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We consider a particle in the harmonic approximation coupled linearly to an environment modeled by an

infinite set of harmonic oscillators. The system sparticle environmentd is considered in a cavity at thermal

equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time

evolution of the particle occupation number. For comparison, we first present this study in bare coordinates.

For a long elapsed time, in both approaches, the occupation number of the particle becomes independent of its

initial value. The value of the occupation number of the particle is the physically expected one at the given

temperature. So we have a Markovian process, describing the particle thermalization with the environment.

With renormalized coordinates, no renormalization procedure is required, leading directly to a finite result.
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I. INTRODUCTION

A thermalization process occurs in some cases for a sys-

tem of material particles coupled to an environment, in the

sense that after an infinitely long time, the matter particles

lose the memory of their initial states. This study is, in gen-

eral, not easy from a theoretical point of view, due to the

complex nonlinear character of the interactions between the

matter particles and the environment. To get over these dif-

ficulties, linearized models have been adopted. An account

on the subject of the evolution of quantum systems on gen-

eral grounds can be found in f1–6g. Besides, the main ana-

lytical method used to treat these systems at zero or finite

temperature is—except for a few special cases—the pertur-

bation theory. In this framework, the perturbative approach is

carried out by means of the introduction of bare noninteract-

ing objects sfields, to which are associated bare quantad; the
interaction being introduced order by order in powers of the

coupling constant.

In spite of the remarkable achievements of the perturba-

tive methods, however, there are situations where they can-

not be employed or are of little use. These cases have led to

attempts to improve nonperturbative analytical methods, in

particular, where strong effective couplings are involved.

Among these trials, there are methods that perform resum-

mations of perturbative series, even if they are divergent,

which amounts in some cases to extending the weak-

coupling regime to a strong-coupling domain. One of these

methods is the Borel resummation of perturbative series

f7–12g.
In this paper, we follow a different nonperturbative ap-

proach. We investigate a simplified linear version of a par-

ticle field or particle-environment system, where the

particle—taken in the harmonic approximation—is coupled

to the reservoir modeled by independent harmonic oscillators

f2,3,5g. We will employ, in particular, dressed states and

renormalized coordinates introduced in f13g and already em-
ployed in f14–17g. Using this method, nonperturbative treat-
ments can be considered for both weak and strong couplings.

A linear model permits a better understanding of the need for

nonperturbative analytical treatments of coupled systems,

which is the basic problem underlying the idea of a dressed

quantum-mechanical system. Of course, the use of such an

approach to a realistic nonlinear system is an extremely hard

task, while the linear model provides a good compromise

between physical reality and mathematical reliability. The

whole system is supposed to reside inside a spherical cavity

of radius R in thermal equilibrium at temperature T=b−1. In

other words, we consider the spatially regularized theory sfi-
nite Rd at finite temperature. The free space case is obtained
by suppressing the regulator sR→`d. For a detailed com-

parison between this procedure and the one considering an a

priori unbounded space, see f13g.
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II. MODEL

Let us start by considering a particle approximated by a

harmonic oscillator, having bare frequency v0, linearly

coupled to a set of N other harmonic oscillators, with fre-

quencies vk, k=1,2 , . . . ,N. The Hamiltonian for such a sys-

tem is written in the form,

H =
1

2
Fp0

2 + v0
2q0

2 + o
k=1

N

spk
2 + vk

2
qk
2dG − q0o

k=1

N

ckqk, s1d

leading to the following equations of motion:

q̈0 + v0
2q0 = o

i=1

N

ciqistd , s2d

q̈i + vi
2
qi = ciq0std . s3d

In the limit N→`, we recover our case of the particle

coupled to the environment, after redefining divergent quan-

tities, in a manner analogous to mass renormalization in field

theories. A Hamiltonian of the type s1d has been largely used
in the literature, in particular, to study the quantum Brownian

motion with the path-integral formalism f1,2g. It has also

been employed to investigate the linear coupling of a particle

to the scalar potential f13–17g.
The Hamiltonian s1d is transformed to the principal axis

by means of a point transformation,

qm = o
r=0

N

tm
r Qr, pm = o

r=0

N

tm
r Pr,

m = s0,hkjd, k = 1,2, . . . ,N, r = 0, . . . N , s4d

performed by an orthonormal matrix T= stm
r d. The subscripts

m=0 and m=k refer, respectively, to the particle and the

harmonic modes of the reservoir and r refers to the normal

modes. In terms of normal momenta and coordinates, the

transformed Hamiltonian reads as

H =
1

2
o
r=0

N

sPr
2 + Vr

2
Qr
2d , s5d

where the Vr’s are the normal frequencies corresponding to

the collective stable oscillation modes of the coupled system.

