

Universidade Federal da Bahia
Instituto de Computação

Programa de Pós-Graduação em Ciência da Computação

AN INTELLIGENT SELF-CONFIGURING
RECOMMENDER SYSTEM AS A SERVICE

Felipe Rebouças Ferreira Abreu

DISSERTAÇÃO DE MESTRADO

Salvador
Novembro de 2023

FELIPE REBOUÇAS FERREIRA ABREU

AN INTELLIGENT SELF-CONFIGURING RECOMMENDER
SYSTEM AS A SERVICE

Esta Dissertação de Mestrado foi
apresentada ao Programa de Pós-
Graduação em Ciência da Com-
putação da Universidade Federal da
Bahia, como requisito parcial para
obtenção do grau de Mestre em Com-
puter Science.

Advisor: Frederico Araújo Durão

Salvador
Novembro de 2023

Ficha catalográfica elaborada pela Biblioteca Universitária de
Ciências e Tecnologias Prof. Omar Catunda, SIBI – UFBA.

A162 Abreu, Felipe Rebouças Ferreira
An intelligent self-configuring recommender system as a

service/ Felipe Rebouças Ferreira Abreu. – Salvador, 2023.
93 f.
Orientador: Prof. Dr. Frederico Araújo Durão
Dissertação (Mestrado) – Universidade Federal da Bahia,

Instituto de Computação, 2023.
1. Recommender Systems. 2. Cloud. 3. API. 4. Computação.

I. Durão, Frederico Araújo. II. Universidade Federal da Bahia.
III. Título.

CDU 004

TERMO DE APROVAÇÃO

FELIPE REBOUÇAS FERREIRA ABREU

AN INTELLIGENT SELF-CONFIGURING
RECOMMENDER SYSTEM AS A SERVICE

Esta Dissertação de Mestrado foi julgada ade-
quada à obtenção do título de Mestre em Com-
puter Science e aprovada em sua forma final pelo
Programa de Pós-Graduação em Ciência da Com-
putação da Universidade Federal da Bahia.

Salvador, 28 de Novembro de 2023

Prof. Dr.Frederico Araujo Durão (Orientador -
PGCOMP)

UFBA

Prof. Dr.Rosalvo Ferreira De Oliveira Neto
(UNIVASF)

Dr. Cláudio Nogueira Sant’Anna
UFBA

Dedico este trabalho aos meus familiares pelo apoio du-

rante toda esta jornada, ao meu Orientador, Frederico

Duro, e a toda a comunidade Acadmica UFBA pela ex-

celncia e qualidade de ensino.

SUMMARY

In the rapidly evolving digital landscape, users are often overwhelmed by the multitude
of listing services, ranging from music platforms to product recommenders and social
media content suggestions, leading to a challenge in finding items that align with their
individual preferences. To address this complexity, the development and implementation
of Recommender Systems has become increasingly valuable. These systems efficiently
sift through large volumes of data to match items with user preferences, thereby enhanc-
ing the choices available to users. The focus of this work is on the development of an
advanced Application Programming Interface (API) for Recommender Systems. This
Application Programming Interface is uniquely designed to be universally accessible and
easy to deploy. Serving as the backbone for various Web Services, the Application Pro-
gramming Interface utilizes the robust Representational State Transfer architecture. It
is crafted with an emphasis on modularity, promoting adaptability and flexibility. The
Application Programming Interface processes user data and queries to deliver customized
recommendations swiftly. Performance evaluations have demonstrated the commendable
accuracy of the Application Programming Interface. It exhibits outstanding performance
particularly with smaller datasets, showcasing rapid data processing and algorithm exe-
cution times. The Application Programming Interface has shown exceptional efficiency
and resilience under specific testing conditions, including cloud environments, and this is
particularly evident in scenarios involving extensive datasets of up to 16,000 items. The
Application Programming Interface is more than a mere tool; it represents a pathway
towards personalized digital experiences, excelling in Create, Read, Update, and Delete
operations and customized recommendations. The user evaluation phase included a di-
verse group of participants, ranging from novice to experienced developers. Over half of
these participants had substantial experience in software development, and a significant
proportion had previously worked with coding recommender systems. Given their varied
knowledge of recommender libraries, most feedback commended the effectiveness of the
Application Programming Interface. 81% of users valued the recommendations provided,
and many expressed confidence in its filtering techniques. The standout feature of this
work is the versatility of the Recommender System Application Programming Interface.
Despite the positive feedback, users suggested improvements in areas such as documen-
tation, data security, and features. These insights are valuable for future refinements
of the Application Programming Interface and the user experience. The enthusiastic
engagement and feedback from participants underscore the potential of the Application
Programming Interface to enhance applications that require a recommendation system,
particularly for developers who may not be as familiar with the theoretical aspects. The
solid research foundation and the dedication of the participants highlight the potential
for broader adoption of the Application Programming Interface by developers.

vii

viii SUMMARY

Keywords: Software as a Service, API, Recommender Systems, RecSys, Microservices,
Cloud.

CONTENTS

Chapter 1—Introduction 1

1.1 Motivation . 2
1.2 Problem . 3
1.3 Objective . 4
1.4 Research questions . 4
1.5 Methodology . 4
1.6 Out of Scope . 5
1.7 Dissertation Structure . 5

Chapter 2—Recommendation Systems 7

2.1 Introduction . 7
2.2 Tasks and Concepts . 8
2.3 User Modeling . 9

2.3.1 Explicit Feedback . 9
2.3.2 Implicit Feedback . 10
2.3.3 Hybrid Feedback . 11
2.3.4 Data representation . 11

2.4 Recommendation Techniques . 11
2.5 Content Based Filtering . 12

2.5.1 Advantages and Problems . 13
2.6 Collaborative Filtering . 14

2.6.1 Basic . 16
2.6.1.1 Popularity . 16
2.6.1.2 Best score . 17

2.6.2 KNN . 17
2.6.2.1 User-KNN . 17
2.6.2.2 Item-KNN . 18

2.6.3 Advantages and Problems . 18
2.7 Hybrid Filtering . 20
2.8 Summary . 21

Chapter 3—Web Architecture 23

3.1 Service Oriented Architecture (SOA) . 23
3.1.1 Restful Architeture . 24

3.2 Microservice architecture . 26

ix

x CONTENTS

3.3 Cloud Architectures . 27
3.3.1 Software as a Service (SaaS) . 27

3.3.1.1 Benefits . 27
3.3.2 Platform as a Service (PaaS) . 28
3.3.3 Infrastructure as a Service (IaaS) 29

3.4 Recommendation as a Service . 29
3.4.1 Related work . 31

3.5 Summary . 34

Chapter 4—AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYS-
TEM AS A SERVICE 35

4.1 Web Service Architecture . 35
4.1.1 The client side . 36
4.1.2 The Microservices side / API routing 37
4.1.3 The Recommendation Service . 37

4.2 REST API patterns and routes . 38
4.3 Algorithms and libraries . 40
4.4 Used technologies . 40
4.5 RecSys as a Service . 41

4.5.1 Default Recommendation routine 44
4.6 Summary . 45

Chapter 5—Experimental Evaluation 47

5.1 Methodology . 47
5.2 Test Environments . 48

5.2.1 System specifications . 48
5.2.2 System requirements . 48

5.3 Measurement metrics . 49
5.4 Results . 50

5.4.1 Scenario 1: Collaborative Filtering - 20M 50
5.4.2 Scenario 2: Collaborative Filtering - 10M 52
5.4.3 Scenario 3: Collaborative Filtering - 500k 53
5.4.4 Scenario 4: Content Based - 27k. 53
5.4.5 Scenario 5: Content Based - 16k. 54
5.4.6 Scenario 6: Content Based - 3k. 54
5.4.7 Scenario 7: Content Based - 27k, different items, using tags 55
5.4.8 Scenario 8: Content Based - 16k, different items, using tags 55
5.4.9 Scenario 9: Content Based - 3k, different items, using tags 57
5.4.10 Scenario 10: Collaborative Filtering - 3k 57
5.4.11 Scenario 11: Collaborative Filtering - 16k 59
5.4.12 Scenario 12: Collaborative Filtering - 27k 60

5.5 Discussion . 62
5.6 Summary . 63

CONTENTS xi

Chapter 6—User Trial 65

6.1 Methodology . 65
6.1.1 Survey questions . 67
6.1.2 Profile of Participants . 68
6.1.3 Usage of RecSys . 69

6.2 API and Experiment Evaluation . 70
6.2.1 Time required for the experiment 70
6.2.2 Overall API quality . 71
6.2.3 Difficulty in understanding the API 72

6.3 Perceptions on Generated Recommendations and API 73
6.3.1 Recommendation accuracy . 73
6.3.2 Usage of the collaborative filtering and content-based filtering tech-

niques . 73
6.3.3 API documentation . 74

6.4 API Acceptance and Improvement Suggestions 74
6.4.1 User testimonials . 75

6.4.1.1 Regarding Recommendations 75
6.4.1.2 About Missing Features in the API 75
6.4.1.3 Suggestions for Improvement 75
6.4.1.4 Opinions on API Facilitating Adoption of RecSys 76
6.4.1.5 Opinions on API Facilitating Adoption of RecSys 76

6.5 Alignment with Objectives . 76
6.5.1 Alignment with the Objectives . 76

6.6 Discussion . 77
6.7 Summary . 78

Chapter 7—Conclusion 79

7.1 Overview . 79
7.2 Limitations . 80

7.2.1 Performance and Usability Concerns 80
7.2.2 Feedback and Survey Insights . 80
7.2.3 Technical and Comparative Limitations 80

7.3 Assessment of Objectives and Research Questions 81
7.3.1 Objective Assessment . 81
7.3.2 Research Questions Assessment 81

7.4 Future Works . 82
7.5 Final Considerations . 83

Bibliography 85

xii CONTENTS

Appendix A—Appendix 93

A.1 Experiment Form: https://forms.gle/oDgHEYTjkh3bYXQU8 93
A.2 Experiment Responses: https://forms.gle/oDgHEYTjkh3bYXQU8 93
A.3 Code Repository (Github): https://github.com/Baquara/recsys-fastapi/ . 93

LIST OF FIGURES

2.1 Components for user satisfaction (SILVEIRA et al., 2017). 8
2.2 Feedback explicit binary and by comment. 10
2.3 Feedback implied from a textual search. 11
2.4 Hybrid Feedbackusing the binary feedback and the feedback of how many

times the song was heard. 11
2.5 Example of a music recommendation based on the content describing the

items. 13
2.6 Example of music recommendation based on user preferences. 15

3.1 Example of the interoperability provided by the REST architecture. . . . 26
3.2 Cloud delivery model for SaaS and PaaS. 28

4.1 The complete Client to Service system architecture for this software. . . . 36
4.2 Client side architecture. 37
4.3 API routing layer bridging the Recommender System API. 38
4.4 Microservice for the Recommendation Service. 38
4.5 Example of parameters being added to an URL endpoint, in this case, to

add an item. 41
4.6 Sending items to be added to the main database as URL parameters. . . 41
4.7 Sending items to be added to the main database as a JSON object. . . . 42
4.8 Response object. 42
4.9 Sending items to be added to the main database as a CSV file. 43
4.10 The request JSON object. 44
4.11 The response JSON object. 44

5.1 The outcome of a test round using a content-based recommendation end-
point. It lists 10 items (movies) similar to the request (Toy Story), with
their respective descriptions and similarity scores. The log also shows per-
formance measurements, detailing execution times for each task. 50

5.2 The dataset concatenates tags with item description to better provide a
recommendation. 50

5.3 A test round using a Collaborative Filtering (CF) recommendation end-
point, listing 10 items (movies) that users that liked the requested item
(the movie Jumanji) also liked, alongside their similarity score by dis-
tance. Also pictured: performance measurements (execution times during
each task). 51

5.4 Execution times for Content Based - 27k. 56

xiii

xiv LIST OF FIGURES

5.5 Execution times for Content Based - 16k. 58
5.6 Execution times for Content Based - 3k. 59

6.1 Snapshot of the questionnaire used in the experiment. 66
6.2 Participants’ knowledge in RecSys. 69
6.3 Participants’ knowledge in RecSys libraries. 70
6.4 Participants’ time required to perform the experiment. 71
6.5 Participants’ perception of the overall API quality. 72
6.6 Participants’ perception of the overall API difficulty of use. 73

LIST OF TABLES

2.1 Formal representation of the data sets used by the system. 12
2.2 Recommendation techniques, their modeling, input and processing (BURKE,

2002). 12
2.3 Methods, groups and algorithms of the collaborative filtering technique. . 16
2.4 Hybridization methods (BURKE, 2002). 21

3.1 Comparison of Amazon Personalize, Google Prediction API, and IBM Wat-
son Machine Learning. 30

3.2 List of RaaS platforms/projects. 31
3.3 List of Open Source Recommender System Frameworks. 32

4.1 Revised table showing the updated API endpoints for the recommender
system. 39

5.1 System specifications. 48
5.2 System requirements. 48
5.3 Software requirements. 49
5.4 Collaborative Filtering - 20M. 51
5.5 Collaborative Filtering - 10M. 52
5.6 Collaborative Filtering - 500k. 53
5.7 Content Based - 27k . 54
5.8 Content Based - 16k . 55
5.9 Content Based - 3k . 56
5.10 Content Based - 27k, different items, using tags. 57
5.11 Content Based - 16k, different items, using tags 58
5.12 Content Based - 3k, different items, using tags. 59
5.13 Collaborative Filtering - 3k. 60
5.14 Collaborative Filtering - 16k . 61
5.15 Collaborative Filtering - 27k. 61

xv

LIST OF ABBREVIATIONS

CB Content-Based Filtering . 62
CF Collaborative Filtering . xiii
JSON JavaScript Object Notation . 23
RDMS Relational Database Management System 35
SaaS Software as a Service . 27
IaaS Infrastructure as a Service . 27
PaaS Platform as a Service . 27
SVD Singular Value Decomposition . 16
KNN K - Nearest Neighbors . 15
HTML HyperText Markup Language . 23
HTTP Hyper Text Transfer Protocol . 23
HTTPS Hyper Text Transfer Protocol Secure 23
TCP Transmission Control Protocol . 23
CSS Cascading Style Sheets . 23
IP Internet Protocol . 23
URL Uniform Resource Locator . 10
SOA Service-Oriented Architecture . 23

xvii

Chapter

1
INTRODUCTION

With the rapid increase of information available through online services, several new types
of services have emerged (e.g., music, movies, news, travel guides, etc.) that can list an
overwhelming amount of information to the user with a large number of options. With
such a large selection, finding an offer that meets the user’s preferences requires a lot of
effort and attention from the user, who in turn may have difficulty finding offers that he or
she does not like. For this user, the large selection is therefore more of a disadvantage than
an advantage (RICCI; ROKACH; SHAPIRA, 2011a; HIJIKATA; IWAHAMA, 2006).

