazilian metropolis [11] demonstrated that the
spatial distribution of crimes such as robberies, thefts, and burglaries
follows a power law, more specifically, a Zipfian distribution [40]. This
means that the frequency of crime occurrences related to a specific
geographic area, when considered per type of crime, tends to scale
according to a power-law distribution, yielding the formation of hot
spots [34]. In the samework [11], an analysis over the temporal aspect
reveals that these crime events follow an exponential distribution per
period of analysis.

Although knowing the crime distribution profile for a given
moment may be necessary to better conduct some of the police
decision-making activities, it is not enough to help one gain further
insights into crime in its totality. This is because crime is a dynamic
phenomenon, and the decision of protecting a frequently-attacked
target at a given point in time eventually leads to the exposure of
other potential targets in the future, due to a range of restrictions in
terms of resources availability (e.g., human resources).

In this sense, we advocate that a better understanding of the trends
of criminal activities and the types of reactions criminals might
potentially undertake is a crucial task to be pursued. In this context,
the goal of the research we have been conducting in the last years
[18,19,31] is to produce a crime simulation system that reproduces
crime phenomena as realistically as possible. Our ultimate goal is to
uncover strategies for police patrolling (more precisely, police patrol
routes) that could cope well with the dynamics of crime when
criminal agents are capable of learning “on the fly.”

In this article, we provide a major step toward the aforementioned
goal by introducing a dynamic model of crime against property1 that
shows experimentally how this type of crime evolves. The main
challenge behind this effort lies in the definition of a simulationmodel
that could generate crime episodes according to a spatial Zipfian
distribution and, at the same time, be in agreement with real data. For
such a purpose, we have designed a multiagent criminal model that
mimics real-life criminal behavior in consonance with some socio-
logical studies [1,36], paying special attention to the following facts:
(i) the environment where the agents live is a digitalized map
representing the real-life area; (ii) criminals improve their perfor-
mance over time by creating preferences according to their experi-
ence in crime; and (iii) social communication among criminals must
also be properly modeled, because criminal behavior depends not
only on individual incentives but also on the behavior of the
perpetrators' peers and neighbors.

One distinctive aspect of the conceived criminal model is that it
resorts to concepts related to self-organizing bio-inspired systems, in
particular the Ant Colony Optimization (ACO) algorithm [7,15]. The
rationale behind this choice is twofold. Through an ant-based
roperty includes burglaries, robberies, etc. as long as the main
ment. Hence, situations like a person being mugged on the street
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perspective, we can model criminals as agents that account for both
the individual and social aspects we intend to consider in our crime
simulation model. They are endowed with the capability to pursue
self-organized behavior by considering their individual (local)
activities as well as the influence of other criminals in the community
they live in. At the same time, as we have identified experimentally in
[18], ant-based multiagent systems are capable of reproducing spatial
behavior of a power-law nature. Basically, we have shown that two
features of the model lead to this important result: the possibility of
social communication between criminals, and the fact that they follow
a kind of preferential attachment mechanism (popularly called the
rich get richer phenomenon) [5,25]. In the context of crime, the
preferential attachment mechanism reflects the criminal preference
to commit crimes in places where they feel comfortable because of
their past experience and learning.

Even considering these interesting capabilities of the model, we
have to point out that thematching between simulated and real crime
data distributions depends very much upon the tuning of some
control parameters of the simulation model; in particular, the initial
places where criminals start out in the simulation process (henceforth
called gateways). As this particular tuning is not trivial per se, we have
decided to model it as an optimization problem. Therefore, in this
paper we describe a solution for the allocation of criminals into
gateways via another bio-inspired technique, namely, a customized
Genetic Algorithm (GA) [17]. We show that this approach allows for
the automatic discovery of gateway configurations that, when
employed in the simulation, produce crime distributions that are
statistically close to those observed in real data. The experiments
reported here compare the matching between the spatial distribution
of crimes generated from our simulator and the actual crime
distribution data recorded for a region of Fortaleza, a large Brazilian
urban metropolis.

The remainder of the paper is structured as follows. First, we
describe related work with the theoretical basis upon which we have
constructed and tuned our crime simulation model. Then, we focus on
the characterization of the elements behind this model, paying special
attention to the description of the criminal learning behavior and to
the GA-based solution for the criminal–gateway allocation problem.
The experimental results come next, evidencing that the whole bio-
inspired approach is indeed capable of generating adequate criminal–
gateway configurations and simulated crime distributions that are
closely related to those observed in real data. We conclude by
describing the relevance of these findings and providing directions for
future work.

2. Multiagent simulation, ant colony optimization, and
genetic algorithms

Multiagent Systems (MAS) [37] involve the study of the behavior
of autonomous and organized groups of agents with the purpose of
providing distributed, emergent solutions to complex problems that
could not be achieved by each individual agent alone. On the other
hand, the deployment of simulations for the purpose of gaining
insights along a given decision-making process can be a very effective
approach one could resort to, as computer simulations usually allow
the focused analysis of important issues by investigating their
influences, either separately or conjointly.

