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Abstract. The aim of this paper is to present an efficient numerical procedure for the theoretical study
of bimolecular reactions. It is based on the R matrix variational formalism and the p-version of the
finite element method (p-FEM) for expanding the wave function in a finite basis set, and facilitates the
development of an efficient algorithm to invert matrices that significantly reduces the computational time
in R matrix calculations. We also utilise the self-consistent finite element method to optimise the elements
mesh and provide faster convergence of results. We apply our methodology to the study of the collinear
H + H2 process and evaluate its efficiency by comparing our results with several results previously published
in the literature.

1 Introduction

The study of scattering processes in the gas phase has
interested researchers for many decades, as they are fun-
damental to our understanding of a huge range of physical
phenomena. These range from atmospheric chemistry and
the chemical combustion process, which both have impor-
tant implications for the environment, to phenomena of
astrophysical interest, such as those that occur in stellar
media or the molecular collisions that take place in ultra-
cold gases [1–5]. In an attempt to better understand the
nature of these processes, progress in theoretical studies
has made it possible to perform accurate calculations of
the quantum dynamics within several systems (see Ref. [2]
and references therein). This progress is due both to the
development of new techniques and the emergence of pow-
erful computers. A rather complicated case is that of bi-
molecular reactions. Such reactions have been the subject
of numerous theoretical studies over the years, because, in
addition to being important in various physical and chem-
ical processes, many quantum effects have been found in
cases of collisions at low energies [6].

The methodologies applied to the study of scattering
problems of atoms and/or molecules fall into two cate-
gories; they either solve the time-dependent or the time-
independent Schrödinger equation [6–8]. The studies that
invoke the time-dependent method are based on tempo-
ral evolution of a wave packet calculated in a grid of
points [8,9]. The advantage of this approach lies in its
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simpler implementation, permitting the treatment of sys-
tems involving a larger number of degrees of freedom. The
disadvantage is that to obtain the full S matrix, it is neces-
sary to propagate several wave packets. On the other hand,
time-independent studies are frequently advantageous in
the clarification of reaction mechanisms, the whole S ma-
trix in a single calculation, however the coupling of a large
number of vibrational and rotational states leads to con-
siderable computational effort [3,7,8].

An important development in the theory of bimolec-
ular reactions was the introduction of hyperspherical
coordinate systems. In chemical physics and quantum
chemistry, they have successfully been applied to scat-
tering calculations using the reduced dimensionality ap-
proximation [10–12] and in full dimensions involving tri-
atomic [13–17] and tetra-atomic molecules [18–23]. The
hyperspherical coordinates are constituted by one hyper-
radius and a set of hyperangles that have the advantage
of describing all channels evenly. Also, the Schrödinger
equation for bimolecular reactions written in hyperspher-
ical coordinates permits us to study the motion in the
hyperradial coordinate independently of the hyperangular
coordinates, treating the hyperradius as a slowly varying
adiabatic variable.

Some methodologies that have also contributed to
the recent progress in the study of quantum dynamics
of chemical reactions are those based on R matrix the-
ory [24,25]. This theory was introduced by Wigner and
Eisenbud [26] to study nuclear reactions. Jackson [27] de-
veloped the variational approach based on the Hulthén-
Kohn variational principle [28–30]. In chemical physics,
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the variational R matrix method is applied to the study
of electron-atom/molecule scattering [31,32], atom-diatom
reactive scattering [33,34], photodissociation processes of
triatomic molecules [35], unimolecular isomerisation reac-
tions [36] and the two electronic states problem [37]. The
principal features of the R matrix theory is that it is sym-
metric and real for real potentials. Moreover, it is easy to
obtain the S matrix from the R matrix. In the R matrix
approach, the major part of the computational work is
done employing the real algebra, lessening the numerical
effort.

A very accurate procedure which is applied in quantum
mechanics combined with the variational formalism is the
finite element method (FEM) [38]. The FEM is a general
nomenclature for a set of variational numerical approaches
that are based on the technique of space discretisation into
elements and expansion of the wave function in terms of
local polynomial basis functions defined in each of these el-
ements. In the last years, the FEM has been utilised in the
study of rovibrational bound states [39–42], reactive scat-
tering processes [13,14,43–48] and the electronic structure
of atoms and molecules [49–52]. There are two versions of
the finite element method: the h-version uses polynomials
of the same degree in all elements of the mesh, while the p-
version allows one to use different degrees of polynomials
in different elements and therefore is more flexible [40,53].
In particular, the p-version of the finite element method
(p-FEM) has the advantage of making it possible to de-
velop an efficient algorithm to invert the very large ma-
trices encountered in scattering problems [47]. It reduces
significantly the computational time and computer core
memory requirement in the R matrix calculation.