Recommender Systems emerge with the goal of filtering relevant information, present-
ing a ranked list of items based on their preferences, and thus enabling decision making.
According to Ricci, Rokach e Shapira (2011a), “Recommender Systems (RSs) are soft-
ware tools and techniques providing suggestions for items to be of use to a user”. Fields et
al. (2011) defines Recommender Systems as “a technique or method that presents a user
with suggested objects for consumption based on past behaviour”. Collaborative filtering
and content-based filtering (also known as the personality-based approach) are techniques
commonly used in recommender systems, as are other systems such as knowledge-based
systems (JAFARKARIMI; SIM; SAADATDOOST, 2012). Collaborative filtering tech-
niques create a model based on a user’s previous behavior (things purchased or picked
in the past and/or numerical ratings provided to those items) as well as comparable de-
cisions made by other users. This model is then used to estimate which things (or item
ratings) the user would be interested in (MELVILLE; SINDHWANI, 2010). Content-
based filtering methods use a set of distinct, pre-tagged features of an item to suggest
other items with comparable characteristics (MOONEY; ROY, 1999).

There are a number of recommendation services available online, including playlist
generators for video and music services, product recommenders for online businesses,
content recommenders for social media platforms, and open web content recommenders
are all examples of recommender systems in use (GUPTA et al., 2013; BARAN; DZIECH;
ZEJA, 2018). These systems can work with a single input, such as music, or numerous
inputs, such as news, books, and search queries, within and across platforms. Popular
recommender systems for specialized themes such as restaurants and online dating are

1

2 INTRODUCTION

also available. Research papers, experts, collaborators, and financial services have all
been explored using recommender systems as well (FELFERNIG et al., 2007; CHEN; II;
GILES, 2015; CHEN et al., 2011).

Academically, Recommender Systems have been the subject of research in a variety
of areas, including: explanation of how the recommendations were generated (MITTEL-
STADT; RUSSELL; WACHTER, 2019); new user and/or item in the system, a problem
known as Cold-Start (BARJASTEH et al., 2015); use of linked and open data on the in-
ternet to increase information about items (PESKA; VOJTAS, 2013); diversity of items
that make up the recommendations (CHENG et al., 2017); popular items and popularity
bias (ABDOLLAHPOURI; BURKE; MOBASHER, 2017); fairness in the recommenda-
tions (STECK, 2018); among other works.

In general, implementations of recommender systems are available through software
libraries that need to be installed, understood by the developer (through documentation),
and only then implemented, thus there is complexity. For these reasons, implementing a
recommender system in an application requires a high level of technical knowledge (VI-
NEELA et al., 2021). This work envisions an implementation of a Recommender System
solution within a software, believing it to be better provided in a modular and loosely
coupled way, where the service is agonistic to the current established system architec-
ture, server, frameworks, libraries and programming languages. This way, a modular
recommender system, provided as a separate service, can potentially provide an optimal
solution to software, platforms and services making use of Service-oriented Architecture,
modularity, and abandoning an aging monolithic approach and providing more choices to
the developers, as the recommendation functionality will be available to them regardless
of their software design choices or programming languages and environment.

1.1 MOTIVATION

Despite of being crucial to e-commerce and media services platforms, Recommender Sys-
tems implementations are still far from simplicity (MACMANUS, 2009). Regular web-
based system developers might be required to learn about algorithmic structure beyond
their knowledge. In this case, an average system designer would still need additional
background on machine learning, user behavior modeling, and social network analytics
(FAYYAZ et al., 2020). Due to these peculiarities, finding developers with this particular
background is an obstacle for those seeking to incorporate recommender systems into their
business. Moreover, Web developers can be overloaded with such tasks as implementing
recommender systems. Additionally, machine learning libraries (and recommender sys-
tem libraries in particular) are required to be installed on the system and maintained by
the developers, and considering how much of a challenge it can become both due tech-
nological choices and time constraints, providing a recommendation API (using known
industrial standards such as the REST architecture), which is easily deployable or readily
available could significantly reduce the amount of work developers would have to employ
to implement a recommendation functionality, which would in turn allow developers to
concentrate their efforts on their core application.

With the expansion of full-stack application development, a clear separation in terms

1.2 PROBLEM 3

of single responsibility principles has emerged to enable DevOps practices and agile
methodologies in one project. Modern software architectures are departing from mono-
lithic and tightly coupled approaches as they have shown to display limitations for main-
tenance, scalability, security, responsibility principles for DevOps and dependency issues
(GOS; ZABIEROWSKI, 2020; FRANCESCO; LAGO; MALAVOLTA, 2018).

Based on the premises previously stated, this project aims to create a solution that is
both widely available and simple to deploy, as well by using standard and state-of-the-art
patterns that allow users to implement recommender systems services with much less
effort than from scratch.

1.2 PROBLEM

New recommendation algorithms are frequently released, and they are frequently updated
(ZANARDI; CAPRA, 2011). This is usually unimportant to users who want to use the
recommendation functionality without interruptions in the development flow of an appli-
cation or simply use the recommendation (in case the user is the end-user for a service
and not a developer) and wants a readily available service. Because software develop-
ment teams may not have personnel available to maintain the functionality, they may
choose to use a third-party service to have the functionality implemented and maintained
(RUDMARK, 2013). There are no known cases in the literature that completely address
the issue, where viable, functional and free alternative services could provide additional
functionality as a recommender systems within the loosely coupled service approach for
major web applications, additionally, most recommender services available do not make
use of algorithms and interfaces for both content based filtering and collaborative filter-
ing, thus there is evidence that there is potential for pioneering proposals in the field of
Recommender Systems as stand-alone Cloud Services.

During software development, usually there are concerns of feature separation and
coupling. Coupling is the degree of interdependence between software modules; a measure
of how closely connected two routines or modules are (ISO/IEC/IEEE. . . , 2010). Tightly
coupled systems tend to force a ripple effect of changes in other modules in case a change
in made to one module, assembly of modules might require more effort and/or time due
to the increased inter-module dependency, and a particular module might be harder to
reuse and/or test because dependent modules must be included (PHAN, 2019).

If a company fails to provide a recommender system engine for its services (particu-
larly those related to listing), it may be unable to provide a compelling user experience,
which may generate a negative impact on their product’s reception. As such, the com-
pany’s overall potential market presence might be hindered by the lack of this feature.
Additionally, a badly implemented or badly maintained recommender system may also
result in bad user experience, a broken software environment, and a shift of development
duties. In critical scenarios, the absence or bad implementation of recommendation ser-
vices can lead to loss of revenue for companies. As such, a reliable and easy to maintain
solution is necessary.

4 INTRODUCTION

1.3 OBJECTIVE

This project tries to address the scarcity of non-commercial solutions for cloud-ready
services that provide a Recommendation module as an additional feature to a major
software or product that need a recommender system as a core feature. A containerized
API solution will be developed. Overall, this work covers the following specific objetives:

• SO1: Conduct a comprehensive literature review on Recommender Systems, fo-
cusing on their concepts, modeling, techniques, evaluation forms, and practical
applications, while also exploring optimal architectural styles for handling multiple
calls with satisfactory response times;

• SO2: Investigate and implement web architectures that synergize with the princi-
ples of recommender systems for seamless integration into larger applications;

• SO3: Develop a recommendation service API that simplifies interactions for its
consumers, sidestepping inherent complexities while offering both collaborative fil-
tering and content-based filtering;

• SO4: Design and ensure the deployability of the API as a service, emphasizing its
scalability and comprehensive documentation to aid developers.

1.4 RESEARCH QUESTIONS

In light of the problem and the objectives delineated, the research questions will guide
the trajectory of the work. The answers to these questions will address facets of the
problem presented. These questions are pivotal in validating the proposed solution. The
following questions are intended to be addressed during the evaluation phase:

• RQ1: How do Web Architectures and Recommender Systems principles synergize
to enhance software development, and which architectural style is optimal for a
Recommendation System service?

• RQ2: What are the key features and functionalities that developers expect from
a recommendation service API, and how can these be seamlessly integrated into
larger applications?

• RQ3: What are the inherent complexities of recommendation systems, and how
can an API be designed to simplify interactions for its consumers?

• RQ4: How does the developed API perform in terms of scalability, deployability,
and utility, and what are the areas of improvement as identified by developers?

1.5 METHODOLOGY

This work investigates, proposes and evaluates a new software to provide an accessible
Recommendation System core feature using state of the art methods. The methodology
used to develop this project is as follows:

1.6 OUT OF SCOPE 5

• Literature Review: Initially a literature review was conducted to learn about the
state of the art of Recommendation, system architecture patterns, software APIs
for web services and cloud services;

• Research Opportunity Detection: Through the research, it was identified the
need of a dedicated and loosely coupled recommendation service core for larger web
services;

• Proposal Implementation: Through the identified opportunity, a complete rec-
ommendation API was developed with a Microservice architectural approach always
in mind, targeting to receive different types of data in content, goals and sizes;

• Experiment Execution and evaluation: Several test coverage principles were
applied to the produced software API to fulfill availability and accuracy expec-
tations, as well to meet with the proposed experiment objectives. Through the
guidance of literature established metrics, this work attempted to solve most con-
cerns regarding web APIs, particularly about usability, documentation, codebase
maintainance, reliability and software availability.

1.6 OUT OF SCOPE

This project does not aim to provide, describe or suggest new Recommender System
algorithms and paradigms. It is essentially a cloud-first API and architectural solution
designed to replace a lengthy and often unreliable process of implementation of Recom-
mender Services within other software projects as a third party and self contained service.
This project also is not intended to be used as a commercial solution or a major main-
tained Software as a Service (SaaS) solution by itself, but rather be a reference for other
SaaS solutions that can use the results of this work as a preliminary-step for other system
designs.

1.7 DISSERTATION STRUCTURE

In this chapter we introduce the theme of the dissertation, we present the motivation
and the problem that underlie this work. In addition, we address the objective, research
questions, methodology, and expected contributions. The next chapters are organized as
follows: Chapter 2 presents a literature review on Recommender Systems, demonstrating
the concepts, modeling, techniques and their algorithms, as well as evaluation forms and
industrial examples; Chapter 3 discusses Web Architecture concepts and brings research
results related to software, systems and services that attempt to provide decoupled rec-
ommendation modules and how they relate to our work; Chapter 4 presents the overall
project software architecture, going in depth about the design choices, technologies, li-
braries, algorithms and requirements; Chapter 5 evaluates the built API by making use of
known metrics and methodologies, and presents the results obtained; Chapter 6 analyzes
survey results on a RecSys API, evaluating user experience, challenges, and potential
solutions; Chapter 7 presents the conclusion of the work, presenting the contributions,
limitations and future work.

Chapter

2
RECOMMENDATION SYSTEMS

As already introduced, Recommendation Systems are used as a part of a larger system. In
this chapter we cover a literature review on Recommendation Systems. Initially an intro-
duction is presented, as well as the tasks and concepts that are widely applied. We then
address ways of modeling user data as feedbacks and the formal representation of datasets.
The recommendation techniques of Content-Based Filtering, Collaborative Filtering and
Hybrid Filtering are presented, described and exemplified, as well as their processes, ad-
vantages and disadvantages. Furthermore, some recommender algorithms used in this
work are also presented and formally described. We also present the evaluation protocols
and the prediction and ranking metrics, which are widely used to understand the results
of the systems. Finally, we present some successful commercial applications.

2.1 INTRODUCTION

Ricci, Rokach e Shapira (2011b) state that, “in its simplest form, personalized recom-
mendations are provided as an ordered list of candidate items. To find the items that
will make up that list, Recommender Systems try to predict which product or service
will appeal most to users, based on historical preferences.

Resnick e Varian (1997) in his article entitled “Recommendation Systems” show that
these systems support and enhance the recommendation process. Basically, what we have
here are techniques and program tools for providing suggestions of items that are useful
to a user. In these systems, “item” is a generic term used to denote what the system
offers to a user. (RICCI; ROKACH; SHAPIRA, 2011b).

Criteria such as “personalized”, “interesting” and “useful” are essential in differentiat-
ing Recommendation Systems with Information Retrieval Systems, Information Filtering
or Search Engines. In a search engine, the system should return everything that matches
the terms used in the search. However, search engines have begun to use techniques for
entering user data into the search process (BURKE, 2002).

7

8 RECOMMENDATION SYSTEMS

2.2 TASKS AND CONCEPTS

Recommendation Systems have goals that applications implement in common. Ricci,
Rokach e Shapira (2011b) summarize some of these goals, which are: increase the number
of items sold, sell more different items, increase user satisfaction, increase member loyalty,
and better understand our users’ desires. These objectives are adapted or reformulated
according to the application domain. For example, an electronic store wants to sell more
items as well as sell different items, however a movie streaming service does not sell the
item, but wants its users to have contact with as many of its available items as possible.

Herlocker et al. (2004) present eleven tasks that Recommender Systems should im-
plement: find some good items, find all good items, understand context, sequence recom-
mendation, group recommendation, navigation between items, reliable recommendation,
improve user profile, allow user expressiveness, help users, and finally influence other
users.

The goals cited by Ricci, Rokach e Shapira (2011b) and the tasks described by Her-
locker et al. (2004) are not the only points that recommender systems should tackle.
McNee, Riedl e Konstan (2006) warn that only achieving the goal of recommending is
not enough and that recommender systems should aim at other aspects. Thus, further
research brought aspects such as: diversity in recommendation, surprise to the user with
an unexpected item, fairness to their preferences, items that bring novelty, usefulness of
the item to the user, coverage, among others. Figure 2.1 demonstrates what is necessary
and/or desired for user satisfaction according to Silveira et al. (2017) who perform an
overview of how to measure how good the recommendation system is.

Figure 2.1 Components for user satisfaction (SILVEIRA et al., 2017).

According to Ricci, Rokach e Shapira (2011b) recommendation systems basically use
three types of data to fulfill their purpose: items, users, and users’ relationships with the
items, called transactions.

