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Resumo

Esta tese aborda o desenvolvimento de técnicas relacionadas à migração sísmica, com o

objetivo de superar limitações e desa�os presentes em metodologias tradicionais. Nos três

capítulos que compõem este trabalho, são apresentadas soluções que aprimoram a e�ciência

computacional, a precisão na formação de imagens sísmicas e a capacidade de lidar com

modelos complexos de subsuperfície. No capítulo 1, abordamos a separação do campo de

ondas em componentes ascendentes e descendentes, uma etapa crucial no processamento

de dados multicomponente, na propagação de campos de ondas e no imageamento sísmico.

Propomos um método alternativo para calcular o campo de ondas analítico utilizando a

equação parcial de primeira ordem no tempo e resolvendo a equação de onda uma única

vez. Essa abordagem permite a separação dos campos de ondas de forma explícita a cada

passo de tempo, sendo mais e�ciente em termos computacionais e viabilizando a aplicação

da condição de imagem causal na migração reversa no tempo (RTM). Resultados em mode-

los sintéticos mostram que o método proposto possibilita uma decomposição semelhante à

obtida pelo método convencional, que requer duas propagações, com potencial aplicação em

casos 3D. Além disso, o método é e�caz na remoção do ruído de baixa frequência presente

nas imagens RTM que utilizam a condição de imagem por correlação cruzada. No capítulo 2,

investigamos a migração reversa no tempo em mínimos quadrados no domínio da frequência

(FLSRTM), que é capaz de produzir modelos de re�etividade de alta resolução. No entanto,

o armazenamento das funções de Green necessárias para o cálculo do gradiente e do campo

espalhado via modelagem Born pode ser inviável devido ao tamanho dessas funções. Propo-

mos um esquema FLSRTM utilizando funções de Green de baixo posto, obtidas por meio de

algoritmos de decomposição de valores singulares randômico (rSVD) e comprimido (cSVD).

Esses algoritmos permitem o armazenamento e�ciente das funções de Green em memória,

utilizando pouco espaço e reduzindo o tempo computacional. Avaliações realizadas em mo-

delos sintéticos demonstram que o esquema proposto gera seções migradas idênticas com

aquelas geradas pelo esquema FLSRTM usando as funções de Green originais, utilizando

menos memória e tempo computacional. No capítulo 3, abordamos as limitações dos opera-

dores convencionais de migração em profundidade por continuação descendente do campo de
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ondas, tais como a geração indesejada de ondas evanescentes, o imageamento em meios com

fortes contrastes de velocidade e re�etores com mergulhos acentuados, além da estabilidade

do propagador unidirecional. Propomos um algoritmo de migração em profundidade baseado

em uma equação de onda unidirecional que é, ao mesmo tempo, estável e e�ciente. Para isso,

utilizamos o projetor espectral para suprimir modos evanescentes do operador de Helmholtz

e aplicamos o esquema iterativo de Schulz acoplado para calcular a raiz quadrada desse

operador �ltrado. Finalmente, introduzimos a expansão de Jacobi-Anger para aproximar o

operador exponencial de matriz, permitindo a construção do propagador de forma estável.

Testes de resposta ao impulso, assim como a aplicação em dados de campo, demonstram que

nosso algoritmo é mais preciso e e�caz para imagens em meios com fortes variações laterais

de velocidade, superando a qualidade das imagens obtidas por métodos tradicionais.



Abstract

This thesis addresses the development of techniques related to seismic migration, aiming

overcome the limitations and challenges present in traditional methodologies. The three

chapters of this work present solutions that enhance computational e�ciency, accuracy in

seismic imaging, and the ability to handle complex subsurface models. In chapter 1, we focus

on the separation of the wave�eld into upgoing and downgoing components, a crucial step in

the processing of multicomponent data, wave�eld propagation, and seismic imaging. We pro-

pose an alternative method for computing the analytical wave�eld using the �rst-order partial

equation in time, solving the wave equation only once. This approach allows for the explicit

separation of wave�elds at each time step, making it more computationally e�cient and

enabling the application of the causal imaging condition in reverse time migration (RTM).

Results from synthetic models indicate that the proposed method achieves a decomposition

similar to that obtained by the conventional method, which requires two propagations, with

potential applications in 3D cases. Moreover, the method e�ectively removes low-frequency

noise present in RTM images that use the cross-correlation imaging condition. In chapter

2, we investigate frequency-domain least-squares RTM (FLSRTM), which is capable of pro-

ducing high-resolution re�ectivity models. However, storing the Green's functions needed

for gradient computation and the scattered wave�eld via Born modeling may be unfeasible

due to their size. We propose a FLSRTM scheme using low-rank Green's functions ob-

tained through randomized (rSVD) and compressed (cSVD) singular value decomposition

algorithms. These algorithms allow for e�cient storage of Green's functions in memory,

using less space and reducing computational time. Evaluations on synthetic models demon-

strate that the proposed scheme generates migrated sections identical to those produced

by the FLSRTM scheme using the original Green's functions while utilizing less memory

and computational time. In chapter 3, we address the limitations of conventional depth

migration operators based on downward continuation of the acoustic wave�eld, such as the

undesired generation of evanescent waves, imaging in media with strong velocity contrasts

and steeply dipping re�ectors, and the stability of the one-way propagator. We propose

a depth migration algorithm based on an one-way wave equation that is both stable and
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e�cient. To achieve this, we use a spectral projector to suppress evanescent modes from the

Helmholtz operator and apply the coupled Schulz iterative scheme to compute the square

root of this �ltered operator. Finally, we introduce the Jacobi-Anger expansion to approx-

imate the exponential matrix operator, enabling the stable construction of the propagator.

Impulse response tests, as well as �eld data applications, demonstrate that our algorithm

is more accurate and e�ective for imaging in media with strong lateral velocity variations,

surpassing the quality of images obtained by conventional methods.
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O problema

RTM utilizando uma construção e�ciente do campo de ondas
analítico

A migração reversa no tempo (do inglês �Reverse-Time Migration� - RTM) (Whitmore,

1983; Baysal et al., 1983; McMechan, 1983) tem se tornado um dos métodos de imageamento

sísmico mais empregados na indústria de exploração sísmica, isso devido a sua capacidade de

gerar imagens da subsuperfície com estruturas arbitrariamente complexas e com mergulho

acentuado na subsuperfície, permitindo obter resultados de alta resolução. Na RTM con-

vencional, para dados não empilhados e organizados em família de fonte comum, a imagem

é construída tomando a correlação cruzada dos campos de ondas da fonte e do receptor

propagados no sentido direto e reverso no tempo, respectivamente. A seção migrada resul-

tante é sempre contaminada por ruído de baixa frequência espacial e alta amplitude, além

de falsos re�etores, os quais resultam da correlação cruzada dos diferentes tipos de ondas

(p. ex., refratadas, mergulhantes, e retroespalhadas) geradas devido aos fortes gradientes ou

interfaces acentuadas no modelo de velocidade empregado na migração. Nos últimos anos,

mais atenção tem sido dada para melhorar a condição de imagem e, portanto, reduzir os

efeitos que contaminam o modelo de re�etividade obtido pela técnica RTM. Fei et al. (2015)

�zeram uma revisão comparativa dos métodos propostos na literatura para o caso acústico,

e os agruparam em três categorias: antes, depois ou durante a aplicação da condição de

imagem.

Fletcher et al. (2006) sugeriram um procedimento para remover as re�exões indesejáveis

durante a propagação do campo de ondas. Neste procedimento, a ideia principal é aplicar um

termo de amortecimento direcional à equação de onda em áreas do modelo de velocidade onde

ocorrem as re�exões indesejadas, derivando desta forma a equação de onda não-re�exiva. O

uso dessa abordagem torna-se inconveniente quando é aplicada em um modelo com interfaces

muito complicadas, isso devido à necessidade do conhecimento adicional da direção na qual

15
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a energia está se propagando. Usando uma ideia similar, Yoon e Marfurt (2006) usaram o

fato de que eventos de re�exão (ângulos de abertura curtos) e artefatos (afastamento fonte-

receptor distante) possuem diferentes faixas de ângulo de abertura, portanto as direções de

propagação de onda podem ser usadas para eliminar artefatos na seção migrada. Desta

forma, antes de aplicar a condição de imagem, o ângulo entre as ondas incidente e re�etida

é limitado através do cálculo do vetor de Poynting. O método proposto por Yoon e Marfurt

(2006) funciona bem para modelos simples, mas requer um custo de armazenamento adicional

e não produz resultados satisfatórios em subsuperfícies complexas (Guitton et al., 2007).

Uma abordagem prática na qual os artefatos são �ltrados após a geração da imagem migrada

é o �ltro Laplaciano (Youn e Zhou, 2001; Zhang e Sun, 2009), que é fácil de aplicar e mostra

boa atenuação do ruído de baixa frequência espacial, mas pode �ltrar também o sinal de

interesse (Guitton et al., 2007).

Outra forma de mitigar o problema dos artefatos presentes na imagem RTM é modi�-

cando a condição de imagem. Nesse sentido, Brandsberg-Dahl et al. (2013) e Rocha et al.

(2016) apresentaram um esquema de imageamento baseado na teoria do espalhamento in-

verso generalizado (Stolk et al., 2009). Nessa abordagem, os artefatos causados pela energia

retroespalhada são atenuados usando a combinação de duas condições de imagem separadas:

i) o produto das derivadas temporais dos campos de ondas da fonte e do receptor, e ii) o pro-

duto dos gradientes espaciais dos campos de ondas da fonte e do receptor. Então, uma soma

ponderada dessas imagens é calculada para gerar a seção migrada �nal. Como uma aplica-

ção da condição de imagem de espalhamento inverso, Pestana et al. (2014) propuseram um

esquema onde o componente descendente do campo de onda da fonte - obtido pela aplicação

do vetor de Poynting - é usado na aplicação do mencionado processo de imageamento. Mais

recentemente, com base no conceito da norma energética, Rocha et al. (2016) desenvolveram

uma condição de imagem �exível que não apenas atenua os artefatos na RTM, mas também

atenua qualquer ângulo de re�exão selecionado. A condição da norma energética, proposta

tanto para o caso acústico, como para meios com anisotropia, além de ser similar à condição

de imagem de espalhamento inverso, também está relacionada ao �ltro Laplaciano, conforme

demonstrado em Rocha et al. (2016). Em geral, as condições de imagem baseadas na teoria

introduzida por Stolk et al. (2009), produzem imagens de qualidade muito superior quando

comparadas com aquelas obtidas mediante a correlação convencional.

Liu et al. (2011) propuseram uma condição de imagem baseada na decomposição do

campo de ondas em componentes unidirecionais, a qual também pertence ao grupo de mé-

todos que modi�cam a correlação cruzada padrão na RTM. Nessa condição de imagem, é

permitida apenas a correlação dos componentes do campo de ondas que se propagam em

direções opostas. O método proposto por Liu et al. (2011) é uma técnica de separação implí-
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cita, que pode remover com sucesso muitos tipos de artefatos, enquanto preserva a amplitude

da imagem, sem a necessidade de aplicar um �ltro Laplaciano após a condição de imagem.

No entanto, uma decomposição incompleta do campo de ondas pode dar origem a artefatos

na seção migrada, como mostrado por Fei et al. (2014), Shen e Albertin (2015) e Wang et al.

(2016b). Desta maneira, dado que a abordagem proposta por Liu et al. (2011) baseia-se

numa separação implícita, os campos de ondas ascendentes e descendentes não estão disponí-

veis e suas aplicações são limitadas. A �m de obter os componentes unidirecionais, o campo

de ondas é geralmente levado ao domínio de Fourier (ω − k), e então de�ne-se a direção de

propagação levando em conta o sinal da frequência e do número de onda (Hu e McMechan,

1987; Liu et al., 2011). Dessa forma, observa-se que o método convencional de decomposição

do campo de ondas no domínio do tempo precisa armazenar o campo de ondas e realizar

uma transformada de Fourier ao longo do eixo do tempo. Esse processo aumenta o custo de

entrada/saída (I/O), dado que o eixo temporal corresponde à dimensão com maior número

de amostras do campo de ondas armazenado, e a transformada de Fourier opera de maneira

mais e�ciente nos dados que são armazenados contiguamente.

Por outro lado, se podemos de�nir um campo de ondas no domínio do tempo cujo

espectro seja apenas positivo ou negativo (Shen e Albertin, 2015; Wang et al., 2016a; Wang

et al., 2017), a direção da propagação do campo de pressão estará apenas determinada pelo

sinal do número de onda espacial, e então, o alto custo de I/O será evitado. Este sinal é o

sinal analítico que é amplamente utilizado no processamento de sinais. O sinal analítico é

um sinal complexo cuja parte real é o próprio sinal e sua parte complexa é a transformada de

Hilbert da parte real. Para a técnica RTM, o conceito do sinal analítico é estendido e então

chamado de campo de ondas analítico (Zhang et al., 2007; Sun et al., 2016). Como o campo

de ondas analítico contém apenas frequências positivas, os componentes de onda ascendente

e descendente podem ser convenientemente obtidos pela aplicação de um �ltro de Fourier

1D ao longo da direção da profundidade. Comparado com o método de Liu et al. (2011) da

construção de imagens RTM, uma grande vantagem do uso do campo de ondas analítico é que

os componentes ascendente e descendente do campo de pressão são completamente separados

e estão disponíveis de forma explícita para diferentes aplicações, além de eliminar o requisito

de armazenamento computacional, bem como a necessidade de transformadas rápidas de

Fourier (do inglês �Fast Fourier Transform� - FFT) no eixo do tempo. Recentemente,

Costa et al. (2018) apresentaram uma condição de imagem baseada na coerência da fase

entre os campos de ondas propagados, a qual emprega os atributos instantâneos do campo

de ondas analítico (envelope e a fase instantânea). Segundo os resultados de Costa et al.

(2018), a condição de imagem aplicada pode ajudar a delinear características estratigrá�cas

e estruturais que são mais difíceis de se ver em imagens convencionais, apresentando dessa
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forma outra importante aplicação do campo de ondas analítico.

Nos últimos anos, vários trabalhos sobre a decomposição do campo de ondas usando

o campo de ondas analítico foram apresentados. Para tal �m, na simulação da evolução

temporal do campo de pressão e avaliação do operador Laplaciano, o método convencional

de diferenças �nitas foi adotado por Shen e Albertin (2015), Wang et al. (2016b), Wang

et al. (2016a), Zheng et al. (2018) e Costa et al. (2018). Como descrito no trabalho de

Shen e Albertin (2015), a parte imaginária do campo de ondas analítico é construída atra-

vés da solução da equação da onda tendo como termo fonte a transformada de Hilbert do

próprio termo fonte. O par de campos de ondas - aquele propagado com o termo fonte e

o outro gerado pela sua transformada de Hilbert - constituem o campo de ondas analítico.

Com base na construção do campo de ondas analítico, os componentes unidirecionais podem

ser encontrados de forma explícita, então Shen e Albertin (2015) propuseram uma condi-

ção de imagem, denominada imagem causal, que correlaciona os componentes descendente

e ascendente da fonte e do receptor, respectivamente. Este método foi testado e provou ser

bem-sucedido na remoção de muitos tipos de artefatos, os quais são comuns nas seções re-

sultantes da aplicação da condição de imagem de correlação cruzada proposta por Claerbout

(1971).

Métodos para simular a propagação do campo de ondas analítico, que apenas precisam do

estado presente para extrapolar o campo ao passo seguinte no tempo, têm sido desenvolvidos

a �m de evitar a dispersão numérica, problema gerado no esquema de diferenças �nitas

quando o intervalo de discretização espacial ou temporal é grande; Du et al. (2014) revisaram

esses métodos e os denominaram métodos de extrapolação integral recursiva no tempo (do

inglês �Recursive Integral Time-Extrapolation Methods� - RITE). Em Revelo et al. (2016) e

Wang e Liu (2017), a implementação de dois diferentes esquemas de extrapolação do campo

de ondas analítico é apresentada, bem como a sua aplicação na construção dos componentes

unidirecionais do campo de ondas; para a técnica RTM, os campos de ondas da fonte e do

receptor são extrapolados no tempo, seguido da etapa da separação em forma explícita nos

seus componentes ascendente e descendente, isto para cada intervalo de tempo e aplicando

o esquema de separação proposto por Shen e Albertin (2015). A distinção clara entre o

método de Revelo et al. (2016) e o proposto por Shen e Albertin (2015) é que no primeiro

usa-se uma solução de equação de onda de primeira ordem com um termo fonte analítico,

enquanto em Shen e Albertin (2015) foi necessário resolver a equação de onda duas vezes:

uma vez para a fonte e outra para a transformada de Hilbert do próprio termo fonte. Em

relação ao trabalho de Liu et al. (2011), a principal diferença é que o método proposto por

Shen e Albertin (2015) pode fornecer uma separação explícita do campo de ondas, enquanto

o esquema de Liu et al. (2011) resulta em uma separação implícita.
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Levando em conta o desa�o computacional que pode apresentar a construção do campo

de ondas analítico, na primeira parte de esta tese, é proposto um esquema que tem como

base o método de expansão rápida (do inglês �Rapid Expansion Method � - REM) (Tal-Ezer

et al., 1987; Pestana e Sto�a, 2010), no qual o campo de ondas analítico é calculado apenas

resolvendo a equação de onda uma vez. O REM permite propagar ondas livres do efeito de

dispersão numérica e é capaz de extrapolar o campo de pressão usando intervalos de tempo

próximos ao limite de Nyquist. Com o REM também é possível obter a derivada de primeira

ordem no tempo do campo de ondas ao mesmo tempo que o próprio campo é extrapolado

e, assim, calcular a parte imaginária do campo de ondas analítico como proposto por Zhang

e Zhang (2009). Depois disso, podemos separar o campo de ondas em seus componentes

ascendentes e descendentes. Desta forma, no método proposto, a equação de onda é resolvida

apenas uma vez, melhorando a e�ciência computacional do procedimento de separação do

campo de ondas seguido pela aplicação da condição de imagem causal para a RTM. Os bons

resultados obtidos com a abordagem proposta, em termos de redução do tempo de execução,

transformam a técnica em uma interessante alternativa, especialmente quando se trata com

modelos de velocidades complexos e grandes volumes de dados.

LSRTM no domínio da frequência com uso e�ciente de memória por
meio de métodos SVD estocásticos

A geração de seções migradas é uma etapa crucial no processamento sísmico, responsável

por construir imagens em profundidade do subsolo a partir de dados registrados no tempo.

Ela corrige a profundidade e a inclinação dos re�etores e suprime as difrações (Claerbout,

1992; Andrade et al., 2017). Entre as técnicas de migração sísmica, a RTM, que envolve

a retropropagação dos dados de campo utilizando a equação da onda bidirecional (Ren

et al., 2013), tem se mostrado a técnica de imageamento sísmico mais precisa. Isso se

deve à sua capacidade de imagear estruturas arbitrariamente complexas e com mergulhos

acentuados no subsolo, desde que um modelo de velocidade preciso esteja disponível. Com

o aumento das demandas na exploração de óleo e gás, há uma necessidade crescente de

que o imageamento sísmico forneça informações mais abrangentes além da simples estrutura

do subsolo, como a re�etividade. Apesar dos resultados satisfatórios obtidos pela RTM, o

operador de migração sísmica possui uma relação adjunta com o operador de modelagem

Born (Liu et al., 2022). Portanto, um aspecto importante que afeta a imagem da migração

sísmica é a incapacidade do operador adjunto de aproximar com precisão o operador inverso

(Claerbout, 1992; Symes, 2009). Consequentemente, a imagem resultante pode sofrer de

efeitos de desfoque, com amplitudes incorretas e artefatos de migração em condições de

aquisição imperfeitas, como fonte sísmica com largura de banda limitada, abertura de registro
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�nita, geometria de amostragem irregular ou frequências ausentes (Nemeth et al., 1999; Etgen

et al., 2009; Liu et al., 2022; Kim et al., 2022).

Para superar esse problema, Tarantola (1984) introduziu um método e�caz para melhorar

a qualidade da imagem de migração e gerar um resultado de imageamento com preservação

de amplitude. Essa abordagem, conhecida como migração por mínimos quadrados (do in-

glês �Least Square Migration� - LSM) (Bamberger et al., 1982), é um esquema de inversão

linearizada baseado na minimização de uma função de mínimos quadrados. Ela aproxima

o operador inverso minimizando iterativamente a função objetivo de�nida, utilizando um

método de otimização baseado no gradiente (Nemeth et al., 1999; Dutta e Schuster, 2014).

Em particular, quando o esquema LSM é aplicado utilizando a equação completa da onda, é

denominado de migração reversa no tempo por mínimos quadrados (do inglês �Least Square

Reverese Time Migration� - LSRTM) (Schuster, 1993; Nemeth et al., 1999; Dong et al.,

2012; Yao et al., 2022). Esse método, baseado na aproximação de Born, tem mostrado ser

mais e�ciente na migração de estruturas geológicas complexas (Wong et al., 2012). O es-

quema LSRTM iterativo típico consiste em três componentes principais: um operador de

modelagem para simular dados sísmicos, um operador de migração para calcular o gradiente

e um esquema de inversão para minimizar a função objetivo. Considerando que o gradiente

da função erro calculado no LSRTM no domínio do tempo (TLSRTM) deve ser computado

de forma independente para cada sismograma do dado sísmico (Herrmann e Li, 2012; Dai

et al., 2012; Zhang et al., 2015), o custo computacional do TLSRTM pode aumentar dras-

ticamente proporcionalmente ao número de tiros. Avanços signi�cativos foram alcançados

recentemente visando melhorar a qualidade do imageamento sísmico, ao mesmo tempo em

que se reduz o custo computacional do TLSRTM (Herrmann e Li, 2012; Dai e Schuster,

2013; Xue et al., 2016; Yao e Jakubowicz, 2016; Liu e Peter, 2018).