Using the coordinate transformation s4d in the equations of

motion and explicitly making use of the normalization of the

matrix stm
r d, om=0

N stm
r d2=1, we get

tk
r =

ck

vk
2 − Vr

2
t0
r , t0

r = F1 + o
k=1

N
ck
2

svk
2 − Vr

2d2
G−1/2

, s6d

with the condition

v0
2 − Vr

2 = o
k=1

N
ck
2

vk
2 − Vr

2 . s7d

We take ck=hsvkd
u, where h is a constant independent of

k. In this case, the environment is classified according to u

.1, u=1, or u,1, respectively, as supraohmic, ohmic, or

subohmic. This terminology has been used in studies of the

quantum Brownian motion and of dissipative systems f2–6g.
For a subohmic environment, the sum in Eq. s7d is conver-
gent in the limit N→` and the frequency v0 is well defined.

For ohmic and supraohmic environments, this sum diverges

for N→`. This makes the equation meaningless, unless a

renormalization procedure is implemented. From now on, we

restrict ourselves to an ohmic system. In this case, Eq. s7d is
written in the form

v0
2 − dv2 − Vr

2 = h2Vr
2o

k=1

N
1

vk
2 − Vr

2 , s8d

where we have defined the counterterm

dv2 = Nh2. s9d

There are N+1 solutions of Vr, corresponding to the N+1

normal collective modes. Let us for a moment suppress the

index r of Vr
2. If v0

2.dv2, all possible solutions for V2 are

positive, physically meaning that the system oscillates har-

monically in all its modes. If v0
2,dv2 then a single negative

solution exists. In order to prove this, let us define the func-

tion

IsV2d = v0
2 − dv2 − V2 − h2V2o

k=1

N
1

vk
2 − V2

, s10d

so that Eq. s8d becomes IsV2d=0. We find that

IsV2d → ` as V2 → − `, Is0d = v0
2 − dv2 , 0,

in the interval s−` ,0g. As IsV2d is a monotonically decreas-
ing function in this interval, we conclude that IsV2d=0 has a
single negative solution in this case. This means that there is

a mode whose amplitude grows or decays exponentially, so

that no stationary configuration is allowed. Nevertheless, it

should be remarked that in a different context, it is precisely

this runaway solution that is related to the existence of a

bound state in the Lee-Friedrichs model. This solution is

considered in the framework of a model to describe qualita-

tively the existence of bound states in particle physics f18g.
Considering the situation where all normal modes are har-

monic, which corresponds to the first case above sv0
2

.dv2d, we define the renormalized frequency

v̄2 = v0
2 − dv2 = lim

N→`
sv0

2 − Nh2d , s11d

in terms of which Eq. s8d in the limit N→` becomes

v̄2 − V2 = h2o
k=1

`
V2

vk
2 − V2

. s12d

In this limit, the above procedure is exactly the analog of the

mass renormalization in quantum field theory. The addition

of a counterterm −dv2q0
2 allows one to compensate the infin-

ity of v0
2 in such a way as to leave a finite physically mean-

ingful renormalized frequency v̄. This simple renormaliza-

tion scheme has been introduced earlier f19g. Unless

explicitly stated, the limit N→` is understood in the follow-

ing.
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Let us define a constant g, with dimension of frequency,

by

g =
h2

2Dv
, s13d

where Dv=pc /R. The environment frequencies vk are given

by

vk = k
pc

R
, k = 1,2, . . . , s14d

where R is the radius of the cavity that contains the whole

system. Then, using the identity

o
k=1

`
1

k2 − u2
=
1

2
F 1

u2
−

p

u
cotspudG , s15d

Eq. s12d can be written in a closed form,

cotSRV

c
D = V

pg
+

c

RV
S1 − Rv̄2

pgc
D . s16d

The solutions of the above equation with respect to V give

the spectrum of eigenfrequencies Vr, corresponding to the

collective normal modes.

In terms of the physically meaningful quantities Vr and v̄,
the transformation matrix elements turning the particle-field

system to the principal axis are obtained. They are

t0
r =

hVr

ÎsVr
2 − v̄2d2 +

h2

2
s3Vr

2 − v̄2d + p2g2Vr
2

,

tk
r =

hvk

vk
2 − Vr

2
t0
r . s17d

These matrix elements play a central role in the quantities

describing the system.

III. THERMALIZATION PROCESS

IN BARE COORDINATES

We now consider the thermalization problem using bare

coordinates. For the model described by Eq. s1d, this prob-
lem was addressed in an alternative way in f20g with the

canonical Liouville–von Neumann formalism. We consider

the initial state described by the density operator,

rst = 0d = r0 ^ rb, s18d

where r0 is the density operator of the particle that in prin-

ciple can be in a pure or in a mixed state and rb is the density

operator of the thermal bath, at a temperature b−1, that is,

rb = Zb
−1 expF− bo

k=1

`

vkSak
†
ak +

1

2
DG , s19d

with Zb=pk=1
N zb

k being the partition function of the reservoir,

and

zb
k = Trkfe

−bvksak
†
ak+1/2dg =

1

2 sinhSbkvk

2
D
. s20d

The creation and annihilation operators given by

am =Îv̄m

2
qm +

i

Î2v̄m

pm, s21d

am
† =Îv̄m

2
qm −

i

Î2v̄m

pm, s22d

where v̄m= sv̄ ,vkd. The thermalization problem is addressed

by investigating the time evolution of the state rstd.
The thermalization problem concerns the time evolution

of the initial state to thermal equilibrium. The subsystem

corresponding to the particle oscillator is described by an

arbitrary density operator r0. As we will show, the expecta-
tion value of the number operator corresponding to particles

will evolve in time to a value that is independent of the

initial density operator r0; the dependence will be exclu-

sively on the mixed density operator corresponding to the

thermal bath.