In this paper we propose a general methodology based
on the variational formulation of the R matrix theory in
hyperspherical coordinates to study A + BC chemical re-
actions. In particular, the use of hyperspherical coordi-
nates permits the adiabatic separation of the hyperangles
and hyperradius variables in the sense of the well-known
adiabatic separation of electronic and nuclear motions.
The finite element method is then utilised to expand the
wave function in the hyperradius direction, and an efficient
matrix inversion technique, described in the Appendix, is
used for the R matrix inversion. Then, in order to test
our methodology, we calculate the reaction probabilities
of the collinear H + H2 → H2 + H reaction. This reaction
is a benchmark of bimolecular reactions and it is always
utilised to test novel approaches [10–12,48,54–68].

This paper is organised as follows. In the next section
we describe our theorical method for the treatment of an
atom-diatom scattering problem: in Section 2.1 we present
some systems of coordinates used in treating this prob-
lem; in Section 2.2 we formulate the variational R matrix
theory in hyperspherical coordinates; in Section 2.3 we
discuss the method of hyperspherical projection and in
Section 2.4 we show the one-dimensional p-version of the
finite element method. In Section 3 present and discuss
our results for the collinear H + H2 → H2 + H reaction.
The last section is dedicated to concluding remarks and
the discussion avenues for future work.

2 Theory

We consider the collision between the atom A and the
diatom BC, where the nuclei move with energy, E, which is
below the complete dissociation energy. Thus, we confine
our attention to chemical processes of the type

A + BC(νI) −→
⎧
⎨

⎩

A + BC(νF ) Channel I
AB(νF) + C Channel II
AC(νF) + B Channel III,

(1)

where νI and νF are the rovibrational quantum numbers
of reagents and products, respectively. Furthermore, we
believe that the reaction occurs in a single adiabatic elec-
tronic state. Thus the hamiltonian of the triatomic system
is given by

Ĥ = − �
2

2MA
∇2

A − �
2

2MB
∇2

B − �
2

2MC
∇2

C +V (xA,xB,xC),

(2)
where V (xA,xB,xC) is the potential energy surface in a
specific electronic state.

2.1 Coordinate systems

In this subsection we present a brief description of the co-
ordinate systems employed in our formalism. The choice
of the coordinates is an important step in the study of
molecular systems. In particular, we have utilised the mass
weighed (scaled) Jacobi coordinates to treat the reactive
scattering problem in the asymptotic region, while the hy-
perspherical coordinates are used to describe the molecu-
lar system within the interaction region. A review of vari-
ous coordinate sets of triatomic molecular systems can be
found in reference [69].

2.1.1 Mass weighed Jacobi coordinates

For a triatomic system there are three different sets of
Jacobi vectors, each one represented by the relative vec-
tor between two bodies and the vector between their cen-
tre of mass and the third body; the center of mass vec-
tor is disregarded. The mass weighed Jacobi vectors Rλ

and rλ, with λ = I, II, III each representing one of
the three channels in equation (1), are defined from the
Jacobi ones in order to transform the three body problem
into one that represents one particle with a reduced mass
μ = (MAMBMC/M)

1
2 in a six-dimensional space.

Each set of mass weighed Jacobi vectors is suitable for
expressing one particular channel under asymptotic condi-
tions (Rλ = |Rλ| −→ ∞). The asymptotic wave functions
in each channel λ = I, II, III can be written as

Ψ(Rλ, rλ) =
nλ∑

j=1

Uj(rλ)uj(Rλ), (3)
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where the asymptotic rovibrational states of a specific
diatom, Uj(rλ), are solutions of the three-dimensional
Schrödinger equation
[

− �
2

2μ
∇2

rλ
+ V (|Rλ| → ∞, rλ)

]

Uj(rλ) = Eλ
j Uj(rλ), (4)

and uj(Rλ) are plane waves as follows:

uj(Rλ) = C in
j

bj
√

kj

e−ikjRλ − Cout
j

bj
√

kj

eikjRλ . (5)

In equation (5), kj =
√

2μ
�2 (E − Eλ), bj = 1 or 0 if j rep-

resents an open (Eλ < E) or closed (Eλ > E) channel,
respectively, and Cin

j and Cout
j are coefficients of the in-

coming and outgoing wave function, respectively.

2.1.2 Hyperspherical coordinates

In the region of strong interaction we use hyperspheri-
cal coordinates which are defined as a hyperradius, ρ =
(
R2

λ + r2
λ

) 1
2 with 0 ≤ ρ < ∞, and five hyperangles, de-

noted collectively by Ω. Note that the hyperradius is inde-
pendent of the arrangement set by the Jacobi coordinates,
and the hyperangles can be defined in a variety of ways;
see references [69,70] and references therein.

