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(Received 18 February 2010; published 12 May 2010)

We study the time evolution of a superposition of product states of two dressed atoms in a spherical cavity

in the situations of an arbitrarily large cavity (free space) and a small one. In the large-cavity case, the system

dissipates, whereas, for the small cavity, the system evolves in an oscillating way and never completely decays.

We verify that the von Neumann entropy for such a system does depends neither on time nor the size of the

cavity.
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I. INTRODUCTION

Stability is a main characteristic of quantum mechanical

systems in the absence of interaction. When interaction with

an environment is introduced to such systems, they tend to

dissipate. A material body, for instance, an excited atom

or molecule or an excited nucleon, changes state because

of its interaction with the environment. The nature of the

destabilization mechanism is in general model dependent and

approximate. An account of the subject, in particular applied to

the study of the Brownian motion, can be found, for instance,

in Refs. [1,2]. However, stability (or instability) of quantum

mechanical systems is not due only to the absence (or presence)

of interaction. For example, the behavior of atoms confined in

small cavities is completely different from the behavior of an

atom in free space or in a large cavity. In the first case, the

decay process is inhibited by the presence of boundaries, a

fact that was pointed out long ago in the literature [3–5], while

in the second case it completely decays after a sufficiently long

elapsed time.

This phenomenon of inhibition of decay and related aspects

have also been investigated in [6–10] using a “dressed state”

formalism introduced in [11].With this formalismone recovers

the experimental observation that excited states of atoms in

sufficiently small cavities are stable. In [6,7], formulas are

obtained for the probability of an atom to remain excited for

an infinitely long time, provided it is placed in a cavity of

appropriate size. For an emission frequency in the visible red,

the size of such a cavity is in good agreementwith experimental

observations [12,13]. The dressed-state formalism accounts

for the fact that, for instance, a charged physical particle

is always coupled to the gauge field; in other words, it is

always “dressed” by a cloud of field quanta. In general, for

a system of matter particles, the idea is that the particles

are coupled to an environment, which is usually modeled in

two equivalent ways: either to represent it by a free field,

as was done in Refs. [1,2], or to consider the environment

as a reservoir composed of a large number of noninteracting

harmonic oscillators (see, for instance, [14–17]). In both cases,

exactly the same type of argument given previously in the case

of a charged particle applies to such systems. We may speak

of the “dressing” of the set of particles by the ensemble of the

harmonicmodes of the environment. It should be noted that our

dressed states are not the same as those employed in optics and

in the realm of general physics usually associated with normal

coordinates [18,19]. Our dressed states are given in terms

of our dressed coordinates and can be viewed as a rigorous

version of these dressing procedures in the context of themodel

employed here [see Eqs. (15) and (16) in the next section].

In the present article we study the time evolution of a

two-atom dressed state. This generalizes a previous work

dealingwith the simpler situation of a superposition of states of

just one atom [10]. Our approach to this problem makes use of

the aforementioned concept of dressed states.Wewill consider

our system as consisting of two atoms, each one of them

interacting independently with an environment provided by

the harmonic modes of a field. The whole system is supposed

to reside in a spherical cavity of radius R. We take it as

a bipartite system, each subsystem consisting of one of the

dressed atoms. We will consider a superposition of two kinds

of states: Either all entities (both atoms and the field modes)

are in their ground states, or just one of the atoms lies in its

first excited state, with the other one and all the field modes

being in their ground states. The analysis of the density matrix

of the system leads to the time evolution of the superposed

states. The computation of the von Neumann entropy leads

to the result that it remains unchanged as the system evolves,

for a cavity of any size. We find rather contrasting behaviors

for the time evolution of the system for a very large cavity

(free space, R → ∞) or for a small cavity. In the first case,
as time goes on, the system dissipates completely, while for a

small cavity the departure from the idempotency of the density

matrix exhibits an oscillatory behavior, never reaching zero.

The dressing formalism for just one atom inside a cavity is

briefly reviewed in Sec. II in order to establish basic notation

and formulas for the time evolution of the states. In Sec. III,

the formalism is generalized for the two-atom system and the

evolution of its density matrix, either in the case of a very large

cavity (with infinite radius, that is, free space) or of a small

cavity, is described. In Sec. IV, we present our conclusions.

