
J. Parallel Distrib. Comput. 65 (2005) 275–288
www.elsevier.com/locate/jpdc

Themobile groups approach for the coordination ofmobile agents

Raimundo J. Araújo Macêdo∗, Flávio M. Assis Silva
Distributed Systems Laboratory—LaSiD, Computing Science Department, Federal University of Bahia—UFBA, Campus de Ondina, Av. Adhemar de

Barros, S/N, 40170-110, Salvador-BA, Brazil

Received 18 September 2003; received in revised form 14 July 2004
Available online 24 January 2005

Abstract

We present the concept of mobile groups as a basic mechanism for the reliable coordination of mobile agents. Analogously to traditional
group systems, mobile groups also provide message delivery guarantees and virtual synchrony. Furthermore, they make agent mobility not
only visible for the group, but also consistently ordered with other group actions (such as crashes, joins, leaves, and other migrations). The
mobile groups approach represents a novel mobility support mechanism, which can be used to handle reliability of mobile agents required
at both, the application and system level (e.g., for coordinating distributed agents and for reliable agent migration, respectively). In this
paper, we discuss the motivations for the mobile groups approach, formally define their properties, and present a membership protocol
for such groups. We also discuss some implementation issues and related performance data, and present the advantages of mobile groups
against mechanisms commonly employed for the coordination of mobile agents.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Mobile agents; Reliable agent coordination; Fault tolerance; Group communication; Distributed algorithms

1. Introduction

The mobile agent concept has attracted the attention of
many researchers in the last years and it is being proposed
as a basic component for designing distributed applications,
in areas including electronic commerce, workflow manage-
ment, network management, and distributed information re-
trieval [22]. Essentially, a mobile agent is an agent that can
change the node in which it is running, during its execu-
tion. In these systems, location awareness (i.e., where and
when a given agent executes a given computation) plays an
important role for the related applications[30].
Similarly to distributed applications based on static pro-

cesses, applications based on agents that can migrate also
need forms of reliable co-operation between agents. This
need may appear at the application or at the system level.
At the application level, for example, consider the case of

∗ Corresponding author. Fax: +55712636145.
E-mail addresses:macedo@ufba.br(R.J.A. Macêdo),

fassis@ufba.br(F.M. Assis Silva).

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.10.001

a user who wants to find some resource in the Internet. A
group of agents might be used to look for the resource in
parallel. The actions of the agents, however, should be coor-
dinated. For example, if any of them fails, another one might
be created to complete a desired minimum set of agents
looking for the resource. In order to coordinate the group,
an agent coordinatorshould be elected. Additionally, each
agent should move to locations that have not been previ-
ously visited by other agents in the group. In this scenario,
at all stages of the computation, the group members need
a mutually consistent view of both, the group configuration
(i.e., the current group agents and their corresponding loca-
tions) and the relative order of certain events (such as agent
crashes and message delivery). At the system level, coordi-
nation of replicas of an agent is, for example, a requirement
for implementing mobile agent fault tolerance[6,33,40].
In order to fulfill the coordination requirements of such

scenarios, we present the concept ofmobile groups. Mo-
bile groups are an extension of the traditional concept of
process groups that supportsmoving agentsas members
of a group. Process groups have been widely used as a

http://www.elsevier.com/locate/jpdc
mailto:macedo@ufba.br
mailto:fassis@ufba.br

276 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

mechanism for supporting consistent execution of sets of
co-operating processes in distributed systems[1,10]. In a
process group, processes communicate with each other by
exchanging messages that are multicast to the whole group.
In order to preserve consistency, the group communication
protocols guarantee certain properties such as atomic deliv-
ery (either all processes deliver a message or no one delivers
it), message ordering guarantees (e.g., causal and total), and
virtual synchrony where modifications on the group mem-
bership (caused by events such as process crashes and joins,
etc.) are consistently ordered with respect to message deliv-
ery. In such an environment, operational processes perceive
a mutually consistent ordered sequence of events, though,
in reality, they may happen in an arbitrary order. In tradi-
tional group communication systems[3,7,11,19,38], while
a process is a member of a group, it generally remains at
the same location in the distributed environment. In mobile
groups, an agent has the ability to change its location in the
distributed environment while belonging to a group. Analo-
gously to traditional group communication systems, mobile
groups also provide message delivery guarantees and vir-
tual synchrony. However, mobile groups provide these guar-
anteesdespite the mobility of their members. Furthermore,
they make agent mobility not only visible for the group,
but also consistently ordered with other group actions (such
as crashes, joins, leaves, and migrations). In other words, a
mobile group configuration (or view) will reflect not only
the set of members of a group but also their corresponding
locations.
By combining conventional group communication opera-

tions (such as joins and leaves) with a move operation (used
by an agent that wants to migrate) and a location-aware
view installation procedure, mobile groups represent both a
means for coordinating mobile agents and a mobile system
infrastructure. Using traditional group communication pro-
tocols on top of a layer providing agent migration would not
yield a satisfactory implementation for the mobile groups,
since agent mobility would be hidden from the group ser-
vice, making it cumbersome to implement some function-
ality such as synchronization of messages with relation to
agent movement.
Mobile groups can be used, for instance, for implement-

ing mobile agent fault tolerance, which consists basically of
co-ordinating a set of agent replicas in such a way that if
the replica currently executing the application fails, another
replica resumes its execution.An usual requirement of such a
mobile agent fault tolerance is to guarantee the so-called ex-
actly once semantics (EOS)[6,25,40,33]. The EOS property
has also been used in other contexts such as in message de-
livery [27] and e-transactions[21]. In the context of mobile
agents, EOS implies that at each stage in the execution of an
application (executed by a set of agent replicas), the effects
of exactly one of the replicasis committed. This property
does not, however, tackle other fault tolerant requirements:
for instance, in applications where the results of more than
one migrating agent can be combined to give rise to a new

stage. The properties of virtual synchrony renders the mobile
groups approach the suitable functionality for implementing
EOS and other reliability requirements not addressed by the
existing mobile agent fault tolerant systems.
A previous version of this paper introduced the main con-

cepts of mobile groups and related membership protocol
[29]. Here, we extend our work by further discussing and
refining the concepts regarding the proposed membership
protocol and presenting performance data from a number of
experiments—where we measured the time to reach agree-
ment in a new view caused by move operations and process
crashes. The remainder of this paper is organized as follows.
In Section 2 we discuss related work. In Section 3 we present
the main part of the paper: the mobile groups properties, a
related membership protocol and its correctness proofs, per-
formance figures from an implementation, and some discus-
sion on the complexity of the protocol. Finally, in Section 4
we draw our conclusions.

2. Related work

Previous work incorporated movement into group com-
munication services for environments with mobile devices,
for example, protocols for total or causal ordering and a
membership service (e.g.[9,16,35,36]). In these environ-
ments processes start and terminate their executions on the
same host. However, since the host may be mobile, a process
may change its location in the physical environment when
the related host moves. In mobile groups we are considering
that hosts are not mobile, but agents can move from a host to
another. These problems are similar in the fact that a group
member can change its location in the distributed environ-
ment, but they differ in other aspects, such as the way mes-
sages are routed (done at the application level, in the case of
mobile agents, and mainly at the network level, in the case
of mobile devices) and functionality provided. Furthermore,
unlike the mobile groups, none of these works take into ac-
count the movement action as an event to be ordered against
other events in the system (such as crashes and message
delivery). Thus, the directed adaptation of such algorithms
to groups of mobile agents is restricted. The algorithm in
[9], for instance, is based on a static server with which the
group members must communicate no matter where they
are. This constrains the use of such protocols for the mo-
bile agent scenario in some conditions, for example, if the
agents forming the same mobile group move altogether to
a local network that latter becomes disconnected from the
static server.With mobile groups, no supplementary entity is
required, not even for keeping or updating the addresses of
moving agents. In[16], the authors considered the problem
of having mobile clients of a pool of servers. The servers
are distributed in nodes in the fixed network (i.e., they are
stationary). The main outcome of their solution is to show
how a group could be used to give unbreakable point-to-
point TCP connections from a base system to a single mo-