• Items: These are the objects to be recommended. They can be characterized by
their complexity, value and/or usefulness. The value of the item can be positive
if it is useful to the user, or negative if it is inappropriate. Items can be repre-
sented using various representation and information approaches. In applications
such as Netflixfootnotehttps://www.netflix.com, the item is the movie that will be
recommended; in Spotifyfootnotehttps://www.spotify.com the item is a song; in

2.3 USER MODELING 9

Courserafootnotehttps://www.coursera.org/ the item is a course; in Amazonfoot-
notehttps://www.amazon.com.br/ the item is a product (book, electronic, etc). In
our work, formally the set of items in the system is represented by the letter I,
where any one item is represented by the letter i or j;

• Users: They have various purposes and characteristics. To perform recommenda-
tion personalization, recommender systems use a set of data about the user. This
data can be structured in various ways, and the selection of which data to use de-
pends on the recommendation technique and the need of the application domain.
In our work, formally the set of active users in the system is represented by the
letter U , where any user is represented by the letter u or v;

• Transactions: These are records of the interactions between users and items in
the system. They are structured data that store important information generated
during the user’s interaction with the system, which are used by the recommender
algorithms to find useful recommendations. In our system, formally all transactions
of users u ∈ U with items i ∈ I are represented by the letter T , where a transaction
of a user u with an item i is represented as tui.

2.3 USER MODELING

The performance of the tasks of a recommender system is directly linked to the users
and for this the user data must be properly modeled and structured. However, to model
this data it is necessary that it is previously collected by the system. During the user’s
interaction with the system the transactions are recorded and serve as the database for
the modeling. According to Ricci, Rokach e Shapira (2011b) it is possible to adopt
two techniques to collect data from users about the items they interacted with, in most
interactions users may interact positively with the item or interact negatively with the
item. Isinkaye, Folajimi e Ojokoh (2015) present a third way to collect user feedback
data.

2.3.1 Explicit Feedback

When the system requires direct feedback from the user in evaluating an item, asking
the user about its relevance, this type of feedback is said to be explicit. This type of user
feedback helps the system understand how interesting or relevant the item was to the user.
Ricci, Rokach e Shapira (2011b), Celma (2008) present ways to get explicit feedback from
the user. The use of binary feedback is one way to understand the relevance of the item to
the user as the positive/negative (like/dislike). The use of discrete feedback with values
starting from 0 opens up a greater possibility of evaluation about the interest of the user.
One possibility for values is the Likert (LUCIAN, 2016) scale. Another way to get direct
feedback from the user is to request to write comments or opinions about the item.

The application of the explicit feedback technique may require more than one type of
simultaneous interaction from the user, for example, Figure 2.2 demonstrates that the
Steam electronic game store requests both binary and comment feedback from the user.

10 RECOMMENDATION SYSTEMS

Figure 2.2 Feedback explicit binary and by comment.

2.3.2 Implicit Feedback

According to Celma (2008) “a recommender system can infer user preferences from passive
monitoring of actions. Ricci, Rokach e Shapira (2011b) state that “implicit feedback does
not require any action involving the user, taking into account that feedback is derived
from monitoring and analyzing user activities”.

The implicit feedback method is based on assigning a relevance value to a user’s action
on an item, such as: saving, discarding, printing, bookmarking, mouse movement, time
on a page, among others. Thus, the amount of data that can be collected during the
user’s interaction with the system is large. However, mistakes in the interpretation of
data can happen, for example, when the user accidentally clicks on a Uniform Resource
Locator (URL) or forgets that the music player is playing an album he doesn’t like.

Figure 2.3 demonstrates the recommendation of routers to the user, after the user
performs a search for brands of routers. Thus, the recommendation system understood
that during the next searches the user has the intention to search for more routers.

2.4 RECOMMENDATION TECHNIQUES 11

Figure 2.3 Feedback implied from a textual search.

2.3.3 Hybrid Feedback

According to Isinkaye, Folajimi e Ojokoh (2015) the strength of both explicit and implicit
feedbacks can be combined into a hybrid feedback, aiming to minimize the weakness and
errors that each feedback may contain, thus enabling better system performance. Figure
2.4 demonstrates a hybrid feedback, where the user can give positive (heart button on
the left) or negative (cancel button on the right) feedback, plus the system considers how
many times the user has listened to a particular song.

Figure 2.4 Hybrid Feedbackusing the binary feedback and the feedback of how many times
the song was heard.

2.3.4 Data representation

With the data collected and modeled, being feedback explicit or implicit, the system is
able to start the phase of studying the data to find the recommendations. We present in
Table 2.1 the formal representation of the structured data. The feedbacks are obtained
from the system transactions, so they are modeled differently.

2.4 RECOMMENDATION TECHNIQUES

From the user preferences modeled by the application’s feedback type, recommender sys-
tems apply techniques that aim to select the best items for their users. Each technique
works in a specific way and has several recommender algorithms, which select differ-
ent items to compose the lists. Thus, depending on the domain, besides studying the
appropriate technique it is necessary to study which is the best algorithm.

The main recommendation techniques, which we describe during the next sections,
are: Content-Based Filtering, Collaborative Filtering, and Hybrid Filtering. However,

12 RECOMMENDATION SYSTEMS

Set Set description Relation Relation description
U Set of all users u, v Any user
I Set of all items i, j Any item
T Set of all transactions t Any transaction
tu All transactions from u ti All transactions from i
tui Transaction from u with i |T | Number referring to the size of the set T
|U | Number referring to the size of the set U |I| Number referring to the size of the set I
R Set of all valid feedbacks |R| Number referring to the size of the set R
R(u) All user feedbacks u R(i) All item feedbacks i

R̂ Set with all predicted feedbacks |R̂| Number referring to the size of the set R̂

rui
Value of user feedback u
to the item i

r̂ui
Value predicted by the user’s recommender
u to item i

ru Value of all user feedbacks u ri Value of all item feedbacks i

Table 2.1 Formal representation of the data sets used by the system.

these are not the only existing techniques. Burke (2002) does a survey of several existing
recommendation techniques besides the three main ones, such as: demographic-based,
utility-based and knowledge-based. Other studies also enhance the knowledge about the
various recommendation techniques, such as Ricci, Rokach e Shapira (2011b) and Celma
(2008). The Table 2.2 presented in the work of Burke (2002) is a summary on some
recommendation techniques.

Techniques Modeling Input Process

Collaborative Feedbacks of all users Feedbacks of the user being processed
about the items of choice

Identifies similar users
the user in processing and
uses its feedbacks
to recommend the items

Content Item Data User Feedbacks in processing
about the items of choice

Shape a suitable classifier
to its classification behavior
and use it to select the items.

Demography User demographic information
and their feedbacks

User demographic information
in processing

Identifies users who are demographically
similar to the user being processed
and uses its feedbacks to recommend the items

Utility Item Data
A utility function over the items
that describes user preferences
being processed

Applies the function to the items
and determines which items will be part of the ranking

Knowledge
Item Data.
Knowledge of how these items
meet the needs of a user

Description of needs or interests
of the user being processed

Infers a correspondence between the item
and the user in processing

Table 2.2 Recommendation techniques, their modeling, input and processing (BURKE, 2002).

2.5 CONTENT BASED FILTERING

One of the widely used techniques is Content-Based Filtering. This technique relies on the
data that makes up the items to find similar items with user preferences. Adomavicius e
Tuzhilin (2005) state that the content-based method has its origin in information retrieval
research. According to Ricci, Rokach e Shapira (2011b) “recommendation systems that
use content-based filtering attempt to recommend similar items with those that users
have preferred in the past.” Isinkaye, Folajimi e Ojokoh (2015) define that “the content-
based technique is a domain-dependent algorithm and places more emphasis on analyzing
the attributes of items to generate predictions.”

2.5 CONTENT BASED FILTERING 13

The systems that implement the content-based filtering technique analyze the meta-
data that constitute the items, forming an information structure that is used during the
recommendation process. This process is based on using the metadata of the items in
a user’s preferences to then find new items that have similar content and finally ranks
these items in a recommendation list, taking into account how similar this new item is
to the items in the preferences.

According to Lops, Gemmis e Semeraro (2011), “the recommendation process consists
of comparing the attributes of the user’s model with the attributes of an item. The result
is a relevance judgment that represents the user’s interest levels in that item.”

Figure 2.5 Example of a music recommendation based on the content describing the items.

As an example, in Figure 2.5 the user listened to four songs: “Bolso Nada” by
Francisco el Hombre, “Mensageiro da Desgraça” by Titãs, “Desmascarando sua Ban-
deira” by Flicts and “O Calibre” by Paralamas do Sucesso; and was recommended with
“Brasileiro” by Selvagens à Procura de Lei. This recommendation happens because
the items have similarities in content, such as: musical genre, re-recordings in common,
places and events of presentation, and participation in songs in albums in common.

2.5.1 Advantages and Problems

Recommendation systems that use content-based filtering have advantages and problems
like all other techniques. The pros and cons of using the technique are presented in
the studies of Isinkaye, Folajimi e Ojokoh (2015), Lops, Gemmis e Semeraro (2011),
Adomavicius e Tuzhilin (2005).

The advantages of using this technique include:

14 RECOMMENDATION SYSTEMS

• Fast adaptation: Adaptation of recommendations if user preferences undergo
changes, whether those changes are large or small;

• Small profile: Recommending new items even if the user does not have many
items in their profile or does not contribute a significant amount of feedbacks;

• Privacy: Because user profiles are analyzed separately without interference from
other users’ profiles. The technique keeps your users protected against attacks, for
example the shill attack;

• Security: Depending on the system architecture it is possible to process each
user separately, keeping the processing information only from a specific user, thus
decreasing the chance of data leakage;

• Explanability: The steps performed by the algorithms to find the list of items are
easy to audit and understand.

The technique also has disadvantages, which include:

• Super specialization: Recommended items have maximum similarity to the items
in the user’s profile, items outside of preferences typically do not enter the recom-
mendation list, leading the user to live in a preference bubble;

• Information dependency: Items need metadata that describes them, the less
information the more inaccurate the recommendation is, so item descriptions need
to be well structured and data rich;

• New user: Even though the technique recommends items for profiles with few feed-
backs when a user has no items in their profile, the system cannot find personalized
recommendations. This problem is known as a cold start.

2.6 COLLABORATIVE FILTERING

One of the most widely used techniques in both research and industry is collaborative
filtering. It takes the feedbacks of all users to recommend new items to another user,
taking into account the user’s preference history. The technique only takes into account
the feedbacks and thus does not depend on the content of the items or extra information
from the users. Ricci, Rokach e Shapira (2011b) state that “this approach recommends to
an active user the items that other users with similar likes have liked in the past.” Burke
(2002) indicates that “collaborative recommender aggregates ratings or recommendation
objects, recognizing commonalities among users by taking their ratings as a basis, and
generating new recommendations based on inter-user comparison.”

“It is likely that u’s rating of a new item i will be similar to that of another user
v, if u and v have rated other items similarly. Similarly, u is likely to rate two items i
and j similarly, if other users have similar ratings for those two items.” (DESROSIERS;
KARYPIS, 2011).

2.6 COLLABORATIVE FILTERING 15

Figure 2.6 Example of music recommendation based on user preferences.

For example, Figure 2.6 demonstrates a possible recommendation using the collabo-
rative filtering technique. The preferences shown are from three users about five songs,
these being “Bolso Nada”, “Los Idiotas”, “Inútil”, “Menino Mimado” and “Tá?”. Two
of the three users have positive ratings of all five songs and the third user does not know
“Bolso Nada” and “Los Idiotas” but has similar ratings for the other three songs, so this
third user will be recommended with these two songs. There is a sixth song in the figure
called “Brasileiro”, however it does not enter into the recommendations, due to none of
the users having positive ratings for it.

The algorithms of the technique are divided into two groups: memory-based method
and the model-based method (RICCI; ROKACH; SHAPIRA, 2011b; ISINKAYE; FO-
LAJIMI; OJOKOH, 2015). A third method can be characterized, this one that sticks to
basic ways of filtering and sorting the data. The algorithms are not model or memory
based. In the following we describe the characteristics of each method:

• Memory-based method: In some studies it is called neighborhood-based method
or heuristic-based method. It directly uses user ratings to find other neighbors that
have similar ratings. This method can be implemented in two ways: i) user-based
and ii) item-based. i) When implementing the user-based path the system calculates
the similarity of the ratings between a user u and the other users, searching for users
that have the highest degree of similarity. By finding the most similar neighbors
(users), the items of their preferences are used as the basis of the recommendation
to u. ii) The item-based algorithms search for similar ratings among the items,
from a given item i in the preferences of u are found items that have similarity in
the ratings. In Section 2.6.2 we present a user-based and an item-based variation
of the K - Nearest Neighbors (KNN) algorithm;

16 RECOMMENDATION SYSTEMS

• Model-based method: Uses machine learning algorithms to understand the user’s
profile. The profile learning is pre-computed and kept in the system which facilitates
the recommendation process, however a learning period is required. The model-
based method analyzes the user-item relationship to find new items. This method
can work with sparsity better than the in-memory method. The learning methods
used can be probabilistic, matrix factorizers, neural networks, among others;

• Basic method: Uses simple ways of filtering and sorting items. Some algorithms
don’t work with personalization, others just recommend items that the user hasn’t
had contact with yet, based on global values.

The Table 2.3 presents an overview of the methods, groups, and algorithms used in
our work. In the next sections we present the algorithms in the Table, as well as the
formal representations of each of them.

Methods Groups Algorithms

Basic Basic Popularity
Best score

Based on memory User User-KNN
Item Item-KNN

Model-based
Grouping Co Clustering

Matrix Factoring
Singular Value Decomposition (SVD)
SVD++
BMF

Slope One Slope One

Table 2.3 Methods, groups and algorithms of the collaborative filtering technique.

2.6.1 Basic

We will present two algorithms that are not memory or template based. These that are
used in filtering and sorting items and are easy to implement and understand.