II. DRESSING A SINGLE ATOM

Let us briefly recall here some results from the analysis

of previous works for the simpler situation of just one atom

1050-2947/2010/81(5)/053820(7) 053820-1 ©2010 The American Physical Society



GRANHEN, LINHARES, MALBOUISSON, AND MALBOUISSON PHYSICAL REVIEW A 81, 053820 (2010)

dressed by its interaction with the environment field. We

shall thus consider an atom in the harmonic approximation,

linearly coupled to an environment modeled by the infinite

set of harmonic modes of a scalar field, inside a spherical

cavity. A nonperturbative study of the time evolution of such

a system is implemented by means of dressed states and

dressed coordinates. We present in this section a short review

of this formalism; for details, see [11] or [20]. We consider an

atom labeled λ, having bare frequency ωλ, linearly coupled to

a field described by N (→∞) oscillators, with frequencies
ωk , k = 1,2, . . . ,N . The whole system is contained in a

perfectly reflecting spherical cavity of radius R, the free

space corresponding to the limit R → ∞. Denoting with
qλ(t) (pλ(t)) and qk(t) (pk(t)) the coordinates (momenta)

associated with the atom and the field oscillators, respectively,

the Hamiltonian of the system is taken as

Hλ =
1

2

[

p2λ + ω2λq
2
λ +

N
∑

k=1

(

p2k + ω2kq
2
k

)

]

− qλ

N
∑

k=1

ηλωkqk,

(1)

where ηλ is a constant and the limitN → ∞will be understood

later on. The Hamiltonian (1) can be turned to the principal

axis by means of a point transformation,

qµ =
N

∑

rλ=0

t rλ

µ Qrλ
, pµ =

N
∑

rλ=0

t rλ

µ Prλ
, (2)

performed by an orthonormal matrix T = (t rλ
µ ), where µ =

(λ,{k}), k = 1,2, . . . ,N , and rλ = 0, . . . ,N . The subscripts

µ = λ and µ = k refer, respectively, to the atom and the

harmonic modes of the field and rλ refers to the normal modes.

In terms of normal momenta and coordinates, the transformed

Hamiltonian reads

Hλ =
1

2

N
∑

rλ=0

(

P 2
rλ

+ Ä2
rλ
Q2

rλ

)

, (3)

where the Ärλ
’s are the normal frequencies corresponding to

the collective stable oscillation modes of the coupled system.

Using the coordinate transformation [Eq. (2)] in the

equations of motion derived from the Hamiltonian Eq. (1)

and explicitly making use of the normalization condition
∑N

µ=0(t
rλ
µ )

2 = 1, we get

t
rλ

k =
ηλωk

ω2k − Ä2
rλ

t
rλ

λ , t
rλ

λ =

[

1+
N

∑

k=1

η2λω
2
k

(

ω2k − Ä2
rλ

)2

]− 1
2

, (4)

with the condition

ω2λ − Ä2
rλ

=
N

∑

k=1

η2λω
2
k

ω2k − Ä2
rλ

. (5)

The right-hand side of Eq. (5) diverges in the limit N → ∞.
Defining the counterterm δω2 = Nη2λ, it can be rewritten in

the form

ω2λ − δω2 − Ä2
rλ

= η2λÄ
2
rλ

N
∑

k=1

1

ω2k − Ä2
rλ

. (6)

Equation (6) hasN + 1 solutions, corresponding to theN + 1
normal collective modes. It can be shown [11,20] that if

ω2λ > δω2, all possible solutions forÄ2 are positive, physically

meaning that the system oscillates harmonically in all its

modes.On the other hand,whenω2λ < δω2, one of the solutions

is negative and so no stationary configuration is allowed.

Therefore, we just consider the situation inwhich all normal

modes are harmonic, which corresponds to the first case given

previously, ω2λ > δω2, and define the renormalized frequency

ω̄2λ = lim
N→∞

(

ω2λ − Nη2λ
)

, (7)

following the pioneering work of Ref. [21]. In the limit N →
∞, Eq. (6) becomes

ω̄2λ − Ä2 = η2λ

∞
∑

k=1

Ä2

ω2k − Ä2
. (8)

We see that, in this limit, the preceding procedure is exactly

the analog of mass renormalization in quantum field theory:

The addition of a counterterm −Nη2λq
2
λ (N → ∞) allows one

to compensate the infinity of ω2λ in such a way as to leave a

finite, physically meaningful, renormalized frequency ω̄λ.

