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Resumo

Esta tese aborda o desenvolvimento de técnicas relacionadas & migracao sismica, com o
objetivo de superar limitacoes e desafios presentes em metodologias tradicionais. Nos trés
capitulos que compoem este trabalho, sao apresentadas solugoes que aprimoram a eficiéncia
computacional, a precisao na formagao de imagens sismicas e a capacidade de lidar com
modelos complexos de subsuperficie. No capitulo 1, abordamos a separacao do campo de
ondas em componentes ascendentes e descendentes, uma etapa crucial no processamento
de dados multicomponente, na propagacao de campos de ondas e no imageamento sismico.
Propomos um método alternativo para calcular o campo de ondas analitico utilizando a
equacao parcial de primeira ordem no tempo e resolvendo a equacao de onda uma tnica
vez. Essa abordagem permite a separacao dos campos de ondas de forma explicita a cada
passo de tempo, sendo mais eficiente em termos computacionais e viabilizando a aplicacao
da condigdo de imagem causal na migragao reversa no tempo (RTM). Resultados em mode-
los sintéticos mostram que o método proposto possibilita uma decomposicao semelhante a
obtida pelo método convencional, que requer duas propagacoes, com potencial aplicacao em
casos 3D. Além disso, o método é eficaz na remocao do ruido de baixa frequéncia presente
nas imagens RT'M que utilizam a condigao de imagem por correlagao cruzada. No capitulo 2,
investigamos a migracao reversa no tempo em minimos quadrados no dominio da frequéncia
(FLSRTM), que é capaz de produzir modelos de refletividade de alta resolugao. No entanto,
o armazenamento das funcoes de Green necessérias para o calculo do gradiente e do campo
espalhado via modelagem Born pode ser inviavel devido ao tamanho dessas fungoes. Propo-
mos um esquema FLSRTM utilizando funcoes de Green de baixo posto, obtidas por meio de
algoritmos de decomposi¢ao de valores singulares randomico (rSVD) e comprimido (¢SVD).
Esses algoritmos permitem o armazenamento eficiente das fungoes de Green em memoria,
utilizando pouco espaco e reduzindo o tempo computacional. Avaliacoes realizadas em mo-
delos sintéticos demonstram que o esquema proposto gera secoes migradas idénticas com
aquelas geradas pelo esquema FLSRTM usando as fungoes de Green originais, utilizando
menos memoria e tempo computacional. No capitulo 3, abordamos as limitacoes dos opera-

dores convencionais de migracao em profundidade por continuacao descendente do campo de
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ondas, tais como a geracao indesejada de ondas evanescentes, o imageamento em meios com
fortes contrastes de velocidade e refletores com mergulhos acentuados, além da estabilidade
do propagador unidirecional. Propomos um algoritmo de migracao em profundidade baseado
em uma equagao de onda unidirecional que é, ao mesmo tempo, estavel e eficiente. Para isso,
utilizamos o projetor espectral para suprimir modos evanescentes do operador de Helmholtz
e aplicamos o esquema iterativo de Schulz acoplado para calcular a raiz quadrada desse
operador filtrado. Finalmente, introduzimos a expansao de Jacobi-Anger para aproximar o
operador exponencial de matriz, permitindo a construcao do propagador de forma estavel.
Testes de resposta ao impulso, assim como a aplicacao em dados de campo, demonstram que
nosso algoritmo é mais preciso e eficaz para imagens em meios com fortes variagoes laterais

de velocidade, superando a qualidade das imagens obtidas por métodos tradicionais.



Abstract

This thesis addresses the development of techniques related to seismic migration, aiming
overcome the limitations and challenges present in traditional methodologies. The three
chapters of this work present solutions that enhance computational efficiency, accuracy in
seismic imaging, and the ability to handle complex subsurface models. In chapter 1, we focus
on the separation of the wavefield into upgoing and downgoing components, a crucial step in
the processing of multicomponent data, wavefield propagation, and seismic imaging. We pro-
pose an alternative method for computing the analytical wavefield using the first-order partial
equation in time, solving the wave equation only once. This approach allows for the explicit
separation of wavefields at each time step, making it more computationally efficient and
enabling the application of the causal imaging condition in reverse time migration (RTM).
Results from synthetic models indicate that the proposed method achieves a decomposition
similar to that obtained by the conventional method, which requires two propagations, with
potential applications in 3D cases. Moreover, the method effectively removes low-frequency
noise present in RTM images that use the cross-correlation imaging condition. In chapter
2, we investigate frequency-domain least-squares RTM (FLSRTM), which is capable of pro-
ducing high-resolution reflectivity models. However, storing the Green’s functions needed
for gradient computation and the scattered wavefield via Born modeling may be unfeasible
due to their size. We propose a FLSRTM scheme using low-rank Green’s functions ob-
tained through randomized (rSVD) and compressed (¢SVD) singular value decomposition
algorithms. These algorithms allow for efficient storage of Green’s functions in memory,
using less space and reducing computational time. Evaluations on synthetic models demon-
strate that the proposed scheme generates migrated sections identical to those produced
by the FLSRTM scheme using the original Green’s functions while utilizing less memory
and computational time. In chapter 3, we address the limitations of conventional depth
migration operators based on downward continuation of the acoustic wavefield, such as the
undesired generation of evanescent waves, imaging in media with strong velocity contrasts
and steeply dipping reflectors, and the stability of the one-way propagator. We propose

a depth migration algorithm based on an one-way wave equation that is both stable and
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efficient. To achieve this, we use a spectral projector to suppress evanescent modes from the
Helmholtz operator and apply the coupled Schulz iterative scheme to compute the square
root, of this filtered operator. Finally, we introduce the Jacobi-Anger expansion to approx-
imate the exponential matrix operator, enabling the stable construction of the propagator.
Impulse response tests, as well as field data applications, demonstrate that our algorithm
is more accurate and effective for imaging in media with strong lateral velocity variations,

surpassing the quality of images obtained by conventional methods.
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O problema

RTM utilizando uma construcao eficiente do campo de ondas
analitico

A migracao reversa no tempo (do inglés “ Reverse-Time Migration” - RTM) (Whitmore,
1983; Baysal et al., 1983; McMechan, 1983) tem se tornado um dos métodos de imageamento
sismico mais empregados na industria de exploragao sismica, isso devido a sua capacidade de
gerar imagens da subsuperficie com estruturas arbitrariamente complexas e com mergulho
acentuado na subsuperficie, permitindo obter resultados de alta resolucao. Na RTM con-
vencional, para dados nao empilhados e organizados em familia de fonte comum, a imagem
é construida tomando a correlacao cruzada dos campos de ondas da fonte e do receptor
propagados no sentido direto e reverso no tempo, respectivamente. A secao migrada resul-
tante é sempre contaminada por ruido de baixa frequéncia espacial e alta amplitude, além
de falsos refletores, os quais resultam da correlacao cruzada dos diferentes tipos de ondas
(p. ex., refratadas, mergulhantes, e retroespalhadas) geradas devido aos fortes gradientes ou
interfaces acentuadas no modelo de velocidade empregado na migracao. Nos tltimos anos,
mais atencao tem sido dada para melhorar a condicao de imagem e, portanto, reduzir os
efeitos que contaminam o modelo de refletividade obtido pela técnica RTM. Fei et al. (2015)
fizeram uma revisao comparativa dos métodos propostos na literatura para o caso acustico,
e os agruparam em trés categorias: antes, depois ou durante a aplicacao da condicao de

imagem.

Fletcher et al. (2006) sugeriram um procedimento para remover as reflexdes indesejaveis
durante a propagacao do campo de ondas. Neste procedimento, a ideia principal é aplicar um
termo de amortecimento direcional & equacao de onda em areas do modelo de velocidade onde
ocorrem as reflexoes indesejadas, derivando desta forma a equacao de onda nao-reflexiva. O
uso dessa abordagem torna-se inconveniente quando é aplicada em um modelo com interfaces

muito complicadas, isso devido & necessidade do conhecimento adicional da dire¢cao na qual

15
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a energia estd se propagando. Usando uma ideia similar, Yoon e Marfurt (2006) usaram o
fato de que eventos de reflexdo (angulos de abertura curtos) e artefatos (afastamento fonte-
receptor distante) possuem diferentes faixas de angulo de abertura, portanto as diregoes de
propagacao de onda podem ser usadas para eliminar artefatos na secao migrada. Desta
forma, antes de aplicar a condicao de imagem, o angulo entre as ondas incidente e refletida
é limitado através do célculo do vetor de Poynting. O método proposto por Yoon e Marfurt
(2006) funciona bem para modelos simples, mas requer um custo de armazenamento adicional
e nao produz resultados satisfatorios em subsuperficies complexas (Guitton et al., 2007).
Uma abordagem pratica na qual os artefatos sao filtrados apds a geracao da imagem migrada
é o filtro Laplaciano (Youn e Zhou, 2001; Zhang e Sun, 2009), que ¢ facil de aplicar e mostra
boa atenuagao do ruido de baixa frequéncia espacial, mas pode filtrar também o sinal de
interesse (Guitton et al., 2007).

Outra forma de mitigar o problema dos artefatos presentes na imagem RTM ¢é modifi-
cando a condigdo de imagem. Nesse sentido, Brandsberg-Dahl et al. (2013) e Rocha et al.
(2016) apresentaram um esquema de imageamento baseado na teoria do espalhamento in-
verso generalizado (Stolk et al., 2009). Nessa abordagem, os artefatos causados pela energia
retroespalhada sao atenuados usando a combinacao de duas condicoes de imagem separadas:
i) o produto das derivadas temporais dos campos de ondas da fonte e do receptor, e i) o pro-
duto dos gradientes espaciais dos campos de ondas da fonte e do receptor. Entao, uma soma
ponderada dessas imagens é calculada para gerar a secao migrada final. Como uma aplica-
¢ao da condigdo de imagem de espalhamento inverso, Pestana et al. (2014) propuseram um
esquema onde o componente descendente do campo de onda da fonte - obtido pela aplicacao
do vetor de Poynting - é usado na aplicacao do mencionado processo de imageamento. Mais
recentemente, com base no conceito da norma energética, Rocha et al. (2016) desenvolveram
uma condicao de imagem flexivel que nao apenas atenua os artefatos na RTM, mas também
atenua qualquer angulo de reflexao selecionado. A condicao da norma energética, proposta
tanto para o caso actistico, como para meios com anisotropia, além de ser similar a condicao
de imagem de espalhamento inverso, também esté relacionada ao filtro Laplaciano, conforme
demonstrado em Rocha et al. (2016). Em geral, as condi¢oes de imagem baseadas na teoria
introduzida por Stolk et al. (2009), produzem imagens de qualidade muito superior quando

comparadas com aquelas obtidas mediante a correlacao convencional.

Liu et al. (2011) propuseram uma condi¢do de imagem baseada na decomposicao do
campo de ondas em componentes unidirecionais, a qual também pertence ao grupo de mé-
todos que modificam a correlagao cruzada padrao na RTM. Nessa condicao de imagem, é
permitida apenas a correlacao dos componentes do campo de ondas que se propagam em

dire¢oes opostas. O método proposto por Liu et al. (2011) é uma técnica de separagao impli-
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cita, que pode remover com sucesso muitos tipos de artefatos, enquanto preserva a amplitude
da imagem, sem a necessidade de aplicar um filtro Laplaciano ap6s a condicao de imagem.
No entanto, uma decomposi¢ao incompleta do campo de ondas pode dar origem a artefatos
na se¢ao migrada, como mostrado por Fei et al. (2014), Shen e Albertin (2015) e Wang et al.
(2016b). Desta maneira, dado que a abordagem proposta por Liu et al. (2011) baseia-se
numa separacao implicita, os campos de ondas ascendentes e descendentes nao estao disponi-
veis e suas aplicacoes sao limitadas. A fim de obter os componentes unidirecionais, o campo
de ondas é geralmente levado ao dominio de Fourier (w — k), e entao define-se a direcao de
propagacao levando em conta o sinal da frequéncia e do ntimero de onda (Hu e McMechan,
1987; Liu et al., 2011). Dessa forma, observa-se que o método convencional de decomposicao
do campo de ondas no dominio do tempo precisa armazenar o campo de ondas e realizar
uma transformada de Fourier ao longo do eixo do tempo. Esse processo aumenta o custo de
entrada/saida (I/O), dado que o eixo temporal corresponde a dimensao com maior nimero
de amostras do campo de ondas armazenado, e a transformada de Fourier opera de maneira

mais eficiente nos dados que sao armazenados contiguamente.

Por outro lado, se podemos definir um campo de ondas no dominio do tempo cujo
espectro seja apenas positivo ou negativo (Shen e Albertin, 2015; Wang et al., 2016a; Wang
et al., 2017), a dire¢do da propagacdo do campo de pressao estara apenas determinada pelo
sinal do numero de onda espacial, e entao, o alto custo de I/O sera evitado. Este sinal é o
sinal analitico que é amplamente utilizado no processamento de sinais. O sinal analitico é
um sinal complexo cuja parte real é o proprio sinal e sua parte complexa é a transformada de
Hilbert da parte real. Para a técnica RTM, o conceito do sinal analitico ¢ estendido e entao
chamado de campo de ondas analitico (Zhang et al., 2007; Sun et al., 2016). Como o campo
de ondas analitico contém apenas frequéncias positivas, os componentes de onda ascendente
e descendente podem ser convenientemente obtidos pela aplicacao de um filtro de Fourier
1D ao longo da dire¢ao da profundidade. Comparado com o método de Liu et al. (2011) da
construgao de imagens RTM, uma grande vantagem do uso do campo de ondas analitico é que
os componentes ascendente e descendente do campo de pressao sao completamente separados
e estao disponiveis de forma explicita para diferentes aplicacoes, além de eliminar o requisito
de armazenamento computacional, bem como a necessidade de transformadas rapidas de
Fourier (do inglés “Fast Fourier Transform” - FFT) no eixo do tempo. Recentemente,
Costa et al. (2018) apresentaram uma condi¢do de imagem baseada na coeréncia da fase
entre os campos de ondas propagados, a qual emprega os atributos instantaneos do campo
de ondas analitico (envelope e a fase instantanea). Segundo os resultados de Costa et al.
(2018), a condigao de imagem aplicada pode ajudar a delinear caracteristicas estratigraficas

e estruturais que sao mais dificeis de se ver em imagens convencionais, apresentando dessa
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forma outra importante aplicacao do campo de ondas analitico.

Nos tltimos anos, vérios trabalhos sobre a decomposicao do campo de ondas usando
o campo de ondas analitico foram apresentados. Para tal fim, na simulacao da evolucao
temporal do campo de pressao e avaliacao do operador Laplaciano, o método convencional
de diferengas finitas foi adotado por Shen e Albertin (2015), Wang et al. (2016b), Wang
et al. (2016a), Zheng et al. (2018) e Costa et al. (2018). Como descrito no trabalho de
Shen e Albertin (2015), a parte imaginaria do campo de ondas analitico é construida atra-
vés da solucao da equacao da onda tendo como termo fonte a transformada de Hilbert do
proprio termo fonte. O par de campos de ondas - aquele propagado com o termo fonte e
o outro gerado pela sua transformada de Hilbert - constituem o campo de ondas analitico.
Com base na construcao do campo de ondas analitico, os componentes unidirecionais podem
ser encontrados de forma explicita, entao Shen e Albertin (2015) propuseram uma condi-
cao de imagem, denominada imagem causal, que correlaciona os componentes descendente
e ascendente da fonte e do receptor, respectivamente. Este método foi testado e provou ser
bem-sucedido na remoc¢ao de muitos tipos de artefatos, os quais sao comuns nas secoes re-
sultantes da aplicacao da condi¢ao de imagem de correlacao cruzada proposta por Claerbout
(1971).

Métodos para simular a propagagao do campo de ondas analitico, que apenas precisam do
estado presente para extrapolar o campo ao passo seguinte no tempo, tém sido desenvolvidos
a fim de evitar a dispersao numeérica, problema gerado no esquema de diferencas finitas
quando o intervalo de discretizacao espacial ou temporal é grande; Du et al. (2014) revisaram
esses métodos e os denominaram métodos de extrapolacdo integral recursiva no tempo (do
inglés “ Recursive Integral Time-Eztrapolation Methods” - RITE). Em Revelo et al. (2016) e
Wang e Liu (2017), a implementacao de dois diferentes esquemas de extrapolagao do campo
de ondas analitico é apresentada, bem como a sua aplicacao na construcao dos componentes
unidirecionais do campo de ondas; para a técnica RTM, os campos de ondas da fonte e do
receptor sao extrapolados no tempo, seguido da etapa da separacao em forma explicita nos
seus componentes ascendente e descendente, isto para cada intervalo de tempo e aplicando
o esquema de separacao proposto por Shen e Albertin (2015). A distingao clara entre o
método de Revelo et al. (2016) e o proposto por Shen e Albertin (2015) é que no primeiro
usa-se uma solucao de equacao de onda de primeira ordem com um termo fonte analitico,
enquanto em Shen e Albertin (2015) foi necessario resolver a equacao de onda duas vezes:
uma vez para a fonte e outra para a transformada de Hilbert do proprio termo fonte. Em
relagdo ao trabalho de Liu et al. (2011), a principal diferenca é que o método proposto por
Shen e Albertin (2015) pode fornecer uma separacao explicita do campo de ondas, enquanto

o esquema de Liu et al. (2011) resulta em uma separacao implicita.
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Levando em conta o desafio computacional que pode apresentar a construcao do campo
de ondas analitico, na primeira parte de esta tese, ¢ proposto um esquema que tem como
base 0 método de expansao rapida (do inglés “Rapid Fzpansion Method” - REM) (Tal-Ezer
et al., 1987; Pestana e Stoffa, 2010), no qual o campo de ondas analitico é calculado apenas
resolvendo a equacao de onda uma vez. O REM permite propagar ondas livres do efeito de
dispersao numérica e é capaz de extrapolar o campo de pressao usando intervalos de tempo
proximos ao limite de Nyquist. Com o REM também é possivel obter a derivada de primeira
ordem no tempo do campo de ondas ao mesmo tempo que o préprio campo é extrapolado
e, assim, calcular a parte imaginéaria do campo de ondas analitico como proposto por Zhang
e Zhang (2009). Depois disso, podemos separar o campo de ondas em seus componentes
ascendentes e descendentes. Desta forma, no método proposto, a equacgao de onda é resolvida
apenas uma vez, melhorando a eficiéncia computacional do procedimento de separacao do
campo de ondas seguido pela aplicagao da condicao de imagem causal para a RTM. Os bons
resultados obtidos com a abordagem proposta, em termos de reducao do tempo de execugao,
transformam a técnica em uma interessante alternativa, especialmente quando se trata com

modelos de velocidades complexos e grandes volumes de dados.

LSRTM no dominio da frequéncia com uso eficiente de memoria por
meio de métodos SVD estocasticos

A geracao de se¢oes migradas é uma etapa crucial no processamento sismico, responsavel
por construir imagens em profundidade do subsolo a partir de dados registrados no tempo.
Ela corrige a profundidade e a inclinagao dos refletores e suprime as difragoes (Claerbout,
1992; Andrade et al., 2017). Entre as técnicas de migracao sismica, a RTM, que envolve
a retropropagagao dos dados de campo utilizando a equacado da onda bidirecional (Ren
et al., 2013), tem se mostrado a técnica de imageamento sismico mais precisa. Isso se
deve & sua capacidade de imagear estruturas arbitrariamente complexas e com mergulhos
acentuados no subsolo, desde que um modelo de velocidade preciso esteja disponivel. Com
o aumento das demandas na exploragao de 6leo e gis, ha uma necessidade crescente de
que o imageamento sismico forneca informagoes mais abrangentes além da simples estrutura
do subsolo, como a refletividade. Apesar dos resultados satisfatérios obtidos pela RTM, o
operador de migracao sismica possui uma relacao adjunta com o operador de modelagem
Born (Liu et al., 2022). Portanto, um aspecto importante que afeta a imagem da migragao
sismica é a incapacidade do operador adjunto de aproximar com precisao o operador inverso
(Claerbout, 1992; Symes, 2009). Consequentemente, a imagem resultante pode sofrer de
efeitos de desfoque, com amplitudes incorretas e artefatos de migragao em condigoes de

aquisi¢ao imperfeitas, como fonte sismica com largura de banda limitada, abertura de registro
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finita, geometria de amostragem irregular ou frequéncias ausentes (Nemeth et al., 1999; Etgen
et al., 2009; Liu et al., 2022; Kim et al., 2022).