O esquema LSRTM no domínio da frequência (FLSRTM) pode ser empregado para

reduzir o custo computacional na aplicação do LSRTM em dados sísmicos com um número

considerável de tiros, oferecendo várias vantagens sobre a versão no domínio do tempo.

Notavelmente, apenas alguns componentes de frequência válidos dos dados são necessários

para gerar a seção migrada (Kim et al., 2022). Além disso, se as funções de Green puderem

ser armazenadas na memória do computador, o gradiente e os dados modelados via operador

de Born podem ser e�cientemente calculados sem a necessidade de extrapolações adicionais

do campo de ondas (Ren et al., 2013). Observamos que, no esquema FLSRTM, o campo de

ondas espalhado e o gradiente da função de desajuste são expressos em função das funções

de Green de fundo no domínio da frequência. Considerando que o FLSRTM representa

uma inversão linearizada, e não atualiza o modelo de velocidade, todas as funções de Green

de fundo, desde as fontes até os re�etores e dos re�etores até os receptores, que apenas
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dependem da velocidade de fundo, devem ser calculadas uma vez e armazenadas na memória

do computador para cada frequência. Embora a FLSRTM tenha se mostrado e�ciente,

esse esquema pode ser severamente limitado pelos requisitos substanciais de armazenamento

de memória para salvar as funções de Green de fundo, especialmente quando um grande

conjunto de dados e modelo são usados (Liu et al., 2022). Para mitigar esse problema,

Ren et al. (2013) implementaram uma versão do FLSRTM em que as funções de Green das

fontes e dos receptores são armazenadas na memória durante a primeira iteração do esquema

de inversão. Embora esse esquema seja limitado pela memória interna do computador, a

e�ciência do método é atraente. Como uma abordagem alternativa, Zhao e Sen (2019)

propuseram a codi�cação de registros de disparo com ondas planas para reduzir os requisitos

de armazenamento de memória para salvar as funções de Green.

Mais recentemente, Kim et al. (2022) introduziram uma versão rápida e e�ciente em

termos de memória da FLSRTM, na qual adotaram a decomposição em valores singulares

(do inglês �Singular Value Decomposition� - SVD) para construir a representação de baixo

posto das funções de Green e reduzir o armazenamento de memória necessário. Embora o

esquema FLSRTM com funções de Green de baixo posto possa produzir resultados de mi-

gração tão precisos quanto o esquema FLSRTM convencional com menor uso de memória, a

geração dessa representação de baixo posto via SVD pode ser computacionalmente intensiva,

especialmente ao lidar com grandes conjuntos de dados ou modelos. Alternativamente, algo-

ritmos iterativos, como aqueles baseados nos subespaços de Krylov, podem ser empregados

para aproximar os vetores singulares dominantes de forma mais e�ciente (Golub e Van Loan,

1996). Esses algoritmos representam as abordagens mais amplamente utilizadas para calcu-

lar aproximações de matrizes de baixo posto, especialmente para grandes matrizes esparsas.

No entanto, nas últimas duas décadas, algoritmos estocásticos ganharam popularidade. Isso

se deve ao fato de que algoritmos randomizados geralmente apresentam melhor desempenho

na prática e são mais robustos em comparação com os métodos de Krylov (Martinsson, 2019).

A ideia básica desses algoritmos é empregar certa quantidade de aleatoriedade para derivar

uma matriz menor a partir da matriz original de alta dimensão, que captura a informação

essencial e oferece uma alternativa con�ável e computacionalmente e�ciente para obter uma

representação SVD de baixo posto (Sarlos, 2006; Gu, 2015; Erichson et al., 2019).

Nesta segunda parte da tese, propomos a implementação do esquema FLSRTM que

utiliza funções de Green de baixo postos geradas via algoritmos SVD aleatório (do inglês

�randomized SVD� - rSVD) (Halko et al., 2011; Martinsson et al., 2011; Halko, 2012; Tropp

e Webber, 2023) e comprimido (do inglês �compressed SVD� - cSVD) (Erichson et al., 2017;

Erichson et al., 2019) para melhorar o desempenho em tempo de execução. O algoritmo apri-

morado aborda os desa�os computacionais associados ao esquema FLSRTM convencional.
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O ponto central da solução reside na pro�ciência dos algoritmos rSVD e cSVD em extrair e�-

cientemente informações relevantes das funções de Green para construir suas representações

de baixo posto. Diferente do algoritmo SVD convencional, as versões rSVD e cSVD começam

gerando uma matriz comprimida a partir da matriz original, utilizando uma matriz aleatória

Gaussiana e uma decomposição QR econômica. O tamanho da matriz comprimida é deter-

minado pelo coe�ciente de truncamento, que corresponde ao posto ótimo e é determinado

utilizando um critério especí�co (Kim et al., 2022). Liu e Peter (2020) demonstraram que,

se o critério de truncamento for ajustado corretamente, esses algoritmos podem comprimir

signi�cativamente a matriz original, levando a uma redução no uso de memória e no tempo

de computação. Embora o algoritmo rSVD seja matematicamente robusto e ofereça limites

de erro fortes, há potencial para inovações e melhorias, como as introduzidas no algoritmo

cSVD apresentado por Ji e Li (2014). O algoritmo cSVD fornece um equilíbrio e�caz en-

tre precisão e tempo de cômputo, sendo particularmente adequado para aproximar grandes

matrizes. Consequentemente, suas vantagens computacionais tornam-se mais signi�cativas

à medida que as dimensões aumentam. Por meio de experimentos numéricos conduzidos em

modelos sintéticos, comprovamos a e�cácia do algoritmo proposto na geração de imagens

sísmicas de alta qualidade. Além disso, por meio de uma análise comparativa dos resultados

de migração e dos custos computacionais em exemplos numéricos, evidenciamos a e�ciência

do esquema FLSRTM proposto em termos de uso de memória e tempo de computação, uti-

lizando a representação de baixo posto das funções de Green por meio de algoritmos SVD

estocásticos.

Migração sísmica através da solução da equação de onda
unidirecional baseada na expansão de Jacobi-Anger

A equação da onda unidirecional, derivada de uma solução aproximada da equação de

onda completa, é de fundamental importância na extrapolação em profundidade do campo

de ondas usado dentro do esquema da migração através da equação de onda (do inglês

�Wave-equation Migration� - WEM) (Claerbout, 1971). Nesta abordagem, a equação de

onda completa é decomposta ao longo da direção dominante de propagação, reduzindo a

dimensionalidade computacional. Como resultado, o método WEM apresenta uma vanta-

gem signi�cativa em problemas de grande escala. Diferentemente da técnica RTM, o WEM

oferece precisão de fases e amplitudes apenas dentro de ângulos de propagação limitados,

especialmente em meios com fortes contrastes de velocidade e re�etores com mergulhos acen-

tuados. Embora a RTM seja amplamente estudada na indústria e na academia, ela apresenta

desvantagens, como altos custos de memória e artefatos de baixa frequência, que podem ser

atenuadas pelo algoritmo WEM. Os propagadores de ondas unidimensionais, utilizados em
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métodos de migração que se baseiam na separação da equação de onda completa, oferecem

uma solução cinemática con�ável para ondas acústicas. A fatoração da equação de onda em

operadores ascendentes e descendentes introduz o operador de raiz quadrada (ou número de

onda vertical), que é caracterizado por sua não-localidade.

Embora diversos métodos tenham sido desenvolvidos para aproximar o operador de raiz

quadrada por um operador local, a precisão dessas aproximações ainda é limitada. Os algo-

ritmos WEM convencionais, inicialmente desenvolvidos para dados 2D pós-empilhamento,

foram amplamente aprimorados para aplicação em migração pré-empilhamento. Original-

mente projetados para meios homogêneos, esses métodos foram ajustados para considerar as

variações laterais no campo de velocidades, incorporando diversas correções para melhorar

sua precisão. Destacam-se, nesse contexto, os métodos de migração Phase shift plus inter-

polation (PSPI) (Gazdag, 1978; Gazdag e Sguazzero, 1984), Split-step (SS) (Sto�a et al.,

1990) e Fourier �nite di�erence (FFD) (Ristow e Rühl, 1994), amplamente utilizados na

indústria do petróleo. Outros trabalhos, na tentativa de contornar os problemas associados

com variações signi�cativas no modelo de velocidade, têm se concentrado na expansão direta

do operador de raiz quadrada, sem introduzir aproximações no campo de velocidade. Esses

trabalhos utilizam técnicas matemáticas como séries de Taylor e Padé, além de polinômios

de Chebyshev (Gazdag, 1978; Gazdag e Sguazzero, 1984; Sto�a et al., 1990). No entanto,

os erros de truncamento gerados por essas abordagens limitam os ângulos de propagação do

campo de pressão, tornando muito difícil alcançar 90◦. Essa limitação, re�etida nos ângulos

dos re�etores recuperados na seção sísmica, representa uma desvantagem signi�cativa do

WEM. Para aproveitar plenamente as vantagens da migração sísmica com base na equação

de onda unidimensional, é essencial evitar metodologias convencionais que utilizam expres-

sões polinomiais aproximadas para o cálculo do operador raiz quadrada. Na literatura, dois

métodos notáveis e bem-sucedidos, que não recorrem a aproximações, foram propostos: o

método de decomposição em valores próprios (Grimbergen et al., 1998) e o esquema itera-

tivo de Schulz acoplado (Higham, 1987), baseado na relação entre a função sinal da matriz e

sua raiz quadrada. Considerando que a decomposição em valores próprios pode ter um alto

custo computacional para modelos de grande escala (You et al., 2018), optamos por utilizar

o esquema de Higham para calcular o número de onda vertical em nosso algoritmo WEM

proposto.

Outro problema na implementação do algoritmo de imageamento WEM é a notória ins-

tabilidade no propagador de extrapolação em profundidade, causada pela presença de com-

ponentes de ondas evanescentes (Grimbergen et al., 1998; Wapenaar e Grimbergen, 1998).

Koslo� e Baysal (1983) propõem suprimir essas ondas evanescentes no domínio do número

de onda utilizando a transformada de Fourier e um �ltro de corte ideal. No entanto, essa



Memorial descritivo 24

abordagem considera um modelo de subsuperfície com variação vertical de velocidade. Para

um modelo de velocidade com variação lateral, sugerem empregar um �ltro de corte ajus-

tado à velocidade máxima em um determinado nível de profundidade, também recorrendo à

transformada de Fourier como ferramenta. Como demonstrado por Thorbecke et al. (2004),

a aplicação deste �ltro de corte pode ser estendida à equação de onda unidimensional sem

perda de generalidade. Exemplos numéricos mostram que, para a extrapolação em profundi-

dade com a equação de onda completa, essa estratégia resulta na remoção de algumas ondas

propagantes juntamente com as ondas evanescentes, levando a uma imagem migrada com

pouca presença de re�etores íngremes (Sandberg e Beylkin, 2009). Como alternativa, um

dos métodos mais promissores é o projetor espectral (Kenney e Laub, 1995), que pode �ltrar

as ondas evanescentes sem perder nenhum componente de onda propagante. Para modelos

de velocidade com a presença apenas de variação vertical, a combinação da transformada

de Fourier e do �ltro de corte ideal, como proposto por Koslo� e Baysal (1983), constitui

tal projetor. No esquema de imageamento OWEM proposto nesta tese, implementamos um

algoritmo para calcular os projetores espectrais que aproveita sua relação com a função sinal

de uma matriz, que, por sua vez, utiliza recursões polinomiais da matriz (Auslander e Tsao,

1992; You et al., 2019).

Um aspecto crucial do esquema de imageamento que propomos é a eliminação da su-

posição de que o operador raiz quadrada pode ser tratado como um operador local. Em

consequência, o extrapolador em profundidade não pode mais ser aplicado localmente e

deve ser implementado como um operador derivado da exponencial de uma matriz. Em-

bora muitos pesquisadores tenham se concentrado no cálculo do operador de raiz quadrada

e na atenuação de ondas evanescentes, poucos têm abordado a construção desse operador

exponencial de uma matriz. You et al. (2019) utilizaram a expansão em série de Taylor

(TS) para aproximar a função exponencial de uma matriz. No entanto, nesta parte da tese,

propomos o uso da expansão de Jacobi-Anger (JA) como uma alternativa mais e�ciente

para esse propósito. A expansão JA representa funções oscilatórias de forma mais natu-

ral, tornando-a particularmente adequada para aplicações envolvendo propagação de ondas,

como a extrapolação de profundidade sísmica. Esta expansão converge mais rapidamente

devido às propriedades das funções de Bessel, o que diminui o número de termos necessários

para uma aproximação precisa (Watson, 1944). Além disso, a ortogonalidade das funções

de Bessel minimiza a interferência cruzada entre os termos, aumentando ainda mais a preci-

são e a compactação da representação (Abramowitz e Stegun, 1972). Consequentemente, a

expansão JA não só fornece uma aproximação mais exata com menos termos, mas também

resulta em uma e�ciência computacional signi�cativa e precisão em simulações numéricas

(Bowman, 1958). Com base no que foi exposto, e visando superar as limitações das abor-
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dagens convencionais para a solução das equações de onda unidimensionais, a última parte

desta tese pretende integrar o projetor espectral, o esquema iterativo de Schulz acoplado e a

expansão JA na técnica de imageamento WEM. Para validar a e�cácia do esquema proposto,

são computadas respostas ao impulso utilizando tanto a expansão TS quanto a expansão JA,

além dos algoritmos convencionais WEM. Para obter resultados de imagem mais precisos

e detalhados, migrações pós-empilhamento e pré-empilhamento são realizadas em modelos

subsuper�ciais complexos, empregando tanto métodos convencionais WEM quanto o algo-

ritmo de migração sísmica proposto. Por �m, aplicamos esses métodos de migração a dados

sísmicos reais.

Material e métodos

Para desenvolver a primeira parte deste trabalho (capítulo 1), realizamos uma revisão

bibliográ�ca das principais técnicas voltadas para a melhoria da condição de imagem, com

o objetivo de contornar os efeitos que contaminam a seção migrada gerada pela RTM. A

condição de imagem causal proposta por Shen e Albertin (2015), que correlaciona os compo-

nentes descendente e ascendente da fonte e do receptor, respectivamente, mostrou-se e�caz

na remoção de diversos tipos de artefatos. Contudo, essa abordagem requer a construção do

campo de ondas analítico, realizada por meio de duas propagações, o que acarreta um elevado

custo computacional. Esse fator foi identi�cado como um aspecto essencial a ser investigado

e aprimorado. Nesse contexto, propomos um esquema e�ciente para a construção do campo

de ondas analítico, cuja implementação demandou um sólido domínio dos conceitos teóricos

sobre propagação de ondas, separação explícita do campo de ondas e a técnica de migração

RTM.

Na segunda parte desta tese (capítulo 2), conduzimos uma pesquisa bibliográ�ca deta-

lhada sobre a implementação do esquema LSRTM no domínio da frequência. Nesse sentido,

encontramos diversos trabalhos que utilizam diferentes técnicas, destacando-se o método pro-

posto por Kim et al. (2022), que apresenta uma versão do FLSRTM e�ciente em termos de

memória. Embora essa abordagem reduza a quantidade de memória exigida pelo esquema

de inversão, a técnica adotada para gerar a representação de baixo posto das funções de

Green, utilizando o algoritmo SVD convencional, pode aumentar signi�cativamente o tempo

de cálculo, especialmente ao lidar com grandes conjuntos de dados ou modelos. Diante disso,

para tornar a etapa de geração da representação de baixo posto das funções de Green mais

e�ciente, propomos o uso dos algoritmos SVD aleatório e comprimido. Portanto, o domí-

nio dos conceitos teóricos sobre modelagem Born, migração sísmica, esquemas de inversão

sísmica e técnicas SVD foi crucial para o desenvolvimento de nosso esquema FLSRTM com
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uso e�ciente de memória por meio de métodos SVD estocásticos.

Na terceira parte desta tese (capítulo 3), investigamos os operadores de extrapolação

em profundidade do campo de ondas utilizados no esquema WEM, destacando as principais

limitações das aproximações tradicionais: o tratamento de ondas evanescentes, o imagea-

mento de re�etores com mergulhos acentuados e a estabilidade do propagador unidirecional.

Para superar esses desa�os, propomos um algoritmo de migração em profundidade que é

robusto e e�ciente. Esse algoritmo emprega um projetor espectral para suprimir modos eva-

nescentes, o esquema iterativo de Schulz acoplado para o cálculo do operador raiz quadrada,

e a expansão de Jacobi-Anger para uma construção estável do propagador de extrapolação.

A implementação desse algoritmo exigiu um domínio sólido dos conceitos teóricos dos três

componentes mencionados, além de um conhecimento aprofundado do esquema de migração

em profundidade WEM

Com relação aos aspectos de implementação computacional, utilizamos a linguagem

Fortran 90 para implementar os algoritmos descritos em cada capítulo, além do protocolo

de comunicação distribuída (do inglês, "Message Passing Interface- MPI) para realizar a

divisão do trabalho, otimizando assim o tempo total de execução. Os modelos, as imagens e

os dados sísmicos foram plotados com o pacote Seismic Unix (Stockwell, 1999), o software

de código aberto Gnuplot (Williams et al., 2010) e o sistema de composição tipográ�ca LATEX

(Lamport, 1994)

Produtos

Este trabalho resultou em um artigo cientí�co e dois manuscritos, que correspondem aos

capítulos desta tese. A seguir, é apresentada uma breve descrição de cada um deles. Além

disso, são listados os subprodutos de cada capítulo, totalizando nove resumos expandidos

apresentados em eventos de divulgação cientí�ca.

O capítulo 1 compreende o artigo intitulado Up/down acoustic wave�eld decom-

position using a single propagation and its application in reverse time migration,

publicado na revista Geophysics (Revelo e Pestana, 2019). Nele, propomos um método alter-

nativo para o cálculo do campo de ondas analítico, baseado na equação diferencial parcial de

primeira ordem no tempo e resolvendo a equação da onda apenas uma vez. Como demons-

trado por alguns exemplos numéricos, este método melhora o cálculo da separação explícita

do campo de ondas, permite a aplicação e�ciente da condição de imagem causal em RTM e

produz imagens livres de ruído de baixa frequência.

Trabalhos em eventos:
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� Reverse time migration with causal imaging condition using an improved method to

calculate the analytical wave�eld. 15th International Congress of the Brazilian Ge-

ophysical Society, 2017, doi: 10.1190/sbgf2017-257;

� An Improved Method to Calculate the Analytical Wave�eld for Causal Imaging Condi-

tion. 79th EAGE Conference & Exhibition, 2017, doi: 10.3997/2214-4609.201701133;

� An improved method to calculate the analytical wave�eld for causal imaging condition.

SEG International Exposition & 87th Annual Meeting, 2017, doi: 10.1190/segam2017-

17664808.1;

� De-primary TTI�RTM using the P-pure analytical wave�eld. 81st EAGE Conference

& Exhibition, 2019, doi: 10.3997/2214-4609.201900838;

� Reverse time migration as the transpose of forward operator by rapid expansion method

(REM). SEG International Exposition & 89th Annual Meeting, 2019,

doi: 10.1190/segam2019-3215582.1;

� Combination of the LSMME scheme and causal imaging condition to remove RTM

artifacts. 17th International Congress of the Brazilian Geophysical Society, 2021, doi:

10.22564/17cisbgf2021.081.

O capítulo 2 refere-se ao manuscrito intituladoMemory-e�cient frequency-domain

least-squares RTM using low-rank Green's functions via stochastic SVD algo-

rithms, no qual abordamos um desa�o crítico na implementação da migração reversa no

domínio da frequência por mínimos quadrados (FLSRTM): a grande demanda de memória

para armazenar as funções de Green. Embora o FLSRTM tenha potencial para gerar mode-

los de re�etividade de alta resolução, sua aplicação prática é limitada pela inviabilidade de

armazenar funções de Green no hardware disponível. Para mitigar esse problema, propomos

uma abordagem inovadora que utiliza funções de Green de baixo posto, decompostas por

versões estocásticas do algoritmo de decomposição em valores singulares (SVD), tais como os

algoritmos rSVD e cSVD. Nosso método permite o armazenamento e�ciente dessas funções

sem comprometer a e�ciência computacional, oferecendo uma solução robusta para melhorar

o desempenho e a viabilidade computacional na aplicação do esquema FLSRTM.

Trabalhos em eventos:

� Memory-e�cient frequency-domain least-squares RTM using low-rank Green's functi-

ons via randomized SVD. IMAGE24 - International Meeting for Applied Geoscience &

Energy, 2024.
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Por �m, no capítulo 3, apresentamos o manuscrito intitulado One-way wave-equation

migration based on Jacobi-Anger expansion in arbitrarily lateral varying media.

Nele, abordamos os principais desa�os da migração em profundidade usando a equação de

onda unidirecional, como o tratamento de ondas evanescentes, o imageamento de estruturas

com ângulos pronunciados, e a garantia de estabilidade. Propomos um método estável e

e�ciente que utiliza um projetor espectral para suprimir as ondas evanescentes e o esquema

acoplado de Schulz para o cômputo do operador raiz quadrada. Além disso, introduzimos

uma abordagem inovadora para a construção do operador de extrapolação usando a expansão

de Jacobi-Anger, o que facilita a implementação e�ciente do algoritmo de migração. Nossos

resultados, demonstrados por meio de testes de resposta ao impulso, modelos subsuper�ciais

complexos e dados de campo, indicam melhorias signi�cativas em precisão e na capacidade

de imagear estruturas complexas em comparação com métodos tradicionais.