To proceed, we take the constant ηλ as

ηλ =
√

4gλ1ω

π
, (9)

where 1ω is the interval between two neighboring field

frequencies and g is the coupling constant with dimension

of frequency. The environment frequencies ωk can be written

in the form

ωk = k
πc

R
, k = 1,2, . . . , (10)

and, so, 1ω = πc/R. Then, using the identity

∞
∑

k=1

1

k2 − u2
=
1

2

[

1

u2
−

π

u
cot(πu)

]

, (11)

Eq. (8) can be written in closed form:

cot

(

RÄ

c

)

=
Ä

2gλ

+
c

RÄ

(

1−
Rω̄2λ

2gλc

)

. (12)

The elements of the transformation matrix, turning the atom-

field system to the principal axis, are obtained in terms of the

physically meaningful quantities Ärλ
and ω̄λ after some long

but straighforward manipulations [11],

t
rλ

λ =
ηλÄrλ

√

(

Ä2
rλ

− ω̄2λ
)2 + η2λ

2

(

3Ä2
rλ

− ω̄2λ
)

+ 4g2λÄ2
rλ

,

(13)
t
rλ

k =
ηλωk

ω2k − Ä2
rλ

t
rλ

λ .

The eigenstates of the system atom (λ)-field, |lλ,l1,l2, . . .〉,
are represented by the normalized eigenfunctions in terms of

the normal coordinates {Qrλ
},

φlλl1l2···(Q,t) =
∏

sλ





√

2lsλ

lsλ
!
Hlsλ

(

√

Äsλ

h̄
Qsλ

)





×Ŵλ
0 e

−i
∑

sλ
(lsλ + 1

2
)Äsλ

t
, (14)
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where Hlsλ
stands for the lsλ

th Hermite polynomial and

Ŵλ
0 = Nλe

−
∑

s λ
1
2
Äsλ

Q2
sλ

is the normalized vacuum eigenfunction, with Nλ being the

normalization factor.

Next, dressed coordinates q ′
λ and {q ′

k} for the dressed atom
and the dressed field, respectively, are introduced, defined by

√

ω̄µq ′
µ =

∑

rλ

t rλ

µ

√

Ärλ
Qrλ

, (15)

where ω̄µ = {ω̄λ, ωk}. In terms of the dressed coordinates, we
define for a fixed instant, t = 0, dressed states |κλ,κ1,κ2, . . .〉
by means of the complete orthonormal set of functions [11],

ψκλκ1···(q
′) =

∏

µ

[√

2κµ

κµ!
Hκµ

(

√

ω̄µ

h̄
q ′

µ

)]

Ŵλ
0 , (16)

where, as before, µ labels collectively the dressed atom λ

and the field modes k = 1,2,3, . . . , that is, q ′
µ = q ′

λ, {q ′
k}. The

ground state Ŵλ
0 in the preceding equation is the same as in

Eq. (14). The invariance of the ground state is due to our

definition of dressed coordinates given by Eq. (15). Notice that

the introduction of the dressed coordinates implies, differently

from the bare vacuum, the stability of the dressed vacuum

state since, by construction, it is identical to the ground state

of the interacting Hamiltonian in terms of normal coordinates.

Each functionψκλκ1···(q
′) describes a state in which the dressed

oscillator q ′
µ is in its κµth excited state.

The particular dressed state |Ŵµ

1 (0)〉 at t = 0, represented by

the wave function ψ00···1(µ)0···(q
′), describes the configuration

in which only the µth dressed oscillator is in the first excited

level, all others being in their ground states. It is shown in

Ref. [11], that the time evolution of the state |Ŵµ

1 〉 is given by
∣

∣Ŵ
µ

1 (t)
〉

=
∑

ν

fµν(t)
∣

∣Ŵν
1 (0)

〉

; (17)

fµν(t) =
∑

sλ

t sλ

µ t sλ

ν e−iÄsλ
t , (18)

with
∑

ν |fµν(t)|2 = 1, for all µ. This makes it possible to

interpret the coefficients fµν(t) as probability amplitudes; for

example, fλλ(t) is the probability amplitude that, if the dressed

atom is in the first excited state at t = 0, it remains excited at

time t , while fλk(t) represents the probability amplitude that

the kth dressed harmonicmode of the field be at the first excited

level.

III. TIME EVOLUTION OF A DRESSED

TWO-ATOM STATE

We now consider a bipartite system composed of two

subsystems, A and B; the subsystems consist, respectively,

of dressed atomsA andB in the sense defined in the preceding

section, with λ = A,B labeling the quantities referring to the

subsystems. The whole system is contained in a perfectly

reflecting sphere of radius R. In the following, we consider

each atom carrying its own dressing field (a “cloud” of field

quanta) independently of each other. This means that we are

taking the approximation of neglecting the interaction (via the

field clouds) between them. We consider the Hilbert space

spanned by the dressed Fock-like product states,
∣

∣Ŵ
(AB)
nAk1k2...; nBq1q2...

〉

≡ |nA,k1,k2, . . . ; nB ,q1,q2, . . .〉

=
∣

∣ŴA
nA,k1,k2,...