Recently, multiagent systems have been successfully adopted in
conjunction with simulation models, as the inherent characteristics of
the former (e.g., agent autonomy, reactivity, and pro-activity)
facilitate the construction and simulation of more realistic and
dynamic models, thus contrasting directly with conventional com-
puter simulation approaches. The outcome is generally referred to as
Multiagent-based Simulation (MABS) systems, which—according to
[20]—are especially appropriate when one has to deal with interdis-
ciplinary problem domains, such as the public-safety domain inves-
tigated here. In particular, we advocate that the multiagent approach
(bottom-up in nature) is appropriate for the study of social and urban
problems, since social/urban environments are dynamic, non-linear,
and composed of a great number of variables and entities. As pointed
out by [16], some of the main goals behind the construction of MABS
systems are the following:

• To test hypotheses related to the emergence of macro-level
behavior from interactions occurring at micro levels;

• To build theories that can contribute to a better understanding of
sociological, psychological, and ethological phenomena; and

• To integrate partial theories coming from different disciplines (e.g.,
sociology, cognitive psychology, and etiology) into a common
theoretical framework.

The study of agent self-organization, and related concepts such as
emergence, is based on the idea that societies of agents demonstrate
intelligent behavior at the collective level out of simple rules
pertaining to the individual level. What is interesting behind this
paradigm is that the individual rules, when considered alone, cannot
explain the behavior that emerges at the collective level. Within this
context, Swarm Intelligence (SI) [7] has come forth as the discipline
devoted to the study of biological systems characterized by (i) strictly
local communication; (ii) the formation of emergent spatial–temporal
structures; and (iii) stochastic decisions made by the agents based
solely on the local information available. One of the most well-known
branches of SI deals specifically with the study of novel optimization
algorithms inspired by the social behavior exhibited by some species
of ants. Arguably, the main product in this line of research is the Ant
Colony Optimization (ACO) algorithm [14,15], a population-based
metaheuristic that has shown promising results while tackling
combinatorial optimization problems that can be represented as
graphs, mainly those with dynamic settings [23].

In a nutshell, ACO works as follows. Agents (ants) are endowed
with the capability to explore the discrete space of solutions related to
a given problem. In doing so, they leave feedback information
(normally in the form of pheromone marks) on the space itself,
signaling about visited locations (i.e. building blocks) associated with
satisfactory solutions. On the other hand, the path each individual ant
takes is directly influenced by the pheromone marks left by their
peers in the environment; so, the larger the amount of pheromone in a
given location, the more attractive that location becomes for being
visited by the whole population of ants. By this means, even more
satisfactory solutions are able to emerge by putting together those
building blocks with higher levels of pheromone. In order to avoid
early convergence to local optima solutions, the approach assumes
that the pheromone marks are volatile; that is, the pheromone
information is short-lived and, without reinforcement activity, the
“hints” left in that position start to fade with time. Although it had
never been explored for the purposes of modeling criminal behavior,
ACO—due to its interesting properties—seemed to us to be an ideal fit
to our purposes.

Like ACO, Genetic Algorithms (GA) comprehend a prominent bio-
inspired population-based metaheuristic, which, in turn, is based on
the mechanics of natural selection and genetics [17]. According to the
GA framework, candidate solutions (referred to as chromosomes or
individuals) to a given continuous/discrete optimization problem
play the role of individuals in a population, while the cost (fitness)
function determines the environment within which the solutions
“live.” Here, optimal solutions emerge through the evolution of the
population, which takes place after the repeated application of some
operators mimicking well-known natural phenomena: selection for
reproduction, recombination, mutation, and selection for replace-
ment. In reproduction, parents for the next generation are selected
with a bias towards higher fitness. Parents then reproduce, and
offspring (new candidate solutions) is generated through recombi-
nation andmutation. Recombination acts on the two selected parents
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(candidates) by swapping some of their building blocks (genes),
resulting in one or two children.Mutation acts on one candidate alone
and results in a new candidate. Finally, the new candidates compete
with old ones for their place in the next generation (survival of the
fittest).

3. Individual and social learning in crime

The social interaction and learning aspects that underlie criminal
activities were investigated in Sutherland's seminal work [36] in
which the differential association theory was proposed. This theory
advocates that interaction with others who are delinquent increases
the likelihood of someone becoming and remaining a delinquent. That
is, peers can play a crucial role in the development of values and
beliefs favorable to law violation. In this theory, Sutherland elaborates
nine postulates, among which three are particularly relevant for our
study:

• Criminal behavior is learnable. This means that behavior toward
crime is not an inherited trait and is not something to be acquired
only by wish2;

• Criminal behavior can be especially learned through the interactions
one establishes with other persons, typically through a verbal
communication process; and

• The main part of the learning of criminal behavior occurs within
intimate personal groups.