2.6.1.1 Popularity This is a widely used algorithm for sorting items and is commonly
found in systems. This simple algorithm is based on counting how many profiles an
item is present in, i.e. how many users preferred this item. The Equation 2.1 formally
demonstrates the counting of items, for all items i ∈ I it is counted how many times
that item appears in the feedbacks (|R(i)|). Equation 2.2 formally demonstrates the
recommendation, from the counted items the items that the user already knows are
removed, thus keeping only the items unknown to the user.

popI = (∀i ∈ I)|R(i)| (2.1)

pop(u) = popI − R(u) (2.2)

2.6 COLLABORATIVE FILTERING 17

2.6.1.2 Best score Summarizes the feedbacks of users about a certain item, usually
an average of the feedbacks values is taken. Thus, items with the best feedbacks that the
user does not already know about are recommended. Equation 2.3 formally demonstrates
that for every i ∈ I an average of the feedbacks µi is performed. Equation 2.4 demon-
strates that from the averaged items performed the items that the user already knows
are removed, thus leaving only the unknown items.

countBS = (∀i ∈ I)µi (2.3)

bs(u) = countBS − R(u) (2.4)

2.6.2 KNN

Memory-based recommendation methods, also known as neighborhood-based, use the
feedbacks of users, trying to find the degree of similarity between neighbors, the higher
the similarity level the closer these neighbors are. This method is divided into two
groups: the one that checks similarity between users and the group that checks similarity
between items. One of the most widely used neighborhood-based recommenders is KNN.
Desrosiers e Karypis (2011) and Koren e Bell (2015) present formulations of KNN for users
and for items called User-KNN and Item-KNN.

2.6.2.1 User-KNN This implementation of KNN is based on finding users with the
highest degrees of similarity. The relationship of all users u ∈ U to all items i ∈ I is
modeled as a user-item matrix, where each row is a user and each column is an item. By
selecting a user u to find recommendations it is checked which other users have similarities
in feedbacks. User-KNN measures the degree of similarity between a user u and another
user v by any distance measure. The following are some of the distance measures that
are based on the calculation of distance between vectors.

sim(u, v) = PC(u, v) =
∑

i∈Iuv
(rui − µu)(rvi − µv)√∑

i∈Iuv
(rui − µu)2 ∑

i∈Iuv
(rvi − µv)2

(2.5)

Equation 2.5 is the formal representation of Person correlation, two users u and v are
given as input. In the equation Iuv represents the positions of the vectors which in turn
are items. rui represents the feedback of user u on item i and rvi of user v on item i. µu

represents the average of the feedback values of user u and µv the average of user v.

sim(u, v) = cos(u, v) =
∑

i∈Iuv
ruirvi√∑

i∈Iuv
r2

ui

∑
i∈Iuv

r2
vi

(2.6)

Equation 2.6 is the formal representation of cosine similarity, where two users u and
v are given as input. In the equation Iuv represents the positions of the vectors of u and
v which in turn are items i. rui represents the feedback value of user u on item i and rvi

of user v on item i.

18 RECOMMENDATION SYSTEMS

r̂ui =
∑

v∈Nk
i

sim(u, v) · rvi∑
v∈Nk

i
sim(u, v) (2.7)

Equation 2.7 formally represents the User-KNN prediction of user over an item r̂ui.
Where Nk

i represents the k neighbors with the highest degree of similarity to user u.
Thus, the recommender has two hyper parameters, the k and the distance measure.

2.6.2.2 Item-KNN This implementation of KNN is based on finding items with the
highest degrees of similarity. The relationship of all items i ∈ I by all items j ∈ I is
modeled as an item-item matrix, where each row is an item and each column is also an
item. By selecting an item i to find the recommendations it is checked which other items
have similarities in the feedbacks. Item-KNN measures the degree of similarity between
an item i and another item j by any distance measure. The following are some of the
distance measures that are based on the calculation of distance between vectors.

sim(i, j) = PC(i, j) =
∑

u∈Uij
(rui − µi)(ruj − µj)√∑

u∈Uij
(rui − µi)2 ∑

u∈Uij
(ruj − µj)2

(2.8)

Equation 2.8 is the formal representation of Person correlation, two items i and j are
given as input. In the equation Uij represents the positions of the vectors which in turn
are users. rui represents the feedback of user u on item i and ruj of user u on item j. µi

represents the average of the feedback values of item i and µj the average of item j.

sim(i, j) = cos(i, j) =
∑

u∈Uij
ruiruj√∑

u∈Uij
r2

ui

∑
u∈Uij

r2
uj

(2.9)

Equation 2.9 is the formal representation of cosine similarity, where two items i and
j are given as input. In the equation Uij represents the users who have feedbacks of items
i and j. rui represents the value of feedback of user u on item i and ruj of user u on item
j.

r̂ui =
∑

j∈Nk
u

sim(i, j) · ruj∑
j∈Nk

u
sim(i, j) (2.10)

Equation 2.10 formally represents the prediction of user Item-KNN about an item
r̂ui. Where Nk

u represents the k neighbors with the highest degree of similarity to item i.
Thus, the recommender has two hyper parameters, the k and the distance measure.

2.6.3 Advantages and Problems

Recommendation systems that implement the collaborative filtering technique accept the
advantages and disadvantages that exist in the approach. Some advantages are associated
with neighborhood-based methods and some are associated with model-based ones, as well
as for the disadvantages.

The advantages of using the techniques are:

2.6 COLLABORATIVE FILTERING 19

1. Simplicity: Memory-based recommenders are easy to understand, simple to im-
plement and adapt (ISINKAYE; FOLAJIMI; OJOKOH, 2015; DESROSIERS;
KARYPIS, 2011; SU; KHOSHGOFTAAR, 2009);

2. Justifiability: The predictions of memory-based recommenders have easy and sim-
ple justifiability of why each item is being recommended (DESROSIERS; KARYPIS,
2011);

3. Efficiency: Memory-based recommenders do not require training to learn about
user and peer profiles. Besides using only feedbacks, making it easier to process the
data (DESROSIERS; KARYPIS, 2011);

4. Performance: Model-based recommenders have high recommendation accuracy (SU;
KHOSHGOFTAAR, 2009);

5. Stability: The technique is not affected by instabilities in user profiles or momen-
tary behavioral changes, thus adapting to high-impact changes (DESROSIERS;
KARYPIS, 2011);

6. Content-free: Unlike the content-based filtering technique it does not become
necessary data about the items to find recommendations, thus domains where in-
formation about the items is rare this technique gets better results (ISINKAYE;
FOLAJIMI; OJOKOH, 2015; SU; KHOSHGOFTAAR, 2009);

7. Case: Unlike the content-based filtering technique approaches bring the possibil-
ity of items outside the user’s bubble, avoiding overspecialization (ISINKAYE;
FOLAJIMI; OJOKOH, 2015; DESROSIERS; KARYPIS, 2011).

The disadvantages of using the technique are:

1. Enviesment: The technique relies on feedbacks from others to find recommenda-
tions for similar new items. Using these feedbabks may influence the technique to
find recommendations that do not match your preferences. If the user perceives that
his preferences are not being respected and perceives the system as untrustworthy,
he may abandon the system. One of the most common biases is the popularity bias,
where the recommendations may be composed of the same group of items popular
among older users of the system. Another bias is overlap, where a more preferred
genre overlaps a less preferred genre;

2. Cold start: One of the main problems with the technique relates to when a
user has just joined the application and has not contributed any feedback. In
this case, the collaborative filtering technique cannot find recommendations for the
user (ISINKAYE; FOLAJIMI; OJOKOH, 2015; SU; KHOSHGOFTAAR, 2009);

3. New item: A new item when registered in the application has feedback from the
user, so the technique cannot find the item and add it to the recommendation list of
some user who might come to prefer the item (ISINKAYE; FOLAJIMI; OJOKOH,
2015; SU; KHOSHGOFTAAR, 2009);

20 RECOMMENDATION SYSTEMS

4. Sparsity: When only a small portion of users contribute feedbacks, causing a dearth
of information. The effect of sparsity is a weak recommendation list, due to the diffi-
culty of finding neighbors (ISINKAYE; FOLAJIMI; OJOKOH, 2015; SU; KHOSH-
GOFTAAR, 2009);

5. Scalability: Computation is usually done over a user-item matrix, where on small
databases it gets good performance, but in the face of a large mass of data it can
be inefficient (ISINKAYE; FOLAJIMI; OJOKOH, 2015; SU; KHOSHGOFTAAR,
2009);

6. Synonym: When similar items but with different names are registered in the sys-
tem, they may not be related due to the difference in users’ feedbacks (ISINKAYE;
FOLAJIMI; OJOKOH, 2015; SU; KHOSHGOFTAAR, 2009);

7. Gray Sheep: Users who do not fit into any group or have preferences that do not
allow finding neighbors do not receive recommendations, due to the technique not
being able to find new items similar to preferences from feedbacks from others (QIN,
2013; SU; KHOSHGOFTAAR, 2009);

8. Shill attack: A competing item in recommendations may deliberately feed negative
feedbacks into the system to punish an opponent, gaining advantages for themselves
and not allowing users to receive the opponent’s item as a recommendation (QIN,
2013; SU; KHOSHGOFTAAR, 2009);

9. Privacy and Security: Schafer et al. (2007) point out that “in centralized col-
laborative filtering architectures, a single repository stores all user ratings. If the
central server becomes compromised, corrupted, or exposed, user anonymity can be
destroyed.” The same problem can happen in distributed architecture. Thus, the
use of cryptography in the technique becomes necessary.

2.7 HYBRID FILTERING

Burke (2002) in their research elucidates that “a hybrid recommender system combines
two or more recommender techniques to gain better performance with fewer disadvantages
than any individual one.” Ricci, Rokach e Shapira (2011b) explain that “a hybrid system
combines techniques A and B by trying to use the advantages of A to fix the disadvantages
of B.”

Usually hybrid recommender systems combine the techniques of collaborative filtering
and content-based filtering. However any technique can be combined as long as it meets
the requirements of the application domain. By combining techniques the disadvantages
are reduced from an advantage of another technique, so combining techniques that cover
each other’s disadvantages is best to achieve better accuracy.

There are several methods for combining recommendation techniques into a hybrid
approach. Burke (2002) in his research maps out some possibilities for hybridization,
which are described in Table 2.4.

2.8 SUMMARY 21

Hybridization methods Description

Weighted The scores (or votes) of various recommendation techniques
are combined to produce a single recommendation.

Alternated The system switches between recommendation techniques
depending on the situation.

Mixed Recommendations from several different recommenders are
presented at the same time.

Combination of characteristics Resources from different sources of recommendation data
are assembled into a single recommendation algorithm.

Cascading One recommender refines the recommendations given by another.

Increased resources The output of a technique is used as an input resource
to another.

Meta-Level The model learned by a recommender is used as
input for another.

Table 2.4 Hybridization methods (BURKE, 2002).

2.8 SUMMARY

In this chapter we introduce the main concepts and tasks of a recommender system.
We explain how to model user data. Next we address the recommendation techniques,
discussing in detail each technique, addressing its concepts, algorithms, advantages and
disadvantages. After the techniques we present ways to evaluate the recommendation
systems, in their protocols and metrics. Finally, we present industrial applications of
recommender systems. In the next chapter we will address the state of the art on the
theme that this work aims to discuss.

Chapter

3
WEB ARCHITECTURE

This section intends to provide a comprehensive explanation on the proposed software’s
Web Architecture concepts based on the literature. Since the application is designed to be
deployed on the cloud utilizing web protocols, it should follow a couple of standards and
architectures, in order to enable communication between different peers (client and server)
and allow interoperability between different systems; it should be able to use the default
data transmission protocols such as Transmission Control Protocol (TCP)/Internet Pro-
tocol (IP), Hyper Text Transfer Protocol (HTTP) and Hyper Text Transfer Protocol
Secure (HTTPS), and it can be displayed on representation formats (HyperText Markup
Language (HTML), Cascading Style Sheets (CSS), JavaScript Object Notation (JSON))
as long as the API is in place, and everything should be accessible through the URL
addressing standard.

3.1 SERVICE ORIENTED ARCHITECTURE (SOA)

Cordeiro (2012) defines Service-Oriented Architecture (SOA) as: “SOA is an IT philoso-
phy that aims to facilitate integration between systems by guiding the creation and deliv-
ery of modular and loosely coupled solutions based on the concept of services”. Cordeiro
(2012) describes SOA possessing the following characteristics:

• Services composition;

• Platforms abstraction and infrastructure technologies;

• Loose coupling;

• Use of patterns;

• Incentive to reuse components.

23

24 WEB ARCHITECTURE

SOA enables modularity and splitting the complete environment into functional units,
as there are complexities involved on the client-server model. The proposed software
needs to be designed around the idea of distributed web services, particularly using SOA.
Part of the role of SOA is developing a flexible and scalable application by utilizing loose
coupling, heterogeneity and decentralized, where interoperability is a key feature. Modern
SOA implementations currently heavily relies on Representational state transfer (REST)
architecture, which is the basis of this work. SOA is a style of organizing (services),
and Web services such as SaaS (Software as a Service) services, which this work is also
characterized as, are its realization (BHOWMIK, 2020; KALE, 2018).

According to Cordeiro (2012), the use of SOA expects the following benefits:

• Ease of Maintenance: changes in business logic (implementation) do not affect
existing applications;

• Reuse: new applications and processes (service consumers) can more easily reuse
existing functionality;

• Flexibility: back-end systems and infrastructure can be replaced with less impact;

• Result: agility and cost reduction;

• Quality: guarantee of process homogeneity;

• Less time: agility in the impact analysis and evolutionary development of systems;

• Lower cost: reduced maintenance cost of the applications;

• Control: knowledge of existing assets.

This project will make use of the Microservices architecture, which is considered a
variant of SOA. It will be better described on the Section 3.2.

3.1.1 Restful Architeture

REST is a web service architecture commonly used to create interactive applications. A
Web service that follows REST architectural guidelines is called RESTful. A RESTful
Web Service allows Web resources to be read and modified with a stateless protocol and
a predefined set of operations. This approach enables interoperability between a client
and a remote server on the Internet that provide these services. REST is an alternative
to SOAP as way to access a Web service (FIELDING, 2000; BOOTH; HAAS; MCCABE,
2004).

REST uses key elements such as the resource URL, Request verbs, Request headers,
Request body, Response body, and Response status codes (RUNGTA, 2020). The re-
sources are the base URLs where the commands will be issued to the web server, the
Request verbs are by standard POST, GET, PUT, PATCH, and DELETE, correspond-
ing to create, read, update, and delete (CRUD) operations, the Request headers define
the type of response required or the authorization details, the Request body is the data

3.1 SERVICE ORIENTED ARCHITECTURE (SOA) 25

that is sent with the request, the Response body contains the data that was sent by the
web server in return for the request, and the Response status codes are codes assigned to
the response attributing information (100-199), success (200-299), redirection (300-399),
client errors (400-499) or server errors (500-599) (RUNGTA, 2020; MOZILLA, 2021).