Our aim is to obtain expressions for the time evolution of

the expectation values for the occupation number and, in

particular, for the one corresponding to particles. We will

solve the problem in the framework of the Heisenberg pic-

ture. It is to be understood that when a quantity appears

without the time argument, it means that such quantity is

evaluated at t=0. The Heisenberg equation of motion for the

annihilation operator amstd is given by

]

]t
amstd = ifĤ,amstdg . s23d

Due to the linear character of our problem, this equation is

solved by writing amstd as

amstd = o
n=0

`

fḂmnstdq̂n + Bmnstdp̂ng , s24d

where all the time dependence is in the c-number functions

Bmnstd. Then, Eq. s23d reduces to the following coupled

equations for Bmnstd:

B̈m0std + v̄2Bm0std − o
k=1

`

hvkBmkstd = 0, s25d

B̈mkstd + vk
2
Bmkstd − Bm0stdo

k=1

`

hvk = 0. s26d

These equations are formally identical to the classical

equations of motion fEqs. s2d and s3dg for the bare coordi-
nates qm. Then we decouple Eqs. s25d and s26d with the same
matrix htm

r j that diagonalizes the Hamiltonian s1d. In an

analogous manner, we write Bmnstd as
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Bmnstd = o
r=0

`

tn
rCm

r std , s27d

such that from Eqs. s25d and s26d, we obtain the following

equations for the normal-axis functions Cm
r std,

C̈m
r std + Vr

2
Cm

r std = 0, s28d

which gives the solution

Cm
r std = am

r eiVrt + bm
r e−iVrt.

Then substituting this expression into Eq. s27d, we find

Bmnstd = o
r=0

`

tn
rsam

r eiVrt + bm
r e−iVrtd . s29d

The time-independent coefficients am
r and bm

r are determined

by the initial conditions at t=0 for Bmnstd and Ḃmnstd. From
Eqs. s21d and s24d, we find that these initial conditions are

given by

Bmn =
idmn

Î2v̄m

,

Ḃmn =Îv̄m

2
dmn. s30d

Using these equations, we obtain for am
r and bm

r ,

am
r =

itm
r

Î8v̄m

S1 − v̄m

Vr

D , s31d

bm
r =

itm
r

Î8v̄m

S1 + vm

Vr

D . s32d

We write amstd and am
† std in terms of am and am

† using Eqs.

s21d, s22d, and s24d,

amstd = o
n=0

`

famnstdân + bmnstdân
†g , s33d

am
† std = o

n=0

`

fbmn
p stdân + amn

p stdân
†g , s34d

where amnstd and bmnstd are the Bogoliubov coefficients

given by

amnstd =
1

Î2vn

Ḃmnstd − iÎvn

2
Bmnstd s35d

and

bmnstd =
1

Î2vn

Ḃmnstd + iÎvn

2
Bmnstd . s36d

Using the definition of Bmnstd, we get

amnstd = o
r=0

` Îvn

vm

tm
r tn

r

4Vr

HVr

vn

fsvm − Vrde
iVrt + svm + Vrde

−iVrtg + fsVr − vmdeiVrt + sVr + vmde−iVrtgJ s37d

and

bmnstd = o
r=0

` Îvn

vm

tm
r tn

r

4Vr

HVr

vn

fsvm − Vrde
iVrt + svm + Vrde

−iVrtg − fsVr − vmdeiVrt + sVr + vmde−iVrtgJ . s38d

Now we study the time evolution of nmstd, the expectation

value of the number operator Nmstd=am
† stdamstd, that is,

nmstd = Trfam
† stdamstdr0 ^ rbg . s39d

Using the basis un0 ,n1 ,n2 , . . . ,nNl, we obtain

nmstd = o
n=0

`

fuamnstdu2 + ubmnstdu2gnn + o
n=0

`

ubmnstdu2, s40d

where

n0 = o
n=0

`

nknur0unl s41d

is the expectation value of the number operator correspond-

ing to the particle and the set hnkj stands for the thermal

expectation values corresponding to the thermal bath oscilla-

tors given by the Bose-Einstein distribution,

nk =
1

ebvk − 1
. s42d

We are interested in evaluating the expectation value of

the number operator corresponding to the particle. Strictly

speaking all the modes of the system evolves in time, so that

all occupation numbers nmstd given by Eq. s40d should be

considered. However the mode m=0, corresponding to the

particle, is coupled to all of the reservoir modes; while each

reservoir mode sm=1,2 ,3 , . . .d is under the influence of the
particle only, since they are not supposed to interact directly