Trabalhos em eventos:

� One-way wave-equation migration for wide-angle and for strong lateral velocity vari-

ation using the Jacobi-Anger expansion. 83rd EAGE Conference & Exhibition, 2022,

doi: 10.3997/2214-4609.202210898;

� One-way wave-equation migration based on the Jacobi-Anger expansion for a medium

with a strong lateral velocity variation. 18th International Congress of the Brazilian

Geophysical Society, 2023.
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1
Up/Down Acoustic Wave�elds
Decomposition Using a Single
Propagation and its Application
in Reverse Time Migration

This chapter has been published as Daniel E. Revelo and Reynam C. Pestana. Up/down

acoustic wave�eld decomposition using a single propagation and its application in reverse time

migration. In: Geophysics, 84(4) (July-August 2019), pp. S341-353. Minor modi�cations

have been applied to maintain consistency within this thesis.

Abstract

The separation of up- and downgoing wave�elds is an important technique in the pro-

cessing of multicomponent recorded data, propagating wave�elds, and reverse time migration

(RTM). Most of the previous methods for separating up/down propagating wave�elds can

be grouped according to their implementation strategy: requirement to save time steps to

perform Fourier transform over time, or construction of the analytical wave�eld through a

solution of the wave equation twice (one for the source and another for the Hilbert trans-

formed source), where both strategies have shown a high computational cost. For computing

the analytical wave�eld we are proposing an alternative method based on the �rst-order par-

tial equation in time and by just solving the wave equation once. Our strategy improves

the computation of wave�eld separation and can bring the causal imaging condition into

practice. For time extrapolation, we are using the rapid expansion method (REM) to com-

36
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pute the wave�eld and its �rst-order time derivative and then we can compute the analytical

wave�eld. By computing the analytical wave�eld, we can, therefore, separate the wave�eld

into up- and downgoing components for each time step in an explicit way. Applications

to synthetic models indicate that our proposed method allows performing the wave�elds

decomposition similarly to the obtained by the conventional method, as well as a poten-

tial application for the 3D case. For RTM applications, we can now employ the causal

imaging condition for several synthetic examples. Acoustic RTM up/down decomposition

demonstrate that it can successfully remove the low-frequency noise, which is common in

the typical crosscorrelation imaging condition, and usually removed by applying a Laplacian

�lter. Moreover, our method is e�cient in terms of computational time when compared to

RTM using an analytical wave�eld computed by two propagations, and it is a little more

costly than conventional RTM using the crosscorrelation imaging condition.

Introduction

Prestack reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983) has

become one of the most used migration approaches because it has the ability to image arbi-

trarily complex and steeply dipping structures in the subsurface, whereby it allows obtaining

a high-resolution imaging result. In the traditional RTM, the source and receiver wave�elds

are forward and backward propagated and correlated along the time axis at zero-lag. The

resulting image obtained by applying the conventional crosscorrelation between source and

receiver wave�elds is always contaminated by high-amplitude, spatial-low-frequency noise

and false images due to the unwanted crosscorrelation of head, diving, and backscattered

waves, caused by the use of a migration velocity model with strong velocity gradients or

sharp velocity interfaces. In recent years, more attention has been given to improving the

imaging condition and reducing the low-frequency noise. (Fei et al., 2015) gave a compar-

ative review of the methods that have been proposed in the literature to address this issue

and grouped them into three categories: before, after, or during application of the imaging

condition.

Fletcher et al. (2006) suggested a procedure for removing unwanted re�ections during

propagation of wave�elds. In this procedure, the main idea is to apply a directional damping

term to the non-re�ecting wave equation in areas of the velocity model where unwanted

re�ections occur. It is inconvenient to apply this approach on a model with very complicated

interfaces due to the requirement of additional knowledge about the direction in which energy

is propagating. Using a similar idea, Yoon and Marfurt (2006) used the fact that re�ection

events (narrow opening angles) and artifacts (far o�set) have di�erent ranges of opening
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angle, therefore the wave-propagation directions can be used to eliminate artifacts. In this

way, before applying the imaging condition, the angle between the incident and re�ected

waves is limited via calculating Poynting vectors. The method advocated by Yoon and

Marfurt (2006) works well for simple models, but requires an additional storage cost and

it does not produce satisfactory results in complex subsurfaces (Guitton et al., 2007). A

practical approach in which the artifacts are �ltered after imaging is the Laplacian �lter

(Youn and Zhou, 2001; Zhang and Sun, 2009), which is easy to apply and shows good

attenuation of the low-frequency noise, but can damage the signal of interest (Guitton et al.,

2007).

Another way to address this type of migration artifact is to modify the imaging con-

dition. To this end Whitmore and Crawley (2012) and Brandsberg-Dahl et al. (2013)

presented an imaging process based on a generalized inverse scattering theory (Stolk et al.,

2009). In that process, the artifacts caused by backscattered energy are attenuated by using

the combination of two separate images: one is the product of the time derivatives of the

source and receivers wave�elds, and the other is the product of the spatial gradients of the

source and the receivers wave�elds. Then, the weighted sum of these images is calculated in

order to generate the migrated image. As an application of the inverse-scattering imaging

condition, Pestana et al. (2014) proposed a scheme where the downgoing component of the

source wave�eld - obtained by applying the Poynting vector - is used in the application of

the mentioned imaging process. More recently, based on the energy norm concept, Rocha

et al. (2016) developed a �exible imaging condition which is used not only to attenuate

backscattering artifacts, but also to attenuate any selected re�ection angle. The energy

norm condition, besides being similar to the inverse-scattering imaging condition is also

related to the Laplacian �lter, as shown by the author. In general, the inverse-scattering

imaging condition produces images where the backscattered noise is reduced signi�cantly

and the true re�ection data is preserved, i.e., it produces images with much higher quality

than the conventional correlation method.

Liu et al. (2011) proposed an imaging condition based on the decomposition of the wave-

�eld into one-way components, which also belongs to the group of methods that modify the

standard zero-lag crosscorrelation between the source and receiver wave�elds. The imaging

condition introduced by Liu et al. (2011) only allows correlation of wave components that

propagate in opposite directions. This method is an implicit separation technique that can

successfully remove many types of artifacts while preserving the imaging amplitude without

the need to apply a Laplacian �lter after the imaging condition. However, an incomplete

wave�eld decomposition gives rise to imaging artifacts such as shown by Fei et al. (2014),

Shen and Albertin (2015) and Wang et al. (2016b). Since the method of Liu et al. (2011) is
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an implicit separation method, the up- and downgoing wave�elds are not available and its

applications are limited. To address the wave�eld separation, the wave-propagation direc-

tion is usually de�ned in the double Fourier domain (ω − k). In the frequency-wavenumber

domain, wave-propagation is de�ned by the sign of the frequency and the wavenumber (Hu

and McMechan, 1987; Liu et al., 2011). If we use the conventional wave�eld decomposition

method in the time-domain, we should store the wave�elds and perform a Fourier transform

along the time axis. This process increases the input/output cost, because the time axis

is the slowest dimension of the stored wave�eld, and the Fourier transform operates most

e�ciently on data that are stored contiguously.

On the other hand, if we can de�ne a time-domain wave�eld whose spectrum only

contains a positive or negative frequency (Shen and Albertin, 2015; Wang et al., 2016a;

Wang et al., 2017), we can de�ne the wave-propagation direction using the sign of the

spatial wavenumber and avoid the high I/O cost. This signal is the analytical signal which

is widely used in signal processing. The analytical signal is a complex variable whose real

part is the signal itself and its complex part is the Hilbert transform of the real part. For

RTM, we extend the analytic-signal concept and call it the analytical wave�eld (Zhang et al.,

2007; Sun et al., 2016). Because the analytical wave�eld only contains positive frequencies,

the up- and downgoing wave components can then be conveniently obtained by applying

a 1D Fourier �lter along the depth direction. Compared with the method of Liu et al.

(2011) of constructing RTM images, a major advantage of using analytical wave�elds is that

completely separated up- and downgoing wave�elds are available (explicit form) to di�erent

applications, and it also eliminates the computational-storage requirement as well as the

need of expensive fast Fourier transforms (FFT).

In recent years, various works on wave�eld decomposition using the analytical wave�eld

have been presented. To perform the wave�eld extrapolation in time and evaluate the

Laplacian operator, the conventional �nite-di�erences method (FD) was adopted by Shen

and Albertin (2015), Wang et al. (2016a), Wang et al. (2016b) and Zheng et al. (2018),

followed by the construction of the analytical wave�eld. In a recent paper presented by

Shen and Albertin (2015), the imaginary part of the analytical wave�eld is obtained by

applying a temporal Hilbert transform to the source term of the wave equation followed by

a conventional propagation. The pair of wave�elds - the one propagated with a conventional

source and the other generated by its Hilbert transform - constitutes the analytical wave�eld.

Shen and Albertin (2015) proposed a causal imaging condition that correlates the downgoing

source component with the upgoing receiver component for subsurface imaging. This method

was tested and proved to be successful on removing many types of salt-imaging artifacts that

were present in the images obtained from the conventional crosscorrelation imaging condition
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(Claerbout, 1971).

One-step methods have been developed in order to avoid numerical dispersion that is

present in the FD method when the spatial interval or temporal step is large; Du et al.

(2014) reviewed these methods and named them recursive integral time extrapolation (RITE)

methods. In Revelo et al. (2016) and Wang and Liu (2017), the implementation of these

schemes for the analytical wave�eld extrapolation is presented, as well as its application in

the construction of the unidirectional components of the wave�eld; for RTM both source

and receiver wave�elds were extrapolated in time and the source and receiver wave�elds

were separated into their up- and downgoing components for each time step in an explicit

way based on Shen and Albertin (2015). The clear distintion between the method in Revelo

et al. (2016) and the one proposed by Shen and Albertin (2015) is that Revelo et al. (2016)

used a �rst-order wave-equation solution with an analytical source term, while in Shen and

Albertin (2015) it was necessary to solve the wave equation twice: once for the source and

another time for the Hilbert transform of the source. In relation to the work of Liu et al.

(2011), the major di�erence is that the method proposed by Shen and Albertin (2015) and

also used by Revelo et al. (2016) can provide an explicit separation of the wave�eld, while

the scheme of Liu et al. (2011) results in an implicit separation.

In this article, we present a detailed version of the proposed method by Pestana and Rev-

elo (2017), where the analytical wave�eld is calculated using the rapid expansion method

(REM) (Pestana and Sto�a, 2010). The REM propagates waves free of numerical dispersion

noise and is able to extrapolate waves in time using a time step up to Nyquist's limit. With

the REM we can also obtain the �rst-order time derivative of the wave�eld at the same

time step and thus compute the Hilbert transform of the wave�eld as proposed by Zhang

and Zhang (2009). After that, we can separate the wave�elds into their up- and downgoing

components. In our proposed method, the wave equation is only solved once, improving the

computational e�ciency of the wave�eld separation procedure and therefore the application

of the causal imaging condition for RTM. In the following sections, we �rst introduce the

wave�eld decomposition-based RTM with the causal imaging condition and illustrate the

methodology of up- and downgoing decomposition using analytical wave�elds. Then, we

derive our improved method to calculate the analytical wave�eld via REM. Numerical ex-

amples are given to demonstrate the validity of the proposed method of explicit wave�eld

separation (two dimensions and three dimensions) and the e�ectiveness of the causal imaging

condition in RTM images. Finally, conclusions are drawn.
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Methodology

Causal imaging condition for RTM

RTM is a method widely used to obtain an accurate subsurface image in and below areas

with both geological and velocity complexities. The zero-lag crosscorrelation between the

extrapolated source (S) and receiver (R) wave�elds is the nonsource-normalized crosscorre-

lation imaging condition conventionally used in RTM. This imaging condition was proposed

originally by Claerbout (1971) and is de�ned as follows:

Icc(x) =

∫ T

0

S(x, t) R(x, t) dt, (1.1)

where x = (x, z), t represents the time, T is the total time of propagation, and Icc(x) is

the crosscorrelation image. The major drawback of RTM is that the two-way wave equation

generates low-frequency back-scattering noise and false images when re�ecting interfaces

or strong velocity gradients exist in the migration velocity model (Liu et al., 2011; Fei

et al., 2015; Wang et al., 2017). Taking into account that di�erent artifacts observed in the

RTM image are associated with the direction of the wave�eld propagation (correlated), the

decomposition of source and receiver wave�elds into their up- and downgoing components

can be used to remove the low-frequency noise and another types of artifacts present in RTM

(Liu et al., 2011; Fei et al., 2014; Wang et al., 2016b).

During the acoustic RTM, the source and receiver extrapolated wave�elds contain up-

(u) and downgoing (d) components, which can be partitioned mathematically as

S(x, t) = Sd(x, t) + Su(x, t) (1.2)

and

R(x, t) = Rd(x, t) +Ru(x, t). (1.3)

Using equations 1.2 and 1.3, we can rewrite equation 1.1 as follows (Liu et al., 2011):

Icc(x) =

∫ T

0

Sd(x, t) Ru(x, t) dt+

∫ T

0

Su(x, t) Rd(x, t) dt

+

∫ T

0

Sd(x, t) Rd(x, t) dt+

∫ T

0

Su(x, t) Ru(x, t) dt.

(1.4)

The high-amplitude and low-frequency noise present in the migrated images occurs at shallow

depths and is associated with the wave�elds propagating in the same direction, corresponding

to the last two terms of the equation 1.4. On the other hand, the crosscorrelation of wave�elds

with opposite directions of propagation will give rise to an e�ective image. By using the
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wavenumber to determine the direction of the wave�elds' propagation (more speci�cally,

the opposite directions), Liu et al. (2011) introduced an e�ective imaging condition that

uses a sum of SdRu and SuRd. More recently, taking into account the angle between the

wavenumber vectors of the source and receiver wave�elds, Rocha et al. (2016) showed that

their energy imaging condition can attenuate also the low-frequency noise and preserves

the re�ectors. The application of the imaging conditions proposed by Liu et al. (2011)

and Rocha et al. (2016) successfully removes the low-frequency artifacts; however, these

imaging conditions can not di�erentiate between the �rst two terms of equation 1.4, which

may generate di�erent backscattering-related artifacts (Fei et al., 2014; Wang et al., 2016b).

According to Fei et al. (2015), the second term of equation 1.4, Su(x, t)Rd(x, t), is

the upward-turned raypath result, which has the same traveltime of the physical primary

raypath and can generate a false image in RTM in most cases. Therefore, this term should

also be excluded from the �nal image. In order to avoid the low-frequency noise produced

by the crosscorrelation imaging condition and the artifacts shown in RTM results, Revelo

et al. (2016) used a causal - or de-primary - imaging condition (Shen and Albertin, 2015; Fei

et al., 2015) that is given by the �rst term of equation 1.4. It just correlates the downgoing

component of the source, Sd, with the upgoing component of receiver wave�eld, Ru, which

can be written as

Icausal(x) =

∫ T

0

Sd(x, t) Ru(x, t) dt. (1.5)

This imaging condition will correlate wave�elds only at points in space that correspond to

seismic re�ectors, avoiding noise along wavepaths and artifacts which are typical of conven-

tional RTM.

Up/down separation using analytical wave�elds

In order to obtain the individual components involved in equation 1.5, we need to in-

troduce a procedure for explicit wave�eld separation. The up/down separation is based on

the sign of the apparent propagation velocity along the depth z-axis (vz), which using the

dispersion relation is given by (Wang et al., 2016a)

vz = ω/kz, (1.6)

where ω is the angular frequency and kz is the apparent vertical wavenumber. Then, a

straightforward way to perform the source-side wave�eld decomposition in the ω−k domain

can be implemented as follows (Hu and McMechan, 1987; Liu et al., 2011)

Su(kz, ω) =

{
S(kz, ω), if ω/kz < 0

0, if ω/kz ≥ 0
(1.7)
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and

Sd(kz, ω) =

{
S(kz, ω), if ω/kz ≥ 0

0, if ω/kz < 0,
(1.8)

where S(kz, ω) is the 2D Fourier transform of the source acoustic wave�eld. The application

of equations 1.7 and 1.8 requires knowing ω before the wave�eld separation, which means

that wave�eld extrapolation must be completed and stored before performing the 2D Fourier

transform over time, which is often expensive in terms of memory. In order to eliminate the

problem described, analytical traces can be employed.

The analytical trace f̂(t) is constructed with the original real-valued trace f(t) as the

real part, and the Hilbert transform H{·} of f(t) as the imaginary part (Fei et al., 2015)

f̂(t) = f(t) + iH{f(t)}. (1.9)

Unlike the real trace f(t), which has a symmetric amplitude spectrum in the Fourier domain,

f̂(t) only contains a positive spectrum (Gabor, 1946; Ville, 1948). Figure 1.1 illustrates the

properties of the analytical trace; in this example, a Ricker wavelet with dominant frequency

of 20Hz and 0.5ms as time interval was used (Figure 1.1a). In Figure 1.1c we can note an

important aspect: the amplitude spectrum at negative frequencies is zero, and doubled at

positive frequencies.

Based on the de�nition of analytical trace, the analytical (complex) wave�eld can be de-

�ned as P̂ = P (x, t)+ iQ(x, t), where P (x, t) is the pressure wave�eld and Q(x, t) its Hilbert

transform, i.e., Q(x, t) = H{P (x, t)}. For general media, this complex pressure wave�eld

P̂ satisfy a �rst-order partial equation in time (Zhang and Zhang, 2009). Since analytical

wave�elds contains only positive frequencies, the temporal Fourier transform needed in the

scheme of Hu and McMechan (1987) can be avoided, and the procedure to perform up- and

downgoing separation in the t− k domain is simpli�ed into

Su(kz, t) =

{
Ŝ(kz, t), if kz < 0

0, if kz ≥ 0,
(1.10)

and

Sd(kz, t) =

{
Ŝ(kz, t), if kz ≥ 0

0, if kz < 0,
(1.11)

where Ŝ is the source analytical wave�eld. Equations 1.10 and 1.11 represent the up- and

downgoing components of the source wave�eld; this separation is more e�cient than the one

presented by equations 1.7 and 1.8, because it requires only a 1D inverse Fourier transform

over the kz-axis. An alternative form to equations 1.10 and 1.11 can be obtained following

Shen and Albertin (2015), which used a Fourier transform along the depth direction of the
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analytical wave�eld considering mono-frequency components (Liu et al., 2011). The upgoing

component of the source wave�eld, Su, in space and time becomes

Su(x, z, t) =
1

2π
ℜ

+∞∫

−∞

+∞∫

−∞

Ŝ(x, z′, t)eikz(z−z′)κ(kz)dz
′dkz, (1.12)

where

κ(kz) =

{
1, if kz < 0

0, if kz ≥ 0.
(1.13)

The downgoing source wave�eld component forward in time, Sd, is obtained using the ana-

lytical source wave�eld in equation 1.12 and replacing κ by 1−κ. Figure 1.2 shows a process

�owchart to implement equation 1.12 applied to a wave�eld that propagates in a three-layer

velocity model.

Calculation of analytical wave�eld by REM

In order to apply the causal imaging condition (equation 1.5), explicit wave�eld sepa-

ration is required. As shown above, the analytical wave�eld must be calculated in order

to obtain the explicit wave�eld components in a cheap way regarding computacional stor-

age. In recent years, several methods have been proposed to construct this wave�eld. The

conventional approach to construct the imaginary part of the analytical wave�eld is based

on the principle that the Hilbert transform, Ht, commutes with the acoustic wave-equation

operator (Shen and Albertin, 2015), that is

Ht

(
1

v2(x)
∂2
t −∇2

)
P (x, t) =

(
1

v2(x)
∂2
t −∇2

)
Ht P (x, t) = Ht f(xS, t), (1.14)

where v(x) is the propagation velocity in the medium, ∇2 is the Laplacian operator and f

is the source wavelet. Thus, the imaginary part of the analytical wave�eld can be obtained

by solving the wave equation with its forward in time Hilbert transformed source term.

Shen and Albertin (2015), Wang et al. (2017), and Zheng et al. (2018) solved the real and

the imaginary part of the analytical wave�eld individually: from the wave equation with

its source term corresponding to the original source wavelet, and its Hilbert transform in

time, respectively. The disadvantage of this approach is that two wave�eld propagations are

required, which can be computationally expensive for large two-dimensional models or 3D

case applications.

A di�erent approach to perform explicit wave�eld separation, based on the solution of

a �rst-order wave equation using as a source term the analytical signal of the source pulse

(Zhang and Zhang, 2009), has also been presented. In this way, Revelo et al. (2016) used the
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one-step extrapolation (OSE) matrix method to compute the analytical wave�eld (Revelo

and Pestana, 2016), in which two wave�eld propagations (for P and Q) are carried out

implicitly in time. Using a similar idea, Wang and Liu (2017) proposed a procedure that

uses the low-rank one-step extrapolation method (Fomel et al., 2013); since this is an FFT-

based algorithm, the main disadvantage is the number of Fourier transforms (direct and

inverse) that must be applied for every marching time step.

Here, we propose computing the analytical wave�eld by solving the wave equation only

once (Pestana and Revelo, 2017). In order to do this, we have taken into account the relation

between Q and P proposed by Zhang and Zhang (2009)

Q(x, t) =
1

L

∂P (x, t)

∂t
, (1.15)

where L is a pseudo-di�erential operator in the space domain, de�ned by L = v(x)
√
−∇2.

