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ABSTRACT

Carvalho, 1.G., Mestrinho, S.S.P., Fontes, V.M.S., Goel, O.P. and Souza, F.A., 1991. Geochemical
evolution of laterites from two areas of the semiarid region in Bahia State, Brazil. In: A.W. Rose
and P.M. Taufen (Editors), Geochemical Exploration 1989. J. Geochem. Explor., 40: 385-411.

Lateritic covers developed during the Pleistocene in two distinct areas (Gentio do Ouro District
and Sento Sé) of the State of Bahia, Brazil, have been investigated geochemically. Samples of the
bedrock (gabbros, from the Gentio do Quro District, and silicate facies iron formation and associated
iron-rich banded carbonates, from the Sento Sé Area) and the lateritic products (latosols, cuirasses
and pisolites ) were analyzed for major and selected trace elements (Co, Cu, Cr, Ni, V, Pb, Ba, Au and
REE). The purpose of the research was to study the geochemical evolution of the laterites and the
relationship of weathering processes to secondary gold mineralization.

Four types of element mobilities are recognized, defined by progressive depletion (type A) or en-
richment (type C) in the sequence latosol-cuirasse-pisolite or by extreme enrichment (type B) or
depletion (type D) in the cuirasse. Cr and V have similar behavior (type C), whatever the type of
parent rock; however, when the original rocks are gabbros, Co, Cu and Ni demonstrate behavior A, B
and A, respectively. Also Ti has the same type of mobility (type A), whatever the type of parent rock.

The concentrations of some residual elements, e.g., Ti, V, Mn, Fe and Au, are inherited from the
original rocks, that is, they exhibit higher values in the lateritic materials on parent rocks in which
their contents are high.

The enrichment of REE in the lateritic materials on iron-rich carbonates is attributed to relatively
basic and reducing conditions at depth. This environment allowed the ions of these elements (Ce,
Sm, Eu and Yb in the reduced ionic form) to stay in solution along with Fe?*. At shallow depth,
under oxidizing conditions, the iron oxyhydroxides adsorbed the REE ions. This adsorption was more
effective for La, Ce and YD ions.

The REE contents in the lateritic products from gabbros indicate a depletion of HREE plus Eu. Nd
and Sm are also depleted in cuirasses and Ce is depleted in pisolites. The loss of these REE and the
slight concentration of LREE in the red latosol of the Gentio do Ouro District are attributed to partial
leaching of REE by a relatively acidic solution. The adsorption of REE by iron oxyhydroxides was less
intense here than in the weathering of the iron-rich carbonates at Sento Sé Area. It was also more
effective for La and Ce (ions). This type of weathering solution may be generated from oxidation of
the accessory pyrite present in the gabbros of the Gentio do Ouro District. It may dissolve primary
gold which then precipitates on encountering basic conditions at depth.
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INTRODUCTION

Geochemical research into primary and secondary gold in iron-rich later-
ites has increased substantially in recent years. This paper presents a geo-
chemical study of the evolution of laterite and its relationship to secondary
gold in the Gentio do Ouro District and Sento Sé Area of Brazil. The climate
of the region is semiarid. Tricart and Da Silva (1968 ) suggest that the climate
was humid-tropical during the Tertiary and that it graded into the present
semiarid conditions. Economic concentrations of secondary gold are only re-
ported to occur in the Gentio do Ouro District.
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Fig. 1. Location of the investigated areas.
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GEOLOGICAL SETTING
The Gentio do Ouro District

The Gentio do Ouro District is situated in the central part of Bahia State
(Fig. 1). Gold has been produced from this region for more than a hundred
years. Since 1981 detailed geological studies have been carried out by Car-
valho (1984, 1985, 1986) and Carvalho et al. (1987, 1988). Primary gold
mineralization is related to metasomatic and hydrothermal phenomena caused
by the intrusion of a tholeiitic mafic magma which generated sill-like bodies
of gabbros. These sills are interlayered in the mostly metasedimentary se-
quence of the lower part of the Espinhaco Supergroup (Fig. 2). The contact
between the gabbros and the host stratigraphic sequence is characterized by
metasomatic alteration zones where intense ferruginization and silicification
took place. Lenticular concentrations of quartz which range from a few cen-
timeters to six meters in width occur in these contact zones. The contact zones
also contain ferruginous metasandstone, a hybrid type of metasandstone and
gabbro, thin iron oxide horizons, quartzites, iron-rich hornfels derived from
clayey metasiltite, and a quartz-kaolinite material which results from altera-
tion of rare anorthositic zones of the basic intrusion. Because the hydrother-
mal-metasomatic processes were not homogeneous throughout the contact
zone, only the quartz lenses and the ferrugineous metasedimentary rocks are
frequently observed at exposures of the contact. Primary gold occurs mainly
in the quartz lenses, and sulfides consist mostly of disseminated accessory
pyrite (1-2%) and traces of chalcopyrite in the gabbros at the contact zone,

The regolith on the mafic and subordinate iron-rich metasedimentary rocks
is typified by a brown saprolitic horizon (C-horizon) (0-30 cm in thickness)
overlain by red latosols (B-horizon) (up to 15 m thick) with iron-rich duri-
crusts (cuirasses) (0-3 m in thickness) on top. Under the present semiaridic
conditions the instability of this profile is shown by the decay of the cuirasse
into pisolites and intense erosion affecting both cuirasse and latosol.