among themselves. Therefore, considering the weak-

coupling regime fsee comments below Eq. s48dg, we work in
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the approximation of neglecting the time evolution of the reservoir which remains in thermal equilibrium obeying Eq. s42d.
Thus taking m=0 in Eq. s40d and using Eq. s42d, we obtain

n0std = fua00stdu
2 + ub00stdu

2gn0 + o
k=1

`

fua0kstdu
2 + ub0kstdu

2g
1

ebvk − 1
+ ub00stdu

2 + o
k=1

`

ub0kstdu
2, s43d

where the coefficients of this expression are f20g

a00std =
e−pgt/2

16v̄k
fs2v̄ + 2k − ipgd2e−ikt − s2v̄ − 2k − ipgd2eiktg , s44d

b00std =
pge−pgt/2

8v̄k
fspg + 2ikde−ikt − spg − 2ikdeiktg , s45d

a0kstd =Îvk

2v̄

sv̄ + vkdÎgDve−ivkt

svk
2 − v̄2 + ipgvkd

+Îvk

v̄

Î2gDv

4k
F s2k + 2v̄ − ipgd

s2k − 2vk − ipgd
e−ikt +

s2v̄ − 2k − ipgd

s2k + 2vk + ipgd
eiktGe−pgt/2 s46d

and

b0kstd =Îvk

2v̄

svk − v̄dÎgDveivkt

svk
2 − v̄2 − ipgvkd

−Îvk

v̄

Î2gDv

4k
F s2v̄ + 2k − ipgd

s2k + 2vk − ipgd
e−ikt +

s2v̄ − 2k − ipgd

s2k − 2vk + ipgd
eiktGe−pgt/2, s47d

such that

k = Îv̄2 − p2g2/4. s48d

The parameter k measures the intensity of the interaction: if k2@0, i.e., g!2v̄ /p, we are in the weak-coupling regime. On

the contrary if k2!0, i.e., g@2v̄ /p, the system is in the strong-coupling regime. Here we will restrict ourselves to the

weak-coupling regime. This case includes the important class of electromagnetic interactions g=av̄, with a being the fine-

structure constant a=1 /137 f14g.
In the continuum limit Dv→0, the sums over k become integrations over a continuous variable v and we obtain for n0std,

n0std =
e−pgt

v̄2k2Fv̄4 +
p2g2

8
s2v̄2 − p2g2dcoss2ktd −

p3g3k

4
sins2ktdGn0

+
p2g2e−pgt

16v̄2k2
f2v̄2 + s2v̄2 − p2g2dcoss2ktd − 2pgk sins2ktdg +

g

v̄
E
0

`

dvFFsv,v̄,g,td

sebv − 1d
+ Gsv,v̄,g,tdG , s49d

where

Fsv,v̄,g,td =
vsv2 + v̄2d

fsv2 − v̄2d2 + p2g2v2g
H1 + e−pgt

4k2 F4v̄2 − p2g2 coss2ktd − 2pgk
sv2 − v̄2d

sv2 + v̄2d
sins2ktdG

−
e−pgt/2

k
F2k cossvtdcossktd +

4vv̄2

sv2 + v̄2d
sinsvtdsinsktd − pg

sv2 − v̄2d

sv2 + v̄2d
cossvtdsinsktdGJ s50d

and

Gsv,v̄,g,td =
vsv − v̄d2

fsv2 − v̄2d2 + p2g2v2g
H1 + e−pgt

4k2 F4v̄2 +
2p2g2v̄v

sv − v̄d2
− p2g2

sv2 + v̄2d

sv − v̄d2
coss2ktd − 2pgk

sv + v̄d

sv − v̄d
sins2ktdG

−
e−pgt/2

k
F2k cossvtdcossktd − 2v̄ sinsvtdsinsktd − pg

sv + v̄d

sv − v̄d
cossvtdsinsktdGJ . s51d
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It is to be noticed that the second and the third lines in Eq.

s49d are independent of the initial distribution. Also the inte-
gral over Gsv , v̄ ,g , td is logarithmically divergent. We can

understand the origin of these terms in the following way.

Suppose that initially, in the absence of the linear interaction,

we prepare the system in its ground state, that is, at t=0 we

have u0,0 , . . . ,0l. Then, we can compute—in the Heisenberg

picture—the time evolution for the expectation value of the

number operator corresponding to the particle, that is,

k0,0 , . . . ,0uâ0
†stdâ0stdu0,0 , . . . ,0l. We obtain

k0,0, . . . ,0uâ0
†stdâ0stdu0,0, . . . ,0l = ub00stdu

2 + o
k=1

`

ub0kstdu
2,

s52d

which in the continuum limit gives the second and third lines

of Eq. s49d. Then, these terms appearing in Eq. s49d are

interpreted as the excitations produced from the unstable

bare svacuumd ground state, as a response to the onset of the
linear interaction.

