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We investigate finite-size effects on the phase structure of chiral and difermion condensates at fi-
nite temperature and density in the framework of the two-dimensional large-N Nambu-Jona-Lasinio
model. We take into account size-dependent effects by making use of zeta-function and compactifi-
cation methods. The thermodynamic potential and the gap equations for the chiral and difermion
condensed phases are then derived in the mean-field approximation. Size-dependent critical lines
separating the different phases are obtained considering anti-periodic boundary conditions for the
spatial coordinate.

I. INTRODUCTION

Investigation on the phase structure of the strongly
interacting matter is one of the most interesting top-
ics in the realm of the standard model for the funda-
mental forces, in particular for the confining-deconfining
phase transition. This transition is expected to take
place far from the asymptotic freedom (high energy) do-
main of Quantum Chromodynamics (QCD) and so, non-
perturbative methods are needed in order to approach it
and other phenomena occurring in this region. The most
currently used non-perturbative methods involve com-
puter simulations in lattice field theory and have given
many interesting results, as for instance numerical esti-
mates for the confining-deconfining transition tempera-
ture. In what concerns precise analytical studies, they
are very difficult in the low energy domain of QCD, due
to its complex field-theoretical structure.

In reason of these difficulties, phenomenological mod-
els for QCD have been adopted along the years. Sim-
plified effective theories have been largely employed as a
laboratory to get, analytically, insights on the behavior
of hadronic matter, particularly in their low-dimensional
versions. One of the most frequently used of these mod-
els is the Nambu-Jona-Lasinio (NJL) model [1]. It is a
theory of nucleons and mesons, defined in a spacetime
with an even number of dimensions, constructed from
directly interacting Dirac fermions with chiral symme-
try. Phase transition is considered in a manner analo-
gous to the appearance of Cooper pairs from electrons
in the BCS theory of superconductivity. This is the ori-
gin of the expression ”color superconductivity” for the
hadronic phase transition in the context of this model.
Nowadays it is well known the usefulness of the NJL
model in the description of the phase diagram of both
chiral broken phase (quark-antiquark condensation) and
color superconducting phase (diquark condensation). In
addition, the NJL model is specially convenient in the
study of systems under certain conditions, like finite tem-
perature [2, 3], finite chemical potential, external gauge
field, among others [4–6].

An interesting aspect in the study of the phase transi-
tions of the NJL model is the relevance of the fluctuations

due to finite-size effects in the phase diagram. With this
purpose, different approaches have been used to study
various aspects of these effects [7–19]. Other phenomeno-
logical approaches have also been adopted. For instance
in [20] a variational procedure is employed to study finite
density QCD in a model in which the interaction between
quarks is supposed to be mediated by instantons. This is
related to the picture of hadrons as assumed in the MIT
bag model, where nucleons are considered as droplets
in a chirally symmetric restored phase. These authors
find that at densities high enough the chirally symmetric
phase fills space, and color symmetry is broken by the
formation of a quark-quark condensate.

In this paper we intend to generalize, by including fi-
nite size effects, previous results obtained for finite tem-
perature [2, 3]. We make use of the techniques intro-
duced in Refs. [18, 19] and investigate finite-size effects
on the phase structure of chiral and difermion conden-
sates at finite temperature and density in the frame-
work of the two-dimensional large-N NJL model. This is
done through zeta-function regularization and compact-
ification methods [21, 22]. This approach allows to de-
termine analytically the size-dependence of the effective
potential and the gap equation. Then, phase diagrams
at finite temperature and chemical potential, where the
symmetric and nonsymmetric phases are separated by
size-dependent critical lines, are obtained.

Let us remark that our interest in the two-dimensional
version of the NJL model is an attempt to investigate the
qualitative aspects relevant to the chiral and difermion
condensations under the influence of size finiteness of the
system. In fact many properties of four-fermion interact-
ing models are similar in lower and higher dimensions,
and so, we can expect that results obtained in the 2D NJL
model reflect properties of a more realistic 4D model.