The primary gold participated in this weathering process and was remobil-
ized and reconcentrated to economic and subeconomic levels in the lateritic
products (Table 4a). Carvalho (1985) studied this form of gold occurrence
and concluded that the supergene enrichment is characterized by both in-
crease in gold fineness and growth of gold nuggets. Microscopic colloform
gold was reported by Carvalho (1984, 1985) in the concentric Fe-oxyhydrox-
ide-hematitic bands of pisolites. Similar textures and botryoidal and dendri-
tic gold may be visible to the naked eye in the cuirasses. Spherical, botryoidal
and dendritic gold nuggets which are rarely larger than 0.5 cm in diameter are
found in the red latosol. Ancient prospectors reported the occurrence of gold
nuggets weighing up to 1.0 kg in the red latosol.

Exploration for both primary and secondary gold uses a primitive method
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which is locally termed “garimpagem”. This includes breaking blocks of gab-
bros, quartz lenses, hornfels and cuirasses, grinding of these materials plus
pisolites, followed by sifting (sieving) and concentration by panning. The
latosol is subjected to the latter treatment. Gold nuggets are either searched
for in the panning concentrate or recovered in a slide sluice mechanism termed
“mufula” that uses air blown down the slide. All these procedures are per-
formed dry because of the scarcity of water in the region. The Garimpo do
Gaucho is the sole mine that uses water (wellwater from drill hole) in ore
treatment. It was set up in 1985 and also treats waste from the other works to
recover small gold particles by amalgamation.

The Sento Sé Area

The Sento Sé Area is north of Gentio do Ouro District (Fig. 1). It is under-
lain by a sequence of volcano-sedimentary rocks (Colomi-Barreiro Com-
plex) that includes quartzite, coarse metarkoses, phyllites, tuffaceous metas-
andstones, acid and basic metavolcanic rocks and metamorphosed chemical
sediments. The latter included banded iron formation, characterized by the
presence of oxide (quartz-rich vs. magnetite-hematite-rich bands) and sili-
cate (amphibole-magnetite-rich vs. magnetite-rich bands) facies in associa-
tion with metachert and banded iron-rich magnesian carbonates (calcite-do-
lomite-magnesite-amphibole-rich vs. quartz-carbonate-rich bands). Meta-
sedimentary rocks, mostly quartzites, metasandstones and minor metapelites
and metaconglomerates (Chapada Diamantina Group ) occur in the southern
part of the studied area (Fig. 3). There is no record of primary gold occur-
rence, although gold concentrations in the siliceous metatuff are locally up to
31 ppm(!) (Teixeira, 1989).

During the early stages of more humid conditions (Pliocene), weathering
of the metamorphic rocks developed a lateritic cover which consisted mostly
of red and brown latosols. With the gradual onset of more arid conditions, a
duricrust (cuirasses) developed on the latosols over the iron-rich metasedi-
mentary rocks. Under the present climatic conditions these cuirasses are de-
caying into pisolites (Carvalho, 1984, 1985, 1988). The cuirasses in this area
are thicker (up to 6 m) than those reported in the “Gentio do Ouro Model”.

SAMPLING, ANALYSES AND PRESENTATION OF DATA

Forty-six samples from the Gentio do Ouro District plus 30 samples from
the Sento S¢é area were selected and analysed as indicated in Tables 1-3.

The major elements expressed as oxides (TiO,, Al,O, CaO, MgO, MnQ,
Fe,O; (as total iron), Na,O and K,O) and the trace elements (Co, Cu, Cr,
Ni, V, Pb, Ba and Au) were determined by atomic absorption in the labora-
tories of the Geochemistry Department, Universidade Federal de Bahia, Bra-
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TABLE 3

Average values of REE, LREE and HREE for the parental rocks and the lateritic products from Sento Sé
and Gentio do Ouro areas

REE Sento Sé Gentio do Ouro

/\7*

(ppm) Oxide Silicate Iron-rich Latosol Cuirasse Pisolite Gabbro Latosol Cuirasse Pisolite
facies facies carbonate (n=3) (n=4) (n=3) (n=13) (n=6) (n=4) (n=2)
(n=4) (n=1) (n=4)

