
A TLA+ Formal Specification and Verification
of a New Real-Time Communication Protocol

Paul Regnier 1,2 George Lima 3 Aline Andrade 4

Distribued Systems Laboratory (LaSiD)
Department of Computer Science (DCC)

Federal University of Bahia (UFBA)
Cep 40.170-110, Salvador, Bahia, Brazil

Abstract

We describe the formal specification and verification of a new fault-tolerant real-time communication pro-
tocol, called DoRiS , which is designed for supporting distributed real-time systems that use a shared
high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of
confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS
was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC
were the supporting design tool. The protocol conception was improved by using information provided by
its formal specification and verification. In the end, a precise and highly reliable protocol description is
provided.

Keywords: Formal Specification, Verification, TLA+, Real-Time Protocol

1 Introduction

New automation and control systems are characterized by the need of high levels
of flexibility and service integration in addition to their usual requirements such
as fault tolerance and predictability. This has motivated the development of new
communication protocols based on high-bandwidth medium, such as Ethernet or
Wireless. Interested readers can find good surveys on this topic [4,6,12].

Since designing is a reasonable complex task, the use of formal methods plays an
important role to guarantee correct design and reliable implementation. Motivated
by noticeable advances in the field [3,7], formal methods have increasingly been

1 This work has received funding support from the Brazilian funding agencies CNPq (Grant number
475851/2006-4) and FAPESB (Grant number 7630/2006).
2 Email: pregnier@ufba.br
3 Email: gmlima@ufba.br
4 Email: aline@ufba.br

Electronic Notes in Theoretical Computer Science 240 (2009) 221–238

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.05.054

mailto:pregnier@ufba.br
mailto:gmlima@ufba.br
mailto: aline@ufba.br
http://www.elsevier.com/locate/entcs

applied in the study and verification of many of these communication protocols
[9,13,1,5], some of which with real-time characteristics.

Presenting the case study of the specification and verification of a new real-time
communication protocol, called DoRiS (a Double Ring Service protocol for Real-
Time Systems), we illustrate how formal methods can help the design of the protocol
as well as its implementation. We have used here the Temporal Logic of Actions
and its associated language TLA+ [10]. Our choice of TLA+ to specify and verify
DoRiS was motivated by the following reasons. TLA+ provides a modular structure
which allows for an incremental process of specification refinements, according to
the abstraction level required. Thus, a concrete specification, close to the code level,
can be achievable. Also, the TLC model-checker provides an automatic verification
of the specification and its properties. Hence, the use of TLA+ has allowed us
to carry out both the conception and the specification of DoRiS interactively and
progressively as an integrated software engineering process. We present here the
final specification and model-checking of DoRiS , which has been successfully used
as a basis for the protocol implementation on a Linux-based real-time platform [14].

The remainder of this paper is structured as follows. The protocol is outlined in
Section 2. Section 3 gives our modeling assumptions and some initial concepts on
TLA+ before addressing the description of the specification itself. Some relevant
properties of DoRiS are shown by formal verification. They are commented upon
Section 4. In Section 5, we also comment on how the formal specification has been
useful during the design of DoRiS . Conclusions are drawn in Section 6.

2 The DoRiS protocol

DoRiS is a deterministic protocol built on top of a shared medium communication
layer. The protocol works as a logical layer, extending the MAC and LLC layer [8].
It is designed to support hybrid systems where industrial sensors, actuators and
controllers share the communication network with other soft applications. In such
a hybrid configuration, the processing speed and the communication characteristics
of the two types of application may differ considerably [2]. Thus, we assume that a
number of industrial appliances (micro-controllers, sensors etc), called hereafter slow
nodes, have low processing times when compared to fast nodes such as workstations.

2.1 The model and terminology

The set of nodes (slow or fast) connected through a shared medium make up a DoRiS
segment. Although many DoRiS segments can be inter-connected by switches or
routers, we will restrict our specification and verification to a single DoRiS segment.

At each node, a server is responsible for the transmission of hard real-time and
best-effort messages. Slow nodes send only hard real-time messages and fast nodes
may send both hard and best-effort messages. Each server maintains a hard queue,
which stores hard real-time messages to be sent. Fast servers also maintain a soft
queue, which stores outgoing best-effort messages. Although there is only a single
server in each node, we define HardServ [i] and SoftServ [i], the two server threads

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238222

of node i dealing with the hard and soft queues, respectively. As there may be
many processes executing on a node, some local priority policy has to be defined
to schedule messages of different applications. However, this topic is beyond this
paper scope, which is focused only on the communication aspects.

We define nServ as the total number of servers and ServID = {1, 2, . . . ,nServ},
as the corresponding set of identifiers. HardServ and SoftServ are identified by
the elements of ServID . The sets of HardServ and SoftServ , respectively denoted
HardRing and SoftRing , define the two logical rings of a DoRiS segment, where a
single token rotates. As all servers must participate in the hard communication,
HardRing equals ServID while SoftRing is a subset of ServID .

Messages from slow nodes are short, usually periodic, and have hard real-time
constraints. Such messages, called hard messages, are assumed to have a constant
length denoted l (e.g. l = 64B over Ethernet). They are processed upon reception
by the servers within a maximum processing time, denoted π, which is associated to
worst-case processing time of slow nodes. Hard messages are transmitted through
the network within a maximum transmission time δ � π. The communication
medium can be under-utilized if only slow nodes are present in the DoRiS segment.
However, if there are fast nodes sharing the medium, DoRiS allows them to use
this spare bandwidth. Messages exchanged by fast nodes, called soft messages,
have a variable length denoted L, usually larger than l . (e.g. l � L � 1500B over
Ethernet).