The use of hyperspherical coordinates permits the adi-
abatic separation of the hyperradius and the hyperangles
variables. Thus, the wave function can be written as

Ψ(ρ, Ω) = ρ−
5
2

n∑

j=1

hj(ρ)gj(Ω, ρ) (6)

where gj(Ω, ρ) are eigenfunctions of the hyperangular
equation for each value of the hyperradius:

[
1

2μρ2
Λ2 + V (ρ, Ω)

]

gj(Ω; ρ) = εj(ρ)gj(Ω; ρ), (7)

where Λ, the grand angular momentum operator, con-
tains all the angular variables [71]. In equation (7) the
eigenvalue εj(ρ) represents the adiabatic curve associ-
ated with the jth hyperangle’s state in the sense of the
usual (known) adiabatic potential energy curves (surfaces)
found in the adiabatic separation of electronic and nuclear
motions.

There are several methods to efficiently solve equa-
tion (7) for the hyperangles, e.g. references [14,72–74], but
this is not the purpose of this article, in which the central
point is to solve for the hyperradial part.

2.2 Variational R matrix formalism

The variational formalism implies that we must first con-
struct the functional of the energy for the triatomic sys-
tem. This functional can be written, employing the matrix

notation, as

J [h] =

∞∫

0

dρh†(ρ)
{

− �
2

2μ
1

d2

dρ2
+ Â(ρ) + Vef(ρ) − E

}

× h(ρ) (8)

where

{Â}ij(ρ) = − �
2

2μ

[

2A
(1)
ij (ρ)

d

dρ
+ A

(2)
ij (ρ)

]

represents the elements of the non-adiabatic coupling
matrix, with A

(1)
ij (ρ) =

∫
dΩg∗i (Ω, ρ) ∂

∂ρgj(Ω, ρ) and

A
(2)
ij (ρ) =

∫
dΩg∗i (Ω, ρ) ∂2

∂ρ2 gj(Ω, ρ). The elements of the
effective potential matrix are represented by

{Vef}ij(ρ) =
[
εi(ρ) + 15�

2/8μρ2
]
δij

and
h† = (h∗

1(ρ), h∗
2(ρ), . . . , h∗

n(ρ))

is the adjunct vector of the hyperradial functions.
The R matrix methodology relates the wave function

with its normal derivative on the border of the surface be-
tween two regions into coordinate space: the outer region,
or asymptotic region, and the interior region, or inter-
action region. In hyperspherical coordinates, the bound-
ary surface between these two regions is defined only by
ρ = ρmax. Therefore, the boundary condition imposed by
the variational R matrix formalism on the set of hyperra-
dial functions and their normal derivatives is specified as

h(ρmax) = Rh dh(ρ)
dρ

∣
∣
∣
∣
ρmax

, (9)

where Rh is the hyperspherical R matrix. Thus, using
the first Green’s identity and condition (9) on the func-
tional (8) we obtain a novel functional,

J [h,h′] =

ρmax∫

0

dρ

{
�

2

2μ

dh†(ρ)
dρ

dh(ρ)
dρ

+ h†(ρ)
[
Â(ρ) + Vef(ρ) − E

]
h(ρ)

}

− �
2

2μ

[
h†(ρmax)h′(ρmax) + h′†(ρmax)h(ρmax)

]

+
�

2

2μ
h′†(ρmax)Rhh′(ρmax), (10)

where h′(ρmax) is the derivative of h(ρ) at the point ρ =
ρmax.

The hyperspherical R matrix is found by expanding
the hyperradial function vector in a known finite basis
set {fj},

h(ρ) =
p∑

j=1

fj(ρ)cj , (11)
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with

fj(ρ) =

⎡

⎢
⎣

fj(ρ) 0
. . .

0 fj(ρ)

⎤

⎥
⎦

n×n

and cj =

⎡

⎢
⎣

c1
j
...

cn
j

⎤

⎥
⎦ , (12)

and by imposing the stationarity condition over the func-
tional (10). Thus, the expression for the hyperspherical R
matrix is obtained by solving the following matrix prob-
lem

Rh =
�

2

2μ
F(ρmax) [H− EO]−1 F†(ρmax). (13)

In equation (13) the following matrix notation is em-
ployed,

{H− EO}j,j′=

ρmax∫

0

dρ

{
�

2

2μ

df†j (ρ)
dρ

dfj′ (ρ)
dρ

+ f†j (ρ)
[
Â(ρ) + Vef(ρ) − E

]
fj′ (ρ)

}

,

F(ρ) =
[
f1(ρ) · · · fp(ρ)

]

and
fj(ρ) = 1fj(ρ),

where {H− EO}j,j′ is a block of dimension n×n relative
to the number of states in expression (6) and F(ρ) is a
block row vector with dimension n × (n × p).

