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Thermal effects on the stability of excited atoms in cavities
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An atom, coupled linearly to an environment, is considered in a harmonic approximation in thermal equilibrium
inside a cavity. The environment is modeled by an infinite set of harmonic oscillators. We employ the notion of
dressed states to investigate the time evolution of the atom initially in the first excited level. In a very large cavity
(free space) for a long elapsed time, the atom decays and the value of its occupation number is the physically
expected one at a given temperature. For a small cavity the excited atom never completely decays and the stability
rate depends on temperature.
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I. INTRODUCTION

The coupling of a single atom with radiation in a cavity
has been the subject of several experiments over the past
decades [1–3]. The effects of confinement on atoms within
metallic cavities with size of the order of microns have been
investigated [1] using laser spectroscopic measurements of
the interaction between a single Rydberg atom and a gold
cavity. From these, one infers that a simple electrostatic model
of the atom-cavity interaction is correct when the cavity is
small enough. On the other hand, different processes have been
developed for controlling the coupling rate, such as trapping
and cooling the atom to the ground state [3–5]. Recently, with
the use of fiber-based cavity and atom-chip devices [6–8], other
experimental results have been found and new possibilities
have been brought about, in particular to analyze temperature
effects on the spontaneous emission of atoms in cavities.
Thermal effects change, for instance, the lifetime of Rydberg
states [9] as a direct consequence of a redistribution of the
atom levels due to the thermal radiation.

Temperature effects for atom-cavity quantum electrody-
namics (QED) have also been considered from a theoretical
point of view for different systems. For instance, the role of the
cavity temperature on an effective two-level atom undergoing
two-photon transitions in a high-Q cavity has been investigated
[10]. The quantum statistical properties of the field and the
dynamical properties of the atom are studied and compared
with those for an atom making one-photon transitions between
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the two levels. A more complex system, but theoretically
connected with atoms coupled to an environment at finite
temperature, is an entangled pair of two-level systems [11]. In
this case, each subsystem is interacting with a reservoir at finite
temperature. As a result, it is observed that the temperature has
a dramatic effect on the entanglement properties of the system.
In a similar context, the inhibition of spontaneous emission
in Fermi gases is taken as a quantum-statistical analog of
inhibition of spontaneous emission by an excited atom in a
cavity. It has been shown [12] that the existence of nontrivial
effects at finite temperature for the inhibition of spontaneous
emission in Fermi gases should imply an analogous effect for
excited confined atoms.

Using the theoretical approach to describe an atom-cavity
QED system is a complicated task, in particular regarding
inhibition of spontaneous emission [13,14]; it demands high
orders in perturbative calculations. This aspect makes the
Feynman diagram approach practically unreliable and thus
leads to considering a nonperturbative treatment of such
systems using the semiqualitative idea of a dressed atom [15].
However, such an approach is also intricate due to nonlinear
effects. A way to circumvent these problems is to assume that
under certain conditions the coupled atom-electromagnetic
field system may be approximated by a system composed of a
harmonic oscillator coupled linearly to the field modes through
an effective coupling constant g. This is the case for linear
response theory in QED, where the electric dipole interaction
gives the leading contribution to the radiation process [16,17].
Simplified theoretical models can be used to describe atoms in
cavities, with the expectation that it will fit the experimental
results [1]. This also permits a better understanding of the
need for a nonperturbative analytical treatment of coupled
systems, which is the basic aspect underlying the idea of
dressed quantum mechanical operators.
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Regarding the nature of a perturbative theory, the analysis
is carried out by considering bare, noninteracting, fields. The
interaction is taken into account order by order in powers of
the coupling constant. However, the idea of a bare particle
associated to a bare matter field is actually an artifact. A
charged physical particle is always coupled to the gauge field;
that is, it is always “dressed” by a cloud of quanta of the
gauge field (photons, in the case of electrodynamics). Beyond
that, there are situations where the use of perturbation theory
is not advisable, as in the low-energy domain of quantum
chromodynamics and resonant effects in atomic physics [15].
In this latter case, the semiqualitative idea of a dressed atom
has been used for a long time.