〉

⊗
∣

∣ŴB
nB ,q1,q2,...

〉

, (19)

in which the dressed atom A is at the nA excited level and

the atom B is at the nB excited level; the (doubled) modes

of the field dressing the atoms A and B are at the k1,k2, . . .

and q1,q2, . . . excited levels, respectively. Fock states of each

individual dressed atom, A or B, possess the representation

and properties presented in the previous section.

Although it is spanned by direct products of Fock states of

the parts, the Hilbert space of a bipartite system is not simply

the direct product of the Hilbert spaces of the separated parts;

it incorporates the entangled states as well. This is because

quantum mechanics relies on the assumption that a linear

combination of possible states of a given system is also an

acceptable state of the system. Therefore, many states of a

bipartite system are not separable; they cannot be reduced

to an element of the direct product of the Hilbert spaces

of the separated parts. They are entangled states which can

only be conceived in a quantum mechanical framework. We

now concentrate in a simple family of entangled states of the

two-dressed-atom system.

Let us consider at time t = 0 a family of superposed states

of the bipartite system given by

|9(0)〉 =
√

ξ
∣

∣Ŵ
(AB)
1(A)00···;0(B)00···(0)

〉

+
√

1− ξ eiφ
∣

∣Ŵ
(AB)
0(A)00···; 1(B)00···(0)

〉

=
√

ξ |1A,0,0, . . . ; 0B ,0,0, . . .〉
+

√

1− ξ eiφ |0A,0,0, . . . ; 1B ,0,0, . . .〉, (20)

where 0 < ξ < 1. In this expression, |Ŵ(AB)
1(A)0(B)00···(0)〉 and

|Ŵ(AB)
0(A)1(B)00···(0)〉 stand, respectively, for the states in which

the dressed atom A (B) is at the first level, the dressed atom B

(A) and all the field modes being in the ground state. They are
∣

∣Ŵ
(AB)
1(A)0(B)00···(0)

〉

=
∣

∣ŴA
100···(0)

〉

⊗
∣

∣ŴB
000···(0)

〉

, (21)
∣

∣Ŵ
(AB)
0(A)1(B)00···(0)

〉

=
∣

∣ŴA
000···

〉

⊗
∣

∣ŴB
100···(0)

〉

. (22)

Note that, for ξ = 1/2 and φ = 0,π , states (20) are similar to

states of the Bell basis of a bipartite system.

The two atoms are nondirectly interacting; they carry their

own dressing fields (a cloud of field quanta). The central

point, which is in the heart of the notion of entanglement,

is that they share the same common wave function |9〉, the
superposed state. In other words, we attribute physical reality

to the superposition of the two-atom state |Ŵ(AB)
0(A)1(B)00···〉, in

which atom B is at the first excited level and atom A is in

the ground state, with the other state |Ŵ(AB)
0(A)1(B)00···〉, in which

atom A is at the first excited level and atom B is in the ground

state; afterward, we study the time evolution of the system

initially described by the wave function [Eq. (20)]. The field

modes are all taken to be in the ground state, which means

that we are considering the system at zero temperature. Since

there is no interaction between them, the atoms cannot, in

both the classical and the field-theoretical sense, influence one

another, but because they are described by the same wave
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function, they are in the same superposed state and they can

share information (not mediated by field forces). As largely

stated in the literature, this is one of the more intriguing

aspects of quantum mechanics; the correlations predicted by

the theory are not compatible with the current idea that the

state of a system, in particular exchange of information among

its subsystems, should be mediated by interactions among

them. This leads still nowadays to different, yet controversial

interpretations of quantum mechanics.

In spite of the simplicity of the model, it is widely assumed

that a pair of harmonic oscillators is a good approximation

in the case of simple atoms, for applications in quantum

computing and for experiments with trapped ions. Indeed, in

the realm of quantum computation [22], a situation nearly

equivalent to the one we investigate here is studied. Two

noninteracting qubits, initially prepared in an entangled state,

are coupled to their own independent environments and evolve

under their influence. This is quite similar to our approach, in

which the time evolution of the dressed atoms is described by

Eq. (17).