The number of basis functions is crucial in defining the
computational effort required to calculate the H − EO
matrix, as well as its inverse, in order to obtain the hy-
perspherical R matrix using equation (13). Therefore, it
is essential that we employ efficient basis functions that
reduce the memory required to store the array on a com-
puter and the computational time to invert the array (see
Sect. 2.4).

2.3 Hyperspherical projection

The asymptotic boundary conditions in mass weighed
Jacobi coordinates are preferably expressed by taking the
limit Rλ −→ ∞ for each channel λ = I, II, III. On the
other hand, the region of strong interaction is better de-
scribed in hyperspherical coordinates. As the boundary
surface between regions is described using different coordi-
nate systems, it is necessary to project the wave function
defined around a hypersphere over a wave function de-
fined on an appropriate Jacobi surface in order to obtain
the scattering S matrix [75]. To this end, we are going to
proceed to the analysis of the wave function at ρ = ρmax

for larger values of ρmax.
Taking ρ −→ ρmax sufficiently larger, we obtain the

following Schrödinger equation in hyperspherical coordi-
nates

[

− �
2

2μ
1

d2

dρ2
+ ε(ρmax)

]

h(ρ) = Eh(ρ), (14)

where {ε(ρmax)}ij = δijεi(ρmax) and we assume that
∂gi(Ω,ρ)

∂ρ

∣
∣
∣
ρmax

≈ 0 =⇒ A
(1)
ij (ρmax) = A

(2)
ij (ρmax) = 0.

Thus, the hyperradial functions can be expanded in terms
of sine and cosine functions, such that

h(ρ) = s(ρ)a + c(ρ)b (15)

with a and b arbitrary vectors that depend on the asymp-
totic boundary conditions, and s and c are diagonal ma-
trices whose elements are

{
si(ρ) = sin

[
k+

i (ρ − ρmax)
]

ci(ρ) = cos
[
k+

i (ρ − ρmax)
]

or {
si(ρ) = sinh

[
k−

i (ρ − ρmax)
]

ci(ρ) = cosh
[
k−

i (ρ − ρmax)
]

for open and closed channels, respectively.
The hyperspherical projection requires that the right

side of equations (3) and (6), and their normal derivatives,
match on the surface |Rλ| = Rmax

λ =
√

ρ2
max − (req

λ )2,
with req

λ the equilibrium distance of the specific diatom of
channel λ. Since the Jacobi R matrix relates the vectors
{u(R∞

λ )} and their normal derivatives, it can be written
as follows:

RJ =
[
I(1) · X + I(2)

]
·
[

∂

∂Rλ
I(1) ·X +

∂

∂Rλ
I(2)

]−1

(16)

where

X = −
[

s(ρmax) − Rh d

dρ
s(ρmax)

]−1

×
[

c(ρmax) − Rh d

dρ
c(ρmax)

]

and
{
I(i)

}
are matrices with blocks I(i)

λ (λ = I, II, III) of
dimension nλ × n whose elements are

{
I(1)
λ

}

ij
=
∫

Uλ
i (rλ)ρ−

5
2 sj(ρ)gj(Ω, ρ)drλ

{
I(2)
λ

}

ij
=
∫

Uλ
i (rλ)ρ−

5
2 cj(ρ)gj(Ω, ρ)drλ.

A desired asymptotic quantity in scattering problems is
the S matrix whose mathematical relationship with the
asymptotic wave function is given by

Cout = SCin, (17)

where Cin and Cout are the vectors of incoming and out-
going coeficients, respectively. The transition probabilities
between an incoming and an outgoing asymptotic state of
the reaction are given by

Pij = |Sij |2. (18)

Considering function (5) on the surface Rλ = Rmax
λ and

after some more algebraic manipulations, we find the S
matrix is given by

S = [(1− iR)M∗]−1(1 + iR)M, (19)



M.N. Guimarães and F.V. Prudente: Variational adiabatic hyperspherical finite element R matrix 291

where M is a block diagonal matrix with blocks Mλ (λ =
I, II, III) whose elements are {Mλ}ij = e−ikjR

∞
λ δij , and

{R}ij =
√

kikj

{
RJ
}

ij
are the elements of the R matrix.