Recently, different perspectives on the study of crime in human
societies have appeared, capitalizing from the theoretical resources
made available in the area of social network analysis [33] and
information systems [12,39]. Some works have focused on character-
izing the impact of social network topologies (viz. scale-free and
small-world settings) on the development and growth of special types
of criminal activities, such as those related to narcotics [26]. By other
means, Calvó-Armengol and Zenou [10] have studied, through a
game-theory stance, how the levels of criminal activity in a given
territory are influenced by the competitive–cooperative relationships
established by delinquents dwelling it. The authors concluded that the
various equilibria produced by the game, representing different
numbers of active criminals and their levels of involvement in
criminal activities, are only driven by the geometry of the social links
connecting the delinquents. Other researchers, such as [24], have
verified the influence of social relations on the motivation of young
boys to commit petty crimes. Basically, the general conclusions taken
from these studies, which corroborate those of Sutherland [36], are
that criminal behavior depends not only on individual incentives but
also on the behavior of the individual's peers and neighbors. In other
words, an individual is more likely to commit crimes if his/her peers
usually commit crimes.

Finally, another important result coming from works investigating
social network models within the context of criminology is that social
networks come to be a natural way of explaining the concentration of
crimes per area. Crime data analyzed from different regions, and even
different countries, usually reflect the fact that there are huge spatial
(and also temporal) variations in the crime rates among different
cities and among different regions in a city. In this regard, Glaeser et al.
[21] show that less than 30% of the spatial variation of crime (both
inter- and intra-city) can be explained by differences in local
attributes. The remaining 70% can be explained by social interactions,
which means that the agents' decisions about crime are somewhat
positively correlated. The authors also show that the impact of social
relations is greater in thefts, burglaries, muggings, and robberies (i.e.
crimes against property) than in homicides. It is important to note
2 Research on different domains [8] advocates that even social traits are inherited as a
genetic process. However, what is important for our purpose here is the fact that social
behavior has a learning component.
that these research works are not mutually exclusive with others
interested in the social aspects of crimes. Particularly, it is worth
mentioning the convergence with the ideas coming from the Routine
Activity Theory [13], which emphasizes the influence that opportu-
nities have in determining the spatial patterning of crime. The social
relations are not dissociated from the environment in which the
agents are inserted, nor are they a consequence of the daily activities
exerted by such agents.

4. Simulating crime and police patrol

One of our claims in this paper is that ant systems, augmentedwith
social network concepts, comprise an adequate strategy for modeling
criminal behavior. There are several reasons that ratify this choice.
One is that criminals prefer to commit crime in locations known to be
vulnerable, with high payoff, etc. In other words, their choice
considers their preference and knowledge about the crime points.
The link here to ACO is that, according to this approach, ants always
choose their next location in the environment (the place they move
toward) biased by a mechanism (the pheromone marks) that
intuitively complies with the notion of preferential attachment.

Another interesting feature that ACO offers our purposes is that it
includes concepts intrinsically related to the notion of ‘collective.’ We
have already emphasized that characteristics perceived at the social
level belong to groups of individuals and not to the individuals
themselves. In ACO, ants perform their local search tasks without
dictating the whole colony's behavior, which, in turn, is recognized as
an emerging result coming from all these local activities.

In particular, our crime simulation model is composed of three
basic agents: guardians (the police team), targets, and criminals. The
model abstracts out ants as criminals that make decisions based on:
(i) their private experience with each possible point of attack (i.e., the
personal level of attractiveness to these targets); (ii) the distance
from their current place to each possible point of attack; and (iii) the
experience shared by other criminals in their community with regard
to each possible target. We assume that criminal agents take part in
communities (that is, pertain to social networks) and share their
knowledge about crime targets with their peers.

4.1. The police team

There is a set of police teams available, each one associated with a
monitoring route passing through certain locations of the urban
territory (i.e., targets) being considered. A police patrol route of length
n is defined as a set Rt={Pt1, Pt2,…, Ptn} each component of which is a
triple Pt=(Tg, Δt, P), where Tg is the target, Δt is the interval of time
the police team remains in the target, and P is the daily period (patrol
shift) the routes refer to. Thus, P can assume one of the following
values: morning (6 a.m. to noon), afternoon (noon to 6 p.m.), evening
(6 p.m. to midnight), and night (midnight to 6 a.m.). There is no
distinction, in terms of skills, between the police officers allotted to
the different police teams. Different teams may be associated with
different-length routes, which, in turn, can overlap and/or share
common points of surveillance.

4.2. Targets

The locations to be patrolled are referred to as targets, which can
be differentiated with respect to the type of commercial/entertain-
ment establishment they represent (viz. drugstores, banks, gas
stations, lottery houses, and malls). Targets are distributed in a
geographic area, which, in turn, is represented by a digitalized map of
the region. Mobile targets (such as people, cars) are not modeled,
since we have concentrated our study on crimes against property.
Targets have a state of vulnerability that can be either active or
inactive. A vulnerable target means that it is perceivable by a criminal.
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Otherwise, it would not take part in the set of choices of that criminal.
Each target has a probability of being vulnerable, which follows the
temporal distribution of real crime data for the associated target type.
In doing so, we are modeling a control parameter that allows
reproducing the pace of crimes per type as it happens in real life.