La 28.34  1.92 3.42 17.20 1050 3277 1736 22.75 14.21 24.12
Ce 10,70 2.35 8.27 37.43 2890 9423 3489 47.28 47.61 31.02
Nd 13.87  1.99 6.57 14.00 9.45 36.48 2474 2749 1548  28.87
Sm 256 0.48 1.55 2.87 1.57 7.10 5.34 5.67 3.59 6.10
Eu 053 0.12 0.30 0.78 0.50 1.70 1.75 1.52 0.94 1.45
XLREE 11.20 137 4.02 1446 10.18 3446 16.81 20.94  16.37 18.31
Gd 1.96 0.53 1.18 2.53 1.47 5.69 6.04 5.16 3.26 4.63
Dy 1.45 049 0.96 2.17 1.35 4.47 5.77 4.57 3.25 4.31
Ho 027 0.09 0.19 040 031 0.75 1.14 0.91 0.63 0.87
Er 0.81 0.27 0.47 1.29 0.77 2.20 3.16 2.60 1.80 2.48
Yb 0.59 0.42 0.35 1.34  0.89 2.20 3.01 2.67 1.91 2.40
Lu 0.09 0.12 0.08 020 0.14 0.31 0.42 0.41 0.29 0.34
XHREE 0.86 0.32 0.54 1.32 0.82 2.60 3.26 2,72 1.86 2.50
XREE 556 6.80 2.12 7.29 5.08 17.06 9.42 11.00 8.45 9.69

*Arithmetic mean calculated from » analysed samples.

zil, and for some samples from the Gentio do Ouro District, in the laborato-
ries of ORSTOM, France. Au was previously concentrated by fire assay. SiO,
was determined by gravimentric analysis and P,Os by colorimentric analysis.
The results of these analyses are given in Tables 1 (Gentio do Ouro) and 2
(Sento Sé€).

The REE were determined by inductively coupled plasma (1CP) emission
spectroscopy using the method described by Dutra (1984), in the Geossol
Lab., Belo Horizonte, Brazil. The mean values for the samples from both
studied areas are given in Table 3.

The mineralogical and petrographic data for the analysed materials have
been described in Carvalho (1984, 1985) and Carvalho et al. (1987).

DATA DISCUSSION AND INTERPRETATION

Tables 1-3 show the analytical results for the bedrock and lateritic prod-
ucts. The mean contents of major and trace elements are in Tables 4a and b
and the ratios of these elements to the less mobile major elements (Ti, Al and
Fe) are in Tables 5a and b. Plots for some of the elements are shown in Fig-
ures 4-8.
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TABLE 4
Average composition of major, traces and rare earth elements for the geological materials

a. Gentio do Quro District

Element Gabbro Latosol Cuirasse Pisolite Type of behavior
of the lateritic
product

(%)

Si0, 48.56 < 5220 > 2390 < 36.33 D

TiO, 2.84 > 1.99 > 1.68 > 1.27 A

AlL,O4 14.02 < 15.52 > 11.04 > 9.91 A

Fe,04(T) 14.98 < 18.83 < 5143 > 36.92 B

MnO 0.21 > 0.17 > 0.06 < 0.70 D

MgO 5.57 > 0.22 > 0.06 = 0.06 A

CaO 8.76 > 0.19 > 0.12 > 0.05 A

Na,O 2.23 > 0.10 > 0.05 = 0.05 A

K,O 0.80 > 0.34 > 0.11 > 0.04 A

P,Os 0.25 > 0.11 < 0.24 > 0.07 B

(ppm)

Co 74 > 57 > 17 > 3 A

Cu 256 > 231 < 236 > 48 B

Cr 240 < 257 < 259 < 505 C

N1 60 > 56 > 25 > 10 A

v 528 > 458 < 527 < 1000 C

Pb 70 < 128 > 15 > 2 A

Ba 20 < 66 > 55 < 383 D

XLREE 16.8 < 209 > 164 < 18.3 D

XHREE 33 > 2.7 > 1.9 < 2.5 D

XREE 9.4 < 11.0 > 8.5 < 9.7 D

Au* (g/t) 2 < 35 > 2 > -

The lateritic products evolved in the order latosol-cuirasses-pisolite (Car-
valho et al., 1988). The behavior of the elements within this trend is shown
in Tables 4a and b. This is a simple procedure to visualize the relative enrich-
ment or depletion of the elements which takes into account only the compo-
sitional values. Calculations of gains and losses based upon isovolumetric al-
teration as suggested by several authors, e.g., Millot and Bonifas (1955), Pedro
and Bittar (1966) and Tardy (1967, 1969), were tested by Souza (1989). He
obtained different mobilities for the same element by considering its content
in a given material and in the product of alteration. This is because of varia-
tions in volume changes and specific gravity reported in the same type of
lateritic product from the same area. The degree of dissolution (which is
higher, but not homogeneous, for banded iron-rich carbonates), the presence



GEOCHEMICAL EVOLUTION OF LATERITES FROM BAHIA STATE, BRAZIL 401

TABLE 4 (continued)

b. Sento Sé Area

Element Iron-rich Latosol Cuirasse Pisolite Type of behavior

carbonate of the lateritic
products

(%)

Si0, 31.75 < 58.30 >  56.69 > 45.39 A

TiO, 0.33 < 0.85 > 0.56 > 0.44 A

Al,O4 3.10 < 9.23 < 12.19 > 8.32 B

Fe,O5(T) 5.52 < 8.88 < 19.78 < 3130 C

MnO 0.34 < 0.66 < 0.72 < 3.85 C

MgO 13.18 > 3.07 > 0.30 < 1.20 D

CaO 17.25 > 4.23 > 0.15 < 0.48 D

Na,O 0.05 = 0.05 = 0.05 < 0.13 C

K,O 0.05 < 0.33 < 0.62 < 0.65 C

P,Os 0.18 > 0.14 < 0.46 > 0.16 B

(ppm)