It could be argued that spontaneous symmetry break-
ing does not occur in two dimensions, as a consequence
of the Mermin-Wagner-Coleman theorem. However this
is not the case in the present situation. We emphasize
that although the Mermin-Wagner-Coleman theorem de-
nies the spontaneous breaking of continuous symmetries
in two dimensions [23], it does not apply in the large-N
limit [2, 3, 7, 8, 17, 24–29]. Therefore since our interest
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is in the analysis of the possible breaking of continuous
symmetries, it is legitimate to study symmetry breaking
effects in terms of the low-dimensional NJL model in the
large-N limit.
We organize the paper as follows. In Section II, we

calculate the effective potential of the NJL model in
the mean-field approximation, using the zeta-function
method. The analysis of spontaneous symmetry break-
ing induced by the chiral and difermion condensates are
also done. The size-dependent gap equations is discussed
in Section III, while the phase diagrams are shown and
analyzed in Section IV. Finally, Section V presents some
concluding remarks.

II. THE MODEL

Our starting point is the two-dimensional massless ver-
sion of the extended NJL model, described by the La-
grangian density [2, 3, 27],

L = ψ̄(i)
(
i 6∂ − µγ0

)
ψ(i) +

gS
2

(
ψ̄(i)ψ(i)

)2

+gD

(
ψ̄(i)γ5ψ

(j)
)(

ψ̄(i)γ5ψ
(j)

)
, (1)

where ψ and ψ̄ are the fermion fields carrying N flavors
(i, j = 1, ..., N ; repeated flavor indices are summed), µ
is the chemical potential and the γ matrices are in the
two-dimensional space representation, with γ5 = γ0γ1.
Notice that the Lagrangian density possess O(N) flavor
symmetry and discrete chiral symmetry. In the following,
unless explicitly stated, we use natural units, ~ = kB =
c = 1.
Choosing a particular representation we have,

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, (2)

where, in this representation, C = −γ1. In this case, the
pairing term reads

gD

(
ψ̄(i)γ5ψ

(j)
)(

ψ̄(i)γ5ψ
(j)

)
=

−
gD
2

(
εαβψ

†(i)
α ψ

†(i)
β

)(
εγδψ

(j)
γ ψ

(j)
δ

)
. (3)

We perform the bosonization by introducing the aux-
iliary fields σ,∆, associated to the bilinear forms in
the above Lagrangian density as: gsψ̄

(i)ψ(i) ≡ σ and

gdεγδψ
(i)
γ ψ

(i)
δ ≡ ∆. Therefore the modified Lagrangian

density becomes,

L̃ = ψ̄(i)
(
i 6∂ − σ − µγ0

)
ψ(i) −

1

2
∆†

(
εγδψ

(i)
γ ψ

(i)
δ

)

+
1

2

(
εαβψ

†(i)
α ψ†(i)

α

)
∆−

1

2gS
σ2 −

1

2gD
|∆|2. (4)

We see from Eq. (4) that the auxiliary field σ plays the
role of a dynamical fermion mass, such that when it has

a non-vanishing value, the system is in the chiral bro-
ken phase. The auxiliary field ∆ is associated with the
difermion condensate.
Then, integration over ψ and ψ† generates the effective

action,

Γeff (σ,∆) =

∫
dx

(
−

1

2gS
σ2 −

1

2gD
|∆|2

)

−
i

2
Tr lnD, (5)

where

D =

(
−h γ1∆†

−γ1∆ hT

)
, (6)

with

h = i∂0 + iγ5∂1 − µ− σγ0,

hT = −i∂0 − iγ5∂1 − µ− σγ0. (7)

Notice that the trace over the flavor indices in Eq. (5)
gives a factor N , which allow us to set, in the large-N
limit, gSN = GS and gDN = GD, with GS and GD fixed
at N → ∞. Thus, the effective potential is obtained in
the mean-field approximation (i. e., σ and |∆| uniform)
from Eq. (5),

Ueff (σ,∆) =
σ2

2GS

+
|∆|2

2GD

+
i

2
tr ln (hTh)

+
i

2
tr ln

[
1− |∆|2(hT )−1γ1(h)−1γ1

]
,(8)

where tr means the trace over spinor indices.
Our aim is to take into account simultaneously finite-

temperature and finite-size effects on the phase structure
of the model; in order to do this, we consider an Eu-
clidean space, with imaginary time and the spatial co-
ordinate being compactified. We denote the Euclidian
coordinate vectors by xE = (x0, x), with x0 ∈ [0, β] and
x ∈ [0, L], where β is the inverse temperature, β = T−1,
and L is the size of the system. This corresponds to the
generalized Matsubara prescription,