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 277

bile device. Their solution is similar to ours in the sense that
both use virtual synchrony within groups, but they differ in
the functionality provided and target environment (mobile
devices and migrating agents, respectively).
In the context of mobile agent systems, different forms

of interaction between agents were proposed. Existing mo-
bile agent systems (e.g., Voyager[32]) provides many forms
of communication between agents (remote method invo-
cation, events, unreliable multicasts, etc.). In[34] the au-
thors extend Linda to integrate mobility. Communication
through tuple spaces and with guarantees of group sys-
tems are two different approaches for supporting mobile
agent coordination that fulfill different sets of requirements.
In [8] a concept for coordinating groups of agents is de-
scribed, but which is not fault tolerant. Approaches for reli-
able message delivery to mobile agents were also proposed
[31,37]. In [31] the approach supports uni- and multicast,
but faults are not considered in the model. In[37] fail-
ures are considered, but the approach supports only unicast
(point-to-point communication). In[30], the authors con-
tribute to the understanding of synchronization requirements
of distinct mobile agent Internet applications, by analyzing
eight models for synchronization and communication be-
tween distributed agents. However, fault tolerance has not
been addressed in this analysis. A central issue of the above-
mentioned models is the concept oflocation synchroniza-
tion, which they propose to allow one or more agents to
coordinate the location of their executions. For instance, in
the location-dependent synchronous communication model,
they propose the use of a specific host, deterministically
chosen, where agents requests are first matched for after-
wards being informed of each other’s location addresses.
Thanks to the location-aware membership modus operandi,
the mobile groups can serve as a basic mechanism to im-
plement such a model. In such a scenario, no third entity is
required, as migrating agents will have their current location
addresses mutually updated by the group membership pro-
tocol. Moreover, mobile groups do it in a fault tolerant man-
ner. Therefore, in some sense, these works can be regarded
as complementary efforts towards the accomplishment of re-
liable coordination and synchronization required by mobile
agent systems.
To the best of our knowledge no previous work exists that

describes a concept for supporting guarantees as those pro-
vided by traditional group communication systems in the
context of mobile agent-based systems. In particular, as far
as we know, there is no formalism for group membership
that considers the movement action as an event to be syn-
chronized (or ordered) against other events such as crashes
and message delivery. Note that it is not only the fact that
a view reveals the current locations of mobile agents, but
also that movements are automatically synchronized with
other actions (including other movements). Synchronizing
the movements with the computations performed by dis-
tributed agents is, however, an important requirement of
agent systems[30].

3. Mobile groups

3.1. System model and assumptions

We assume a distributed system as a collection of agents,
locations and communication channels. A location repre-
sents a logical place in the distributed environment where
agents execute.When amobile agentmigrates, it moves from
a location to another. Agents communicate by exchanging
messages through reliable communications channels, i.e.,
transmitted messages are received uncorrupted and in the se-
quential sent order, as long as the message sender does not
crash until the message is received (reliable channels can
be implemented over unreliable channels by tagging trans-
mitted messages with sequential numbers, delivering such
messages according to the sequential order and asking for
retransmission in case of missing messages). As implied by
our reliable channel assumption, we assume that network
partitions do not occur or, when they occur, they are repaired
within a finite amount of time and communication reestab-
lished.
No bounds on message transmission or relative agent

execution times are assumed (asynchronous environment).
Agents and locations are assumed to fail only by crashing
(without producing any further action), and the agents of a
faulty location are assumed to have crashed. The failure of
a given location is not directly handled. Instead, it is only
detected when the associated agents are detected faulty. An
agent that never crashes is named correct.
Let L denote the set of all possible locations. LetP be the

set of all possible agents. A mobile group is denoted by the
set of agentsg = {p1, p2, . . . , pn}, g ⊆ P . On a mobile
group, five operations are defined:

• join(g): issued by an agent, when it wants to join groupg;
• leave(g): issued by an agent, when it wants to leave
groupg;

• move(g, l): issued when an agent wants to move from its
current location to locationl;

• send(g, m): issued by an agent when it wants to multicast
a messagem to the members of groupg;

• receive(g, m): issued by an agent to receive a messagem
multicast from the groupg.

An agentpi of a group galso installs views, named
vi(g). In mobile groups a viewvi(g), vi(g) ⊂ {(p, l) | p ∈
g and l ∈ L}, is a mapping between agents of groupg
and locations. A view represents the set of group members
that are mutually considered operational in a given instant
of the group existence and indicates the locations where
these members are (a pair(p, l) in a view indicates that
agentp is currently at locationl). This set can change dy-
namically on the occurrence of agent crashes (suspicions)
or when agents deliberately leave, join, or move to another
location. Every time a change occurs in the group view, a
new view is installed by a group membership protocol. Each

278 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

time

location l1

location l2

location l3

location l4

p1

p2

p3

m1

m1

m1

p1

p2

p3

p1

p2

p3

crash !

m2

m2

m2

m2

m2

v1
1(g) = v 2

1(g) = v3
1(g)=

{(p1, l1), (p2, l2), (p3, l3)}
v1

2(g) = v 2
2(g) = v3

2(g) =
{(p1, l1), (p2, l2), (p3, l4)}

v2
3(g) = v3

3(g)=
{(p2, l2), (p3, l4)}

(a) (b) (c)

m

agent

movement

delivery of
message m

Fig. 1. An example of the mobile groups.

view installed by an agent is associated with a number that
increases monotonically with group view installations. In a
groupg = {p1, p2, . . . , pn}, vk

i (g) denotes the view num-
berk installed by agentpi . Where suitable (i.e., there is no
ambiguity), we will omit the agent identity of a view (e.g.,
vk(g)), the group identity (e.g., vk

i), or even simply refer to
view k of g meaningvk(g).
Fig. 1 illustrates a group initially with three agent mem-

bers, p1, p2 and p3. These agents install, respectively,
views v11(g), v12(g) and v13(g) (Fig. 1a). These views are
identical and indicate that agentsp1, p2, and p3 con-
sider each other operational and know where they are in
the distributed environment(v11(g) = v12(g) = v13(g) =
{(p1, l1), (p2, l2), (p3, l3)}). Later, agentp3 moves to lo-
cation l4 (the movement is represented by the dashed line
in Fig. 1b). A new view is installed by each process, re-
flecting that agentp3 is now at a new location,l4 (views
v21(g) = v22(g) = v23(g) = {(p1, l1), (p2, l2), (p3, l4)}).
Afterwards, locationl1 crashes (Fig.1c). A new view will
be, then, installed by agentsp2 andp3 reflecting that agent
p1 was removed from the group (viewsv32(g) = v33(g) =
{(p2, l2), (p3, l4)}).

3.2. Mobile group properties

We consider that when a mobile groupg is created, ev-
ery group memberpi installs the same initial viewv1i =
{(p1, l1), (p2, l2), . . . , (pn, ln)}. After the initial view is in-
stalled, any modification on the configuration of the mobile
group (due to migrations, addition or elimination of mem-
bers) will result in new views being installed, forming the
sequencev1i , v

2
i , . . . , v

k
i wherek represents a given moment

on the view evolvement history. Agentpi multicast mes-
sages only to the agents of its current view.
In this paper, we will only consider the so-called primary

partition membership[10,17] where a unique sequence of
views is installed for a given mobile agent group. Primary
partition membership is convenient, for example, for im-
plementing fault tolerant migration of mobile agents with

mobile groups. The existence of concurrent views, which is
dealt with by partitionable membership protocols[3,17,19],
will be explored in future works.
Let v(g) be a view of groupg. We will denote by

v(g).P the set of agents that occur inv(g), i.e., v(g).P =
{p | (p, l) ∈ v(g)}. In order to simplify the notation, we
will say that an agentp ∈ v(g) if and only if p ∈ v(g).P .
Similarly, we will denote byv(g).L the set of locations that
occur inv(g), i.e.,v(g).L = {l | (p, l) ∈ v(g)}.
Let g = {p1, p2, . . . , pn} be a mobile group. The views

installed by agents belonging tog must obey the safety and
liveness properties defined below.