At time t , the state of the system is described by the density

matrix ̺(t) = |9(t)〉〈9(t)|,which, using Eq. (20), is given by

̺(t) = ξ
[∣

∣ŴA
100···(t)

〉〈

ŴA
100···(t)

∣

∣

]

⊗
(∣

∣ŴB
000···

〉〈

ŴB
000···

∣

∣

)

+ (1− ξ )
(∣

∣ŴA
000···

〉〈

ŴA
000···

∣

∣

)

⊗
[∣

∣ŴB
100···(t)

〉〈

ŴB
100···(t)

∣

∣

]

+
√

ξ (1− ξ )eiφ
[∣

∣ŴA
000···

〉〈

ŴA
100···(t)

∣

∣

]

⊗
[∣

∣ŴB
100···(t)

〉〈

ŴB
000···

∣

∣

]

+
√

ξ (1− ξ )e−iφ

×
[∣

∣ŴA
100···(t)

〉〈

ŴA
000···

∣

∣

]

⊗
[∣

∣ŴB
000···

〉〈

ŴB
100···(t)

∣

∣

]

; (23)

in Eq. (23) the states |ŴA
000···〉, |ŴB

000···〉 are stationary and the
states |ŴA

100···(t)〉, |ŴB
100···(t)〉 evolve according to Eq. (17).

In order to investigate how the superposed states evolve in

time, we shall consider the reduced density matrix obtained by

tracing over all the degrees of freedomassociatedwith the field.

The computation generalizes the one presented in Ref. [10].

After some long but rather straightforward calculations, we

obtain the following nonvanishing elements:

ρ
0A0B
0A0B

(t) = 1− ξ |fAA(t)|2 − (1− ξ )|fBB(t)|2,

ρ
0A1B
0A1B

(t) = (1− ξ )|fBB(t)|2,

ρ
1A0B
1A0B

(t) = ξ |fAA(t)|2, (24)

ρ
1A0B
0A1B

(t) =
√

ξ (1− ξ )eiφf ∗
AA(t)fBB(t),

ρ
0A1B
1A0B

(t) =
√

ξ (1− ξ )e−iφfAA(t)f
∗
BB(t).

We check immediately that the trace of this reduced density

matrix is one,

ρ
0A0B
0A0B

(t)+ ρ
0A1B
0A1B

(t)+ ρ
1A0B
1A0B

(t)+ ρ
1A1B
1A1B

(t) = 1, (25)

thereby ensuring that ρ(t) represents physical states of the

system. Also, we see that Tr[ρ2(t)] 6= 1 and, therefore, the

superposed state at time t is not pure. The degree of impurity

of a quantum state can be quantified by the departure from the

idempotency property. In the present case,

D(t,ξ ) = 1− Tr[ρ2]
= 2[ξ |fAA(t)|2 + (1− ξ )|fBB(t)|2]

− 2[ξ |fAA(t)|2 + (1− ξ )|fBB(t)|2]2. (26)

In the remainder of this section we consider the two atoms

as identical and, accordingly, we adopt the subscript 0 for both

of them, λ = A = B ≡ 0; we also take

gA = gB ≡ g, ηA = ηB ≡ η, ω̄A = ω̄B ≡ ω̄,
(27)

fAA(t) = fBB(t) ≡ f00(t).

In this case, the matrix elements in Eqs. (24) simplify and,

from Eq. (26), we see that the degree of impurity becomes

independent of the superposition parameter ξ :

D(t,ξ ) = 2|f00(t)|2[1− |f00(t)|2]. (28)

In order to pursue the study of the time evolution of the

superposition of the two-atom states, we have to determine

the behavior of f00(t). We shall analyze it in the situations of

a very large cavity (free space) and of a small one.

A. The limit of an arbitrarily large cavity

Westart from thematrix element t rλ
µ in Eq. (17) and consider

an arbitrarily large radius R for the cavity. The two (identical)

atoms behave independently of each other, so let us focus on

just one of them, either atom A or atom B, labeled 0, so that

we put λ = A = B ≡ 0. Remembering that η =
√
4gc/R, we

have

lim
R→∞

t r0 = lim
R→∞

√
4g/πÄ

√
πc/R

√

(Ä2 − ω̄2)2 + 4g2Ä2
. (29)

In this limit, 1ω = πc/R → dω = dÄ and the sum in the

definition of f00(t) [Eq. (18)] becomes an integral, so that

f00(t) =
4g

π

∫ ∞

0

dÄ
Ä2e−iÄt

(Ä2 − ω̄2)2 + 4g2Ä2
. (30)

Next, we define a parameter κ =
√

ω̄2 − g2 and con-

sider whether κ2 > 0 or κ2 < 0, for which κ2 ≫ 0 and

κ2 ≪ 0 correspond, respectively, to weak (g ≪ ω̄A) and

strong (g ≫ ω̄A) coupling of the atoms with the environm-

ment. For definiteness we consider in the following κ2 > 0,

which includes the weak-coupling regime. We get in this

case [10]

f00(t) = e−gt
[

cos κt −
g

κ
sin κt

]

+ iG(t ; ω̄,g), (31)

where the function G(t ; ω̄,g) is given by

G(t ; ω̄,g) = −
4g

π

∫ ∞

0

dx
x2 sin xt

(x2 − ω̄2)2 + 4g2x2
. (32)

For large times, the quantity |f00(t)|2 is given by [10]

|f00(t)|2 ≈ e−2gt
[

cos ω̄t −
g

ω̄
sin ω̄t

]2

+
64g2

ω̄8t6
. (33)

As t → ∞, we see that the expression for |f00(t)|2 go to
zero.