2.4 The p-version of the finite element method

The finite element method (FEM) has been described in
detail in many other papers (e.g., see Refs. [40,47,50,76]
and references therein), so here we limit ourselves to a
brief introduction accentuating the more important char-
acteristics for this study. The FEM in the one-dimensional
case consists of two steps: (i) divide the integration inter-
val [a, b] into Ne elements, being the ith element defined
in the range of qi−1 to qi with q0 = a and qNe = b, and
(ii) expand the wave function as follows

Ψ(q) =
Ne∑

i=1

ki∑

j=0

ci
jf

i
j(q). (20)

The basis functions {f i
j(q)} satisfy the following property

f i
j(q) = 0 if q /∈ [qi−1, qi], (21)

the parameter ki is the highest order of the basis func-
tions associated with the ith element, f i

j(q) is the jth basis
function of the same element and {ci

j} are the expansion
coefficients. Consequently, using the FEM the elements of
the matrix representation B of any operator B̂ have the
following property:

Bii′
jj′ =

b∫

a

dqf i
j(q)B̂ f i′

j′ (q) = 0 ∀i 
= i′. (22)

Note that this property leads to a very sparse matrix,
concentrated on the diagonal and with a block structure.

In particular, the p-version of finite element method
(p-FEM) utilises, as basis functions, two interpolant func-
tions, Ii

1 ≡ f i
0(q) and Ii

2 ≡ f i
ki

(q), and shape functions,
Si

j ≡ f i
j(q) with j = 1, . . . , ki − 1 (see [50] for details).

These basis functions have the important property that
only the basis function INe

2 ≡ fNe

kNe
(q) is non-null on the

last node of the mesh:

f i
j(qNe) =

{
1 for i = Ne, j = kNe

0 otherwise. (23)

Due to properties (22) and (23), when we utilise the p-
FEM for expanding the hyperradial wave functions (11),
the hyperspherical R matrix (13) is written in the follow-
ing form

Rh =
�

2

2μ

{
B−1

}Ne+1 Ne+1
, (24)

where B ≡ H − EO and the superscript indices in
B−1 represent its last block. Therefore, we need to know
only the last block of the inverse of H − EO matrix to
obtain the hyperspherical R matrix. This can be done

efficiently utilising an algorithm developed by Prudente
and Soares Neto, briefly described in paper [47] with a
detailed discussion of its performance when applied to the
study of a one-dimensional problem. This algorithm aims
to calculate only the last block of the inverse matrix and
is developed in detail in Appendix. It significantly reduces
both the computational time to invert the matrix as well
as the memory required to store it on the computer, since
the resulting matrix is very sparse and the inversion pro-
cedure uses only the non-zero blocks of the array.

3 Results

In order to test our methodology we computed the transi-
tion probabilities for the collinear H + H2 reaction on the
LSTH potential energy surface [77]. The reduced mathe-
matical dimensionality of the corresponding study trans-
forms it into a bidimensional problem, with one hyperra-
dius and one hyperangle. This simplicity permits a direct
analysis of our methodology without the mathematical
complexities of molecular rotations in the all-dimensional
problem. We have compared our results with those ob-
tained by other authors. In particular, we have employed
polynomials of the same order for all elements (ki = k, ∀i)
in the p-FEM.

The adiabatic variational formulation of the problem
employing hyperspherical coordinates permits us to carry
out the calculation in separate steps. First, we diago-
nalised the matrix in order to find the eigenvalues and
eigenfunctions of the hyperangular equation (7) for each
value of hyperradius. For this we used the one-dimensional
p-FEM with a recent modification to the procedure to
build an optimised mesh for bound systems, as proposed
by Prudente and Soares Neto [76]; this procedure was de-
nominated the self-consistent finite element method (SC-
FEM) [78]. The second step was determination of the hy-
perspherical R matrix (13) using the coupling terms and
the effective potential obtained in the hyperangular prob-
lem. To do this, we used the p-FEM with a uniform mesh
and the matrix inversion technique shown in Appendix.
Thereafter we performed the hyperspherical projection to
obtain the Jacobi R matrix (16). For that, the asymp-
totic vibrational states were also calculated using the p-
FEM with an optimised mesh with the range Rmax

λ =
√

ρ2
max − (req

λ )2 and rmax
λ = Rmax

λ tg( θmax

2 ) for the two
symmetric channels, where re = 1.402 bohr is the equilib-
rium distance of the H2 molecule and θmax = arctan(

√
3)

is the maximum value of the hyperangle. In the calcula-
tions we have chosen 14 vibrational states for expanding
the total wave function. Finally, the transition probabil-
ities, PνIνF (E) = |SνIνF |2, were computed from the S
matrix given by expression (19).

We have also taken advantage of the symmetry of the
problem to obtain the even and odd solutions of hyperan-
gular equation separately. The p-FEM has been employed
dividing the integration interval into equal halves and im-
posing conditions over the coeficients of expansion (20) in
order to build symmetric and asymmetric basis functions.
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Fig. 1. Examples of symmetric and asymmetric hyperangular
eigenfunctions for two values of the hyperradius for the H + H2

system. The LSTH potential is drawn on the same figure.