The temporal distribution of crime events varies on daytime basis.
We have modeled this variation in four periods of six hours each, in
the same way as for the police teams' patrol shifts mentioned before.
For each period and type of target, a value for a configurable
parameter, λ, must be determined at the beginning of the simulation
in order to define the pace of occurrence of crimes. For instance, at
evening, drugstore robberies may follow a distribution based on a
given value for λ; whereas, during daylight periods, the crime
temporal distribution might shift, achieving values four times higher
for λ. At any simulation tick, at least one target is made vulnerable in
accordance with the temporal distribution associated with its related
type.

4.3. Criminals

There is a set of criminals representing the agents that frequently
try to commit crimes. Each criminal is endowed with a limited view of
the environment, measured in terms of a radius in meters. Criminals
have one or more points of departure that we call ‘gateways.’ Such
points of departure represent places where criminals are likely to start
out, e.g., their residences, metro stations, bus stops, etc., before com-
mitting crimes. It is also assumed that, at the end of each day, each
criminal always returns to the initial gateway, something that does not
depend upon the number of crimes he/she has committed on that day.

It is worth remembering that, in our model, the potential number
of crimes (those that occur and those to be avoided) per type of target
depends basically on the values of the parameter λ since they define,
at each moment, the parcel of the targets that is made vulnerable.
Therefore, as in each simulation tick only one crime event is possible
to occur, the number of criminals does not seem to be very relevant
for achieving a certain level of generated crime events. Yet, it is worth
noting that the number of criminals is indeed an important control
parameter to our model, since communication among criminals exists
and directly influences their final decision about the next targets to
choose.

Target selection is probabilistic (see next section for a formaliza-
tion of the adopted strategy) based on the target vulnerability,
distance, and the criminal's experience. The shortest period of motion,
considering all criminals, is taken as a reference, so that the criminals
are allowed to move only during this time period. Note that only
vulnerable targets are considered in the target selection process.
Finally, the decision whether or not to commit a crime is made based
on the existence of one or more police teams within the radius of the
criminal's sight [35]. If the offender decides not to commit a crime,
then he/she will select a new target to approach, leaving the current
location. Otherwise, we assume that a crime will be committed and
another target will be selected subsequently.

4.4. Learning ability of the criminal

Criminal behavior has a learning component that exploits the
offender's own experience with each target in conjunction with the
information coming from other criminal agents. The success rate of
individual agents is computed as the ratio of the number of successful
crimes to the overall number of crimes attempted in their lifetime.
Criminals form communities wherein hints are shared. The agents in a
community communicate with each other at the end of a day period.
Due to the interconnection of the communities, such hints could be
relayed to other criminals in other communities, and the rate at which
this happens depends directly on the topology of the network of
communities.
In this study, we have considered a scale-free topology in which
nodes with the highest number of acquaintances are elected hubs
[4,26].

4.5. Swarm-based criminal agent behavior

In our model, each criminal has three possible actions: commit a
crime, not commit a crime, and move to a certain location. In order to
reach a decision whether or not to commit a crime, criminals make
use of a probabilistic formula, given as Eq. (1), which is adapted from
the context of ant-based swarm systems [14,15]. In this equation, pcn
represents the probability of a criminal agent, c, choosing a specific
target of the environment, n:

pcn =
½τcn�α × ½ϕcn�β

∑∀p∈N ½τcp�α × ½ϕcp�β
: ð1Þ

Here, τcn represents the learned experience of criminal c with
relation to target n, whereas Ν is the set of all targets the criminal c
considers while deciding where to commit the next crime. The other
parameter, φcn, denotes a static value (not learned) that represents
the inverse of the distance between the current location of criminal c
and that of target n; we assume that the criminal has the knowledge
necessary to localize the closest exemplar target on the map.
Empirical evidence [6,9] suggests that many criminals do not travel
great distances in order to commit a crime. Most crimes against
property are committed in neighborhoods near, but not too close to,
the criminals' residences. Then, we decided to model the probability
of a criminal's going toward a target as the inverse of the distance
between that target and the criminal's current location (a particular
gateway).3 The parameters α and β in Eq. (1) are employed to balance
the importance of τcn against φcn. As φcn is the inverse of the distance,
when β increases, the learning factor becomes more important.

Eq. (1) is applied with respect to all currently-vulnerable targets,
and the decision is made by the criminal c regarding which target to
attempt the next crime at. Once the target is chosen, the criminal will
attempt to commit a crime; this is captured in the discussion that
follows by CTp

cn, which stands for the number of crime attempts for a
criminal c at a specific target n in a period p. The number of attempts
can be subdivided into:

• successful attempts (crimes effectively committed), denoted by
COp

cn again representing a local (at a given target) counter, for a
period p; and

• attempts that were prevented by the police.