RESTful APIs are commonly described using languages such as the OpenAPI Spec-
ification (OAS) (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019), which provides a
structured way to describe a RESTful API in a both human and machine-readable way,
making it possible to automatically generate, for example, documentation, source code
(clients and servers) and tests (MARTIN-LOPEZ; SEGURA; RUIZ-CORTéS, 2019).

Restful popularity is justified over its use of heterogeneous languages and environ-
ments, it enables web applications that are built on various programming languages to
communicate with each other, it allows web applications to reside on different environ-
ments agnostic to operating systems, enables the programmer to code applications on
different devices to interact with normal web applications, and web services programmed
on the architecture based on REST services make the best use of Cloud-based services
(RUNGTA, 2020).

In order to comply with characteristics required to be considered a RESTful web ser-
vice, the server would provide the required functionality to the client, where the client
sends a request to the web service on the server and the server would either reject the
request or comply and provide an adequate response to the client. It also has a principle
of statelessness, where it’s up to the client to ensure that all the required information is
provided to the server; the server should not maintain any sort of information between
requests from the client, the client makes a request, the server outputs a response, the
server will not store the previous question and new requests will get responses indepen-
dently. In order to reduce server traffic, the client should store requests which have
already been sent to the server in the format of cache and get the needed information
instead of requesting it to the server again. REST also allow middleware layers between
the client and the main server where extra services can be provided without disturbing
the interaction between the client and the server. REST’s interface / uniform contract
exists on the HTTP layer by using the key verbs (typically POST, GET, PUT, PATCH,
and DELETE) (RUNGTA, 2020). According to Mozilla (2020), the definition for each
one of these key verbs are:

• POST: the POST method is used to submit an entity to the specified resource,
often causing a change in state or side effects on the server;

• GET: the GET method requests a representation of the specified resource. Re-
quests using GET should only retrieve data;

• PUT: the PUT method replaces all current representations of the target resource
with the request payload;

• PATCH: the PATCH method is used to apply partial modifications to a resource;

• DELETE: the DELETE method deletes the specified resource.

26 WEB ARCHITECTURE

Figure 3.1 Example of the interoperability provided by the REST architecture.

This project will follow the API patterns as established by Zhang (2021), where it will
have separate routes for users, items, feedbacks and all the REST actions (POST, GET
and DELETE) to perform the backend operations. Further inspiration are projects that
also utilized RESTful APIs for recommendation services, such as the work from García
e Bellogín (2018) where it solely proposes an example implementation of a REST API
focused on Recommender Systems, meeting the most typical requirements, while using a
web client. For content-based filtering the API proposed by Teruya et al. (2020) should
be used as a reference as the framework it used was capable of identifying the textual
content of greatest interest to the user and recommending relevant related content. The
work by Baldominos et al. (2015) designed a RESTful API for a recommendation system
that implements both collaborative filtering and content-based filtering.

3.2 MICROSERVICE ARCHITECTURE

The Microservice Architecture is a variant of SOA which arranges an application into
a collection of loosely coupled services, making use of fine-grained services and the pro-
tocols are lightweight, communicating over a network to fulfil a goal using technology-
agnostic protocols such as HTTP (FOWLER, 2014; NEWMAN, 2015; WOLFF, 2017).
Tooled around business capabilities (PAUTASSO et al., 2017), where services can be
implemented using different programming languages, databases, hardware and software
environment (CHEN, 2018), usually small in size and bounded by contexts, autonomously
developed, independently deployable (NADAREISHVILI, 2016; CHEN, 2018) and char-
acterized as being decentralized, built and released with automated processes
(NADAREISHVILI, 2016).

According to Bettinger (2020), regarding the distinction between SOA and the Mi-
croservice architecture, “To put it simply, service-oriented architecture (SOA) has an
enterprise scope, while the microservices architecture has an application scope.”, while
adding that “In a microservices architecture, each service is developed independently,
with its own communication protocol. With SOA, each service must share a common
communication mechanism called an enterprise service bus (ESB). The ESB can become
a single point of failure for the whole enterprise, and if a single service slows down, the

3.3 CLOUD ARCHITECTURES 27

entire system can be effected.” and “Microservices architectures are made up of highly
specialized services, each of which is designed to do one thing very well. The services
that make up SOAs, on the other hand, can range from small, specialized services to
enterprise-wide services”.

The software will follow a Microservices architecture approach, it will not feature per-
sistent database storage shared with the client and the software itself will be completely
isolated from the client application, both sides won’t interfere with its usage as long as
the service contract isn’t broken. It will operate by receiving JSON queries (where it
could stream database information) and return a single JSON query to the client ap-
plication containing the target list of recommended items(RIGHTBRAINNETWORKS,
2015; TECHCELLO, 2020; SONG et al., 2019).

3.3 CLOUD ARCHITECTURES

There are three cloud computing approaches: Software as a Service (SaaS), Infrastructure
as a Service (IaaS) and Platform as a Service (PaaS). This work is a Software as a Service
framework. The approach used in this work follows the architecture of a SaaS system.

3.3.1 Software as a Service (SaaS)

SaaS is a service model utilized in Cloud Computing, where the users don’t need physical
hardware, nor buy extra software or install, maintain or update software. This service
model improved businesses in terms of cost and time efficiency. The Google suite (Gmail,
Google Docs, Google Sheets, Google Slides) is currently the prime example of SaaS, as
it provides a cloud replacement to popular office software suites such as the Microsoft
Office (KAVITHA; DAMODHARAN, 2020).

Another striking feature from SaaS is that it requires query processing, where it is
performed query propagation and result propagation; the query propagation forwards the
query through nodes, where it will then be processed by the main software, then once
it finishes it performs the result propagation where the result is obtained by the client
program. As many large applications are typically decomposed into functional primitives
nowadays, SaaS proves to be useful, as the cloud services and its APIs are decoupled from
major applications and its nature follows isolation and single-responsibility principles; it is
especially useful for software utilizing SOA (KAVITHA; DAMODHARAN, 2020; SINGH
et al., 2019, 2019; FRANKLIN; CHEE, 2019; BANERJEE, 2014).

Accordingly to INNVONIX (2019): “(...) SaaS is a means of delivering software as
services over the internet to its subscribers, while SOA is an architectural model in which
the smallest unit of logic is a service.”, however, “(...) to get the maximum benefits of
cost reduction and agility, it is highly recommended that enterprises integrate SOA and
SaaS together”.

3.3.1.1 Benefits
The SaaS approach also offers extra benefits, as when an interoperability with an ap-
plication occurs, it lessens the use of the main application local server resource usage

28 WEB ARCHITECTURE

Figure 3.2 Cloud delivery model for SaaS and PaaS.

(instead using the remote server), and adds an extra layer of security as it doesn’t pro-
vide direct access to databases, instead it just utilizes smaller samples of queries sent by
the main application. Additionally, as it doesn’t require installation, maintenance and
updates, it doesn’t require compatibility with software frameworks, operating systems,
only requiring the end user to follow a set of required query standards when performing
the interoperability. It might improve the QoS (quality of service) of the client applica-
tion, as it offloads the raw hardware computability requirements, thus improving critical
performance and response time, provided that the application is hosted on a server with
superior specifications (GARBIS; CHAPMAN, 2021).

3.3.2 Platform as a Service (PaaS)

Platform as a Service, or PaaS, is a category of cloud computing services that allows users
to provision, instantiate, run, and manage a modular bundle comprising a computing plat-
form and one or more applications, exempting from the user the complexity of building
and maintaining the infrastructure typically associated with developing and launching
the application(s) (CHANG; ABU-AMARA; SANFORD, 2010; BUTLER, 2013). Thus,
PaaS allows for higher-level programming with dramatically reduced complexity.

3.4 RECOMMENDATION AS A SERVICE 29

Accordingly to Watts e Haza (2019), “The delivery model of PaaS is similar to SaaS,
except instead of delivering the software over the internet, PaaS provides a platform for
software creation.”; examples of PaaS applications are AWS Elastic Beanstalk1, Microsoft
Azure2, Heroku3, salesforce.com4, Google App Engine5, Apache Stratos6, and OpenShift7.

This project is simply an API REST service. The user would be required to be
responsible for handling the application in the could as well the data management, so it
can’t be used as a complete PaaS solution.

3.3.3 Infrastructure as a Service (IaaS)

Infrastructure as a Service, or IaaS, is a category of cloud computing services where it’s
provided high-level APIs while using low-level network infrastructure providing physical
computing resources, usually providing pools of hypervisors (such as Oracle VM, KVM,
Oracle VirtualBox, VMWare ESX or Hyper-V) within the cloud operational system that
can support large numbers of virtual machines. IaaS can be used to provide all the
infrastructure needed for PaaS and SaaS. The main objective of IaaS is to make it easy
and affordable to provide resources such as servers, network, storage and other computing
resources essential to build an on-demand environment, which may incorporate operating
systems and applications (ANANICH, 2016; KNAPP, 2019; AMIES et al., 2012; MELL;
GRANCE, 2011).

This project does not intent to include or cover any kind of implementation of virtual
machines or any other kind of virtualization of physical hardware, thus it will not cover
IaaS architectural goals.

3.4 RECOMMENDATION AS A SERVICE

Recommendation as a service is mostly an untapped potential for the industry. Many
sites, services and platforms need to provide content personalization, at the same time, for
both costs and time constraints, it is not feasible to implement a Recommender System
implementation of their own. Therefore a system that performs Recommendation as a
Service might be the solution. There are commercial and free options available for this
end.

Among the commercial options, the most prominent are the recommender systems as
services (RaaS). The basic idea of RaaS is to provide easy-to-use machine learning tools
that allow even non-experts to train and deploy recommenders. The most well-known
RaaS platforms are Amazon Personalize8, Google Prediction API, and IBM Watson Ma-
chine Learning.

1https://aws.amazon.com/elasticbeanstalk/
2https://azure.microsoft.com/
3https://www.heroku.com/
4https://www.salesforce.com/
5https://cloud.google.com/appengine
6https://stratos.apache.org/
7https://www.openshift.com/
8https://aws.amazon.com/personalize/

30 WEB ARCHITECTURE

Amazon Person-
alize

Google Predic-
tion API

IBM Watson ML

Price $0.50/hour $1.00/prediction $0.10/prediction
User Friendli-
ness

Easy Some Coding
Required

Requires Coding
and Infrastruc-
ture Manage-
ment

Table 3.1 Comparison of Amazon Personalize, Google Prediction API, and IBM Watson Ma-
chine Learning.

Amazon Personalize is a machine learning service that makes it easy to create per-
sonalized recommendations for customers using data from their applications. Google
Prediction API is a cloud-based machine learning platform that makes it easy to build
predictive models without having to code or manage infrastructure. IBM Watson Ma-
chine Learning9 is a cloud-based platform that enables developers to easily build and
deploy machine learning models.

Amazon Personalize is the most user-friendly platform, as it requires no coding or in-
frastructure management. Google Prediction API10 is second, as it requires some coding
but still provides a free tier for users to get started. IBM Watson Machine Learning is
the least user-friendly platform, as it requires extensive coding and infrastructure man-
agement.

The Table 2.3 lists some of these services that attempt to fulfil the goal of providing
recommendation services. The sources used for this Table were (RECOMMENDERSYS-
TEMS.COM, 2020) and (JENSON, 2020).

Not many free and open source SaaS could be found during the initial research;
only two were found, and the only one being actively developed (Mr. DLib) has an
emphasis on Digital Libraries, and does not use a generic approach this works intents to
do. So there is no actively developed, mainstream RaaS platform being developed at the
moment. However, there’s a comprehensive list of free and open source Recommender
System Frameworks available, as seen on Table 3.3 . The source used for this Table was
(JENSON, 2020).

However, even though many of these frameworks would make a SaaS implementation
possible, many of them have a Do It Yourself (DIY) approach, and are more applicable
as PaaS since they don’t have a cloud network infrastructure ready, and none of them
have the following set of features in its integrity:

• High customization (algorithms, input settings, and data manipulation);

• Scalability;
9https://www.ibm.com/watson/developercloud/machine-learning.html

10https://cloud.google.com/prediction/docs/getting-started
10https://aws.amazon.com/personalize/pricing/
10https://cloud.google.com/prediction/pricing
10https://www.ibm.com/cloud-computing/bluemix/machine-learning

3.4 RECOMMENDATION AS A SERVICE 31

RaaS name Focus Commercial Actively developed
Recombee Generic Yes Yes
Darwin and Goliath Generic Yes Yes
Mr. DLib Digital Libraries No Yes
bX Digital Libraries Yes Yes
BibTip Digital Libraries No No
yuspify e-Commerce Yes Yes
Kea Labs e-Commerce Yes Yes
Sugestio Generic Yes No
WebTunix Generic Yes Yes
Peerius e-Commerce Yes Yes
Strands e-Commerce Yes Yes
SLI Systems e-Commerce Yes Yes
ParallelDots NLP Yes Yes
Amazon Personalize Generic Yes Yes
Google Prediction API Generic Yes Yes
Azure ML Generic Yes Yes
Gravity R and D Generic Yes Yes
Dressipi Style Adviser Clothing Yes Yes
Sajari Generic Yes Yes
IBM Watson Generic Yes Yes
Segmentify e-Commerce Yes Yes

Table 3.2 List of RaaS platforms/projects.

• Use of REST APIs;

• Support, in the same environment, both collaborative filtering and content-based
filtering;

• Simple Deployment / Containerization (eg. Docker);

• Possibility for non-tech-savvy users to test recommendations.

3.4.1 Related work

Recommender Systems have been widely investigated in the literature, nevertheless de-
ployment of Recommender Systems as Services are less frequent. In the following, we
present some approaches in the literature.

A cloud based framework was proposed by Abbas et al. (2015) offering personalized
recommendations about the health insurance plans. The plan information of each of
the providers was designed to be retrieved using the Data as a Service (DaaS) architec-
ture. The framework is implemented as Software as a Service (SaaS) to offer customized
recommendations by applying a ranking technique for the identified plans according to
the user specified criteria. While this referenced work emphasized on a single goal (a

32 WEB ARCHITECTURE

Framework name Actively developed
The Universal Recommender Yes
PredictionIO Yes
Raccoon Recommendation Engine No
HapiGER Yes
EasyRec No
Mahout Yes
Seldon Yes
LensKit Yes
Oryx v2 Yes
RecDB No
Crab Yes
predictor Yes
surprise Yes
lightfm Yes
Rexy No
QMF No
tensorrec Yes
hermes No
spotlight Yes
recommenderlab Yes
CaseRecommender Yes
ProbQA Yes
Microsoft Recommenders Yes
Gorse Yes
Nvidia Merlin Yes
Rcmmndr No

Table 3.3 List of Open Source Recommender System Frameworks.

recommendation service for health insurance plans), this work intents to allow broader
uses.