Table 1. Selected reaction probability P00(E) at some ener-
gies, E, for H + H2 on the LSTH potential energy surface as a
function of ρmax (in bohr) and Ne, with k = 6.

P00(E)
ρmax Ne 0.5 eV 0.8 eV 1.1 eV 1.4 eV
10,0 50 0.083 0.938 0.292 0.058

100 0.083 0.938 0.293 0.059
20,0 100 0.083 0.938 0.295 0.059

200 0.083 0.938 0.295 0.060
30,0 150 0.083 0.938 0.295 0.060

300 0.083 0.938 0.295 0.060
40,0 400 0.083 0.938 0.295 0.060

SKV∗ (0.083) (0.938) (0.296) (0.060)

∗ S matrix Kohn variational principle results [54–56].

In Figure 1 examples of symmetric and asymmetric hy-
perangular eigenfunctions for two hyperradius values are
shown, with the potential drawn on the same figure.

In Table 1 we present the reaction probability P00 (E)
at four different energies to illustrate how convergence oc-
curs when we increase ρmax and the number of mesh el-
ements, Ne, while keeping the number of basis functions
in each element, k, identical for all ρmax values. The rea-
son for this is that when we increase k and maintain the
(H− EO) dimension the results are essentially equal, but
the computational time increases. Therefore, it is better

Table 2. Selected inelastic and reactive transition probabilities
(νI → νF ) at some energies, E, for the H + H2 system on the
LSTH potential energy surface. Our results were obtained with
the p-FEM and use ρmax = 20 bohr, Ne = 200 and k = 6.

Transition E (eV) Present SKV∗

Inelastic 0 → 0 0.500 0.917 0.917
1.100 0.171 0.172
1.400 0.299 0.300
0.800 6.17 × 10−2 6.22 × 10−2

1 → 1 1.100 0.123 0.123
1.400 8.70 × 10−2 8.74 × 10−2

2 → 2 1.400 0.158 0.157
Reactive 0 → 1 1.100 0.381 0.380

1.400 0.225 0.224
0.800 4.22 × 10−5 3.74 × 10−5

1 → 1 1.100 0.344 0.344
1.400 0.304 0.305

0 → 2 1.400 0.107 0.107
1 → 2 1.400 0.125 0.126
2 → 2 1.400 0.482 0.482

∗ S matrix Kohn variational principle results [54–56].

to utilise a greater number of elements in the hyperra-
dius direction than augmenting the k parameter; see the
discussion in reference [47]. We also compare our results
with accurate time-independent results [54–56] based on S
matrix Kohn variational (SKV) principles. Note that the
reaction probabilities for these energy values converges for
the SKV results when ρmax increases. Therefore, seeking
a balance between accuracy and reduced computational
time, we choose ρmax = 20 bohr with the parameters
Ne = 200 and k = 6 for the next calculations.

To check the accuracy of our methodology, Table 2
shows some reactive and inelastic transition probabilities
for different energy values. All results presented are in
excellent agreement with accurate SKV results. The dif-
ferences between our results and the SKV results are com-
parable with the differences between the SKV results and
calculations utilising other methods such as the multicon-
figuration time-dependent Hartree approximation [57], the
time-independent wave packet formalism [55,56] and the
time-dependent real wave packet formulation [59].

Finally, in Figures 2–4 the reactive probabilities are
displayed as a function of energy for νI = 0 → νF = 0,
νI = 1 → νF = 0, 1 and νI = 2 → νF = 0, 1, 2 transitions,
respectively. We compare them with the accurate results
of Bondi and Connor [79] and demonstrate them to be in
excellent agreement, even close to the resonance energies.

4 Concluding remarks

In this paper we have developed a general methodology
based on the variational formulation of the R matrix the-
ory, using hyperspherical coordinates to study the A + BC
chemical reactions. This permitted the introduction of
an adiabatic separation of the hyperangles and hyperra-
dius variables in the sense of the well-known adiabatic
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Fig. 2. Transition probability P00 as a function of the total
energy, E, of the H + H2 → H2+H collinear reaction. The solid
line corresponds to the present work and the dots represent the
accurate results from Bondi and Connor [79].

Fig. 3. Transition probabilities P10 and P11 as a function of
total energy, E, of the H + H2 → H2 + H collinear reaction.
The solid lines correspond to the present work and the dots
represent the accurate results from Bondi and Connor [79].

separation of electronic and nuclear motions. Moreover,
the p-version of the finite element method (p-FEM) was
utilised to expand the wave function in the hyperradius
direction. Using the properties of p-FEM we implemented
an efficient algorithm for the R matrix inversion based
on the matrix inversion technique developed by Prudente
and Soares Neto [47]. This algorithm allows the matrix
inversion procedure to be done using small blocks of the
matrix, and only the non-zero blocks of the matrix need
to be kept in the computer memory.