An alternative approach, using a simplified model for a
radiating atom, has been introduced [18,19]. This method has
been employed in several cases [20–23] in agreement with
experiments [24] and uses dressed objects, such as dressed
states and dressed or renormalized coordinates, directly. These
dressed states can be seen as a rigorous version of the general
idea of dressed quantum particles in the framework of the
adopted model. We explore this method in the present article,
and for this reason it is worth emphasizing that our dressed
states do not correspond to the semiqualitative notion of
dressed atoms currently used in atomic physics. The latter is
associated with the eigenstates of the system, while the dressed
states considered here are related to renormalized coordinates
with a nonunitary time evolution.

We consider as a model, in the harmonic approximation,
an atom coupled to an environment modeled by an infinite
set of pointlike harmonic oscillators (the field modes). A
model of this type, describing a linear coupling of a particle
with an environment, has been used in several situations,
as in the study of quantum Brownian motion of a particle
with the path-integral formalism [25–28]. The dressed-state
formalism explored here is restricted to this specific model;
nevertheless, the underlying idea is quite general and can be
adapted for other situations, including nonlinear coupling [22],
entangled states [29], and thermal effects. This latter aspect, as
a goal, is addressed in the present work by analyzing how the
well-established stability of cold confined atoms is changed by
heating. We investigate the effects in a range of temperatures
going from room temperature up to T = 105 K (∼8.4 eV),
which is below the ionization temperature of 13.6 eV for the
hydrogen atom, and so we can speak of the atom not being
dissociated. Some effects on the average occupation number at
this temperature are studied with respect to the corresponding
zero- and room-temperature values.

The presentation is organized in the following way. In
Sec. II the model is defined, in Sec. III the renormalized
coordinates and dressed states are discussed, in Sec. IV the
thermal effect in a small cavity is analyzed, and in Sec. V we
present our final concluding remarks.

II. THE MODEL

We start by considering a bare atom approximated by
a harmonic oscillator described by the bare coordinate and
momentum q0, p0, respectively, having bare frequency ω0,
linearly coupled to a set of N other harmonic oscillators
(the environment) described by bare coordinate and momenta

qk, pk respectively, with frequencies ωk , k = 1, 2, . . . , N .
The limit N → ∞ will be taken later. The whole system is
supposed to reside inside a spherical cavity of radius R in
thermal equilibrium with the environment at a temperature
T = β−1 (kB , the Boltzmann constant is taken equal to 1).

The Hamiltonian for such a system is written in the form

H = 1

2

[
p2

0 + ω2
0q

2
0 +

N∑
k=1

(
p2

k + ω2
kq

2
k

)] − q0

N∑
k=1

ckqk,

(1)

where the ck’s are coupling constants. In the limit N → ∞,
we recover the case of an atom coupled to the environment,
after redefining divergent quantities, in a manner analogous to
mass renormalization in field theories.

The Hamiltonian (1) is transformed to the principal axis by
means of a point transformation,

qµ =
N∑

r=0

t rµQr, pµ =
N∑

r=0

t rµPr, (2)

where µ = (0, {k}) k = 1, 2, . . . , N , performed by an or-
thonormal matrix T = (t rµ). The subscripts µ = 0 and µ = k

refer, respectively, to the atom and the harmonic modes of the
reservoir and r refers to the normal modes. In terms of normal
momenta and coordinates, the transformed Hamiltonian reads

H = 1

2

N∑
r=0

(
P 2

r + �2
rQ

2
r

)
,

where the �r ’s are the normal frequencies corresponding to
the stable collective oscillation modes of the coupled system.
It can be shown [18] that

t rk = ck

ω2
k − �2

r

t r0 , t r0 =
[

1 +
N∑

k=1

c2
k(

ω2
k − �2

r

)2

]− 1
2

, (3)

with the condition

ω2
0 − �2

r =
N∑

k=1

c2
k

ω2
k − �2

r

. (4)

To correctly describe the coupling of the atom with the
field, we take

ck = ηωk, η =
√

2g�ω, (5)

where g is a constant with a dimension of frequency. It
measures the strength of the coupling; �ω = πc/R is the
interval between two neighboring frequencies of the reservoir
and frequencies of the field modes are given by [18]

ωk = k�ω = k
πc

R
. (6)

The sum in Eq. (4) diverges for N → ∞. This makes the
equation meaningless, unless a renormalization procedure,
analogous to mass renormalization in field theories, is im-
plemented [30]. Adding and subtracting a term η2�2

r in the
numerators of the right-hand side in Eq. (4), we have

ω̄2 − �2
r = η2�2

r

∞∑
k=1

1

ω2
k − �2

r

, (7)

032119-2



THERMAL EFFECTS ON THE STABILITY OF EXCITED . . . PHYSICAL REVIEW A 81, 032119 (2010)

where we define the renormalized frequency

ω̄2 = ω2
0 − δω2 = lim

N→∞
(
ω2

0 − Nη2
)
. (8)

We find that the addition of a counterterm −δω2q2
0 in the

Hamiltonian Eq. (1) compensates for the divergence of ω2
0

in such a way as to leave a finite, physically meaningful,
renormalized frequency ω̄.