Its symbolic representation is L = v(x)
√

k2
x + k2

z , where kx and kz are the wavenumber

components. In order to obtain the pressure wave�eld and its �rst-order time derivative, let

us consider the acoustic constant-density wave equation, without a source term, which can

be written as
∂2P (x, t)

∂t2
= −L2P (x, t), (1.16)

where −L2 = v2∇2 and P (x, t) is the pressure �eld at location x = (x, z) and time t. In

order to solve the acoustic wave equation in time we use the REM as proposed by Pestana

and Sto�a (2010), in which the wave�eld is given by the following propagation scheme

P (x, t+∆t) = −P (x, t−∆t) + 2

[
M∑

k=0

c2kJ2k(∆tR)Q2k

(
iL

R

)]
P (x, t), (1.17)

where L = v(x)
√
−∇2, c0 = 1 and ck = 2 if k ̸= 0. J2k represents the Bessel function of

order 2k, Q2k are modi�ed Chebyshev polynomials, and R is a scalar larger than the range

of the eigenvalues of L. The REM provides a solution with very high degree of accuracy

and can be reduced to various �nite-di�erence time-derivative schemes (Pestana and Sto�a,

2010).

In Appendix A, we show that starting from equation 1.16 the time derivative of the

pressure wave�eld can be obtained. Taking into account that the only time-dependent term

in the expansion of equation 1.17 is the Bessel function, we can obtain the �rst time derivative

of the wave�eld in the following form

Ṗ (x, t+∆t) = Ṗ (x, t−∆t) + 2

[
M∑

k=0

c2kR
d

dτ

[
J2k(τ = ∆tR)

]
Q2k

(
iL

R

)]
P (x, t), (1.18)

where the derivate of the Bessel function J ′
n can be calculated using the relation J ′

n(∆tR) =

−Jn+1(∆tR) + n
∆tR

Jn(∆tR) (Abramowitz and Stegun, 1972). Using the REM solution, we
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can compute the wave�eld for each time step, as well as its �rst-order time derivative. Next,

using equation 1.15 we compute the Hilbert transform wave�eld for both source and receivers

and get the analytical wave�elds for each time step, which are needed for wave�eld separation

and application of the causal imaging condition.

In summary, in our implementation we are proposing to use the REM to obtain the real

part of the wave�eld through equation 1.17. Inside the time step loop, the imaginary part

of analytical wave�eld is computed based on equations 1.15 and 1.18. The pseudocode for

the proposed analytical wave�eld calculation method, for every marching time step, is given

in Algorithm 1. An important aspect to mention is that the operator 1/
√

k2
x + k2

z must be

applied in the Fourier domain, since its application is not possible through �nite-di�erence

schemes. The computation of double (2D) or triple (3D) forward and backward FFTs may

represent an extra cost. However, this cost is not comparable with the execution of an

additional extrapolation to compute the wave�eld associated with the Hilbert transform of

the source pulse, which is considerably more costly. After application the proposed method,

we can separate the wave�elds into its down- and upgoing components for source and receiver

wave�elds using equations 1.12 and 1.13. Thus, we need to solve the wave equation only

once, improving the computational e�ciency of the wave�eld separation procedure. This

allows us to apply the causal imaging condition for RTM at a reasonable computational

cost.

Numerical tests

In this section, we test our proposed method to calculate the imaginary part of the

analytical wave�eld and display a comparison between the explicit wave�eld decomposition

obtained by the conventional method (two propagations) and the proposed scheme. In all of

the performed tests, the rapid expansion method was selected as method to perform seismic

modeling. Additionally, we analyze the RTM images obtained using the mentioned wave�eld

decomposition imaging.

We use a 2D synthetic four-layer isotropic model (Figure 1.3) to compare the conven-

tional wave�eld separation and the procedure proposed in this work. The 2D model consists

of 315 × 195 grid nodes with 10m of grid spacing. The velocities of the di�erent layers

in a descending order are 2000m/s, 3000m/s, 4000m/s, and 2000m/s, respectively. The

interface between the top two layers is a �at surface, the following interface presents a wavy

structure, and the deepest interface is a �at surface with two discontinuities. To test the

separation procedure, we inject a Ricker pulse with a 50Hz cut-o� frequency, located at
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position x = 1570m and z = 10m with a time sampling of 1ms. All the snapshots for this

model show the wave�eld at t = 0.81 s. For comparison, we show the real and the imaginary

parts of the analytical wave�eld (Figures 1.4a and 1.4c) and also the up- (re�ected waves

- Figure 1.4e) and downgoing components (transmitted waves - Figure 1.4g), which were

obtained through the propagation of both the source and Hilbert transformed source (two

propagations). Applying the proposed method, just a single propagation by REM, we com-

pute the real wave�eld and its Hilbert transform by equation 1.15, resulting in the analytical

wave�eld. The real and imaginary parts (Figures 1.4b and 1.4d) and the up- and downgoing

components, Figures 1.4f and 1.4h, respectively, are shown on the right part of the Figure

1.4.

From the results presented in Figure 1.4, we notice that the images are similar in quality,

proving that the results obtained for both procedures are equivalent and the images are free

of dispersion noise. Moreover, with these results we demonstrate that the analytical wave�eld

can be computed by solving the wave equation using as a wavelet a real source pulse. A

comparison of the seismic traces acquired at x = 1570m is given in Figure 1.5, for both

the conventional method (two propagations) and the proposed method (single propagation),

showing that for the two methods used to calculate the analytical wave�eld the phase and

the amplitude of the pulses match quite well.

To validate the e�ectiveness of the proposed method in the 3D case, we test the acoustic

wave�eld simulation of up- and downgoing wave�elds on a simple three-layer model. The

synthetic model has 210 mesh points with a uniform spacing of 10m in each direction.

The velocity parameters from the top to the bottom layer are 1500m/s, 2000m/s, and

2500m/s, respectively. A Ricker wavelet with a maximum frequency of 50Hz and a time

sampling of 2ms is used as a source wavelet; the source is placed at the center of the

model. The analytical wave�eld is constructed and equations 1.12 and 1.13 are applied to

separate the up- and downgoing components. Since for both procedures, two propagations

and single propagation, the real part of the analytic wave�eld is obtained by the REM, the

expected snapshots will be similar, as shown in Figure 1.6a and 1.7a. Figure 1.6b presents

the imaginary wave�eld snapshot at 0.47 s using the Hilbert transform of the wavelet as

the source - conventional method - and Figures 1.6c and 1.6d are the up- and downgoing

components, respectively. Figure 1.7 displays the real and imaginary parts of the analytical

wave�eld, and the decomposed unidirectional wave�elds for the three-layer model at 0.47 s

obtained by a single extrapolation in time. From the comparison between Figures 1.6 and 1.7

we can notice that the imaginary part constructed by the proposed method is very similar to

the one obtained through the propagation of the Hilbert transform of the source, preserving

the amplitude and phase of the wave�eld. Additionally, it can be observed that the explicit
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wave�eld separation is performed as expected, therefore the forward-modeling approach for

up- and downgoing components is still e�ective for the 3D case and can be used in the

migration process to generate the decomposed images.

The �rst example for RTM presents the decomposed image generated with the unidirec-

tional components of the source and receiver wave�elds - equation 1.4. For this numerical

example, we generate a 2D split-spread synthetic dataset for the overthrust velocity model

(Aminzadeh et al., 1997) shown in Figure 1.8a, which includes complex structures and thin

layers. The grid spacings in the x- and z-directions are 25m. 265 sources are excited one

by one on the surface of the model from x = 125 to 20 000m with a horizontal spacing

of 75m. The length of each shot record is 4 s with a time step of 1ms and a maximum

frequency of 30Hz. A �xed array of 361 receivers is located along the model surface with

receiver spacing of 25m and 4500m of maximum o�set. In Figure 1.8b, we have the result

obtained by the crosscorrelation of the source and receiver wave�elds, which is the conven-

tional RTM result employing equation 1.1. This image is contaminated by large-amplitude

noise, which completely masks the signals. Figure 1.8d shows the result related to the last

two terms of equation 1.4 (wave�elds propagating in the same direction) and it is completely

contaminated by the low-frequency noise. The RTM result generated by the causal imaging

condition (�rst part of equation 1.4), is presented in Figure 1.8c. In this image, the artifacts

produced by the conventional RTM, including the low-frequency noise, are removed, and we

can see a noticeable improvement in image quality in comparison with the result shown in

Figure 1.8b.

The second numerical test to compute the seismic migration images is carried on the

four-layers velocity model (Figure 1.3). In this example, we compare the RTM result using

the conventional migration and the de-primary RTM - analytical wave�eld constructed by

making two propagations, or by the proposed scheme (Algorithm 1). We generate a synthetic

2D split-spread dataset using an acoustic simulation that consists of 315 shot gathers evenly

distributed across a horizontal distance of 3140m and maximum o�set of 1000m. Figure 1.9a

is the result of the conventional imaging condition, which is contaminated throughout with

a very low-frequency noise. Figure 1.9b shows the RTM result obtained by the conventional

correlation imaging condition followed by application of the Laplacian �lter (Youn and Zhou,

2001); the RTM results using the causal imaging condition are shown in Figures 1.9c and

1.9d. In the result with the conventional imaging condition, we can see imaging artifacts

caused by the internal multiples (marked by the white rectangle), mainly on top of the �rst

re�ector. Figures 1.9c and 1.9d are results obtained applying the causal imaging condition,

where the analytical wave�eld was calculated using two-propagations and single propagation

algorithms, respectively. We should notice that these results have a better quality compared
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to Figure 1.9b and that the artifacts above the �rst interface are removed because the Sd

component is zero in this region. In order to analyze the spectral content of the results

presented in Figure 1.9, we generate their 2D spectrum (Figure 1.10). Figure 1.10b shows

the strong attenuation of the low-frequency components close to the origin (kx = kz = 0).

Comparing the spectral plots of the RTM result with the Laplacian �ltering and the RTM

result with the de-primary image condition (Figures 1.10c and 1.10d), we can see that the

spectrum of the RTM result is well preserved and shows less attenuation around the region

kx = 0 and kz = 0. With these results, obtained using the RTM with causal imaging

condition, we can con�rm the e�ectiveness of the implemented algorithm to construct the

imaginary part of the analytical wave�eld and its employment to remove the low-frequency

noise usually seen in a typical reverse time migration images.

In the last example, to make sure that our conclusions do not apply to a simple velocity

model or a single data set only and to demonstrate the applicability of the proposed method,

we also apply the RTM with the causal imaging condition for the dataset of the fault velocity

model shown in Figure 1.11. In order to improve the migration result, we have included the

source illumination compensation in the conventional and the de-primary imaging conditions

(Kaelin and Guitton, 2006). The fault model is characterized by several faults, as well as

a complicated base, with the presence of intrusions. The numerical discretization contains

600 × 265 samples, with spacing of 20m in both directions. This is a high-quality dataset

generated with REM modeling with shot spacing of 40m, receiver spacing of 20m, and

2560m maximum o�set. In the migration, the highest frequency is 50Hz and the time

step is ∆t = 4ms. Figure 1.11 displays the comparison of the migration results obtained

by the crosscorrelation imaging condition (Figure 1.11b) and the causal imaging condition

with source illumination using the two-propagations method and the procedure that we are

proposing in the present work (Figure 1.11d). For such a dataset, the results show that

our method can handle complex velocities fairly well and shows a good delineation of the

faults, specially at the main fault, as well as the domes and the horizontal plane at the

bottom. Theses results con�rm the successful application of the single propagation method

on RTM, in which the REM is used for forward and backward propagations, combined with

the analytical wave�eld computation, allowing wave�eld separation and further application

of the causal imaging condition. In short, it shows the e�ectiveness of the implemented

algorithm in removing the low-frequency noise produced by the crosscorrelation imaging

condition.

The correct separation of the wave�eld in di�erent tests shows that the proposed scheme

to build the analytical wave�eld works well, and the successful applications of de-primary

RTM to three di�erent datasets con�rm that the causal imaging condition is e�ective to
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remove the low-frequency noise usually seen in the conventional RTM. Unlike the methods

that involve complex traces, where the cost of seismic modeling is doubled as a complex

wave�eld is extrapolated, the construction of the imaginary wave�eld part involves a 2D

FFT and IFFT in each time step, which can be further speed up using faster FFT methods.

The proposed method separates the up- and downgoing components directly in the wave-

�eld propagation and avoids the high disk space cost; in addition, the process of up- and

downgoing separation requires two 1D FFTs per trace. Figure 1.12 shows the normalized

times consumed only for the explicit wave�eld separation applied to a single shot of each of

the various datasets used; in general, we can see that our scheme represents around a 20.2%

increase in computational time. The migrated time consumed by each method is presented

in Figure 1.13 for the overthrust model, four-layer model, and the fault model datasets. It

is observed that the time consumed by the present method - single propagation - is lower

than the time consumed by the conventional method used in the calculation of the analyti-

cal wave�eld, and a little higher than the conventional RTM with crosscorrelation imaging

condition. Therefore, the proposed method can make use of the causal imaging condition

for RTM at a lower computational cost and still provide similar results when compared

to RTM using two propagations. This improvement to obtain the unidirectional wave�eld

components can be used in the calculation of the gradient in full-waveform adjoint inversion

(FWI), since it has a similar crosscorrelation form as the imaging condition of RTM; then

the FWI gradient can be decomposed with the same procedure into its re�ection components

(migration term) and the transmission component (tomographic term), just as it is shown

in Rocha et al. (2016). However, the up-up and down-down parts of equation 1.4, which are

considered noise in migration, are more valuable in FWI because they can be used to invert

for the low-frequency components of the model parameters (Wang et al., 2016a).

Conclusion

Reverse time migration can image steeply dipping re�ectors and complicated velocity

models. However, this also causes the conventional correlation-based imaging condition

to produce large amplitude, low-frequency noises that contaminate the migrated image.

Decomposing the extrapolated wave�elds and applying the de-primary imaging condition

successfully removes these artifacts from the images. The causal imaging condition needs

an up- and down-separation algorithm, which can be achieved by using analytical wave�eld

extrapolation and is much cheaper than separation methods via Fourier transforms over time

since the latter requires saving the wave�eld at all time steps. We present an e�cient forward-

modeling approach to compute the analytical wave�eld based on the rapid expansion method



Up/down acoustic wave�elds decomposition 51

in a stable way and free of dispersion noise. In our proposed method the source wave�eld is

extrapolated in time and for each time step we can compute the �rst-order time derivative

and then the Hilbert transform of the wave�eld. Based on the analytical wave�eld the up-

and downgoing components in a 2D or 3D acoustic wave�eld simulation are generated. We

tested the proposed scheme on a four-layer model and demonstrated that we can compute

the analytical wave�eld using just a single propagation, with the same quality of the common

procedure which needs to apply two propagations. The numerical tests on di�erent models

demonstrate that the method is e�ective, avoiding the expensive storage requirement and

only increasing the computation cost by 20.2% for the separation part. Using our method to

compute the analytical wave�eld and explicitly separate the wave�eld into up- and downgoing

components, we could employ the causal imaging condition for RTM at a computation cost

just a little higher than the conventional crosscorrelation imaging condition. We applied the

de-primary image condition on di�erent velocity models and saw that the RTM with the

causal imaging condition can e�ectively remove the undesired low-frequency noise produced

by the conventional crosscorrelation imaging condition. The proposed numerical scheme

for wave�eld decomposition signi�cantly improves the e�ciency of the de-primary imaging

condition and increases the computational cost by approximately 27% when compared with

the conventional crosscorrelation imaging condition.
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Appendix

Derivation of the �rst time derivative of the wave�eld by REM

Here, we present how we can compute the �rst time derivative of the wave�eld directly

from the solution of the acoustic wave equation obtained by the rapid expansion method

(REM). We consider the two-dimensional (2D) acoustic medium with constant density, and

a varying velocity in both vertical and horizontal directions. The wave equation, in the form
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of equation 1.16, is given by
∂2P (x, t)

∂t2
= −L2P (x, t).

Now, considering the following initial conditions

P (x, t = 0) = P0 and
∂P (x, t)

∂t

∣∣∣∣
t=0

= Ṗ0 (1.19)

the formal solution is

P (x, t) = cos(L t)P0 +
1

L
sin(L t) Ṗ0, (1.20)

where the dot denotes a time derivative. Using equation 1.20, the �rst time derivative of

P (x, t) is

Ṗ (x, t) = −L sin(L t)P0 + cos(L t) Ṗ0. (1.21)

In addition, we calculate Ṗ (x, t) at time −t, i.e.,

Ṗ (x,−t) = L sin(L t)P0 + cos(L t) Ṗ0. (1.22)

To eliminate the time derivative initial condition (Ṗ0), we subtract equation 1.22 from equa-

tion 1.21 and solve for Ṗ (x, t), obtaining

Ṗ (x, t) = Ṗ (x,−t)− 2L sin(L t)P0. (1.23)

This scheme allows extrapolation of the �eld Ṗ (x, t) from the �elds Ṗ (x,−t) and P0.

Now, consider that the sine function can also be expressed as follows

sin(L t) = − d

dt

[
1

L
cos(L t)

]
. (1.24)

Following Koslo� et al. (1989) and using the expansion method presented by Tal-Ezer et al.

(1987), the cosine function is expanded (equation 1.17) as

cos(L t) =
M∑

k=0

c2kJ2k(R t)Q2k

(
iL

R

)
. (1.25)

Substituting equation 1.25 in equation 1.24 and taking into account that the only time-

dependent term in this expansion is the Bessel function, we have that

sin(L t) = − d

dt

[
1

L

M∑

k=0

c2kJ2k(R t)Q2k

(
iL

R

)]

= − 1

L

M∑

k=0

c2kR
d

dτ

[
J2k(τ = R t)

]
Q2k

(
iL

R

)
.

(1.26)
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Therefore, in order to obtain an extrapolation scheme for a single time step, we replace

the time t by the time step ∆t in equations 1.23 and 1.26 and the initial wave�eld (P0) in

equation 1.23 by some arbitrary reference time t, which results in

Ṗ (x, t+∆t) = Ṗ (x, t−∆t) + 2

[
M∑

k=0

c2kR
d

dτ

[
J2k(τ = ∆tR)

]
Q2k

(
iL

R

)]
P (x, t). (1.27)

Thus, the �nal result presented in equation 1.27 can be used to compute the �rst time

derivative of the wave�eld for each time step by the REM, which is the expression presented

by Tessmer (2011).
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Algorithm 1 Proposed algorithm to calculate the analytical wave�eld

Read: ∆x, ∆z, ∆t, fmax, v(x, z) ▷ parameters

Calculate: R, M

Initialize P t+∆t = 0 and Qt+∆t = 0

for each time step

1: P0 ← P t ▷ for n = 0

2: P t+∆t
aux ← J0(∆tR)P0

3: Qt+∆t
aux ← R ∗ [−J1(∆tR) + J0(∆tR)]P0

4: P1 ← 2v2

R2 DFT
−1
{
[−k2

x − k2
z ]DFT[P0]

}
▷ for n = 1

5: P t+∆t
aux ← P t+∆t

aux + 2J2(∆tR)P1

6: Qt+∆t
aux ← Qt+∆t

aux + 2R ∗ [−J3(∆tR) + 2
∆tR

J2(∆tR)]P1

7: for n← 1,M do

8: Pn+1 ← 2Pn +
4v2

R2 DFT
−1
{
[−k2

x − k2
z ]DFT[Pn]

}
− Pn−1

9: P t+∆t
aux ← P t+∆t

aux + 2J2n+2(∆tR)Pn+1

10: Qt+∆t
aux ← Qt+∆t

aux + 2R ∗ [−J2n−1(∆tR) + 2n
∆tR

J2n(∆tR)]Pn+1

11: end for

12: P t+∆t ← −P t−∆t + 2P t+∆t
aux ▷ Real wave�eld

13: Qt+∆t ← Qt−∆t + 2Qt+∆t
aux

14: Qt+∆t ← 1
v
DFT−1

{
1√

k2x+k2z
DFT

[
Qt+∆t

]}
▷ Imaginary wave�eld
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Figure 1.1: The input trace and its frequency spectra for (a) a real trace (a Ricker
wavelet), (b) the Hilbert transform of (a), and (c) the analytical trace
constructed using equation 1.9 - (a) as the real part and (b) as the imag-
inary part. Notice that (a) and (b) have the same symmetric amplitude
spectra, but in (c) the amplitude spectrum at negative frequencies is
zero, and the amplitudes of the positive frequencies are scaled by two -
doubled when compared with (a) and (b).
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Figure 1.2: Process �owchart to obtain up- (Su) and downgoing (Sd) components
using the analytical wave�eld. For every marching time step, the source
analytical wave�eld (Ŝ) is constructed by the real wave�eld and its
Hilbert transform. Then, a direct Fourier transform is applied to the
z-axis (FFT+

z ); the �lter given in equations 1.10 and 1.11 is applied to
obtain the unidirectional components, and, �nally, an inverse Fourier
transform (FFT−

z ) is applied to return to the spatial domain.
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Figure 1.3: Four-layer velocity model used for numerical experiments.
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Figure 1.4: Snapshots for the source wave�eld at t = 0.81 s for the real and imagi-
nary parts and for the up- and downgoing wave�elds. The �gures on the
left were obtained using a source and the Hilbert transformed source -
two propagations. The �gures on the right were obtained using equa-
tions 1.15 and 1.18 - using only a single propagation.
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Figure 1.5: Comparison in wiggle format of the seismic traces at x = 1570m (Fig-
ure 1.4) using the conventional method (two propagations) and the
proposed method to calculate the analytical wave�eld for the four-layer
model (Figure 1.3).
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Figure 1.6: The snapshots obtained through the conventional method for the three-
layer model at 0.47 s: (a) real wave�eld, (b) imaginary wave�eld, (c)
upgoing component, and (d) downgoing component.
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Figure 1.7: The snapshots obtained through the proposed method for the three-
layer model at 0.47 s: (a) real wave�eld, (b) imaginary wave�eld, (c)
upgoing component, and (d) downgoing component. As shown in this
image, the imaginary wave�eld presents a correct form and the unidi-
rectional components are well-separated.
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Figure 1.8: (a) Velocity model used in the overthrust RTM experiment. Results of
the RTM method using the (b) conventional crosscorrelation, (c) causal
imaging condition (the �rst term of equation 1.4), and (d) correlation
between the wave�elds that propagate in the same direction (the latter
two terms in equation 1.4), which generates low-frequency noise.
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Figure 1.9: The RTM results. The image is obtained by applying (a) the conven-
tional crosscorrelation imaging condition, (b) band-pass �ltered result
of the image in (a), (c) and (d) by the causal imaging condition. Panel
(b) contains the correct image and migration artifacts indicated by the
white rectangle. Comparing (b) with the result of the de-primary result
(c) and (d); these last two have better quality and no artifacts.
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Figure 1.10: The 2D Fourier spectrum of the four-layer data set after the (a) con-
ventional imaging condition, (b) conventional imaging condition plus
Laplacian �lter, and (c) and (d) causal imaging condition.
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Figure 1.11: The RTM results. (a) Migration velocity model. (b) Image obtained by
applying the conventional crosscorrelation imaging condition. (c and
d) Use a causal imaging condition and explicit wave�eld separation,
in which the former uses the two-propagations method and the latter
uses the single propagation method.
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Figure 1.12: Normalized time consumed to perform the explicit wave�eld separa-
tion using two propagations (TP) and the proposed method - single
propagation (SP). RP represents the time consumed by the real wave-
�eld propagation.
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2
Memory-E�cient Frequency-Domain
Least-Squares RTM Using Low-Rank
Green's Functions Via Stochastic
SVD Algorithms

This chapter has been submitted as Daniel E. Revelo, Reynam C. Pestana, and Diego F.