The result above is compatible with some results in f5g in
the context of quantum dissipative phenomena. In this

quoted paper, in the zero-temperature situation, the system is

represented by a set of harmonic oscillators. A detailed jus-

tification for representing the environment by a set of har-

monic oscillators is given in the Appendix C of this refer-

ence.

The divergent integral in Gsv , v̄ ,g , td can be dealt with

by a renormalization procedure. The suppression of this term

is analogous to the standard Wick ordering in field theory.

Thus we write the following renormalized expectation value

for the particle number operator:

n̄0std = Ksv̄,g,td +
g

v̄
E
0

`

dv
Fsv,v̄,g,td

sebv − 1d
, s53d

where

Ksv̄,g,td =
e−pgt

v̄2k2Fv̄4 +
p2g2

8
s2v̄2 − p2g2dcoss2ktd

−
p3g3k

4
sins2ktdGn0 +

p2g2e−pgt

16v̄2k2
f2v̄2

+ s2v̄2 − p2g2dcoss2ktd − 2pgk sins2ktdg .

s54d

In the limit t→`, n̄0std has a well-defined value; that is,

the system reaches a final equilibrium state. Also, since

Ksv̄ ,g , t→`d→0, this final equilibrium state is independent

of n0. The equilibrium expectation value of the number op-

erator corresponding to the particle is independent of its ini-

tial value, and the only dependence is on the initial distribu-

tion of the thermal bath; that is, the particle thermalizes with

the environment. Before the interaction enters into play for

t,0, nst,0d=n0, then we have that Ksv̄ ,g , t,0d=1. Tak-
ing t=0 in Eq. s54d, we obtain Ksv̄ ,g , t=0d= 1

v̄2k2 fv̄4

+
p2g2

8
s2v̄2−p2g2dgn0+

p2g2

16v̄2k2 f2v̄2+ s2v̄2−p2g2dg. Thus

Ksv̄ ,g , td is a discontinuous function of t; the discontinuity

appearing just at t=0. From the physical standpoint, this dis-

continuity can be viewed as a response to the sudden onset of

the interaction between the particle and the environment.

It should be mentioned that a very similar problem from

the mathematical point of view has been studied in f21g. In
this work, the authors studied the damped harmonic oscilla-

tor under the optics of a dissipation problem. They apply a

method that diagonalizes the Hamiltonian of the system and

derive the conditions of validity of the rotating wave ap-

proximation.

Although the integral in Eq. s53d cannot be computed

analytically, we can perform numerical calculations; for ex-

ample sin Fig. 1d, we display the time behavior for n0=1,

v̄=1, b=2 and g=0.1; st.1d. In Sec. IV, we develop an

alternative approach based on the notion of dressed particles.

We will find that, in this new realm, no renormalization is

needed.

IV. DRESSED COORDINATES AND DRESSED STATES

Let us start with the eigenstates of our system

un0 ,n1 ,n2 , . . .l represented by the normalized eigenfunctions

in terms of the normal coordinates hQrj,

fn0n1n2. . .
sQ,td = p

s

FÎ2ns

ns!
Hns

SÎVs

"
QsDG

3G0 expS− io
s

nsVstD , s55d

where Hns
stands for the nsth Hermite polynomial and G0 is

the normalized vacuum eigenfunction,

G0 =N expS− 1

2
o
r=0

`

Vr
2
Qr
2D . s56d

We introduce dressed or renormalized coordinates q08 and

hqi8j for, respectively, the dressed particle and the dressed

field, defined by

Îv̄mqm8 = o
r

tm
r ÎVrQr, s57d

valid for arbitrary R and where v̄m= hv̄ ,vij. In terms of

dressed coordinates, we define for a fixed instant t=0 dressed

states uk0k1k2. . .l by means of the complete orthonormal set
of functions

FIG. 1. sColor onlined Time behavior for n̄0std given by Eq. s53d
for st.1d, n0=1, v̄=1, b=2, and g=0.1; arbitrary units are used.
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ck0k1. . .
sq8d = p

m

FÎ2km

km!
Hkm

SÎv̄m

"
qm8DGG0, s58d

where qm8 = hq08 ,qi8j, v̄m= hv̄ ,vij. Notice that the ground state
G0 in the above equation is the same as in Eq. s55d. The
invariance of the ground state is due to our definition of

dressed coordinates given by Eq. s57d. Each function

ck0,k1,. . .
sq8d describes a state in which the dressed oscillator

qm8 is in its kmth excited state.

It is worthwhile to note that our renormalized coordinates

are objects different from both the bare coordinates q and the

normal coordinates Q. In particular, the renormalized coor-

dinates and dressed states—although both are collective

objects—should not be confused with the normal coordinates

Q and the eigenstates Eq. s55d. While the eigenstates f are

stable, the dressed states c are all unstable, except for the

ground state obtained by setting hkm=0j in Eq. s58d. The idea
is that the dressed states are physically meaningful states.