We assume a synchronous distributed system. Thus, actions taken by nodes can
be synchronized with each other. This assumption is based on the time division
scheme of DoRiS , which, as will be seen, has regular and predictable points of
synchronism which take place within a small time window. This implies that node
clocks are synchronized. We also assume that nodes may crash and transmitted
messages may be lost. If some part of the message is altered, by electromagnetic
interference for example, it is assumed that a checksum test is performed by the
receiver, allowing it to transform this fault in an omission by simply discarding the
erroneous message.

2.2 The Medium Access Control Scheme

The time of the communication on a DoRiS segment is divided into a series of
communication rounds (C-Rd) and membership rounds (M-Rd), as illustrated in
Figure 1. During M-Rd, the membership control algorithm is responsible for keeping
a common membership view before the communication round begins. Since the
focus of the specification is on the communication rounds, the membership round
will not be further described and we consider hereafter a fixed and shared value of
nServ .

Using TDMA (Time Division Multiple Access), each C-Rd is defined as an arbi-
trary but fixed number of periodic cycles, which in turn are subdivided into exactly
nServ chips (see Figure 1). Each of these chips is subdivided into two windows,
hard and soft, denoted WH and WS , respectively, which are associated with hard
and non-hard real-time traffics. Hard servers send messages in WH and soft servers

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 223

A DoRiS cycle (nServ ∗ ΔC)

cycle

SRSE

WH

chipchip chipchips

cycle

WS

C-RdM-Rd

Fig. 1. The DoRiS Time Division Scheme

use WS to transmit theirs. The sizes of WH and WS are denoted ΔH and ΔS ,
respectively, and the chip size is defined by ΔC = ΔH + ΔS . To allow for some
flexibility and message scheduling policy, each hard real-time window WH is fur-
ther divided into two slots, the elementary (SE) and the reservation (SR) slots.
Messages sent in these two slots are hard messages, called elementary and reserva-
tion messages, respectively. Once per cycle each hard server sends an elementary
message in SE while SR is used to implement a reservation mechanism. In order
to tolerate crash failure and provide reliability for the whole system, elementary
messages are mandatory.

The reservation mechanism works as follows. Each elementary message sent by
a hard server i carries a list of slots this server is interested in for transmitting ad-
ditional messages. This list contains the identifiers of such reservation slots in the
next nServ chips. Hard server i is only allowed to reserve a slot if two conditions
hold: (i) such a slot has not been reserved by another server; and (ii) hard server
i is in a consistent state. Condition (ii) holds if i has received the previous nServ
elementary messages. Consequently, such a dynamic slot allocation scheme is tol-
erant to message omissions. This reservation mechanism is an innovation of DoRiS
and allows applications to implement some scheduling policy. Indeed, a hard server
has the right to use an elementary slot per cycle and may use up to nServ −1 other
slots.

The medium access control of DoRiS is regulated by an implicit token, which
rotates in the hard and soft rings (Section 2.1), according to timing and/or logical
conditions built upon observed communication activities. A pure TDMA scheme is
used to isolate the two rings of DoRiS . As for the soft ring scheme, the process group
membership is dynamically managed using the following mechanism. Elementary
messages contain a bit which, whenever set, informs all servers that the sending
server will thenceforth participate of the soft ring. When the soft queue of a server

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238224

gets empty, it simply unsets the bit flag of its elementary message. During WS , the
token rotates, according to the soft ring order, whenever an interruption is issued
by the medium device.

3 The specification

In this section we give a detailed top-down description of the DoRiS specification
even though we present only the most relevant protocol actions for the sake of
space. 5

In the specification, time varies by discrete unity. Although such a discrete rep-
resentation can compromise the model accuracy of asynchronous systems in gen-
eral [3], it is acceptable for synchronous message-passing protocols [11]. We also
consider that whenever a specified action gets enabled, it either happens without
delay or is immediately disabled. This implies that timers are specified with null
jitter. Further, since we assume a synchronous model and to avoid the specifica-
tion of clock synchronization details, we consider that all nodes share a common
global clock. Note that elementary messages are mandatory and frequent enough
in comparison with the maximum drift of clocks so that all nodes can synchronize
their local clocks with high precision and accuracy, even in the presence of a few
message omissions. Before stepping into the specification, some concepts on TLA+
are given.

3.1 Concepts on TLA+

The Temporal Logic of Actions (TLA) and its associated formal language (TLA+)
combine the Temporal Logic of TLA [10] with the expressiveness of predicate logic
and Zermelo-Fraenkel set theory. Equipped with its associated model-checker,
TLC [16], one can specify and verify both hardware and distributed protocols. In
this section, we present some basic syntax of TLA+. Other information on TLA+
will be given along with the description of the DoRiS specification. Readers inter-
ested in a comprehensive description of TLA+ can refer to Lamport’s publication
[10].

In a TLA+ specification, a computation of a system is represented as a sequence
of states. A state of the system is an assignment of constant values to variables
and a sequence of states is called a behavior which describes a history. A pair of
consecutive states, i and f say, is named a step, denoted i → f . The prime (′)
operator is used to distinguish the values of variables on a step. Considering a given
step S : i → f and assuming a variable v on S, the unprimed occurrence (v) refers
to its value in i while the primed occurrence (v ′) refers to its value in f .

A state predicate is a boolean expression where only unprimed variables occur. A
transition function on a step is an expression where primed and unprimed variables
occur. For example, if step S is such that v = 0 in i and v = 1 in f , the transition
function [v ′ − v] equals 1 on S . Finally, an action is defined as a boolean-valued

5 The complete specification is available at: http://www.lasid.ufba.br/publicacoes/reltec/DoRiS.zip

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 225

http://www.lasid.ufba.br/publicacoes/reltec/DoRiS.zip

transition function on steps. In our example, the action defined by [v ′ = v + 1] is
true of step S . Note that for a given step S , the next-state relation from state i to
state f , usually called state transition function in Finite State Machine formalism,
is defined by the set of actions defined on S . As an action can be made up of several
other actions, this set is also an action.