Barrera. Memory-E�cient Frequency-Domain Least-Squares RTM Using Low-Rank Green's

Functions Via Stochastic SVD Algorithms to IEEE Transactions on Geoscience and Remote

Sensing. Minor modi�cations have been applied to maintain consistency within this thesis.

Abstract

Least-squares reverse time migration in the frequency domain (FLSRTM) is capable

of producing a high-resolution re�ectivity model, provided that the Green's functions can

be stored in memory. The Green's functions employed to compute the gradient and Born-

modeled data must be calculated once and then stored; however, their size can be large,

making this storage infeasible depending on the available hardware. FLSRTM using low-

rank Green's functions decomposed via singular value decomposition (SVD) can be used

to alleviate this constraint. However, the SVD decomposition could result in a signi�cant

increase in computational time when dealing with large datasets and models of considerable

size. To overcome this issue, we propose the FLSRTM scheme with a low-rank Green's func-

tion by exploiting randomized (rSVD) and compressed (cSVD) singular value decomposition

algorithms. The Green's functions can then be saved e�ciently as two unitary matrices with

70
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a few dominant singular values, thus requiring little memory. Following the demonstration

of the feasibility of rank reduction in Green's functions, we evaluate the proposed rSVD and

cSVD FLSRTM schemes versus the reference fully-stored Green's functions FLSRTM and

versus conventional low-rank SVD FLSRTM. These evaluations are conducted using both

a layered model and the modi�ed Marmousi-2 model. Our proposed FLSRTM scheme can

generate image results identical to the comparative methods while also requiring less mem-

ory than FLSRTM, which saves the complete Green's functions, and less computational time

compared to the FLSRTM scheme with low-rank Green's functions via conventional SVD.

Introduction

Migration is a crucial seismic processing stage responsible for building images in depth

of the subsurface from time-recorded data. It corrects the depth and inclination of the re�ec-

tors and suppresses di�ractions (Claerbout, 1992; Andrade et al., 2017). Among the seismic

migration techniques, reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983;

Whitmore, 1983; Levin, 1984), which involves back-propagating �eld data, using the two-way

wave equation (Ren et al., 2013), has been proven to be the most accurate imaging technique.

This is due to its ability to image arbitrarily complex and steeply dipping structures in the

subsurface provided an accurate velocity model is available. With the increasing demands of

oil and gas exploration, there is a growing need for seismic imaging to provide more compre-

hensive information beyond just the subsurface structure, such as re�ectivity. Despite the

satisfactory results obtained by RTM, the seismic migration operator has an adjoint rela-

tionship with a forward Born modeling operator (Liu et al., 2022). Therefore, an important

aspect a�ecting the seismic migration image is the inability of the adjoint operator to accu-

rately approximate the inverse operator (Claerbout, 1992; Symes, 2009). Consequently, the

resulting image may su�er from blurred e�ects with incorrect amplitude and migration arti-

facts under imperfect acquisition circumstances, such as band-limited seismic source, �nite

recording aperture, irregular sample acquisition geometry, or missing frequencies (Nemeth

et al., 1999; Etgen et al., 2009; Liu et al., 2022; Kim et al., 2022).

To overcome this issue, Tarantola (1984) introduced an e�ective method to enhance the

quality of the migration image and to generate an amplitude-preserved imaging result. This

approach, known as least-squares migration (LSM) (Bamberger et al., 1982), is a linearized

inversion scheme based on the minimization of a least-squares function. It approximates the

inverse operator by minimizing the de�ned objective function with a gradient-based opti-

mization method iteratively (Nemeth et al., 1999; Dutta and Schuster, 2014). In particular,

when the LSM is based on the two-way wave equation, it is referred to as least-squares re-



Memory-e�cient frequency-domain least-squares RTM 72

verse time migration (LSRTM) (Schuster, 1993; Nemeth et al., 1999; Dong et al., 2012; Yao

et al., 2022), which is based on the Born approximation and is more e�cient at accurately

migrating complex geological structures (Wong et al., 2012). A typical iterative LSRTM con-

sists of three main components: a modeling operator to simulate seismic data, a migration

operator to compute the gradient, and an inversion solver to minimize the objective func-

tion. Considering that the gradient of the mis�t function computed in time-domain LSRTM

(TLSRTM) must be calculated independently for each shot gather (Herrmann and Li, 2012;

Dai et al., 2012; Zhang et al., 2015), the computational cost of TLSRTM can dramatically

increase proportionally to the number of data gathers used. Signi�cant advancements have

been achieved recently aimed at enhancing the quality of seismic imaging while concurrently

reducing computational costs of TLSRTM (Herrmann and Li, 2012; Dai and Schuster, 2013;

Xue et al., 2016; Yao and Jakubowicz, 2016; Liu and Peter, 2018).

Frequency-domain LSRTM (FLSRTM) can be employed to reduce the computational

cost of LSRTM for multi-source processing, o�ering several advantages over TLSRTM. No-

tably, only a few valid frequency components of the data are needed to generate the migrated

section (Kim et al., 2022). Furthermore, if the Green's functions can be stored in the com-

puter's memory, the gradient and Born-modeled data can be e�ciently computed without

the need for additional wave�eld extrapolation (Ren et al., 2013). We note that in the

FLSRTM scheme, the perturbed scattering wave�eld and the gradient of the mis�t function

are expressed as a function of background Green's functions in the frequency domain. Con-

sidering that this framework is a linearized inversion and does not update the background

model, all of the background Green's functions from the sources to the re�ectors and from

the re�ectors to the receivers, which depend on the background velocity, must be calculated

once and stored in the computer's memory for each frequency. Although FLSRTM is shown

to be e�cient, this scheme can be severely limited by the substantial memory storage require-

ments for saving the Green's functions, especially when a large dataset and model are used

(Liu et al., 2022). To mitigate this, Ren et al. (2013) implemented a version of FLSRTM

in which the shot and receiver Green's functions are stored in memory during the �rst iter-

ation of the inversion scheme. As an alternative approach, Zhao and Sen (2019) proposed

the double-plane-wave encoding of shot records to reduce memory storage requirements for

saving the Green's functions.

More recently, Kim et al. (2022) introduced a fast and memory-e�cient version of

FLSRTM, in which they adopted the singular value decomposition (SVD) to construct the

low-rank representation of Green's functions and reduce the required memory storage. Al-

though the FLSRTM scheme with low-rank background Green's functions can produce mi-

gration results as accurately as conventional FLSRTM schemes with less memory usage,
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generating this low-rank representation via SVD can be computationally intensive, partic-

ularly when dealing with large-scale datasets or models. Alternatively, iterative algorithms

such as Krylov-subspace methods can be employed to approximate the dominant singular

vectors more e�ciently (Golub and Van Loan, 1996). These algorithms are the most widely

used approach for computing low-rank matrix approximations, especially for large sparse

matrices. However, over the past two decades, stochastic algorithms have gained popularity.

This is because randomized algorithms often perform better in practice and are more robust

compared to Krylov methods (Martinsson, 2019). The basic idea of these probabilistic ma-

trix algorithms is to employ some amount of randomness to derive a smaller matrix from a

high-dimensional matrix, which captures the essential information and o�ers reliability and a

computationally e�cient alternative to obtain a low-rank SVD representation (Sarlos, 2006;

Gu, 2015; Erichson et al., 2019).

In this study, we propose implementing an FLSRTM scheme that utilizes low-rank

Green's functions decomposed via randomized (rSVD) (Halko et al., 2011; Martinsson et al.,

2011; Halko, 2012; Tropp and Webber, 2023) and compressed (cSVD) (Erichson et al., 2017;

Erichson et al., 2019) SVD algorithms to improve runtime performance. The enhanced algo-

rithm aims to tackle the computational challenges associated with conventional FLSRTM.

The cornerstone of the solution lies in the rSVD and cSVD algorithms' pro�ciency in ef-

�ciently extracting critical information from Green's functions to construct their low-rank

representations. Unlike conventional SVD, the rSVD and cSVD algorithms begins by gen-

erating a compressed matrix from the original matrix using a Gaussian random matrix and

an economic QR decomposition. The size of the compressed matrix is determined by the

truncation coe�cient, which corresponds to the optimal rank and is determined using a spe-

ci�c criterion (Kim et al., 2022). Liu and Peter (2020) demonstrated that if the truncation

coe�cient is �nely adjusted, these algorithms can signi�cantly compress the original matrix,

leading to decreased memory usage and reduced computation time. Although the rSVD

algorithm is mathematically robust and o�ers strong error bounds, there is potential for

innovations and improvements, such as those introduced in the cSVD algorithm presented

by Ji and Li (2014). The cSVD algorithm provides an e�ective balance between accuracy

and speed, and is particularly well-suited for approximating large matrices. Consequently,

its computational advantages become more signi�cant as the dimensions increase.

This article is structured as follows. First, we provide a brief overview of LSM and

FLSRTM. Following this, we introduce the SVD algorithm and its low-rank randomized

variations. Subsequently, we explain the integration of SVD algorithms within the FLSRTM

framework. Then, we demonstrate the capability of the proposed algorithm to produce

high-quality seismic images through numerical experiments conducted on synthetic models.
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Afterwards, through a comparative analysis of migration results and computational costs

based on numerical examples, we illustrate the e�ciency of the FLSRTM scheme in terms of

memory storage and computing time by employing the low-rank representation of Green's

functions via stochastic SVD algorithms.

Methodology

Least-squares migration

According to the Born approximation Woodward1992,BornWolf1999, the re�ectivity

model m and the �rst-order scattering data d satisfy the following linear relationship

d = Lm, (2.1)

where L, known as the sensitivity kernel, represents the forward Born modeling operator

that uses a smooth background velocity model.

Conventionally, the adjoint of the L operator is considered as the migration operator

(Claerbout, 1992), and the re�ectivity model mmig is retrieved by applying it to the observed

data dobs, represented as

mmig = LTdobs, (2.2)

where T means the conjugate transpose. Despite the widespread use of the imaging method

outlined in equation 2.2, known for its high precision, it is important to note that seismic

migration images may still be subject to issues such as blurring e�ects, low resolution, and

unbalanced amplitudes (Schuster, 2017; Shoja et al., 2022). To partially mitigate these

issues, least-squares migration (LSM), often referred to as linearized Born inversion (Taran-

tola, 1984; Nemeth et al., 1999), is commonly proposed for the inversion of seismic data to

obtain the re�ectivity distribution. Provided that the migration velocity model is su�ciently

accurate, LSM can mitigate many of the previously mentioned problems, leading to a more

detailed and resolved migration image (Schuster, 2017). In the LSM method, the strategy

to improve the quality of mmig involves de�ning an objective function E. This function is

designed to seek the re�ectivity by minimizing the L2-norm of the di�erence between the

forward-modeled data and the recorded data

E(m) =
1

2
||Lm− dobs||2. (2.3)

In the least-squares sense, the optimal solution for equation 2.3 is expressed as m =

H−1mmig, where H = LTL is the Hessian operator. However, the computation of the inverse

Hessian is prohibitively expensive (Zhou et al., 2014; Schuster, 2017). To circumvent this
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limitation, the re�ectivity distribution m can be iteratively estimated using gradient-based

methods to solve the optimization problem presented in equation 2.3. In this study, we

will employ the steepest descent method (Nemeth et al., 1999) for this purpose. With this

approach, the solution is updated at each iteration by

mτ+1 = mτ − αgτ , (2.4)

where τ is the iteration number, α is the optimized step length

α =
gTτ gτ

(Lgτ )T(Lgτ )
, (2.5)

and the migration of the di�erence between Born data modeling and observed data, i.e.,

∆d = Lmτ − dobs, corresponds to the gradient vector

gτ = LT(Lmτ − dobs) = LT∆d. (2.6)

From equations 2.1, 2.5 and 2.6, it is evident that the implementation of an iterative LSM

scheme requires a forward modeling engine. In the context of this study, the engine aligns

with the forward linear modeling operator derived from the two-way equation in the fre-

quency domain. Next, the derivation of the forward Born modeling operator will be pre-

sented, along with its incorporation into the LSM scheme.

Matrix formulation of the frequency-domain least-squares RTM

Assuming a constant density and an isotropic medium, the two-dimensional acoustic

wave equation in the frequency domain is expressed as follows
[
∇2 +

ω2

c2(x)

]
P (x, ω) = δ(x− xs)F (ω), (2.7)

where x = (x, z), ω is the angular frequency, c(x) represents the velocity of the medium,

∇2 is the Laplacian operator, and P (x, ω) denotes the pressure wave�eld in the frequency

domain associated with the spectrum of the source term F (ω) injected at the position xs.

In the Born approximation, a linear relationship is assumed where a perturbation in the

velocity generates a corresponding perturbation in the pressure wave�eld. Thus, de�ning c(x)

as c0(x)+ δc(x), where δc(x) is the pertubation in the background velocity model c0(x), the

pressure wave�eld P (x, ω) will be given by P0(x, ω) + δP (x, ω), with δP (x, ω) representing

the scattered wave�eld due to the velocity model perturbation. After substituting these

de�nitions into equation 2.7, and considering that c0 >> δc and P0 >> δP , the scalar wave

equation for the �rst-order scattering wave�eld can be expressed as
[
∇2 +

ω2

c20(x)

]
δP (x, ω) = ω2m(x)

c20(x)
P0(x, ω), (2.8)
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where the re�ectivity model m(x) is de�ned as 2δc(x)
c0(x)

and P0(x, ω) is the background acous-

tic wave�eld, which satis�es equation 2.7 using the background velocity model. Equation

2.8 represents the linearized wave equation derived from the so-called Born approximation.

The linearization in equation 2.8 is based on the premise that a perturbation in the model

parameter, represented by the source term on the right side of equation 2.8, generates the

�rst-order scattering δP (x, ω) (Albano et al., 2019).

By introducing the background Green's function G0(x, ω), which solves the Helmholtz

equation for the background medium (Morse and Feshbach, 1953), the background wave�eld

can be computed as the product of G0(x, ω) and the spectrum of the source term, i.e.,

P0(x, ω) = G0(x, ω)F (ω) (Schuster, 2017). Utilizing this representation, equation 2.8 can be

transformed into an equivalent integral equation of the Lippmann-Schwinger type (Lippmann

and Schwinger, 1950). Therefore, the perturbed scattering wave�eld recorded at xr can then

be determined using the following linear equation (Woodward, 1992; Born and Wolf, 1999)

δP (xr, ω;xs) = −
∫

ω2 m(x)

c20(x)
F (ω)G0(x, ω;xs)G0(x, ω;xr)dx, (2.9)

where G0(x, ω;xs) is the Green's function from the source point at xs to spreader position

x, G0(x, ω;xr) is the Green's function from the receiver xr to the position x. Note that

the Green's functions satisfy the source-receiver reciprocity principle, i.e., G0(x, ω;x
′) =

G0(x
′, ω;x).

Equation 2.9 provides the integral representation for Born forward modeling. Follow-

ing Yao and Jakubowicz (2016), we will now discretize the scattered pressure �eld, the

background velocity model, and the integral modeling operator to obtain a matrix-vector

formulation for equation 2.9. For the 2D case, we considered the medium discretized onto

a nz × nx mesh. We then represent the re�ectivity distribution m(x) as a model vector m

with N(= nz × nx) elements, the �rst-order scattering wave�eld δP (xr, ω;xs) as the data

vector d with M(= nr, number of receivers) elements, and the Born modeling operator as

the L matrix with M × N elements. Thus, for each frequency component, the integral in

equation 2.9 can be approximated by a Riemman sum (Yao and Jakubowicz, 2016; Schuster,

2017; Liu et al., 2022), resulting in




d1
...
di
...

dM



=




l11 · · · l1j · · · l1N
...

. . .
...

. . .
...

li1 · · · lij · · · liN
...

. . .
...

. . .
...

lM1 · · · lMj · · · lMN







m1
...
mj
...

mN



, (2.10)

where di represents the corresponding re�ection data and lij is the value at the j-th grid of
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the sensitivity kernel corresponding to the i-th source-receiver pair, which is given by

lij =
ω2

c20(xj)
F (ω)G0(xj, ω;xs)G0(xj, ω;xri). (2.11)

The compact form of equation 2.10 can be expressed as a matrix-vector product, similar

to the linear relationship presented in equation 2.1. Considering this and noting that the

derivation of the equation 2.9 was based on the two-way equation in the frequency domain,

the inversion scheme will be referred to as FLSRTM. From equation 2.6, it is evident that the

steepest descent method requires the computation of the gradient vector g. Consequently,

using the matrix representation provided in equation 2.10, we compute the conjugate trans-

pose of the L operator and obtain the following expression to calculate the gradient at each

iteration of the FLSRTM scheme (Liu et al., 2022)




g1
...
gj
...
gN



= Re








l11 · · · li1 · · · lM1
...

. . .
...

. . .
...

l1j · · · lij · · · lMj
...

. . .
...

. . .
...

l1N · · · liN · · · lMN







∆d1
...

∆di
...

∆dM








= Re





M∑
i=1




li1
...

lij
...

liN



∆di





,

(2.12)

where Re denotes the real part of a complex number and g corresponds to the migration of

residues and is shaped as a vector with N(= nz × nx) elements. In the LT operator, each

element lij, is represented as

lij =
ω2

c20(xj)
F ∗(ω)G∗

0(xj, ω;xs)G
∗
0(xj, ω;xri), (2.13)

where ∗ is the complex conjugate.

As previously mentioned, because only the adjoint of the forward Born modeling oper-

ator is applied to the seismic data, as given in equation 2.2, the output migration pro�le is

amplitude-biased. To partially balance the amplitudes, the migrated image can be precondi-

tioned with the inverse of the diagonal of the Hessian operator (Shin et al., 2001; Liu et al.,

2020). In a relevant study, Liu et al. (2022) developed a frequency-domain scattering-integral

reverse time migration (SI-RTM), where the diagonal of the Hessian operator is explicitly

computed in its exact form, i.e., H0 = diag
{
LTL

}
. In this formulation, the preconditioned

image with exact two-way illumination compensation is expressed as

mmig = (H0 + λI)−1LTdobs, (2.14)
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where λ is a damping factor to prevent instability of the inverse operation, and H0 is com-

puted by accumulating the squared modulus of each sensitivity kernel element over all source-

receiver pairs, as follows

H0 =
M∑

i=1




li1li1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · lijlij · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · liN liN



. (2.15)

The SI-RTM o�ers a signi�cant advantage in terms of memory e�ciency, as it does not ne-

cessitate storing large sensitivity kernels (Liu et al., 2022). Because the background Green's

functions remain unchanged during the FLSRTM scheme, computational costs can be no-

tably reduced, with H0 computed only once at the initial iteration of the optimization

scheme. In this work, we have implemented the exact two-way illumination compensation to

precondition the gradient. It is noteworthy that in our implementation, this preconditioned

is also structured as a vector with N(= nz×nx) elements and is applied to the gradient via

the Hadamard product.

Since in FLSRTM the background velocity model is kept unchanged, and only the re-

�ectivity model is updated, the Green's functions needed for computing the scattered data

and the gradient are computed only once. Therefore, if the Green's functions are stored in

memory, both scattered data and gradient can be calculated without additional wave�eld

extrapolation. However, storing the Green's functions typically demands signi�cant memory

storage, which may become impractical for large-scale datasets and models. To alleviate this

computational cost, in the next section, we propose an approach to FLSRTM using low-rank

representation of Green's functions obtained via SVD algorithms.

Low-rank representation of Green's functions via SVD algorithms

In this explanation, we represent the background Green's functions as a two-dimensional

m×nmatrixA, wherem and n correspond to nz and nx, respectively. The conventional SVD

of A admits the factorization of it into the product of three matrices, such that A = UΣVT,

where U is an m×n matrix of the orthonormal eigenvectors of AAT and VT is the transpose

of an n × n matrix containing the orthonormal eigenvectors of ATA (Figure 2.1a). The

n × n diagonal matrix Σ contains the corresponding non-negative singular values of A

(σ1 ≥ . . . ≥ σr ≥ 0), describing the spectrum of the data. The conventional SVD algorithm

for a large matrix is computationally intensive and has cubic-time complexity with respect

to the size of the given matrix (Golub and Van Loan, 1996), often necessitating substantial
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memory storage. However, in practice, a full SVD, including a fully unitary decomposition

of the matrix's null space, is rarely required. Instead of the full factorization, it is often

su�cient to compute a compact version of the SVD algorithm based on the matrix's rank,

denoted by r, which corresponds to the number of non-zero singular values of A.