This can be seen as an analog of the wave-function renor-

malization in quantum field theory, which justifies the de-

nomination of renormalized to the new coordinates q8. Thus,

the dressed state given by Eq. s58d describes the particle in
its k0th excited level and each mode k of the cavity in the

kkth excited level. It should be noticed that the introduction

of the renormalized coordinates guarantees the stability of

the dressed vacuum state, since by definition it is identical to

the ground state of the system. The fact that the definition

given by Eq. s57d assures this requirement can be easily seen
by replacing Eq. s57d in Eq. s58d. We obtain G0sq8d~G0sQd,
which shows that the dressed vacuum state given by Eq. s58d
is the same ground state of the interacting Hamiltonian given

by Eq. s5d.
The necessity of introducing renormalized coordinates

can be understood by considering what would happen if we

write Eq. s58d in terms of the bare coordinates qm. In the

absence of interaction, the bare states are stable since they

are eigenfunctions of the free Hamiltonian. But when we

consider the interaction, they all become unstable. The ex-

cited states are unstable, since we know this from experi-

ment. On the other hand, we also know from experiment that

the particle in its ground state is stable, in contradiction with

what our simplified model for the system describes in terms

of the bare coordinates. So, if we wish to have a nonpertur-

bative approach in terms of our simplified model, something

should be modified in order to remedy this problem. The

solution is just the introduction of the renormalized coordi-

nates qm8 as the physically meaningful ones.

In terms of bare coordinates, the dressed coordinates are

expressed as

qm8 = o
n

amnqn, s59d

where

amn =
1

Îv̄m

o
r

tm
r tn

rÎVr. s60d

If we consider an arbitrarily large cavity sR→`d, the dressed
coordinates reduce to

q08 = A00sv̄,gdq0, s61d

qi8 = qi, s62d

with A00sv̄ ,gd given by

A00sv̄,gd =
1

Îv̄
E
0

` 2gV2ÎVdV

sV2 − v̄2d2 + p2g2V2
. s63d

In other words, in the limit R→`, the particle is still dressed
by the field, while for the field there remain bare modes.

Let us consider a particular dressed state uG1
ms0dl repre-

sented by the wave function c00¯1smd0¯
sq8d. It describes the

configuration in which only the dressed oscillator qm8 is in the

first-excited level. Then the following expression for its time

evolution is valid f13g:

uG1
mstdl = o

n

fmnstduG1
ns0dl ,

fmnstd = o
s

tm
s tn

se−iVst. s64d

Moreover we find that

o
n

ufmnstdu2 = 1. s65d

Then the coefficients fmnstd are simply interpreted as prob-

ability amplitudes.

In approaching the thermalization process in this frame-

work, we have to write the initial physical state in terms of

dressed coordinates or equivalently in terms of dressed anni-

hilation and creation operators am8 and am8
† instead of am and

am
† . This means that the initial dressed density operator cor-

responding to the thermal bath is given by

rb = Zb
−1 expF− bo

k=1

`

vkSak8
†
ak8 +

1

2
DG , s66d

where we define

am8 =Îv̄m

2
qm8 +

i

Î2v̄m

pm8 s67d

am8
† =Îv̄m

2
qm8 −

i

Î2v̄m

pm8 . s68d

Now we analyze the time evolution of dressed coordinates.

V. THERMAL BEHAVIOR FOR A CAVITY OF

ARBITRARY SIZE WITH DRESSED COORDINATES

The solution for the time-dependent annihilation and cre-

ation dressed operators follows similar steps as for the bare

operators. The time evolution of the annihilation operator is

given by

d

dt
am8 std = ifĤ,am8 stdg s69d

and a similar equation for am8
†std. We solve this equation with

the initial condition at t=0,
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am8 s0d =Îvm

2
qm8 +

i

Î2vm

pm8 , s70d

which, in terms of bare coordinates, becomes

am8 s0d = o
r,n=0

N SÎVr

2
tm
r tn

r q̂n +
itm

r tn
r

Î2Vr

p̂nD . s71d

We assume a solution for am8 std of the type

am8 std = o
n=0

`

fḂmn8 stdq̂n + Bmn8 stdp̂ng . s72d

Using Eq. s1d we find

Bmn8 std = o
r=0

`

tn
rsam8

r
eiVrt + bm8

r
e−iVrtd . s73d

In the present case, the time-independent coefficients are dif-

ferent from those in the bare coordinate approach fEq. s29dg.