Regarding the learned experience factor at a moment t in the
simulation, τ t

cn, this can be calculated as

τtcn = μ × ϕt
cn + ð1� μÞ × ½ςt

cn�; ð2Þ

where

ϕt
cn = ρ × ϕt�1

cn + ð1� ρÞ × ϕld
cn; ð3Þ

ςt
cn = ∑∀k∈SðcÞðτtknÞ: ð4Þ

Eq. (2) indicates that the learned experience factor at a time t, τ t
cn,

is given as a function of two terms, ϕt
cn and ς t

cn representing,
respectively, the private and collective experiences of c with respect
to target n. In Eq. (3), the private experience is based on the division of
number of occurred crimes by the total of attempted crimes for the
entire simulation period until then (represented by the period t−1),
ϕt�1
cn = COt�1

cn

�
CT

t�1
cn

� �
and the same division considering the agent
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experience taken from the last day (ld), ϕld
cn = COld

cn

�
CT

ld

cn

� �
. From

this, a negative feedback factor ρ is applied, which represents the level
of forgetfulness of a criminal's past experience with regard to target n;
that is, the extent to which the agent considers the experience taken
from the last day (period ld) in relation to the experience it already
has with regard to target n, for the entire simulation period until then
(t−1). It is worth noting here that, in terms of ant-based swarm
systems [15], the parameter ρ is used to represent a pheromone
evaporation rate. Conversely, in our criminal model, this parameter
represents the rate at which agents forget past crime events. Hence,
given that τtcn represents the level of confidence of a criminal with a
given target, we emphasize that at every day (or every fixed interval
of time), the agents forget a little about their previous experience and
are more influenced by the recent one.

Eq. (2) also shows that an initial succession of failures will lose its
influence over the agent's lifetime.

Eq. (4) captures the experience shared by the agent's peers with
respect to a given target. The importance of this social learning factor
is controlled by the parameter μ in Eq. (2). Note that the social
network related to the criminal agent c is indicated as S(c) in Eq. (4).
In addition, every day the agent's own experience is weighted against
the experience of all the others pertaining to the agent's social
network. It is also important to discuss the information conveyed in
Eq. (4). The value of ςtcn represents the consensual judgment the
acquaintances of c have with respect to the target being considered
(n). In other words, all contacts of c tell it separately what they think
about target n. Such hints are then aggregated.

5. Configuring gateways with genetic algorithms

Asmentioned before, in our simulationmodel, a control parameter
that needs special attention is the place from where each criminal
starts out to commit crimes every day. Examples of these initial
locations—here called gateways—are bus stops, subway stations, and
slums. As there is usually no real data or theoretical model to help one
configure those gateways in a crime simulation model, we have
decided to cast this task as a combinatorial optimization problem, i.e.,
the problem of assigning criminals to gateways.

More formally, let G={Gi, i=1, …, Ng} be the set of gateways and
C={Cj, j=1, …, Nc} be the set of criminals under consideration. The
goal is to allocate each Cj to a Gi in a way that a quality measure F,
somehow related to the aim of the simulation model, is maximized.4

In this allocation process, any gateway can be assigned to a criminal
and all criminals must be allotted to one, and only one, gateway.
Besides, more than one Cj can be appointed to a given Gi (that is, we
have not imposed any limit over the number of criminals assigned to a
gateway).

Since this assignment problem is combinatorial in nature, the
number of feasible gateway configurations is an exponential function
of the number of possible gateways. Therefore, in order to cope with
this task, we have resorted to a modified genetic algorithm model,
named Clearing [30], which makes use of the notions of species and
niches [17]. According to this approach, the population of individuals
(i.e., solutions to the problem in sight) is adaptively segregated into
species, each one exploiting a niche (particular region) of the search
space. The idea is to segregate and preserve different species in order
to exploit different high-quality niches, i.e., regions of the search space
associated with (quasi-)optimal solutions.

In our customized GA instance, each chromosome represents a
possible gateway configuration, that is to say, a valid assignment of
criminals to gateways. Each one of the Nc genes of a chromosome
receives a value i (i=1, …, Ng) representing one of the possible
4 In a typical assignment problem involving agents and tasks [29], each assignment
of a task to an agent has an associated cost. In our case, we assume that the assignment
cost is the same.
gateways. For evaluating a given individual, the GA interacts with the
simulationmodel, passing to it the gateway configuration represented
by that individual as input and receiving from it the corresponding
fitness value. As the fitness function, we have adopted Pearson's chi-
square (χ2) test [22], whereby it could be possible to compare the
spatial distribution of crime events produced by the simulation with
that underlying real data. More precisely, at the end of each
simulation run, a comparison between real data and simulation data
is conducted in terms of the number of crimes effectively committed
and the places where these crimes were committed. Therefore, the
result of the χ2 test provides a quantitative measure for indicating
how properly the simulation model—adjusted with a particular
gateway configuration—can reproduce the real crime distribution
pattern. More formally, the χ2 test is

χ2 = ∑
n

i=1

ðOi � EiÞ2
Ei

Where Oi = the frequency of real crime for an area i;
Ei= the frequency of simulated crime (the expected) for the

same area i;
n = the number of areas.