TLA+ temporal formulas are boolean assertions about behaviors. A behavior
satisfies a formula F if F is a true assertion of this behavior. The temporal logic
operator � is used to define the transition relationship between states. The semantic
of � is defined as follows: for some behavior Σ and some action A, the temporal
formula Spec = �[A]vars is true - or simply “Σ satisfies Spec” - if and only if for any
step S : i → f of Σ that changes the tuple vars of all flexible variables, A is true on
S .

3.2 Constants and Variables

In order to define a model of the system, a TLA+ specification makes use of con-
stants and variables. The following six constants were used here: (i) nServ , the
DoRiS server number; (ii) deltaChip, the duration ΔC of a chip; (iii) delta, the
transmission time δ of a hard message; (iv) pi , the processing time π of a hard mes-
sage by the slowest device of the DoRiS segment; (v) maxTxTime, the transmission
time of the largest message (1524 bytes for Ethernet); (vi) horizon, the upper bound
on the number of cycles used for model-checking. Observe that two hard messages
can be sent in each chip. Thus, the value of ΔC was chosen such that the processing
of two hard messages is feasible during a single chip. This restriction implies that
ΔC > 2 ∗ π. Other constants may be defined using the “ Δ=” symbol. For instance,
the set of servers identifiers ServID , is defined by ServID Δ= 1 . . nServ , where for
i < j , i . . j Δ= {i , i + 1, . . . , j}.

The attributes of DoRiS are grouped into four variables, called Shared ,
HardState, SoftState and History . Shared is used to represent the common vi-
sion of the system shared by all servers. It is made up of six fields: (i) soft holds the
current soft ring membership; (ii) chipTimer is an increasing and cyclic timer that
range from 0 to deltaChip; (iii) chipCount is an increasing and cyclic modulo-nServ
counter, which holds the value of the on-going chip. This counter is periodically
incremented by the action NextChip whenever chipTimer times out at the end of
each chip (as will be seen in Section 3.6). (iv) cycleCount is an increasing and
cyclic horizon-modulo counter; (v) medium represents the physical medium state.
If no message is being transmitted, medium equals {}. Otherwise, medium stores
the message being transmitted. (vi) macTimer is a counting-down timer, which
represents the message transmission time. It equals 0 when the medium is idle.
Otherwise, it equals the remaining time to finish an on-going message transmission.

Both HardState and SoftState are nServ -tuples whose fields are used to store
the local state information of each server. HardState has four fields: (i) msg is the
list of hard messages stored in local buffers after their reception by the network
device; (ii) execTimer is a decreasing timer that specifies the time remaining to
complete the processing of a hard message; (iii) res is the reservation list for the

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238226

nServ next chips; (iv) cons is a counter that represents the number of elementary
messages received in a complete DoRiS cycle. SoftState has three fields: (i) token
is a counter used to control the token circulation during WS ; (ii) list is the list of
soft messages waiting to be transmitted; (iii) count is the number of soft messages
received during WS .

Finally, History is an observer variable used to check specific temporal proper-
ties. It has two fields: (i) elem is the number of elementary messages sent in a cycle,
and; (ii) rese is the number of reservation messages sent in a cycle.

3.3 The main formula Spec

DoRiS main formula, shown in Figure 2, describes the behaviors of the system
through the definition of the set of initial states, called Init, the next-state relation,
here based on the disjunct of the two actions, Next or Tick, and a liveness constraint.
A behavior Σ satisfies Spec iff the first state of Σ satisfies Init and every step of
Σ satisfies either Next or Tick and the Liveness condition, defined by Liveness Δ=
��Tick . This box formula ensures that a behavior that satisfies Spec eventually
progress. In addition, due to the circular time representation, behaviors that satisfy
Spec are periodic, allowing for the model-checking of some finite models.

Next Δ= ∨ ∃ s ∈ HardRing : ElemSend(s) ∨ ReseSend(s)
∨ ∃ t ∈ SoftRing(Shared .soft) : SoftSend(t)
∨ ∃msg ∈ Shared .medium : Receive(msg)

Spec Δ= Init ∧ �[Next ∨ Tick]vars ∧ Liveness

Fig. 2. The Next and Spec formulas

• Init − The Init predicate defines the initial protocol states by assigning
values to all variables used in the specification. Since Init is a long formula that
does not describe functionalities of the protocol, it is omitted here.

• Next − This action, also shown in Figure 2, describes the protocol func-
tionalities that leaves time unchanged.The first line of this formula describes the
hard ring sending services. It states that a given hard server s may take one of two
actions, ElemSend(s) or ReseSend(s). These actions describe the transmission of
an elementary message or a reservation message, respectively. The soft ring sending
service is specified in the second line of the formula by means of the SoftSend(t)
action. A soft server t may take the ElemSend(t) step if it is a member of the
soft server group (soft field of the Shared variable). Finally, the third line specifies
the reception action that can take place whenever some message is available in the
medium. Actually, as will be seen, this action takes two distinct formulations de-
pending on whether the incoming message is hard or soft. If no state satisfies the
enabling conditions of these five actions, the only remaining possibility is the Tick
action, unless deadlock has been reached.