Using the formula
∞∑

k=1

1

k2 − u2
= 1

2u2
− π

2u
cot(πu), (9)

Eq. (7) can be rewritten as (dropping the label for the
eigenfrequencies)

cot

(
R�

c

)
= �

πg
+ c

R�

(
1 − Rω̄2

πgc

)
. (10)

This gives an infinity of solutions. The spectrum of the
collective normal modes is denoted by �r ; r = 0, 1, 2, . . . .
The transformation matrix elements are [18]

t r0 = η�r√(
�2

r − ω̄2
)2 + η2

2

(
3�2

r − ω̄2
) + π2g2�2

r

,

(11)
t rk = ηωk

ω2
k − �2

r

t r0 .

Unless explicitly stated, the limit N → ∞ is understood in the
following.

III. RENORMALIZED COORDINATES AND
DRESSED STATES

Let us consider the eigenstates of our system,
|n0, n1, n2 . . .〉, represented by the normalized eigenfunctions
in terms of the normal coordinates {Qr},

φn0n1n2...(Q) =
∏

s

[√
2ns

ns!
Hns

(√
�s

h̄
Qs

)]
	0, (12)

where Hns
stands for the ns th Hermite polynomial and 	0 is

the normalized ground-state eigenfunction,

	0(Q) = N exp

[
− 1

2h̄

∞∑
r=0

�rQ
2
r

]
. (13)

We introduce dressed or renormalized coordinates q ′
0 and

{q ′
k} for, respectively, the dressed atom and the dressed field,

defined by √
ω̄µq ′

µ =
∑

r

t rµ

√
�rQr, (14)

where ω̄µ = {ω̄, ωk}. In terms of renormalized coordinates,
we define for the time τ = 0, the dressed states, |κ0, κ1, κ2 . . .〉
by means of the complete orthonormal functions

ψκ0κ1...(q
′) =

∏
µ

[√
2κµ

κµ!
Hκµ

(√
ω̄µ

h̄
q ′

µ

)]
	0, (15)

where q ′
µ = {q ′

0, q
′
k} and ω̄µ = {ω̄, ωk}. Notice that the ground

state, 	0, in the above equation is the same as in Eq. (12).
The invariance of the ground state is due to our definition of

renormalized coordinates given by Eq. (14). In fact, we get the
normal coordinates Qr in terms of the renormalized ones from
Eq. (14). Replacing them in Eq. (13) we find that the ground
state in terms of the renormalized coordinates has the form

	0(q ′) = N exp

⎡
⎣− 1

2h̄

∞∑
µ=0

ω̄µq ′2
µ

⎤
⎦ . (16)

Each function ψκ0κ1...(q
′) describes a state in which the dressed

oscillator q ′
µ is in its κµth excited state.

It is worth noting that our renormalized coordinates are
objects different from both the bare coordinates q and the
normal coordinates Q. Our dressed states, although being
collective objects, should not be confused with the eigenstates
given by Eq. (12). While the eigenstates φ are stable, all the
dressed states ψ are unstable, except for the ground state 	0.
The need for renormalized coordinates can be understood by
considering what happens if we write Eq. (15) in terms of the
bare coordinates q. In the absence of interaction, the bare states
are stable since they are eigenfuntions of the free Hamiltonian.
However, with the onset of the interaction they all become
unstable. We know that the excited states are unstable, and
we also know from experiment that the atom in its ground
state is stable, thus in contradiction with the description of
our model in terms of the bare coordinates. The solution we
find to this paradox is just the introduction of the renormalized
coordinates q ′ as the physically meaningful ones. This can
be seen as an analog of the wave–function renormalization
in quantum field theory, which justifies the denomination of
renormalized to the new coordinates q ′.