Para superar esse problema, Tarantola (1984) introduziu um método eficaz para melhorar
a qualidade da imagem de migracao e gerar um resultado de imageamento com preservagao
de amplitude. Essa abordagem, conhecida como migra¢ido por minimos quadrados (do in-
glés “Least Square Migration” - LSM) (Bamberger et al., 1982), é um esquema de inversao
linearizada baseado na minimizacao de uma funcao de minimos quadrados. Ela aproxima
o operador inverso minimizando iterativamente a funcao objetivo definida, utilizando um
método de otimizagao baseado no gradiente (Nemeth et al., 1999; Dutta e Schuster, 2014).
Em particular, quando o esquema LSM é aplicado utilizando a equacao completa da onda, é
denominado de migracao reversa no tempo por minimos quadrados (do inglés “ Least Square
Reverese Time Migration” - LSRTM) (Schuster, 1993; Nemeth et al., 1999; Dong et al.,
2012; Yao et al., 2022). Esse método, baseado na aproximacao de Born, tem mostrado ser
mais eficiente na migracdo de estruturas geologicas complexas (Wong et al., 2012). O es-
quema LSRTM iterativo tipico consiste em trés componentes principais: um operador de
modelagem para simular dados sismicos, um operador de migracao para calcular o gradiente
e um esquema de inversao para minimizar a funcao objetivo. Considerando que o gradiente
da fungao erro calculado no LSRTM no dominio do tempo (TLSRTM) deve ser computado
de forma independente para cada sismograma do dado sismico (Herrmann e Li, 2012; Dai
et al., 2012; Zhang et al., 2015), o custo computacional do TLSRTM pode aumentar dras-
ticamente proporcionalmente ao ntimero de tiros. Avancos significativos foram alcancados
recentemente visando melhorar a qualidade do imageamento sismico, a0 mesmo tempo em
que se reduz o custo computacional do TLSRTM (Herrmann e Li, 2012; Dai e Schuster,
2013; Xue et al., 2016; Yao e Jakubowicz, 2016; Liu e Peter, 2018).

O esquema LSRTM no dominio da frequéncia (FLSRTM) pode ser empregado para
reduzir o custo computacional na aplicacao do LSRTM em dados sismicos com um nimero
consideravel de tiros, oferecendo vérias vantagens sobre a versao no dominio do tempo.
Notavelmente, apenas alguns componentes de frequéncia validos dos dados sao necessarios
para gerar a se¢ao migrada (Kim et al., 2022). Além disso, se as fungdes de Green puderem
ser armazenadas na memoéria do computador, o gradiente e os dados modelados via operador
de Born podem ser eficientemente calculados sem a necessidade de extrapolagoes adicionais
do campo de ondas (Ren et al., 2013). Observamos que, no esquema FLSRTM, o campo de
ondas espalhado e o gradiente da funcao de desajuste sao expressos em funcao das funcgoes
de Green de fundo no dominio da frequéncia. Considerando que o FLSRTM representa
uma inversao linearizada, e nao atualiza o modelo de velocidade, todas as fungoes de Green

de fundo, desde as fontes até os refletores e dos refletores até os receptores, que apenas
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dependem da velocidade de fundo, devem ser calculadas uma vez e armazenadas na memoria
do computador para cada frequéncia. Embora a FLSRTM tenha se mostrado eficiente,
esse esquema pode ser severamente limitado pelos requisitos substanciais de armazenamento
de memoria para salvar as funcoes de Green de fundo, especialmente quando um grande
conjunto de dados e modelo sdo usados (Liu et al., 2022). Para mitigar esse problema,
Ren et al. (2013) implementaram uma versdo do FLSRTM em que as fungdes de Green das
fontes e dos receptores sao armazenadas na memoria durante a primeira iteracao do esquema
de inversao. Embora esse esquema seja limitado pela memoria interna do computador, a
eficiéncia do método é atraente. Como uma abordagem alternativa, Zhao e Sen (2019)
propuseram a codificacao de registros de disparo com ondas planas para reduzir os requisitos

de armazenamento de memoria para salvar as fungoes de Green.

Mais recentemente, Kim et al. (2022) introduziram uma versao rapida e eficiente em
termos de memoéria da FLSRTM, na qual adotaram a decomposicao em valores singulares
(do inglés “Singular Value Decomposition” - SVD) para construir a representagao de baixo
posto das funcoes de Green e reduzir o armazenamento de memoria necessario. Embora o
esquema FLSRTM com funcoes de Green de baixo posto possa produzir resultados de mi-
gragao tao precisos quanto o esquema FLSRTM convencional com menor uso de memoéria, a
geracao dessa representacao de baixo posto via SVD pode ser computacionalmente intensiva,
especialmente ao lidar com grandes conjuntos de dados ou modelos. Alternativamente, algo-
ritmos iterativos, como aqueles baseados nos subespacos de Krylov, podem ser empregados
para aproximar os vetores singulares dominantes de forma mais eficiente (Golub e Van Loan,
1996). Esses algoritmos representam as abordagens mais amplamente utilizadas para calcu-
lar aproximagoes de matrizes de baixo posto, especialmente para grandes matrizes esparsas.
No entanto, nas tultimas duas décadas, algoritmos estocasticos ganharam popularidade. Isso
se deve ao fato de que algoritmos randomizados geralmente apresentam melhor desempenho
na prética e sdo mais robustos em comparagao com os métodos de Krylov (Martinsson, 2019).
A ideia basica desses algoritmos é empregar certa quantidade de aleatoriedade para derivar
uma matriz menor a partir da matriz original de alta dimensao, que captura a informacao
essencial e oferece uma alternativa confidvel e computacionalmente eficiente para obter uma
representacdo SVD de baixo posto (Sarlos, 2006; Gu, 2015; Erichson et al., 2019).

Nesta segunda parte da tese, propomos a implementacao do esquema FLSRTM que
utiliza funcoes de Green de baixo postos geradas via algoritmos SVD aleatorio (do inglés
“randomized SVD” - rSVD) (Halko et al., 2011; Martinsson et al., 2011; Halko, 2012; Tropp
e Webber, 2023) e comprimido (do inglés “compressed SVD” - ¢SVD) (Erichson et al., 2017;
Erichson et al., 2019) para melhorar o desempenho em tempo de execu¢do. O algoritmo apri-

morado aborda os desafios computacionais associados ao esquema FLSRTM convencional.
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O ponto central da solucao reside na proficiéncia dos algoritmos rSVD e ¢cSVD em extrair efi-
cientemente informacoes relevantes das funcoes de Green para construir suas representagoes
de baixo posto. Diferente do algoritmo SVD convencional, as versoes rSVD e ¢cSVD comecam
gerando uma matriz comprimida a partir da matriz original, utilizando uma matriz aleatoéria
Gaussiana e uma decomposicao QR econdémica. O tamanho da matriz comprimida é deter-
minado pelo coeficiente de truncamento, que corresponde ao posto 6timo e é determinado
utilizando um critério especifico (Kim et al., 2022). Liu e Peter (2020) demonstraram que,
se o critério de truncamento for ajustado corretamente, esses algoritmos podem comprimir
significativamente a matriz original, levando a uma redu¢ao no uso de memoria e no tempo
de computagao. Embora o algoritmo rSVD seja matematicamente robusto e ofereca limites
de erro fortes, ha potencial para inovacoes e melhorias, como as introduzidas no algoritmo
cSVD apresentado por Ji e Li (2014). O algoritmo ¢SVD fornece um equilibrio eficaz en-
tre precisao e tempo de computo, sendo particularmente adequado para aproximar grandes
matrizes. Consequentemente, suas vantagens computacionais tornam-se mais significativas
a medida que as dimensoes aumentam. Por meio de experimentos numéricos conduzidos em
modelos sintéticos, comprovamos a eficicia do algoritmo proposto na geragao de imagens
sismicas de alta qualidade. Além disso, por meio de uma analise comparativa dos resultados
de migracao e dos custos computacionais em exemplos numéricos, evidenciamos a eficiéncia
do esquema FLSRTM proposto em termos de uso de memoria e tempo de computacao, uti-
lizando a representacao de baixo posto das funcoes de Green por meio de algoritmos SVD

estocasticos.

Migracao sismica através da solucao da equacao de onda
unidirecional baseada na expansao de Jacobi-Anger

A equacdo da onda unidirecional, derivada de uma solucao aproximada da equacao de
onda completa, é de fundamental importancia na extrapolacao em profundidade do campo
de ondas usado dentro do esquema da migracao através da equagdo de onda (do inglés
“ Wave-equation Migration” - WEM) (Claerbout, 1971). Nesta abordagem, a equagao de
onda completa ¢ decomposta ao longo da direcao dominante de propagacao, reduzindo a
dimensionalidade computacional. Como resultado, o método WEM apresenta uma vanta-
gem significativa em problemas de grande escala. Diferentemente da técnica RTM, o WEM
oferece precisao de fases e amplitudes apenas dentro de angulos de propagacao limitados,
especialmente em meios com fortes contrastes de velocidade e refletores com mergulhos acen-
tuados. Embora a RTM seja amplamente estudada na industria e na academia, ela apresenta
desvantagens, como altos custos de memoria e artefatos de baixa frequéncia, que podem ser

atenuadas pelo algoritmo WEM. Os propagadores de ondas unidimensionais, utilizados em
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métodos de migracao que se baseiam na separacao da equacao de onda completa, oferecem
uma solu¢ao cinematica confidvel para ondas acusticas. A fatoracao da equacao de onda em
operadores ascendentes e descendentes introduz o operador de raiz quadrada (ou namero de

onda vertical), que é caracterizado por sua nao-localidade.

Embora diversos métodos tenham sido desenvolvidos para aproximar o operador de raiz
quadrada por um operador local, a precisao dessas aproximagoes ainda é limitada. Os algo-
ritmos WEM convencionais, inicialmente desenvolvidos para dados 2D poés-empilhamento,
foram amplamente aprimorados para aplicacdo em migracao pré-empilhamento. Original-
mente projetados para meios homogéneos, esses métodos foram ajustados para considerar as
variagoes laterais no campo de velocidades, incorporando diversas correcoes para melhorar
sua precisao. Destacam-se, nesse contexto, os métodos de migracao Phase shift plus inter-
polation (PSPI) (Gazdag, 1978; Gazdag e Sguazzero, 1984), Split-step (SS) (Stoffa et al.,
1990) e Fourier finite difference (FFD) (Ristow e Riihl, 1994), amplamente utilizados na
indistria do petroleo. Outros trabalhos, na tentativa de contornar os problemas associados
com variagoes significativas no modelo de velocidade, tém se concentrado na expansao direta
do operador de raiz quadrada, sem introduzir aproximacoes no campo de velocidade. Esses
trabalhos utilizam técnicas mateméticas como séries de Taylor e Padé, além de polindmios
de Chebyshev (Gazdag, 1978; Gazdag e Sguazzero, 1984; Stoffa et al., 1990). No entanto,
os erros de truncamento gerados por essas abordagens limitam os angulos de propagagao do
campo de pressao, tornando muito dificil alcancar 90°. Essa limitagao, refletida nos angulos
dos refletores recuperados na secao sismica, representa uma desvantagem significativa do
WEM. Para aproveitar plenamente as vantagens da migragao sismica com base na equagao
de onda unidimensional, ¢ essencial evitar metodologias convencionais que utilizam expres-
soes polinomiais aproximadas para o calculo do operador raiz quadrada. Na literatura, dois
métodos notaveis e bem-sucedidos, que nao recorrem a aproximacoes, foram propostos: o
método de decomposicdo em valores proprios (Grimbergen et al., 1998) e o esquema itera-
tivo de Schulz acoplado (Higham, 1987), baseado na relacio entre a funcao sinal da matriz e
sua raiz quadrada. Considerando que a decomposi¢cao em valores proprios pode ter um alto
custo computacional para modelos de grande escala (You et al., 2018), optamos por utilizar
o esquema de Higham para calcular o nimero de onda vertical em nosso algoritmo WEM

proposto.

Outro problema na implementacao do algoritmo de imageamento WEM é a notoria ins-
tabilidade no propagador de extrapolacao em profundidade, causada pela presenca de com-
ponentes de ondas evanescentes (Grimbergen et al., 1998; Wapenaar e Grimbergen, 1998).
Kosloff e Baysal (1983) propdem suprimir essas ondas evanescentes no dominio do nimero

de onda utilizando a transformada de Fourier e um filtro de corte ideal. No entanto, essa
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abordagem considera um modelo de subsuperficie com variacao vertical de velocidade. Para
um modelo de velocidade com variagao lateral, sugerem empregar um filtro de corte ajus-
tado a velocidade méaxima em um determinado nivel de profundidade, também recorrendo a
transformada de Fourier como ferramenta. Como demonstrado por Thorbecke et al. (2004),
a aplicacao deste filtro de corte pode ser estendida a equacao de onda unidimensional sem
perda de generalidade. Exemplos numéricos mostram que, para a extrapolacao em profundi-
dade com a equacao de onda completa, essa estratégia resulta na remocao de algumas ondas
propagantes juntamente com as ondas evanescentes, levando a uma imagem migrada com
pouca presenca de refletores ingremes (Sandberg e Beylkin, 2009). Como alternativa, um
dos métodos mais promissores é o projetor espectral (Kenney e Laub, 1995), que pode filtrar
as ondas evanescentes sem perder nenhum componente de onda propagante. Para modelos
de velocidade com a presenca apenas de variagao vertical, a combinacao da transformada
de Fourier e do filtro de corte ideal, como proposto por Kosloff e Baysal (1983), constitui
tal projetor. No esquema de imageamento OWEM proposto nesta tese, implementamos um
algoritmo para calcular os projetores espectrais que aproveita sua relagao com a funcgao sinal
de uma matriz, que, por sua vez, utiliza recursoes polinomiais da matriz (Auslander e Tsao,
1992; You et al., 2019).

Um aspecto crucial do esquema de imageamento que propomos ¢é a eliminacao da su-
posicao de que o operador raiz quadrada pode ser tratado como um operador local. Em
consequéncia, o extrapolador em profundidade nao pode mais ser aplicado localmente e
deve ser implementado como um operador derivado da exponencial de uma matriz. Em-
bora muitos pesquisadores tenham se concentrado no calculo do operador de raiz quadrada
e na atenuacao de ondas evanescentes, poucos tém abordado a construcao desse operador
exponencial de uma matriz. You et al. (2019) utilizaram a expansao em série de Taylor
(TS) para aproximar a func¢ao exponencial de uma matriz. No entanto, nesta parte da tese,
propomos o uso da expansido de Jacobi-Anger (JA) como uma alternativa mais eficiente
para esse proposito. A expansao JA representa funcoes oscilatorias de forma mais natu-
ral, tornando-a particularmente adequada para aplicacoes envolvendo propagacao de ondas,
como a extrapolacao de profundidade sismica. Esta expansao converge mais rapidamente
devido as propriedades das funcoes de Bessel, o que diminui o nimero de termos necessarios
para uma aproximagao precisa (Watson, 1944). Além disso, a ortogonalidade das fun¢oes
de Bessel minimiza a interferéncia cruzada entre os termos, aumentando ainda mais a preci-
sdo e a compactacao da representacao (Abramowitz e Stegun, 1972). Consequentemente, a
expansao JA nao sé fornece uma aproximagao mais exata com menos termos, mas também
resulta em uma eficiéncia computacional significativa e precisao em simulagoes numeéricas

(Bowman, 1958). Com base no que foi exposto, e visando superar as limitac¢oes das abor-
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dagens convencionais para a solucao das equacoes de onda unidimensionais, a ultima parte
desta tese pretende integrar o projetor espectral, o esquema iterativo de Schulz acoplado e a
expansao JA na técnica de imageamento WEM. Para validar a eficacia do esquema proposto,
sao computadas respostas ao impulso utilizando tanto a expansao TS quanto a expansao JA,
além dos algoritmos convencionais WEM. Para obter resultados de imagem mais precisos
e detalhados, migracoes pos-empilhamento e pré-empilhamento sao realizadas em modelos
subsuperficiais complexos, empregando tanto métodos convencionais WEM quanto o algo-
ritmo de migracao sismica proposto. Por fim, aplicamos esses métodos de migragao a dados

sismicos reais.

Material e métodos

Para desenvolver a primeira parte deste trabalho (capitulo 1), realizamos uma revisao
bibliografica das principais técnicas voltadas para a melhoria da condicao de imagem, com
o objetivo de contornar os efeitos que contaminam a se¢ao migrada gerada pela RTM. A
condigao de imagem causal proposta por Shen e Albertin (2015), que correlaciona os compo-
nentes descendente e ascendente da fonte e do receptor, respectivamente, mostrou-se eficaz
na remogao de diversos tipos de artefatos. Contudo, essa abordagem requer a construcao do
campo de ondas analitico, realizada por meio de duas propagacoes, o que acarreta um elevado
custo computacional. Esse fator foi identificado como um aspecto essencial a ser investigado
e aprimorado. Nesse contexto, propomos um esquema eficiente para a construcao do campo
de ondas analitico, cuja implementagao demandou um s6lido dominio dos conceitos tedricos
sobre propagacao de ondas, separacao explicita do campo de ondas e a técnica de migragao
RTM.

Na segunda parte desta tese (capitulo 2), conduzimos uma pesquisa bibliografica deta-
lhada sobre a implementacao do esquema LSRTM no dominio da frequéncia. Nesse sentido,
encontramos diversos trabalhos que utilizam diferentes técnicas, destacando-se o método pro-
posto por Kim et al. (2022), que apresenta uma versao do FLSRTM eficiente em termos de
memoria. Embora essa abordagem reduza a quantidade de memoria exigida pelo esquema
de inversao, a técnica adotada para gerar a representacao de baixo posto das funcoes de
Green, utilizando o algoritmo SVD convencional, pode aumentar significativamente o tempo
de calculo, especialmente ao lidar com grandes conjuntos de dados ou modelos. Diante disso,
para tornar a etapa de geracao da representacao de baixo posto das fungoes de Green mais
eficiente, propomos o uso dos algoritmos SVD aleatorio e comprimido. Portanto, o domi-
nio dos conceitos teoricos sobre modelagem Born, migragao sismica, esquemas de inversao

sismica e técnicas SVD foi crucial para o desenvolvimento de nosso esquema FLSRTM com
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uso eficiente de memoria por meio de métodos SVD estocésticos.

Na terceira parte desta tese (capitulo 3), investigamos os operadores de extrapolacdo
em profundidade do campo de ondas utilizados no esquema WEM, destacando as principais
limitagoes das aproximacoes tradicionais: o tratamento de ondas evanescentes, o imagea-
mento de refletores com mergulhos acentuados e a estabilidade do propagador unidirecional.
Para superar esses desafios, propomos um algoritmo de migracao em profundidade que é
robusto e eficiente. Esse algoritmo emprega um projetor espectral para suprimir modos eva-
nescentes, o esquema iterativo de Schulz acoplado para o calculo do operador raiz quadrada,
e a expansao de Jacobi-Anger para uma construcao estavel do propagador de extrapolacao.
A implementagao desse algoritmo exigiu um dominio sélido dos conceitos tedricos dos trés
componentes mencionados, além de um conhecimento aprofundado do esquema de migragao
em profundidade WEM

Com relacao aos aspectos de implementacao computacional, utilizamos a linguagem
Fortran 90 para implementar os algoritmos descritos em cada capitulo, além do protocolo
de comunicagao distribuida (do inglés, "Message Passing Interface- MPI) para realizar a
divisao do trabalho, otimizando assim o tempo total de execucao. Os modelos, as imagens e
os dados sismicos foram plotados com o pacote Seismic Uniz (Stockwell, 1999), o software
de codigo aberto Gnuplot (Williams et al., 2010) e o sistema de composicao tipografica XTEX
(Lamport, 1994)

Produtos

Este trabalho resultou em um artigo cientifico e dois manuscritos, que correspondem aos
capitulos desta tese. A seguir, é apresentada uma breve descricao de cada um deles. Além
disso, sao listados os subprodutos de cada capitulo, totalizando nove resumos expandidos

apresentados em eventos de divulgacao cientifica.

O capitulo 1 compreende o artigo intitulado Up/down acoustic wavefield decom-
position using a single propagation and its application in reverse time migration,
publicado na revista Geophysics (Revelo e Pestana, 2019). Nele, propomos um método alter-
nativo para o célculo do campo de ondas analitico, baseado na equacao diferencial parcial de
primeira ordem no tempo e resolvendo a equacao da onda apenas uma vez. Como demons-
trado por alguns exemplos numéricos, este método melhora o calculo da separacao explicita
do campo de ondas, permite a aplicagao eficiente da condicao de imagem causal em RTM e

produz imagens livres de ruido de baixa frequéncia.

Trabalhos em eventos:



Memorial descritivo 27

e Reverse time migration with causal imaging condition using an improved method to
calculate the analytical wavefield. 15th International Congress of the Brazilian Ge-
ophysical Society, 2017, doi: 10.1190/sbgf2017-257;

e An Improved Method to Calculate the Analytical Wavefield for Causal Imaging Condi-
tion. 79th EAGE Conference & Exhibition, 2017, doi: 10.3997/2214-4609.201701133;

e An improved method to calculate the analytical wavefield for causal imaging condition.
SEG International Exposition & 87th Annual Meeting, 2017, doi: 10.1190/segam2017-
17664808.1;

e De-primary TTI-RTM using the P-pure analytical wavefield. 81st EAGE Conference
& Exhibition, 2019, doi: 10.3997/2214-4609.201900838;

e Reverse time migration as the transpose of forward operator by rapid expansion method
(REM). SEG International Exposition & 89th Annual Meeting, 2019,
doi: 10.1190/segam?2019-3215582.1;

e Combination of the LSMME scheme and causal imaging condition to remove RTM
artifacts. 17th International Congress of the Brazilian Geophysical Society, 2021, doi:
10.22564 /17cisbgf2021.081.