• Tick − This action, defined as Tick Δ= NextTick ∨ NextChip, represents
the flow of time. To allow for the verification of some finite model, despite the

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 227

unbounded nature of time, we use a circular time representation by defining the
Tick action as a disjunction of two actions: NextTick , which increments the timers
by discrete steps, and NextChip, which implements the time circularity.

3.4 The Hard Ring

The actions that specify the hard ring are described in this section.

• ElemSend − This action, shown in Figure 3, describes the rules used to send
elementary messages. The three enabling predicates of the ElemSend formula state
that task t is allowed to send a message when: (i) the previous transmission has
finished (medium = {}); (ii) the chip is starting (chipTimer = 0); and (iii) hard
server s has the token (i = ChipCount). Note the use of the construct let to
define local variables. Here, the hardID(s) function is used to define the identifier
value i of server s, and flag is set to 1 whenever some soft message is waiting to be
sent. These three conditions ensure that s only sends one elementary message per
DoRiS cycle.

ElemSend(s) Δ= Shared .medium = {}
∧ Shared .chipTimer = 0
∧ let i Δ= hardID(s)

flag Δ= if SoftState[i].list 	= 〈〉 then 1 else 0
in ∧ Shared .chipCount = i

∧ let resSet Δ= reservation(i)
in ∧ Shared ′ = [Shared except !.macTimer = delta,

!.medium = {[id �→ i , type �→ “hard”,
res �→ resSet , softFlag �→ flag]}]

∧ HardState ′ = [HardState except

![i].cons[i] = 1,
![i].res = [j ∈ ServID �→

if j ∈ resSet then i else @[j]]]
∧ SoftState ′ = [SoftState except ![i].token =

if flag = 0 then − 1 else @]
∧ History ′ = [History except !.elem = @ + 1]

Fig. 3. The ElemSend action

Two others TLA+ constructs appear here. First, indentation is preferred
instead of parenthesis. Hence, the operators ∧ and ∨ are used to con-
struct meaningful indented lists. Second, a TLA+ expression like SoftState ′ =
[SoftState except ![i].token = − 1] means that the record SoftState remains un-
changed except for the entry i of its field token, which is set to −1.

As can be seen, the action ElemSend changes the values of the fields macTimer ,
medium, res and token of the Shared , SoftState and HardState variables (primed
variables). macTimer assumes the value of δ, the time it takes to transmit a hard
message and medium is filled with the elementary message sent by s. Such a message

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238228

piggybacks the sender identifier, its type, which can be either “hard” or “soft”, a
reservation set, and the value of the softFlag that indicates whether s will participate
of the next WS .

In the second “let . . . in” construct, the reservation function is used to generate
resSet , the reservation list of s, which indicates the slots s will be interested in for
transmitting additional messages. Its definition depends on the needs of the server
for extra-bandwidth. For simplicity, we assumed here that all servers try to reserve
the maximum number of reservation slots. Recalling Section 2.2, a server can do so
if it is in a consistent state (has received all previous nServ elementary messages)
and the slots are still not reserved. If s is inconsistent, it is still allowed to carry
out the reservation of SR of chip i in the next cycle as no other server could have
reserved such a slot before. The reservation function is not shown here since it is
related to the application layer.

The field cons of HardState[i] is a tuple of flags that keeps track of the elemen-
tary messages received by each server. The entry cons[j] is set to 1 whenever an
elementary message sent by server j is received by server i or when server i = j
sends its elementary message. When an elementary message sent by j is omitted at
server i , the corresponding entry of tuple HardState[i].cons[j] remains null, allowing
for the detection of the failure. As will be seen, the action NextTick resets all values
of cons[Shared .chipCount] to 0.

Finally, the token counter is updated. This counter is used to define the rules of
the soft communication as will be seen in Section 3.5. If flag equals 0, token is set
to −1, as server s will not participate of the soft communication in the next cycle.

The field res of HardState[i] stores the reservation view of server i . Action
ElemSend keeps res[j] unchanged if no reservation is sent by i for slot j , otherwise
it sets its value to i . The definition of HardState[i].res makes use of the exception
clause to state that res is only updated regarding entry i , according to resSet , the
reservation set provided by the function reservation. In an exception clause, the @
symbol stands for the original value of the variable, which here is HardState[i].res[j].
The symbol �→ is used to assign values to the entries of a record. Here, all entries
j ∈ ServID of HardState ′[i].res are updated.

• ReseSend − This action, shown in Figure 4, describes the emission of a
reservation message. The two first enabling predicates ensure that the medium is
idle and that SR has begun. Then, HardState[i].res[Shared .chipCount] = i states
that server i has a reservation for the on-going chip. In such a case, macTimer
is set to δ to represent the reservation message transmission time. Then, medium
is filled with the reservation message, which piggybacks its sender identifier, its
message type, and the special value {−1} as the reservation set. Since a reservation
message cannot be used to make other reservations, such a message carries the
{−1} special value, which distinguishes it from an elementary message. Then, the
sender reservation list is updated by setting the corresponding entry to -1. Finally,
the unchanged operator lists the variables whose values are not updated by the
action.

• Receive − This action, shown in Figure 5, describes the reception of a mes-

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 229

ReseSend(s) Δ=
∧ Shared .medium = {}
∧ Shared .chipTimer = delta
∧ let i Δ= hardID(s)

in ∧ HardState[i].res[Shared .chipCount] = i
∧ Shared ′ = [Shared except

!.macTimer = delta,

!.medium = {[id �→ i , type �→ “hard”, res �→ { − 1}]}]
∧ HardState ′ = [j ∈ ServID �→ [HardState[j] except

!.res[Shared .chipCount] = − 1]]
∧ History ′ = [History except !.rese = @ + 1]
∧ unchanged SoftState

Fig. 4. The ReseSend action

sage. Recall from definition of the Next action (see Figure 2) that Receive is enabled
if there is some message m in the medium. In such a case, when the transmission
of m is completed (macTimer = 0), its reception can happen. According to the
message type (“hard” or “soft”), either HardRecv or SoftRecv is enabled.