The initial conditions for Bmn8 std and Ḃmn8 std are obtained by

setting t=0 in Eq. s72d and comparing with Eq. s71d. Then

Bmn8 s0d = io
r=0

`
tm
r tn

r

Î2Vr

, s74d

Ḃmn8 s0d = o
r=0

` ÎVr

2
tm
r tn

r . s75d

Using these initial conditions and the orthonormality of the

matrix htm
r j, we obtain am8

r=0 and bm8
r= itm

r
/Î2Vr. Replacing

these values for am8
r and bm8

r in Eq. s73d, we get

Bmn8 std = io
r=0

`
tm
r tn

r

Î2Vr

e−iVrt. s76d

We have

am8 std = o
r,n=0

N

tm
r tn

rSÎVr

2
q̂n +

i

Î2Vr

p̂nDe−iVrt

= o
r,n=0

N

tm
r tn

rSÎvn

2
q̂n8 +

i

Î2vn

p̂n8De−iVrt = o
n=0

`

fmnstdân8,

s77d

where

fmnstd = o
r=0

`

tm
r tn

re−iVrt. s78d

For the occupation number nm8 std= kam8
†stdam8 stdl, we get

nm8 std = Trfam8
†stdam8 stdr08 ^ rb8g , s79d

where r08 is the density operator for the dressed particle and
rb8 is the density operator for the thermal bath, which coin-

cides with the corresponding operator for the bare thermal

bath if the system is in free space sin the sense of an arbi-

trarily large cavityd f13,14g.

To evaluate nm8 std, we choose the basis un0 ,n1 , . . . ,nNl
=pm=0

` unml, where unml are the eigenvectors of the number

operators am8
†am8 . From Eq. s77d, we get

am8
†stdam8 std = o

n,r=0

`

fmr
p stdfmnstdâr8

†
ân8

= o
n=0

`

ufmnstdu2ân8
†
ân8 + o

nÞr

fmr
p stdfmnstdân8

†
âr8.

s80d

In the basis un0 ,n1 ,n2 , . . .l, we obtain

nm8 std = ufm0stdu
2n08 + o

k=1

`

ufmkstdu
2nk8, s81d

where n08 and nk8 are the expectation values of the initial

number operators, respectively, for the dressed particle and

dressed bath modes. We assume that dressed field modes

obey a Bose-Einstein distribution. This can be justified by

remembering that in the free space limit R→`, dressed field
modes are identical to the bare ones, according to Eqs. s61d
and s62d. Now, no term independent of the temperature ap-

pears in the thermal bath. This should be expected since the

dressed vacuum is stable; particle production from the

vacuum is not possible. Setting m=0 in Eq. s81d, we obtain
the time evolution for the occupation number of the particle,

n08std = uf00stdu
2n08 + o

k=1

`

uf0kstdu
2nk8. s82d

VI. LIMIT OF ARBITRARILY LARGE CAVITY:

UNBOUNDED SPACE

In a large cavity sfree spaced, we must compute the quan-
tities f00std and f0kstd in the continuum limit to study the time

evolution of the occupation number for the particle. Remem-

ber that in Eq. s17d, vk=kpc /R, k=1,2 , . . ., and h=Î2gDv,
with Dv= svi+1−vid=pc /R. When R→`, we have Dv→0

and DV→0 and then the sum in Eq. s78d becomes an inte-

gral. To calculate the quantities fmnstd, we first note that, in
the continuum limit, Eq. s17d becomes

t0
r
→ t0

VÎDV ; lim
DV→0

VÎ2gDV

ÎsV2 − v̄2d2 + p2g2V2
, s83d

tk
r
→

vÎ2gDv

v2 − V2
t0
VÎDV . s84d

In the following, we suppress the labels in the frequencies,

since they are continuous quantities.

We start by defining a function Wszd,

Wszd = z2 − v̄2 + o
k=1

`
h2z2

vk
2 − z2

. s85d

We find that the V’s are the roots of Wszd. Using h2

=2gDv, we have in the continuum limit,
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Wszd = z2 − v̄2 + 2gz2E
0

`
dv

v2 − z2
. s86d

For complex values of z, the above integral is well defined

and is evaluated by using Cauchy theorem to be

Wszd = Hz2 + igpz − v̄2, Imszd . 0

z2 − igpz − v̄2, Im, 0.
J s87d

We now compute f00std=or=0
` st0

rd2e−iVrt which, in the con-

tinuum limit, is given by

f00std = E
0

`

st0
Vd2e−iVtdV . s88d

We find that

st0
Vd2 =

1

WsVd
, s89d

and since the V’s are the roots of Wszd, we write Eq. s88d as

f00std =
1

ip
R

C

dze−izt

Wszd
, s90d

where C is a counterclockwise contour in the z plane that

encircles the real positive roots of Wszd. Choosing a contour
infinitesimally close to the positive real axis, that is, z=a
− ie below it and z=a+ ie above it with a.0 and e→0+, we

obtain

f00std =
1

ip
E
0

`

daae−iatF 1

Wsa − ied
−

1

Wsa + ied
G . s91d

In the limit e→0+, Eq. s87d gives Wsa6 ied=a2

− v̄26 igpa which leads to

f00std = C1st;v̄,gd + iS1st;v̄,gd , s92d

where

C1st;v̄,gd = 2gE
0

`

da
a2 cossatd

sa2 − v̄2d2 + p2g2a2
, s93d

S1st;v̄,gd = − 2gE
0

`

da
a2 sinsatd

sa2 − v̄2d2 + p2g2a2
. s94d

Notice that C1st=0; v̄ ,gd=1 and S1st=0; v̄ ,gd=0, so that

f00st=0d=1 as expected from the orthonormality of the ma-

trix stm
r d. The real part of f00std is calculated using the residue

theorem. For k2= v̄2−p2g2 /4.0, which includes the weak-

coupling regime, one finds

C1st;v̄,gd = e−pgt/2Fcossktd −
pg

2k
sinsktdG sk2 . 0d .