O capitulo 2 refere-se ao manuscrito intitulado Memory-efficient frequency-domain
least-squares RTM using low-rank Green’s functions via stochastic SVD algo-
rithms, no qual abordamos um desafio critico na implementacao da migracao reversa no
dominio da frequéncia por minimos quadrados (FLSRTM): a grande demanda de memoria
para armazenar as funcoes de Green. Embora o FLSRTM tenha potencial para gerar mode-
los de refletividade de alta resolugao, sua aplicacao pratica é limitada pela inviabilidade de
armazenar funcoes de Green no hardware disponivel. Para mitigar esse problema, propomos
uma abordagem inovadora que utiliza funcoes de Green de baixo posto, decompostas por
versoes estocasticas do algoritmo de decomposi¢ao em valores singulares (SVD), tais como os
algoritmos rSVD e ¢SVD. Nosso método permite o armazenamento eficiente dessas fungoes
sem comprometer a eficiéncia computacional, oferecendo uma solucao robusta para melhorar

o desempenho e a viabilidade computacional na aplicacao do esquema FLSRTM.
Trabalhos em eventos:
e Memory-efficient frequency-domain least-squares RTM using low-rank Green’s functi-

ons via randomized SVD. IMAGE24 - International Meeting for Applied Geoscience &
Energy, 2024.
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Por fim, no capitulo 3, apresentamos o manuscrito intitulado One-way wave-equation
migration based on Jacobi-Anger expansion in arbitrarily lateral varying media.
Nele, abordamos os principais desafios da migracao em profundidade usando a equacgao de
onda unidirecional, como o tratamento de ondas evanescentes, o imageamento de estruturas
com angulos pronunciados, e a garantia de estabilidade. Propomos um método estavel e
eficiente que utiliza um projetor espectral para suprimir as ondas evanescentes e o esquema,
acoplado de Schulz para o computo do operador raiz quadrada. Além disso, introduzimos
uma abordagem inovadora para a construcao do operador de extrapolacao usando a expansao
de Jacobi-Anger, o que facilita a implementagao eficiente do algoritmo de migracao. Nossos
resultados, demonstrados por meio de testes de resposta ao impulso, modelos subsuperficiais
complexos e dados de campo, indicam melhorias significativas em precisao e na capacidade

de imagear estruturas complexas em comparacao com métodos tradicionais.

Trabalhos em eventos:

e One-way wave-equation migration for wide-angle and for strong lateral velocity vari-
ation using the Jacobi-Anger expansion. 83rd EAGE Conference & FExhibition, 2022,
doi: 10.3997/2214-4609.202210898;

e One-way wave-equation migration based on the Jacobi-Anger expansion for a medium
with a strong lateral velocity variation. 18th International Congress of the Brazilian
Geophysical Society, 2023.
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Up/Down Acoustic Wavefields
Decomposition Using a Single
Propagation and its Application
in Reverse Time Migration

This chapter has been published as Daniel E. Revelo and Reynam C. Pestana. Up/down
acoustic wavefield decomposition using a single propagation and its application in reverse time
migration. In: Geophysics, 84(4) (July-August 2019), pp. S341-353. Minor modifications

have been applied to maintain consistency within this thesis.

Abstract

The separation of up- and downgoing wavefields is an important technique in the pro-
cessing of multicomponent recorded data, propagating wavefields, and reverse time migration
(RTM). Most of the previous methods for separating up/down propagating wavefields can
be grouped according to their implementation strategy: requirement to save time steps to
perform Fourier transform over time, or construction of the analytical wavefield through a
solution of the wave equation twice (one for the source and another for the Hilbert trans-
formed source), where both strategies have shown a high computational cost. For computing
the analytical wavefield we are proposing an alternative method based on the first-order par-
tial equation in time and by just solving the wave equation once. Our strategy improves
the computation of wavefield separation and can bring the causal imaging condition into

practice. For time extrapolation, we are using the rapid expansion method (REM) to com-
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pute the wavefield and its first-order time derivative and then we can compute the analytical
wavefield. By computing the analytical wavefield, we can, therefore, separate the wavefield
into up- and downgoing components for each time step in an explicit way. Applications
to synthetic models indicate that our proposed method allows performing the wavefields
decomposition similarly to the obtained by the conventional method, as well as a poten-
tial application for the 3D case. For RTM applications, we can now employ the causal
imaging condition for several synthetic examples. Acoustic RTM up/down decomposition
demonstrate that it can successfully remove the low-frequency noise, which is common in
the typical crosscorrelation imaging condition, and usually removed by applying a Laplacian
filter. Moreover, our method is efficient in terms of computational time when compared to
RTM using an analytical wavefield computed by two propagations, and it is a little more

costly than conventional RTM using the crosscorrelation imaging condition.

Introduction

Prestack reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983) has
become one of the most used migration approaches because it has the ability to image arbi-
trarily complex and steeply dipping structures in the subsurface, whereby it allows obtaining
a high-resolution imaging result. In the traditional RTM, the source and receiver wavefields
are forward and backward propagated and correlated along the time axis at zero-lag. The
resulting image obtained by applying the conventional crosscorrelation between source and
receiver wavefields is always contaminated by high-amplitude, spatial-low-frequency noise
and false images due to the unwanted crosscorrelation of head, diving, and backscattered
waves, caused by the use of a migration velocity model with strong velocity gradients or
sharp velocity interfaces. In recent years, more attention has been given to improving the
imaging condition and reducing the low-frequency noise. (Fei et al., 2015) gave a compar-
ative review of the methods that have been proposed in the literature to address this issue
and grouped them into three categories: before, after, or during application of the imaging

condition.

Fletcher et al. (2006) suggested a procedure for removing unwanted reflections during
propagation of wavefields. In this procedure, the main idea is to apply a directional damping
term to the non-reflecting wave equation in areas of the velocity model where unwanted
reflections occur. It is inconvenient to apply this approach on a model with very complicated
interfaces due to the requirement of additional knowledge about the direction in which energy
is propagating. Using a similar idea, Yoon and Marfurt (2006) used the fact that reflection

events (narrow opening angles) and artifacts (far offset) have different ranges of opening
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angle, therefore the wave-propagation directions can be used to eliminate artifacts. In this
way, before applying the imaging condition, the angle between the incident and reflected
waves is limited via calculating Poynting vectors. The method advocated by Yoon and
Marfurt (2006) works well for simple models, but requires an additional storage cost and
it does not produce satisfactory results in complex subsurfaces (Guitton et al., 2007). A
practical approach in which the artifacts are filtered after imaging is the Laplacian filter
(Youn and Zhou, 2001; Zhang and Sun, 2009), which is easy to apply and shows good
attenuation of the low-frequency noise, but can damage the signal of interest (Guitton et al.,
2007).

Another way to address this type of migration artifact is to modify the imaging con-
dition. To this end Whitmore and Crawley (2012) and Brandsberg-Dahl et al. (2013)
presented an imaging process based on a generalized inverse scattering theory (Stolk et al.,
2009). In that process, the artifacts caused by backscattered energy are attenuated by using
the combination of two separate images: one is the product of the time derivatives of the
source and receivers wavefields, and the other is the product of the spatial gradients of the
source and the receivers wavefields. Then, the weighted sum of these images is calculated in
order to generate the migrated image. As an application of the inverse-scattering imaging
condition, Pestana et al. (2014) proposed a scheme where the downgoing component of the
source wavefield - obtained by applying the Poynting vector - is used in the application of
the mentioned imaging process. More recently, based on the energy norm concept, Rocha
et al. (2016) developed a flexible imaging condition which is used not only to attenuate
backscattering artifacts, but also to attenuate any selected reflection angle. The energy
norm condition, besides being similar to the inverse-scattering imaging condition is also
related to the Laplacian filter, as shown by the author. In general, the inverse-scattering
imaging condition produces images where the backscattered noise is reduced significantly
and the true reflection data is preserved, i.e., it produces images with much higher quality

than the conventional correlation method.

Liu et al. (2011) proposed an imaging condition based on the decomposition of the wave-
field into one-way components, which also belongs to the group of methods that modify the
standard zero-lag crosscorrelation between the source and receiver wavefields. The imaging
condition introduced by Liu et al. (2011) only allows correlation of wave components that
propagate in opposite directions. This method is an implicit separation technique that can
successfully remove many types of artifacts while preserving the imaging amplitude without
the need to apply a Laplacian filter after the imaging condition. However, an incomplete
wavefield decomposition gives rise to imaging artifacts such as shown by Fei et al. (2014),
Shen and Albertin (2015) and Wang et al. (2016b). Since the method of Liu et al. (2011) is
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an implicit separation method, the up- and downgoing wavefields are not available and its
applications are limited. To address the wavefield separation, the wave-propagation direc-
tion is usually defined in the double Fourier domain (w — k). In the frequency-wavenumber
domain, wave-propagation is defined by the sign of the frequency and the wavenumber (Hu
and McMechan, 1987; Liu et al., 2011). If we use the conventional wavefield decomposition
method in the time-domain, we should store the wavefields and perform a Fourier transform
along the time axis. This process increases the input/output cost, because the time axis
is the slowest dimension of the stored wavefield, and the Fourier transform operates most

efficiently on data that are stored contiguously.

On the other hand, if we can define a time-domain wavefield whose spectrum only
contains a positive or negative frequency (Shen and Albertin, 2015; Wang et al., 2016a;
Wang et al., 2017), we can define the wave-propagation direction using the sign of the
spatial wavenumber and avoid the high 1/O cost. This signal is the analytical signal which
is widely used in signal processing. The analytical signal is a complex variable whose real
part is the signal itself and its complex part is the Hilbert transform of the real part. For
RTM, we extend the analytic-signal concept and call it the analytical wavefield (Zhang et al.,
2007; Sun et al., 2016). Because the analytical wavefield only contains positive frequencies,
the up- and downgoing wave components can then be conveniently obtained by applying
a 1D Fourier filter along the depth direction. Compared with the method of Liu et al.
(2011) of constructing RTM images, a major advantage of using analytical wavefields is that
completely separated up- and downgoing wavefields are available (explicit form) to different
applications, and it also eliminates the computational-storage requirement as well as the

need of expensive fast Fourier transforms (FFT).

In recent years, various works on wavefield decomposition using the analytical wavefield
have been presented. To perform the wavefield extrapolation in time and evaluate the
Laplacian operator, the conventional finite-differences method (FD) was adopted by Shen
and Albertin (2015), Wang et al. (2016a), Wang et al. (2016b) and Zheng et al. (2018),
followed by the construction of the analytical wavefield. In a recent paper presented by
Shen and Albertin (2015), the imaginary part of the analytical wavefield is obtained by
applying a temporal Hilbert transform to the source term of the wave equation followed by
a conventional propagation. The pair of wavefields - the one propagated with a conventional
source and the other generated by its Hilbert transform - constitutes the analytical wavefield.
Shen and Albertin (2015) proposed a causal imaging condition that correlates the downgoing
source component with the upgoing receiver component for subsurface imaging. This method
was tested and proved to be successful on removing many types of salt-imaging artifacts that

were present in the images obtained from the conventional crosscorrelation imaging condition
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(Claerbout, 1971).

One-step methods have been developed in order to avoid numerical dispersion that is
present in the FD method when the spatial interval or temporal step is large; Du et al.
(2014) reviewed these methods and named them recursive integral time extrapolation (RITE)
methods. In Revelo et al. (2016) and Wang and Liu (2017), the implementation of these
schemes for the analytical wavefield extrapolation is presented, as well as its application in
the construction of the unidirectional components of the wavefield; for RTM both source
and receiver wavefields were extrapolated in time and the source and receiver wavefields
were separated into their up- and downgoing components for each time step in an explicit
way based on Shen and Albertin (2015). The clear distintion between the method in Revelo
et al. (2016) and the one proposed by Shen and Albertin (2015) is that Revelo et al. (2016)
used a first-order wave-equation solution with an analytical source term, while in Shen and
Albertin (2015) it was necessary to solve the wave equation twice: once for the source and
another time for the Hilbert transform of the source. In relation to the work of Liu et al.
(2011), the major difference is that the method proposed by Shen and Albertin (2015) and
also used by Revelo et al. (2016) can provide an explicit separation of the wavefield, while

the scheme of Liu et al. (2011) results in an implicit separation.

In this article, we present a detailed version of the proposed method by Pestana and Rev-
elo (2017), where the analytical wavefield is calculated using the rapid expansion method
(REM) (Pestana and Stoffa, 2010). The REM propagates waves free of numerical dispersion
noise and is able to extrapolate waves in time using a time step up to Nyquist’s limit. With
the REM we can also obtain the first-order time derivative of the wavefield at the same
time step and thus compute the Hilbert transform of the wavefield as proposed by Zhang
and Zhang (2009). After that, we can separate the wavefields into their up- and downgoing
components. In our proposed method, the wave equation is only solved once, improving the
computational efficiency of the wavefield separation procedure and therefore the application
of the causal imaging condition for RTM. In the following sections, we first introduce the
wavefield decomposition-based RTM with the causal imaging condition and illustrate the
methodology of up- and downgoing decomposition using analytical wavefields. Then, we
derive our improved method to calculate the analytical wavefield via REM. Numerical ex-
amples are given to demonstrate the validity of the proposed method of explicit wavefield
separation (two dimensions and three dimensions) and the effectiveness of the causal imaging

condition in RTM images. Finally, conclusions are drawn.
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Methodology

Causal imaging condition for RTM

RTM is a method widely used to obtain an accurate subsurface image in and below areas
with both geological and velocity complexities. The zero-lag crosscorrelation between the
extrapolated source (S) and receiver (R) wavefields is the nonsource-normalized crosscorre-
lation imaging condition conventionally used in RTM. This imaging condition was proposed

originally by Claerbout (1971) and is defined as follows:

Lo(x) = /0 " S(x.t) Rx.t) dt. (1.1)

where x = (z,2), t represents the time, T is the total time of propagation, and I..(x) is
the crosscorrelation image. The major drawback of RTM is that the two-way wave equation
generates low-frequency back-scattering noise and false images when reflecting interfaces
or strong velocity gradients exist in the migration velocity model (Liu et al., 2011; Fei
et al., 2015; Wang et al., 2017). Taking into account that different artifacts observed in the
RTM image are associated with the direction of the wavefield propagation (correlated), the
decomposition of source and receiver wavefields into their up- and downgoing components
can be used to remove the low-frequency noise and another types of artifacts present in RTM
(Liu et al., 2011; Fei et al., 2014; Wang et al., 2016b).

During the acoustic RTM, the source and receiver extrapolated wavefields contain up-

(u) and downgoing (d) components, which can be partitioned mathematically as

S(x,t) = Sa(x,t) + Su(x, 1) (1.2)
and

R(x,t) = Ra(x,t) + Ru(x,1). (1.3)

Using equations 1.2 and 1.3, we can rewrite equation 1.1 as follows (Liu et al., 2011):

I.(x) = /0 Sa(x,t) Ry(x,t) dt +/0 Su(x,t) Ra(x,t) dt "

T T
+/ Sa(x,t) Ra(x,t) dt +/ Su(x,t) Ry,(x,t) dt.
0 0

The high-amplitude and low-frequency noise present in the migrated images occurs at shallow
depths and is associated with the wavefields propagating in the same direction, corresponding
to the last two terms of the equation 1.4. On the other hand, the crosscorrelation of wavefields

with opposite directions of propagation will give rise to an effective image. By using the
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wavenumber to determine the direction of the wavefields’ propagation (more specifically,
the opposite directions), Liu et al. (2011) introduced an effective imaging condition that
uses a sum of SyR, and S,Ry. More recently, taking into account the angle between the
wavenumber vectors of the source and receiver wavefields, Rocha et al. (2016) showed that
their energy imaging condition can attenuate also the low-frequency noise and preserves
the reflectors. The application of the imaging conditions proposed by Liu et al. (2011)
and Rocha et al. (2016) successfully removes the low-frequency artifacts; however, these
imaging conditions can not differentiate between the first two terms of equation 1.4, which

may generate different backscattering-related artifacts (Fei et al., 2014; Wang et al., 2016b).

According to Fei et al. (2015), the second term of equation 1.4, S,(x,t) Ry(x,1), is
the upward-turned raypath result, which has the same traveltime of the physical primary
raypath and can generate a false image in RTM in most cases. Therefore, this term should
also be excluded from the final image. In order to avoid the low-frequency noise produced
by the crosscorrelation imaging condition and the artifacts shown in RTM results, Revelo
et al. (2016) used a causal - or de-primary - imaging condition (Shen and Albertin, 2015; Fei
et al., 2015) that is given by the first term of equation 1.4. It just correlates the downgoing
component of the source, Sy, with the upgoing component of receiver wavefield, R,, which

can be written as -
ewwal) = [ Suloct) Rulox.t) e (15)
0

This imaging condition will correlate wavefields only at points in space that correspond to
seismic reflectors, avoiding noise along wavepaths and artifacts which are typical of conven-
tional RTM.

Up/down separation using analytical wavefields

In order to obtain the individual components involved in equation 1.5, we need to in-
troduce a procedure for explicit wavefield separation. The up/down separation is based on
the sign of the apparent propagation velocity along the depth z-axis (v,), which using the
dispersion relation is given by (Wang et al., 2016a)

v, = w/k,, (1.6)

where w is the angular frequency and k, is the apparent vertical wavenumber. Then, a
straightforward way to perform the source-side wavefield decomposition in the w — k& domain
can be implemented as follows (Hu and McMechan, 1987; Liu et al., 2011)

S(k,,w), ifw/k, <0

Sulherw) = {0, if w/k, >0 a7)
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and
S(k,,w), ifw/k,>0
Sd(kfz, w) = (18)
0, if w/k, <0,
where S(k,,w) is the 2D Fourier transform of the source acoustic wavefield. The application
of equations 1.7 and 1.8 requires knowing w before the wavefield separation, which means
that wavefield extrapolation must be completed and stored before performing the 2D Fourier
transform over time, which is often expensive in terms of memory. In order to eliminate the

problem described, analytical traces can be employed.

The analytical trace f(t) is constructed with the original real-valued trace f(t) as the
real part, and the Hilbert transform #H{-} of f(¢) as the imaginary part (Fei et al., 2015)

A

f@) = f@) +iH{f D)} (1.9)

Unlike the real trace f(t), which has a symmetric amplitude spectrum in the Fourier domain,
f(t) only contains a positive spectrum (Gabor, 1946; Ville, 1948). Figure 1.1 illustrates the
properties of the analytical trace; in this example, a Ricker wavelet with dominant frequency
of 20Hz and 0.5 ms as time interval was used (Figure 1.1a). In Figure 1.1c we can note an
important aspect: the amplitude spectrum at negative frequencies is zero, and doubled at

positive frequencies.

Based on the definition of analytical trace, the analytical (complex) wavefield can be de-
fined as P = P(x,t)+iQ(x, t), where P(x,t) is the pressure wavefield and Q(x, t) its Hilbert
transform, i.e., Q(x,t) = H{P(x,t)}. For general media, this complex pressure wavefield
P satisfy a first-order partial equation in time (Zhang and Zhang, 2009). Since analytical
wavefields contains only positive frequencies, the temporal Fourier transform needed in the
scheme of Hu and McMechan (1987) can be avoided, and the procedure to perform up- and

downgoing separation in the ¢ — k domain is simplified into

~

S(k,, 1), ifk, <0

Su(ks,t) = (1.10)
0, if k, >0,

and

A

S(k.,t), ifk.>0

Sa(ks,t) = (1.11)
{o, if k. <0,

where S is the source analytical wavefield. Equations 1.10 and 1.11 represent the up- and
downgoing components of the source wavefield; this separation is more efficient than the one
presented by equations 1.7 and 1.8, because it requires only a 1D inverse Fourier transform
over the k,-axis. An alternative form to equations 1.10 and 1.11 can be obtained following
Shen and Albertin (2015), which used a Fourier transform along the depth direction of the
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analytical wavefield considering mono-frequency components (Liu et al., 2011). The upgoing

component of the source wavefield, 5,, in space and time becomes

—+00 400

1 A - /
Su(,z,t) = 2—%/ / S(z, 2 t)e* = k(k,)d2' dk., (1.12)
T
where
() 1, ifk, <0 (1.13)
k(k,) = 1.13
0, ifk,>0.

The downgoing source wavefield component forward in time, Sy, is obtained using the ana-
lytical source wavefield in equation 1.12 and replacing x by 1 — k. Figure 1.2 shows a process
flowchart to implement equation 1.12 applied to a wavefield that propagates in a three-layer

velocity model.

Calculation of analytical wavefield by REM

In order to apply the causal imaging condition (equation 1.5), explicit wavefield sepa-
ration is required. As shown above, the analytical wavefield must be calculated in order
to obtain the explicit wavefield components in a cheap way regarding computacional stor-
age. In recent years, several methods have been proposed to construct this wavefield. The
conventional approach to construct the imaginary part of the analytical wavefield is based
on the principle that the Hilbert transform, H;, commutes with the acoustic wave-equation
operator (Shen and Albertin, 2015), that is

’Ht( - v?) Plx.t) = ( L g v?)ytmx, D= H f(xot),  (1.14)

v2(x) v2(x)

where v(x) is the propagation velocity in the medium, V? is the Laplacian operator and f
is the source wavelet. Thus, the imaginary part of the analytical wavefield can be obtained
by solving the wave equation with its forward in time Hilbert transformed source term.
Shen and Albertin (2015), Wang et al. (2017), and Zheng et al. (2018) solved the real and
the imaginary part of the analytical wavefield individually: from the wave equation with
its source term corresponding to the original source wavelet, and its Hilbert transform in
time, respectively. The disadvantage of this approach is that two wavefield propagations are
required, which can be computationally expensive for large two-dimensional models or 3D

case applications.