The work from García e Bellogín (2018) propose and show an example implemen-
tation for a common REST API focused on Recommender Systems, meeting the most
typical requirements faced by Recommender Systems practitioners while being open and
flexible to be extended. The work also presented a Web client that demonstrates the
functionalities of the proposed API. This referenced work shares the intended focus on
RESTful API design, albeit the current work will provide a full deployment environment
as well full data manipulation to be standardized.

The work from Okon E Uko, B O Eke e Asagba (2018) designed and developed
a recommendation model that uses object-oriented analysis and design methodology
(OOADM), and improved collaborative filtering algorithm and developed an efficient
quick sort algorithm to solve these problems. The similarity to this work is that the

3.4 RECOMMENDATION AS A SERVICE 33

recommendation system was coded in Python, specifically the Django framework.
A proposal was done by Jain e Kakkar (2019) where a Job Recommendation System

based on Machine Learning and Data Mining Techniques, while making use of a RESTful
API and Android IDE. The referenced work work shall also be used as a reference to design
a RESTful API and client-side features using the Android IDE as a template.

An API for web recommendation systems was developed by Teruya et al. (2020),
composed of a Middleware and a Framework capable of identifying the textual content
of greatest interest to the user and recommending relevant related content. The core
recommendation system as well as the API from this referenced work will be used as a base
particularly to content-based filtering. The current work differs in desired architecture
as it is being designed to be a software beyond the API.

The work from Baldominos et al. (2015) describes the development of a web recom-
mendation system implementing both collaborative filtering and content-based filtering,
additionally the recommender system is deployed on top of a real-time big data archi-
tecture designed to work with the Apache Hadoop ecosystem, thus supporting horizontal
scalability, and is able to provide recommendations as a service via a RESTful API.
The performance of the recommender is measured, resulting in the system being able to
provide dozens of recommendations in a few milliseconds in a single-node cluster config-
uration. The referenced work’s metrics and benchmarking will be used as a template for
the current project. It is similar in the regard that it uses both collaborative filtering and
content-based filtering, but it is designed around a different ecosystem.

The author Ben-Shimon et al. (2014) provides as a demonstration an overview of a true
backend system that allows a typical website owner to exactly perform the integration
of a recommendation service, where the e-commerce retailer wants to have some control
over the service, being able to configure the recommendation templates, turn off/on the
service, apply filters on the recommendations, or define the feature templates; control
the recommendation service in terms of configuration, management and monitoring. The
referenced work was developed under a single scope (e-commerce) and that differs from
this project, but it can be used as a reference particularly in regards to the customization
of features.

The paper from Çano (2017) presents some of the most common recommendation
applications and solutions that follow SaaS, PaaS or other cloud computing service mod-
els. They are provided from both academic and business domains and use recent data
mining, machine learning and artificial intelligence techniques. According to the author,
the trend of these types of applications is towards the SaaS service model which seems
to be the most appropriate especially for enterprises.

Gorse, a project from Zhang (2021), is not available as a paper, but is an open source
recommendation system written in Go, aiming to be a universal open source recommen-
dation system that can be easily introduced into a wide variety of online services. By
importing items, users and interaction data into Gorse, the system will automatically
train models to generate recommendations for each user. As features, this project sup-
ports multi-way matching (latest, popular, collaborative filtering based on matrix factor-
ization) and FM-based custom classification, performs single node training, distributed
prediction, and ability to achieve horizontal scaling in the recommendation phase, also

34 WEB ARCHITECTURE

provides RESTful APIs for data and recommendation CRUD requests, and provides CLI
tools for data import and export, model adjustment, and cluster status checking. The
referenced work does not feature content-based filtering, something that is within the
scope of the current work.

During research, we did not identify popularity on the RaaS field. This work intents to
use a generalist approach within its Recommender System algorithm, in order to be usable
by as many different use cases as possible, be it to provide functionality for eCommerce
systems (where it could provide recommendations for products), to provide functionality
for media indexation platforms (movies, music), or even specific commercial uses, such as
tourism (travel/flight recommendations). The intent of this work is to require the least
amount of effort as possible from the end user’s system perspective, as it won’t require
installation, deployment, updates or maintain once the environment is already set up on
a remote server; it will still require the user to follow guidelines, however, on how the
queries should be properly standardized in order to make the interoperability work (well-
defined service contracts). This recommender service will support both collaborative
filtering and content-based filtering. Where the content filtering will be typically based
on the user’s preferences and interests, and the collaborative filtering will compare the
user’s preferences with the ones from other users. Additionally, the framework should
be optimized enough to support large data sets, and be user-friendly for both developers
and end users.

3.5 SUMMARY

This chapter addressed the Web Architecture principles that will be used as design ref-
erences for this work, such as SOA, Microservices, REST architecture, and cloud archi-
tectures (SaaS, PaaS and IaaS) where SaaS in particular will be the targeted one, as the
seen by the benefits this cloud computing approach can provide to the industry and its
practical implementation. During the next chapters, we will discuss in-depth the strate-
gies devised to fit this project in the proposed architectural concepts as well the designed
workflow for the core Recommendation System.

Chapter

4
AN INTELLIGENT SELF-CONFIGURING

RECOMMENDER SYSTEM AS A SERVICE

This section provides a comprehensive explanation on the proposed software solution’s
Web Architecture. The solution’s API architecture will be three-tiered, with a client-
server interoperability, and an extra layer of logic between them.

4.1 WEB SERVICE ARCHITECTURE

The core architecture will rely on the API that will be provided as a Microservice. In
this work, it will be optitionally provided a Web Client where the end user will perform
interactions that will then be interfaced on the backend with the core API. A Rela-
tional Database Management System (RDMS) database will also be needed to store the
datasets. When the user interacts with the client, RESTful commands will then be sent
to a layer of API Gateway, which would then be forwarded to the responsible Microser-
vice, which in this case, would be the Recommendation System. When the service is
executed, the first step will be validating the inputs, analysing the query, accepting if
valid and rejecting if invalid, and if validated it will then proceed preparing the training
data, executing the designated training algorithm against the trained model, and then
execute the main recommendation algorithm which will compile the data that will be
sent back to the client as a JSON response object.

The overall system architecture will be structured as shown in Figure 4.1.

35

36 AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYSTEM AS A SERVICE

Figure 4.1 The complete Client to Service system architecture for this software.

4.1.1 The client side

First, we consider that the client that will eventually perform requests may have its own
interface and database system, as well a selection of other services to query from. It is
expected that this client shall retrieve data (either user provided or database provided)
and then use this data as input to one of its services, namely a recommendation service.

4.1 WEB SERVICE ARCHITECTURE 37

Figure 4.2 Client side architecture.

4.1.2 The Microservices side / API routing

Many applications make use of clustering and container orchestration (usually for Docker
containers) such as Kubernetes, each container is designated for a separate service or
feature. This is meant to avoid the monolithic software development approach, and thus
break down the application into fine-grained services characterized by the Microservices
architecture. On the case of this work, one of these Microservices has to be the complete
environment for the Recommendation Service, which will receive JSONified data from
the first step.

4.1.3 The Recommendation Service

As the last step, the Recommendation Service should receive the the data previously
provided as input, designate it to the correct endpoint, perform an analysis on the input
(data and format), and validate or invalidate it; if invalid, it should return a response
message informing that the processing failed; if valid, it will continue the recommenda-
tion process. By continuing, it will then prepare the training data, start the training
algorithm, generate a training model, execute the queried recommendation request on
the recommendation algorithm, build a JSON object and then provide it as a response
back to the client.

38 AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYSTEM AS A SERVICE

Figure 4.3 API routing layer bridging the Recommender System API.

Figure 4.4 Microservice for the Recommendation Service.

4.2 REST API PATTERNS AND ROUTES

During the previous chapter, we saw references on how the industry software patterns
can help shaping the proposed architecture, and how the REST API will be used to
interface with the various components. The project will rely on a Microservice API,

4.2 REST API PATTERNS AND ROUTES 39

which will be interfaced with a web client. A RDMS database will be used to store the
datasets. When the user interacts with the client, RESTful commands will be sent to a
layer of API Gateway, which would then be forwarded to the responsible Microservice.
This project will closely follow API patterns as established by previous relevant works,
such as the work from (ZHANG, 2021) provides a pattern for REST API routes for the
core Recommendation feature, for users, items and feedback (recommendation) data.
These are particularly designed for collaborative filtering. It was identified that the work
from (GARCíA; BELLOGíN, 2018) primarily focus on propose and show an example
implementation for a common REST API focused on Recommender Systems, considering
to meet the most typical requirements faced by Recommender Systems practitioners while
being open and flexible to be extended.

Method URL Description
POST /item Add items to the database
DELETE /clear_db Clear the database
GET /docs Display the API documentation
POST /user Add user ratings to the database
GET /items Retrieve all items from the database
DELETE /user Delete a user from the database
GET /user Retrieve a user from the database
GET /users Retrieve all users from the database
GET /user/events Retrieve events related to a user
DELETE /item Delete an item from the database
PUT /item/{item_id} Update an item in the database
PUT /user/{user_id} Update a user’s ratings in the database
GET /item/neighbors Retrieve similar items
GET /item/events Retrieve events related to an item
POST /event Add an event to the database
GET /events Retrieve all events from the database
GET /user/recommendations Retrieve user recommendations
GET /system Retrieve system information

Table 4.1 Revised table showing the updated API endpoints for the recommender system.

The resulting project API routes can be seen on the Table ??.. The file called
__init__.py creates a Flask application instance. The files run.py and config.py
are respectively responsible for bringing up the application and the settings. In the
folder routes, a file called routes.py is present. It contain all routes used as endpoints,
without any API logic. The folder models contains files referencing data models by using
Python classes representing a SQL table in the database, where attributes of a model
translate to columns in a table. The views folder contains all of the application’s main
logic and database connection. The apis folder contains all of the auxiliary code related
to table conversion and recommendation algorithms.

40 AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYSTEM AS A SERVICE

4.3 ALGORITHMS AND LIBRARIES

As seen in Chapter 2, according to Desrosiers et al. (2011) and Koren et al. (2015),
there are two main types of memory-based recommendation methods: those that check
similarity between users (user-KNN), and those that check similarity between items (item-
KNN). Cosine similarity is one of the most widely used measures for determining simi-
larity between vectors.The project makes use of approaches referenced by Sharma (2021)
for both collaborative filtering and content-based recommendation. As Desrosiers et al.
(2011) and Koren et al. (2015) explain, collaborative filtering is a method of making
recommendations that is based on the similarity between users or items. Content-based
recommendation, on the other hand, is a method that makes recommendations based on
the similarity between the content of the items being recommended.

The following algorithms are used:

• Nearest Neighbors (collaborative filtering);

• Cosine similarity (content based recommendation).

This projects makes use of the following Python Libraries:

• Pandas (designed for data manipulation and analysis, used particularly to handle
data for collaborative filtering);

• Scipy (used to perform algebraic manipulation of matrices, used particularly to
handle item features pivoted from ratings during the collaborative filtering process);

• Scikit-Learn (used for its machine learning classification, regression and clustering
algorithms, both during collaborative filtering and content based recommendation);

• SQLAlchemy (Object Relational Mapper that gives application that grants flexibil-
ity for SQL databases).

4.4 USED TECHNOLOGIES

This project makes use of the Flask Python Web Framework and its bundled Werkzeug
toolkit for WSGI (Web Server Gateway Interface) applications where it’s realized software
objects for request, response, and utility functions. Flask natively supports RESTful
request dispatching.

WSGI is used for the proposed software, which is a calling convention for web servers to
forward requests to web applications or frameworks written in the Python programming
language. WSGI has the server/gateway side, often running full web server software such
as Apache or Nginx, or is a lightweight application server that can communicate with a
webserver, and the application/framework side, where it’s Python callable, supplied by
the Python program or framework.

4.5 RECSYS AS A SERVICE 41

4.5 RECSYS AS A SERVICE

In this section, we will show examples of how the API Recommender System works. The
first example is a call from a browser. The second example is a call from Postman (which
would have the same effect as calling from a CLI client). The default browser REST
verb to access pages is GET; while it is not ideal to use GET to register elements into
the database, in the following example (that would be POST), we used to demonstrate
the API’s ability to receive data in three ways: by sending URL parameters, by sending
JSON objects as POST to the designated endpoint, and by sending CSV files (also by
POST) to the designated endpoint. In the following examples, we are going to add movie
items to a relational database by querying the API in three different ways, using the same
endpoint, which is the base URL + /item.

Considering http://127.0.0.1:5000/ as the localhost, a sample item (the movie Toy
Story) was added to the database using the URL seen in the Figure 4.5. The the API
returns a JSON object informing whether the new entry was successfully created or not,
as seen in the Figure 4.6.

The other method takes as input a JSON object specifying the item, using POST,
seen in the Figures 4.7 and 4.8. Lastly, the API also accepts to receive the items as a
CSV spreadsheet, which will in turn be parsed for insertion into the database, as verified
in Figure 4.9.

Figure 4.5 Example of parameters being added to an URL endpoint, in this case, to add an
item.

Figure 4.6 Sending items to be added to the main database as URL parameters.

42 AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYSTEM AS A SERVICE

Figure 4.7 Sending items to be added to the main database as a JSON object.

Figure 4.8 Response object.

4.5 RECSYS AS A SERVICE 43

Figure 4.9 Sending items to be added to the main database as a CSV file.

44 AN INTELLIGENT SELF-CONFIGURING RECOMMENDER SYSTEM AS A SERVICE

4.5.1 Default Recommendation routine

In order to perform the recommendations, a parameter should be passed identifying the
desired item that needs to get similar items recommended. In the following scenario,
we are retrieving similar items to the movie Toy Story, which we know it‘s the item
number one in the database, using its ID number, in the Content-based filtering endpoint
(ending in /item/neighbors) using the GET parameter. The API then returns a JSON
containing information about the target element, and a list of recommended items with
attributes of each one, which are position (by similarity), the item’s name, the similarity
score, the item‘s description, and the tags (which are considered for recommendation in
this particular case for content-based filtering).

s

Figure 4.10 The request JSON object.

s

Figure 4.11 The response JSON object.