3.2.1. View safety properties
Validity01: if an agentpi ∈ g installs a viewvk

i (g), then
pi ∈ vk

i (g).
Validity02: if an agentpj ∈ vk

i (g).P −vk−1
i (g).P , k > 1,

thenpj asked to joing.
Validity03: if an agentpj ∈ vk−1

i (g).P −vk
i (g).P , k > 1,

thenpj asked to leaveg or it has been suspected of crashing
by some group member.

Validity04: if the pair (pj , l
′) ∈ vk

i (g) and (pj , l) ∈
vk−1
i (g) and l �= l′(k > 1), thenpj asked to move froml
to l′.
Validity01—also known asself-inclusionproperty—states

that only the members of a group view install the corre-
sponding view. Validity02, Validity03, and Validity04 state
that modifications on the group view are justified only by
joins, leaves, crashes or crash suspicions, and movements.

Unique sequence of views: Let vk
i (g) and vk

j (g) be the
view of numberk installed bypi andpj , respectively (view
numberk = kth view installed only for the agents that
installed the initial group view). Then,vk

i (g) is necessarily
equal tovk

j (g). In other words,∀k, i, j if pi andpj install

viewsvk
i (g) andvk

j (g), thenvk
i (g) = vk

j (g).
Unique sequence of views is a necessary condition for

the so-called primary component membership where only
one component of the group is allowed to make progress.

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 279

Observe in Fig.1 that views with the same number are
identical.

3.2.2. View liveness properties
Termination01: If an agentp ∈ vk

i (g) asks to leaveg or
crashes and there exist at least two correct agents invk

i (g),
then there will be a viewvr

j (g) installed by an agentpj ,
r > k, such thatp /∈ vr

j (g) andp ∈ vs
j (g) for all ssuch that

k�s < r.
Termination02: If an agentp tries to join g, then there

will be a viewvr
j (g) installed by an agentpj , such thatp ∈

vr
j (g) andp /∈ vs

j (g) for all s suchs < r.

Termination03: If an agentpi of a pair (pi, l) ∈ vk
i (g)

asks to move to locationl′ (i.e., executes themove(g, l′)
operation), and it is not excluded fromg, then there will
be a viewvr

j (g), r > k, installed by an agentpj such
that (pi, l

′) ∈ vr
j (g) and (pi, l) ∈ vs

j (g) for all s such that
k�s < r.
The properties Termination01, Termination02, and Termi-

nation03, guarantee that a protocol implementing the mobile
groups should eventually install a new view whenever an
agent crashes (or leaves a group), joins a group, or moves
to a new location, respectively.

3.2.3. Message delivery properties
If g is a mobile group, letdeliver(m, pi, k), pi ∈ g denote

the delivery of a messagem to agentpi in view vk
i (g). We

define the following safety and liveness message delivery
properties,MD1 andMD2, respectively:

MD1 (Atomicity): If pi installs views vk
i (g) and

vk+1
i (g) and pj installs viewsvk

j (g) and vk+1
j (g), then

deliver(m, pi, k) ⇔ deliver(m, pj , k). That is, any two
group members ofg that install two consecutive views de-
liver the same set of messages between them. See in Fig.1
that messagesm1 andm2 are delivered by all agents at the
same view (m1 in view v1i (g) andm2 in view v2i (g)).

MD2 (Liveness): if an agentpi sends a messagem in view
vr
i (g), then provided it continues to function as a member of

g, it will eventually deliverm in some viewvr ′
i (g), r ′ �r. A

message sent in a view might be delivered in a future view.
This is illustrated in Fig.1, where messagem2 was sent in
view v1i (g), but delivered in viewv2i (g).
MD1 and MD2 together enforce virtual synchrony be-

tween agents. The actual semantics of the virtual synchrony
enforced by MD1 and MD2 is similar to the one initially
proposed by Birman[11] and formalized in[5]. Birman’s
virtual synchrony requires thatr = r ′ in MD2 and it can
be implemented by blocking sending messages during the
view installation procedure. Our definition is more related
to the ones of Transis[3] and Newtop[19] systems, which
differ from ours by the fact they were primarily intended to
partitionable memberships.
In order to save space, we have omitted the formal def-

inition of some message delivery and view properties such
as local monotonicity, initial view event, delivery integrity,

and no duplication[17], which can be trivially deduced from
our system model assumptions.

3.3. A membership protocol for the mobile groups

Solving the membership problem in an asynchronous sys-
tem is not an easy task. In fact, it has been proved that
the primary membership problem has no deterministic so-
lution in such systems and that partitionable membership
approaches can yield to group degeneration (multiple sin-
gleton member groups)[5,14]. This comes from the very
fact that there is no way to accurately guarantee that correct
members will not be removed from the membership, which
may lead the group to virtual partitioning. On the other
hand, even if one admits that a correct agent may be erro-
neously excluded from the membership, virtual synchrony
still requires that group members see the same sequence
of view changes (i.e., they must agree or come to a con-
sensus on each view installed). However, it is well known
that one cannot solve consensus in such systems when fail-
ures may occur[20]. We have tackled these problems in
two directions. First, we have augmented our asynchronous
system model with unreliable failure detectors in order to
solve consensus[13,15]. Thus, we assume the existence of
a distributed♦S (eventually strong) failure detector, as de-
fined in [15]. The assumption♦S is necessary because this
is the weakest condition, as proved in[13], to achieve the
consensus in such an asynchronous environment. Further-
more, we also assume that a majority of agents of a group
view does not crash as required by the♦S-based consensus
protocol.
Second, we do not rely on unreliable information from the

failure detector in order to remove an agent from the mem-
bership. Instead, view changes will only occur when either
an explicit move, leave, or join is required or when sent mes-
sages are unstable during a long period (i.e., not received by
at least one of the group members). If either condition oc-
curs, all the agents (suspected of failure or not) are required
to run consensus to agree on the new view. Therefore, the
failure detectors are only used at this particular moment—
during consensus—and, consequently, any mistakes made
by a failure detector module has no impact on the compo-
sition of the group when the system is stable (no move and
no late stabilization of messages). More importantly, even
if agents are erroneously removed from a given view (they
do not belong to the consensus agreed view), the♦S-based
consensus ensures that at least a majority of the view mem-
bers will remain members of the next view.
Our membership protocol uses repeated (possibly concur-

rent, but completely independent) executions of consensus
where thekth execution of consensus is used to decide on
the kth tentative view change to be atomically installed by
operational group members. All the messages related to the
kth tentative view change (and therefore, to thekth consen-
sus execution) are tagged with the numberk. Therefore, as in

280 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

[15], we denote theproposeanddecideprimitives for thekth
execution of consensus aspropose(k, −) anddecide(k, −).
We also assume the primitive FD[p] to inquiry the failure
detector♦S. Thus, FD[p] = true means that agentp was
suspected by the local failure detector module.
An agent sends a messagem to a groupg by using a

best-effort multicast primitive, denotedmcast (m, g), which
causes the delivery ofm to the current membership ofg
(denotedm.g) as long as themsender does not crash before
finishing the multicast.