Co 25 < 28 < 63 < 73 C

Cu 28 < 76 < 82 < 120 C

Cr 15 < 56 < 129 < 341 C

Ni 38 < 52 < 84 < 122 C

v 83 < 133 < 170 < 317 C

Pb 113 < 137 > 124 < 142 D

Ba 100 < 160 < 875 > 210 B

XLREE 4.0 < 145 > 10.2 < 345 D

XHREE 0.5 < 1.3 > 0.8 < 2.6 D

XREE 2.1 < 7.3 > 5.1 < 17.1 D

Au (ppb) 50 < 170 < 230 > 120 B

*Values obtained from ore treatment (Garimpo do Gaucho).

of “skelet” or preserved primary mineral [e.g., quartz in the products of al-
teration from gabbros at the contact zone (Gentio do Ouro District), mag-
netite in the latosols on gabbros (Gentio do Ouro District) and on banded
iron-rich carbonates (Sento Sé Area), and fragments of “itabirite” (banded
oxide facies iron formation in the brecciated (conglomeratic) type of cuirasse
from the Sento Sé Area) ], the texture (including here the organization for
the plasm in the cuirasses and pisolites), hydration and dehydration (for-
mation and evolution of clay minerals and oxihydroxides ) affected both vol-
ume and specific gravity. Souza (1989) suggested the examination of the con-
tents of each analysed element as tabulated in Table 4 and their ratios to Ti,
Al and Fe as presented in Table 5 to indicate the relative concentration.
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TABLE 5

Ratios of major and trace elements to TiO, (1), Al,O3(2) and Fe,O3(T)(3) for the geological materials
a. Gentio do Ouro District

Element Gabbro Latosol Cuirasse Pisolite
1 2 3 1 2 3 1 2 3 1 2 3

Si0, 17.10 346 3.24 26.23 3.36 277 1423 216 0.46 28.61 3.67 0.98
TiO, 1.00 0.20 0.19 1.00 0.13 0.11 .00 0.15 0.03 1.00  0.13 0.03
AlLO; 494 1.00 094 7.80 1.00 0.82 6.57 1.00 0.21 7.80 1.00 0.27
Fe,05(T) 528 1.07 1.00 946 1.21 1.00 30.61 466 1.00 29.07 373 1.00
MnO 0.07 001 0.01 009 0.01 00l 004 001 0.00 055 0.07 0.02
MgO 1.96 040 0.37 0.11 0.01 0.01 0.04 001 000 0.05 0.01 0.00
Ca0 308 0.62 0.58 0.10 0.01 0.01 0.07 0.01 0.00 0.04 001 0.00
Na,O 0.79 0.16 0.15 0.05 001 0.0tf 0.03 001 000 0.04 001 0.00
K,O 0.28 0.06 005 0.17 0.02 002 007 00!l 000 0.03 0.00 0.00
P,O; 0.09 0.02 002 006 001 001 001 002 000 006 0.01 0.00
(x10%)

Co 2606 5.28 494 28.64 3.67 3.03 10.12 1.54 033 236 030 0.08
Cu 90.14 18.33 18.26 116.08 14.88 12.27 140.48 21.383 4.59 3780 4.84 1.30
Cr 84.50 17.12 16.02 129.15 16.56 13.65 154.17 23.46 5.03 397.64 50.96 13.68
Ni 21.13 428 401 28.14 361 297 1488 226 049 1787 1.0t  0.27
v 185.92 37.66 35.25 230.15 29.51 24.32 313.69 47.74 10.25 787.40 101.91 27.09
P 4.67 499 467 6432 8.25 680 893 1.36 0.29 1.57 0.20 0.05
Ba 7.04 143 1.34 37.17 425 351 3274 498 1.07 301.57 38.65 10.37
XLREE 592 1.20 1.12 10.50 1.35 1.11 9.76 1.48 032 14.41 1.85 0.50
XHREE 1.16 0.23 0.22 1.36 0.18 0.14 .13 0.17 0.04 1.97 0.25 0.07
XREE 331 067 0.63 553 071 058 506 077 0.16 7.64 098 0.26

Au(x10") 070 0.14 0.13 176 023 0.19 1.19 0.18 0.04 - - -

MAJOR ELEMENTS

The distribution of SiO,, Al,O; and Fe,O; as total iron (Fig. 4) shows that:

(a) there exists a tendency for iron enrichment of the lateritic products;

(b) the field of distribution of the plotted values for the latosols may totally
(Gentio do Ouro) or partially (Sento Sé) overlap values for the parent rocks;

(c) relative to SiO, and Fe,O;(T), the field of distribution of the pisolites
exhibits the largest dispersion. This situation is more conspicuous for the
Gentio do Ouro District (Fig. 4a) where the pisolites contain less Fe than the
cuirasses.