A different approach to perform explicit wavefield separation, based on the solution of
a first-order wave equation using as a source term the analytical signal of the source pulse
(Zhang and Zhang, 2009), has also been presented. In this way, Revelo et al. (2016) used the
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one-step extrapolation (OSE) matrix method to compute the analytical wavefield (Revelo
and Pestana, 2016), in which two wavefield propagations (for P and @) are carried out
implicitly in time. Using a similar idea, Wang and Liu (2017) proposed a procedure that
uses the low-rank one-step extrapolation method (Fomel et al., 2013); since this is an FFT-
based algorithm, the main disadvantage is the number of Fourier transforms (direct and

inverse) that must be applied for every marching time step.

Here, we propose computing the analytical wavefield by solving the wave equation only
once (Pestana and Revelo, 2017). In order to do this, we have taken into account the relation

between ) and P proposed by Zhang and Zhang (2009)

Q1) = 7 0,

where L is a pseudo-differential operator in the space domain, defined by L = v(x)v/—V?2.
Its symbolic representation is L = wv(x)+/k2 + k2, where k, and k, are the wavenumber

components. In order to obtain the pressure wavefield and its first-order time derivative, let

(1.15)

us consider the acoustic constant-density wave equation, without a source term, which can

be written as

D*P(x,1)
ot?
where —L? = v?V? and P(x,t) is the pressure field at location x = (x, z) and time ¢. In

= —L*P(x,1), (1.16)

order to solve the acoustic wave equation in time we use the REM as proposed by Pestana
and Stoffa (2010), in which the wavefield is given by the following propagation scheme

M

Z Cor Jor (ALR) Qo (%)
k=0

where L = v(x)v—V?2, ¢g =1 and ¢, = 2 if & # 0. Jo, represents the Bessel function of

order 2k, (o are modified Chebyshev polynomials, and R is a scalar larger than the range

P(x,t+ At) = —P(x,t — At) + 2 P(x,t), (1.17)

of the eigenvalues of L. The REM provides a solution with very high degree of accuracy
and can be reduced to various finite-difference time-derivative schemes (Pestana and Stoffa,
2010).

In Appendix A, we show that starting from equation 1.16 the time derivative of the
pressure wavefield can be obtained. Taking into account that the only time-dependent term
in the expansion of equation 1.17 is the Bessel function, we can obtain the first time derivative

of the wavefield in the following form

P(x,t+ At) = P(x,t — At) + 2 Z CQkR% [Jor (T = ALR)] Qo (%) P(x,t), (1.18)

k=0

where the derivate of the Bessel function J; can be calculated using the relation J, (AtR) =

—Jny1(AtR) + K Jn(AtR) (Abramowitz and Stegun, 1972). Using the REM solution, we
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can compute the wavefield for each time step, as well as its first-order time derivative. Next,
using equation 1.15 we compute the Hilbert transform wavefield for both source and receivers
and get the analytical wavefields for each time step, which are needed for wavefield separation

and application of the causal imaging condition.

In summary, in our implementation we are proposing to use the REM to obtain the real
part of the wavefield through equation 1.17. Inside the time step loop, the imaginary part
of analytical wavefield is computed based on equations 1.15 and 1.18. The pseudocode for
the proposed analytical wavefield calculation method, for every marching time step, is given
in Algorithm 1. An important aspect to mention is that the operator 1/\/W must be
applied in the Fourier domain, since its application is not possible through finite-difference
schemes. The computation of double (2D) or triple (3D) forward and backward FFTs may
represent an extra cost. However, this cost is not comparable with the execution of an
additional extrapolation to compute the wavefield associated with the Hilbert transform of
the source pulse, which is considerably more costly. After application the proposed method,
we can separate the wavefields into its down- and upgoing components for source and receiver
wavefields using equations 1.12 and 1.13. Thus, we need to solve the wave equation only
once, improving the computational efficiency of the wavefield separation procedure. This
allows us to apply the causal imaging condition for RTM at a reasonable computational

cost.

Numerical tests

In this section, we test our proposed method to calculate the imaginary part of the
analytical wavefield and display a comparison between the explicit wavefield decomposition
obtained by the conventional method (two propagations) and the proposed scheme. In all of
the performed tests, the rapid expansion method was selected as method to perform seismic
modeling. Additionally, we analyze the RT'M images obtained using the mentioned wavefield

decomposition imaging.

We use a 2D synthetic four-layer isotropic model (Figure 1.3) to compare the conven-
tional wavefield separation and the procedure proposed in this work. The 2D model consists
of 315 x 195 grid nodes with 10m of grid spacing. The velocities of the different layers
in a descending order are 2000m/s, 3000m/s, 4000 m/s, and 2000 m/s, respectively. The
interface between the top two layers is a flat surface, the following interface presents a wavy
structure, and the deepest interface is a flat surface with two discontinuities. To test the

separation procedure, we inject a Ricker pulse with a 50 Hz cut-off frequency, located at
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position z = 1570m and z = 10 m with a time sampling of 1 ms. All the snapshots for this
model show the wavefield at ¢t = 0.81s. For comparison, we show the real and the imaginary
parts of the analytical wavefield (Figures 1.4a and 1.4c) and also the up- (reflected waves
- Figure 1.4e) and downgoing components (transmitted waves - Figure 1.4g), which were
obtained through the propagation of both the source and Hilbert transformed source (two
propagations). Applying the proposed method, just a single propagation by REM, we com-
pute the real wavefield and its Hilbert transform by equation 1.15, resulting in the analytical
wavefield. The real and imaginary parts (Figures 1.4b and 1.4d) and the up- and downgoing
components, Figures 1.4f and 1.4h, respectively, are shown on the right part of the Figure
1.4.

From the results presented in Figure 1.4, we notice that the images are similar in quality,
proving that the results obtained for both procedures are equivalent and the images are free
of dispersion noise. Moreover, with these results we demonstrate that the analytical wavefield
can be computed by solving the wave equation using as a wavelet a real source pulse. A
comparison of the seismic traces acquired at x = 1570m is given in Figure 1.5, for both
the conventional method (two propagations) and the proposed method (single propagation),
showing that for the two methods used to calculate the analytical wavefield the phase and

the amplitude of the pulses match quite well.

To validate the effectiveness of the proposed method in the 3D case, we test the acoustic
wavefield simulation of up- and downgoing wavefields on a simple three-layer model. The
synthetic model has 210 mesh points with a uniform spacing of 10m in each direction.
The velocity parameters from the top to the bottom layer are 1500m/s, 2000 m/s, and
2500 m/s, respectively. A Ricker wavelet with a maximum frequency of 50 Hz and a time
sampling of 2ms is used as a source wavelet; the source is placed at the center of the
model. The analytical wavefield is constructed and equations 1.12 and 1.13 are applied to
separate the up- and downgoing components. Since for both procedures, two propagations
and single propagation, the real part of the analytic wavefield is obtained by the REM, the
expected snapshots will be similar, as shown in Figure 1.6a and 1.7a. Figure 1.6b presents
the imaginary wavefield snapshot at 0.47s using the Hilbert transform of the wavelet as
the source - conventional method - and Figures 1.6c and 1.6d are the up- and downgoing
components, respectively. Figure 1.7 displays the real and imaginary parts of the analytical
wavefield, and the decomposed unidirectional wavefields for the three-layer model at 0.47s
obtained by a single extrapolation in time. From the comparison between Figures 1.6 and 1.7
we can notice that the imaginary part constructed by the proposed method is very similar to
the one obtained through the propagation of the Hilbert transform of the source, preserving

the amplitude and phase of the wavefield. Additionally, it can be observed that the explicit



Up/down acoustic wavefields decomposition 48

wavefield separation is performed as expected, therefore the forward-modeling approach for
up- and downgoing components is still effective for the 3D case and can be used in the

migration process to generate the decomposed images.

The first example for RTM presents the decomposed image generated with the unidirec-
tional components of the source and receiver wavefields - equation 1.4. For this numerical
example, we generate a 2D split-spread synthetic dataset for the overthrust velocity model
(Aminzadeh et al., 1997) shown in Figure 1.8a, which includes complex structures and thin
layers. The grid spacings in the z- and z-directions are 25m. 265 sources are excited one
by one on the surface of the model from x = 125 to 20000m with a horizontal spacing
of 75m. The length of each shot record is 4s with a time step of 1ms and a maximum
frequency of 30 Hz. A fixed array of 361 receivers is located along the model surface with
receiver spacing of 25 m and 4500 m of maximum offset. In Figure 1.8b, we have the result
obtained by the crosscorrelation of the source and receiver wavefields, which is the conven-
tional RTM result employing equation 1.1. This image is contaminated by large-amplitude
noise, which completely masks the signals. Figure 1.8d shows the result related to the last
two terms of equation 1.4 (wavefields propagating in the same direction) and it is completely
contaminated by the low-frequency noise. The RTM result generated by the causal imaging
condition (first part of equation 1.4), is presented in Figure 1.8c. In this image, the artifacts
produced by the conventional RTM, including the low-frequency noise, are removed, and we
can see a noticeable improvement in image quality in comparison with the result shown in
Figure 1.8b.

The second numerical test to compute the seismic migration images is carried on the
four-layers velocity model (Figure 1.3). In this example, we compare the RTM result using
the conventional migration and the de-primary RTM - analytical wavefield constructed by
making two propagations, or by the proposed scheme (Algorithm 1). We generate a synthetic
2D split-spread dataset using an acoustic simulation that consists of 315 shot gathers evenly
distributed across a horizontal distance of 3140 m and maximum offset of 1000 m. Figure 1.9a
is the result of the conventional imaging condition, which is contaminated throughout with
a very low-frequency noise. Figure 1.9b shows the RTM result obtained by the conventional
correlation imaging condition followed by application of the Laplacian filter (Youn and Zhou,
2001); the RTM results using the causal imaging condition are shown in Figures 1.9¢ and
1.9d. In the result with the conventional imaging condition, we can see imaging artifacts
caused by the internal multiples (marked by the white rectangle), mainly on top of the first
reflector. Figures 1.9c and 1.9d are results obtained applying the causal imaging condition,
where the analytical wavefield was calculated using two-propagations and single propagation

algorithms, respectively. We should notice that these results have a better quality compared
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to Figure 1.9b and that the artifacts above the first interface are removed because the S,
component is zero in this region. In order to analyze the spectral content of the results
presented in Figure 1.9, we generate their 2D spectrum (Figure 1.10). Figure 1.10b shows
the strong attenuation of the low-frequency components close to the origin (k, = k, = 0).
Comparing the spectral plots of the RTM result with the Laplacian filtering and the RTM
result with the de-primary image condition (Figures 1.10c and 1.10d), we can see that the
spectrum of the RTM result is well preserved and shows less attenuation around the region
k, = 0 and k, = 0. With these results, obtained using the RTM with causal imaging
condition, we can confirm the effectiveness of the implemented algorithm to construct the
imaginary part of the analytical wavefield and its employment to remove the low-frequency

noise usually seen in a typical reverse time migration images.

In the last example, to make sure that our conclusions do not apply to a simple velocity
model or a single data set only and to demonstrate the applicability of the proposed method,
we also apply the RTM with the causal imaging condition for the dataset of the fault velocity
model shown in Figure 1.11. In order to improve the migration result, we have included the
source illumination compensation in the conventional and the de-primary imaging conditions
(Kaelin and Guitton, 2006). The fault model is characterized by several faults, as well as
a complicated base, with the presence of intrusions. The numerical discretization contains
600 x 265 samples, with spacing of 20m in both directions. This is a high-quality dataset
generated with REM modeling with shot spacing of 40m, receiver spacing of 20m, and
2560 m maximum offset. In the migration, the highest frequency is 50 Hz and the time
step is At = 4ms. Figure 1.11 displays the comparison of the migration results obtained
by the crosscorrelation imaging condition (Figure 1.11b) and the causal imaging condition
with source illumination using the two-propagations method and the procedure that we are
proposing in the present work (Figure 1.11d). For such a dataset, the results show that
our method can handle complex velocities fairly well and shows a good delineation of the
faults, specially at the main fault, as well as the domes and the horizontal plane at the
bottom. Theses results confirm the successful application of the single propagation method
on RTM, in which the REM is used for forward and backward propagations, combined with
the analytical wavefield computation, allowing wavefield separation and further application
of the causal imaging condition. In short, it shows the effectiveness of the implemented
algorithm in removing the low-frequency noise produced by the crosscorrelation imaging

condition.

The correct separation of the wavefield in different tests shows that the proposed scheme
to build the analytical wavefield works well, and the successful applications of de-primary

RTM to three different datasets confirm that the causal imaging condition is effective to
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remove the low-frequency noise usually seen in the conventional RTM. Unlike the methods
that involve complex traces, where the cost of seismic modeling is doubled as a complex
wavefield is extrapolated, the construction of the imaginary wavefield part involves a 2D
FFT and IFFT in each time step, which can be further speed up using faster FF'T methods.
The proposed method separates the up- and downgoing components directly in the wave-
field propagation and avoids the high disk space cost; in addition, the process of up- and
downgoing separation requires two 1D FFTs per trace. Figure 1.12 shows the normalized
times consumed only for the explicit wavefield separation applied to a single shot of each of
the various datasets used; in general, we can see that our scheme represents around a 20.2 %
increase in computational time. The migrated time consumed by each method is presented
in Figure 1.13 for the overthrust model, four-layer model, and the fault model datasets. It
is observed that the time consumed by the present method - single propagation - is lower
than the time consumed by the conventional method used in the calculation of the analyti-
cal wavefield, and a little higher than the conventional RTM with crosscorrelation imaging
condition. Therefore, the proposed method can make use of the causal imaging condition
for RTM at a lower computational cost and still provide similar results when compared
to RTM using two propagations. This improvement to obtain the unidirectional wavefield
components can be used in the calculation of the gradient in full-waveform adjoint inversion
(FWI), since it has a similar crosscorrelation form as the imaging condition of RTM; then
the FWI gradient can be decomposed with the same procedure into its reflection components
(migration term) and the transmission component (tomographic term), just as it is shown
in Rocha et al. (2016). However, the up-up and down-down parts of equation 1.4, which are
considered noise in migration, are more valuable in FWI because they can be used to invert

for the low-frequency components of the model parameters (Wang et al., 2016a).

Conclusion

Reverse time migration can image steeply dipping reflectors and complicated velocity
models. However, this also causes the conventional correlation-based imaging condition
to produce large amplitude, low-frequency noises that contaminate the migrated image.
Decomposing the extrapolated wavefields and applying the de-primary imaging condition
successfully removes these artifacts from the images. The causal imaging condition needs
an up- and down-separation algorithm, which can be achieved by using analytical wavefield
extrapolation and is much cheaper than separation methods via Fourier transforms over time
since the latter requires saving the wavefield at all time steps. We present an efficient forward-

modeling approach to compute the analytical wavefield based on the rapid expansion method
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in a stable way and free of dispersion noise. In our proposed method the source wavefield is
extrapolated in time and for each time step we can compute the first-order time derivative
and then the Hilbert transform of the wavefield. Based on the analytical wavefield the up-
and downgoing components in a 2D or 3D acoustic wavefield simulation are generated. We
tested the proposed scheme on a four-layer model and demonstrated that we can compute
the analytical wavefield using just a single propagation, with the same quality of the common
procedure which needs to apply two propagations. The numerical tests on different models
demonstrate that the method is effective, avoiding the expensive storage requirement and
only increasing the computation cost by 20.2 % for the separation part. Using our method to
compute the analytical wavefield and explicitly separate the wavefield into up- and downgoing
components, we could employ the causal imaging condition for RTM at a computation cost
just a little higher than the conventional crosscorrelation imaging condition. We applied the
de-primary image condition on different velocity models and saw that the RTM with the
causal imaging condition can effectively remove the undesired low-frequency noise produced
by the conventional crosscorrelation imaging condition. The proposed numerical scheme
for wavefield decomposition significantly improves the efficiency of the de-primary imaging
condition and increases the computational cost by approximately 27 % when compared with

the conventional crosscorrelation imaging condition.
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Appendix

Derivation of the first time derivative of the wavefield by REM

Here, we present how we can compute the first time derivative of the wavefield directly
from the solution of the acoustic wave equation obtained by the rapid expansion method
(REM). We consider the two-dimensional (2D) acoustic medium with constant density, and

a varying velocity in both vertical and horizontal directions. The wave equation, in the form
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of equation 1.16, is given by

0*P(x,t) 9
Now, considering the following initial conditions
oP(x,t :
P(x,t =0) = P, and P _p (1.19)
ot |,
the formal solution is
1 .
P(x,t) =cos(Lt) Py + I sin(Lt) Py, (1.20)

where the dot denotes a time derivative. Using equation 1.20, the first time derivative of
P(x,t) is

P(x,t) = —Lsin(Lt) Py + cos(Lt) Py. (1.21)

In addition, we calculate P(X, t) at time —t, i.e.,
P(x,—t) = Lsin(Lt) Py + cos(Lt) F. (1.22)

To eliminate the time derivative initial condition (PO), we subtract equation 1.22 from equa-

tion 1.21 and solve for P(x,t), obtaining

P(x,t) = P(x,—t) — 2Lsin(Lt) P,. (1.23)

This scheme allows extrapolation of the field P(x,t) from the fields P(x, —t) and P,.

Now, consider that the sine function can also be expressed as follows

sin(Lt) = —% [% cos(Lt)} (1.24)

Following Kosloff et al. (1989) and using the expansion method presented by Tal-Ezer et al.
(1987), the cosine function is expanded (equation 1.17) as
M

cos(Lt) = Zc%Jgk(Rt)Q% (%) . (1.25)

Substituting equation 1.25 in equation 1.24 and taking into account that the only time-

dependent term in this expansion is the Bessel function, we have that

_ d|1 & iL
sin(Lt) = 7 ZC%J%(Rt)Q% T
k=0

(1.26)
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Therefore, in order to obtain an extrapolation scheme for a single time step, we replace
the time ¢ by the time step At in equations 1.23 and 1.26 and the initial wavefield (F) in

equation 1.23 by some arbitrary reference time ¢, which results in

M .
P(x,t+ At) = P(x,t — At) +2 | ) CQkR% [Jai(T = AtR)] Qax (%)

k=0

P(x,t). (1.27)

Thus, the final result presented in equation 1.27 can be used to compute the first time
derivative of the wavefield for each time step by the REM, which is the expression presented

by Tessmer (2011).
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Algorithm 1 Proposed algorithm to calculate the analytical wavefield
Read: Az, Az, At, frax, v(z, 2) > parameters

Calculate: R, M

Initialize P*4* =0 and Q2 =0

for each time step
1: Py+ P! >forn =0
2: PHHAL Jo(AtR)PO

aux

3: QLA Rx [—J (AtR) + Jo(AtR)| Py

4 P %DFT—I{ [~ k2 — k2] DFT[PO]} > for n = 1
5. PUPAL ¢ PUFAL L 9 h(ALR) Py

6: QAL < QAL L 2R % [~ J5(AtR) + 25 Jo(AtR)| Py

aux aux AtR

7. for n < 1, M do
&  Pupy ¢ 2P+ ﬁDFT—l{ (k2 — k2] DFT[Pn]} Py,

72
9:  PUEA « PIAL 4 2 o, o (AER) Py

10: Q%?t A qutﬁt + 2R * [—Jon_1(AtR) + AQT%JZn(AtR)]PnH

11: end for

12: PUHAL ¢ pt=At 4 g ptiAat > Real wavefield

aux

13: QtJrAt — Qtht +2Qt+At

aux

14: QUHAL %DFT_I{ L_ DFT [Qt+At] } > Imaginary wavefield

k2+k2
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Figure 1.1: The input trace and its frequency spectra for (a) a real trace (a Ricker
wavelet), (b) the Hilbert transform of (a), and (c¢) the analytical trace
constructed using equation 1.9 - (a) as the real part and (b) as the imag-
inary part. Notice that (a) and (b) have the same symmetric amplitude
spectra, but in (c¢) the amplitude spectrum at negative frequencies is
zero, and the amplitudes of the positive frequencies are scaled by two -

doubled when compared with (a) and (b).
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Figure 1.2: Process flowchart to obtain up- (S,) and downgoing (S;) components
using the analytical wavefield. For every marching time step, the source
analytical wavefield (S) is constructed by the real wavefield and its
Hilbert transform. Then, a direct Fourier transform is applied to the
z-axis (FFTY); the filter given in equations 1.10 and 1.11 is applied to
obtain the unidirectional components, and, finally, an inverse Fourier

transform (FFT)) is applied to return to the spatial domain.
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Figure 1.3: Four-layer velocity model used for numerical experiments.
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Snapshots for the source wavefield at ¢ = 0.81s for the real and imagi-
nary parts and for the up- and downgoing wavefields. The figures on the
left were obtained using a source and the Hilbert transformed source -
two propagations. The figures on the right were obtained using equa-
tions 1.15 and 1.18 - using only a single propagation.
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Figure 1.5: Comparison in wiggle format of the seismic traces at x = 1570 m (Fig-
ure 1.4) using the conventional method (two propagations) and the
proposed method to calculate the analytical wavefield for the four-layer

model (Figure 1.3).
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Figure 1.7: The snapshots obtained through the proposed method for the three-
layer model at 0.47s: (a) real wavefield, (b) imaginary wavefield, (c)
upgoing component, and (d) downgoing component. As shown in this
image, the imaginary wavefield presents a correct form and the unidi-
rectional components are well-separated.
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Figure 1.8: (a) Velocity model used in the overthrust RTM experiment. Results of
the RTM method using the (b) conventional crosscorrelation, (c¢) causal
imaging condition (the first term of equation 1.4), and (d) correlation
between the wavefields that propagate in the same direction (the latter
two terms in equation 1.4), which generates low-frequency noise.
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Figure 1.9: The RTM results. The image is obtained by applying (a) the conven-
tional crosscorrelation imaging condition, (b) band-pass filtered result
of the image in (a), (¢) and (d) by the causal imaging condition. Panel
(b) contains the correct image and migration artifacts indicated by the
white rectangle. Comparing (b) with the result of the de-primary result
(c) and (d); these last two have better quality and no artifacts.
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Figure 1.10: The 2D Fourier spectrum of the four-layer data set after the (a) con-
ventional imaging condition, (b) conventional imaging condition plus
Laplacian filter, and (¢) and (d) causal imaging condition.
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Figure 1.11: The RTM results. (a) Migration velocity model. (b) Image obtained by
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in which the former uses the two-propagations method and the latter
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Abstract

Least-squares reverse time migration in the frequency domain (FLSRTM) is capable
of producing a high-resolution reflectivity model, provided that the Green’s functions can
be stored in memory. The Green’s functions employed to compute the gradient and Born-
modeled data must be calculated once and then stored; however, their size can be large,
making this storage infeasible depending on the available hardware. FLSRTM using low-
rank Green’s functions decomposed via singular value decomposition (SVD) can be used
to alleviate this constraint. However, the SVD decomposition could result in a significant
increase in computational time when dealing with large datasets and models of considerable
size. To overcome this issue, we propose the FLSRTM scheme with a low-rank Green’s func-
tion by exploiting randomized (rSVD) and compressed (¢SVD) singular value decomposition

algorithms. The Green’s functions can then be saved efficiently as two unitary matrices with
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a few dominant singular values, thus requiring little memory. Following the demonstration
of the feasibility of rank reduction in Green’s functions, we evaluate the proposed rSVD and
c¢SVD FLSRTM schemes versus the reference fully-stored Green’s functions FLSRTM and
versus conventional low-rank SVD FLSRTM. These evaluations are conducted using both
a layered model and the modified Marmousi-2 model. Our proposed FLSRTM scheme can
generate image results identical to the comparative methods while also requiring less mem-
ory than FLSRTM, which saves the complete Green’s functions, and less computational time

compared to the FLSRTM scheme with low-rank Green’s functions via conventional SVD.