It is important to point out that, due to the stochastic nature of
the simulation model, each chromosome is evaluated Ns times
(Ns>1). The fitness value of a chromosome is thus obtained by
averaging the χ2 test values achieved in all Ns simulation runs. The
definition of the niches is dynamic and is given in accordance with a
certain similarity measure, which in our case is calculated over the
decoded solutions and takes into account aspects of the domain
under investigation. Preliminary experiments have evidenced that
gateways close to each other on the map display quite the same level
of influence over the targets around. Therefore, the similarity
measure we have adopted to compare two GA individuals takes
into account the physical distances of their constituent gateways.
Thus, two individuals will likely pertain to the same niche if the
overall sum of the paired distances between the gateways that
belong to them is below a certain threshold, σclearing, which in the
context of Clearing is known as the clearing radius [30].

Besides σclearing, another control parameter that needs special
calibration is k, the maximum allowed number of individuals per
niche. Both parameters delimit how many niches can be maintained
as well as the granularity with which different niches can be
discriminated. The final outcome of the algorithm is, thus, a list with
the best individuals of each niche produced in the last generation,
which—in our case—are expected to represent different first-class
criminal–gateway assignments.

Other components of our GA instance come as follows. The
variability of the population is provided by making use of one-point
crossover and simple mutation, whereas the roulette wheel method is
used as selection operator for both reproduction and population
replacement [17].

6. Experimental methodology and results

In order to evaluate the suitability of our bio-inspired crime
simulationmodel, experiments have been carried out over an artificial
urban environment (referred to here as the simulation map) that
mimics a well-known neighborhood of Fortaleza, a 2.5-million
inhabitant metropolis in the northeast of Brazil. As shown in Fig. 1,
we have taken into account all existing 172 fixed targets in that
neighborhood, which include drugstores, gas stations, lottery houses,
banks, and shopping malls. The location of these targets on the map
represents with fidelity their actual geographical distribution across
the real urban space.



Fig. 1. Simulated environment representing a well-known neighborhood in the city of Fortaleza, Brazil.
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In all, twenty police teams were made available to patrol the area.
Fig. 2 depicts the number of routes (each route corresponding to one
police team) allotted per day during the whole simulation period. As
we can observe, the number of police teams effectively patrolling the
area varied throughout the period, following a schedule that is similar
to that typically used by the police department for that region. So, the
maximum number of teams allowed to patrol was twenty (at the
beginning of the simulation) whereas the minimum was four (at day
47). When more than one area had to be patrolled in the same patrol
shift, the time of stay at each target was divided equally. The places to
which the police teams were assigned can be seen in Fig. 1
(represented by a blue ✱).

Other control parameters related to the multiagent simulator
come as follows. The number of criminals (Nc) adopted in our
experiments was set to sixteen, as we have empirically verified that
with this fixed contingent it would be possible to reproduce, with
reasonable fidelity, the number and frequency of crimes observed in
real life. In all simulation runs related to the experiments reported
here, we have adopted a scale-free topology for the social network of
the criminals, since our previous experiments [18] have also indicated
that this topology is adequate to reproduce a Zipfian spatial
distribution of crime events.

Moreover, it is pertinent to mention again that the temporal
distribution of crime events in our simulation model follows an
exponential distribution profile, as identified by [11] from real crime
data analysis. Thus, the probability of a target being vulnerable follows
an exponential distribution and consequently drives the crime
Fig. 2. Distribution of patrol rou
occurrences at that temporal pace. It is also worth remembering
that the crime exponential distribution depends also on the period of
the day at which the crime occurs. The values of λ for each daily
periodwere obtained after careful analysis over almost fourmonths of
collected real crime data and are computed as the inverse of the
average time measuring the frequency of occurrence crimes in hours,
shown in Table 1.

After tuning the multiagent simulator, we conducted experiments
with our GA approach for dealing with the criminal–gateway
allocation problem. For such a purpose, the population size adopted
was 50 individuals, the same number of the generations used for
evolving the population. On the other hand, the crossover and
mutation rates employed were of 95% and 5%, respectively, whereas
the parameters related to the Clearing model were σclearing=7000
and k=10 (set after some manual fine-tuning). The number of
simulation runs for each individual, Ns, was set as three. The results
indicating how close the crime events generated by the simulation
were to those observed in real life are presented next, following two
sorts of analyses: statistical and visual. Regarding the first type of
analysis, Fig. 3 presents a bar chart depicting the chi-square distance
values between 10 crime distributions achieved through simulation
and the real crime distribution observed in the neighborhood
considered. These distance values are computed by means of a pair-
wise comparison taking into account all targets.

The red line on the chart indicates the limit below which the
difference (distance) between the two crime distributions (real and
simulated) is not statistically significant. This limit value was set after
tes during the simulations.