4.6 SUMMARY 45

4.6 SUMMARY

In this chapter, we discussed the proposed software’s Web Service Architecture, describing
its REST API patterns and routes, the algorithms and libraries employed, the project
structure, and the expected system requirements. Furthermore, we discussed related
works with similar goals, and we emphasized how this work deviates from them as an
alternative and how it intents to provide new solutions under a different implementation
method.

Chapter

5
EXPERIMENTAL EVALUATION

In this section, we are going to present the experimental evaluation of the proposed API
architecture from the project based on guidelines established by the literature. Evalua-
tion plays an instrumental role on each phase of software development, as it should be
used to aid the system’s design to be better prone to bugs, as well as improving user
experience on later stages. However, the design phase is the most appropriate time to
take into account the API usability issues (ZIBRAN; EISHITA; ROY, 2011). APIs that
are developed with its users in mind and providing good usability encourage users to con-
tinue using them; users easily leave the APIs that they are not comfortable with (RAUF;
TROUBITSYNA; PORRES, 2019). Well-thought-out APIs encourage programmers to
use them productively and satisfactorily.

5.1 METHODOLOGY

We tested the API on different datasets in order to see how it would perform under differ-
ent conditions. The chosen Dataset was the movie dataset from the project MovieLens,
by GroupLens called ml-20m. This dataset contains information on 20 million ratings
and 580,000 tag applications applied to 27,000 movies by 138,000 users. We used different
hardware in our testing, including both high-end and low-end hardware. We also tested
the API under different load conditions and under different recommendation conditions.
The system was first tested on datasets with different amounts of items. The recom-
mender system was asked to recommend 3, 5, and 10 items. The ml-20m dataset proved
to be too large for the lower end hardware we tested on the cloud services, so different
dataset sizes were evaluated, in order to get a better overview on the critical functionality
of the API. The first environment condition that was varied was the type of hardware
that the API was tested on. The API was tested on both high-end and low-end hardware.
The second environment condition that was varied was the load condition. The load con-
dition was varied by changing the complexity of the requests to the API. Another defined
condition was the recommendation condition. The recommendation condition was varied
by changing the number of items that the recommender system was asked to recommend.

47

48 EXPERIMENTAL EVALUATION

5.2 TEST ENVIRONMENTS

In order to evaluate the performance of the recommender system API, we tested it on
different datasets and under different conditions. We used the MovieLens dataset for
our experiments, and varied the size of the dataset and the hardware used. We also
tested the API with both collaborative filtering and content based filtering. We have
deployed the API it in two ways: locally and server-side using different cloud services.
The API was deployed and tested on popular Python cloud services such as Heroku
and PythonAnywhere (under the Free plans). The tests were executed locally in two
ways: by exclusively executing the two recommendation algorithms (content based and
collaborative filtering) and also by running a RESTful API endpoint that performs the
recommendation.

5.2.1 System specifications

The system specifications for each of the environments can be seen on the Table 5.1.

Memory (RAM) CPU Cache CPU clock
PythonAnywhere 3 GB (limited from 16 GB) 35.75MB L3 cache 2.50 GHz
Local machine 16 GB 12 M 4.50 GHz
Heroku 512 MB Unknown Unknown*

Table 5.1 System specifications.

5.2.2 System requirements

The recommended hardware system requirements for this project can be seen on the
Table 5.2.

System requirements
CPU RAM Storage Network
7th generation
Intel Core i7
processor or
better

16 GB 150 GB of free
space

100 Mbps

Table 5.2 System requirements.

The software requirements for this project can be seen on the Table 5.3.

0* Said to be 1x-4x "compute".

5.3 MEASUREMENT METRICS 49

Software Requirements
OS Database Python version Python libraries
At least Ubuntu
20.04 LTS

A RDBMS such
as PostgreSQL

Python 3.6 All Python li-
braries from the
requirements.txt
file

Table 5.3 Software requirements.

5.3 MEASUREMENT METRICS

An API can be considered useful when it correctly provides the desired functionality, and
efficiency in terms of performance (regarding resource consumption, speedup, and so on)
(ZIBRAN; EISHITA; ROY, 2011). For many competing goals (e.g., lower development
cost, market demand), API designers take into account design criteria such as modularity,
reusability, and evolvability, which mainly benefit those who are involved in development
and maintenance of the APIs (ZIBRAN; EISHITA; ROY, 2011).

Our code extensively measured the I/O time for the API Endpoints by setting timers
hardcoded through each task of the recommendation, in order to better measure the
latency and response times. The performance of the recommender system is measured
by the following metrics:

• Filtering type: Collaborative and Content-based;

• Execution environment: Locally (only the recommendation algorithm), Locally
(API), PythonAnywhere (API) and Heroku (API);

• Number of recommended items: the number of items on the recommendation
output;

• Dataset size: the amount of rows taken into account for the filtering type;

• Total API endpoint execution time (seconds): the total amount of time
elapsed when the REST endpoint is executed from start to finish;

• Endpoint execution latency: the amount of time needed to execute only the
REST endpoint (disregarding the recommendation);

• Recommendation execution: the amount of time that was needed to execute
the core recommendation until the result is achieved;

• Data processing time (seconds): the amount of time that was required to
process the data from the database and prepare it for the recommendation task;

• Recommender algorithm execution time (seconds): the elapsed time to find
the recommended items using the recommender algorithm, with the data ready.

50 EXPERIMENTAL EVALUATION

Figure 5.1 The outcome of a test round using a content-based recommendation endpoint. It
lists 10 items (movies) similar to the request (Toy Story), with their respective descriptions and
similarity scores. The log also shows performance measurements, detailing execution times for
each task.

Figure 5.2 The dataset concatenates tags with item description to better provide a recom-
mendation.

5.4 RESULTS

5.4.1 Scenario 1: Collaborative Filtering - 20M

As shown in Table 5.4.1, the Table shows the results of an experiment comparing the
execution time of a recommender algorithm under different conditions. The algorithm
was executed on a dataset of size 20,000,263. The results show that the algorithm took an
average of 50.78 seconds to execute when run on a local machine using the API, and an
average of 46.78 seconds when run on a local machine without using the API. However,
when the algorithm was run on a remote machine using the API, the execution time
increased to an average of 45.789 seconds. This increase is likely due to the increased
latency of the remote machine.

The Local (Algorithm only) platform outperforms the other platforms in terms of
recommender algorithm execution time. However, it should be noted that the Heroku
(API) and PythonAnywhere (API) platforms both experienced memory overflows, which

5.4 RESULTS 51

Figure 5.3 A test round using a CF recommendation endpoint, listing 10 items (movies) that
users that liked the requested item (the movie Jumanji) also liked, alongside their similarity
score by distance. Also pictured: performance measurements (execution times during each
task).

indicates that they are not able to handle large datasets.

Table 5.4 Collaborative Filtering - 20M.

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 50.055 490.014 2150.041 2846.524 773.516 51
Local (Algorithm only) 3 – – 53.216 9348.711 634.505 30
Heroku (API) 3 MO – – – –
PAW (API) 3 MO – – – –
Local (API) 5 48.260 750.009 5748.251 1844.646 843.604 34
Local (Algorithm only) 5 – – 64.978 4460.105 954.872 48
Heroku (API) 5 MO – – – –
PAW (API) 5 MO – – – –
Local (API) 10 43.317 670.016 6143.301 0639.858 793.442 27
Local (Algorithm only) 10 – – 44.163 1940.606 993.556 20
Heroku (API) 10 MO – – – –
PAW (API) 10 MO – – – –

AVERAGE 45.789 210.013 0950.782 1646.786 043.996 12
STDV 3.495 282 444 969 104 70.004 977 384 030 167 918.855 024 886 265 4068.244 263 461 073 60.648 277 353 243 639 2

Data size: 20 000 263, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 To-
tal API endpoint execution time (seconds), 4 Endpoint execution la-
tency, 5 Recommendation execution, 6 Data processing time (sec-
onds), 7 Recommender algorithm execution time (seconds)

52 EXPERIMENTAL EVALUATION

5.4.2 Scenario 2: Collaborative Filtering - 10M

The Table 5.4.2 shows the results of an experiment comparing the performance of a col-
laborative filtering recommender algorithm on different platforms. The platforms com-
pared are Local (API), Local (Algorithm only), Heroku (API), and PythonAnywhere
(API). The algorithms were run on a dataset of 10,933,944 items and the recommenda-
tion execution time, endpoint execution latency, data processing time, and recommender
algorithm execution time were measured. The results show that the Local (API) platform
outperforms the other platforms in terms of recommendation execution time, endpoint
execution latency, and data processing time. The Local (Algorithm only) platform out-
performs the other platforms in terms of recommender algorithm execution time.

The Table shows that the Local (API) platform outperforms the other platforms in
terms of recommendation execution time, endpoint execution latency, and data processing
time. The Local (Algorithm only) platform outperforms the other platforms in terms of
recommender algorithm execution time. Once again Heroku (API) and PythonAnywhere
(API) platforms both experienced memory overflows, which indicates that they are not
able to handle 10M dataset either.

Table 5.5 Collaborative Filtering - 10M.

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 22.477 340.004 2122.473 1320.853 301.619 83
Local (Algorithm only) 3 – – 26.603 3824.230 952.372 42
Heroku (API) 3 MO – – – –
PAW (API) 3 MO – – – –
Local (API) 5 22.348 740.004 8822.343 8620.716 501.627 35
Local (Algorithm only) 5 – – 25.592 3923.823 321.769 07
Heroku (API) 5 MO – – – –
PAW (API) 5 MO – – – –
Local (API) 10 22.468 660.004 5922.464 0720.786 431.677 64
Local (Algorithm only) 10 – – 26.318 4124.368 131.950 29
Heroku (API) 10 MO – – – –
PAW (API) 10 MO – – – –

AVERAGE 22.408 700.004 7424.664 4222.785 061.879 36
STDV 0.084 802 187 018 103 590.000 204 228 701 934 233 922.096 600 375 784 331 21.867 360 032 705 4890.301 871 104 583 925 13

Data size: 10 933 944, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 To-
tal API endpoint execution time (seconds), 4 Endpoint execution la-
tency, 5 Recommendation execution, 6 Data processing time (sec-
onds), 7 Recommender algorithm execution time (seconds)

5.4 RESULTS 53

5.4.3 Scenario 3: Collaborative Filtering - 500k

The Table 5.4.3, overall, shows the average total API endpoint execution time is 12.5
seconds, with a standard deviation of 0.18 seconds. The average endpoint execution
latency is 0.005 seconds, with a standard deviation of 0.0004 seconds. The average data
processing time is 9.54 seconds, with a standard deviation of 0.34 seconds. The average
recommender algorithm execution time is 2.53 seconds, with a standard deviation of
0.099 seconds. Once again Heroku (API) and PythonAnywhere (API) platforms both
experienced memory overflows, which indicates that they are not able to handle a 500k
size in datasets for this particular filtering.

Table 5.6 Collaborative Filtering - 500k.

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 12.455 150.006 3712.448 789.826 442.622 34
Local (Algorithm only) 3 – – 11.792 489.348 892.443 59
Heroku (API) 3 MO – – – –
PAW (API) 3 MO – – – –
Local (API) 5 12.669 250.005 2012.664 059.995 032.669 02
Local (Algorithm only) 5 – – 11.749 659.277 612.472 04
Heroku (API) 5 MO – – – –
PAW (API) 5 MO – – – –
Local (API) 10 12.409 920.005 7312.404 209.808 622.595 58
Local (Algorithm only) 10 – – 11.720 149.260 312.459 83
Heroku (API) 10 MO – – – –
PAW (API) 10 MO – – – –

AVERAGE 12.539 590.005 4612.066 109.538 092.528 01
STDV 0.183 370 888 881 694 20.000 374 056 658 183 653 60.437 762 662 445 775 550.340 141 482 104 618 030.099 193 220 514 081 11

Data size: 503 834.000 00, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 To-
tal API endpoint execution time (seconds), 4 Endpoint execution la-
tency, 5 Recommendation execution, 6 Data processing time (sec-
onds), 7 Recommender algorithm execution time (seconds)

5.4.4 Scenario 4: Content Based - 27k.

For this step, we decided to use a lower dataset size, given that the cloud services were
unable to handle the previous larger datasets. The Table 5.4.4 shows that the content-
based recommendation system was run on a local machine, PAW and Heroku. The system
was not able to recommend items on Heroku due to memory limitations. The system was
also not able to recommend items on PAW due to memory limitations. The content-based
recommendation system was able to recommend items on a local machine with a total API
endpoint execution time of 30.09754 seconds, an endpoint execution latency of 0.26729
seconds, a recommendation execution time of 31.72007 seconds, a data processing time

54 EXPERIMENTAL EVALUATION

of 0.23542 seconds, and a recommender algorithm execution time of 31.48465 seconds.

Table 5.7 Content Based - 27k

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 28.883 69 0.211 74 28.671 95 0.083 58 28.588 37
Local (Algorithm only) 3 – – 31.188 64 0.084 50 31.104 12
Heroku (API) 3 MO – – – –
PAW (API) 3 MO – – – –
Local (API) 5 30.003 39 0.250 40 29.752 98 0.083 68 29.669 30
Local (Algorithm only) 5 – – 36.396 62 0.889 41 35.507 21
Heroku (API) 5 MO – – – –
PAW (API) 5 MO – – – –
Local (API) 10 30.191 70 0.284 17 29.907 54 0.035 93 29.871 60
Local (Algorithm only) 10 – – 31.354 56 0.083 57 31.270 98
Heroku (API) 10 MO – – – –
PAW (API) 10 MO – – – –

AVERAGE 30.097 54 0.267 29 31.720 07 0.235 42 31.484 65
STDV 0.133 160 608 843 118 8 0.023 876 229 798 868 952 2.712 973 258 978 72 0.366 181 466 793 436 16 2.359 495 669 465 600 6

Data size: 27 278, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation execution, 6 Data processing time (seconds), 7 Recommender algorithm execution time
(seconds)

5.4.5 Scenario 5: Content Based - 16k.

The Table 5.4.5 shows that the system was tested on a dataset of 16,289 items. The
average total API endpoint execution time was 25.6 seconds, the average endpoint exe-
cution latency was 0.14 seconds, the average recommendation execution time was 19.3
seconds, and the average recommender algorithm execution time was 19.2 seconds. For
the first time, Python Anywhere could handle a large dataset (although with inferior
performance compared to running it locally), meaning it can handle datasets at least in
the 16k size range. Heroku still could not handle the data, possibly because it had lower
memory available at the time of execution.