Receive(m) Δ=
∧ Shared .macTimer = 0
∧ case m.type = “hard” → HardRecv(m)

� m.type = “soft” → SoftRecv(m)

Fig. 5. The Receive action

• HardRecv − This action, shown in Figure 6, describes the reception of a
hard message. According to the information piggybacked on m, different updates
of Shared are chosen by the construct “case . . . → . . . ”. When the res field differs
from {−1}, it means that m is an elementary message. In such a case, the soft group
is updated, according to the value of softFlag . If softFlag equals 1, the sender of m
is added to the soft group indicating that this node has a soft message to transmit.
Otherwise, softFlag equals 0, and the sender of m is deleted from the soft group.
In this case, the tokenUpdate action, not shown here for the sake of space, is used
to update the token accordingly.

Also HardState is updated to represent the reception of a message. The mod-
eling of omission faults, specified by the NoRecvSet state function, is not detailed
here since it has a simple semantics. For some message m, the set NoRecvSet(m)
was defined has an arbitrary subset, possibly empty, of ServID . When an identifier
i is an element of NoRecvSet(m), a reception failure of m occurs at server i and
the variable HardState remains unchanged. Recall from action ElemSend (see Fig-
ure 3) that cons is a tuple of the HardState variable, which is set to 1 whenever
an elementary message is received. Hence, the omission failure of receiving a hard
message sent by server m.id implies that cons[m.id] is not set and server i turns

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238230

HardRecv(m) Δ=
∧ case m.res 	= { − 1} ∧ m.softFlag = 1

→ ∧ Shared ′ = [Shared except !.medium = {}, !.soft = @ ∪ {m.id}]
∧ unchanged SoftState

� m.res 	= { − 1} ∧ m.softFlag = 0
→ ∧ Shared ′ = [Shared except !.medium = {}, !.soft = @ \ {m.id}]

∧ tokenUpdate(m)
� m.res = { − 1}
→ ∧ Shared ′ = [Shared except !.medium = {}]

∧ unchanged SoftState
∧ HardState ′ =

[i ∈ NoRecvSet(m) �→ HardState[i]] @@
[i ∈ ServID \NoRecvSet(m) �→ [HardState[i] except

!.msg = Append(@, m),
!.execTimer = if Len(HardState[i].msg) = 0 then pi else @,

!.cons[m.id] = if m.res 	= { − 1} then 1 else @,

!.res = if m.res = { − 1}
then [j ∈ ServID �→ if j = m.id then − 1 else @[j]]
else [j ∈ ServID �→ if j ∈ m.res then m.id else @[j]]]]

∧ unchanged History

Fig. 6. The HardRecv action

to be inconsistent. Its reservation capacity is then limited (see Figure 3) and the
server is not able to send soft message until it is consistent again, as will be show
shown when describing Figure 7.

When server i is not in NoRecvSet(m), m is received normally and the various
fields of HardState are updated. Message m then is appended to the msg list of
incomming messages and the associated timer execTimer is set to the maximum
processing time of m if it was not previously set. The entry m.id of cons is set to 1
to represent the successful reception of an elementary message and, finally, the res
field is updated, according to the res set piggybacked on m.

As already mentioned, a hard message received by server i can either be an
elementary or a reservation message. In the latter case (m.res = ResMsg{−1}), the
reservation list regarding the message sender must be reset to −1, accounting for the
use of the SR by the sender (m.src). Note that the tuple cons does not change since
consistency is related to the reception of elementary messages only. Conversely,
when receiving an elementary message, cons is reset and the reservation list is
updated according to the list carried by the received message.

3.5 The Soft Ring

In the soft ring, the token rotation is based on the observation of the past communi-
cation. Hence, the soft token is incremented either when a soft message is received
or when a soft server is removed from the soft membership, as described in Figure 6.

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 231

• SoftSend − This action, shown in Figure 7, describes the emission of a soft
message. It gets enabled when the following four predicates hold: (i) a WS has
begun; (ii) it has not finished yet; (iii) the medium is empty; and (iv) server s
holds the token. This latter predicate appears in the IN clause of the “let . . . in”
construct, as it makes use of the identifier i of the soft component of server s,
defined by the function softID(s,Shared .soft).

SoftSend(s) Δ= Shared .medium = {}
∧ 2 ∗ delta ≤ Shared .chipTimer ∧ Shared .chipTimer ≤ deltaChip
∧ let i Δ= softID(s, Shared .soft)

lenTX Δ= lenMsg(i)
d Δ= Shared .chipTimer + lenTX
consis Δ= ∀ j ∈ ServID : HardState[i].cons[j] = 1
wait Δ= (d > deltaChip) ∨ (¬consis)
noMsg Δ= (i ∈ Failed) ∨ wait

in ∧ i = SoftState[i].token
∧ Shared ′ = [Shared except

!.macTimer = if noMsg then Infinity else lenTX ,

!.medium = if noMsg then @ else {[id �→ i , type �→ “soft”]}]
∧ SoftState ′ = [SoftState except

![i].list = if wait then @ else tailList(@),
![i].token = case wait → @

� ¬consis → − 1
� other → next(i , Shared .soft),

![i].count = if noMsg then @ else @ + 1]
∧ unchanged 〈HardState, History〉

Fig. 7. The SoftSend action

Whenever enabled, SoftSend sets lenTX , the transmission time of message msg
that server s wants to send. Then, the local variable d is defined to be the current
value of chipTimer plus lenTX . Three state predicates are defined: (i) consis,
which is true when no elementary message omission failure has occurred at s in the
previous cycle; (ii) wait , which is true when s has to wait for the next WS , either
due to lack of time to send msg or because it is in an inconsistent state; (iii) noMsg ,
which is true either when wait is true or when i ∈ Failed , where Failed is a set of
current crashed servers. This set, also not shown here, is defined as a function of
the server identifiers and the value of chipCount .