3.3.1. Handling agent crashes
Whenm is received by a destination agentp, p ∈ m.g,

m is immediately delivered top and stored in a local buffer
until m is known to be stable (i.e., received by all agents
in m.g). If a message remains unstable for too long, the
membership service will start a new view installation pro-
cedure for removing possibly crashed agents from the cur-
rent view and delivering the unstable messages not delivered
yet. In order to guarantee that all group members engage
in the same view installation procedure, a reliable multi-
cast primitive, denotedrmcast (ChangeViewRequest, k), is
employed to launch the change view procedure. The agree-
ment property of the reliable multicast primitive guarantees
that if any operational group member delivers the message
(ChangeViewRequest, k), all the other operational members
will do so. This request is then processed by a changing
view task (described subsequently) which makes use of a
♦S-based consensus protocol to install identical views at
all group members (thanks to the agreement property of the
consensus).
During view installation, agents are required to send their

sets of unstable messages and the new view will be formed
removing those agents that were suspected by the local
failure detectors, provided that a majority of the agents
(whether suspected or not) has sent the unstable sets. Thus,
the new view installation will only progress if any group
member fails in sending the corresponding unstable set. Such
agents—those that did not send the unstable set—are con-
sidered as crashed and a new view will be installed which
does not include them. We should bear in mind, however,
that those suspected agents may be just too slow (due to
an overloaded site, for example). Although a false suspi-
cion may cause the removal of an operational agent from a
group, the membership service assures that the membership
information will always be kept mutually consistent among
the not suspected agents (timeout values should be carefully
chosen in order to make false suspicions rare).
The membership protocol working on behalf of a group

memberpi consists of theChangingViewandMessage Sta-
bility Assessmenttasks, and the operations move, leave, and
join. The tasks and operations can all execute concurrently.
However, each of them runs atomically (i.e., there is only
one execution of a given task in a given agent). The referred
tasks and the Move operation are described below. Due to

space limitations we omit here the description of the Leave
and Join operations, which can be found in[28].

3.3.2. The message stability assessment task
Let us assume that all agents maintain the setunstable

to record the unstable messages. This set, shared by all the
tasks, is initialized empty and updated in the Message Sta-
bility Assessment task. The set variablecurrentview, also
shared by all tasks, represents the latest view installed by an
agent. For a giveng, currentviewis formed by pairs(pi, li),
pi ∈ g and li ∈ L, whereli is the current location of agent
pi (currentviewis initialized with the initial viewv1—see
Section 3.2 for the notation definitions).
The message stability assessment task (shown on Fig.2,

upper part) is run for each sent or received messagem. In
this task, initially a timeout is set (statement 1) and the
messagem is put in theunstableset (statement 2). After
that, it is waited until acknowledgements formare received
from all agents belonging to the current view or until the
timeout expires (statement 3). In the first case, the timeout
is cancelled form, which is then removed from theunsta-
ble set. If the timeout expires, the global variabletvc (ten-
tative view counter) is incremented and reliably multicast
to the group together with a view change request message
(statement 4).

3.3.3. The ChangingView task
The ChangingView task, shown on Fig.3, is initiated on

the receiving of a(ChangeViewRequest, k)message and it is
performed to completion only if it has not already been exe-
cuted for the receivedk (see the exit command in statement
2). In order to prevent the move operation and Message Sta-
bility Assessment task from initiating ChangingView tasks
for values ofk already used (thus, resulting in the exit com-
mand), the value oftvc is updated to keep the maximum
value between its current value and the receivedk of the last
execution of the ChangingView.
After updating the value oftvc, all group members are re-

quired to send their unstable sets (statement 3). This proce-
dure is used to define a possibly new view in the following
way: an agent is removed from the next proposed view if its
unstable set has not been received (statements 4–7). Notice
that a majority of unstable sets is certain to be received since,
by assumption, the majority of agents is correct—see Sec-
tion 3.1. The proposed new view is recorded in the variable
newview, wherenewview.L[i] identifies the location associ-
ated with an agentpi in the corresponding view (statements
7 and 8).
The parameterMoves, passed with theunstableset in

statement 3 and received asMsetin statement 4, is related to
themoveoperation and carries the identities and correspond-
ing new locations of moving agents (seehandling moves
later in this section). In order to update (possibly) new loca-
tions of moving processes in the proposed view, all new lo-
cations received in the parameterMsetare collected into the

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 281

Message Stability Assessment Task

(launched by an agent p for every sent or received message m)

(1) set timeout(m);

(2) unstable � unstable ∪ {m}; /* puts m into set unstable*/

(3) Wait until ∀ q � currentview, received(m,ack) or expires timeout(m);

(4) if ∀ q � currentview, received(m,ack) then

 /* the receipt of m was acknowledged by all members */

 { cancel timeout(m);

 unstable � unstable – {m}; /* removes m from the set unstable */}

 else /* if timeout expired */

 { tvc � tvc + 1; /* increments the tentative view counter */

 rmcast (changeViewRequest, tvc); /* try to install a new view */ }

Move(g , l); /* moves process pi to location l */

(1) “Ask the remote location about the installation of a new agent ”
(2) if movement is authorized then

“start the membership service on the remote place

 with blocked local delivery”

 else {exit; return error code}

(3) Moves := Moves + (pi,l);

(4) tvc � tvc + 1;

(5) rmcast(changeViewRequest,tvc);

 /* try to install a new view with the new location*/

(6) await ChangingView task to finish;

(7) if pi � currentview.P

 then { migrate pi to remote location l;

install current view at remote location;

forward to I all the received but not delivered messages;

unblock delivery at remote process

terminate the local pi

i

}
 else exit; /* p was suspected and removed from g */

Fig. 2. Message stability assessment task and move task.

Movesvariable (statement 6). The proposed view,newview,
is then updated to include the new locations (statement 8).
All the unstable messages present in the unstable sets are

also collected into the variableallunstable(statement 5).
After defining a new proposed view (newview) and the set

of all unstable messages (allunstable), the group members
execute the♦S consensus to agree on the new view, rep-
resented by the pair (allunstable,newview), returned by the
decideprimitive (statements 9 and 10). After reaching con-
sensus, each group agent first delivers the not yet delivered
unstable messages from the consensus outcome (statement
11), and then installs the new agreed view (statements 13
and 14). Notice that, as the system is asynchronous, there
may exist several concurrent consensus executions, iden-
tified by distinct numbers (for instance,k − 2, k − 1, k).
Though we present here a novel protocol, the use of mul-
tiple consensus executions for solving agreement problems

(such as static membership and atomic broadcast) have been
presented elsewhere[15,24].
If the new agreed view brings no modifications on the

current group view or if the local agent does not appear in the
decided view (because it was removed by a remote agent), no
new view is installed by it (statements 13 and 14). Otherwise,
a new view is installed by updating the variablescurrentview
andviewnumber(viewnumberdenotes the number of a view
installed by an agentpi—it is set to 1 when the initial view
v1i (g) is formed). Note thatcurrentviewand viewnumber
together indicate the agent view in a given moment.
Blockingmessage delivery is necessary to guarantee prop-

erties MD1 and MD2 (see section 3.2.3).

3.3.4. Handling moves
A group agentpi willing to move to a new locationl must

issue the operationmove(pg, l), shown on Fig.2 (lower

282 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

ChangingView Task * executed by agent Pi
*

(1) Upon receiving (changeViewRequest,k) message do

(2) tvc := maximum(tvc,k);

 if (mcast(unstable,k,Moves) has already been multicast) then exit

(3) block normal local delivery; mcast(unstable,k,Moves);

/* collect the unstable messages from all unsuspected members, provided that a majority

of them has sent their unstable messages */

(4) Wait until

 [(∀ q ∈ currentview : received(unstable,k,Mset) from q or FD(q) = true)

 and for (n+1)/2 processes q: received (unstable,k,Mset) from q]

(5) for each received (unstable,k,Mset) do allunstable := allunstable ∪ unstable;

(6) for each received (unstable,k,Mset) do Moves := Moves ∪ Mset;

(7) newview := currentview – {(q,l) (q,l) ∈ currentview and (unstable,k,Mset) was not

received from q } /*remove suspected processes*/

/*update newview with the new locations*/

(8) ∀ (p,l) ∈ Moves, newview.L[p] := l;

/* run consensus k */

(9) Propose(k, allunstable, newview);

(10) Wait until decide(k, allunstable, newview);

/* deliver the agreed unstable messages not delivered yet */

(11) Deliver all m ∈ allunstable m has not been delivered yet

/* update the Moves set*/

(12) ∀ (p,l), ((p,l) ∈ Moves and (p,l) ∈ newview), Moves := Moves – {(p,l)};