The distribution of the studied materials in the ternary diagram of mobile
elements (Na,O+K,O0+MgO+Ca0O) vs. (MnO+P,0;) vs. immobile ele-
ments (TiO,+Fe, 05T+ Al,O5) (Fig. 5) shows that;

(d) some lateritic products show an inheritance from the original rock type
in terms of their composition. The influence of the parent rock type is indi-
cated by the higher content of alkaline earth metals in the latosols derived
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TABLE 5 (continued)

b. Sento Sé Area

Element Iron-rich carbonate  Latosol Cuirasse Pisolite
I 2 3 1 2 3 1 2 3 1 2 3

Si0, 96.21 10.24 5.75 68.59 6.31 6.57 101.23 4.65 2.87 103.16 5.46 1.45
TiO, 1.00 0.1t 0.06 1.00 0.09 0.09 1.00 0.05 0.03 1.00 0.05 0.01
Al O, 939 1.00 0.56 10.86 1.00 1.04 21.77 1.00 0.62 1891 1.00 0.27
Fe,04(T) 16.73 1.78 1.00 1045 096 1.00 3532 1.62 1.00 71.14 3.76 1.00
MnO 1.03 0.11 006 0.78 0.07 0.07 1.29 0.06 0.04 875 046 0.12
MgO 3994 425 239 361 033 035 0.53 0.02 002 273 0.14 0.04
Ca0 52.27 556 3.13 498 0.46 0.48 0.27 0.01 0.00 1.09 006 0.02
Na,O 0.15 0.02 0.0t 0.06 0.00 0.00 0.09 000 0.00 029 002 0.00
K,O 0.15 0.02 0.01 0.39 0.04 0.04 1.11 0.05 0.03 1.48 0.08 0.02
P,Os 0.55 006 0.03 0.16 0.02 0.02 0.82 0.04 002 036 002 0.00
(x10%)

Co 75.76 8.06 4.53 3294 3.03 3.15 11250 5.17 3.19 16591 9.77 2.33
Cu 84.85 9.03 5.07 89.41 8.23 8.56 146.43 6.73 4.15 272.73 1442 383
Cr 4545 4.84 2.72 6588 6.07 6.31 230.36 10.58 6.52 775.00 40.99 10.89
Ni 115.15 12.26 6.88 61.18 563 5.86 150.00 6.89 4.25 277.27 14.66 3.90
v 251.52 26.77 15.04 156.47 14.41 14.98 303.57 13.95 8.59 720.46 38.10 10.13
Pb 342.42 36.45 20.47 161.18 14.84 15.43 221.43 10.17 6.27 322.73 17.07 4.54
Ba 303.03 32.26 18.12 188.24 17.34 18.02 1562.50 71.78 44.24 477.27 25.24  6.71
XLREE 12.12 1.29 0.72 17.06 1.57 1.63 18.21 (.84 0.52 7841 4.15 1.10
XHREE 1.52 0.16 0.09 1.53 0.14 0.15 1.43 0.07 0.04 591 0.31 0.08
XREE 6.36 0.67 038 859 0.79 0.82 9.11 042 0.26 38.86 2.06 0.55

Au (Xx107) 151.52 16.13 9.06 200.00 18.42 19.14 410.71 18.87 11.63 272.73 1442  3.83

from the iron-rich carbonates (Sento S¢) than in those originating from gab-
bros (Gentio do Ouro);

(e) for the lateritic products from Gentio do Ouro, the polarization to-
wards (TiO,+Fe,O;T + Al,O;) is more noticeable than that observed for the
equivalent products from Sento Sé.

Actually, for the Sento Sé area, the field of distribution for the cuirasses
and especially that for the pisolites shows a tendency to be elongated towards
the (MnO+P,05) edge of the diagram. This is due to the increasing content
of MnO in the sense latosol < cuirasse < pisolite and the relatively minor mo-
bility of MnO and P,Os in the laterite from Sento Sé (Tables 4 and 5).

As can be seen in the correlation diagram between Al,O, and Fe,O; (Fig.
6):
(f) for gabbros, there is an inverse relationship between these oxides as
lateritization proceeds (Fig. 6a), and a coincident increase for these elements
in the latosols and cuirasses developed on the iron-rich carbonates (Fig. 6b).
The values in Table 5 corroborate these observations and show that there is a



404 1.G. CARVALHO ET AL.

PISOLITES
CUIRASSE

Corbonate F

LATOSOL
GABBRO
SILICATE F

+ ¢ p o m O

CARBONATE F
Sticate F

A OXIDE F
/“}AVERAGE

Cuirasse ~" VALUE

Latoso! L Oxide F
° Pisolite Pl

N e
Cuirasse =

Pisolite *

Fe 0, (T ALD
T T T T T T €05 <23

- -
Fe203( T)

Fig. 4. Triangular diagram for Al,0;-Si0,0-Fe,05(T) showing the fields of distribution for (a)
gabbros and lateritic products from Gentio do Ouro and (b) the facies of iron formation and
the lateritic products of Sento Sé.