The advantage of our methodology is that it reduces
the computational effort required for the matrix inversion,
which is usually higher in the variational approach, by em-
ploying a procedure of inversion by blocks. For example,
the CPU time required to perform the linear algebra cal-
culations and the size of the core memory required to store
the matrix elements in this procedure scales linearly with
the number of elements, Ne, in the hyperradius mesh, as
shown in reference [47]. Thus, our proposed methodology
keeps some similarities with the usual propagation meth-

Fig. 4. Transition probabilities P20, P21 and P22 as a function
of total energy, E, of the H + H2 → H2 + H collinear reaction.
The solid lines correspond to the present work and the dots
represent the accurate results from Bondi and Connor [79].

ods (close coupling treatment) for multichannel problems,
although it is based on the variational principle.

Note that the matrices H and O in equations (13)
and (24) need only be constructed once and then saved in
computer memory they can then be used to calculate the
scattering information at any total energies. Moreover, the
methodology permits determination of all probabilities of
reactive and inelastic transitions in a single calculation for
each energy, as distinct from the time-dependent meth-
ods where it is usually necessary to perform several wave
packet propagations. Another advantage of the present
procedure is that the p-FEM can be applied to a variety
of systems without the need for new trial basis functions
for both the hyperradial and hyperangular parts of the
problem.

As a rigorous test of our methodology, we calculated
the inelastic and reactive transition probabilities for the
collinear H + H2 reaction on the LSTH potential energy
surface. Our results are in excellent agreement with those
obtained by others groups using different methods. In par-
ticular, we cited the accurate time-independent results
based on the S matrix Kohn variational principles and
those obtained by Bondi and Connor using the R matrix
propagation technique.

The achievements of this work are representative of our
aim in this research field: the construction of a computa-
tional code based on this novel time-independent varia-
tional methodology that is able to carry through exten-
sive atom-diatom reactive scattering calculations as, for
example, the ones developed by Hankel et al. [80] based on
a time-dependent methodology, and Skouteris et al. [81]
with a time-independent coupled-channel procedure. In
meeting our aim is that we intend to employ the present
approach to study other triatomic systems besides the
collinear H + H2 reaction.

Currently, we are working towards extending the code
to treat the atom-diatom reaction considering its full di-
mensionality. In this new computational implementation
some strategies will be evaluated to solve the hyperangular
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problem posed by equation (7), such as the finite element
method, the hyperquantisation algorithm developed by
Aquilanti et al. [72,73] or the use of Y functions as pro-
posed by Launay [74]. Then, we will reduce the dimension
of the problem by treating the hyperradius as an adia-
batic variable to obtain equation (13), after which we will
employ the p-FEM to treat the hyperradial part and en-
able the implementation of the efficient matrix inversion
technique to solve equation (24).

Another extension of our methodology that we plan to
implement in the near future is to consider reactions that
involve multiple electronic states with non-adiabatic cou-
plings. For example, to study a collinear reaction within a
diabatic framework, small modifications to our code will
be necessary, especially in the hyperangular step (Eq. (7)).
Initial tests will be performed on a collinear model of the
H + H2 reaction [82,83].

The authors thank J.J. Soares Neto for helpful discussions
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and Connor reactive scattering data (Ref. [79]). This work has
been supported by the following Brazilian National Research
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e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES) and Fundação de Amparo
a Pesquisa do Estado da Bahia (FAPESB).

Appendix: Matrix inversion technique

In this appendix we illustrate a technique to invert the
B ≡ H−EO matrix required to obtain the hyperspherical
R matrix given by equation (13). In the finite element
notation, the matrix B of any local operator B̂ has the
following general form (see Eq. (22)):

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 b1 0 0 · · · 0
(b1)† B2 b2 0 · · · 0

0 (b2)† B3 b3 . . .
...

0 0 (b3)†
. . . . . . 0

...
...

. . . . . . BNe bNe

0 0 · · · 0 (bNe)† BNe+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.1)

where

Bi =

⎡

⎢
⎢
⎢
⎢
⎣

Bi−1
ki ki

+ Bi
0 0 Bi

0 1 · · · Bi
0 ki−1

Bi
1 0 Bi

1 1 · · · Bi
1 ki−1

...
...

. . .
...

Bi
ki−1 0 Bi

ki−1 1 · · · Bi
ki−1 ki−1

⎤

⎥
⎥
⎥
⎥
⎦

, (A.2)

bi =

⎡

⎢
⎢
⎢
⎢
⎣

Bi
0 ki

0 · · · 0
Bi

1 ki
0 · · · 0

...
...