Introduction

Migration is a crucial seismic processing stage responsible for building images in depth
of the subsurface from time-recorded data. It corrects the depth and inclination of the reflec-
tors and suppresses diffractions (Claerbout, 1992; Andrade et al., 2017). Among the seismic
migration techniques, reverse time migration (RTM) (Baysal et al., 1983; McMechan, 1983;
Whitmore, 1983; Levin, 1984), which involves back-propagating field data, using the two-way
wave equation (Ren et al., 2013), has been proven to be the most accurate imaging technique.
This is due to its ability to image arbitrarily complex and steeply dipping structures in the
subsurface provided an accurate velocity model is available. With the increasing demands of
oil and gas exploration, there is a growing need for seismic imaging to provide more compre-
hensive information beyond just the subsurface structure, such as reflectivity. Despite the
satisfactory results obtained by RTM, the seismic migration operator has an adjoint rela-
tionship with a forward Born modeling operator (Liu et al., 2022). Therefore, an important
aspect affecting the seismic migration image is the inability of the adjoint operator to accu-
rately approximate the inverse operator (Claerbout, 1992; Symes, 2009). Consequently, the
resulting image may suffer from blurred effects with incorrect amplitude and migration arti-
facts under imperfect acquisition circumstances, such as band-limited seismic source, finite
recording aperture, irregular sample acquisition geometry, or missing frequencies (Nemeth
et al., 1999; Etgen et al., 2009; Liu et al., 2022; Kim et al., 2022).

To overcome this issue, Tarantola (1984) introduced an effective method to enhance the
quality of the migration image and to generate an amplitude-preserved imaging result. This
approach, known as least-squares migration (LSM) (Bamberger et al., 1982), is a linearized
inversion scheme based on the minimization of a least-squares function. It approximates the
inverse operator by minimizing the defined objective function with a gradient-based opti-
mization method iteratively (Nemeth et al., 1999; Dutta and Schuster, 2014). In particular,

when the LSM is based on the two-way wave equation, it is referred to as least-squares re-
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verse time migration (LSRTM) (Schuster, 1993; Nemeth et al., 1999; Dong et al., 2012; Yao
et al., 2022), which is based on the Born approximation and is more efficient at accurately
migrating complex geological structures (Wong et al., 2012). A typical iterative LSRTM con-
sists of three main components: a modeling operator to simulate seismic data, a migration
operator to compute the gradient, and an inversion solver to minimize the objective func-
tion. Considering that the gradient of the misfit function computed in time-domain LSRTM
(TLSRTM) must be calculated independently for each shot gather (Herrmann and Li, 2012;
Dai et al., 2012; Zhang et al., 2015), the computational cost of TLSRTM can dramatically
increase proportionally to the number of data gathers used. Significant advancements have
been achieved recently aimed at enhancing the quality of seismic imaging while concurrently
reducing computational costs of TLSRTM (Herrmann and Li, 2012; Dai and Schuster, 2013;
Xue et al., 2016; Yao and Jakubowicz, 2016; Liu and Peter, 2018).

Frequency-domain LSRTM (FLSRTM) can be employed to reduce the computational
cost of LSRTM for multi-source processing, offering several advantages over TLSRTM. No-
tably, only a few valid frequency components of the data are needed to generate the migrated
section (Kim et al., 2022). Furthermore, if the Green’s functions can be stored in the com-
puter’s memory, the gradient and Born-modeled data can be efficiently computed without
the need for additional wavefield extrapolation (Ren et al., 2013). We note that in the
FLSRTM scheme, the perturbed scattering wavefield and the gradient of the misfit function
are expressed as a function of background Green’s functions in the frequency domain. Con-
sidering that this framework is a linearized inversion and does not update the background
model, all of the background Green’s functions from the sources to the reflectors and from
the reflectors to the receivers, which depend on the background velocity, must be calculated
once and stored in the computer’s memory for each frequency. Although FLSRTM is shown
to be efficient, this scheme can be severely limited by the substantial memory storage require-
ments for saving the Green’s functions, especially when a large dataset and model are used
(Liu et al., 2022). To mitigate this, Ren et al. (2013) implemented a version of FLSRTM
in which the shot and receiver Green’s functions are stored in memory during the first iter-
ation of the inversion scheme. As an alternative approach, Zhao and Sen (2019) proposed
the double-plane-wave encoding of shot records to reduce memory storage requirements for

saving the Green’s functions.

More recently, Kim et al. (2022) introduced a fast and memory-efficient version of
FLSRTM, in which they adopted the singular value decomposition (SVD) to construct the
low-rank representation of Green’s functions and reduce the required memory storage. Al-
though the FLSRTM scheme with low-rank background Green’s functions can produce mi-

gration results as accurately as conventional FLSRTM schemes with less memory usage,
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generating this low-rank representation via SVD can be computationally intensive, partic-
ularly when dealing with large-scale datasets or models. Alternatively, iterative algorithms
such as Krylov-subspace methods can be employed to approximate the dominant singular
vectors more efficiently (Golub and Van Loan, 1996). These algorithms are the most widely
used approach for computing low-rank matrix approximations, especially for large sparse
matrices. However, over the past two decades, stochastic algorithms have gained popularity.
This is because randomized algorithms often perform better in practice and are more robust
compared to Krylov methods (Martinsson, 2019). The basic idea of these probabilistic ma-
trix algorithms is to employ some amount of randomness to derive a smaller matrix from a
high-dimensional matrix, which captures the essential information and offers reliability and a
computationally efficient alternative to obtain a low-rank SVD representation (Sarlos, 2006;
Gu, 2015; Erichson et al., 2019).

In this study, we propose implementing an FLSRTM scheme that utilizes low-rank
Green’s functions decomposed via randomized (rSVD) (Halko et al., 2011; Martinsson et al.,
2011; Halko, 2012; Tropp and Webber, 2023) and compressed (cSVD) (Erichson et al., 2017;
Erichson et al., 2019) SVD algorithms to improve runtime performance. The enhanced algo-
rithm aims to tackle the computational challenges associated with conventional FLSRTM.
The cornerstone of the solution lies in the rSVD and c¢SVD algorithms’ proficiency in ef-
ficiently extracting critical information from Green’s functions to construct their low-rank
representations. Unlike conventional SVD, the rSVD and ¢SVD algorithms begins by gen-
erating a compressed matrix from the original matrix using a Gaussian random matrix and
an economic QR decomposition. The size of the compressed matrix is determined by the
truncation coefficient, which corresponds to the optimal rank and is determined using a spe-
cific criterion (Kim et al., 2022). Liu and Peter (2020) demonstrated that if the truncation
coefficient is finely adjusted, these algorithms can significantly compress the original matrix,
leading to decreased memory usage and reduced computation time. Although the rSVD
algorithm is mathematically robust and offers strong error bounds, there is potential for
innovations and improvements, such as those introduced in the cSVD algorithm presented
by Ji and Li (2014). The ¢SVD algorithm provides an effective balance between accuracy
and speed, and is particularly well-suited for approximating large matrices. Consequently,

its computational advantages become more significant as the dimensions increase.

This article is structured as follows. First, we provide a brief overview of LSM and
FLSRTM. Following this, we introduce the SVD algorithm and its low-rank randomized
variations. Subsequently, we explain the integration of SVD algorithms within the FLSRTM
framework. Then, we demonstrate the capability of the proposed algorithm to produce

high-quality seismic images through numerical experiments conducted on synthetic models.



Memory-efficient frequency-domain least-squares RTM 74

Afterwards, through a comparative analysis of migration results and computational costs
based on numerical examples, we illustrate the efficiency of the FLSRTM scheme in terms of
memory storage and computing time by employing the low-rank representation of Green’s

functions via stochastic SVD algorithms.

Methodology

Least-squares migration

According to the Born approximation Woodward1992,BornWolf1999, the reflectivity

model m and the first-order scattering data d satisfy the following linear relationship
d = Lm, (2.1)

where L, known as the sensitivity kernel, represents the forward Born modeling operator

that uses a smooth background velocity model.

Conventionally, the adjoint of the L operator is considered as the migration operator
(Claerbout, 1992), and the reflectivity model myy;, is retrieved by applying it to the observed
data dgp, represented as

My = L' dops, (2.2)

where T means the conjugate transpose. Despite the widespread use of the imaging method
outlined in equation 2.2, known for its high precision, it is important to note that seismic
migration images may still be subject to issues such as blurring effects, low resolution, and
unbalanced amplitudes (Schuster, 2017; Shoja et al., 2022). To partially mitigate these
issues, least-squares migration (LSM), often referred to as linearized Born inversion (Taran-
tola, 1984; Nemeth et al., 1999), is commonly proposed for the inversion of seismic data to
obtain the reflectivity distribution. Provided that the migration velocity model is sufficiently
accurate, LSM can mitigate many of the previously mentioned problems, leading to a more
detailed and resolved migration image (Schuster, 2017). In the LSM method, the strategy
to improve the quality of my,;, involves defining an objective function . This function is
designed to seek the reflectivity by minimizing the Lo-norm of the difference between the

forward-modeled data and the recorded data
1
E(m) = §HLm — dobst. (2.3)

In the least-squares sense, the optimal solution for equation 2.3 is expressed as m =
H 'm,;,, where H = LTL is the Hessian operator. However, the computation of the inverse

Hessian is prohibitively expensive (Zhou et al., 2014; Schuster, 2017). To circumvent this



Memory-efficient frequency-domain least-squares RTM 75

limitation, the reflectivity distribution m can be iteratively estimated using gradient-based
methods to solve the optimization problem presented in equation 2.3. In this study, we
will employ the steepest descent method (Nemeth et al., 1999) for this purpose. With this

approach, the solution is updated at each iteration by
m:; = m; — agy, (24)

where 7 is the iteration number, « is the optimized step length

T
g'r gT

o= 2.5

e (Lg) 29)

and the migration of the difference between Born data modeling and observed data, i.e.,

Ad = Lm, — dgg, corresponds to the gradient vector
g, = LT(Lm, — d,s) = LTAd. (2.6)

From equations 2.1, 2.5 and 2.6, it is evident that the implementation of an iterative LSM
scheme requires a forward modeling engine. In the context of this study, the engine aligns
with the forward linear modeling operator derived from the two-way equation in the fre-
quency domain. Next, the derivation of the forward Born modeling operator will be pre-

sented, along with its incorporation into the LSM scheme.

Matrix formulation of the frequency-domain least-squares RTM

Assuming a constant density and an isotropic medium, the two-dimensional acoustic

wave equation in the frequency domain is expressed as follows
2

*(x)

where x = (x,z), w is the angular frequency, ¢(x) represents the velocity of the medium,

{VQ + } P(x,w) = 6(x — x;) F(w), (2.7)

V? is the Laplacian operator, and P(x,w) denotes the pressure wavefield in the frequency

domain associated with the spectrum of the source term F'(w) injected at the position x;.

In the Born approximation, a linear relationship is assumed where a perturbation in the
velocity generates a corresponding perturbation in the pressure wavefield. Thus, defining ¢(x)
as co(x) 4 dc(x), where dc(x) is the pertubation in the background velocity model cy(x), the
pressure wavefield P(x,w) will be given by Py(x,w) + 0 P(x,w), with § P(x,w) representing
the scattered wavefield due to the velocity model perturbation. After substituting these
definitions into equation 2.7, and considering that ¢y >> dc and Fy >> d P, the scalar wave

equation for the first-order scattering wavefield can be expressed as

? oM (X)

c5(x)

{V2 + — Py(x, w), (2.8)

) P =
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20¢(x)
co(x)

tic wavefield, which satisfies equation 2.7 using the background velocity model. Equation

where the reflectivity model m(x) is defined as

and Py(x,w) is the background acous-

2.8 represents the linearized wave equation derived from the so-called Born approximation.
The linearization in equation 2.8 is based on the premise that a perturbation in the model
parameter, represented by the source term on the right side of equation 2.8, generates the
first-order scattering  P(x,w) (Albano et al., 2019).

By introducing the background Green’s function G(x,w), which solves the Helmholtz
equation for the background medium (Morse and Feshbach, 1953), the background wavefield
can be computed as the product of Gy(x,w) and the spectrum of the source term, i.e.,
Py(x,w) = Go(x,w)F(w) (Schuster, 2017). Utilizing this representation, equation 2.8 can be
transformed into an equivalent integral equation of the Lippmann-Schwinger type (Lippmann
and Schwinger, 1950). Therefore, the perturbed scattering wavefield recorded at x, can then

be determined using the following linear equation (Woodward, 1992; Born and Wolf, 1999)

> MUX)

P (X, w;Xs) = —/w 5

CO(X) F(W) Go(X, w; Xs> GO(X, w; Xr)dX, (29)

where Gy(x,w;x;) is the Green’s function from the source point at x, to spreader position
x, Go(x,w;x,) is the Green’s function from the receiver x, to the position x. Note that

the Green’s functions satisfy the source-receiver reciprocity principle, i.e., Go(x,w;x’) =

Go(x/, w; x).

Equation 2.9 provides the integral representation for Born forward modeling. Follow-
ing Yao and Jakubowicz (2016), we will now discretize the scattered pressure field, the
background velocity model, and the integral modeling operator to obtain a matrix-vector
formulation for equation 2.9. For the 2D case, we considered the medium discretized onto
a nz x nx mesh. We then represent the reflectivity distribution m(x) as a model vector m
with N(= nz x nz) elements, the first-order scattering wavefield § P(x,,w;xs) as the data
vector d with M (= nr, number of receivers) elements, and the Born modeling operator as
the L matrix with M x N elements. Thus, for each frequency component, the integral in
equation 2.9 can be approximated by a Riemman sum (Yao and Jakubowicz, 2016; Schuster,
2017; Liu et al., 2022), resulting in

[ dy ] [l - llj e hin | [
di = lﬂ s lij e lz'N mj s (210)
_dM_ _lMl te le ce lMN_ LN

where d; represents the corresponding reflection data and [;; is the value at the j-th grid of
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the sensitivity kernel corresponding to the i-th source-receiver pair, which is given by

(,UZ

lij = 5— F(w) Go(x;,w; x)Go (X, w; Xp4). (2.11)
c5(x;)

The compact form of equation 2.10 can be expressed as a matrix-vector product, similar
to the linear relationship presented in equation 2.1. Considering this and noting that the
derivation of the equation 2.9 was based on the two-way equation in the frequency domain,
the inversion scheme will be referred to as FLSRTM. From equation 2.6, it is evident that the
steepest descent method requires the computation of the gradient vector g. Consequently,
using the matrix representation provided in equation 2.10, we compute the conjugate trans-
pose of the L operator and obtain the following expression to calculate the gradient at each

iteration of the FLSRTM scheme (Liu et al., 2022)

(1] ([Th - Tn - | [AdT])
Lgn ] Ln o Lin o lun| LAda
oo M / (2.12)
lil
|
=Red > |l | Ad; p,
i=1
\ _liN_ Vs

where PRe denotes the real part of a complex number and g corresponds to the migration of
residues and is shaped as a vector with N(= nz x nz) elements. In the L' operator, each

element [;;, is represented as

— w2

Zij = mF*(UJ) GS(X]',QJ;XS)GS(XJ',OU;XM), (213)

where * is the complex conjugate.

As previously mentioned, because only the adjoint of the forward Born modeling oper-
ator is applied to the seismic data, as given in equation 2.2, the output migration profile is
amplitude-biased. To partially balance the amplitudes, the migrated image can be precondi-
tioned with the inverse of the diagonal of the Hessian operator (Shin et al., 2001; Liu et al.,
2020). In arelevant study, Liu et al. (2022) developed a frequency-domain scattering-integral
reverse time migration (SI-RTM), where the diagonal of the Hessian operator is explicitly
computed in its exact form, i.e., Hy = diag{LTL}. In this formulation, the preconditioned

image with exact two-way illumination compensation is expressed as

My = (Ho + AL 7 L  dops, (2.14)
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where \ is a damping factor to prevent instability of the inverse operation, and Hy is com-
puted by accumulating the squared modulus of each sensitivity kernel element over all source-

receiver pairs, as follows

[y -+ 0 - 0
Hozz 0 - Igly -+ 0 |. (2.15)
i=1 : : : .
I 0O -+ 0 - mlm_

The SI-RTM offers a significant advantage in terms of memory efficiency, as it does not ne-
cessitate storing large sensitivity kernels (Liu et al., 2022). Because the background Green’s
functions remain unchanged during the FLSRTM scheme, computational costs can be no-
tably reduced, with Hy computed only once at the initial iteration of the optimization
scheme. In this work, we have implemented the exact two-way illumination compensation to
precondition the gradient. It is noteworthy that in our implementation, this preconditioned
is also structured as a vector with N (= nz x nz) elements and is applied to the gradient via

the Hadamard product.

Since in FLSRTM the background velocity model is kept unchanged, and only the re-
flectivity model is updated, the Green’s functions needed for computing the scattered data
and the gradient are computed only once. Therefore, if the Green’s functions are stored in
memory, both scattered data and gradient can be calculated without additional wavefield
extrapolation. However, storing the Green’s functions typically demands significant memory
storage, which may become impractical for large-scale datasets and models. To alleviate this
computational cost, in the next section, we propose an approach to FLSRTM using low-rank

representation of Green’s functions obtained via SVD algorithms.

Low-rank representation of Green’s functions via SVD algorithms

In this explanation, we represent the background Green’s functions as a two-dimensional
mXxn matrix A, where m and n correspond to nz and nz, respectively. The conventional SVD
of A admits the factorization of it into the product of three matrices, such that A = UXVT,
where U is an m x n matrix of the orthonormal eigenvectors of AAT and V7 is the transpose
of an n X n matrix containing the orthonormal eigenvectors of ATA (Figure 2.1a). The
n x n diagonal matrix X contains the corresponding non-negative singular values of A
(01 > ... >0, > 0), describing the spectrum of the data. The conventional SVD algorithm
for a large matrix is computationally intensive and has cubic-time complexity with respect

to the size of the given matrix (Golub and Van Loan, 1996), often necessitating substantial
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memory storage. However, in practice, a full SVD, including a fully unitary decomposition
of the matrix’s null space, is rarely required. Instead of the full factorization, it is often
sufficient to compute a compact version of the SVD algorithm based on the matrix’s rank,

denoted by r, which corresponds to the number of non-zero singular values of A.