We intend to divide the system into the dressed atom and the
dressed environment by means of the renormalized coordinates
q ′

0 and q ′
j associated, respectively, to the dressed atom and

to the dressed oscillators composing the environment. These
coordinates allow a natural division of the system into the
dressed (physically observed) atom and into the dressed
environment. The dressed atom will contain automatically all
the effects of the environment on it. In order to see this more
precisely, let us write the renormalized coordinates in terms of
the bare coordinates,

q ′
µ =

∑
ν

αµνqν ; αµν = 1√
ω̄µ

∑
r

t rµt rν

√
�r, (17)

which in the limit R → ∞ become

q ′
0 = 1

ω̄

∫ ∞

0

2g�2
√

�d�

(�2 − ω̄2)2 + π2g2�2
; q ′

k = qk. (18)

It is interesting to compare Eqs. (17) and (18). In the case of
Eq. (17) for finite R, the coordinates q ′

0 and q ′
k are all dressed

in the sense that they are all collective; both the field modes
and the atom cannot be separated in this language. In the limit
R → ∞, we see from Eq. (18) that the coordinate q ′

0 describes
the atom modified by the presence of the field in an indisoluble
way; the atom is always dressed by the field. On the other hand,
the dressed harmonic modes of the field, described by the
coordinates q ′

k , coincide with the field modes; in other words,
the field retains in this limit its proper identity, while the atom
is always accompanied by a cloud of field quanta. Therefore,
we identify the coordinate q ′

0 as the coordinate describing
the atom dressed by its proper field, the whole system being
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divided into dressed atom and field, without recourse to the
concept of interaction between them, this being absorbed in
the dressing cloud of the atom. If the cavity is finite, but much
larger than the atom (for instance R ∼ 10−6 m), we can keep
the same language. We can speak of the dressed atom and the
field, since the infinity of the field modes do not interact among
themselves and are weakly dressed by the single atom.

As mentioned previously, the dressed states given by
Eq. (15) evolve in time in a well-defined way; they are linear
combinations of the (stable) eigenstates (12) defined in terms
of the normal modes. Explicit formulas for coefficients of
these combinations are obtained for the interesting physical
situations [18]. This gives a complete and rigorous definition
of our dressed states. Moreover, our dressed states have the
interesting property of distributing the energy initially in a
particular dressed state, among itself and all other dressed
states with well-defined probability amplitudes [18]. We
choose these dressed states as physically meaningful and we
test successfully this hypothesis by studying the radiation
process by an atom in a cavity. In both cases, a very large
and a very small cavity, our results are in agreement with
experimental observations [18,19,21].

In this framework, we write the physical states in terms of
dressed annihilation and creation operators a′

µ and a′†
µ defined

in terms of renormalized coordinates and momenta in the usual
way,

a′
µ =

√
ω̄µ

2
q ′

µ + i√
2ω̄µ

p′
µ, (19)

a′†
µ =

√
ω̄µ

2
q ′

µ − i√
2ω̄µ

p′
µ. (20)

Then the initial dressed density operator corresponding to the
thermal bath is given by

ρ ′
β = 1

Z′
β

exp

[
−h̄β

∞∑
k=1

ωk

(
a

′†
k a′

k + 1

2

)]
, (21)

with Z′
β = ∏

k zk′
β being the partition function of the dressed

reservoir, where

zk′
β = Tr[e−h̄βωk(a′†

k a′
k+1/2)]. (22)

The system evolves with time (τ ). The time-dependent dressed
occupation numbers are defined as

n′
µ(τ ) = Tr[a′†

µ (τ )a′
µ(τ )ρ ′

0 ⊗ ρ ′
β]

(the prime is to clearly distinguish the dressed quantities from
the bare ones), where ρ ′

0 is the density operator for the dressed
atom and a′

µ(τ ) and a′†
µ (τ ) are the time-dependent creation and

annihilation operators.
The time evolution of the dressed annihilation operator is

given by

d

dτ
a′

µ(τ ) = i[H, a′
µ(τ )] (23)

and a similar equation for a′†
µ (τ ). We solve this equation with

the initial condition at time τ = 0,

a′
µ(0) =

√
ωµ

2
q ′

µ + i√
2ωµ

p′
µ, (24)

which, in terms of bare coordinates, becomes

a′
µ(0) =

N∑
r,ν=0

(√
�r

2
t rµt rν qν + it rµt rν√

2�r

pν

)
. (25)