s95d

Although S1st ; v̄ ,gd cannot be analytically evaluated for all

t, however, for long times, i.e., t@1 / v̄, we have

S1st;v̄,gd <
4g

v̄4t3
St @

1

v̄
D . s96d

Thus, we get for large t

uf00stdu
2 < e−pgtFcossktd −

pg

2k
sinsktdG2 + 16g2

v̄8t6
. s97d

Next we compute the quantity f0kstd=or=0
` t0

r tk
re−iVrt in the

continuum limit. It is

f0vstd = hvE
0

` st0
Vd2e−iVtdV

sv2 − V2d
=

hv

ip
R

C

ze−izt

sv2 − z2dWszd
,

s98d

where h=Î2gDv. Taking the same contour as that used to

calculate f00std, we obtain

f0vstd = −
hv

ip
E
0

`

daF ae−iat

Wsa − iedfsa − ied2 − v2g

−
ae−iat

Wsa + iedfsa + ied2 − v2g
G . s99d

Thus, taking e→0+ f0vstd is written as

f0vstd = vÎDvfC2sv,t;v̄,gd + iS2sv,t;v̄,gdg , s100d

where

C2sv,t;v̄,gd = s2gd3/2E
0

`

da
a2 cossatd

sv2 − a2dfsa2 − v̄2d2 + p2g2a2g
,

s101d

S2sv,t;v̄,gd

= − s2gd3/2E
0

`

da
a2 sinsatd

sv2 − a2dfsa2 − v̄2d2 + p2g2a2g
.

s102d

Notice that the integrals defining the functions C2 and S2 are

actually Cauchy principal values.

The function C2 is calculated analytically using Cauchy

theorem; we find

C2sv,t;v̄,gd = Î2gFe−pgt/2H v2 − v̄2

sv2 − v̄2d2 + p2g2v2
cos kt

−
pg

2k

v2 + v̄2

sv2 − v̄2d2 + p2g2v2
sin ktJ

+
pgv

sv2 − v̄2d2 + p2g2v2
sin vtG . s103d

The function S2 cannot be evaluated analytically for all t; it

has to be calculated numerically. For long times, we have

S2st;v̄,gd <
4Î2gÎg

v2v̄4t3
St @

1

v̄
D . s104d

In the continuum limit, we get the average of the particle

occupation number,
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n08std = fC1
2st;v̄,gd + S1

2st;v̄,gdgn08 + E
0

`

dvv2fC2
2sv,t;v̄,gd

+ S2
2sv,t;v̄,gdgn8svd , s105d

where n8svd=1 / sebv−1d is the density of occupation of the
environment modes, the functions C1 and C2 are given by

Eqs. s95d and s103d while the functions S1 and S2 are given

by the integrals s94d and s102d, respectively. In Fig. 2, we

display the behavior in time for n0=1, v̄=1, b=2, and g

=0.1; st.1d.
The important point that is seen from Figs. 1 and 2 is that,

for long times, both the bare and dressed occupation num-

bers of the particle approach smoothly to asymptotic values

which are <0.160. Moreover, these values are expected on

physical grounds for the interacting particle, being slightly

higher than the one obtained from the Bose distribution at

the equilibrium temperature of the reservoir. In fact, taking

b=2 and v̄=1, as used in the plots, one has

n`sv̄d = 1/sebv̄ − 1d = 0.156.

Therefore both methods and, in particular, our dressed state

formalism describe correctly the thermalization process.

VII. FINAL REMARKS

We have considered a linearized version of a particle-

environment system and we have carried out a nonperturba-

tive treatment of the thermalization process. We have

adopted the point of view of renouncing to an approach very

close to the real behavior of a nonlinear system to study

instead a linear model. As a counterpart, an exact solution

has been possible. This realizes a good compromise between

physical reality and mathematical reliability. We have pre-

sented an ohmic quantum system consisting of a particle, in

the larger sense of a material body, an atom, or a Brownian

particle coupled to an environment modeled by noninteract-

ing oscillators. We have used the formalism of dressed states

to perform a nonperturbative study of the time evolution of

the system contained in a cavity or in free space. Distinctly

to what happens in the bare coordinate approach, in the

dressed coordinate approach, no renormalization procedure

is needed. Our renormalized coordinates contain in them-

selves the renormalization aspects. As far as the thermaliza-

tion process is concerned from a physical viewpoint, both

bare and dressed approaches are in agreement with what we

expect for this process. For long times, all the information

about the particle occupation numbers depends only on the

environment. Both curves in Figs. 1 and 2 approach steadily

to asymptotic values of the bare and dressed occupation

numbers of the particle, which are physically expected at the

given temperature.
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