In many applications, the rank of A is large, making it difficult to store even the SVD
factors in memory. In such instances, the smallest singular values may need to be truncated
to retain only the largest k non-zero singular values (low-rank approximation, where k << r).
Thus, the low-rank SVD is no longer an exact decomposition of the original matrix A, but
rather provides the optimal low-rank matrix approximation A, by any matrix of a fixed rank
k,ie., Ay ~ U2, V], where k denotes the desired target rank of the approximation, and
only the k column vectors of U and k row vectors of VT corresponding to the %k singular
values with a significant magnitude are preserved (Figure 2.1b). Choosing an optimal target
rank k& is highly dependent on the task: a value for k close to the effective rank allows us
to obtain a highly accurate reconstruction of A, which on the other hand, a small value for
k results in a very low-dimensional representation of the dominant features of A (Erichson
et al.,, 2019). Kim et al. (2022) proposed an FLSRTM inversion scheme using low-rank
Green’s functions computed via conventional SVD, demonstrating the feasibility of this low-
rank representation in reducing the required computational memory. Building on the work
of Kim et al. (2022), we will adopt the following scheme in our implementation to determine
the optimal target rank: (i) select the Green’s function corresponding to the most energetic
component of the frequency spectrum, (4i) apply conventional SVD to obtain the distribution
of the singular values, and (4i) select the rank where the normalized accumulated singular

value exceeds 99.9 %.

Although the amount of memory required to save the resulting factors of the low-rank
SVD is less than the conventional SVD, this approach still requires the initial computation
of the conventional SVD. From this, the first k£ components are extracted to form Ag.
Consequently, the computation of A; via conventional SVD does not offer any reduction in
computation time. This method, therefore, remains impractical for high-dimensional data
matrices. To address the issue related to the computational execution time, we propose
calculating the low-rank Green’s functions using two stochastic SVD algorithms. The first
method is the randomized SVD algorithm (rSVD), introduced by Halko et al. (2011), which
is designed to obtain a low-rank approximation of a large matrix. Recognized as a state-
of-the-art algorithm for computing low-rank matrix approximations (Mahoney, 2011), this
algorithm circumvents the conventional SVD computation on a large matrix. Instead, it
performs a random sampling on the original matrix to construct a small condensed subspace

and then projects A onto this subspace (Ji and Li, 2014). Thereafter, a deterministic matrix
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factorization algorithm is applied to the smaller dense matrix to compute a near-optimal low-
rank approximation of A. Such algorithm has been shown to be computationally efficient
with a relatively low computation cost and high confidence for approximating matrices with
low-rank structures (Halko et al., 2011; Martinsson et al., 2011; Halko, 2012; Tropp and
Webber, 2023).

The rSVD comprises the following six primary computational components (refer to Fig-
ure 2.2a): (i) generation of a n x k random matrix €, (4#) matrix-matrix multiplication
of AQ to produce Y, (i) QR decomposition of Y to obtain the near-optimal basis Q,
(7v) matrix-matrix multiplication to project the input matrix to low-dimensional space, i.e.,
Q'A, to produce the relatively small matrix B, (v) conventional SVD decomposition on B,
and (vi) recovery of the left singular vectors Uy from the approximate left singular vectors
U, by pre-multiplying by Q. As described by Erichson et al. (2019), the basis matrix
Q often fails to provide a good approximation for the column space of the input matrix.
Therefore, it is necessary to use a power iteration scheme (Rokhlin et al., 2010; Halko et al.,
2011; Gu, 2015) in order to enhance the quality of this step. In this research, we have used
the power iteration scheme with p = 2 and a QR decomposition as an intermediate step
(Rokhlin et al., 2010), which is accurate and reduces the stability problems of conventional
implementation. It is important to note that, after random matrix sampling by €2, the input
matrix A is condensed into either tall-and-skinny or a short-and-wide matrix, such as Y and
Q are m x k matrices, and B is an k£ X n matrix, where & is much smaller than min(m,n).
The small and dense matrix B is particularly suitable to reduce the computational cost of
conventional SVD on the input matrix, being that significant computational speedups are
achieved if the target rank k is about 3 — 6 times smaller than the smallest dimension of A
(Erichson et al., 2019). Finally, the amount of memory required to store the resulting arrays
of this algorithm is similar to the memory demanded by the low-rank SVD, since it depends

on the target rank k.

The other probabilistic matrix algorithm is the compressed SVD (¢SVD), introduced by
Ji and Li (2014). This method represents an advancement over the rSVD algorithm, focusing
on computing the top-k singular vectors of BBT instead of performing the conventional
SVD directly on the matrix B (Figure 2.2b). It follows the initial four stages of the rSVD
algorithm. Then, the matrix-matrix multiplication BBT yields a small square matrix whose
size only depends on the target rank k, offering a more efficient approach to derive the factor
Uy,. Under the assumption that fjgfjk ~ I, the matrix Vi can be effectively approximated
via the single matrix-matrix operation U'B ~ £, V] As mentioned earlier, this algorithm
reduces the computational execution time. However, the amount of memory required to

store the resulting matrices is similar to that required by the rSVD.
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In summary, we propose to implement the FLSRTM as described by equations 2.4-2.6
and to evaluate the resulting high-resolution images obtained from the inversion scheme us-
ing a low-rank representation of Green’s functions. Implementing FLSRTM requires storing
the background Green’s functions to compute the Born data and gradient at each itera-
tion, which can be impractical for large-scale datasets and models. To mitigate this issue,
we advocate applying rSVD or ¢SVD algorithms to reduce the rank of the Green’s func-
tions. Therefore, alongside assessing the quality of the migrated images, we evaluate the
computational performance of these stochastic SVD algorithms for computing low-rank rep-
resentation of Green’s functions. The workflows for implementing each FLSRTM, whether
using the full Green’s functions or the low-rank representation via SVD algorithms, are

illustrated in Figure 2.3.

Numerical tests

In this section, we present two numerical examples to evaluate the performance of our
proposed FLSRTM scheme in generating high-quality seismic images using the low-rank rep-
resentation of Green’s functions via stochastic SVD algorithms. For both synthetic examples,
we used similar parameters to generate the background Green’s functions, construct their
low-rank representations, and execute the inversion scheme. Additionally, to ensure consis-
tency and comparability of the results, all tests were performed using the same hardware

configuration.

Considering that computing the background Green’s functions for each iteration of the
FLSRTM inversion scheme is uncommon and significantly increases computation time, we
have precomputed these functions and stored them on disk for our tests. For this, we
defined a split-spread geometry with shots and receivers located on the surface and equally
distributed over the model range. A 15 Hz Ricker wavelet was employed as the source wavelet,
with a record length of 4s and a time sampling interval of 4ms. Subsequently, utilizing
the background velocity model, we conducted numerical modeling to compute the acoustic
wavefield by employing the rapid expansion method (REM) (Pestana and Stoffa, 2010). The
background Green’s functions were then obtained by deconvolving these wavefields with the

Ricker source wavelet.

On the other hand, it is important to mention that the value of the optimal rank de-
pends on the frequency component of the background Green’s function. To circumvent this
dependence, we applied the approach proposed by Kim et al. (2022), wherein the Green’s

function representing the seismic source located at the midpoint of the model surface is
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initially selected. The component corresponding to the dominant frequency is then chosen,
followed by the application of the conventional SVD algorithm to construct its distribution
of normalized accumulated singular values. The selection criterion is subsequently applied to
determine the optimal rank %, which can be extended to other frequency components as well
as to sources and receivers in the split-spread geometry. This ensures that the reconstructed
Green’s functions are nearly identical to the original Green’s functions. Once the optimal
value k is defined, the rSVD and ¢SVD algorithms can be applied. In this study, we utilized
routines from the Linear Algebra PACKage (LAPACK) (Anderson et al., 1999) to perform
the necessary SVD and QR factorizations in the implementation of these stochastic SVD
algorithms. To validate the accuracy of the reconstructed Green’s function, we adopted the

normalized root-mean-square (NRMS) error.

In the context of the FLSRTM scheme, we have set the number of iterations to 20.
Furthermore, a modified Laplacian filter was applied to attenuate low-wavenumber artifacts
observed in the gradient computed at each iteration of the inversion process (Kumar et al.,
2023). Implemented in the frequency domain, this filter efficiently suppresses migration
artifacts without distorting the spectrum and amplitude of the migrated image. To compare
the performance of the proposed FLSRTM, four cases were tested: saving the original Green’s
functions (case 1 - see left part of Figure 2.3), utilizing the low-rank representation of the
Green’s functions via SVD (case 2), rSVD (case 3) and ¢SVD (case 4) algorithms. The
workflow for implementing FLSRTM using low-rank Green’s functions is depicted in the
right part of Figure 2.3. It is important to note that in cases 2-4, before initiating the
inversion scheme, the factors Uy, ¥, and V] are computed using the implemented SVD
algorithms. However, only the terms U X, and V| are retained in memory. This approach
does not influence the low-rank approximation, does not significantly increase computation

time, and also circumvents the need for storing the singular values.

Layered model

The first experiment utilized a layered model, characterized by a gradual increase in
velocities from 1500 to 2400 m/s, indicating a smoothly varying subsurface structure with no
abrupt transitions, as illustrated in Figure 2.4a. The model space was discretized into 401 X
501 grid nodes with a grid interval of 4m in the vertical direction and 8 m in the horizontal
direction. Figure 2.4b presents the background velocity model, obtained by applying a
smoothing filter to the true model, while the reflectivity model is shown in Figure 2.4c. For
this model, we employed a split-spread geometry with 251 shots and 250 receivers located

on the surface. Consequently, we have a source at Om, a receiver at 8 m, a source at 16 m,
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a receiver at 24m and so on. Subsequently, the REM method was utilized to compute the

background Green’s functions for this configuration.

Before applying stochastic SVD algorithms to this numerical experiment, we analyzed
the optimal rank for reducing the Green’s function. As previously mentioned, the optimal
rank must be determined from the Green’s function at the dominant frequency. In this
experiment, the 15 Hz Green’s function generated by a source at 2000 m (see red star in Figure
2.4a) was used to identify the optimal rank. Figure 2.4d shows the real part of this function.
Conventional SVD was performed on the Green’s function to compute the distribution of
normalized singular values (Figure 2.5a). To apply the criterion for determining k, we
calculated the normalized accumulated singular values (Figure 2.5b) and set the rank that
has an accumulated singular value above 99.9 %. We notice that & = 39 satisfies this criterion
(see red mark in Figure 2.5b), and it is also smaller than nz = 401. With the optimal rank
identified, we computed the low-rank representation of the Green’s function using SVD,
rSVD, and ¢SVD algorithms.

To verify the accuracy of low-rank representations, the Green’s functions were recon-
structed, and their differences from the raw Green’s function were computed, as depicted in
Figure 2.6. The reconstructed Green’s functions, which closely approximate the true Green’s
function, have a NRMS error of 8.46 x 10~* for the conventional SVD and 8.95 x 10~* for
the two stochastic SVD algorithms implemented. Horizontal profiles were extracted from
the low-rank Green’s functions at a vertical distance of 800 m, and a comparison with a
reference is illustrated in Figure 2.7a. This comparison demonstrates that the profiles match
quite well. To examine the distribution of singular values in these low-rank Green’s func-
tions, we applied SVD decomposition to them. Figure 2.7b shows that the rSVD and ¢SVD
distributions align closely with the reference singular values. In this numerical experiment,
it is observed that the memory footprint required to store the low-rank approximation of
the 15 Hz Green’s function (0.268 MB) constitutes merely a fraction of the memory required
by the original function (1.533 MB). This clearly demonstrates that SVD methodologies
offer superior memory efficiency. Figure 2.16a shows the normalized computational times to
perform the SVD, rSVD, and ¢SVD algorithms. The computation times for both rSVD and
c¢SVD are markedly lower than the time expended by the conventional SVD, with the ¢cSVD

algorithm being particularly noteworthy.

We proceed to compare the FLSRTM results from each case. The inversion process
employs 180 frequencies, with an interval of 0.25 Hz, and ranging from 0.25Hz to 45 Hz. For
the parallel inversion, we utilize 90 CPU cores, with each node processing two frequencies of

Green’s functions for every shot and receiver, requiring 1.500 GB for case 1. Given that the
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optimal rank is 39, the memory demand for each node is significantly reduced to 0.262 GB
for cases 2-4, which is approximately 17.5% of the memory required in case 1. Since the
dimensions of the low-rank Green’s functions are much smaller than those of the original
Green’s functions, cases 2-4 require small memory storage. Figure 2.9 presents the RTM
images (left column) and the inverted reflectivity model (right column) after 20 iterations.
The normalized misfit values, as a function of iteration, exhibit uniform results across all cases
(Figure 2.8). However, an almost negligible difference in the convergence curves is observed,
which is associated with the truncation carried out to generate the low-rank representation
of the Green’s functions. A comparison of the FLSRTM images with the RTM images reveals
that the FLSRTM process enhances both the quality and resolution of the image beyond
the RTM results. The FLSRTM reflectivity models align well with the true reflectivity
(Figure 2.4c). As expected, case 1 demands the most memory usage but exhibits the least
computation time, which is established as our time reference. Cases 2-4 consumed additional
computational time to compute the low-rank Green’s functions at the initial iteration and
to reconstruct the Green’s function at each subsequent iteration (refer to the shadowed gray
area in Figure 2.3). As depicted in Figure 2.16b, the normalized times consumed for each
case clearly indicate the superior efficiency of the FLSRTM scheme using stochastic SVD

algorithms to construct the low-rank representation of the background Green’s functions.

Modified Marmousi-2 model

To evaluate the performance of the proposed algorithm, we conducted a second test using
the Marmousi-2 model (Martin et al., 2006), which features larger dimensions compared to
the previous test. This model represents a marine subsurface section with complex geological
structures, including sedimentary layers and irregular rock formations. As depicted in Figure
2.10a, the model used here is a modified version of the released Marmousi-2 model, generated
according to the description in Kim et al. (2022). This modified model has a depth of 3500 m
and a length of 9200 m, with grid dimensions of 351 x 921 and grid intervals of 10 m. Figure
2.10b illustrates the background velocity model, derived from applying a filter to the true
velocity model. The reflectivity model is presented in Figure 2.10c. For this numerical
experiment, we constructed a fixed-spread geometry with 461 sources, with shot positions
ranging from 0 m to 9200 m at 20 m intervals. Each shot has 460 receivers, starting from 10 m
to 9190 m at 20m intervals. Using the background velocity model as input and employing
the REM, we conducted forward modeling to compute and store the background Green’s

functions for the specified geometry.

In this example, given that the dominant frequency of the source wavelet is 15 Hz, we
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utilized the 15 Hz Green’s function, generated by a source at 4600 m (see red star in Figure
2.10a), to validate the implementation of the SVD algorithms and determine the optimal
rank k. Figure 2.10d shows the real part of this 15Hz Green’s function. Consequently,
a conventional SVD was performed on the Green’s function to compute its distribution of
normalized singular values (Figure 2.11a). We then calculated the normalized accumulated
singular values (Figure 2.11b) and applied the predefined criterion to set the optimal rank.
We notice that k = 75 satisfies the defined criterion (see red mark in Figure 2.11b), therefore,
we set the optimal rank as 75 for reducing the dimension of the Green’s function safely. In
contrast to the Green’s function in the previous numerical example (Figure 2.4d), the current
Green’s function presents greater complexity due to wavefield simulations in a geologically
intricate model. As a result, the necessary optimal rank for reconstructing the Green’s
function has increased. Using this optimal rank, we computed the low-rank representation

of the Green’s function via conventional and stochastic SVD algorithms.

Figure 2.12 shows the reconstructed Green’s functions with only 75 decomposed matrices
and their differences from the original Green’s functions. It is clearly verified that the low-
rank Green’s functions with optimal rank are very similar to the original function. From
the reconstructed Green’s functions, we extracted horizontal profiles and compared them
with the reference, as shown in Figure 2.13a. Overall, no noticeable differences can be
observed, and the traces appear nearly identical. Figure 2.13b displays the distribution of
the normalized singular values for each decomposition scheme, which are remarkably close
to the reference singular values. The NRMS error between the low-rank Green’s function
and the reference for the SVD, rSVD, and ¢SVD algorithms was 4.84 x 1074, 5.13 x 10~% and
5.16 x 1074, respectively. For this numerical experiment, the memory required to store the
low-rank 15 Hz Green’s function was 0.728 M B, representing only a fraction of the 2.466 MB
needed for the original function. As another aspect of computational cost, the normalized
times consumed for the SVD, rSVD, and ¢SVD were 1, 0.240, and 0.097, respectively. These
results confirm that the use of stochastic SVD algorithms enhances memory efficiency akin
to the conventional SVD algorithm. However, these algorithms require less computing time
(Figure 2.16a), with the ¢SVD algorithm standing out by being 10.4x faster.

FLSRTM for each case was performed with 180 frequencies sampled at 0.25Hz and
ranging from 0.25Hz to 45 Hz. We used 90 CPU cores for the parallel inversion, with each
node storing two frequencies of Green’s functions for every shot and receiver (4.436 GB of
storage). Since the optimal rank is 75, the memory requirement for each node is reduced
to 1.310 GB. The misfit convergence curves for the different cases are shown in Figure 2.14.
Despite the minor differences between the curves, attributed to the truncation performed to

obtain the low-rank representation of the Green’s functions, it is clearly observed that cases
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2-4 converge to values very close to those reached in case 1. Figure 2.15 presents the RTM
images (left column) and the inverted reflectivity models (right column) after 20 iterations.
Comparing the FLSRTM images with the RTM images, it is evident that FLSRTM enhances
both the quality and resolution of the images. The FLSRTM reflectivity models demonstrate
a strong agreement with the true reflectivity, as shown in Figure 2.10c. Cases 2-4, even with
the use of low-rank Green’s functions, produce an inverted reflectivity model with quality
identical to that of case 1. As can be seen in Figure 2.3, case 1 necessitates the highest
memory allocation, yet it exhibits the shortest computational duration. Conversely, cases 2-
4 require additional computational time (Figure 2.16b). This extra time is needed initially to
construct the low-rank representation of the Green’s functions and subsequently to assemble

these at each iteration (refer to the shadowed gray area in Figure 2.3).

The results demonstrate the effectiveness of the proposed FLSRTM scheme, which uti-
lizes stochastic SVD algorithms to reduce the computation time for constructing low-rank
Green’s functions. Furthermore, this approach minimizes the memory requirements for stor-
ing the background Green’s functions, as previously demonstrated by Kim et al. (2022)
using the conventional SVD algorithm. In contrast to other implemented algorithms, the
cSVD factorization demonstrates superior performance. This can be attributed to its inter-
nal application of SVD decomposition on a square matrix of dimensions k£ x k. Notably, this
approach remains independent of the dimensions of the original matrix (refer to Figure 2.2b).
As observed, the value of the optimal rank varied in each numerical example. Therefore, we
can infer that the optimal rank for accurately reconstructing the Green’s function increases
when the velocity model features a complex geological structure. Consequently, the ¢cSVD
algorithm emerges as the most suitable choice when implementing the proposed FLSRTM

scheme.

Conclusion

In this study, we propose an efficient scheme for implementing FLSRTM by utilizing
low-rank Green’s functions. While FLSRTM with fully stored Green’s functions faces mem-
ory limitations for large-scale datasets or models, our approach overcomes this challenge.
Specifically, we decompose the Green’s function associated with the dominant frequency
of the source wavelet into rectangular and unitary matrices using both conventional and
stochastic SVD algorithms. The optimal rank, determined by a criterion based on the accu-
mulated normalized singular value distribution, ensures efficient memory storage. Further-
more, we extend our investigation by incorporating randomized SVD and compressed SVD

algorithms. These advancements significantly reduce computational time for constructing
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low-rank Green’s functions. By leveraging rSVD and ¢SVD, we achieve substantial reduc-
tions in memory requirements without compromising computational efficiency. Our numer-
ical experiments, conducted on a layered model and a modified Marmousi-2 model, demon-
strate that the reconstructed Green’s functions exhibit high accuracy using rank-reduced
matrices. Comparative studies with FLSRTM using fully stored Green’s functions validate
the accuracy of our proposed FLSRTM scheme. Notably, the ¢SVD method consistently
outperformed other approaches in terms of computational efficiency, making it the preferred
choice for executing the FLSRTM scheme. Overall, we conclude that FLSRTM with low-
rank Green’s functions via rSVD and c¢SVD represents a computationally efficient approach

for generating accurate migration images.
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(a)

Figure 2.1: Schematic illustration of the (a) conventional and (b) low-rank SVD
applied on a rank-r matrix A. k denotes the desired target rank of the
approximation.
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Figure 2.2: (a) The conceptual architecture of the randomized SVD involves sev-
eral key steps. Initially, a natural basis Q is computed to derive a
smaller matrix B. Next, the SVD is efficiently performed on this re-
duced matrix. Finally, the left singular vectors U are reconstructed
from the approximate singular vectors U. (b) Schematic illustration of
the compressed SVD. Since BB' is a small square matrix whose size is
independent of the size of the original matrix A, the left singular vec-
tors U can be derived much more efficiently than from B, and the right
singular vectors V1 are reconstructed from the approximate singular
vectors U.
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Figure 2.6: Real component of the reconstructed 15Hz Green’s function from its
low-rank representation using (a) conventional, (¢) rSVD, and (e) ¢SVD
algorithms. The right column shows their corresponding differences
with respect to the reference Green’s function (Figure 2.4d). The clip
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traces selected for the plot in Figure 2.7a.
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Figure 2.7: (a) Wiggle traces comparing the horizontal profiles extracted from the
real part of the reference (black line in Figure 2.4d) and the recon-
structed (colored dashed lines in Figure 2.6a-c) 15 Hz Green’s function.
(b) Distribution of singular values for the low-rank representation of
the 15 Hz Green’s function using conventional and stochastic SVD al-
gorithms.
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Figure 2.8: Convergence curves of the normalized data misfits of different FLSRTM
algorithms for the layered model.
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Figure 2.12: Real component of the reconstructed 15Hz Green’s function from
its low-rank representation using (a) conventional, (¢) rSVD, and (e)
cSVD algorithms. The right column shows their corresponding differ-
ences with respect to the reference Green’s function (Figure 2.10d).
The clip level is the same for all panels. The colored dashed lines
indicate the traces selected for the plot in Figure 2.13a.
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Figure 2.13: (a) Wiggle traces comparing the horizontal profiles extracted from
the real part of the reference (black line in Figure 2.10d) and the
reconstructed (colored dashed lines in Figure 2.12a-c) 15Hz Green’s
function. (b) Distribution of singular values for the low-rank represen-
tation of the 15 Hz Green’s function using conventional and stochastic
SVD algorithms.