We assume a solution for a′
µ(τ ) of the type

a′
µ(τ ) =

∞∑
ν=0

[Ḃ ′
µν(τ )qν + B ′

µν(τ )pν]. (26)

Using Eq. (1) we find

B ′
µν(τ ) =

∞∑
r=0

t rν
(
a′r

µ ei�rτ + b′r
µe−i�r τ

)
. (27)

The initial conditions for B ′
µν(τ ) and Ḃ ′

µν(τ ) are obtained by
setting τ = 0 in Eq. (26) and comparing with Eq. (25); then

B ′
µν(0) = i

∞∑
r=0

t rµt rν√
2�r

, (28)

Ḃ ′
µν(0) =

∞∑
r=0

√
�r

2
t rµt rν . (29)

Using these initial conditions and the orthonormality of the
matrix {t rµ}, we obtain a′r

µ = 0, b′r
µ = it rµ/

√
2�r . Replacing

these values for a′r
µ and b′r

µ in Eq. (27), we get

B ′
µν(τ ) = i

∞∑
r=0

t rµt rν√
2�r

e−i�r τ . (30)

We have

a′
µ(τ ) =

∞∑
r,ν=0

t rµt rν

(√
�r

2
qν + i√

2�r

pν

)
e−i�r τ ,

=
N∑

r,ν=0

t rµt rν

(√
ων

2
q ′

ν + i√
2ων

p′
ν

)
e−i�r τ ,

=
∞∑

ν=0

fµν(τ )a′
ν , (31)

where

fµν(τ ) =
∞∑

r=0

t rµt rν e
−i�r τ , (32)

with µ, ν = 0, {k}, k = 1, 2, . . . .

This leads to the time evolution equation for the dressed
occupation number of the atom [31,32],

n′
0(τ ) = |f00(τ )|2n′

0 +
∞∑

k=1

|f0k(τ )|2n′
k, (33)

where n′
0 stands for the occupation number at τ = 0.

IV. THERMAL EFFECTS IN A SMALL CAVITY

Now we consider the weak coupling régime, defined by

g = ω̄α, (34)

where α is the fine-structure constant.
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With η = √
2gπc/R and defining the dimensionless

parameter

δ = g

�ω
= gR

πc
, (35)

Eq. (10) becomes

cot

(
π�δ

g

)
= �

πg
+ g

πδ�

(
1 − δω̄2

g2

)
. (36)

Let us consider the right-hand side of Eq. (36) such that

δω̄2

g2
> 1. (37)

In the weak coupling regime, this corresponds to a value
of δ >∼ 5.3 × 10−5. For a frequency ω̄ = 4.0 × 1014/s (in
the visible red) this gives a condition on the cavity size of
R >∼ 1.7 × 10−8 m. Then the general behavior of solutions
of Eq. (36) is illustrated in Fig. 1. We find that all but one
of the eigenfrequencies are very close to the frequencies of
the field modes, ωk , given by Eq. (6). Then we label solutions
for the eigenfrequencies �r as �0, �k , and k = 1, 2, . . . . The
solutions �k of Eq. (36) are

�k = g

δ
(k + εk) , k = 1, 2, . . . , (38)

with 0 < εk < 1, satisfying the equation

cot(πεk) = 1

πδ
(k + εk) + 1

π (k + εk)

(
1 − δω̄2

g2

)
. (39)

Since every εk is much smaller than 1, Eq. (39) can be
linearized in εk , giving

εk = δg2k

g2k2 − δ2ω̄2
. (40)

FIG. 1. (Color online) Solutions of Eq. (36), with y = cot(x) and
x = π�δ/g, for cavities satisfying the condition given in Eq. (37).
The asymptotes of the cotangent curve correspond to the frequencies
of the field modes ωk .

The eigenfrequencies, �k , are obtained by solving Eqs. (38)
and (39) or (40).

The lowest eigenfrequency, �0, is obtained by assuming
that it satisfies the condition �0R/c = �0πδ/g � 1. Inserting
this condition in Eq. (36) and keeping up to quadratic terms in
�, we obtain the solution for the lowest eigenfrequency,

�0 ≈ ω̄

(
1 − π2δ

6

)
. (41)

Consistency between Eq. (36) and the condition �0R/c �
1 gives a condition on R, that is, R � (c/g)λ, with
λ = (π/2)(g/ω̄)2.