Then the fields of Shared and SoftState are updated. If a message msg is sent,
macTimer is set to lenTX and medium is filled with msg . Otherwise, macTimer
is deactivated by setting it to infinity and medium remains unchanged.

As for SoftState, three fields are updated regarding server s whose identifier is i .
If a message is not transmitted due to lack of time, the field list is kept unchanged.
Otherwise, the sent message is deleted from the list by tailList . The fields token
and count of SoftState[i] also remain unchanged is no message is sent because of

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238232

lack of time. This means that i holds the right to transmit, waiting for the next
WS . However, if server s is inconsistent, its token field is set to −1, meaning that
s is not allowed to send message until it becomes consistent again. If a message is
sent, the token is passed on to the next server in the ring. Similarly, count needs
to be incremented only if a message is sent. This counter is used to avoid deadlock
in the presence of omission failures, as will be clear in the next section.

The SoftRecv action is similar to the HardRecv and is omitted here. Upon
reception of a soft message, server i updates the value of token and increments
count .

3.6 Time representation

The Tick action, composed of NextTick and NextChip, deals with the protocol
progress.

• NextTick − This action, shown in Figure 8, regulates the passage of time.
As mentioned in Section 3, time is specified as an integer entity. However, in order
to minimize the generation of states during model-checking, the time increment
d of a NextTick step is defined as the minimum time value needed to enable a
protocol action. First, two conditions variables noRese and noSoft are defined.
They represent scenarios where a SR begins and no server has a reservation for this
slot (noRese) and a WS begins and no server has soft message to send (noSoft).
Then, the set tmp is defined as the union of the values of the execution timers
associated to the processing of received messages by slow nodes, and the remaining
time before the end of the current chip, i.e. deltaChip − chipTimer . Three cases
must then be considered when defining d : (i) if noRese holds, d = min(delta, tmp);
(ii) if noSoft is true, d = tmp; otherwise (iii) d is the minimum of tmp and the time
to receive the next message. Cases (i) and (iii) are necessary for avoiding deadlock
conditions.

Once d is determined, the flow of time is represented by updating the value
of all timers, operation that is carried out by the timerUpdate action of the “in”
clause. As timerUpdate is a simple formula, it is omitted here. Since all the other
actions are timed by at least one of these timers, this strategy is safe and efficient.
Indeed, some model-checking experiments we carried out showed that this strategy
can speed up the model-checking process significantly. This is because the time
passes by quanta, stepping from an enabled action to the next, without exploring
unnecessary states.

• NextChip − This action, omitted here for the sake of space, is responsible
for the transition between a chip and its successor. It is enabled when the medium
is empty and when chipTimer has timed out (chipTimer = deltaChip). In such a
case, a chip has just finished and action NextChip resets the global counting-up timer
chipTimer and increments chipCount modulo nServ . When the next chip belongs
to a new cycle, cycleCount is incremented and the soft message list of each server is
redefined. Note that the circular time structure of DoRiS is specified by this action
through the use of these three fields, chipTimer , chipCount and cycleCount .

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 233

NextTick Δ=
let noRese Δ= ∧ Shared .medium = {}

∧ Shared .chipTimer = delta
∧ ∀ i ∈ ServID : HardState[i].res[Shared .chipCount] 	= i

noSoft Δ= ∧ 2 ∗ delta ≤ Shared .chipTimer
∧ Shared .chipTimer ≤ deltaChip
∧ Shared .medium = {}
∧ ∀ j ∈ Shared .soft : SoftState[j].token 	= j

tmp Δ= {HardState[i].execTimer : i ∈ ServID} ∪
{deltaChip − Shared .chipTimer}

d Δ= case noRese → min({delta} ∪ tmp)
� noSoft → min(tmp)
� other → min({Shared .macTimer} ∪ tmp)

in ∧ d > 0
∧ timerUpdate(d , noRese, noSoft)
∧ unchanged 〈SoftState, History〉

Fig. 8. The NextTick action

4 Verification

In this section we comment on the running cost obtained by running the TLC model-
checker [16] and on some relevant verified properties of the designed protocol.

4.1 Performance

In most of the TLC runs for the DoRiS specification, the execution time for some
finite models was found to be reasonable, although no comparison was made with
other tools. We have used a 2 Ghz Intel Core Duo processor using a java virtual
machine with a 512M heap size. Three performance metrics were considered: CPU
user time (U); the total number of generated distinct states (N); the diameter (D)
of the reachability graph. 6

Servers

2 4 6 8 10 12 14

U (seconds) 3 21 59 153 329 833 4, 117

N (#states) 853 2, 529 3, 565 5, 032 6, 430 8, 148 9, 540

D (#states) 850 2, 516 3, 486 5, 003 6, 392 8, 099 9, 482

Table 1
TLC performance data for verifying the DoRiS specification.

6 This latter metric is the smallest number d such that every state in the reachability graph can be reached
from an initial state by a path containing at most d states [10].