B. Small cavity

For a finite (small) cavity, the spectrum of eigenfrequencies

is discrete and 1ω is large, so the approximation made in the

case of a large cavity does not apply. For a sufficiently small

cavity, the frequencies Är can be determined as follows: In

Fig. 1, Eq. (12) is plotted for representative values of the
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FIG. 1. (Color online) Solutions of Eq. (35), with y = cot(x)

and x = πÄδ/g, for cavities satisfying the condition δ ≪ 1. The

asymptotes of the cotangent curve correspond to the frequencies of

the field modes ωk .

radius of the cavity and of the coupling constant. We see that,

apart from the smallest of the eigenfrequencies, all other ones

are very close to asymptotes of the cotangent curve, which

correspond to the field frequencies. Thus, let us label the

eigenfrequencies as Ä0, {Äk}, k = 1,2, . . . , where Ä0 stands

to the smallest one.

Then, defining the dimensionless parameter as

δ =
g

1ω
=

gR

πc
, (34)

we rewrite Eq. (12) in the form

cot

(

πÄδ

g

)

=
Ä

πg
+

g

πδÄ

(

1−
δω̄2

g2

)

. (35)

Taking δ ≪ 1, which corresponds to R ≪ πc/g (a small

cavity), we find that, for k = 1,2, . . . , the solutions are

Äk ≈
g

δ

(

k +
2δ

πk

)

. (36)

If we further assume thatÄ0πδ/g ≪ 1, a condition compatible

with δ ≪ 1, then Ä0 is found to be

Ä0 ≈ ω̄

(

1−
πδ

3

)

. (37)

To determine f00(t), we have to calculate the square of the

matrix elements (t00 )
2 and (t0k )

2. They are given, to first order

in δ, as

(

t00
)2 ≈

(

1+
2πδ

3

)−1
;

(

t0k
)2 ≈

4

k2

δ

π

(

t00
)2

. (38)

We thus obtain, for sufficiently small cavities (δ ≪ 1),

|f00(t)|2 ≈
(

1+
2

3
πδ

)−2
{

1+
8δ

π

∞
∑

k=1

1

k2
cos

[

ω̄

(

1−
πδ

3

)

−
g

δ

(

k +
2δ

πk

)]

t +
16δ2

π2

∞
∑

k,l=1

1

k2l2

× cos
[(

g

δ
−
2g

πkl

)

(k − l)

]

t

}

. (39)

To order δ2, a lower bound for |f00(t)|2 is obtained by taking
the value −1 for both cosines in the preceding formula, using
the tabulated value of the Riemann ζ function ζ (2) = π2/6:

|f00(t)|2 &

(

1+
2

3
πδ

)−2 {

1−
4πδ

3
−
4π2δ2

9

}

. (40)

We see, comparing Eqs. (39) and (33), that the quantity

|f00(t)|2, which dictates the behavior of the density matrix
elements and of the measure of purity in Eq. (28), has very

different behaviors for free space or for a small cavity. This

implies that in the situation of a small cavity, in contrast to the

free-space case, all matrix elements in Eqs. (24) are different

from zero at all times.

In Fig. 2 the degree of impurity from Eq. (28) is plotted

as a function of time in the cases of an arbitrarily large cavity

(R → ∞) and of a small cavity.We take δ = 0.1, with ω̄ = 1.0

and g = 0.5 fixed (in arbitrary units).

We see from the figure that for a very large cavity (free

space) the two-atom system dissipates; with the passing of

time, both atoms go to their ground states, only the element

ρ
0A0B
0A0B

(t) = 1 survives in this limit. On the other hand, for a

small cavity, the system never completely decays.

C. Time evolution of the von Neumann entropy

We now turn our attention to the von Neumann entropy

associated with the reduced density matrix with respect to

one of the subsystems; it is obtained by taking the trace over

the states of the complementary subsystem in the full density

FIG. 2. Behavior of the degree of impurityD as function of time

[Eq. (28)] for a small cavity (dashed line) and a very large cavity

(solid line). We take the parameters g = 0.5, δ = 0.1, and ω̄ = 1.0

(in arbitrary units).
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matrix. For pure states of bipartite systems, it measures the

degree of entanglement.