∫
d2k

(2π)2
f(k0, k) →

1

βL

∞∑

n0,n=−∞

f(ωn0
, ωn),

where

k0 → ωn0
=

2π

β

(
n0 +

1

2

)
; n0 = 0,±1,±2, · · · ,

k → ωn =
2π

L
(n+ c) ; n = 0,±1,±2, ...;

in the above equation the quantity c is such that, c = 0
and c = 1

2 for, respectively, periodic and antiperiodic
spatial boundary conditions. In this article we will re-
strict ourselves to antiperiodic spatial boundary condi-
tions, which is a natural choice for fermionic systems.
The case of periodic spatial boundary conditions would



3

follow along parallel lines. Unless explicitly stated, in
all cases studied the spatial boundary conditions are an-
tiperiodic.
Using Eq. (9) we get, after some manipulations, the

effective potential carrying finite-temperature and finite-
size effects, omitting terms independent of |∆| and σ,

Uβ,L
eff (σ,∆) =

σ2

2GS

+
|∆|2

2GD

−
1

2βL

∑

±

∞∑

n0,n=−∞

ln
[
ω2
n0

+ k2±
]
, (9)

where

k2± = |∆|2 + σ2 + µ2 + ω2
n

±2
[
|∆|2σ2 + µ2

(
ω2
n + σ2

)] 1

2 . (10)

The effective potential in Eq. (9) can be rewritten in
terms of the Epstein zeta-functions, Y (s), that is,

Uβ,L
eff (σ,∆) =

σ2

2GS

+
|∆|2

2GD

+
1

2βL

∑

±

d

ds
Y ±
σ,∆(s)

∣∣∣
s=0

,

(11)

where

Y ±
σ,∆(s) =

∞∑

n0,n=−∞

[
ω2
n0

+ k2±
]−s

. (12)

The analysis of the phase diagram of the temperature
and boundary-dependent model is performed through the
solutions of the gap equation containing thermal and
boundary corrections. However, for completeness and
to set up the free space parameters, in the next section
we start by treating the zero-temperature model without
chemical potential and in absence of spatial boundaries.

III. MODEL AT T = 0, µ = 0 AND WITHOUT

SPATIAL BOUNDARIES

Let us study the model introduced in the previous sec-
tion, without compactification of the spatial dimension
and at zero temperature. This case has been well-studied
in Ref. [3]; here we perform this study to define the zero-
temperature free space parameters in absence of chem-
ical potential. The renormalization conditions for the
coupling constants are,

1

GSR

=
∂2

∂σ2
Ueff (σ,∆)

∣∣∣∣
σ=σ0,∆=∆0

, (13)

and

1

GDR

=
∂2

∂∆2
Ueff (σ,∆)

∣∣∣∣
σ=σ0,∆=∆0

, (14)

where GSR and GDR are the renormalized coupling con-
stants, and σ0 and ∆0 are scale parameters. Then, taking
µ = T = 0 in Eq. (8), and performing the integration
over p0, the unrenormalized effective potential can be
rewriten as

Ueff (σ,∆) =
σ2

2GS

+
|∆|2

2GD

−
1

2π

∫
dk (k+ + k−) ,

(15)

where k± is given by Eq. (10), with the replacement
ωn → k. So, we obtain from (13) and (14) the following
relations [2, 3, 27]

1

GSR

=
1

GS

+
1

π
−X,

1

GDR

=
1

GD

+
1

4π
−

1

8π

σ0
∆0

ln

∣∣∣∣
∆0 − σ0
∆0 + σ0

∣∣∣∣−
X

2
,(16)

where the quantity X carries the divergent part,

X =
1

2π

∫
dk

{
[k2 + (σ0 +∆0)