= 1 Case 1 =— Case 3 ---
g | Case 2 - - Case 4 - -
3
$0.8
—
<
20.6 Rememes e
= 18 19 20
£0.4
=
20.2
o
Z,

1 4 8 12 16 20

Number of iterations

Figure 2.14: Convergence curves of the normalized data misfits of different
FLSRTM algorithms for the Marmousi model.
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Figure 2.15: RTM and FLSRTM results for: (a)-(b) case 1, (c)-(d) case 2, (e)-(f)
case 3 and (g)-(h) case 4.
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One-Way Wave-Equation Migration
Based on Jacobi-Anger Expansion in
Arbitrarily Lateral Varying Media

This chapter has been submitted as Daniel E. Revelo and Reynam C. Pestana. One- Way
Wave-Equation Migration Based on Jacobi-Anger Expansion in Arbitrarily Lateral Varying
Media to TEEE Transactions on Geoscience and Remote Sensing. Minor modifications have

been applied to maintain consistency within this thesis.

Abstract

Seismic depth migration by downward continuation using conventional one-way wave-
equation operators has three main shortcomings: handling evanescent waves, imaging large
angles, and stability of the one-way propagator. Conventional one-way wave-equation propa-
gators have been extensively constructed using approximation theories, such as Taylor series
and other expansions. Although in these, a new operator is calculated at each lateral point
of the grid, difficulties persist due to the assumption that the medium is locally homoge-
neous. Consequently, these propagators exhibit significant weaknesses in imaging complex
media. To alleviate these drawbacks, we propose a stable and affordable approach to the
one-way wave-equation depth migration algorithm. First, we use a spectral projector to
suppress evanescent modes in an arbitrarily laterally varying velocity model. Next, we ap-
ply a coupled Schulz iteration scheme to the Helmholtz operator to obtain the square-root

operator. Finally, to address the issue of accurately constructing the extrapolation operator
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while ensuring stability, we introduce a novel algorithm to approximate the exponential ma-
trix operator using the Jacobi-Anger expansion. This approximation enables the one-way
wave-equation propagator to be constructed solely through matrix multiplication, a feature
that facilitates efficient implementation and execution. Through an impulse response test,
we demonstrate that our proposed migration algorithm is more accurate than the one using
Taylor series expansion and is effective for large angles in media with pronounced lateral
velocity variations. We also use models with complex subsurface structures and field data to
demonstrate that our approach performs better at imaging intricate and fine-scale features

compared to traditional one-way migration methods.

Introduction

The one-way wave equation is derived from an approximate solution of the two-way wave
equation and is central to the recursive extrapolation approach in wave-equation migration
(WEM)(Claerbout, 1971). It decomposes the full wave equation along the dominant direction
of wave propagation, thereby reducing the computational dimensionality. Consequently, the
WEM method holds a significant advantage in large-scale problems. Unlike reverse time
migration (RTM) (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983; Levin, 1984),
WEM can only provide accurate phases and amplitudes within limited propagation angles,
especially in media with strong velocity contrasts and steeply dipping reflectors. While RTM
is studied intensively across industries and academia, it has shortcomings, e.g., high memory

costs and low-frequency artifacts, that could be mitigated by WEM.

One-way wave propagators, as part of a full wave equation separation migration method,
provide a reliable kinematic solution for acoustic waves. This factorization of the two-way
wave equation into upgoing and downgoing operators introduces the square-root operator (or
vertical wavenumber), characterized by its non-locality. Although many kinds of wide-angle
one-way wave-equation methods have been developed to approximate the square-root oper-
ator with a local operator, their accuracy is still limited. Conventional WEM algorithms
include the phase shift and the phase shift plus interpolation (PSPI) migration methods
(Gazdag, 1978; Gazdag and Sguazzero, 1984), the split step (SS) migration method (Stoffa
et al., 1990), and the Fourier finite-difference (FFD) technique (Ristow and Riihl, 1994).
Another branch within conventional one-way propagators is to expand the square-root op-
erator directly, without introducing any background, using mathematical approximations
such as Taylor and Padé series, as well as Chebyshev polynomials (Gazdag, 1978; Gazdag
and Sguazzero, 1984; Stoffa et al., 1990). The truncation errors produced by these ap-

proaches to approximate the square-root operator limit the imaging angle, making it very
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difficult to achieve 90°. This restriction on the imaging angle is a significant drawback of
WEM. To fully leverage the advantages of the unidirectional wave equation, it is impera-
tive to eschew conventional methodologies that employ approximate polynomial expressions
for the computation of the matrix square root. In the literature, two notable and success-
fully tested approximation-free methods have been proposed: an eigenvalue decomposition
method (Grimbergen et al., 1998) and the coupled Schulz iteration scheme (Higham, 1987),
which is based on the relationship between the matrix sign function and its square root.
Given that the eigenvalue decomposition method is time-consuming (You et al., 2018), we

have opted to use Higham’s scheme to compute the vertical wavenumber in our proposed
WEM algorithm.

Another issue present in the implementation of the one-way imaging algorithm is the
notorious instability in the depth extrapolation propagator, which arises from the presence
of evanescent wave components (Grimbergen et al., 1998; Wapenaar and Grimbergen, 1998).
Kosloff and Baysal (1983) propose suppressing evanescent waves in the wavenumber do-
main for a background with depth-only dependent velocity using the Fourier transform and
a simple ideal cutoff filter. For a general variable background, they suggest employing a
cutoff filter adjusted to the maximum velocity at a given depth level, also relying on the
Fourier transform as a tool. As demonstrated by Thorbecke et al. (2004), the application
of this cutoff filter can be extended to the one-way wave equation without any loss of gen-
erality. Numerical examples demonstrate that for full-wave-equation depth extrapolation in
migration, this strategy results in the removal of some propagating waves along with the
evanescent waves, leading to poor imaging of steep reflectors (Sandberg and Beylkin, 2009).
As an alternative, one of the most promising methods is the spectral projector (Kenney and
Laub, 1995), which can filter out evanescent waves without losing any propagating wave
components. For depth-dependent backgrounds, the combination of the Fourier transform
and the ideal cutoff filter, as proposed by Kosloff and Baysal (1983), constitutes such a pro-
jector. In this paper, we implemented an algorithm for computing the spectral projectors
that leverages their relationship with the sign function of a matrix, which in turn uses matrix

polynomial recursions (Auslander and Tsao, 1992; You et al., 2019).

In our proposed WEM algorithm, we avoid the assumption that the square-root operator
corresponds to a local operator. As a result, the depth extrapolator can no longer be applied
locally and must be implemented as an exponential matrix operator. While numerous re-
searchers have focused on the computation of the square-root operator and the attenuation
of evanescent waves, few have given attention to constructing this exponential matrix op-
erator. You et al. (2019) used the Taylor series (TS) expansion to approximately compute

the exponential function of a matrix. However, in this paper, we propose using the Jacobi-
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Anger (JA) expansion as a more efficient alternative for this purpose. The JA expansion
inherently represents oscillatory functions more naturally, making it particularly well-suited
for applications involving wave propagation, such as seismic depth extrapolation. This ex-
pansion converges more rapidly due to the properties of Bessel functions, which decreases
the number of terms needed for an accurate approximation (Watson, 1944). Additionally,
the orthogonality of Bessel functions minimizes cross-interference between terms, further
enhancing the precision and compactness of the representation (Abramowitz and Stegun,
1972). Consequently, the JA expansion not only provides a more exact approximation with
fewer terms but also results in significant computational efficiency and accuracy in numerical

simulations (Bowman, 1958).

The aim of this paper is to delineate the integration of the spectral projector, the coupled
Schulz iteration scheme, and the JA expansion into the WEM framework to overcome the
inherent limitations in conventional approaches for solving one-way wave equations. The
structure of this article is as follows: Initially, a brief overview of the one-way wave equations
is presented. This is followed by an introduction to the spectral projector and the coupled
Schulz iteration scheme. Thereafter, the proposed JA expansion is elucidated, which serves
to approximate the exponential matrix operator. To validate the efficacy of the proposed
scheme within the WEM method, impulse responses were computed employing both the TS
and JA expansions, as well as conventional WEM algorithms. Moreover, to procure better
and more detailed imaging results, post-stack and pre-stack migrations were executed for
complex subsurface models using both conventional WEM methods and the proposed one-
way migration algorithm. Finally, we applied these migration methods to real seismic data

for comparison.

Methodology

Acoustic one-way propagators

Assuming a 3D isotropic medium with constant density, the one-way wave equations for
downgoing py and upgoing p, continuation of the acoustic wavefield, in the Fourier domain,
are written as (Wapenaar, 1990; Claerbout, 1985; Mulder and Plessix, 2004)

g . .
(@ + zk:z) Pa(x, z,w) =0,

Pa(x,z2=0,w) = F(w)d(x — x4),

(3.1)
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and

(% — ikz> Pu(x,2,w) =0, (32)
Pu(X, 2 =0,w) = cZ(x, w),

where z and x = (z,y) are the coordinates of depth and the two lateral dimensions, re-

spectively, and i = v/—1 is the imaginary unit. F(w) represents the spectrum of the source

term injected at the vector position x, cz(x, w) is the recorded seismic data in the frequency

domain and w is the angular frequency. The generalized solution of equations 3.1 and 3.2

allows us to obtain an extrapolation scheme in depth for the acoustic wavefield
Paw(X, 2 + Az, w) = Pau(X, z,w)eF =02 (3.3)

where
w2 92 92 1/2

v2(x) * Ox? * Jy?

corresponds to the square-root operator, also known as the vertical wavenumber, v(x) is the

k. =

(3.4)

velocity, and Az is the vertical grid space of the medium.

From equations 3.3 and 3.4 it is evident that the implementation of one-way propagators
necessitates the construction of the square-root operator and the calculation of the expo-
nential matrix operator. However, before detailing the adopted methodologies for these two
stages of the depth extrapolation scheme, it is crucial to address an inherent issue within
the Helmholtz operator L(= k?). Next, the stability problem associated with it will be

elucidated, followed by a discussion of the selected algorithm to mitigate this drawback.

Treatment of evanescent waves via spectral projectors

To simplify our discussion, we consider a 2D case, where the medium is discretized onto
a nz x nr mesh. We then represent the Helmholtz operator L, for a single depth level and

at a specific frequency, as a square nx X nx matrix

w? 0?
L= —_— .
v2(x) - ox?’ (8:5)
with
-, -
w
v2 (1) 0 0 2 1 0 0]
w? 1 -2 1 0
w? 0 > 0 o 1
v*(x) : <: g .. : " Oz Ax? : : - : ’
0 0 w? 0 0 1 2]
i 0} (Zna) |
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where Ax is the horizontal grid space of the medium. In this discretization of operator
L, a second-order finite-difference scheme is employed to compute the second-order partial
derivative with respect to x. However, to enhance accuracy, it is advisable to use a higher-
order finite-difference scheme instead. It is important to note that the matrical representation
for L adeptly handles variations in lateral velocity along the horizontal direction due to its

diagonal elements.

It is well known that when the vertical wavenumber involved in depth extrapolation
propagators is a positive real number, it corresponds to a physically meaningful wave. Con-
versely, if k., assumes a complex value, the magnitudes of the propagators may exhibit
exponential amplification with increasing depth. In such instances, the resultant wave is
classified as an evanescent wave. Given that evanescent waves induce instability in prac-
tical applications, their suppression is imperative during the depth extrapolation process.
This instability originates from the indefinite character of operator L, which possesses both
positive and negative eigenvalues (Sandberg and Beylkin, 2009; You et al., 2019). Positive
eigenvalues correspond to propagating modes, while negative eigenvalues lead to an exponen-
tial growth of the wavefield during depth extrapolation (nonpropagating evanescent waves).

Consequently, the depth stepping scheme defined in equation 3.3 becomes unstable.

To filter out the negative eigenvalues of operator L, the spectral projector involves only
matrix multiplications as proposed by Kenney and Laub (1995)

I +sign(L)

P 2

(3.6)

is used in our implementation. The sign function is, in turn, computed with the Newton-
Schulz method (Auslander and Tsao, 1992)

3 1
&H=§&—§$v for k=0,1,2,..., (3.7)

and initialized with Sy = L/||L||2. This method exhibits quadratic convergence rate, result-
ing in Sy approaching sign(L) (Higham, 2008). The projector performs on matrix L such
that L = PL, preserving only the positive eigenvalues, \;, > 0, where ), is the k-th eigen-
values of the matrix L, and guaranteeing numerical stability during the depth extrapolation
process. After addressing the evanescent waves, we proceed to introduce the algorithm used

for constructing the square root of the filtered Helmholtz operator.

Construction of the square-root operator

The conventional one-way operators used in WEM typically employ a reference velocity

for the horizontal direction, which can lead to inaccuracies in heterogeneous media. To
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address this, the common approach is to compute a new operator at each grid point. However,
in the presence of strong lateral inhomogeneities, the structure of the propagator matrix
departs from a Toeplitz form to one where each row consists of a different local convolutional
operator (Li et al., 2024). This adjustment, which reduces the length of the conventional
operator, aims to enhance the accuracy of handling lateral variations. Nonetheless, shorter

operators can introduce numerical errors during propagation, particularly at large angles
(Thorbecke et al., 2004).

To overcome this issue, and before computing the one-way extrapolator et*=2% the
construction of the operator k, must be performed in the space domain. In the literature,
two methods are reported for directly computing the square root of the operator L. You et al.
(2018) and Li et al. (2024) have described constructing the square root of L via singular
value decomposition (SVD). However, SVD can significantly increase computational time for
large models. Alternatively, the coupled Schulz iteration scheme (Higham, 1987), which was
successfully implemented by You et al. (2019) for one-way extrapolation, has been selected
for our algorithm for WEM. Based on the definition of the matrix sign function and assuming
the absence of negative eigenvalues, Higham (1987) proposed the following coupled iteration

scheme to determine the square root of a given matrix
{ Vi1 = 3Yu(31 — Z,Yy)

for k=0,1,2, ..., (3.8)
Zi = 18I - 2

with Yy = L and Z, = I, where [ is the identity matrix. As can be seen, Higham’s scheme
involves only matrix multiplications, and after limited iterations, the convergence results are
Y, — L'? and Z, — L~'/2. The convergence is typically fast, and the method is robust for a
wide range of matrices (Higham, 2008). Moreover, implementing this method to calculate the
square-root operator eliminates conventional approximations and prevents the generation of
incorrect phase curves in media with strong lateral velocity variations (You et al., 2019). Tt is
important to note that the elimination of negative eigenvalues from operator L is performed
not only to filter out evanescent waves, but also to meet the prerequisites for applying the
coupled Schulz iteration scheme. With the algorithms for attenuating evanescent waves and
calculating the square-root operator defined, we now introduce the proposed method for

+ik. Az

calculating the extrapolator e from equation 3.3.

Calculation of the one-way propagator

As previously mentioned, when considering lateral inhomogeneities, the local application
of the extrapolation operator becomes infeasible. This implies that it cannot be applied as

a simple arithmetic product between the acoustic wavefield and the one-way propagator.
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+ik:82 must be implemented as an exponential matrix oper-

Consequently, the propagator e
ator in the space domain. In the work of You et al. (2019), it is proposed to approximate
the propagator with a Taylor series (TS) expansion. However, this proposal does not con-
sider that Az can assume large values and, therefore, the operator approximation will lose
accuracy. Morever, the TS expansion often requires numerous terms to achieve a precise ap-
proximation, which can lead to inefficiencies and computational challenges. To address these
limitations, we propose to use the Jacobi-Anger (JA) expansion (Abramowitz and Stegun,

1972) to compute the exponential function of a matrix

eHik:Az o Zen (RAX)T, (i;kz) 7 (3.9)

where ¢g = 1 and ¢, = 2 if n #£ 0. The term J, represents the Bessel function of order n, R

corresponds to the maximum eigenvalue of L, i.e., R = wWyax/Vmin, and T are the Chebyshev

polynomials — one notes that they satisfy the following recurrence relation

Ta+1(8§) = 26Ta (&) — Ta-1(S), (3.10)

which is initiated by
To()=1 and  Ti(§) =¢ (3.11)

Furthermore, to guarantee the convergence of the series, we must ensure that M is greater
than RAz. The JA expansion inherently captures the oscillatory nature of the exponential
operator with fewer terms, providing an approximation with a very high degree of accuracy
(Bowman, 1958). Theoretically, it has no limits on the value of Az, since the number of
terms directly depends on this value. This results in improved performance and reduced
computational cost, making it a more suitable and robust choice for calculating the one-way

propagators.

To verify the accuracy of the one-way extrapolator using the proposed expansion, we
computed the approximation using T'S and JA expansions in a 1500 m/s homogeneous ve-
locity model. The grid step in the vertical direction is 10m and the frequency component
is 80 Hz. The phase ¢(= k.Az) is discretized over [0, RAz] with an interval of 3.35 x 1072.
Figure 3.1 presents a comparison between the TS and JA expansions. In Figure 3.1a, f(¢)
and g(¢) represent the seventh-order and ninth-order T'S expansions, respectively, while h(¢)
corresponds to the seventh-order JA expansion. Notably, the seventh-order TS expansion
(dashed red line) exhibits significant discrepancies near the right edge of the phase values,
indicating a poor fit in this region. As the order increases to the ninth-order TS expansion
(dashed blue line), the fit improves, yet some misalignment remains evident. Conversely, the

seventh-order JA expansion (dashed green line) demonstrates a remarkable agreement with
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the exact values (black line) across the entire range of phase values. This superior robustness
and accuracy is highlighted in Figure 3.1b, where the absolute error for each approximation
is plotted. To validate the accuracy of the approximation for the one-way extrapolator, we
employed the normalized root-mean-square (NRMS) error metric. The NRMS error between
the approximated operator and the reference values for the seventh-order TS, ninth-order
TS, and seventh-order JA expansions was 2.10 x 1071, 6.73 x 1072, and 3.88 x 1072, respec-
tively. For this example, the results indicate that the JA expansion provides a more reliable
and precise approximation of the exponential operator, even with a lower-order expansion,

compared to the TS expansion.

In summary, the implementation of our extrapolation algorithm for each depth is per-
formed as follows: 7) the Helmholtz operator L is constructed for each frequency component,
i1) the spectral projector (equations 3.6-3.7) is applied to L to filter the negative eigenvalues,
#ii) the square-root operator k, is obtained by applying the coupled Schulz iteration scheme
(equation 3.8) and iv) the acoustic wavefield is extrapolated stably and free of evanescent
energy by applying the one-way propagator computed using equation 3.9. To integrate our
proposed algorithm into WEM, we adopted the cross-correlation imaging condition to up-
date the image. A step-by-step summary of the presented shot-record migration imaging

algorithm is shown below:

1. Initialize the migrated image I =0
2. Loop for all depth steps z;
3. Loop for all frequency components w;

(a) Compute the Helmholtz operator L
(b) Remove the negative eigenvalues of L
(c) Compute the square root operator k,

i. For all sources:

i. Compute one-way propagator e =47

ii. Compute pa(X, 2; + Az, w;) = Pa(x, 2i, wj)e HF=A7

ii. For all receivers:

i. Compute one-way propagator e*=27

i. Compute P, (x, z; + Az,w;) = pu(x, 2;, w;)e=52
iii. Apply the cross-correlation imaging condition:

I(x,2i + Az,wj) = 1(x, 2, + Az, wj) + py(x, 2zi + Az, w;j)pu(X, 2; + Az, wj)
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Numerical tests

In this section, we conduct several numerical experiments to demonstrate the perfor-
mance of our proposed WEM scheme, which uses the JA expansion to calculate the one-way
propagator for generating migrated sections. Additionally, we compare the results from our
WEM algorithm with those from the conventional PSPI and SS one-way migration meth-
ods, as implemented in the Seismic Unix software package (Stockwell, 1999). For all tests,
we used a tenth-order finite-difference scheme to approximate the spatial derivative along
the horizontal axis, and a horizontal taper (Cerjan et al., 1985) was applied to the wave-
field at the left and right boundaries to suppress wavefield wraparound caused by periodic
boundary conditions during depth extrapolation. Based on our multiple experiments with
models of varying complexity, constructing the spectral projector typically requires about
25-30 iterations, whereas computing the square-root operator generally takes around 15-20
iterations. Moreover, as suggested by Miao et al. (2014), although the result of the depth-
stepping migration is essentially clean with no significant artifacts, we applied a first-order

finite-difference filtering in the vertical direction to enhance migrated images.