/* install the new view for consensus k only if the current view was modified */

(13) if newview = currentview then exit; /* it was a false suspicion and no

 moves have been decided*/

/* install the new view if pi still belongs to the view decided */

(14) if pi newview.P

then { viewnumber := viewnumber + 1; currentview := newview; }

 else “inform process pi that it has been removed from the mobile group”;

(15) Unblock normal delivery

∈

Fig. 3. ChangingView task.

part). As a result, the mobile group service will first make
sure that there are conditions to the requiredmigration (state-
ments 1 and 2). If so, the new location information ofpi is
updated into the shared set variable, calledMoves, that main-
tains the pairs(p, l) of all agents willing to move (statement
3) and theChangingViewtask is started—by multicasting a
ChangeViewRequestmessage—to try to install the new view
with the new location forpi (statements 4 and 5). In the
ChangingViewtask, the localMovesset is transmitted to re-
mote agents together with theunstableset in statement 3 and
updated from the remoteMovessets in statement 6 (from
the receiving parameterMset). That is, group members will
exchange theirMovessets and the union of all exchanged
Moves will be taken as the newMovesset (statement 6).
Afterwards, the updatedMovesis used to inform the new
locations of the tentative view (newviewvariable) to be sub-
jected to the consensus module (statements 9 and 10). This
consensus procedure is mandatory since the mobile groups
specification requires all the events (crashes, joins, leaves,
moves, and message delivery) to be ordered with respect to

the new agent location installation. The moving agent termi-
nates after installing the current view at the remote location
and forwarding to it the received but not delivered messages
(statement 7 of move operation).
What makes a move operation to eventually conclude

is the fact that the moving process identifier is placed
into Moves before incrementingtvc and initiating the
ChangeViewtask, and it is only removed after appearing in
the decidednewview(statement 12 ofChangingViewtask).
Incrementingtvc ensures that there will be at least one
execution ofChangingViewtask, as the incrementedtvc is
always larger than the numberk of the lastChangingView
task execution (notice thattcv is updated to the maximum
between its current value and the receivedk—see statement
2 of theChangingViewtask). If two or more parallel move-
ments lead to multiple incrementations oftvc, there will be
multiple executions of thechanging viewtask. However,
all parallel moves can be resolved in just one execution,
making the other executions without effect (as far as move-
ments are concerned). We could also optimize the algorithm

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 283

to avoid unnecessary executions ofChangingViewtask, but
we chose not to incorporate such optimizations to facilitate
the understanding of the protocols.
Finally, notice that it is possible for an agent to execute the

ChangingViewtask and not succeed in migrating (statement
7 of move task), if such an agent was considered as crashed
by some remote agent(pi /∈ currentview.P).

3.4. Implementation issues

The protocol just described has been implemented in a
JAVA/Unix environment. The implementation has a layered
architecture. The lowest layer is the Transport layer, respon-
sible for sending/receiving messages to/from the network.
Above the transport layer is a layer with basic building
blocks:mcastandrmcastprimitives, a failure detector mod-
ule, and a timer. Above this layer is the Consensus imple-
mentation. Above the Consensus layer is the ChangingView
Task. In the uppermost layer are the components that
implement the mobile group operations (join, leave and
move operations) and the message stability assessment
task. The local communication between components of the
architecture is performed by using an event channel and
direct method invocations. The transport layer is based on
UDP. We did not use a specific agent system (such as Voy-
ager). We developed an own implementation of the agent
migration support, based on Java RMI. This support con-
sists basically of a set of Java classes for enabling agent
transportation, execution, and dynamic class loading.
As our main interest is to use mobile groups for imple-

menting mobile agent fault-tolerance, where an application
is typically executed by a few agent replicas, we have run
experiments for groups from 3 to 6 agents spread over a lo-
cal area network, where each agent was sited in a distinct
location (only one location per computer). The experimental
environment consisted of six Linux Pentium III computers
(800MHz, 191MB RAM) connected though a 100 megabits
network. Three series of experiments were performed to
measure the time necessary to reach agreement on a new
view caused by move operations or by an agent crash.
In the first series, a group of agents reaches agreement on

a new view caused by a move operation. In this particular
experiment, we did not measure the migration time (the time
to send a serialized agent from one location to another). In
each experiment, one of the agents proposes a new view to
reflect its movement to a new agency. Table1 presents, for
sets of three to six agents, the mean, median, and standard
deviation of the time measured from the instant when the
agent proposes a new view the instant when it installs this
view. This experiment was repeated 1000 times for each set
of agents (total of 4000 runs).
In the second series, the migration time is included. In

each experiment, a specific agent moved from one location
(original location) to another (destination location). Table2
presents, for sets of three to six agents, the mean, median,
and standard deviation of the time measured from the in-

stant when the agent proposes a new view until the original
location receives the confirmation that the agent has been
successfully installed at the destination location. This exper-
iment was repeated 200 times for each set of agents (total
of 800 runs).
In the third series, it was measured the time necessary

to reach agreement on a new view when an agent fails.
Table3 presents the mean, median and standard deviation of
the time measured from the instant when one of the agents
suspects that another agent of the group has failed until it
installs the next view (which excludes the faulty agent). The
values for three agents in Table3 correspond to the scenario
when one of these agents detects the failure of a fourth agent
and the three agents agree on the new view. The values for
four and five agents are defined similarly (i.e., they involve
the detection of the failure of an additional agent). This
experiment was repeated 1000 times for each set of agents
(total of 3000 runs).
In the third series, the high figures are due to the time

needed for detecting the faulty agent. In our prototype,
failure detection is based onheartbeatmessages that are
transmitted every 500ms (in fact, only when no applica-
tion message is transmitted in this period). Theheartbeat
messages are handled by theMessageStabilityAssessement
Task (Fig.2—upper part) like application messages. When
a message arrives (be it a heartbeat or not), theMessageSta-
bilityAssessementtask will start a timeout of 500ms for this
message to be stable. Therefore, if an agent fails just after
sending ahearbeat, it will take, in the worst-case scenario,
approximately 1000ms to launch aChangingViewtask to
remove such a failed agent—500ms for sending the next
heartbeat, plus 500ms for expiring the related timeout. In
the best case scenario, if the agent fails just before sending
the heartbeat, the detection time will be close to 500ms
(the timeout for the message to become stable). This ex-
plains why these figures varied between 500 and 1000ms
and the high standard deviation measured.
Observe also that the mean and median times for 4 agents

in Table3 are slightly higher than the values for 5 agents.
This happened because the average detection time observed
for the experiment with 5 agents was slightly smaller. Notice
that for such a small number of agents, the detection time
dominates the total time to establish a new view (while the
detection time ranges from 500 to 1000ms, the mean time
value for reaching agreement—without movement—ranged,
for example, from 24 to 42ms for 3–5 agents in Table1).
Finally, notice that an agreement on a new view takes

place inside theChangingViewtask (see Fig.3) where a
new view is proposed taking into account all pending moves
(those initiated but not realized yet) (see lines 6–8 of the
ChangingViewtask). Therefore, the time spent in a sin-
gle agreement procedure due to a single move operation
is the same to handle multiple, parallel moves. Moreover,
any agent crash that occurs during the handling of a move-
ment will also be resolved in the same agreement procedure,
yielding a new view that reflects all movements and crashes

284 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

Table 1
Time to reach agreement on a new view due to agent migration (without including agent migration time)
First series:
Mean Median Standard Mean Median Standard
(ms) (ms) deviation (ms) (ms) (ms) deviation (ms)
3 agents 4 agents
24.5 24.0 2.9 36.6 37.0 3.3
5 agents 6 agents
42.1 42.0 3.6 49.8 50.0 3.9

Table 2
Time to reach agreement on a new view due to agent migration (including agent migration time)
Second series:
Mean Median Standard Mean Median Standard
(ms) (ms) deviation (ms) (ms) (ms) deviation (ms)
3 agents 4 agents
44.9 43.0 7.8 57.6 55.0 10.2
5 agents 6 agents
63.3 60.0 11.5 67.7 64.0 11.4

Table 3
Time to reach agreement on a new view, after suspecting an agent failure
Third series:
Mean Median Standard Mean Median Standard
(ms) (ms) deviation (ms) (ms) (ms) deviation (ms)
3 agents 4 agents
771.6 768.8 142.1 794.6 799.8 144.3
5 agents
785.4 778.8 150.3

perceived. Consequently, the time taken to solve a move is a
good indication of the protocol performance in the general
case when crashes and moves may occur at the same time.