. . .
...

Bi
ki−1 ki

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

(A.3)

with i = 1, . . . Ne and BNe+1 = BNe

kNe kNe
. The B inverse

has the following structure:

C = B−1=

⎡

⎢
⎢
⎢
⎣

C1 1 C1 2 · · · C1 Ne+1

C2 1 C2 2 · · · C2 Ne+1

...
...

. . .
...

CNe+1 1 CNe+1 2 · · · CNe+1 Ne+1

⎤

⎥
⎥
⎥
⎦

. (A.4)

Using property (23) in expression (14), we find that the F
vector on the surface defined by ρ = ρmax becomes:

F(qNe = ρmax) =
[
0 0 · · · 1

]
. (A.5)

Then, the hyperspherical R matrix (Eq. (13)) is trans-
formed in the expression (24). We show that the inversion
process aims to calculate only the last block, CNe+1 Ne+1,
of the C = B−1 matrix.

A.1 Matrix partition method

Our matrix inversion procedure is based on the matrix
partition method of Löwding and Feshbach algebra [84].
The partition method divides the original matrix into sub-
matrices and its inverse into the following form:

X =

[
X11 X12

X21 X22

]

=⇒ Y = X−1 =

[
Y11 Y12

Y21 Y22

]

, (A.6)

where X11 and X22 are square and non-singular subma-
trices, and the submatrices of Y have the same dimension
as the submatrices of X with the same indices. Using the
relation X ·Y = 1 and straightforward algebraic manipu-
lations, we find the submatrices of Y whose last block is
(see Ref. [85] for details):

Y22 =
(
X22 − X21X−1

11 X12

)−1
. (A.7)

The original problem is thus reduced to that of finding the
inverse of X11 and

(
X22 − X21X−1

11 X12

)
. In particular we

are interested in the special case in which X12 and Y12 are
block column vectors, X21 and Y21 are block row vectors,
and, X22 and Y22 are square matrices.

A.2 Block inversion procedure

Now we apply the block inversion procedure to compute
the last block of the C matrix, defined as YNe+1

22 =
CNe+1 Ne+1, given by

YNe+1
22 =

(
X22 − X21X−1

11 X12

)−1

=
(
BNe+1 − (bNe)†YNe

22 bNe

)−1

, (A.8)

where

X11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 b1 0 · · · 0

(b1)† B2 b2 . . .
...

0 (b2)†
. . . . . . 0

...
. . . . . . BNe−1 bNe−1

0 · · · 0 (bNe−1)† BNe

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.9)
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and YNe
22 is the last block of the inverse matrix of X11.

Using the partition method again, the YNe

22 block is given
by

YNe
22 =

(
X22 − X21X−1

11 X12

)−1

=
(
BNe − (bNe−1)†YNe−1

22 bNe−1
)−1

, (A.10)

where we redefined

X11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 b1 0 · · · 0

(b1)† B2 b2 . . .
...

0 (b2)†
. . . . . . 0

...
. . . . . . BNe−2 bNe−2

0 · · · 0 (bNe−2)† BNe−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.11)

and YNe−1
22 is the last block of the inverse matrix of X11

redefined. Note that to obtain the Yi
22 block it is necessary

to calculate the Yi−1
22 block. The general expression is the

following:

Yi
22 =

(
Bi − (bi−1)†Yi−1

22 bi−1
)−1

, (A.12)

with Y1
22 = (B1)−1.

Thus, the procedure to obtain the last block of the
inverse matrix of B = H− EO is the following:

1. We invert the B1 block and obtain Y1
22;

2. Using equation (A.12), we calculate the Yi
22 blocks

until we obtain the YNe
22 block;

3. Using equation (A.8), we calculate the CNe +1 Ne +1
matrix block (last block of the inverse of the B matrix).
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50. M.N. Guimarães, F.V. Prudente, J. Phys. B At. Mol. Opt.
Phys. 38, 2811 (2005)

51. L. Yang, D. Heinemann, D. Kolb, Chem. Phys. Lett. 192,
499 (1992)

52. R. Alizadegan, K.J. Hsia, T.J. Martinez, J. Chem. Phys.
132, 034101 (2010)



296 The European Physical Journal D

53. J.J. Soares Neto, J. Comput. Chem. 15, 144 (1994)
54. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)
55. S.C. Althorpe, D.J. Kouri, D.K. Hoffman, J.Z.H. Zhang,

J. Chem. Soc., Faraday Trans. 93, 703 (1997)
56. Y. Huang, S.S. Iyengar, D.J. Kouri, D.K. Hoffman, J.

Chem. Phys. 105, 927 (1996)
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