Impulse response test

To validate the proposed JA expansion in the construction of the one-way propagator, we
start by studying its impulse response in a medium with a strong lateral velocity variation,
given by v(z,z) = (1500 4+ 22 + z) m/s and shown in Figure 3.2a. The model consists of
301 x 301 grid nodes with a 5m grid spacing. A Ricker pulse with a peak frequency of
25Hz and a time sampling of 4 ms is injected at x; = (750,0)m. First, we corroborate the
implementation of the projector spectral and the coupled Schulz scheme given by equations
3.6 and 3.8, respectively. For this, we select the velocity values of the layer at z = 750m
(dashed black line in Figure 3.2a) and set the angular frequency to w = 190rad/s. Next, the
Helmholtz operator is constructed (Figure 3.2b), with dimension nz x nz. In each line of the
L operator, the 1D locations from the finite-difference stencils are mapped to the 1D index k
using k = 1,...,nx. Figures 3.3a-b show the results of the filtered Helmholtz operator and
the square-root operator, respectively. Figure 3.4a demonstrates the Newton-Schulz method
convergence trend. Lines with different colors are new eigenvalue spectra corresponding
to the increasing number of iterations. As the number of iterations increases, the positive
portion of the spectrum remains unaltered, while the non-positive portion converges entirely
to zero. The values at the 151-st row of Figure 3.3a are extracted and compared to the result
when the SVD algorithm is used to filter the negative eigenvalues. We observed that the
values after applying the spectral projector fit perfectly with the results produced by the SVD
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method (see Figure 3.4b). Finally, to quantify the computing errors, we calculate the relative
error between the filtered Helmholtz operator and the iterative square-root operator, defined
as (||L—k, xk||2)/(||L]|2)- From Figure 3.4c, we can see that 15-20 iterations converge to a
stable value, maintaining a balance between efficiency and accuracy, which is consistent with
the observations made by You et al. (2019). These results demonstrate that the selected
algorithms can accurately attenuate the evanescent waves and compute the k, operator,

providing a robust foundation for the study of one-way propagators.

Figure 3.5 presents the results obtained from the post-stack depth migration methods
applied to the impulse response test. As a reference, we have picked the wavefront from
the wavefield simulation performed using the rapid expansion method (REM) (Pestana and
Stoffa, 2010), indicated by the red dashed line. The conventional one-way propagators (Fig-
ures 3.5a-b) exhibit phase errors beyond a certain angle, with their phase curves increasingly
bending inward as the angle grows. Figure 3.5c displays the impulse response calculated
using a ninth-order TS expansion, comparable to the migrated section obtained through
our proposed algorithm using a seventh-order JA approach (see Figure 3.5d). The impulse
response results demonstrate that the one-way wave-equation migration method based on
matrix multiplication performs exceptionally well in simulating propagating waves at large
angles, maintaining an accurate phase curve even in the presence of significant lateral ve-
locity variations. However, the one-way algorithm proposed herein outperforms the method
employing the TS approach for computing the one-way extrapolator, as it requires fewer
expansion terms to achieve precise results. This test, along with the subsequent exam-
ples, consistently showed that the TS and JA expansions required orders differing by two
terms. Specifically, a ninth-order expansion was necessary for TS, whereas a seventh-order
expansion sufficed for JA to achieve similar quality in the migrated sections. Consequently,
the following analysis will exclusively compare the image quality produced by conventional

migration methods with that of our proposed migration scheme.

Post-stack migration for the SEG/EAGE salt model

For the post-stack migration example, we employed the SEG/EAGE salt model (Am-
inzadeh et al., 1996), a classical benchmark for evaluating imaging quality. The primary
obstacle presented by this model pertains to obtaining high-quality images of the structures
situated beneath the salt dome. This difficulty is due to the significant velocity contrast
introduced by the salt body, as well as the need to accurately image its steeply dipping
boundaries. The model consists of 1290 x 300 grid nodes, with a grid spacing of 12.192m.

Considering the difficulty of obtaining an exact real velocity model, a smoothed version of the
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original velocity model is utilized to evaluate the performance of the migration algorithms.
The velocity model and its smoothed counterpart used in this experiment are depicted in
Figures 3.6a and 3.6b, respectively. The zero-offset section comprises 1290 traces, with a

time interval of 8 ms and a record length of 5.0s per trace (see Figure 3.6¢).

The conventional PSPI, SS, and our proposed migration algorithm were applied to mi-
grate the zero-offset data, with the resulting imaging sections displayed in Figure 3.7. Upon
examining the overall images produced by these migration methods, it is evident that the
structures beneath the salt body are clearly imaged by both the PSPI and our proposed
algorithm, with the latter providing a better image, particularly in the steeply dipping
boundaries on some flanks of the salt model (see red arrows in Figure 3.7c). In the case of
the SS method, our approach provides a more continuous delineation of the plane located in
the deeper region of the model, as indicated by the red arrow in Figure 3.7c. Moreover, for
the images generated by the two conventional methods, we observed the presence of artifacts
within the salt body, which are absent in the section migrated using our proposed method.
The superior imaging quality of the proposed method is attributed to its ability to manage
wave propagation at large angles with precision, as showcased by the impulse response test
(Figure 3.5).

Pre-stack migration for the 2D Marmousi model

To further test whether our proposed method can migrate a complex model with mul-
tiple shot gathers, the benchmark Marmousi model is employed (Figure 3.8a). This model
represents a complex area that involves multiple anticlines, three large-angle dipping faults,
and the contact relationship between strata is sophisticated (Martin et al., 2006). The size
of the Marmousi model is 9200 m x 2992 m, which is discretized on a 369 x 375 mesh, and
the spatial sampling is 25 m in the z direction and 8 m in the z direction. For this numerical
experiment, we constructed a fixed-spread geometry with 185 sources, with shot positions
ranging from Om to 9200m at 50m intervals. Each shot has 184 receivers, starting from
25m to 9175 m at 50 m intervals. We apply absorbing boundaries on all sides, i.e., we assume
that surface-related multiples and ghost wave effects are removed from the recorded data
set. The direct wave in the recorded data was removed by modeling it separately in a homo-
geneous medium (values of the first layer) and then subtracting it from the recorded data.
The duration of each shot record is 2.9 s sampled at 4ms. In this test, a Ricker wavelet with
an upper cutoff frequency of 25 Hz was used as a source function. Using the exact velocity
model as input and employing the REM, we conducted forward modeling to compute the

seismic data set for the specified geometry. Figure 3.8b illustrates the migration velocity
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model, derived from applying a filter to the true velocity model.

Figures 3.9a-c show the migration sections of the PSPI, SS and our proposed pre-stack
depth migration for this model, respectively. Overall, all three methods successfully imaged
the main structures. However, the conventional methods produce a distorted image of a
steeply-dipping fault when it intersects with different layers. On the other hand, although
there are some artifacts in the lateral parts of the migrated section, the reflections imaged
by our proposed migration method are relatively clearer and exhibit better continuity, as
highlighted by the red arrows in Figure 3.9c. This observation highlights the advantage of
our proposed migration method, namely its capacity to effectively manage waves at large

angles.

Pre-stack migration on a field data set

As a final example, we apply the proposed one-way migration scheme to a 2D streamer
data set provided by Equinor. This data, originally acquired in a deep-water environment in
the Norwegian North Sea by SAGA Petroleum A.S., now part of Equinor (Brackenhoff et al.,
2019), consists of P-wave recordings. For this field data set, as illustrated in Davydenko and
Verschuur (2018), the following pre-processing steps were carried out: the source wavelet was
removed, near offsets were recovered, free-surface multiples were eliminated, the direct wave
was muted, and a v/t scaling was applied to approximate 2D geometric spreading. To create
a split-spread geometry, we selected 200 shots and 199 receivers from the pre-processed data
set, positioned on the surface at intervals such that there is a source at Om, a receiver at
25m, a source at 50 m, a receiver at 75 m and so on. The data were recorded with a sampling
interval of 4 ms for a total recording time of 5.588s. Figure 3.10 shows the migration velocity
model, which corresponds to a resampled version of the released model. It covers a depth
of 5000 m and a length of 9950 m, with grid dimensions of 401 x 399 and grid intervals of

12.5m and 25m in the vertical and horizontal directions, respectively.

The imaging sections produced by the one-way migration methods are shown in Figure
3.11. The results demonstrate that our proposed migration algorithm produces more con-
tinuous events compared to the PSPI and SS methods, particularly for the image events
highlighted by the red arrows and enclosed within the red rectangles in Figure 3.11c. Ad-
ditionally, because our method accounts for lateral variations in the velocity model, it is
reasonable to believe that the positioning of the reflectors using our method is more ac-
curate than that obtained with conventional one-way methods. This enhanced clarity is
advantageous for seismic interpretation of the target stratum. The improved imaging results

can be attributed to the broader angle correction offered by our proposed method, despite
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the presence of some low amplitude artifacts.

Discussion

The initial design of one-way propagators was aimed at achieving an efficient migration
process using specific approximation theories. In contrast, the objective of our proposed
method is to accurately image complex models. Our approach does not rely on assumptions
about lateral velocity variations, facilitating the recovery of steep reflectors and improving
the continuity of certain layers, as demonstrated in our examples. The proposed one-way
scheme allows for the complete construction of the depth propagator solely through matrix
multiplication, a key feature that simplifies implementation. Each one-way method has its
limitations and associated costs. Conventional one-way wave equation migration methods
are highly efficient but struggle with complex models. Conversely, our proposed method
excels at imaging intricate media and structures, although it is less computationally effi-
cient. Therefore, research will need to focus on developing more efficient algorithms and

implementations for our one-way migration in three-dimensional cases.

From a computational implementation perspective, computation performance can be
significantly enhanced by leveraging techniques such as GPU acceleration (You et al., 2019)
and linear algebra libraries optimized for these architectures. It is important to note that
in the construction of the one-way propagator, only real matrices are required, which is
evident for both L and its negative eigenvalue filtering. However, during the extrapolator
construction step, only a component (real or imaginary) of the complex operator is updated
at each iteration. Thus, the computation can be performed using only real matrices, with
the complex operator being assembled only at the final stage. Based on our experience,
this approach reduces the computation time for constructing the propagator described in

equation 3.9 by half compared to the time required when using complex matrices.

On the other hand, to enhance the efficiency of the proposed one-way migration scheme,
advanced mathematical tools, including the proposed JA expansion for computing the expo-
nential operator, can be employed. Our numerical tests have shown that the JA expansion
is particularly effective in calculating the exponential operator with high precision and us-
ing fewer terms compared to the TS approximation. Additionally, techniques such as the
hierarchically semi-separable randomized (HSS) method (Miao et al., 2014) can be utilized
to improve the computational performance of the spectral projector calculation. These per-
formance optimizations remain open research topics and will be further explored in future

studies.
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Conclusion

Conventional one-way migration methods face challenges in maintaining stability dur-
ing wavefield propagation and accurately imaging at large angles. These drawbacks are
associated with the methodologies used in constructing the wavenumber operator and the
approximations used to compute the exponential extrapolator. In this study, we employed
the Newton-Schulz algorithm along with a stable iterative scheme to compute the square
root of the Helmholtz operator, thereby excluding evanescent energy. By attenuating the
non-positive spectrum components of the Helmholtz operator and accurately determining
its square root within a gradient velocity model with significant variation, we demonstrated
that the matrix multiplication method yields a correct matrix square root. This provides a

robust foundation for the study of one-way propagators.

Furthermore, we introduced a novel migration scheme where the exponential operator
is computed using the Jacobi-Anger expansion. The application of our proposed algorithm
across various scenarios, including an application on a field data set, demonstrates that
our one-way migration scheme maintains stability even within complex velocity models.
The results indicate that the proposed method yields images with superior accuracy and
quality compared to conventional one-way migration methods. Additionally, our scheme
can simulate wavefields at larger angles using fewer terms than the Taylor series expansion

approach, enhancing computational efficiency.



One-way wave-equation migration based on Jacobi-Anger expansion

121

. Leos(@) —  fa(d) - gr(o) - - he(é) -~ | . [sing) —  fild) -—  gilg) - - (o)

. 0.5 \ o 05
=0 20
g 321 328 3.5 g
<-0.5 \\ <-0.5

-1 Tk 1

0 2 3 0 2 3
¢ (rad) ¢ (rad)
(a)

3.5 3.5
Las Las
X X
—2.1 —92.1
(] (]
= =
=14 =14
(o (o
2 g
< 0.7 207

e = 0 e e S

0 1 2 3 0 1 2 3
¢ (rad) ¢ (rad)
(b)

Figure 3.1: (a) Approximations for the one-way extrapolator using Taylor series

(TS) and Jacobi-Anger (JA) expansion, where ¢ (= k,Az) corresponds
to the phase. The functions f(¢) and g(¢) correspond to the approxima-
tion using the seventh-order and ninth-order TS expansion, respectively,
while h(¢) represents the extrapolator calculated using the seventh-
order JA expansion. The black line is the exact value. The subscripts
R and I denote the real and imaginary parts of the approximations,
respectively. (b) The absolute error between each approximation and
the exact value. Note that the color convention for each approximation
is consistent across both panels.
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tenth-order finite-difference scheme was used to approximate the spatial
derivative along the horizontal axis. The dashed black line represents
the layer at z = 750 m, which was selected to validate the algorithms
for filtering out the negative eigenvalues and computing the square-root
operator (see Figure 3.3).
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Figure 3.3: Matrix structure of (a) the filtered Helmholtz operator L using the
spectral projector scheme with 30 iterations, and (b) the square-root
operator k, computed using the coupled Schulz iteration scheme with
20 iterations. For visualization purposes, the matrices are displayed
at a lower resolution than the originals, with each row and column

resampled to 101 elements.
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Figure 3.4: (a) Convergence trend for the Newton-Schulz method. As the number of
iterations grows, the positive part of the spectrum remains untouched,
while the non-positive part converges to zero. (b) Comparison between
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by the spectral projector (SP), and the corresponding values obtained
using SVD to filter the negative spectrum. (c) Relative errors as a
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scheme.
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Figure 3.5: The response is generated by the conventional one-way (a) PSPI and (b)
SS methods. (¢) Impulse response using a one-way propagator based on
matrix multiplication with (c¢) a ninth-order TS approximation and (d)
a seventh-order JA expansion for our proposed algorithm. The dotted
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algorithm.
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Figure 3.9: Migration sections for the Marmousi model generated using different
one-way methods: (a) PSPI, (b) SS, and (c¢) our proposed algorithm.
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Conclusoes

A RTM ¢é capaz de imagear refletores com mergulhos acentuados e modelos de veloci-
dade complexos. No entanto, isso também faz com que a condicao de imagem convencional
baseada na correlacao cruzada produza ruidos de baixa frequéncia e alta amplitude que
contaminam a imagem migrada. A decomposicao dos campos de ondas extrapolados e a
aplicacao da condicao de imagem causal removem com sucesso esses artefatos das imagens.
Esse tipo de condicao de imagem requer um algoritmo de separacao do campo de ondas nas
suas componentes ascendente e descendente, que pode ser alcancado usando a extrapolacao
do campo de ondas analitica, ¢ muito mais econémico do que métodos de separacao via
transformadas de Fourier no tempo, uma vez que estes tltimos requerem o armazenamento
do campo de ondas em todos os passos de tempo. No capitulo 1 desta tese apresentamos uma
abordagem eficiente de modelagem direta para calcular o campo de ondas analitico com base
no método de expansao rapida de maneira estavel e sem a presenca de dispersao numérica.
No método proposto, o campo de ondas da fonte é extrapolado no tempo e, para cada passo
de tempo, podemos calcular a derivada temporal de primeira ordem e, em seguida, a trans-
formada de Hilbert do campo de ondas. Com base no campo de ondas analitico, geramos
os componentes ascendentes e descendentes em simulacoes actsticas 2D e 3D. Testamos o
esquema proposto em modelos com diferentes complexidades e demonstramos que podemos
calcular o campo de ondas analitico usando apenas uma tnica propagacao, com a mesma
qualidade do procedimento comum que requer duas propagacoes. [sses testes numéricos
também mostram que o método é eficiente, evitando o requisito de armazenamento do campo
de pressao, e aumentando o custo da modelagem direta em apenas 20.2%. Usando nosso
método para calcular o campo de ondas analitico e separar explicitamente o campo de on-

das em suas componentes unidirecionais, foi possivel empregar a condi¢cao de imagem causal
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na RTM a um custo computacional apenas um pouco superior ao da condicao de imagem
convencional por correlacao cruzada. Aplicamos a condicao de imagem causal em diferentes
modelos de velocidade e verificamos que o imageamento RTM com a condigao de imagem
causal pode remover efetivamente o ruido de baixa frequéncia indesejado produzido pela
condicao de imagem convencional. O esquema numeérico proposto para a decomposicao do
campo de ondas melhora significativamente a eficiéncia da aplicagao da condigao de imagem
causal e aumenta o custo computacional em aproximadamente 27 % quando comparado com

a RTM usando a correlacao cruzada como principio de imageamento.

No segundo capitulo desta tese, propomos um esquema eficiente para implementar a
técnica FLSRTM utilizando funcoes de Green de baixo posto. Enquanto o FLSRTM com
funcoes de Green armazenadas integralmente enfrenta limitacoes de memoria para conjuntos
de dados ou modelos em larga escala, nossa abordagem reduz esse desafio. Especificamente,
decompomos a funcao de Green associada a frequéncia dominante da fonte sismica em ma-
trizes retangulares e unitarias utilizando algoritmos SVD convencionais e estocasticos. O
posto 6timo, determinado por um critério baseado na distribuicao acumulada de valores
singulares normalizados, garante um armazenamento eficiente de memoria. Além disso, ex-
pandimos nossa investigacao incorporando algoritmos SVD aleatorio e comprimido. Esses
avancos reduzem significativamente o tempo computacional para a construgao de fungoes
de Green de baixo posto. Ao utilizar os algoritmos rSVD e ¢SVD, conseguimos reducgoes
substanciais nos requisitos de memoria sem comprometer a eficiéncia computacional. Nossos
experimentos numéricos, realizados em um modelo estratificado e em um modelo modificado
Marmousi-2, demonstram que as funcoes de Green reconstruidas exibem alta precisao us-
ando matrizes de posto reduzido. Estudos comparativos com FLSRTM utilizando fun¢oes de
Green armazenadas integralmente validam a precisao do nosso esquema FLSRTM proposto.
Notavelmente, o método ¢SVD apresentou consistentemente um desempenho superior em
termos de eficiéncia computacional, tornando-se a escolha preferencial para a execucao do
esquema FLSRTM. Em geral, o esquema FLSRTM com fungoes de Green de baixo posto via
rSVD e ¢SVD representa uma abordagem computacionalmente eficiente para gerar imagens

de migracao precisas.

No dltimo capitulo desta tese, abordamos os desafios enfrentados pelos métodos con-
vencionais de migragao WEM em manter a estabilidade durante a propagacao do campo de
ondas e em realizar um imageamento preciso em meios com fortes contrastes de velocidade
e refletores com mergulhos acentuados. Esses problemas estao associados as metodologias
usadas na construgao do operador de ntimero de onda e as aproximagoes empregadas para
calcular o extrapolador exponencial. No esquema de migracao WEM proposto, utilizamos o

algoritmo Newton-Schulz juntamente com um esquema iterativo estavel para calcular a raiz
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quadrada do operador de Helmholtz, excluindo, assim, a energia evanescente. Ao atenuar
os componentes do espectro negativo do operador de Helmholtz e determinar com precisao
sua raiz quadrada em um modelo de velocidade em gradiente com variagoes significativas,
demonstramos que os métodos selecionados computam de forma correta a raiz quadrada do
operado de Helmholtz filtrado, o qual fornece uma base robusta para o estudo dos propa-
gadores unidirecionais. Além disso, introduzimos uma nova aproximacao para o operador
exponencial, a qual esta baseada na expansao de Jacobi-Anger. A aplicacdo do nosso algo-
ritmo proposto em diversos cenarios, incluindo um conjunto de dados de campo, demonstra
que nosso esquema de migracao WEM mantém a estabilidade mesmo em modelos de veloci-
dade complexos. Os resultados indicam que o método proposto gera imagens com precisao
e qualidade superiores em comparagao com métodos convencionais de migracao WEM. Adi-
cionalmente, nosso esquema pode simular campos de ondas utilizando menos termos do que

a abordagem da expansao em série de Taylor, aprimorando a eficiéncia computacional.

Por fim, sugerimos as seguintes extensoes a este trabalho: aplicar a construcao eficiente
do campo de ondas analitico a equacoes de ondas mais complexas; estender a abordagem
FLSRTM proposta para o caso 3D, onde a reducao de memoria e tempo de computo pode
ser ainda mais pronunciada; implementar esquemas de inversao mais robustos para permitir
uma convergéncia mais rapida da fungao objetivo definida no esquema FLSRTM; e explorar o
uso de diferentes arquiteturas computacionais, como GPU e FPGA, para acelerar a aplicacao

dos algoritmos empregados no esquema de migracao WEM proposto.
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