3.5. Discussion

The semantics of virtual synchrony, which is required by
some applications, puts a limitation on the scalability of the
membership protocol. Virtual synchrony requires total or-
der of views and total order is equivalent to consensus un-
der the failure detectors assumption[15]. Hence, the perfor-
mance of consensus can be considered as a bottleneck on
the improvements one can achieve. The Chandra–Toueg al-
gorithm used to solve consensus has multiple rounds with a
distinct agent acting as the coordinator in every round (the
so-called rotating coordinator paradigm)[15]. Each round
involves four communication steps: the first for the partici-
pants to propose consensus values, the second for the coor-
dinator to propose a decision value, the third for the partic-
ipants to acknowledge the decision, and finally, the fourth
for the coordinator to send the decided value (it has been
shown that this algorithm can be optimized to 3 or even
2 communications steps when used with transport multi-
cast facilities[41]). If failures occur (or false suspicions),
new rounds can be executed (with different coordinators).
A good point of this approach is that the algorithm can tol-
erate an unbounded number of incorrect failure suspicions,

which is indeed required by the asynchronous environment.
Analysing the protocol complexity in a deterministic way
(number of rounds or communication steps) cannot be re-
alized for the general case where failure patterns cannot be
predicted. Nevertheless, if we consider runs without failures,
the consensus module will solve consensus in the very first
round. Another interesting outcome of the algorithm is that
if too many failures occur so that the♦S assumptions can-
not be achieved, the system is fail-safe. That is, the decision
may be indefinitely postponed but no incorrect decision will
be ever made (agreement on the views is never violated).
By adopting a modular approach for the membership pro-

tocol, we allow for the exploitation of alternative solutions
for the underlying consensus. An advantage of this approach
is that none of the concepts, definitions, and basic algorithms
need to be changed to validate a new optimized membership
protocol.
Improvements on the performance and complexity of the

protocol can be made if we strengthen some of the assump-
tions. For instance, if we assume that the system has a perfect
(or eventual perfect) failure detector[15], we can achieve
consensus more efficiently—as a decision on a new view
can immediately be taken on a failure notification. In that
case, extra care must be taken to guarantee that the viola-
tion of such a stronger assumption will not lead to the vi-
olation of the agreement property. Other alternatives to im-
prove the scalability of the mobile group membership pro-

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 285

tocol would lead to the weakening of our membership spec-
ification, such as in light-weight membership[4,18,23,39],
the exploitation of specific communication topology or re-
stricting the running of the membership protocol to a set of
dedicated servers that work on behalf of the whole group
[2,4,18,23,26]. A complete discussion of these approaches
is, however, beyond the scope of this paper. Nonetheless, we
could also implement the mobile groups with some of the
above-mentioned assumptions and techniques without mod-
ifying the main properties and concepts presented in this
paper.
One could argue that the movement action and its syn-

chronization with other events—in fact, the mobile groups
themselves—could be implemented by using conventional
group systems combined with a mobility support. For in-
stance, by making the moving agent leave the group before
the movement and join it again after the movement, or by
moving the agent—through amobility layer—and then using
a total order multicast to synchronize the movement action
with the other group events. However, these solutions have
two major drawbacks. First, the application would have to
pay an extra care to handle and synchronize the events ob-
served during the movement (such as message multicast and
agent crashes)—since agent mobility would be hidden from
the group action history. Second, because the mobile groups
approach provides both reliable coordination and mobility
support, it is less costly than the alternatives discussed above.
To begin with, the cost incurred by the location aware view
installation procedure of mobile groups (which is dominated
by the consensus procedure) is equivalent to the two view in-
stallations (caused by the leave and join) or the total order re-
quired to synchronize the movement actions—as previously
observed, Chandra and Toueg have proved that consensus
and total order multicast are equivalent problems under the
failure detection assumption[15]. Furthermore, for the later
approach (using total order), the view installation procedure
provided by the conventional group system is still required
to synchronize other events (such as agent crashes). There-
fore, these approaches would have to pay an extra cost to
maintain the reliability level for the agent migration present
in conventional mobile systems (for instance, by carefully
updating the new location addresses of the moving agents).
On the other hand, reliable agent migration and correspond-
ing updating of moving agent locations is a direct benefit
achieved with mobile groups as new location addresses are
reliably installed by functioning agents.

3.5.1. Applying mobile groups to other application
scenarios
Because mobile groups provide all the facilities available

in conventional group systems (such as virtual synchrony),
they can be applied for any standard group communica-
tion application that requires code migration (such as pro-
cess migration for load balancing), an issue not properly ad-
dressed so far in conventional group systems. Furthermore,

the mobile groups concept could also be applied to other
distributed systems domains such as mobile computing and
ad hoc networks, where the synchronization of device move-
ments against other events may be an important requirement.
As an example, consider mobile agents running on mobile
devices that do not need continuous network connectivity,
as connections should last just the necessary time to inject
agents from terminals into the fixed network. With this ap-
proach, end users may access services and obtain the re-
lated results upon reconnection. In this scenario, due to the
mutually consistent view of group events, including agent
movements, mobile groups can be employed to maintain the
services required by users while migrating (i.e., their work-
ing environment and subscribed services). Furthermore, mo-
bile groups could be used to co-ordinate the activities of a
set of mobile users (which collaborate within a given com-
putation) by consistently disseminating device (or terminals)
connection and disconnection information.

3.6. Correctness of the protocol

Due to space limitations we do not present in this paper
the operations and correctness proofs connected with agent
joins and leaves and omit the proofs for most properties
(they can be found in[28]). The letters C, M, and S will be
used to indicate statement lines of theChangingViewtask,
move operation, and task, respectively (e.g., C10 stands for
statement line number 10 ofChangingViewtask).

Unique sequence of views: Consider a groupg and letvk
i

andvk
j be the view of numberk of g installed bypi andpj ,

respectively (view numberk = kth view installed only for
the agents which installed the initial group view). Then,vk

i

is necessarily equal tovk
j . In other words,∀k, i, j if pi and

pj install viewsvk
i andvk

j , thenvk
i = vk

j .
Message Stability Assessment: Let us first show that all

correct agents executeChangingViewtask for the same set
of k values (Lemma 1) and they execute the same sequence
of consensus (Lemma 2).We subsequently use these lemmas
to prove theunique sequence of viewsproperty.

Lemma 1. All correct agents of g activate executions of the
ChangingView task(i.e., from linesC3–C15)for the same
set of k values.

Proof. TheChangingViewtask is activated in agentpi every
time it receives a(changeViewRequest, k) message, which
is transmitted either from theMessage Stability Assessment
task (S4,elsebranch) or from the move operation (M5),
when rmcast(changeViewRequest, tvc) is executed in any
pj ∈ g. The agreement property (atomicity property) of the
reliable multicast used to send the(changeViewRequest, tvc)
messages assures that any correctpi (pi ∈ g)will receive the
same set of(changeViewRequest, k) messages, and, there-
fore, will trigger executions of theChangingViewtask for
the same set of valuesk. �

286 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

Lemma 2. All correct agents execute consensus k(i.e.,
propose(k, . . .) and decide(k, . . .), in lines C9 and C10,
respectively) for the same set of values k.