Let us first determine the temperature-independent term
|f00(τ )|2n′

0 in Eq. (33), considering that the dressed atom is
initially (at τ = 0) in the first excited level, that is n′

0 = 1. We
evaluate (t0

0 )2 and (t k0 )2 from Eqs. (12), (38), (40), and (41) to
find (

t k0
)2 ≈ 2gR

πck2
= 2δ

k2
, (42)

and then using the normalization condition
∑∞

r=0(t r0 )2 = 1 and
ζ (2) = ∑∞

k=1 k−2 = π2/6, we have

(
t0
0

)2 ≈ 1 − πgR

3c
= 1 − π2δ

3
. (43)

From Eq. (32), using the de Moivre formula, eiθ = cos θ +
i sin θ , we have

|fµν(τ )|2 =
∞∑

r,s=0

t rµt rν t
s
µt sν cos(�r − �s)τ. (44)

Let us assume that the thermal bath is at zero temperature,
that is, all the modes of the reservoir are in the ground state
n′

k = 0 for all values of k. Taking the preceding approximations
for t k0 and t0

0 , we get from Eq. (33) the zero-temperature
time evolution of the occupation number of the dressed atom
initially in the first excited level,

|f00(τ )|2 ≈
(

1 − π2δ

3

)2

+ 4δ

(
1 − π2δ

3

)

×
∞∑

k=1

1

k2
cos(�k − �0)τ

+ 4δ2
∞∑

k,l=1

1

k2l2
cos(�k − �l)τ. (45)

This is an oscillating function which has a minimum value
min(|f 00(t)|2). Taking both cosine functions in Eq. (45) equal
to −1, we get a lower bound for min(|f 00(t)|2) given, up to
first order in δ, by

F (δ) = 1 −
(

2π2

3
− 2

)
δ. (46)

As an example we consider that the atom in the first excited
state has an emission frequency ω̄ ≈ 4 × 1014/s, in the visible
red, and we take the radius of the confining cavity R ≈ 10−6 m.
With these data we get F (δ) ≈ 0.99, that is, a probability of
99% at zero temperature, that it will almost never decay. This
shows the high stability of the system, which is confirmed by
experiment [33,34].
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In order to take into account the temperature effects, we
must consider the second term in Eq. (33); that is, we must
evaluate the quantity

|f0k(τ )|2 =
∣∣∣∣∣t0

0 t0
k e−i�0τ +

∞∑
l=1

t l0t
l
ke

−i�lτ

∣∣∣∣∣
2

. (47)

This is carried out by using the matrix elements obtained from
Eq. (12) and the formulas for eigenfrequencies in a small
cavity.

Then it is necessary to make an assumption on how the
occupation numbers of the field modes depend on temperature.
We assume that the thermal distribution of the occupation
numbers of the field modes in the cavity follow the Bose-
Einstein distribution,

n′
k(β) = 1

eh̄βωk − 1
. (48)

This can be justified in the following way: In the case of
an arbitrarily large cavity, the dressed field modes coincide
with the bare ones, as can be seen from Eq. (18), and in the
limit of vanishing coupling, these modes follow the Bose-
Einstein distribution exactly. Strictly speaking, this is not the
case for the coupled system in a finite cavity. Nevertheless, in
many situations this approximation is acceptable in the weak
coupling regime. For instance, a cavity of radius R ≈ 10−6 m
is ∼104 times larger than the size of a hydrogen atom (the Bohr
radius). In such a case the atom “sees” the cavity to be a very
large one and, in the weak coupling regime, the approximation
that the field modes follow the Bose-Einstein distribution is
justified. Moreover, this leads to the correct zero-temperature
limit

lim
β→∞

n′
k(β) = lim

β→∞
1

eh̄βωk − 1
= 0, ∀ k.