Table 1
Average frequency, in minutes, between crimes involving each target per period of the
day.

Bank Lottery house Gas station Drugstore Mall

Night – – 0.73 0.26 0.21
Morning 7.25 0.56 2.51 0.40 0.08
Afternoon – 1.34 2.57 1.36 0.08
Evening – 1.75 0.93 0.59 0.09
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resorting to a χ2 distribution table [22]. Each one of the ten chi-square
values was achieved by running the simulation model with a gateway
configuration produced by an individual discovered by the GA engine.
As ten niches were discovered, ten best niche representatives were
selected to configure the simulation in terms of criminal–gateway
allocation. As the chart evidences that all the distance values achieved
remain below the red line, one can conclude that the distribution of
crimes generated by the particular gateway configuration represented
by each individual is statistically equivalent to the real distribution.
Fig. 4 shows kernel maps that allow one to visually inspect how close
the two types of crime distribution (real and simulated) really were.

It is possible to observe that the formation of clusters of crime
events is very similar between the map in (A) describing real data
distribution, and those in (B), (C) and (D). Worth noting is the fact
that the hot spots identified by simulation were indeed very close to
those happening in real life; conversely, in most of the other zones of
the map, the crime events occur in a lesser magnitude, characterizing
the actual formation of a power-law distribution.

The conclusion reached from a visual analysis of Fig. 4 can also be
confirmed by the results obtained with geospatial statistics methods
[28] such as K-function (Ripley) [32], which permits an assessment
based on the analysis of Euclidean distance between the points of the
set, if there is an indication of concentration of crime occurrences. For
a more suitable comparison of the two distributions (real and
simulated), we considered a variant of the K-function that can be
applied to non-stationary processes [3]. In this case, the lambda (λ)
considered for the theoretical distribution of reference is the intensity
expected for the occurrence of real crimes. Fig. 5 shows a graph
containing the K(r) values, estimated according to the patterns of
points on the theoretical curve (in red) and the observed curve (the
simulated data for the best individual of the population), here already
calculated with the border adjusted in order to reduce the likely bias
Fig. 3.Distancevaluesbetweensimulatedand real crimedistributions—each simulationwas con
of the estimate. We can observe that the simulated data follows the
same pattern of the theoretical one indicating a similar level of
clustering.

Spatial correlation techniques help to measure the proximity in
(two-dimensional) space between observations of the same phe-
nomenon. In other words, they indicate whether the evens are
correlated. Local spatial autocorrelation statistics provide estimates
disaggregated to the level of the spatial analysis units, allowing an
assessment of the dependency relationships across space. We have
applied Global and Local Moran's I tests [2] to identify the assessment
of significant local spatial clustering around an individual location in
real and simulated data. Global Moran's indicate a weak positive
correlation of crimes in real (0.1438) and simulated data (0.1250).
Fig. 6 shows the choropleth map (called the significance map)
showing the locations with a significant Local Moran statistic as
different shades of green, depending on the significance level for
simulated and real data. The simulation data were obtained from a
simulation in which the configuration of gateways was defined from
the best individual found by the GA. The maps have demarcated a
typical spatial unit used in Brazil: the ‘censor region’ (an area that
corresponds to around 300 families). It is possible to see that in
general the same regions were identified as significant according to
Local Moran statistic (p=0.05).

Finally, we validated the simulation data by verifying if it follows
Zipf's Law. A Zipfian distribution is most easily observed by scatter
plotting the data in a log–log plot (rank order against frequency). If
the points were close to a single straight line downwards, this means
that the distribution follows Zipf's Law. Fig. 7 shows the crime
distribution per target produced by a simulation run in which
criminals start out in the gateways produced by the final best
individual of the whole population. The targets are ranked in
descending order, meaning that the first target has the highest
number of crimes. We have also computed the linear regression
coefficient R2 for each distribution to numerically measure the
distance between the simulated data and a linear curve. The
coefficient of determination (R2) measuring the distance between
the simulated data and a linear curve, is 0.85—a mark very close to
that calculated for real crime data (0.89). In [18] we make a detailed
analysis that indicates that the Zipf factor is somewhat correlatedwith
the social factor. The three simulation variants with social commu-
nication show high regression values (≈0.85) indicating that a
Zipfian profile is indeed present (we consider those values as Zipfian-
figuredwith an individual (criminals–gatewayallocation) taking fromadifferentGAniche.



Fig. 4.Maps showing real crime data (A) and crime events generated in the simulationwith gateway configurations produced by the best three individuals of the population (B, C, andD).
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like because it is a stochastic phenomenon and uses the average of
simulations. Moreover, the slope values were close to 1, as in a typical
Zipfian distribution). The regression factor is sensibly reduced when-
Fig. 5. Global spatial analysis using Ripley's K-function.
ever there is no criminal communication. By varying the topology of
the social network, we could analyze how sensitive the model is to a
particular topology.