The reduced density matrix for the t = 0 superposition of

states in Eq. (20), ρA, is obtained by tracing over the dressed

B atom. For t 6= 0, we have

ρA(t) = TrB(|9(t)〉〈9(t)|)
=

∑

µ,ν

ξfAµ(t)f
∗
Aν(t)

∣

∣Ŵ
µ(A)
100···

〉〈

Ŵ
ν(A)
100···

∣

∣

+ n(1− ξ )
∣

∣ŴA
000···

〉〈

ŴA
000···

∣

∣. (41)

As time goes on, we have the time-dependent von Neumann

entropy given by

E(t,ξ ) = −Tr[ρA(t) ln ρA(t)]

= −
∑

α

α(t) lnα(t), (42)

where here α(t) are the time-dependent eigenvalues of the

reduced density matrix. These should be solutions of the

characteristic equation, which in the case of (41), reads

det



















1− ξ − α 0 0 0 · · ·
0 ξ |fAA|2 − α ξfA1f

∗
AA ξfA2f

∗
AA · · ·

0 ξfAAf ∗
A1 ξ |fA1|2 − α ξfA2f

∗
A1 · · ·

0 ξfAAf ∗
A2 ξfA1f

∗
A2 ξ |fA2|2 − α · · ·

...
...

...
...

. . .



















= 0. (43)

We thus find that the only nonzero eigenvalues of ρA are

α1 = 1− ξ, α2 = ξ
∑

µ

|fAµ(t)|2 = ξ, (44)

which are time independent. This then implies that the von

Neumann entropy takes the expression

E(t,ξ ) = −[(1− ξ ) ln(1− ξ )+ ξ ln(ξ )], (45)

which coincides with the von Neumann entropy associated

with the initial state |9(0)〉 given by Eq. (20); that is, all the
time dependence of the von Neumann entropy for this two-

atom system, coming from the quantities fλν(t), is completely

canceled in the computation of the entropy, in all situations,

with the maximum entanglement occurring at ξ = 1/2. In

other words, although the superposition of states evolves in

time, in very different ways in the limits of a very large cavity

and of a small one, the entangled nature of these two-atom

states remains unchanged for all times, independent of the size

of the cavity.

IV. CONCLUDING REMARKS

In this article we have considered a system composed of

two atoms in a spherical cavity, each of them in independent

interaction with an environment field. The model employed

is of a bipartite system, in which each subsystem consists of

one of the atoms dressed by its own proper field. We make

the assumption that initially we have a superposition of two

states: one in which one of the dressed atoms is in its first

excited level and the other atom and the field modes are all in

the ground state; this state is superposed with another one in

which the atoms have their roles reversed.

The time evolution of the superposition of these atomic

states leads to a time-dependent (reduced) density matrix.

Expressions for its elements are provided in both the cases

of an infinitely large cavity (that is, free space) and of a small

one, when the two atoms are considered as identical. Very

different behaviors are obtained for this time evolution. In the

large-cavity case, the system shows dissipation, and, with the

passing of time, both atoms go to their ground states. For a

small cavity, an oscillating behavior is present, so that the

atoms never fully decay.

In spite of these rather contrasting behaviors and of the

nontrivial time dependence of the density matrix, we obtain

a von Neumann entropy which is independent of time and

of the cavity size. We find that the initial entanglement of

the two atoms remains unchanged as the system evolves, for

a cavity of any size, in the approximation of noninteracting

dressed atoms. This could be related to the fact that for

multipartite systems the superposition principle leads naturally

to entangled states; in this case noninteracting subsystems can

thus share entangled states that hold quantum correlations.

Such quantum entanglement carries nonlocal features which

can be analyzed by comparison with classical correlations

[23,24]. If an interaction between the dressed atoms, mediated

by their dressing clouds, is introduced, we expect that the

von Neumann entropy associated with the dressed atoms can

depend on time and on the size of the cavity. However, to

establish the formalism of dressed coordinates and dressed

states for a system of two interacting dressed atoms is a very

hard task, which is perhaps not possible on purely analytical

grounds. We can think of introducing this interaction as a

kind of “perturbation” around the individually dressed atomic

states. This will be the subject of future work.

We would like to emphasize that we here consider entan-

glement as a pure quantum effect, a characteristic of quantum

mechanics, which is also nonlocal, in the sense that distant and

noninteracting systems may be entangled. This is due to the

existence of superposed states, not to the interaction between

the (in our case, dressed) atoms. Indeed such properties of

entanglement of noninteracting systems have been used to

conceive quantum communication devices [25].