Then from Eqs. (47) and (33), we get the time evolution of
the temperature-dependent occupation number for the atom,

n′
0(τ, β) = |f00(τ )|2n′

0 +
∞∑

k=1

1

e(h̄βπc/R)k − 1

×
[(

t0
0

)2(
t0
k

)2 + 2
∞∑
l=1

t0
0 t l0t

0
k t lk cos(�0 − �l)τ

+
∞∑

l,n=1

t l0t
n
0 t lkt

n
k cos(�l − �n)τ

]
, (49)

where |f00(τ )|2 is given by Eq. (45). The matrix elements t0
k

and t lk in the preceding formulas are evaluated from Eqs. (12),
(38), and (41) to be

t0
k = kg2

√
2δ

k2g2 − �2
0δ

2
; t lk = 2kδ

k2 − (l + εl)2

1

l
. (50)

The occupation number n′
0(τ, β) is an oscillating function

which has a minimum value, min[n′
0(τ, β)], that depends on

the temperature β−1. We can obtain a lower bound, n′
0(β),

for this minimum, such that min[n′
0(τ, β)] > n′

0(β), by taking

FIG. 2. (Color online) Time evolution of the thermal-dependent
occupation number n′

0(τ, β) for a temperature T = 300 K. The
scale for the vertical axis is N0 = (n′

0 − 1) × 1012; time is in
seconds (τ = t × 10−14).

both cosine functions in Eq. (49) equal to −1:

n′
0(β) = F (δ)n′

0 +
∞∑

k=1

1

e(h̄βπc/R)k − 1

×
[(

t0
0

)2(
t0
k

)2 − 2
∞∑
l=1

t0
0 t l0t

0
k t lk −

∞∑
l,n=1

t l0t
n
0 t lkt

n
k

]
. (51)

Numerical calculation of Eqs. (49) and (51) describes how the
time evolution of the occupation number and the stability of
the excited atom are affected by heating. We take for the plots
n′

0 = 1, that is, the atom initially in the first excited level.
In Figs. 2 and 3, the time evolution of the temperature-

dependent occupation number n′
0(τ, β) is plotted for some

FIG. 3. (Color online) Time evolution of the thermal-dependent
occupation number n′

0(τ, β) for a temperature T = 105 K Time is in
seconds (τ = t × 10−13).
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FIG. 4. (Color online) Temperature behavior of the lower bound
for the minimum of n′

0(τ, β), Y = n′
0(β) × 1031, given by Eq. (51).

Temperature is given in 10 K.

representative values of the emission frequency and tempera-
ture. In Fig. 4 the lower bound for its minimum, n′

0(β), is plot-
ted as a function of temperature. We find from these figures that
raising the temperature increases the amplitude of oscillation
of the occupation number and that its minimum lower bound,
n′

0(β), also grows with temperature. For a given emission
frequency ω̄ = 4.0 × 1014/s, the increase of the amplitude
of oscillation of n′

0(τ, β) and of its lower bound n′
0(β) are

negligible for room temperatures; they are significant for high
laboratory temperatures. In Fig. 3 n′

0(τ, β) is plotted for T =
105 K (∼8.4 eV); although this temperature is very high, it can,
in principle, be attained in the laboratory for excited atoms.
In fact, it is lower than the ionization temperature of 13.6 eV
for the hydrogen atom and still much lower than the nuclear
fusion temperature of ≈108 K (∼8.4 KeV). We find that the
average occupation number at temperature T = 105 K is about

3.5 times higher than the zero temperature value n′
0(τ, T =

0) ≈ 1. At room temperature the occupation number will
remain very close to the zero-temperature value, as shown
in Fig. 2. Therefore, we find that as the temperature is raised,
both the amplitude of oscillation of the occupation number and
its minimum grow with respect to the zero-temperature values.

V. CONCLUDING REMARKS

At zero temperature, the dressed atom, initially in the first or
higher excited state, can only decay, since all field modes are in
the ground state. It is inhibited from decaying by confinement
in a cavity of small size. However, at finite temperature, the
field modes in the cavity can be in excited states with a finite
probability given by the Bose-Einstein distribution function.
As a consequence the dressed atom can exchange quanta with
the field. This means that the thermal occupation number of
excited states of the atom increases with temperature. In other
words, as an effect of heating the atom will be in a higher
excited state which is able to decay. However, the decay is
inhibited by the confining geometry. The results presented
previously give sufficient proof of these ideas.

This behavior is also to be contrasted with the situation of
an arbitrarily large cavity (free space) described in [31,32].
In that case, for long times the dressed occupation number
of the atom approaches smoothly an asymptotic value which
is nearly the one obtained from the Bose distribution at the
equilibrium temperature of the reservoir. Taking the same value
as before for ω̄, this value is n′

0(τ → ∞, β; ω̄, R → ∞) ≈ 0.
In that case the growth of the Bose-Einstein weight factor
due to rising temperature is compensated by the lowering due
to larger values of R, leading to an equilibrium occupation
number.
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