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238234

Table 1 illustrates the data obtained for some configurations as a function of
the number of servers. As can be seen, verifying a model of DoRiS with 14 servers
took about 4, 117 seconds to explore N = 9, 540 distinct states with reachability
graph with diameter D = 9, 482. It must be noted that D is close to N for all
configurations. Three aspects of the specification explain this good performance.
First, all actions are guarded by temporal predicates, reducing the number of ex-
plored states. Second, communication and fault scenarios were fixed for a given
verification. Third, the time increment strategy adopted in the NextTick action
(see Figure 8) reduced significantly the number of unnecessary states. Indeed, we
compared this strategy with a naive one that increments time by a unit at each
step. For a configuration with 6 servers, the naive strategy took 453 seconds to
be verified with N = 21, 604 and D = 11, 261. Using 14 servers, no answer was
returned by TLC after 20 hours of execution, indicating a rapid state explosion.

4.2 Verification of DoRiS properties

The absence of deadlocks is automatically checked by TLC. On the other hand,
type invariance are elementary properties to be specified. Instead of describing
such basic properties, this section focus on those more related to the protocol func-
tionalities. More specifically, the following relevant properties of the DoRiS protocol
were verified: (i) the protocol provides communication isolation, avoiding collisions;
(ii) each task always sends an elementary message per cycle and no task’s buffer
overflow occurs; (iii) the reservation mechanism is safe and correct; and (iv) soft
communication fairness holds. What follows is the specification of these properties.

Send(s) Δ= ∨ ∧ s ∈ HardRing
∧ (enabled ElemSend(s) ∨ enabled ReseSend(s)))

∨ ∧ s ∈ SoftRing(Shared .soft)
∧ enabled SoftSend(s))

CollisionAvoidance Δ= ∀ s, t ∈ HardRing ∪ SoftRing(ServID) :
�(enabled (Send(s) ∧ Send(t)) ⇒ (s = t))

NoCollisionAvoidance Δ= ∃ s, t ∈ HardRing ∪ SoftRing(ServID) :
�((s 	= t) ∧ enabled (Send(s) ∧ Send(t)))

Fig. 9. CollisionAvoidance and NoCollisionAvoidance

• CollisionAvoidance − This temporal formula, shown in Figure 9, is true
when at most one task can send its message in a given slot. Thus, it ensures
that the DoRiS protocol avoids the occurrence of message collision. It is worth
mentioning that in order to produce behavioral traces for each checked property, we
systematically ran the TLC model-checker twice per property. First, checking the
formula and then its contraposition. The NoCollisionAvoidance temporal formula
that appears in Figure 9 is the contraposition of predicate CollisionAvoidance.

• HardRingCorrectnesss − In this formula, shown in Figure 10, we were

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 235

able to check some properties regarding the hard ring. First, it is checked that no
buffer overflow occurs, as the size of the msg buffer is at most 3. In the second
line, it is asserted that whenever NextChip takes place, the action SendElem has
been executed Shared .chipCount times. It is worth noticing the use of an observer,
namely History , which has a counter with elem as a field. This counter is reset at
the beginning of every cycle and is incremented when the action SendElem is true.
Thus, at the end of each chip, History .elem must be equal to Shared .chipCount if
each task has sent its mandatory elementary messages. In other words, SendElem is
periodically true. Recall that we specified omission failures in the reception action
(see Figure 6). This implies that sending omission and crash failures were modeled.
For instance, sending omission failure can be seen as reception failures at all nodes
and crash failures are permanent sending omission failures. Therefore, it was not
necessary to check specific scenarios of message sending omission nor task crash
failures.

HardRingCorrectness Δ=
∧ ∀ s ∈ HardRing : �(Len(HardState[hardID(s)].msg) ≤ 3)
∧ �(enabled NextChip ⇒ History .elem = Shared .chipCount)

ReservationSafety Δ=
�∀ chip, j ∈ ServID : ∧ enabled ReseSend(HardServ [j])

∧ Shared .chipCount = chip
⇒ ∧ HardState[j].res[chip] = j)

∧ (∀ i ∈ ServID \ {j} : HardState[i].res[chip] ∈ {j , − 1})
SoftRingFairness Δ=

∧ ∀ i ∈ ServID : �(i ∈ Shared .soft
⇒ (SoftState[i].list 	= 〈〉 ⇒ �(i = SoftState[i].token)))

∧ ��(∀ i ∈ ServID \ Failed : i ∈ Shared .soft ⇒ Len(SoftState[i].list) = 0)

Fig. 10. HardRingCorrectness, ReservationSafety and SoftRingFairness

• ReservationSafety − This property, shown in Figure 10, asserts that when
task j has a reservation for some SR , all other tasks are aware either of this
reservation or that they have not reserved such a slot. It implies that two tasks
cannot own a reservation for the same slot. Along with the enabling predicate
HardState[i].res[Shared .chipCount] = i of the ReseSend action, the specification
also implies that task i can only send a reservation message in a SR that it has
previously reserved.

• SoftRingFairness − This property, shown in Figure 10, asserts that all
processes will eventually receive the token (first line), and that its list of messages
will eventually be exhausted. Should the list of messages of all processes in a cycle
exceed the available bandwidth capacity for the soft communication, TLC indicates
out the violation of the second line of the formula, as expected.

As can be seen, we were able to verify relevant properties of the DoRiS protocol.
It is interesting to note that this properties were verified taking into consideration

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238236

omission and crash failures.

5 Discussion

After the protocol was conceived [15], its formal specification was derived. This for-
mer version relied on some specific hardware functionalities. For example, the soft
ring management was based on the capacity of the medium activity to be sensed
at any given time. Sensing idle periods on the medium was used to implement an
implicit token-passing scheme like in other protocols [2]. However, it was noticed
afterward that Ethernet network cards, providing such sensing capability, were not
easily available. Also, this approach would prevent extensions of the protocol for
wireless medium. Then, the specification was updated so that the token-passing
scheme would require that explicit messages be sent even when there is no applica-
tion message to transmitted. By model-checking this new version of DoRiS , it was
noticed the high overhead of this token management scheme before the implementa-
tion phase. Indeed, this solution implied too many message receiving events. This
motivated the protocol specification described here, which has an adaptive token
management scheme.