O PISOLITES
B CUIRASSE
o® O LATOSOL
a
f A GABBRO
& ® SILICATE F
B3 + CARBONATE F
A OXDE F
AVERAGE
VALUE
Gabbro Latosol
{a) <
T T T T
Na, O+K,0-HMgO+Ca0 TiOg+Fe 05 _+AI,0
Pisolites
Cuirasse
(b) Carbonate F Latosol
T+ +® ++
T T T T T T
Na,0 +K,0+Mg0 +Ca0 TiOz+Fe203(T)+A|203

Fig. 5. Triangular diagram for Na,O+K,0+MgO+CaO-MnO+P,0,-TiO,+Fe,03(T)
+ Al,Os;, showing the field of distribution for (a) gabbros and lateritic products from Gentio
do Ouro and (b) the facies of iron formation and the lateritic products of Sento Sé.



GEOCHEMICAL EVOLUTION OF LATERITES FROM BAHIA STATE, BRAZIL

Al 0y
)

20}

(o)

als]

405

8 CUIRASSE
PISOLITE
0 LATOSOL

® SILICATE F
+ CARBONATE F

A OXIDE F

1,04
(%)

(b)

8 @g o
AAd‘@ o . & GABBRO
o a a a4 8 7y AVERAGE
o bda o o VALVE
g
a []
o ~
—0— . @ .
0T o —
n T -
[]
[]
n L Y
r %)
1 1 1 1 A 1 -
70
~
i ',
N
| ~N
o
NORN. o
\Q\ \.\ °
@
N -
r ~ )
TEEN
/
/
/ 0
@ Fea04(T)
A (%)
i/* L 1 T ‘g)!“m ‘i) A

70
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(a) Gentio do Ouro and (b) Sento S¢.

depletion in Al relative to Fe as weathering proceeds on gabbros and that Al
is more concentrated than Fe in the latosols and cuirasses on the iron-rich
carbonates;

(g) Al,O; correlates strongly with Fe,O; for the iron-rich carbonates (Fig.
6b), but no significant Al,O; is reported in the oxide ( <0.6%) and silicate
(<0.5%) facies iron formation (Table 2).

The presence of well-preserved blocks of itabirite (quartzitic bands alter-
nated with hematitic bands) in the brecciated or conglomeratic type of cuir-
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asse suggests that there was no other material contribution from the oxide
facies iron formation to the lateritic cover of the Sento Sé Area. Fragments of
banded amphibole-magnetite-rich rocks (silicate facies of BIF) are not re-
ported in this cover, however, magnetite may be disseminated in the latosol
in content as much as 5% in weight. These observations suggest that the sili-
cate facies iron formation may provide part of the iron (from oxidation and
hydration of magnetite and hydrolysis or iron-rich silicates) to the lateritic
mantle.

TRACE ELEMENTS

Although some trace elements exhibit higher contents in the lateritic ma-
terials on parent rock in which their contents are high (inheritance factor;
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Fig. 7. Distribution of average values of REE normalized to chondrites, in the geological mate-
rials from (a) Gentio do Ouro and (b) Sento Sé.
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e.g., Cr and V on gabbros and Pb on iron-rich carbonates), the contents of
trace elements (Table 1-4) suggest that their mobilities were not the same in
the studied lateritic covers. It must be pointed out that only Cr, V and REE
have the same type of mobility (type C, C and D, respectively) in both areas.

For the Sento Sé Area Co, Cu, Ni, Cr and V have behavior type C, that is
their contents clearly tend to increase towards the final product of weathering
(pisolite). Ba and Au have behavior type B. REE and to a certain extent Pb
(cf. Table 5b) have behavior type D.

For the Gentio do Ouro District Co, Cu, Ni and Pb tend to increase (for
Cu, see ratio Cu/Fe,O;(T) in Table 5a) towards the latosol.

The patterns of distribution of REE values normalized to crustal values show
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a positive anomaly of Eu and Dy for all types of lateritic products as well as
for the iron-rich carbonates, silicate facies iron formation and gabbros (Fig.
8). The REE patterns in the lateritic products from Gentio do Ouro show a
depletion in HREE plus Ce and an enrichment in LREE (except for Ce) in the
latosols and pisolites relative to the parental gabbros. This behavior is present
for both normalization procedures (Figs. 7a and 8a).

In the Sento Sé area the oxide and silicate facies of iron formation and the
iron-rich carbonates exhibit negative anomalies of Ce though the anomaly in
the carbonates is very weak. In contrast, all the lateritic products are richer in
REE than the silicate facies iron formation and the parental iron-rich carbon-
ates (Figs. 7b and 8b).

The main distinguishing feature between the REE distribution patterns of
Gentio do Ouro District and those of Sento Sé are:

(a) The parent rock (gabbros) and their weathering products (iron-rich
laterites) in the Gentio do Ouro District exhibit narrow variations in the REE
contents. In contrast, the REE contents in the silicate facies iron forma-
tion,iron-rich carbonates and in the derived lateritic materials show a wide
range of variation.