2]−
1

2

+[k2 + (σ0 −∆0)
2]−

1

2

}

=
1

π

{
1

ε
+ ln

[
2√

|σ2
0 −∆2

0|

]}
, (17)

for ε→ 0.
Hence now we are able to write the renormalized effec-

tive potential,

Ūeff (σ,∆) = α1σ
2 + α2|∆|2

−
1

2
FP

{
∑

±

∫
d2k

(2π)2
ln
[
k2n0

+ k2±
]
}
,

(18)

where

α1 =
1

2GSR

−
1

2π
,

α2 =
1

2GDR

−
1

4π
+

1

8π

σ0
∆0

ln

∣∣∣∣
∆0 − σ0
∆0 + σ0

∣∣∣∣; (19)

in the above equation, FP {...} means the finite part of
the terms between brackets. When we set α1 = 0, we
have the vacuum values, σ 6= 0 and ∆ = 0. Choosing
renormalization scales as σ0 = m (m is a scale parameter)
and ∆0 = 0, then α2 > 0, with GSR = π. This is the
chiral condensate sector. On the other hand, if we take
the vacuum with ∆ 6= 0 and σ = 0, and choosing α2 = 0,
α1 > 0, ∆0 = m and σ0 = 0, we have GDR = 2π,
corresponding to the difermion condensate sector.

IV. MODEL AT FINITE T, µ AND WITH

SPATIAL BOUNDARIES

Now we take into account temperature, chemical po-
tential and finite-size dependence. Noticing that the
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T, µ, L-dependent contributions do not alter the struc-
ture of ultraviolet divergences discussed in Section III,
then the renormalized effective potential is given by

Ūβ,L
eff (σ,∆) = α1σ

2 + α2|∆|2

+
1

2βL

∑

±

FP

{
d

ds
Y ±
σ,∆(s)

∣∣∣
s=0

−Y ±
σ,∆(s) lnm

2
}
. (20)

Thus, the T, µ, L-dependent phase diagram of the model

can be analyzed from Ūβ,L
eff and the gap equations.

A. The chiral condensate sector

To analyze the pure chiral condensate sector of the
model, we must take the effective potential in Eq. (20)
with ∆ = 0 and α1 = 0, as pointed out at the end of
Section III. In order to do this, we perform an analytical
continuation of the Epstein zeta-function Y ±

σ [18, 19, 21],
which gives,

Ūβ,L
eff (σ) =

1

4π
σ2[lnσ2 − 1]

+
2σ

πL

∞∑

n=1

cos (2πnc)

n
K1(nLσ)

−
2

βL

∑

±

∞∑

n=−∞

ln

{
1 + e

−β
[

(ω2

n
+σ2)

1

2 ±µ
]
}
.

(21)

Remember that we have fixedm as the scale of the model,
redefining the relevant quantities as Ūeff/m

2 → Ūeff ,
σ/m → σ, Lm → L, µ/m → µ and βm → β. Firther-
more, we can see that in the bulk limit, L→ ∞, Eq. (21)
becomes

Ūβ,L
eff (σ) =

1

4π
σ2[lnσ2 − 1]

−
2

β

∑

±

∫
dk

2π
ln

{
1 + e

−β
[

(k2+σ2)
1

2 ±µ
]
}
,

(22)

an expression which agrees to that in Ref. [3].

The ground state is analyzed by means of the minimum
of the effective potential, which corresponds to the gap
equation,

∂

∂σ
Ūβ,L
eff (σ) = 0. (23)

The non-vanishing solution of the gap equation, yields
the dynamically generated fermion mass, which comes

from the equation,

1

π
lnσ2 −

2

πL

∞∑

n=1

cos (2πnc)K0(nLσ)

+
2

L

∑

±

∞∑

n=−∞

1

(ω2
n + σ2)

1

2

1

e
β
[

(ω2
n
+σ2)

1

2 ±µ
]

+ 1

= 0.

(24)

B. The difermion condensate sector

On the other hand, the pure chiral condensate sector
is studied by taking in Eq. (20) σ = 0 and α2 = 0. Af-
ter performing the analytical continuation of the Epstein
zeta-function, Y ±

σ , we have the following effective poten-
tial,

Ūβ,L
eff (∆) =

1

4π
∆2[ln∆2 − 1]

+
2∆

πL

∞∑

n=1

cos (2πnc)

n
cos (µLn)K1(nL∆)

−
2

βL

∑

±

∞∑

n=−∞

ln

{
1 + e−β[(ωn±µ)2+∆2]

1

2

}
,

(25)

where we have used again m as the scale parameter,
redefining Ūeff/m

2 → Ūeff , ∆/m → ∆, Lm → L,
µ/m→ µ and βm → β.
To verify the consistency of the model, we take the

situation without spatial boundaries, that is, L→ ∞. In
this case, Eq. (25) becomes