Another aspect worth mentioning is related to the verification of fault scenarios.
Fault occurrences were incorporated into the specification in incremental steps.
This required the introduction of extra counters and predicates. However, due
to the nature of the TLA+ language, fault scenarios were specified and verified
straightforwardly.

Although the protocol specification has given several insights to carry out its
implementation, it was not possible to use the specification straightway. Indeed,
DoRiS was implemented in a Linux-based real-time operating system [14] which
has itself a complex architecture. However, most functions of the protocol could be
translated from the specification and adapted into the operating system infrastruc-
ture.

6 Conclusions

A TLA+ specification of DoRiS , a new real-time communication protocol, have been
shown in this paper. DoRiS is designed for modern real-time systems, which require
predictability, fault tolerance and flexibility. The specification and its properties
were checked for several different scenarios. For this purpose, the TLA+ language
was found to provide satisfactory levels of abstraction and expressiveness.

¿From a software engineering perspective, the approach used to define DoRiS
has shown how one can benefit from formal methods. Indeed, using the TLA+ lan-
guage and its tools, we have carried out an interactive design methodology, where
specification and model-checking were performed during the definition of the pro-
tocol functions. The implementation of DoRiS has been greatly improved by the
specification presented here, indicating the strength of the adopted approach.

One aspect that needs further research is regarding how one carries out the im-

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238 237

plementation of a specified protocol using an existing complex software, such an
operating system, as a basic infra-structure. A more automatic way for perform-
ing such a task is needed. The development of DoRiS and its described formal
specification can well serve as a motivating case study for this field of research.

References

[1] Barboza, F., A. Andrade, F. A. Silva and G. Lima, Specification and verification of the IEEE 802.11
medium access control and an analysis of its applicability to realtime systems, In Proc of BSFM 1
(2006), 9-26.

[2] Carreiro, F. B., J. A. Fonseca and P. Pedreiras, Virtual Token-Passing Ethernet - VTPE, In Proc.
FeT2003 5th IFAC Int. Conf. on Fieldbus Systems and their Applications (2003), Portugal.

[3] Clarke, E. M., 0. Grumberg and D. Peled, “Model Checking”, MIT Press, 1999.

[4] Decotignie, J.-D., Ethernet-based real-time and industrial communications, Proc. IEEE (Special issue
on industrial communication systems) 6 (2005), 1102-1117.

[5] Hanssen, F., A. Mader and P. G. Jansen, Verifying the distributed real-time network protocol RTnet
using UPPAAL, Proc. IEEE of 14th Int. Symp. on Modeling, Analysis and Simulation of Computer
and Telecom (2006).

[6] Hanssen, F. T. Y. and P. G. Jansen, “Real-time communication protocols: an overview”, Technical
Report TR-CTIT-03-49, University of Twente, 2003.

[7] Henzinger, T., Z. Mannav and A. Pnueli,Temporal proof methodologies for realtime systems, In Proc.
of the 18th Annual Symposium on Principles of Programming Languages, ACM Press (1992), 353-366.

[8] IEEE, “Information Technology - Telecommunications and Information exchange between systems -
Local and Metropolitan Area Networks specific requirements - part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) access and method Physical Layer Specifications, ISO/IEC 8802-
3”, 2001.

[9] Johnson, J. E., D. E. Langworthy, L. Lamport and F. H. Vogt, Formal specification of a web services
protocol, In Proc. of Web Services and Formal Methods (2004), Pisa, Italy.

[10] Lamport, L., “Specifying Systems: The TLA+ language and tools for hardware and software engineers”,
1st edition, Addison Wesley, 2002.

[11] Lamport, L. and M. Melliar-Smith, Real-time model checking is really simple. In Borrione, I. D. and
Paul, W. J., editors, Correct Hardware Design and Verification Methods, LNCS 3725 (2005), 162-175.

[12] Marau R., L. Almeida and P. Pedreiras, Enhancing Real-Time Communication over COTS Ethernet
switches, Proc. IEEE of International Workshop on Factory Communication Systems (2006), 295-302.

[13] Narayana, P., R. Chen, Y. Zhao, Y. Chen, Z. Fu and H. Zhou, Automatic Vulnerability Checking of
IEEE 802.16WiMAX Protocols through TLA+, In Proc. of 2nd IEEE Workshop on Secure Network
Protocols (2006).

[14] Regnier, P. “Especificação formal, verificação e implementação de um protocolo de comunicação
determinista baseado em ethernet”, Master’s thesis, UFBA, Salvador, Brasil, 2008.

[15] Regnier, P. and G. Lima, Deterministic integration of hard and soft real-time communication over
shared-ethernet. In Proc. of Workshop of Tempo Real (2006), Curit́ıba, Brazil.

[16] Yu, Y., P. Manolios and L. Lamport, Model checking TLA+ specifications. Proc. of the 10th IFIP WG
10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods,
LNCS (1999) 1703, 54-66

P. Regnier et al. / Electronic Notes in Theoretical Computer Science 240 (2009) 221–238238

	Introduction
	The DoRiS protocol
	The model and terminology
	The Medium Access Control Scheme

	The specification
	Concepts on TLA+
	Constants and Variables
	The main formula Spec
	The Hard Ring
	The Soft Ring
	Time representation

	Verification
	Performance
	Verification of DoRiS properties

	Discussion
	Conclusions
	References