(b) In terms of the parent rocks, the lateritic products derived from iron-
rich carbonates at Sento Sé are enriched in REE. From the gabbros at Gentio
do Ouro the lateritic products tend to be depleted, at least for the HREE plus
Eu in the case of latosol and pisolite, and for all REE (including Ce) for the
cuirasses. However, even though showing an enrichment, the iron-rich later-
itic materials which are derived from iron-rich carbonates (Sento Sé Area)
tend to be poorer in REE than their counterparts derived from gabbros (Gen-
tio do Ouro Area), the only exception being the pisolites from Sento Sé which
have higher values of LREE than the others weathering products.

(c¢) The overall geochemical behavior for the REE in the iron-rich lateritic
products of the investigated areas is defined as type D, that is analogous to
the behavior of Si, Mn and Ba in the Gentio do Ouro District and to Mg, Ca
and Pb in the Sento Sé Area.

CONCLUSIONS

The data suggest some general features of environment and element behav-
1or during lateritization in the Gentio do Ouro and Sento Sé areas.

The differences in composition of the parent rocks seem not to be directly
reflected in the distribution of some elements (e.g., Si, Na, K, P, Co and Ni)
in the lateritic products although the contents of some elements in these prod-
ucts may reflect, quantitatively, an inheritance from the original rocks (e.g.,
Ti, Fe, Mn, Mg, Ca, Cr, V and Pb). A], REE and Cu may be included in the
latter category (inherited elements) but the content of Al in the cuirasses and
the contents of REE and Cu in the pisolites derived from the iron-rich carbon-
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ates at Sento Sé are higher than their counterparts derived from gabbros at
Gentio do Ouro.

The evolutionary trend is: original rock-latosol-cuirasse-pisolite. In terms
of major element contents the latter lateritic product exhibits a widespread
variation especially when the original rock is the gabbro. Following this trend,
the expected geochemical coherence among some elements is not always
observed.

This is the case for Co, Cu and Ni in the lateritic cover at Gentio do Ouro,
alkaline and alkaline earth metals in the lateritic cover of Sento Sé, and Fe,
Ti, Al, Mn, Pb, Ba and Au in the lateritic materials from both areas.

The ratios to the immobile elements indicate a concentration of Fe relative
to Ti and Al in the latosols on gabbros and inversely a concentration of Ti
and Al relative to Fe in the latosols on iron-rich carbonates.

In both examples of rock alteration into latosol, an intense leaching of al-
kaline earth metals took place and it was more effective in the latosol on gab-
bros where Na and K were equally affected.

The gain in K in the latosol on the iron-rich carbonates results from neofor-
mation of illite. The contents of K and Na (alkaline elements) in the latosols
of both studied areas are assumed to be normal (Souza, 1989).

Primary talc and Mg chlorite plus secondary chlorites and smectite explain
the higher content of Mg in the lateritic products on iron-rich carbonates.
Secondary carbonates, resulting from carbonate-rich solution, contribute to
the higher content of Ca and also of Mg in the lateritic cover on iron-rich
carbonates (Souza, 1989). Talc and carbonates are not observed and chlorite
and smectite are trace minerals rarely reported in the red latosols on gabbros.

The REE in both Gentio do Ouro and Sento Sé areas consistently show type
D behavior (lowest values in the cuirasses) and their distributions exhibit a
similar pattern which is most noticeable for the HREE. When the REE values
are normalized to chondrites, a negative Ce anomaly is only observed in the
pisolites at Gentio do Ouro (gabbro-derived lateritic cover). This Ce anom-
aly in pisolites is enhanced and a slight negative anomaly appears in the lato-
sols on gabbros when the REE values are normalized to the crustal values of
Mason (1985) (Fig. 8a).

The Ce enrichment in the lateritic products is interpreted as due to the ox-
idation of Ce?* and adsorption of Ce** by amorphous oxyhydroxides of iron
and aluminum, followed by washing down (eluviation of these oxyhydrox-
ides) to accumulate as limonite in the B horizon of the soil that evolves down-
wards. Such a highly oxidizing condition should occur above the water level.
If this is so, than below the interface of the B and C horizons, the conditions
were not oxidizing enough to oxidize both Eu?* and Ce?*. Because of the
geochemical coherence resulting from the similarity in size of Eu?* and Ca**
it is expected that at least a portion of Eu may be leached, following the Ca
ion, from the place of rock alteration (saprolite or C horizon). Nesbitt (1979)
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pointed out that this mobility of Eu occurs in acidic solutions. The derived
latosol, having a lower content in this element than the parental gabbro, sug-
gests a partial mobility of Eu?* under low pH environmental conditions.

These observations are evidences that the main control of the REE mobility
acts at the beginning of the alteration of the original rock at depth. In such a
situation, the solution resulting from the hydrolysis-dissolution processes has
a basic character, because of OH generation. Dissolution is important in soil
formation from carbonates. An acid weathering solution is necessary to leach
Eu (Moller et al., 1981) and other trace elements (e.g., Co, Ni, Cu). It is also
necessary to remove primary gold (Mann, 1984; Carvalho, 1985) from the
reduced native form and to put it into solution as an Au®** complex. This
gold-bearing solution can change its acidic character by mixing with deeper
basic solutions or by changes in pH due to the process of rock alteration from
hydrolysis of silicates. If enough sulfides are present in the parent rock to
generate acidic solutions, and if primary gold is available in this rock to be
scavenged, gold will be dissolved and reprecipitated in the weathering cover
to form lateritic gold mineralization. This phenomenon seems to have oc-
curred at the Gentio do Ouro District.