Ūβ,L
eff (∆) =

1

4π
∆2[ln∆2 − 1]

−
2

β

∑

±

∫
dk

2π
ln

{
1 + e−β[k2+σ2]

1

2

}
,(26)

which is independent of the chemical potential, in agree-
ment with Ref. [3].
The gap equation for the difermion sector is given by

∂

∂∆
Ūβ,L
eff (∆) = 0, (27)

from which we get the (β, µ, L)-dependent non-vanishing
solution in the form,

1

π
ln∆2 −

2

πL

∞∑

n=1

cos (2πnc) cos (µLn)K0(nL∆)

−
2

L

∑

±

∞∑

n=−∞

∞∑

n=1

(−1)n



 nβ

2π

√
(ωn ± µ)

2
+∆2





1

2

×K 1

2

(
nβ

√
(ωn ± µ)2 +∆2

)
= 0. (28)
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Hence, since ∆ is the order parameter of the difermion
condensation phase transition, the solution of the gap
equation (28) is useful in the characterization of the
(T, µ, L)-dependent phase diagram of the difermion sec-
tor of the model.
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FIG. 1: Effective potential for the chiral condensate sector for
x = 1/L = 0.2 and T = 0.1. Solid, Dashed and dotted lines
represent µ = 0.632, 0.639 and 0.645, respectively.
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FIG. 2: Effective potential for the chiral condensate sector for
x = 1/L = 0.3 and T = 0.2. Solid, dashed and dotted lines
represent µ = 0.63, 0.64 and 0.65, respectively.
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FIG. 3: Effective potential for the chiral condensate sector for
x = 1/L = 0.4 and T = 0.4. Solid, dashed and dotted lines
represent µ = 0, 0.4 and 0.8, respectively.

V. PHASE STRUCTURE

Now we are able to analyze the L-dependent critical
curves in the phase diagram of the model. First, we
analyze the effective potential for the chiral condensate
sector. Remarking that σ0 is the scale of the theory,
we can redefine the relevant quantities as ∆0/σ0 → ∆0,
Lσ0 → L, µ/σ0 → µ and βσ0 → β.
In Figs. 1-3 are plotted the effective potential in Eq.

(21) for different values of µ, x = 1/L and T . Some de-
tailed information on the influence of spatial boundaries
can be obtained from these figures; from Fig.1 we see
that a first order transition occurs for increasing values
of µ, for the values of L and T given (in arbitrary units).
For a smaller value of L and a larger value of T , (see
Fig. 2), the phase transition takes place in two steps, as
µ is increased: it is a first order transition, but such that
the absolute minimum of the effective potential is dis-
placed to a smaller value of σ, as µ is increased (µ = 0.63
and µ = 0.64 in the figure); for a high enough value
of µ (µ ≥ 0.65 in the figure), the transition becomes a
second-order one, when the first non-vanishing extremum
disappears [31]. Finally, we see from Fig. 3 that there is
a second order phase transition as µ increases, for large
enough values of L and T .
To obtain the phase diagram more precisely in the case

of a second-order transition, we must determine the val-
ues of L, T and µ at which the dynamical fermion mass
vanishes. These critical lines are determined by taking
the fermion mass equal to zero in the gap equation,

∂

∂σ
Ūβ,L
eff (σ)

∣∣∣∣
σ=0

= 0; (29)
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x = 0.3

x = 0.4

x = 0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1
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Μ
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FIG. 4: The phase diagram for the chiral phase transition
in the (µ, T )-plane. As indicated, the curves are drawn for
x = 1/L = 0.3, 0.4 and 0.5, respectively. The chiral conden-
sate region is below each curve. Dotted parts of the curves
correspond to a first-order phase transition, while the solid
ones represent a second-order transition.

on the other hand, in the case of a first-order transition,
we have studied the non-vanishing solution of the gap
equation (24), togheter with the behavior of the effective
potential.