Proof. By Lemma 1, all correct agents will receive the same
set of(changeViewRequest, k) messages, which in turn will
trigger theChangingViewtasks for the same set ofk values.
Sincek is notmodified inside the ChangingView Task, a con-
sensusk (C9 and C10) will not be executed only if an agent
executingChangingViewtask blocks in the wait command
of line C4. The condition of the wait command is expressed
as a conjunction of two predicates. Given that messages are
assumed not to be lost, the first predicate eventually be-
comes true. This is due to the fact that a(unstable, k, Moves)
message will not arrive only if the sending agent fails. If it
happens, it will eventually be suspected as faulty, due to the
♦S completeness property. The second predicate of C4 de-
mands that messages are received from a majority of agents,
which will eventually become true, as messages are not lost
and we have also assumed a majority of correct agents. It
follows that Lemma 2 is true.�

Theorem.Agents respect the Unique Sequence of View prop-
erty.

Proof. A new view is installed by an agent when it updates
its variablesviewnumberandcurrentviewinside the Chang-
ingView task (C14). Unique sequence of view can be proved
by induction on the numbers of view installed during a group
g lifetime. Notice that by assumption all agents install the
same initial viewv1 (Section 3.2). Now let us now sup-
pose by induction hypothesis that all agents installed view
vk, k > 1, respecting the agreement property. That is, if an
agentpi ∈ vk−1

i (g) installs viewvk
i (g) and another agent

pj ∈ view vk−1
i (g) installs viewvk

j (g), thenvk
i (g) = vk

j (g)

for any pi and pj ∈ vk−1
i (g). Now, we must show that

vk+1
i (g) = vk+1

j (g).
As viewnumberis initialized with value 1 (when the initial

view is set) and it is increased by 1 for every new view
installed (C14), whenvk

i (g) andvk
j (g) are established, the

values ofviewnumberfor agentspi andpj will be updated
to k. The new viewvk+1(g) is then formed when the value
of viewnumberis updated tok + 1 andcurrentviewto the
setnewviewin C14.
Let x, x�k + 1, be the number of the consensus and

change view request (used as a tag for the change view
messages) which resulted in the establishment ofvk+1

j (g).

The view vk+1(g) will be formed and installed only af-
ter the agents in viewvk have decided the outcome of the
corresponding consensusx (C10). From Lemma 2 and as
we have assumed no partitioning (Section 3.1), thenpi and
pj will be engaged in the same execution of consensusx.
Because the agreement property of consensus guarantees
for both, pi andpj , the same output for thenewviewset
(C10), we only need to show thatpj also incremented its

viewnumberafter consensusx. Now, suppose by contradic-
tion, that this was not the case. That is,pi and pj exe-
cuteddecide(x, allunstable, newview), andpi incremented
its viewnumberto k + 1, butpj did not increment it. This
could only happen in two cases: (i)pj detected no change
for thenewviewset decided in relation tocurrentview(view
vk) (commandexit in C13) or (ii) pj did not belong to the
newviewdecided (branchelseof C14). It follows that both
cases could not actually have happened. (i) Ifpi detected
the change (as it incrementedviewnumber), but pj did not
detect it, thenpi andpj would have to disagree on the de-
cidednewviewascurrentviewfor vk is the same for both in
C13 (this contradicts the agreement of consensus) and in (ii)
pj would not be able to install a view with number larger
thank as it is considered as crashed (elsebranch of C14).
So, we found in both cases a contradiction.

4. Conclusions

In this paper, we presented the properties of mobile groups
and described a membership protocol that satisfies them.
Mobile groups support virtual synchrony in which messages
are synchronized with not only crashes (suspicious), leaves
and join operations, but also with movement operations. The
mobile group approach represents a novel mobility support
mechanism that fulfills part of the reliability requirements
of mobile agent systems.
To the best of our knowledge this is the first work that pro-

vides and formally defines a concept of group that supports
moving agents by integrating the movement events inside
group communication protocols. By doing that, wewere able
to enforce semantics for synchronizing the delivery of mes-
sages with relation to movements, and, as a consequence,
we can extend the functionality of the system. For instance,
by defining alternative semantics for message delivery that
recognizes a moving agent (for example, total order delivery
with respect to moving actions). That would not be achieved
satisfactorily by using traditional group communication sys-
tems.
Mobile agent fault tolerance requires that (a few) agent

replicas be placed on distinct hosts of the network. If this
is not respected, this protocol (or any other) will loose re-
silience. For instance, if a given hostmaintains several agents
of the same group, the protocol will tolerate a smaller num-
ber of host crashes. A way to tackle this problem is to put a
unique instance of the consensus module in a given host and
make this module to run consensus on behalf of all agents
hosted. This can be a useful approach not only to maintain
a desirable level of reliability, but also for scalability pur-
poses (for some classes of applications where groups main-
tain a great number of agents) as consensus will produce
less transmitted messages over the network.
Apart from the conventional agent based applications, mo-

bile groups could also be a useful mechanism to cope with
another dimension of mobility where mobile devices can
change their access point in a network. This kind of mobil-

R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288 287

ity, usually referred to as mobile computing, has sometimes
been addressed through a mobile agent mechanism[12].
The rationale behind these classes of solutions lies in the
fact that the mobile agents do not need continuous network
connectivity, as connections should last just the necessary
time to inject agents from terminals into the fixed network.
With this approach, end users may access services and ob-
tain the related results upon reconnection. In this scenario,
the agents executing on behalf of disconnected users (or ter-
minals) and assigned services could form a mobile group.
The mutually consistent dissemination of device (or termi-
nals) connection and disconnection events can be used to
dynamically adapt applications (working on the users side)
to distinct environments.
Mobile groups complement other efforts in providing reli-

ability of mobile agent based applications, such as concepts
for mobile agent fault tolerance and transactional support.
Mobile groups are, thus a further step towards providing an
effective support for coordinating groups of agents. Some
effort must still be expended in developing this concept, for
example, for providing stronger message delivery guaran-
tees and support for partitioning.

Acknowledgments

The authors would like to thank Ken Birman and Michel
Hurfin for their constructive comments on earlier versions
of this paper.

References

[1] Association of Computing Machinary, Comm. ACM (April 1996)
39(4), special issue on group communication systems, April 1996.

[2] D.A. Agarwal, L.E. Moser, P.M. Melliar-Smith, R.K. Budhia, The
Totem multiple-ring ordering and topology maintenance protocol,
ACM Trans. Comput. Systems 16 (2) (May 1998) 93–132.

[3] Y. Amir, D. Dolev, S. Kramer, D. Malki, Transis: a computing
subsystem for high availability, in: Proceedings of the 22nd
International Symposium on Fault-Tolerant Computing, Boston, July
1992, pp. 76–84.

[4] Y. Amir, J. Stanton, The Spread wide area group communication
system, TR CNDS-98-4, The Center for Networking and Distributed
Systems, The Johns Hopkins University, 1998.

[5] E. Anceaume, B. Charron-Bost, P. Minet, S. Toueg, On the formal
specification of group membership services, Technical Report 95-
1534, Cornell University, Ithaca, USA, 1995.

[6] F.M. Assis Silva, R. Popescu-Zeletin, An approach for providing
mobile agent fault tolerance, Lecture Notes on Computer Science,
vol. 1477, Springer, Berlin, September 1998, pp. 14–25.

[7] O. Babaoglu, M. Baker, R. Davali, L. Gianchini, Relacs: a
communication infrastructure for constructing reliable applications
in large-scale distributed systems, BROADCAST Project Deliverable
Report, October 1994.

[8] J. Baumann, N. Radouniklis, in: H. König, K. Geihs, T. Preuá (Eds.),
Agent Groups in Mobile Agent Systems, Distributed Applications
and Interoperable Systems (DAIS’97), Chapman & Hall, New York,
1997.

[9] A. Bartoli, Group-based Multicast and Dynamic Membership in
Wireless Networks with Incomplete Spatial Coverage, Mobile
Network and Applications, vol. 3, Baltzer Science, 1998.

[10] K. Birman, The process group approach to reliable distributed
computing, Commun. Assoc. Comput. Mach. 9 (12) (December 1993)
36–53.

[11] K. Birman, A. Schiper, P. Stephenson, Lightweight causal and atomic
group multicast, ACM Trans. Comput. Systems 9 (3) (August 1991)
272–314.