ACKNOWLEDGEMENTS

This study is part of the project “Gold in Ferralites of the Semi-Arid Re-
gion of the State of Bahia, Brazil” which received financial support during
1966-1968 from pADCT (Contract No. 42.86.0345.00). The authors thank
Dr.F. Soubies (orsTOM) for help in providing some chemical analyses, Dr.
Jonathan Evans of BP Research Centre (England) for proofreading and help-
ful suggestions and graduate student Idelvone M. Ferreira for drafting services.

REFERENCES

Carvalho, I.G., 1984. Mineralizacoes auriferas de Gentio do Ouro Bahia. Caracteristicas micro-
morfologicas. XXXIII Congr. Brasil Geol., 3: 4024-4040.

Carvalho, I.G., 1985. Contribuicao ao conhecimento genetico das mineralizacoes auriferas tipo
Gentio do Ouro. Estado da Bahia. UFBA, Unpubl. thesis, 92 pp.

Carvalho, 1.G., 1986. Caracterizacao quimica das Couracas e materials lateriticos associados as
ocorrencias tipo Gentio do Ouro. XXXIV Congr. Brasil Geol., 6: 2830-2841.

Carvalho, I.G., Mestrinho, S.S.P. and Goel, O.P., 1987. Alguns Aspectos de coberturas lateriti-
cas de regiao semi-arida do Estado da Bahia. Laterita aurifera da Porcao ocidental da Cha-
pada Diamantina e laterita do Municipio de Sento Sé. 1 Congr. Brasil. Geol., 2: 53-68.

Carvalho, .G., Mestrinho, S.S.P. and Goel, O.P., 1988. Comportamento geoquimico de ele-
mentos tracos nas lateritas ferruginosas de Sento S¢, Estado da Bahia. XXXV Congr. Brasil.
Geol., 4: 1878-1899.

Dutra, C.V., 1984. Metodo para Determinacao de Tracos € Sub-Iracos de Terra Raras em Ro-



GEOCHEMICAL EVOLUTION OF LATERITES FROM BAHIA STATE, BRAZIL 411

chas por Espectrometria de Plasma ICP. Apliacacao em Petrogenese. XXXIII Congr. Brasil.
Geol., 10: 4792-4805.

Evensen, N.M., Hamilton, P.J. and O’Nions, R.K., 1978. Rare earth abundance in chondritic
meteorites. Geochim. Chosmochim. Acta., 42: 1199-1212.

Mann, A.W., 1984. Mobility of gold and silver in lateritic weathering profiles: Some observa-
tions from Western Australia. Econ. Geol., 79: 38-49.

Mason, B.H., 1985. Principles of Geochemistry. 4th Wiley Eastern Limited, New Deli, ed, 350
pD.

Millot, G. and Bonifas, M., 1955. Transformations isovolumetriques dans les phenomenes de
lateritisation et de bauxitisation. Bull. Serv. Carte Geol. Alsace Lorraine, 8: 3-20.

Moller, P., Dulski, F., Schley, J.L., Luch, J. and Szacki, W., 1981. A new way of interpreting
trace element concentrations with respect to models of mineral formation. In: A.W. Rose
and H. Gundlach (Editors), Geochemical Exploration 1980. Developments in Economic
Geology, 15. Elsevier, pp. 271-284,

Nesbitt, HW., 1979. Mobility and fractionation of REE during weathering of a granodiorite.
Nature, 279: 206-210.

Pedro, O. and Bittar, K.E., 1966. Contribution of ’Etude de la genése des sols hypermagnesiens:
recherches experimentales sur I’alteration chimique des roches ultrabasiques (serpentin-
ites). Ann. Agron., 17: 611-657.

Souza, F.A., 1989. Contribuicao ao intemperismo ferralitico de duas regioes do semi-arido da
Bahia. Monografia de Mestrado. 1st draft (unpubl.), CPGG/UFBA., 98 pp.

Tardy, Y., 1967. Etude géochimique des eaux d’une nappe d’arene en Pays Cristallin (Kor-
hyoyo, Cote divoire). Bull. Serv. Carte Geol. Alsace Lorraine, 20: 235-256.

Tardy, Y., 1969. Geochimie des alterations. Etude des arenes et des eaux de quelques massifs
cristallins d’Europe et d’Afrique. Mem. Serv. Carte Geol. Alsace Lorraine, 20: 255-256.

Teixeira, L.R., 1989. Prospeccao geoquimica de Ouro ¢ Cobre em solo residual da Serra da
Baixa do Rancho, Sento Sé, Ba., UFBA., unpubl. master thesis, 86 pp.

Tricart, J. and Da Silva, T.C., 1968. Estudos da geomorfologia da Bahia e Sergipe. Imprensa
Oficial da Bahia. Salvador, 184 pp.