Taking into account simultaneously both first and
second-order transitions, the critical lines in the (T, µ)
plane are displayed in Fig. 4 for different values of x =
1/L. In this figure, solid lines correspond to second-order
and dotted lines correspond to first-order phase transi-
tions, respectively. We see that as x = 1/L increases,
smaller values of temperature are necessary to reach the
symmetric chiral phase in the region of lower values of
µ; in addition, in the region of greater values of µ and
small T , the chiral broken phase spreads out. In what
concerns the order of the phase transition, we see that as
x = 1/L is increased, the region of first-order transition
is suppressed, occurring only a second-order one.

Now let us analyze the fermion-fermion pairing phase
structure. We plot in Figs. 5-7 the effective potential in
Eq. (25) for different values of µ, x = 1/L and T . From
Fig. 5 we see that for small values of x = 1/L, that this
phase transition is of first-order and is independent of
µ in these cases. Fig. 6 shows that for higher value of
x and smaller temperature, the system undergoes a first
order phase transition for increasing values of µ. From
Fig. 7, it can be seen that for fixed µ and a fixed smaller
temperature, a first-order phase transition occurs as µ
increases. In these cases the difermion condensate phase
is destroyed by experencing a first-order phase transition
as the size decreases or the chemical potential increases.
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FIG. 5: Effective potential for the difermion condensate sec-
tor. for x = 1/L = 0.1 and T = 0.294. The lines representing
µ = 0, 0.5 and 1 coincide.
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FIG. 6: Effective potential in the difermion condensate sector
for x = 1/L = 0.5 and T = 0.2. Solid, dashed and dotted
lines represent µ = 0.700, 0.747 and 0.800, respectively.

In Fig. 8 is plotted the phase diagram of the system
in the (T, µ)-plane with different values for x = 1/L.
From the figure we see that as the size of the system de-
creases, greater values of the chemical potential are nec-
essary to reach the difermion condensed phase region. On
the other hand, for larger sizes (for instance L = (0.1)−1

in the figure), this region spreads out, and can be reached
for practically any value of the chemical potential.
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FIG. 7: Effective potential for the difermion condensate sec-
tor in the antiperiodic case Solid, dashed and dotted lines
represent x = 1/L = 0.1, 0.49 and 0.6, respectively.
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0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 8: The phase diagram for the difermion condensation
phase transition in the (µ, T )-plane. The lines represent
x = 1/L = 0.1, 0.35 and 0.5, respectively. The difermion
condensate region is below each line, which represents a first-
order phase transition.

VI. CONCLUDING REMARKS

In this article we have analysed finite-size effects for a
version of the NJL model presented originally in Ref. [2]
for finite temperature and density in free space. This
has been done by using the extended Matsubara pre-
scription and zeta-function regularization methods. Fi-
nite chemical potential effects have also been included.
These techniques allowed us to construct a renormalized
effective potential taking into account simultaneously the
dependence on temperature, the size of the system and
chemical potential. From this effective potential we have
obtained the size-dependent gap equations at finite tem-
perature and density. A throughout analysis of the size
dependence of the phase diagram has been performed for
both chiral and difermion sectors.
In what the chiral condensate sector is concerned, a

first-order transition occurs for increasing values of the
chemical potential at fixed values of temperature and of
the size of the system. For smaller values of L and simul-
taneously larger temperatures, the system undergoes a
phase transition in two steps, for increasing values of the
chemical potential: a first-order transition but such that
the absolute minimum is displaced to a smaller value of σ,
as µ increases. For some larger value of µ the transition
becomes a second-order one. We have taken into account
simultaneously first- and second-order transitions. This
has been done by a study in the T − µ plane of the be-
havior of the system for different values of x = 1/L. We
conclude that as x increases the region of a first-order
transition disappears, leaving place for a second-order
transition.
The fermion-fermion pairing phase structure has also

been investigated, from an analysis of the effective po-
tential for different values of µ, x and T . We conclude
that for small values of x we have a first-order transi-
tion, independently of the value of µ. For fixed µ and
a smaller temperature, a first-order transition occurs as
x increases. In general, as the size of the system be-
comes smaller, larger values of µ are needed to attain the
difermion condensate sector.
It should also be noticed that Fig 8 indicates that as

L decreases there exists a minimal size of the system for
which the difermion condensate exists at zero chemical
potential. For smaller values of L, the difermion phase
reappears if we increase the chemical potential. The full
phase structure, considering both sectors simultaneously,
could note be obtained analytically.
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