In many applications, the rank of A is large, making it di�cult to store even the SVD

factors in memory. In such instances, the smallest singular values may need to be truncated

to retain only the largest k non-zero singular values (low-rank approximation, where k << r).

Thus, the low-rank SVD is no longer an exact decomposition of the original matrix A, but

rather provides the optimal low-rank matrix approximation Ak by any matrix of a �xed rank

k, i.e., Ak ≈ UkΣkV
T
k , where k denotes the desired target rank of the approximation, and

only the k column vectors of U and k row vectors of VT corresponding to the k singular

values with a signi�cant magnitude are preserved (Figure 2.1b). Choosing an optimal target

rank k is highly dependent on the task: a value for k close to the e�ective rank allows us

to obtain a highly accurate reconstruction of A, which on the other hand, a small value for

k results in a very low-dimensional representation of the dominant features of A (Erichson

et al., 2019). Kim et al. (2022) proposed an FLSRTM inversion scheme using low-rank

Green's functions computed via conventional SVD, demonstrating the feasibility of this low-

rank representation in reducing the required computational memory. Building on the work

of Kim et al. (2022), we will adopt the following scheme in our implementation to determine

the optimal target rank: (i) select the Green's function corresponding to the most energetic

component of the frequency spectrum, (ii) apply conventional SVD to obtain the distribution

of the singular values, and (iii) select the rank where the normalized accumulated singular

value exceeds 99.9%.

Although the amount of memory required to save the resulting factors of the low-rank

SVD is less than the conventional SVD, this approach still requires the initial computation

of the conventional SVD. From this, the �rst k components are extracted to form Ak.

Consequently, the computation of Ak via conventional SVD does not o�er any reduction in

computation time. This method, therefore, remains impractical for high-dimensional data

matrices. To address the issue related to the computational execution time, we propose

calculating the low-rank Green's functions using two stochastic SVD algorithms. The �rst

method is the randomized SVD algorithm (rSVD), introduced by Halko et al. (2011), which

is designed to obtain a low-rank approximation of a large matrix. Recognized as a state-

of-the-art algorithm for computing low-rank matrix approximations (Mahoney, 2011), this

algorithm circumvents the conventional SVD computation on a large matrix. Instead, it

performs a random sampling on the original matrix to construct a small condensed subspace

and then projects A onto this subspace (Ji and Li, 2014). Thereafter, a deterministic matrix
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factorization algorithm is applied to the smaller dense matrix to compute a near-optimal low-

rank approximation of A. Such algorithm has been shown to be computationally e�cient

with a relatively low computation cost and high con�dence for approximating matrices with

low-rank structures (Halko et al., 2011; Martinsson et al., 2011; Halko, 2012; Tropp and

Webber, 2023).

The rSVD comprises the following six primary computational components (refer to Fig-

ure 2.2a): (i) generation of a n × k random matrix Ω, (ii) matrix-matrix multiplication

of AΩ to produce Y, (iii) QR decomposition of Y to obtain the near-optimal basis Q,

(iv) matrix-matrix multiplication to project the input matrix to low-dimensional space, i.e.,

QTA, to produce the relatively small matrix B, (v) conventional SVD decomposition on B,

and (vi) recovery of the left singular vectors Uk from the approximate left singular vectors

Ũk by pre-multiplying by Q. As described by Erichson et al. (2019), the basis matrix

Q often fails to provide a good approximation for the column space of the input matrix.

Therefore, it is necessary to use a power iteration scheme (Rokhlin et al., 2010; Halko et al.,

2011; Gu, 2015) in order to enhance the quality of this step. In this research, we have used

the power iteration scheme with p = 2 and a QR decomposition as an intermediate step

(Rokhlin et al., 2010), which is accurate and reduces the stability problems of conventional

implementation. It is important to note that, after random matrix sampling by Ω, the input

matrix A is condensed into either tall-and-skinny or a short-and-wide matrix, such as Y and

Q are m× k matrices, and B is an k × n matrix, where k is much smaller than min(m,n).

The small and dense matrix B is particularly suitable to reduce the computational cost of

conventional SVD on the input matrix, being that signi�cant computational speedups are

achieved if the target rank k is about 3− 6 times smaller than the smallest dimension of A

(Erichson et al., 2019). Finally, the amount of memory required to store the resulting arrays

of this algorithm is similar to the memory demanded by the low-rank SVD, since it depends

on the target rank k.

The other probabilistic matrix algorithm is the compressed SVD (cSVD), introduced by

Ji and Li (2014). This method represents an advancement over the rSVD algorithm, focusing

on computing the top-k singular vectors of BBT instead of performing the conventional

SVD directly on the matrix B (Figure 2.2b). It follows the initial four stages of the rSVD

algorithm. Then, the matrix-matrix multiplication BBT yields a small square matrix whose

size only depends on the target rank k, o�ering a more e�cient approach to derive the factor

Uk. Under the assumption that ŨT
k Ũk ≈ I, the matrix VT

k can be e�ectively approximated

via the single matrix-matrix operation ŨT
kB ≈ ΣkV

T
k . As mentioned earlier, this algorithm

reduces the computational execution time. However, the amount of memory required to

store the resulting matrices is similar to that required by the rSVD.
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In summary, we propose to implement the FLSRTM as described by equations 2.4-2.6

and to evaluate the resulting high-resolution images obtained from the inversion scheme us-

ing a low-rank representation of Green's functions. Implementing FLSRTM requires storing

the background Green's functions to compute the Born data and gradient at each itera-

tion, which can be impractical for large-scale datasets and models. To mitigate this issue,

we advocate applying rSVD or cSVD algorithms to reduce the rank of the Green's func-

tions. Therefore, alongside assessing the quality of the migrated images, we evaluate the

computational performance of these stochastic SVD algorithms for computing low-rank rep-

resentation of Green's functions. The work�ows for implementing each FLSRTM, whether

using the full Green's functions or the low-rank representation via SVD algorithms, are

illustrated in Figure 2.3.

Numerical tests

In this section, we present two numerical examples to evaluate the performance of our

proposed FLSRTM scheme in generating high-quality seismic images using the low-rank rep-

resentation of Green's functions via stochastic SVD algorithms. For both synthetic examples,

we used similar parameters to generate the background Green's functions, construct their

low-rank representations, and execute the inversion scheme. Additionally, to ensure consis-

tency and comparability of the results, all tests were performed using the same hardware

con�guration.

Considering that computing the background Green's functions for each iteration of the

FLSRTM inversion scheme is uncommon and signi�cantly increases computation time, we

have precomputed these functions and stored them on disk for our tests. For this, we

de�ned a split-spread geometry with shots and receivers located on the surface and equally

distributed over the model range. A 15Hz Ricker wavelet was employed as the source wavelet,

with a record length of 4 s and a time sampling interval of 4ms. Subsequently, utilizing

the background velocity model, we conducted numerical modeling to compute the acoustic

wave�eld by employing the rapid expansion method (REM) (Pestana and Sto�a, 2010). The

background Green's functions were then obtained by deconvolving these wave�elds with the

Ricker source wavelet.

On the other hand, it is important to mention that the value of the optimal rank de-

pends on the frequency component of the background Green's function. To circumvent this

dependence, we applied the approach proposed by Kim et al. (2022), wherein the Green's

function representing the seismic source located at the midpoint of the model surface is
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initially selected. The component corresponding to the dominant frequency is then chosen,

followed by the application of the conventional SVD algorithm to construct its distribution

of normalized accumulated singular values. The selection criterion is subsequently applied to

determine the optimal rank k, which can be extended to other frequency components as well

as to sources and receivers in the split-spread geometry. This ensures that the reconstructed

Green's functions are nearly identical to the original Green's functions. Once the optimal

value k is de�ned, the rSVD and cSVD algorithms can be applied. In this study, we utilized

routines from the Linear Algebra PACKage (LAPACK) (Anderson et al., 1999) to perform

the necessary SVD and QR factorizations in the implementation of these stochastic SVD

algorithms. To validate the accuracy of the reconstructed Green's function, we adopted the

normalized root-mean-square (NRMS) error.

In the context of the FLSRTM scheme, we have set the number of iterations to 20.

Furthermore, a modi�ed Laplacian �lter was applied to attenuate low-wavenumber artifacts

observed in the gradient computed at each iteration of the inversion process (Kumar et al.,

2023). Implemented in the frequency domain, this �lter e�ciently suppresses migration

artifacts without distorting the spectrum and amplitude of the migrated image. To compare

the performance of the proposed FLSRTM, four cases were tested: saving the original Green's

functions (case 1 - see left part of Figure 2.3), utilizing the low-rank representation of the

Green's functions via SVD (case 2), rSVD (case 3) and cSVD (case 4) algorithms. The

work�ow for implementing FLSRTM using low-rank Green's functions is depicted in the

right part of Figure 2.3. It is important to note that in cases 2-4, before initiating the

inversion scheme, the factors Uk, Σk and VT
k are computed using the implemented SVD

algorithms. However, only the terms UkΣk and VT
k are retained in memory. This approach

does not in�uence the low-rank approximation, does not signi�cantly increase computation

time, and also circumvents the need for storing the singular values.

Layered model

The �rst experiment utilized a layered model, characterized by a gradual increase in

velocities from 1500 to 2400m/s, indicating a smoothly varying subsurface structure with no

abrupt transitions, as illustrated in Figure 2.4a. The model space was discretized into 401 ×
501 grid nodes with a grid interval of 4m in the vertical direction and 8m in the horizontal

direction. Figure 2.4b presents the background velocity model, obtained by applying a

smoothing �lter to the true model, while the re�ectivity model is shown in Figure 2.4c. For

this model, we employed a split-spread geometry with 251 shots and 250 receivers located

on the surface. Consequently, we have a source at 0m, a receiver at 8m, a source at 16m,



Memory-e�cient frequency-domain least-squares RTM 83

a receiver at 24m and so on. Subsequently, the REM method was utilized to compute the

background Green's functions for this con�guration.

Before applying stochastic SVD algorithms to this numerical experiment, we analyzed

the optimal rank for reducing the Green's function. As previously mentioned, the optimal

rank must be determined from the Green's function at the dominant frequency. In this

experiment, the 15HzGreen's function generated by a source at 2000m (see red star in Figure

2.4a) was used to identify the optimal rank. Figure 2.4d shows the real part of this function.

Conventional SVD was performed on the Green's function to compute the distribution of

normalized singular values (Figure 2.5a). To apply the criterion for determining k, we

calculated the normalized accumulated singular values (Figure 2.5b) and set the rank that

has an accumulated singular value above 99.9%. We notice that k = 39 satis�es this criterion

(see red mark in Figure 2.5b), and it is also smaller than nz = 401. With the optimal rank

identi�ed, we computed the low-rank representation of the Green's function using SVD,

rSVD, and cSVD algorithms.

To verify the accuracy of low-rank representations, the Green's functions were recon-

structed, and their di�erences from the raw Green's function were computed, as depicted in

Figure 2.6. The reconstructed Green's functions, which closely approximate the true Green's

function, have a NRMS error of 8.46 × 10−4 for the conventional SVD and 8.95 × 10−4 for

the two stochastic SVD algorithms implemented. Horizontal pro�les were extracted from

the low-rank Green's functions at a vertical distance of 800m, and a comparison with a

reference is illustrated in Figure 2.7a. This comparison demonstrates that the pro�les match

quite well. To examine the distribution of singular values in these low-rank Green's func-

tions, we applied SVD decomposition to them. Figure 2.7b shows that the rSVD and cSVD

distributions align closely with the reference singular values. In this numerical experiment,

it is observed that the memory footprint required to store the low-rank approximation of

the 15Hz Green's function (0.268MB) constitutes merely a fraction of the memory required

by the original function (1.533MB). This clearly demonstrates that SVD methodologies

o�er superior memory e�ciency. Figure 2.16a shows the normalized computational times to

perform the SVD, rSVD, and cSVD algorithms. The computation times for both rSVD and

cSVD are markedly lower than the time expended by the conventional SVD, with the cSVD

algorithm being particularly noteworthy.

We proceed to compare the FLSRTM results from each case. The inversion process

employs 180 frequencies, with an interval of 0.25Hz, and ranging from 0.25Hz to 45Hz. For

the parallel inversion, we utilize 90 CPU cores, with each node processing two frequencies of

Green's functions for every shot and receiver, requiring 1.500GB for case 1. Given that the



Memory-e�cient frequency-domain least-squares RTM 84

optimal rank is 39, the memory demand for each node is signi�cantly reduced to 0.262GB

for cases 2-4, which is approximately 17.5% of the memory required in case 1. Since the

dimensions of the low-rank Green's functions are much smaller than those of the original

Green's functions, cases 2-4 require small memory storage. Figure 2.9 presents the RTM

images (left column) and the inverted re�ectivity model (right column) after 20 iterations.

The normalized mis�t values, as a function of iteration, exhibit uniform results across all cases

(Figure 2.8). However, an almost negligible di�erence in the convergence curves is observed,

which is associated with the truncation carried out to generate the low-rank representation

of the Green's functions. A comparison of the FLSRTM images with the RTM images reveals

that the FLSRTM process enhances both the quality and resolution of the image beyond

the RTM results. The FLSRTM re�ectivity models align well with the true re�ectivity

(Figure 2.4c). As expected, case 1 demands the most memory usage but exhibits the least

computation time, which is established as our time reference. Cases 2-4 consumed additional

computational time to compute the low-rank Green's functions at the initial iteration and

to reconstruct the Green's function at each subsequent iteration (refer to the shadowed gray

area in Figure 2.3). As depicted in Figure 2.16b, the normalized times consumed for each

case clearly indicate the superior e�ciency of the FLSRTM scheme using stochastic SVD

algorithms to construct the low-rank representation of the background Green's functions.

Modi�ed Marmousi-2 model

To evaluate the performance of the proposed algorithm, we conducted a second test using

the Marmousi-2 model (Martin et al., 2006), which features larger dimensions compared to

the previous test. This model represents a marine subsurface section with complex geological

structures, including sedimentary layers and irregular rock formations. As depicted in Figure

2.10a, the model used here is a modi�ed version of the released Marmousi-2 model, generated

according to the description in Kim et al. (2022). This modi�ed model has a depth of 3500m

and a length of 9200m, with grid dimensions of 351 × 921 and grid intervals of 10m. Figure

2.10b illustrates the background velocity model, derived from applying a �lter to the true

velocity model. The re�ectivity model is presented in Figure 2.10c. For this numerical

experiment, we constructed a �xed-spread geometry with 461 sources, with shot positions

ranging from 0m to 9200m at 20m intervals. Each shot has 460 receivers, starting from 10m

to 9190m at 20m intervals. Using the background velocity model as input and employing

the REM, we conducted forward modeling to compute and store the background Green's

functions for the speci�ed geometry.

In this example, given that the dominant frequency of the source wavelet is 15Hz, we
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utilized the 15Hz Green's function, generated by a source at 4600m (see red star in Figure

2.10a), to validate the implementation of the SVD algorithms and determine the optimal

rank k. Figure 2.10d shows the real part of this 15Hz Green's function. Consequently,

a conventional SVD was performed on the Green's function to compute its distribution of

normalized singular values (Figure 2.11a). We then calculated the normalized accumulated

singular values (Figure 2.11b) and applied the prede�ned criterion to set the optimal rank.

We notice that k = 75 satis�es the de�ned criterion (see red mark in Figure 2.11b), therefore,

we set the optimal rank as 75 for reducing the dimension of the Green's function safely. In

contrast to the Green's function in the previous numerical example (Figure 2.4d), the current

Green's function presents greater complexity due to wave�eld simulations in a geologically

intricate model. As a result, the necessary optimal rank for reconstructing the Green's

function has increased. Using this optimal rank, we computed the low-rank representation

of the Green's function via conventional and stochastic SVD algorithms.

Figure 2.12 shows the reconstructed Green's functions with only 75 decomposed matrices

and their di�erences from the original Green's functions. It is clearly veri�ed that the low-

rank Green's functions with optimal rank are very similar to the original function. From

the reconstructed Green's functions, we extracted horizontal pro�les and compared them

with the reference, as shown in Figure 2.13a. Overall, no noticeable di�erences can be

observed, and the traces appear nearly identical. Figure 2.13b displays the distribution of

the normalized singular values for each decomposition scheme, which are remarkably close

to the reference singular values. The NRMS error between the low-rank Green's function

and the reference for the SVD, rSVD, and cSVD algorithms was 4.84×10−4, 5.13×10−4 and

5.16× 10−4, respectively. For this numerical experiment, the memory required to store the

low-rank 15Hz Green's function was 0.728MB, representing only a fraction of the 2.466MB

needed for the original function. As another aspect of computational cost, the normalized

times consumed for the SVD, rSVD, and cSVD were 1, 0.240, and 0.097, respectively. These

results con�rm that the use of stochastic SVD algorithms enhances memory e�ciency akin

to the conventional SVD algorithm. However, these algorithms require less computing time

(Figure 2.16a), with the cSVD algorithm standing out by being 10.4× faster.

FLSRTM for each case was performed with 180 frequencies sampled at 0.25Hz and

ranging from 0.25Hz to 45Hz. We used 90 CPU cores for the parallel inversion, with each

node storing two frequencies of Green's functions for every shot and receiver (4.436GB of

storage). Since the optimal rank is 75, the memory requirement for each node is reduced

to 1.310GB. The mis�t convergence curves for the di�erent cases are shown in Figure 2.14.

Despite the minor di�erences between the curves, attributed to the truncation performed to

obtain the low-rank representation of the Green's functions, it is clearly observed that cases
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2-4 converge to values very close to those reached in case 1. Figure 2.15 presents the RTM

images (left column) and the inverted re�ectivity models (right column) after 20 iterations.

Comparing the FLSRTM images with the RTM images, it is evident that FLSRTM enhances

both the quality and resolution of the images. The FLSRTM re�ectivity models demonstrate

a strong agreement with the true re�ectivity, as shown in Figure 2.10c. Cases 2-4, even with

the use of low-rank Green's functions, produce an inverted re�ectivity model with quality

identical to that of case 1. As can be seen in Figure 2.3, case 1 necessitates the highest

memory allocation, yet it exhibits the shortest computational duration. Conversely, cases 2-

4 require additional computational time (Figure 2.16b). This extra time is needed initially to

construct the low-rank representation of the Green's functions and subsequently to assemble

these at each iteration (refer to the shadowed gray area in Figure 2.3).

The results demonstrate the e�ectiveness of the proposed FLSRTM scheme, which uti-

lizes stochastic SVD algorithms to reduce the computation time for constructing low-rank

Green's functions. Furthermore, this approach minimizes the memory requirements for stor-

ing the background Green's functions, as previously demonstrated by Kim et al. (2022)

using the conventional SVD algorithm. In contrast to other implemented algorithms, the

cSVD factorization demonstrates superior performance. This can be attributed to its inter-

nal application of SVD decomposition on a square matrix of dimensions k×k. Notably, this

approach remains independent of the dimensions of the original matrix (refer to Figure 2.2b).

As observed, the value of the optimal rank varied in each numerical example. Therefore, we

can infer that the optimal rank for accurately reconstructing the Green's function increases

when the velocity model features a complex geological structure. Consequently, the cSVD

algorithm emerges as the most suitable choice when implementing the proposed FLSRTM

scheme.

Conclusion

In this study, we propose an e�cient scheme for implementing FLSRTM by utilizing

low-rank Green's functions. While FLSRTM with fully stored Green's functions faces mem-

ory limitations for large-scale datasets or models, our approach overcomes this challenge.