Noninteracting systems have been, and currently are, the

subject of intense investigation in the realm of teleportation

and quantum information theory. In [26], entanglement in

a mesoscopic structure consisting of noninteracting parts is

investigated. These authors study the time-dependent electron-

electron and electron-hole correlations in a mesoscopic device

and analyze the appearance of entanglement by means of

a Bell inequality test and of Bell inequality tests based on

coincidence probabilities. As we have mentioned previously,

in the framework of the theory of quantum computing, a

situation conceptually close to the one we investigate here

is studied [22]: two noninteracting qubits, initially prepared

in an entangled state, are coupled to their own independent

environments and evolve under their influence. These authors

find conditions for nonvanishing entanglement at arbitrary

time, for both zero and nonzero temperatures. Also, in

Ref. [27], a study of the entanglement evolution of two

remote atoms interacting independently with a cavity field
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is presented. In [28], quantum entanglement is approached for

an ensemble of noninteracting electrons. This author uses this

as a standpoint to study the interacting gas and claims that in

this context the quantum Hall effect can be thought of as a

basis for quantum computation.

The study of entangled states of noninteracting systems is

interesting in itself. As clearly exposed in [29], entanglement

can exist as a purely quantum phenomenon among noninter-

acting particles, which are, however, described by the same

wave function. Entanglement means that individual particles

are not independent of each other, even if they do not interact,

and their quantum properties are inextricably “tied up,” this

being the origin of the Schrödinger’s original denomination,

verschränkte Zustände, for these states. In this context, the

influence of an atomon the other one is not due to an interaction

between them, but is due to the attribution of physical meaning

to superposed states, a concept with no correspondence in

classical physics.

ACKNOWLEDGMENTS

The authors acknowledge CNPq/MCT (Brazil) for partial

financial support. A.P.C.M. thanks FAPERJ (Brazil) for partial

financial support.

[1] W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071 (1989).

[2] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843

(1992).

[3] H. Morawitz, Phys. Rev. A 7, 1148 (1973).

[4] P. Milonni and P. Knight, Opt. Commun. 9, 119 (1973).

[5] D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

[6] G. Flores-Hidalgo, A. P. C. Malbouisson, and Y. W. Milla, Phys.

Rev. A 65, 063414 (2002).

[7] A. P. C. Malbouisson, Ann. Phys. 308, 373 (2003).

[8] G. Flores-Hidalgo and A. P. C. Malbouisson, Phys. Rev. A 66,

042118 (2002).

[9] G. Flores-Hidalgo and A. P. C. Malbouisson, Phys. Lett. A 337,

37 (2005).

[10] G. Flores-Hidalgo, C. A. Linhares, A. P. C. Malbouisson, and

J. M. C. Malbouisson, J. Phys. A 41, 075404 (2008).

[11] N. P. Andion, A. P. C. Malbouisson, and A. Mattos Neto,

J. Phys. A 34, 3735 (2001); A. P. C. Malbouisson, Report

Instituto Balseiro/CAB Bariloche, CAB/1971/13, 1971

(unpublished).

[12] W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and

S. Haroche, Phys. Rev. Lett. 58, 666 (1987).

[13] R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. Lett. 55,

2137 (1985).

[14] P. Ullersma, Physica 32, 56 (1966); 32, 74 (1966); 32, 90

(1966).

[15] F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1982).

[16] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

[17] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168, 115

(1988).

[18] C. Cohen-Tannoudji, Atoms in Electromagnetic Fields, 2nd. ed.

(World Scientific, Singapore, 1994).

[19] T. Petrosky, G. Ordonez, and I. Prigogine, Phys. Rev. A 68,

022107 (2003).

[20] F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson,

and A. E. Santana, Thermal Quantum Field Theory: Algebraic

Aspects and Applications (World Scientific, Singapore, 2009),

Chap. 24.

[21] W. Thirring and F. Schwabl, Ergeb. Exakten Naturwiss. 36, 219

(1964).

[22] J. Dajka, M. Mierzejewski, and J. Luczka, Phys. Rev. A 77,

042316 (2008).

[23] J. S. Bell, Physics 1, 195 (1964).

[24] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics,

2nd. ed. (Cambridge University Press, Cambridge, 2004).

[25] C. Bennett and S. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

[26] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. B 71,

045306 (2005).

[27] S. Chan, M. D. Reid, and Z. Ficek, J. Phys. B 42, 065507 (2009).

[28] A. Sowa, Theor. Math. Phys. 159, 654 (2009).
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