7. Discussion

One of the particular advantages of using a GA to tune the proposed
crime simulationmodel has to dowith the possibility of applying it as a
decision support tool. We understand that the results produced by the
GA may help police experts in identifying potential gateways which
deserve special attention in the future preventive surveillance. In this
regard, we have conducted a qualitative evaluation of the results
producedby ourGAengine in order to reveal possible patterns existing
among the final different solutions produced by it, representing
alternative gateway configurations. More precisely, our idea here is to
analyze how plausible the gateways found by the GA are.

In Fig. 8, we display a histogram reporting how many times each
potential gateway was indeed selected by the GA engine to compose
the ten best niche individuals produced at the end of its execution.
Analyzing that histogram, it is possible to identify the gateways that
were most frequently selected. Among them lie gateways G24, G48,
and G60, which are the closest to the hot spots. Such result was
already expected by us, since the distance to the targets is an



Fig. 6. Significance maps for simulated and real data.
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important issue underlying the criminal behavior in our model. Our
perception is that the possibility of discovering such frequent and
plausible gateways (in the sense that they are close to the hot spots) is
of fundamental relevance to law authorities, particularly while
deciding their preventive patrol strategies in the regions where
those gateways are located. Gateways close to hot spots are, of course,
strong candidates to be chosen by the GA as being the most plausible
Fig. 7. Crimes per target follow

Fig. 8. Selections
ones. It is important to point out that even knowing that the problem
of finding a good allocation of criminals in gateways is far from trivial
and cannot be made by hand following simple heuristics (such as to
place criminals close to hot spots). In a complex configuration, there
are several hot spots and there are several gateways close to these hot
spots. Moreover, one does not have any information about howmany
criminals should be allotted to each one of them.
ing Zipf's Law distribution.

per gateway.
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One of the limitations we have already spotted in our approach is
that it is based on the use of historical real crime data to define the
pace of crimes (parameter λ). This implies that, during a whole
simulation run, the potential number of generated crime events will
always be the same. In other words, the current version of our
simulation model is not capable of identifying changes in the pace of
crime occurrences if that change actually occurs in real life. This may
turn out to be a big issue to be dealt with inasmuch as the simulation
time increases. However, as we plan to use the model for discovering
effective patrol routes on a frequent basis (possibly every week), the
simulation time necessary shall not be very long.

Another limitation (closely related to the previous one) refers to
the fact that, currently, the number of criminals used in the reported
experiment is constant along a given simulation run. That is, no
mechanisms (such as the simulation of arrests, deaths, etc.) exist to
implement variability in the number of criminals. The rationale behind
our choice is again related to our ultimate goal of finding good police
patrol routes. Considering constant the number of criminals means
that crime reduction is only attainable by preventing a potential
criminal from acting. In a certainway, such decision is positive, since it
allows our model to be assessed in the worst of the scenarios.

A final note worth pointing out is that most of the research
conducted so far on crime simulation has not made systematic use of
optimization tools (either heuristic or not) to fine-tune their proposed
models [27,38]. Our perception is that this mostly occurs because the
level of refinement underlying these models is not as detailed as the
one proposed here. We understand that the calibration of models that
try to mimic reality is of paramount importance if one wishes to
obtain significant results, and that the GA-based assignment approach
as employed is a step in such direction.

8. Conclusion

The simulation of criminal activities in urban environments is an
asset for decision-makers seeking to find preventive measures. Law-
enforcement authorities need to understand the behavior of criminals
and their response to public-safety measures and policies. In this
paper, we have shown that ant-inspired systems [7,15] constitute an
adequate metaphor for modeling criminal behavior. By exploiting this
approach, we could properly model the effect criminals' preferences
have when they are committing their crimes and also the way these
preferences depend on past experience and social communication. In
other words, the ant-based approach allows for crime target selection
via a mechanism of preferential attachment [25]. As a consequence,
the proposed simulation model can yield a spatial distribution of
crime events that agrees with real data.

We understand that the results presented in this paper should
serve as a preliminary foundation for future investigations intended to
cope with some particular issues related to the following questions:
Does the non-reestablishment of the Power Law translate into a
decrease in crime? We know crime follows a Zipfian distribution, but
is this a necessary and sufficient characteristic for the existence of
crime as a phenomenon? Can Zipf's Law persist through time even
after a series of preventive strategies takes place? If not, how long
does it take for one to notice the reestablishment of this law? Is it
somehow possible to avoid such reestablishment?

By other means, in parallel to the present work, we have been
investigating a hybrid methodology that combines genetic algorithms
andmultiagent systems to assist police officers in the design of effective
policepatrol routes. Our idea is to uncover strategies forpolicepatrolling
(more precisely, police patrol routes) that could cope well with the
dynamics of crimewhen criminal agents are capable of learning “on the
fly.” In this context, we plan to provide satisfactory answers to the
following questions: How far from the optimal patrolling routing
strategies are those actually adopted by human police managers? How
complex do such optimal patrolling routes need to be in terms of their
total lengths and urban area coverage? Preliminary results [31] have
shown that such a hybrid approach is also promising.
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