Speci�cally, we decompose the Green's function associated with the dominant frequency

of the source wavelet into rectangular and unitary matrices using both conventional and

stochastic SVD algorithms. The optimal rank, determined by a criterion based on the accu-

mulated normalized singular value distribution, ensures e�cient memory storage. Further-

more, we extend our investigation by incorporating randomized SVD and compressed SVD

algorithms. These advancements signi�cantly reduce computational time for constructing
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low-rank Green's functions. By leveraging rSVD and cSVD, we achieve substantial reduc-

tions in memory requirements without compromising computational e�ciency. Our numer-

ical experiments, conducted on a layered model and a modi�ed Marmousi-2 model, demon-

strate that the reconstructed Green's functions exhibit high accuracy using rank-reduced

matrices. Comparative studies with FLSRTM using fully stored Green's functions validate

the accuracy of our proposed FLSRTM scheme. Notably, the cSVD method consistently

outperformed other approaches in terms of computational e�ciency, making it the preferred

choice for executing the FLSRTM scheme. Overall, we conclude that FLSRTM with low-

rank Green's functions via rSVD and cSVD represents a computationally e�cient approach

for generating accurate migration images.
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eral key steps. Initially, a natural basis Q is computed to derive a
smaller matrix B. Next, the SVD is e�ciently performed on this re-
duced matrix. Finally, the left singular vectors U are reconstructed
from the approximate singular vectors Ũ. (b) Schematic illustration of
the compressed SVD. Since BBT is a small square matrix whose size is
independent of the size of the original matrix A, the left singular vec-
tors U can be derived much more e�ciently than from B, and the right
singular vectors VT are reconstructed from the approximate singular
vectors Ũ.
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Figure 2.4: (a) Layered velocity model and its corresponding (b) background ve-
locity model and (c) re�ectivity model. The gray scale used in panels
(a) and (b) is the same and is shown to the right of the �rst row.
(d) Real part of the 15Hz Green's function with source location at
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Figure 2.6: Real component of the reconstructed 15Hz Green's function from its
low-rank representation using (a) conventional, (c) rSVD, and (e) cSVD
algorithms. The right column shows their corresponding di�erences
with respect to the reference Green's function (Figure 2.4d). The clip
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traces selected for the plot in Figure 2.7a.
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Figure 2.9: RTM and FLSRTM results for: (a)-(b) case 1, (c)-(d) case 2, (e)-(f)
case 3 and (g)-(h) case 4.
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Figure 2.10: (a) The Marmousi-2 velocity model and its corresponding (b) back-
ground velocity model and (c) re�ectivity model. The gray scale used
in panels (a) and (b) is the same and is shown to the right of the �rst
row. (d) Real part of the 15Hz Green's function with source location
at xs = (4.6, 0)km (see red star in Figure 2.10a).
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Figure 2.11: (a) Distribution of the normalized singular values and (b) normalized
accumulated singular values of the 15Hz Green's function.
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Figure 2.12: Real component of the reconstructed 15Hz Green's function from
its low-rank representation using (a) conventional, (c) rSVD, and (e)
cSVD algorithms. The right column shows their corresponding di�er-
ences with respect to the reference Green's function (Figure 2.10d).
The clip level is the same for all panels. The colored dashed lines
indicate the traces selected for the plot in Figure 2.13a.
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Figure 2.13: (a) Wiggle traces comparing the horizontal pro�les extracted from
the real part of the reference (black line in Figure 2.10d) and the
reconstructed (colored dashed lines in Figure 2.12a-c) 15Hz Green's
function. (b) Distribution of singular values for the low-rank represen-
tation of the 15Hz Green's function using conventional and stochastic
SVD algorithms.
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Figure 2.14: Convergence curves of the normalized data mis�ts of di�erent
FLSRTM algorithms for the Marmousi model.
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Figure 2.15: RTM and FLSRTM results for: (a)-(b) case 1, (c)-(d) case 2, (e)-(f)
case 3 and (g)-(h) case 4.
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Figure 2.16: (a) Normalized time required to construct the low-rank representation
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rithms. (b) Total normalized time required to execute the FLSRTM
scheme.
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3
One-Way Wave-Equation Migration
Based on Jacobi-Anger Expansion in
Arbitrarily Lateral Varying Media

This chapter has been submitted as Daniel E. Revelo and Reynam C. Pestana. One-Way

Wave-Equation Migration Based on Jacobi-Anger Expansion in Arbitrarily Lateral Varying

Media to IEEE Transactions on Geoscience and Remote Sensing. Minor modi�cations have

been applied to maintain consistency within this thesis.

Abstract

Seismic depth migration by downward continuation using conventional one-way wave-

equation operators has three main shortcomings: handling evanescent waves, imaging large

angles, and stability of the one-way propagator. Conventional one-way wave-equation propa-

gators have been extensively constructed using approximation theories, such as Taylor series

and other expansions. Although in these, a new operator is calculated at each lateral point

of the grid, di�culties persist due to the assumption that the medium is locally homoge-

neous. Consequently, these propagators exhibit signi�cant weaknesses in imaging complex

media. To alleviate these drawbacks, we propose a stable and a�ordable approach to the

one-way wave-equation depth migration algorithm. First, we use a spectral projector to

suppress evanescent modes in an arbitrarily laterally varying velocity model. Next, we ap-

ply a coupled Schulz iteration scheme to the Helmholtz operator to obtain the square-root

operator. Finally, to address the issue of accurately constructing the extrapolation operator
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while ensuring stability, we introduce a novel algorithm to approximate the exponential ma-

trix operator using the Jacobi-Anger expansion. This approximation enables the one-way

wave-equation propagator to be constructed solely through matrix multiplication, a feature

that facilitates e�cient implementation and execution. Through an impulse response test,

we demonstrate that our proposed migration algorithm is more accurate than the one using

Taylor series expansion and is e�ective for large angles in media with pronounced lateral

velocity variations. We also use models with complex subsurface structures and �eld data to

demonstrate that our approach performs better at imaging intricate and �ne-scale features

compared to traditional one-way migration methods.

Introduction

The one-way wave equation is derived from an approximate solution of the two-way wave

equation and is central to the recursive extrapolation approach in wave-equation migration

(WEM)(Claerbout, 1971). It decomposes the full wave equation along the dominant direction

of wave propagation, thereby reducing the computational dimensionality. Consequently, the

WEM method holds a signi�cant advantage in large-scale problems. Unlike reverse time

migration (RTM) (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983; Levin, 1984),

WEM can only provide accurate phases and amplitudes within limited propagation angles,

especially in media with strong velocity contrasts and steeply dipping re�ectors. While RTM

is studied intensively across industries and academia, it has shortcomings, e.g., high memory

costs and low-frequency artifacts, that could be mitigated by WEM.

One-way wave propagators, as part of a full wave equation separation migration method,

provide a reliable kinematic solution for acoustic waves. This factorization of the two-way

wave equation into upgoing and downgoing operators introduces the square-root operator (or

vertical wavenumber), characterized by its non-locality. Although many kinds of wide-angle

one-way wave-equation methods have been developed to approximate the square-root oper-

ator with a local operator, their accuracy is still limited. Conventional WEM algorithms

include the phase shift and the phase shift plus interpolation (PSPI) migration methods

(Gazdag, 1978; Gazdag and Sguazzero, 1984), the split step (SS) migration method (Sto�a

et al., 1990), and the Fourier �nite-di�erence (FFD) technique (Ristow and Rühl, 1994).

Another branch within conventional one-way propagators is to expand the square-root op-

erator directly, without introducing any background, using mathematical approximations

such as Taylor and Padé series, as well as Chebyshev polynomials (Gazdag, 1978; Gazdag

and Sguazzero, 1984; Sto�a et al., 1990). The truncation errors produced by these ap-

proaches to approximate the square-root operator limit the imaging angle, making it very
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di�cult to achieve 90◦. This restriction on the imaging angle is a signi�cant drawback of

WEM. To fully leverage the advantages of the unidirectional wave equation, it is impera-

tive to eschew conventional methodologies that employ approximate polynomial expressions

for the computation of the matrix square root. In the literature, two notable and success-

fully tested approximation-free methods have been proposed: an eigenvalue decomposition

method (Grimbergen et al., 1998) and the coupled Schulz iteration scheme (Higham, 1987),

which is based on the relationship between the matrix sign function and its square root.

Given that the eigenvalue decomposition method is time-consuming (You et al., 2018), we

have opted to use Higham's scheme to compute the vertical wavenumber in our proposed

WEM algorithm.

Another issue present in the implementation of the one-way imaging algorithm is the

notorious instability in the depth extrapolation propagator, which arises from the presence

of evanescent wave components (Grimbergen et al., 1998; Wapenaar and Grimbergen, 1998).

Koslo� and Baysal (1983) propose suppressing evanescent waves in the wavenumber do-

main for a background with depth-only dependent velocity using the Fourier transform and

a simple ideal cuto� �lter. For a general variable background, they suggest employing a

cuto� �lter adjusted to the maximum velocity at a given depth level, also relying on the

Fourier transform as a tool. As demonstrated by Thorbecke et al. (2004), the application

of this cuto� �lter can be extended to the one-way wave equation without any loss of gen-

erality. Numerical examples demonstrate that for full-wave-equation depth extrapolation in

migration, this strategy results in the removal of some propagating waves along with the

evanescent waves, leading to poor imaging of steep re�ectors (Sandberg and Beylkin, 2009).

As an alternative, one of the most promising methods is the spectral projector (Kenney and

Laub, 1995), which can �lter out evanescent waves without losing any propagating wave

components. For depth-dependent backgrounds, the combination of the Fourier transform

and the ideal cuto� �lter, as proposed by Koslo� and Baysal (1983), constitutes such a pro-

jector. In this paper, we implemented an algorithm for computing the spectral projectors

that leverages their relationship with the sign function of a matrix, which in turn uses matrix

polynomial recursions (Auslander and Tsao, 1992; You et al., 2019).

In our proposed WEM algorithm, we avoid the assumption that the square-root operator

corresponds to a local operator. As a result, the depth extrapolator can no longer be applied

locally and must be implemented as an exponential matrix operator. While numerous re-

searchers have focused on the computation of the square-root operator and the attenuation

of evanescent waves, few have given attention to constructing this exponential matrix op-

erator. You et al. (2019) used the Taylor series (TS) expansion to approximately compute

the exponential function of a matrix. However, in this paper, we propose using the Jacobi-



One-way wave-equation migration based on Jacobi-Anger expansion 109

Anger (JA) expansion as a more e�cient alternative for this purpose. The JA expansion

inherently represents oscillatory functions more naturally, making it particularly well-suited

for applications involving wave propagation, such as seismic depth extrapolation. This ex-

pansion converges more rapidly due to the properties of Bessel functions, which decreases

the number of terms needed for an accurate approximation (Watson, 1944). Additionally,

the orthogonality of Bessel functions minimizes cross-interference between terms, further

enhancing the precision and compactness of the representation (Abramowitz and Stegun,

1972). Consequently, the JA expansion not only provides a more exact approximation with

fewer terms but also results in signi�cant computational e�ciency and accuracy in numerical

simulations (Bowman, 1958).

The aim of this paper is to delineate the integration of the spectral projector, the coupled

Schulz iteration scheme, and the JA expansion into the WEM framework to overcome the

inherent limitations in conventional approaches for solving one-way wave equations. The

structure of this article is as follows: Initially, a brief overview of the one-way wave equations

is presented. This is followed by an introduction to the spectral projector and the coupled

Schulz iteration scheme. Thereafter, the proposed JA expansion is elucidated, which serves

to approximate the exponential matrix operator. To validate the e�cacy of the proposed

scheme within the WEM method, impulse responses were computed employing both the TS

and JA expansions, as well as conventional WEM algorithms. Moreover, to procure better

and more detailed imaging results, post-stack and pre-stack migrations were executed for

complex subsurface models using both conventional WEM methods and the proposed one-

way migration algorithm. Finally, we applied these migration methods to real seismic data

for comparison.

Methodology

Acoustic one-way propagators

Assuming a 3D isotropic medium with constant density, the one-way wave equations for

downgoing p̂d and upgoing p̂u continuation of the acoustic wave�eld, in the Fourier domain,

are written as (Wapenaar, 1990; Claerbout, 1985; Mulder and Plessix, 2004)





(
∂

∂z
+ ikz

)
p̂d(x, z, ω) = 0,

p̂d(x, z = 0, ω) = F (ω)δ(x− xs),

(3.1)
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and 



(
∂

∂z
− ikz

)
p̂u(x, z, ω) = 0,

p̂u(x, z = 0, ω) = d̂(x, ω),

(3.2)

where z and x = (x, y) are the coordinates of depth and the two lateral dimensions, re-

spectively, and i =
√
−1 is the imaginary unit. F (ω) represents the spectrum of the source

term injected at the vector position xs, d̂(x, ω) is the recorded seismic data in the frequency

domain and ω is the angular frequency. The generalized solution of equations 3.1 and 3.2

allows us to obtain an extrapolation scheme in depth for the acoustic wave�eld

p̂d,u(x, z +∆z, ω) = p̂d,u(x, z, ω)e
±ikz∆z, (3.3)

where

kz =

[
ω2

v2(x)
+

∂2

∂x2
+

∂2

∂y2

]1/2
(3.4)

corresponds to the square-root operator, also known as the vertical wavenumber, v(x) is the

velocity, and ∆z is the vertical grid space of the medium.

From equations 3.3 and 3.4 it is evident that the implementation of one-way propagators

necessitates the construction of the square-root operator and the calculation of the expo-

nential matrix operator. However, before detailing the adopted methodologies for these two

stages of the depth extrapolation scheme, it is crucial to address an inherent issue within

the Helmholtz operator L(≡ k2
z). Next, the stability problem associated with it will be

elucidated, followed by a discussion of the selected algorithm to mitigate this drawback.

Treatment of evanescent waves via spectral projectors

To simplify our discussion, we consider a 2D case, where the medium is discretized onto

a nz × nx mesh. We then represent the Helmholtz operator L, for a single depth level and

at a speci�c frequency, as a square nx× nx matrix

L =
ω2

v2(x)
+

∂2

∂x2
, (3.5)

with

ω2

v2(x)
=




ω2

v2(x1)
0 · · · 0

0
ω2

v2(x2)
· · · 0

...
...

. . .
...

0 0 · · · ω2

v2(xnx)




and
∂2

∂x2
=

1

∆x2




−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −2



,
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where ∆x is the horizontal grid space of the medium. In this discretization of operator

L, a second-order �nite-di�erence scheme is employed to compute the second-order partial

derivative with respect to x. However, to enhance accuracy, it is advisable to use a higher-

order �nite-di�erence scheme instead. It is important to note that the matrical representation

for L adeptly handles variations in lateral velocity along the horizontal direction due to its

diagonal elements.

It is well known that when the vertical wavenumber involved in depth extrapolation

propagators is a positive real number, it corresponds to a physically meaningful wave. Con-

versely, if kz assumes a complex value, the magnitudes of the propagators may exhibit

exponential ampli�cation with increasing depth. In such instances, the resultant wave is

classi�ed as an evanescent wave. Given that evanescent waves induce instability in prac-

tical applications, their suppression is imperative during the depth extrapolation process.

This instability originates from the inde�nite character of operator L, which possesses both

positive and negative eigenvalues (Sandberg and Beylkin, 2009; You et al., 2019). Positive

eigenvalues correspond to propagating modes, while negative eigenvalues lead to an exponen-

tial growth of the wave�eld during depth extrapolation (nonpropagating evanescent waves).

Consequently, the depth stepping scheme de�ned in equation 3.3 becomes unstable.

To �lter out the negative eigenvalues of operator L, the spectral projector involves only

matrix multiplications as proposed by Kenney and Laub (1995)

P =
I + sign(L)

2
(3.6)

is used in our implementation. The sign function is, in turn, computed with the Newton-

Schulz method (Auslander and Tsao, 1992)

Sk+1 =
3

2
Sk −

1

2
S3
k , for k = 0, 1, 2, . . . , (3.7)

and initialized with S0 = L/∥L∥2. This method exhibits quadratic convergence rate, result-

ing in Sk approaching sign(L) (Higham, 2008). The projector performs on matrix L such

that L̄ = PL, preserving only the positive eigenvalues, λk ≥ 0, where λk is the k-th eigen-

values of the matrix L̄, and guaranteeing numerical stability during the depth extrapolation

process. After addressing the evanescent waves, we proceed to introduce the algorithm used

for constructing the square root of the �ltered Helmholtz operator.

Construction of the square-root operator

The conventional one-way operators used in WEM typically employ a reference velocity

for the horizontal direction, which can lead to inaccuracies in heterogeneous media. To
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address this, the common approach is to compute a new operator at each grid point. However,

in the presence of strong lateral inhomogeneities, the structure of the propagator matrix

departs from a Toeplitz form to one where each row consists of a di�erent local convolutional

operator (Li et al., 2024). This adjustment, which reduces the length of the conventional

operator, aims to enhance the accuracy of handling lateral variations. Nonetheless, shorter

operators can introduce numerical errors during propagation, particularly at large angles

(Thorbecke et al., 2004).

To overcome this issue, and before computing the one-way extrapolator e±ikz∆z, the

construction of the operator kz must be performed in the space domain. In the literature,

two methods are reported for directly computing the square root of the operator L̄. You et al.

(2018) and Li et al. (2024) have described constructing the square root of L̄ via singular

value decomposition (SVD). However, SVD can signi�cantly increase computational time for

large models. Alternatively, the coupled Schulz iteration scheme (Higham, 1987), which was

successfully implemented by You et al. (2019) for one-way extrapolation, has been selected

for our algorithm for WEM. Based on the de�nition of the matrix sign function and assuming

the absence of negative eigenvalues, Higham (1987) proposed the following coupled iteration

scheme to determine the square root of a given matrix
{

Yk+1 =
1
2
Yk(3I − ZkYk)

Zk+1 =
1
2
(3I − ZkYk)Yk

for k = 0, 1, 2, . . . , (3.8)

with Y0 = L̄ and Z0 = I, where I is the identity matrix. As can be seen, Higham's scheme

involves only matrix multiplications, and after limited iterations, the convergence results are

Yk → L̄1/2 and Zk → L̄−1/2. The convergence is typically fast, and the method is robust for a

wide range of matrices (Higham, 2008). Moreover, implementing this method to calculate the

square-root operator eliminates conventional approximations and prevents the generation of

incorrect phase curves in media with strong lateral velocity variations (You et al., 2019). It is

important to note that the elimination of negative eigenvalues from operator L is performed

not only to �lter out evanescent waves, but also to meet the prerequisites for applying the

coupled Schulz iteration scheme. With the algorithms for attenuating evanescent waves and

calculating the square-root operator de�ned, we now introduce the proposed method for

calculating the extrapolator e±ikz∆z from equation 3.3.

Calculation of the one-way propagator

As previously mentioned, when considering lateral inhomogeneities, the local application

of the extrapolation operator becomes infeasible. This implies that it cannot be applied as

a simple arithmetic product between the acoustic wave�eld and the one-way propagator.
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Consequently, the propagator e±ikz∆z must be implemented as an exponential matrix oper-

ator in the space domain. In the work of You et al. (2019), it is proposed to approximate

the propagator with a Taylor series (TS) expansion. However, this proposal does not con-

sider that ∆z can assume large values and, therefore, the operator approximation will lose

accuracy. Morever, the TS expansion often requires numerous terms to achieve a precise ap-

proximation, which can lead to ine�ciencies and computational challenges. To address these

limitations, we propose to use the Jacobi-Anger (JA) expansion (Abramowitz and Stegun,

1972) to compute the exponential function of a matrix

e±ikz∆z ≈
M∑

n=0

εnJn(R∆z)Tn
(±ikz

R

)
, (3.9)

where ε0 = 1 and εn = 2 if n ̸= 0. The term Jn represents the Bessel function of order n, R

corresponds to the maximum eigenvalue of L, i.e., R = ωmax/vmin, and T are the Chebyshev

polynomials � one notes that they satisfy the following recurrence relation

Tn+1(ξ) = 2ξTn(ξ)− Tn−1(ξ), (3.10)

which is initiated by

T0(ξ) = I and T1(ξ) = ξ. (3.11)

Furthermore, to guarantee the convergence of the series, we must ensure that M is greater

than R∆z. The JA expansion inherently captures the oscillatory nature of the exponential

operator with fewer terms, providing an approximation with a very high degree of accuracy

(Bowman, 1958). Theoretically, it has no limits on the value of ∆z, since the number of

terms directly depends on this value. This results in improved performance and reduced

computational cost, making it a more suitable and robust choice for calculating the one-way

propagators.

To verify the accuracy of the one-way extrapolator using the proposed expansion, we

computed the approximation using TS and JA expansions in a 1500m/s homogeneous ve-

locity model. The grid step in the vertical direction is 10m and the frequency component

is 80Hz. The phase ϕ(≡ kz∆z) is discretized over [0, R∆z] with an interval of 3.35× 10−2.

Figure 3.1 presents a comparison between the TS and JA expansions. In Figure 3.1a, f(ϕ)

and g(ϕ) represent the seventh-order and ninth-order TS expansions, respectively, while h(ϕ)

corresponds to the seventh-order JA expansion. Notably, the seventh-order TS expansion

(dashed red line) exhibits signi�cant discrepancies near the right edge of the phase values,

indicating a poor �t in this region. As the order increases to the ninth-order TS expansion

(dashed blue line), the �t improves, yet some misalignment remains evident. Conversely, the

seventh-order JA expansion (dashed green line) demonstrates a remarkable agreement with
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the exact values (black line) across the entire range of phase values. This superior robustness

and accuracy is highlighted in Figure 3.1b, where the absolute error for each approximation

is plotted. To validate the accuracy of the approximation for the one-way extrapolator, we

employed the normalized root-mean-square (NRMS) error metric. The NRMS error between

the approximated operator and the reference values for the seventh-order TS, ninth-order

TS, and seventh-order JA expansions was 2.10× 10−1, 6.73× 10−2, and 3.88× 10−2, respec-

tively. For this example, the results indicate that the JA expansion provides a more reliable

and precise approximation of the exponential operator, even with a lower-order expansion,

compared to the TS expansion.

In summary, the implementation of our extrapolation algorithm for each depth is per-

formed as follows: i) the Helmholtz operator L is constructed for each frequency component,

ii) the spectral projector (equations 3.6-3.7) is applied to L to �lter the negative eigenvalues,

iii) the square-root operator kz is obtained by applying the coupled Schulz iteration scheme

(equation 3.8) and iv) the acoustic wave�eld is extrapolated stably and free of evanescent

energy by applying the one-way propagator computed using equation 3.9. To integrate our

proposed algorithm into WEM, we adopted the cross-correlation imaging condition to up-

date the image. A step-by-step summary of the presented shot-record migration imaging

algorithm is shown below:

1. Initialize the migrated image I = 0

2. Loop for all depth steps zi

3. Loop for all frequency components ωj

(a) Compute the Helmholtz operator L

(b) Remove the negative eigenvalues of L

(c) Compute the square root operator kz

i. For all sources:

i. Compute one-way propagator e−ikz∆z

ii. Compute p̂d(x, zi +∆z, ωj) = p̂d(x, zi, ωj)e
−ikz∆z

ii. For all receivers:

i. Compute one-way propagator eikz∆z

ii. Compute p̂u(x, zi +∆z, ωj) = p̂u(x, zi, ωj)e
ikz∆z

iii. Apply the cross-correlation imaging condition:

I(x, zi +∆z, ωj) = I(x, zi +∆z, ωj) + p̂∗d(x, zi +∆z, ωj)p̂u(x, zi +∆z, ωj)
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Numerical tests

In this section, we conduct several numerical experiments to demonstrate the perfor-

mance of our proposed WEM scheme, which uses the JA expansion to calculate the one-way

propagator for generating migrated sections. Additionally, we compare the results from our

WEM algorithm with those from the conventional PSPI and SS one-way migration meth-

ods, as implemented in the Seismic Unix software package (Stockwell, 1999). For all tests,

we used a tenth-order �nite-di�erence scheme to approximate the spatial derivative along

the horizontal axis, and a horizontal taper (Cerjan et al., 1985) was applied to the wave-

�eld at the left and right boundaries to suppress wave�eld wraparound caused by periodic

boundary conditions during depth extrapolation. Based on our multiple experiments with

models of varying complexity, constructing the spectral projector typically requires about

25-30 iterations, whereas computing the square-root operator generally takes around 15-20

iterations. Moreover, as suggested by Miao et al. (2014), although the result of the depth-

stepping migration is essentially clean with no signi�cant artifacts, we applied a �rst-order

�nite-di�erence �ltering in the vertical direction to enhance migrated images.