[12] P. Bellavista, A. Corradi, C. Stefanelli, Mobile agent middleware for
mobile computing, IEEE Comput. 34 (3) (March 2001) 73–81.

[13] T. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector
for solving consensus, J. Assoc. Comput. Mach. 43 (4) (July 1996)
685–722.

[14] T. Chandra, V. Hadzilacos, S. Toueg, B. Charron-Bost, On the
impossibility of group membership, in: 15th ACM Symposium on
Principles of Distributed Computing (PODC), 1996, pp. 322–330.

[15] T. Chandra, S. Toueg, Unreliable failure detectors for reliable
distributed systems, J. Assoc. Comput. Mach. 43 (2) (March 1996)
225–267.

[16] K. Cho, K. Birman, A group communication approach for mobile
computing, Proceedings of the Workshop on Mobile Computing
Systems and Applications, Santa Cruz, California, December 8–9,
1994; Also Technical Report CS TR94-1424, Cornell University.

[17] G.V. Chockler, I. Keidar, R. Vitenberg, Group communication
specifications: a comprehensive study, ACM Comput. Surveys 33 (4)
(December 2001) 1–43.

[18] D. Dolev, D. Malkhi, The Transis approach to high availability cluster
communication, Commun. Assoc. Comput. Mach. 39 (4) (April 1996)
64–70.

[19] P. Ezhilchelvan, R. Macêdo, S. Shrivastava, Newtop: a fault-
tolerant group communication protocol, in: Proceedings of the IEEE
15th International Conference on Distributed Computing Systems
Vancouver, 1995, pp. 296–306.

[20] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed
consensus with one faulty process, J. Assoc. Comput. Mach. 32 (2)
(April 1985) 374–382.

[21] S. Frolund, R. Guerraoui, Implementing e-transactions with
asynchronous replication, Internatinal Conference on Computational
Systems and Networks (DSN 2000), New York, June 2000, pp.
449–458.

[22] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility,
IEEE Trans. Software Eng. 24 (5) (May 1998).

[23] B. Glade, K. Birman, R. Cooper, R. van Renesse, Lightweight process
groups in the Isis system, Distributed Systems Eng. 1 (1993) 29–36.

[24] R. Guerraoui, A. Schiper, Consensus service: a modular approach for
building fault-tolerant agreement protocols in distributed systems, in:
Proceedings of the 26th International Symposium on Fault-Tolerant
Computing (FTCS-26), Japan, June 1996, pp. 168–177.

[25] D. Johansen, K. Marzullo, F.B. Schneider, K. Jacobsen,
D. Zagorodnov, NAP: practical fault-tolerance for itinerant
computations, in: Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems (ICDCS’99), Austin,
TX, USA, May–June 1999.

[26] I. Keidar, J. Sussman, K. Marzullo, D. Dolev, A client-server oriented
algorithm for virtually synchronous group membership in WANs,
in: 20th International Conference on Distributed Computing Systems
(ICDCS), April/2000, pp. 356–365.

[27] B.W. Lampson, Reliable messages and connection establishment, in:
S. Mullender (Ed.), Distributed Systems, Addison-Wesley, Reading,
MA, 1993.

[28] R.J.A. Macêdo, F.M. Assis Silva, Mobile groups, Technical Report
RI001/01, LaSiD/UFBA (Distributed Systems Laboratory/Federal
University of Bahia), February 2001.

[29] R.J.A. Macêdo, F.M. Assis Silva, Coordination of mobile processes
with mobile groups, in: Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN2002,
Washington, DC, June 23–26, 2002, pp. 177–186.

[30] S. Mishra, P. Xie, Interagent communication and synchronization
support in the D’Agent mobile agent-based computing system, IEEE
Trans. Parallel Distributed Systems (TPDS) 14 (3) (March 2003).

288 R.J.A. Macêdo, F.M. Assis Silva / J. Parallel Distrib. Comput. 65 (2005) 275–288

[31] A. Murphy, G.P. Picco, Reliable communication for highly mobile
agents, Proceedings of the Joint Symposium ASA/MA’99, October
1999.

[32] ObjectSpace, Voyager—ORB 3.1 Developer Guide, Object Space,
Inc. 1999.

[33] S. Pleisch, A. Schiper, Modeling fault-tolerant mobile agent execution
as a sequence of agreement problems, in: Proceedings of the
19th IEEE Symposium on Reliable Distributed Systems (SRDS),
Nuremberg, Germany, October 2000, pp. 11–20.

[34] G.P. Picco, A.L. Murphy, G.-C. Roman, Linda meets mobility, in:
D. Garlan, J. Kramer (Eds.), Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), Los Angeles (USA),
ACM Press, New York, 1999.

[35] R. Prakash, R. Baldoni, Architecture for Group Communication in
Mobile Systems, in: Proceedings of the 17th IEEE Symposium on
Reliable Distributed Systems, Indiana, USA, October 1998.

[36] R. Prakash, M. Raynal, M. Singhal, An efficient causal ordering
algorithm for mobile computing environments, in: Proceedings of the
16th International Conference on Distributed Computing Systems,
May 27–30, 1996, Hong Kong, IEEE Computer Society, New York,
1996.

[37] M. Ranganathan, M. Bednarek, D. Montgomery, A reliable message
delivery protocol for mobile agents, Proceedings of the Joint
Symposium ASA/MA2000, September 2000.

[38] R. Renesse, K. Birman, R. Cooper, B. Glade, P. Stephenson, The
horus system, in: K. Birman, R. Renesse (Eds.), Reliable Distributed
Computing with the Isis Toolkit, IEEE Computer Society Press, Los
Alamitos, CA, 1993, pp. 133–147.

[39] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P.
Verissimo, K. Birman, A dynamic light-weight group service, in:
15th IEEE International Symposium on Reliable Distributed Systems
(SRDS) (October 1996); pp. 23–25.

[40] K. Rothermel, M. Strasser, A fault-tolerant protocol for providing
the exactly-once property of mobile agents, in: Proceedings of the
17th IEEE Symposium on Reliable Distributed Systems (SRDS),
West-Lafayette, Indiana, October 1998, pp. 100–108.

[41] A. Schiper, Early consensus in an asynchronous system with a
weak failure detector, Distributed Comput. 10 (3) (April 1997)
149–157.

Raimundo José de Araújo Macêdo is a
Professor of Computer Science at Federal
University of Bahia (UFBA) in Brazil, where
he founded the Distributed Systems Labo-
ratory (LaSiD) in 1995. Currently, he is the
head of LaSiD and coordinates the Mas-
ters Program on Mechatronics. He received
a B.Sc, M.Sc., and Ph.D. in Computer Sci-
ence from UFBA, University of Campinas
(Unicamp/Brazil), and University of New-
castle upon Tyne (England), respectively. His
research interests include the many aspects
of dependable distributed systems. He has

served as a PC member on a number of conferences, including
IEEE/IFIP International Dependable Systems and Networks Confer-
ence (DSN) and the Brazilian Symposium on Computer Networks
(SBRC).

Flávio M. Assis Silvareceived his BSc, MSc
and PhD in Computer Science, respectively,
from the Federal University of Minas Gerais,
Brazil (1999), University of Campinas (Uni-
camp), Brazil (1993), and Technical Univer-
sity Berlin, Germany (1999). Since 1999 he
is a researcher at LaSiD, the Distributed Sys-
tems Laboratory of the Federal University
of Bahia (UFBA), Brazil, and since 2001 he
holds a position as lecturer at the Depart-
ment of Computer Science of the same Uni-
versity. His main research interest areas are
mobile agent systems and applications,

reliable distributed system, and wireless sensor networks.

	The mobile groups approach for the coordination of mobile agents
	Introduction
	Related work
	Mobile groups
	System model and assumptions
	Mobile group properties
	View safety properties
	View liveness properties
	Message delivery properties

	A membership protocol for the mobile groups
	Handling agent crashes
	The message stability assessment task
	The ChangingView task
	Handling moves

	Implementation issues
	Discussion
	Applying mobile groups to other application scenarios

	Correctness of the protocol

	Conclusions
	References