Impulse response test

To validate the proposed JA expansion in the construction of the one-way propagator, we

start by studying its impulse response in a medium with a strong lateral velocity variation,

given by v(x, z) = (1500 + 2x + z)m/s and shown in Figure 3.2a. The model consists of

301 × 301 grid nodes with a 5m grid spacing. A Ricker pulse with a peak frequency of

25Hz and a time sampling of 4ms is injected at xs = (750, 0)m. First, we corroborate the

implementation of the projector spectral and the coupled Schulz scheme given by equations

3.6 and 3.8, respectively. For this, we select the velocity values of the layer at z = 750m

(dashed black line in Figure 3.2a) and set the angular frequency to ω = 190 rad/s. Next, the

Helmholtz operator is constructed (Figure 3.2b), with dimension nx×nx. In each line of the

L operator, the 1D locations from the �nite-di�erence stencils are mapped to the 1D index k

using k = 1, . . . , nx. Figures 3.3a-b show the results of the �ltered Helmholtz operator and

the square-root operator, respectively. Figure 3.4a demonstrates the Newton-Schulz method

convergence trend. Lines with di�erent colors are new eigenvalue spectra corresponding

to the increasing number of iterations. As the number of iterations increases, the positive

portion of the spectrum remains unaltered, while the non-positive portion converges entirely

to zero. The values at the 151-st row of Figure 3.3a are extracted and compared to the result

when the SVD algorithm is used to �lter the negative eigenvalues. We observed that the

values after applying the spectral projector �t perfectly with the results produced by the SVD
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method (see Figure 3.4b). Finally, to quantify the computing errors, we calculate the relative

error between the �ltered Helmholtz operator and the iterative square-root operator, de�ned

as (||L−kz×kz||2)/(||L||2). From Figure 3.4c, we can see that 15-20 iterations converge to a

stable value, maintaining a balance between e�ciency and accuracy, which is consistent with

the observations made by You et al. (2019). These results demonstrate that the selected

algorithms can accurately attenuate the evanescent waves and compute the kz operator,

providing a robust foundation for the study of one-way propagators.

Figure 3.5 presents the results obtained from the post-stack depth migration methods

applied to the impulse response test. As a reference, we have picked the wavefront from

the wave�eld simulation performed using the rapid expansion method (REM) (Pestana and

Sto�a, 2010), indicated by the red dashed line. The conventional one-way propagators (Fig-

ures 3.5a-b) exhibit phase errors beyond a certain angle, with their phase curves increasingly

bending inward as the angle grows. Figure 3.5c displays the impulse response calculated

using a ninth-order TS expansion, comparable to the migrated section obtained through

our proposed algorithm using a seventh-order JA approach (see Figure 3.5d). The impulse

response results demonstrate that the one-way wave-equation migration method based on

matrix multiplication performs exceptionally well in simulating propagating waves at large

angles, maintaining an accurate phase curve even in the presence of signi�cant lateral ve-

locity variations. However, the one-way algorithm proposed herein outperforms the method

employing the TS approach for computing the one-way extrapolator, as it requires fewer

expansion terms to achieve precise results. This test, along with the subsequent exam-

ples, consistently showed that the TS and JA expansions required orders di�ering by two

terms. Speci�cally, a ninth-order expansion was necessary for TS, whereas a seventh-order

expansion su�ced for JA to achieve similar quality in the migrated sections. Consequently,

the following analysis will exclusively compare the image quality produced by conventional

migration methods with that of our proposed migration scheme.

Post-stack migration for the SEG/EAGE salt model

For the post-stack migration example, we employed the SEG/EAGE salt model (Am-

inzadeh et al., 1996), a classical benchmark for evaluating imaging quality. The primary

obstacle presented by this model pertains to obtaining high-quality images of the structures

situated beneath the salt dome. This di�culty is due to the signi�cant velocity contrast

introduced by the salt body, as well as the need to accurately image its steeply dipping

boundaries. The model consists of 1290 × 300 grid nodes, with a grid spacing of 12.192m.

Considering the di�culty of obtaining an exact real velocity model, a smoothed version of the
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original velocity model is utilized to evaluate the performance of the migration algorithms.

The velocity model and its smoothed counterpart used in this experiment are depicted in

Figures 3.6a and 3.6b, respectively. The zero-o�set section comprises 1290 traces, with a

time interval of 8ms and a record length of 5.0 s per trace (see Figure 3.6c).

The conventional PSPI, SS, and our proposed migration algorithm were applied to mi-

grate the zero-o�set data, with the resulting imaging sections displayed in Figure 3.7. Upon

examining the overall images produced by these migration methods, it is evident that the

structures beneath the salt body are clearly imaged by both the PSPI and our proposed

algorithm, with the latter providing a better image, particularly in the steeply dipping

boundaries on some �anks of the salt model (see red arrows in Figure 3.7c). In the case of

the SS method, our approach provides a more continuous delineation of the plane located in

the deeper region of the model, as indicated by the red arrow in Figure 3.7c. Moreover, for

the images generated by the two conventional methods, we observed the presence of artifacts

within the salt body, which are absent in the section migrated using our proposed method.

The superior imaging quality of the proposed method is attributed to its ability to manage

wave propagation at large angles with precision, as showcased by the impulse response test

(Figure 3.5).

Pre-stack migration for the 2D Marmousi model

To further test whether our proposed method can migrate a complex model with mul-

tiple shot gathers, the benchmark Marmousi model is employed (Figure 3.8a). This model

represents a complex area that involves multiple anticlines, three large-angle dipping faults,

and the contact relationship between strata is sophisticated (Martin et al., 2006). The size

of the Marmousi model is 9200m × 2992m, which is discretized on a 369 × 375 mesh, and

the spatial sampling is 25m in the x direction and 8m in the z direction. For this numerical

experiment, we constructed a �xed-spread geometry with 185 sources, with shot positions

ranging from 0m to 9200m at 50m intervals. Each shot has 184 receivers, starting from

25m to 9175m at 50m intervals. We apply absorbing boundaries on all sides, i.e., we assume

that surface-related multiples and ghost wave e�ects are removed from the recorded data

set. The direct wave in the recorded data was removed by modeling it separately in a homo-

geneous medium (values of the �rst layer) and then subtracting it from the recorded data.

The duration of each shot record is 2.9 s sampled at 4ms. In this test, a Ricker wavelet with

an upper cuto� frequency of 25Hz was used as a source function. Using the exact velocity

model as input and employing the REM, we conducted forward modeling to compute the

seismic data set for the speci�ed geometry. Figure 3.8b illustrates the migration velocity
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model, derived from applying a �lter to the true velocity model.

Figures 3.9a-c show the migration sections of the PSPI, SS and our proposed pre-stack

depth migration for this model, respectively. Overall, all three methods successfully imaged

the main structures. However, the conventional methods produce a distorted image of a

steeply-dipping fault when it intersects with di�erent layers. On the other hand, although

there are some artifacts in the lateral parts of the migrated section, the re�ections imaged

by our proposed migration method are relatively clearer and exhibit better continuity, as

highlighted by the red arrows in Figure 3.9c. This observation highlights the advantage of

our proposed migration method, namely its capacity to e�ectively manage waves at large

angles.

Pre-stack migration on a �eld data set

As a �nal example, we apply the proposed one-way migration scheme to a 2D streamer

data set provided by Equinor. This data, originally acquired in a deep-water environment in

the Norwegian North Sea by SAGA Petroleum A.S., now part of Equinor (Brackenho� et al.,

2019), consists of P-wave recordings. For this �eld data set, as illustrated in Davydenko and

Verschuur (2018), the following pre-processing steps were carried out: the source wavelet was

removed, near o�sets were recovered, free-surface multiples were eliminated, the direct wave

was muted, and a
√
t scaling was applied to approximate 2D geometric spreading. To create

a split-spread geometry, we selected 200 shots and 199 receivers from the pre-processed data

set, positioned on the surface at intervals such that there is a source at 0m, a receiver at

25m, a source at 50m, a receiver at 75m and so on. The data were recorded with a sampling

interval of 4ms for a total recording time of 5.588 s. Figure 3.10 shows the migration velocity

model, which corresponds to a resampled version of the released model. It covers a depth

of 5000m and a length of 9950m, with grid dimensions of 401 × 399 and grid intervals of

12.5m and 25m in the vertical and horizontal directions, respectively.

The imaging sections produced by the one-way migration methods are shown in Figure

3.11. The results demonstrate that our proposed migration algorithm produces more con-

tinuous events compared to the PSPI and SS methods, particularly for the image events

highlighted by the red arrows and enclosed within the red rectangles in Figure 3.11c. Ad-

ditionally, because our method accounts for lateral variations in the velocity model, it is

reasonable to believe that the positioning of the re�ectors using our method is more ac-

curate than that obtained with conventional one-way methods. This enhanced clarity is

advantageous for seismic interpretation of the target stratum. The improved imaging results

can be attributed to the broader angle correction o�ered by our proposed method, despite
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the presence of some low amplitude artifacts.

Discussion

The initial design of one-way propagators was aimed at achieving an e�cient migration

process using speci�c approximation theories. In contrast, the objective of our proposed

method is to accurately image complex models. Our approach does not rely on assumptions

about lateral velocity variations, facilitating the recovery of steep re�ectors and improving

the continuity of certain layers, as demonstrated in our examples. The proposed one-way

scheme allows for the complete construction of the depth propagator solely through matrix

multiplication, a key feature that simpli�es implementation. Each one-way method has its

limitations and associated costs. Conventional one-way wave equation migration methods

are highly e�cient but struggle with complex models. Conversely, our proposed method

excels at imaging intricate media and structures, although it is less computationally e�-

cient. Therefore, research will need to focus on developing more e�cient algorithms and

implementations for our one-way migration in three-dimensional cases.

From a computational implementation perspective, computation performance can be

signi�cantly enhanced by leveraging techniques such as GPU acceleration (You et al., 2019)

and linear algebra libraries optimized for these architectures. It is important to note that

in the construction of the one-way propagator, only real matrices are required, which is

evident for both L and its negative eigenvalue �ltering. However, during the extrapolator

construction step, only a component (real or imaginary) of the complex operator is updated

at each iteration. Thus, the computation can be performed using only real matrices, with

the complex operator being assembled only at the �nal stage. Based on our experience,

this approach reduces the computation time for constructing the propagator described in

equation 3.9 by half compared to the time required when using complex matrices.

On the other hand, to enhance the e�ciency of the proposed one-way migration scheme,

advanced mathematical tools, including the proposed JA expansion for computing the expo-

nential operator, can be employed. Our numerical tests have shown that the JA expansion

is particularly e�ective in calculating the exponential operator with high precision and us-

ing fewer terms compared to the TS approximation. Additionally, techniques such as the

hierarchically semi-separable randomized (HSS) method (Miao et al., 2014) can be utilized

to improve the computational performance of the spectral projector calculation. These per-

formance optimizations remain open research topics and will be further explored in future

studies.
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Conclusion

Conventional one-way migration methods face challenges in maintaining stability dur-

ing wave�eld propagation and accurately imaging at large angles. These drawbacks are

associated with the methodologies used in constructing the wavenumber operator and the

approximations used to compute the exponential extrapolator. In this study, we employed

the Newton-Schulz algorithm along with a stable iterative scheme to compute the square

root of the Helmholtz operator, thereby excluding evanescent energy. By attenuating the

non-positive spectrum components of the Helmholtz operator and accurately determining

its square root within a gradient velocity model with signi�cant variation, we demonstrated

that the matrix multiplication method yields a correct matrix square root. This provides a

robust foundation for the study of one-way propagators.

Furthermore, we introduced a novel migration scheme where the exponential operator

is computed using the Jacobi-Anger expansion. The application of our proposed algorithm

across various scenarios, including an application on a �eld data set, demonstrates that

our one-way migration scheme maintains stability even within complex velocity models.

The results indicate that the proposed method yields images with superior accuracy and

quality compared to conventional one-way migration methods. Additionally, our scheme

can simulate wave�elds at larger angles using fewer terms than the Taylor series expansion

approach, enhancing computational e�ciency.
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Figure 3.1: (a) Approximations for the one-way extrapolator using Taylor series
(TS) and Jacobi-Anger (JA) expansion, where ϕ (≡ kz∆z) corresponds
to the phase. The functions f(ϕ) and g(ϕ) correspond to the approxima-
tion using the seventh-order and ninth-order TS expansion, respectively,
while h(ϕ) represents the extrapolator calculated using the seventh-
order JA expansion. The black line is the exact value. The subscripts
R and I denote the real and imaginary parts of the approximations,
respectively. (b) The absolute error between each approximation and
the exact value. Note that the color convention for each approximation
is consistent across both panels.
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Figure 3.3: Matrix structure of (a) the �ltered Helmholtz operator L̄ using the
spectral projector scheme with 30 iterations, and (b) the square-root
operator kz computed using the coupled Schulz iteration scheme with
20 iterations. For visualization purposes, the matrices are displayed
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Figure 3.4: (a) Convergence trend for the Newton-Schulz method. As the number of
iterations grows, the positive part of the spectrum remains untouched,
while the non-positive part converges to zero. (b) Comparison between
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Figure 3.5: The response is generated by the conventional one-way (a) PSPI and (b)
SS methods. (c) Impulse response using a one-way propagator based on
matrix multiplication with (c) a ninth-order TS approximation and (d)
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Figure 3.6: (a) The SEG/EAGE velocity model and its corresponding (b) migration
velocity model. (c) The zero-o�set section is used as input for the one-
way migration methods.
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Figure 3.7: Post-stack migration sections for the SEG/EAGE salt model generated
using the conventional one-way (a) PSPI, (b) SS, and (c) our proposed
algorithm.
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Figure 3.8: (a) The Marmousi velocity model and its corresponding (b) migration
velocity model.
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Figure 3.9: Migration sections for the Marmousi model generated using di�erent
one-way methods: (a) PSPI, (b) SS, and (c) our proposed algorithm.
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Figure 3.10: The velocity model provided by Equinor for migration.
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Figure 3.11: Migration sections for the real seismic data using di�erent one-way
methods: (a) PSPI, (b) SS, and (c) our proposed algorithm.
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4
Conclusões

A RTM é capaz de imagear re�etores com mergulhos acentuados e modelos de veloci-

dade complexos. No entanto, isso também faz com que a condição de imagem convencional

baseada na correlação cruzada produza ruídos de baixa frequência e alta amplitude que

contaminam a imagem migrada. A decomposição dos campos de ondas extrapolados e a

aplicação da condição de imagem causal removem com sucesso esses artefatos das imagens.

Esse tipo de condição de imagem requer um algoritmo de separação do campo de ondas nas

suas componentes ascendente e descendente, que pode ser alcançado usando a extrapolação

do campo de ondas analítica, é muito mais econômico do que métodos de separação via

transformadas de Fourier no tempo, uma vez que estes últimos requerem o armazenamento

do campo de ondas em todos os passos de tempo. No capítulo 1 desta tese apresentamos uma

abordagem e�ciente de modelagem direta para calcular o campo de ondas analítico com base

no método de expansão rápida de maneira estável e sem a presença de dispersão numérica.

No método proposto, o campo de ondas da fonte é extrapolado no tempo e, para cada passo

de tempo, podemos calcular a derivada temporal de primeira ordem e, em seguida, a trans-

formada de Hilbert do campo de ondas. Com base no campo de ondas analítico, geramos

os componentes ascendentes e descendentes em simulações acústicas 2D e 3D. Testamos o

esquema proposto em modelos com diferentes complexidades e demonstramos que podemos

calcular o campo de ondas analítico usando apenas uma única propagação, com a mesma

qualidade do procedimento comum que requer duas propagações. Esses testes numéricos

também mostram que o método é e�ciente, evitando o requisito de armazenamento do campo

de pressão, e aumentando o custo da modelagem direta em apenas 20.2%. Usando nosso

método para calcular o campo de ondas analítico e separar explicitamente o campo de on-

das em suas componentes unidirecionais, foi possível empregar a condição de imagem causal
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na RTM a um custo computacional apenas um pouco superior ao da condição de imagem

convencional por correlação cruzada. Aplicamos a condição de imagem causal em diferentes

modelos de velocidade e veri�camos que o imageamento RTM com a condição de imagem

causal pode remover efetivamente o ruído de baixa frequência indesejado produzido pela

condição de imagem convencional. O esquema numérico proposto para a decomposição do

campo de ondas melhora signi�cativamente a e�ciência da aplicação da condição de imagem

causal e aumenta o custo computacional em aproximadamente 27% quando comparado com

a RTM usando a correlação cruzada como princípio de imageamento.

No segundo capítulo desta tese, propomos um esquema e�ciente para implementar a

técnica FLSRTM utilizando funções de Green de baixo posto. Enquanto o FLSRTM com

funções de Green armazenadas integralmente enfrenta limitações de memória para conjuntos

de dados ou modelos em larga escala, nossa abordagem reduz esse desa�o. Especi�camente,

decompomos a função de Green associada à frequência dominante da fonte sísmica em ma-

trizes retangulares e unitárias utilizando algoritmos SVD convencionais e estocásticos. O

posto ótimo, determinado por um critério baseado na distribuição acumulada de valores

singulares normalizados, garante um armazenamento e�ciente de memória. Além disso, ex-

pandimos nossa investigação incorporando algoritmos SVD aleatório e comprimido. Esses

avanços reduzem signi�cativamente o tempo computacional para a construção de funções

de Green de baixo posto. Ao utilizar os algoritmos rSVD e cSVD, conseguimos reduções

substanciais nos requisitos de memória sem comprometer a e�ciência computacional. Nossos

experimentos numéricos, realizados em um modelo estrati�cado e em um modelo modi�cado

Marmousi-2, demonstram que as funções de Green reconstruídas exibem alta precisão us-

ando matrizes de posto reduzido. Estudos comparativos com FLSRTM utilizando funções de

Green armazenadas integralmente validam a precisão do nosso esquema FLSRTM proposto.

Notavelmente, o método cSVD apresentou consistentemente um desempenho superior em

termos de e�ciência computacional, tornando-se a escolha preferencial para a execução do

esquema FLSRTM. Em geral, o esquema FLSRTM com funções de Green de baixo posto via

rSVD e cSVD representa uma abordagem computacionalmente e�ciente para gerar imagens

de migração precisas.

No último capítulo desta tese, abordamos os desa�os enfrentados pelos métodos con-

vencionais de migração WEM em manter a estabilidade durante a propagação do campo de

ondas e em realizar um imageamento preciso em meios com fortes contrastes de velocidade

e re�etores com mergulhos acentuados. Esses problemas estão associados às metodologias

usadas na construção do operador de número de onda e às aproximações empregadas para

calcular o extrapolador exponencial. No esquema de migração WEM proposto, utilizamos o

algoritmo Newton-Schulz juntamente com um esquema iterativo estável para calcular a raiz
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quadrada do operador de Helmholtz, excluindo, assim, a energia evanescente. Ao atenuar

os componentes do espectro negativo do operador de Helmholtz e determinar com precisão

sua raiz quadrada em um modelo de velocidade em gradiente com variações signi�cativas,

demonstramos que os métodos selecionados computam de forma correta a raiz quadrada do

operado de Helmholtz �ltrado, o qual fornece uma base robusta para o estudo dos propa-

gadores unidirecionais. Além disso, introduzimos uma nova aproximação para o operador

exponencial, a qual esta baseada na expansão de Jacobi-Anger. A aplicação do nosso algo-

ritmo proposto em diversos cenários, incluindo um conjunto de dados de campo, demonstra

que nosso esquema de migração WEM mantém a estabilidade mesmo em modelos de veloci-

dade complexos. Os resultados indicam que o método proposto gera imagens com precisão

e qualidade superiores em comparação com métodos convencionais de migração WEM. Adi-

cionalmente, nosso esquema pode simular campos de ondas utilizando menos termos do que

a abordagem da expansão em série de Taylor, aprimorando a e�ciência computacional.

Por �m, sugerimos as seguintes extensões a este trabalho: aplicar a construção e�ciente

do campo de ondas analítico a equações de ondas mais complexas; estender a abordagem

FLSRTM proposta para o caso 3D, onde a redução de memória e tempo de cômputo pode

ser ainda mais pronunciada; implementar esquemas de inversão mais robustos para permitir

uma convergência mais rápida da função objetivo de�nida no esquema FLSRTM; e explorar o

uso de diferentes arquiteturas computacionais, como GPU e FPGA, para acelerar a aplicação

dos algoritmos empregados no esquema de migração WEM proposto.
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