5.4.6 Scenario 6: Content Based - 3k.

The Table 5.4.6 shows the total API endpoint execution time, endpoint execution latency,
data processing time, and recommender algorithm execution time for a content-based
recommendation system. The system was tested on a dataset of 3311 items. The number
of recommended items was varied from 3 to 10. The system was tested on a local machine,
Heroku, and PAW. The local machine had the fastest total API endpoint execution
time, while Heroku had the fastest recommender algorithm execution time. PAW had
the slowest total API endpoint execution time and the slowest recommender algorithm
execution time. The data processing time was the longest for the local machine and the

5.4 RESULTS 55

Table 5.8 Content Based - 16k

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 12.905 42 0.138 15 12.767 27 0.067 24 12.700 03
Local (Algorithm only) 3 – – 14.421 26 0.030 64 14.390 62
Heroku (API) 3 MO – – – –
PAW (API) 3 41.282 46 – 34.146 76 0.225 70 33.921 06
Local (API) 5 12.662 73 0.135 26 12.527 47 0.072 08 12.455 39
Local (Algorithm only) 5 – – 12.828 24 0.066 37 12.761 86
Heroku (API) 5 MO – – – –
PAW (API) 5 35.728 82 – 35.349 85 0.150 84 35.199 00
Local (API) 10 12.824 96 0.138 42 12.686 55 0.063 05 12.623 49
Local (Algorithm only) 10 – – 13.168 87 0.026 49 13.142 37
Heroku (API) 10 MO – – – –
PAW (API) 10 37.202 66 – 36.732 56 0.199 99 36.532 58

AVERAGE 25.624 74 0.136 84 19.304 14 0.090 74 19.213 40
STDV 15.045 538 44 0.002 229 994 878 10.574 382 53 0.072 197 655 10.509 448 96

Data size: 16 289, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation
execution, 6 Data processing time (seconds), 7 Recommender algorithm execution time (seconds)

shortest for PAW. The recommender algorithm execution time was longest for the local
machine and shortest for Heroku. Heroku could finally handle the data, as opposed to
the other tests.

5.4.7 Scenario 7: Content Based - 27k, different items, using tags

The Table 5.4.7 shows the performance of a content-based recommendation system on
a dataset of 27,278 items, this time the recommendation was done concatenating each
item with tags for better recommendation accuracy. The system was executed on a local
machine using the API. The system was able to recommend 10 items in an average of
24.86 seconds with a standard deviation of 0.90 seconds. The system had an average
latency of 0.2 seconds and a data processing time of 0.04 seconds. The recommender
algorithm execution time deviation was 0.89 seconds. The recommendation was done
only locally and over different items from the dataset. The standard deviation for the
total execution was low, meaning selecting different items do not affect performance.

5.4.8 Scenario 8: Content Based - 16k, different items, using tags

The Table 5.4.8 shows the performance of a content-based recommendation system on
a dataset of 16,289 items, this time the recommendation was done concatenating each
item with tags for better recommendation accuracy. The system was executed on a local
machine using the API. The system was able to recommend 10 items in an average of
14.04 seconds with a standard deviation of 0.22 seconds. The system had an average

56 EXPERIMENTAL EVALUATION

Table 5.9 Content Based - 3k

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 1.358 670.014 85 1.343 820.057 361.286 47
Local (Algorithm only) 3 1.305 25– 1.305 250.010 551.294 71
Heroku (API) 3 3.478 35– 3.454 840.009 253.445 59
PAW (API) 3 5.149 92– 5.028 740.041 764.986 98
Local (API) 5 1.323 350.016 16 1.307 190.049 851.257 34
Local (Algorithm only) 5 1.286 99– 1.286 990.005 401.281 59
Heroku (API) 5 2.915 51– 2.891 300.009 532.881 76
PAW (API) 5 4.908 00– 4.822 480.033 094.789 38
Local (API) 10 1.356 750.014 68 1.342 070.047 771.294 29
Local (Algorithm only) 10 1.339 65– 1.339 650.053 521.286 13
Heroku (API) 10 3.165 30– 3.142 220.009 283.132 94
PAW (API) 10 4.101 32– 4.033 150.030 594.002 55

AVERAGE 2.622 910.015 42 2.592 070.027 002.565 07
STDV 1.534 010 8170.001 047 406 8691.497 768 2970.019 953 050 621.499 375 929

Data size: 3311, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 To-
tal API endpoint execution time (seconds), 4 Endpoint execution la-
tency, 5 Recommendation execution, 6 Data processing time (sec-
onds), 7 Recommender algorithm execution time (seconds)

Figure 5.4 Execution times for Content Based - 27k.

5.4 RESULTS 57

Table 5.10 Content Based - 27k, different items, using tags.

IID
8 EENV

1 NREC
2 T 3 L4 R5 P 6 A7

1 Local (API) 10 25.08 0.163 44 24.916 36 0.093 60 24.822 76

2 Local (API) 10 25.44 – 25.281 57 0.034 88 25.246 68
3 Local (API) 10 25.49 – 25.297 80 0.034 61 25.263 19
4 Local (API) 10 25.96 – 25.794 07 0.035 04 25.759 03
5 Local (API) 10 26.21 0.160 76 26.052 11 0.034 48 26.017 63
6 Local (API) 10 24.48 – 24.331 38 0.032 34 24.299 04
7 Local (API) 10 24.29 – 24.134 37 0.030 66 24.103 71
8 Local (API) 10 23.70 – 23.550 65 0.030 30 23.520 35
9 Local (API) 10 23.82 0.154 17 23.670 52 0.030 11 23.640 41
10 Local (API) 10 24.08 – 23.931 30 0.070 83 23.860 47

AVERAGE 24.86 0.159 46 24.696 01 0.042 68 24.653 33
STDV 0.901 338 695 2 0.004 770 827 04 0.894 115 901 7 0.021 601 520 31 0.894 580 124 9

Data size: 27 278, MO: Memory Overflow
8 Item ID, 1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation
execution, 6 Data processing time (seconds), 7 Recommender algorithm execution time (seconds)

latency of 0.1 seconds and a data processing time of 0.04 seconds (similar to the previous
one). The recommender algorithm execution time deviation was 0.22 seconds. The
recommendation was done only locally and over different items from the dataset. The
standard deviation was low, meaning selecting different items do not affect performance.
The standard deviation was lower than the prior table.

5.4.9 Scenario 9: Content Based - 3k, different items, using tags

The Table 5.4.9 shows the performance of a content-based recommendation system on
a dataset of 3,311 items, this time the recommendation was done concatenating each
item with tags for better recommendation accuracy. The system was executed on a local
machine using the API. The system was able to recommend 10 items in an average of 1.87
seconds with a standard deviation of 0.06 seconds. The system had an average latency of
0.02 seconds and a data processing time of 0.006 seconds. The recommender algorithm
execution time deviation was 0.06 seconds. The recommendation was done only locally
and over different items from the dataset. The standard deviation was low, meaning
selecting different items do not affect performance. The standard deviation was lower
than the prior table, which overall means, the larger the dataset gets, the greater
the standard deviation becomes.

5.4.10 Scenario 10: Collaborative Filtering - 3k

For Collaborative Filtering, based on the previous tests, we have decided to test on
smaller datasets. The Table 5.4.10 compares the performance of a collaborative filtering
recommender system when executed in different environments. The results show that

58 EXPERIMENTAL EVALUATION

Figure 5.5 Execution times for Content Based - 16k.

Table 5.11 Content Based - 16k, different items, using tags

IID
8 EENV

1 NREC
2 T 3 L4 R5 P 6 A7

1 Local (API) 10 13.96 0.123 7713.840 68 0.063 86 13.776 82
2 Local (API) 10 14.17 – 14.067 77 0.027 42 14.040 35
3 Local (API) 10 13.83 – 13.733 42 0.022 26 13.711 16
4 Local (API) 10 14.33 – 14.223 78 0.023 18 14.200 60
5 Local (API) 10 14.32 0.099 4714.222 42 0.023 84 14.198 58
6 Local (API) 10 14.27 – 14.159 27 0.062 57 14.096 70
7 Local (API) 10 13.97 – 13.879 21 0.024 16 13.855 05
8 Local (API) 10 13.73 – 13.629 76 0.020 20 13.609 55
9 Local (API) 10 14.02 0.095 5613.928 66 0.062 38 13.866 28
10 Local (API) 10 13.77 – 13.672 69 0.020 73 13.651 96

AVERAGE 14.04 0.106 2713.935 76 0.035 06 13.900 71
STDV 0.224 717 125 5 0.015 284 401 180.223 255 239 5 0.019 340 377 81 0.220 546 473 7

Data size: 16 289, MO: Memory Overflow
8 Item ID, 1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds),
4 Endpoint execution latency, 5 Recommendation execution, 6 Data processing time (seconds), 7 Recommender algorithm
execution time (seconds)

the recommender system is able to generate recommendations in a reasonable amount
of time when executed on a local server or on a PAW server. When the recommender
system is executed on a Heroku server, the execution time is significantly higher.

5.4 RESULTS 59

Figure 5.6 Execution times for Content Based - 3k.

Table 5.12 Content Based - 3k, different items, using tags.

IID
8 EENV

1 NREC
2 T 3 L4 R5 P 6 A7

1 Local (API) 10 1.81 0.018 831.793 04 0.005 75 1.787 29
2 Local (API) 10 1.82 – 1.796 60 0.005 81 1.790 79
3 Local (API) 10 1.82 – 1.804 20 0.005 77 1.798 43
4 Local (API) 10 1.82 – 1.803 88 0.005 74 1.798 13
5 Local (API) 10 1.85 0.022 571.822 58 0.005 89 1.816 69
6 Local (API) 10 1.89 – 1.870 54 0.006 73 1.863 81
7 Local (API) 10 1.87 – 1.851 11 0.006 13 1.844 98
8 Local (API) 10 1.90 – 1.884 12 0.006 24 1.877 88
9 Local (API) 10 1.88 0.019 961.862 59 0.005 86 1.856 72
10 Local (API) 10 2.02 – 1.999 85 0.006 39 1.993 46

AVERAGE 1.87 0.020 451.848 85 0.006 03 1.842 82
STDV 0.063 883 812 96 0.001 918 416 7540.062 592 583 09 0.000 334 236 837 5 0.062 360 847 62

Data size: 3311, MO: Memory Overflow
8 Item ID, 1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint
execution latency, 5 Recommendation execution, 6 Data processing time (seconds), 7 Recommender algorithm execution time (seconds)

5.4.11 Scenario 11: Collaborative Filtering - 16k

The Table 5.4.11 compares the performance of a collaborative filtering recommender
system when executed in different environments. The results show that the recommender

60 EXPERIMENTAL EVALUATION

Table 5.13 Collaborative Filtering - 3k.

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 – – 0.303 61 0.119 11 0.184 51
Local (Algorithm only) 3 0.308 35 0.001 467 273 003 072 033 8 0.306 88 0.056 95 0.249 93
Heroku (API) 3 0.979 70 0.001 811 909 009 120 982 2 0.977 89 0.089 81 0.888 08
PAW (API) 3 0.856 49 0.001 576 000 000 569 011 1 0.854 92 0.238 95 0.615 96
Local (API) 5 – – 0.260 76 0.075 98 0.184 77
Local (Algorithm only) 5 0.243 25 0.002 023 542 998 358 996 0.241 23 0.056 14 0.185 08
Heroku (API) 5 0.340 23 0.001 623 119 009 308 948 7 0.338 61 0.173 33 0.165 28
PAW (API) 5 0.583 47 0.002 457 174 001 393 003 2 0.581 01 0.195 62 0.385 39
Local (API) 10 – – 0.343 92 0.157 39 0.186 52
Local (Algorithm only) 10 0.267 51 0.001 210 263 006 214 018 5 0.266 30 0.081 64 0.184 66
Heroku (API) 10 1.004 79 0.001 816 283 998 779 866 2 1.002 97 0.191 68 0.811 29
PAW (API) 10 0.630 07 0.002 393 013 999 608 007 0.627 68 0.201 63 0.426 05

AVERAGE 0.572 97 0.001 748 195 628 0.517 45 0.131 75 0.385 70
STDV 0.329 200 394 0.000 378 105 512 7 0.312 226 616 4 0.066 867 311 39 0.281 712 457 3

Data size: 3326, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation execution, 6 Data processing
time (seconds), 7 Recommender algorithm execution time (seconds)

system is able to generate recommendations in a reasonable amount of time when executed
on a local server or on a Heroku server. As opposed to the previous test, PAW displayed
a higher running time when compared to Heroku. The average execution time for the
recommender system is 0.3 seconds when executed in a local environment, 0.7 seconds
when executed on a Heroku server, and 0.55 seconds when executed on a PAW server.
The standard deviation of the execution time is 0.07 seconds when executed in a local
environment, 0.28 seconds when executed on a Heroku server, and 0.14 seconds when
executed on a PAW server.

5.4.12 Scenario 12: Collaborative Filtering - 27k

The Table 5.4.11 compares the performance of a collaborative filtering recommender
system when executed in different environments. The results show that the recommender
system is able to generate recommendations in a reasonable amount of time when executed
on a local server or on a Heroku server. The average execution time for the recommender
system is 0.46 seconds when executed in a local environment, 0.62 seconds when executed
on a Heroku server, and 1.19 seconds when executed on a PAW server. The standard
deviation of the execution time is 0.09 seconds when executed in a local environment,
0.12 seconds when executed on a Heroku server, and 0.17 seconds when executed on a
PAW server. PAW overall once again displayed a slower execution.

5.4 RESULTS 61

.
Table 5.14 Collaborative Filtering - 16k

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 – – 0.256 33 0.053 91 0.202 42
Local (Algorithm only) 3 0.268 46 0.000 29 0.268 17 0.049 57 0.218 59
Heroku (API) 3 0.727 37 0.000 89 0.726 48 0.171 84 0.554 64
PAW (API) 3 0.725 98 0.001 85 0.724 13 0.232 27 0.491 86
Local (API) 5 – – 0.367 41 0.051 43 0.315 98
Local (Algorithm only) 5 0.388 73 0.000 27 0.388 45 0.047 02 0.341 44
Heroku (API) 5 0.212 25 0.000 42 0.211 83 0.056 55 0.155 28
PAW (API) 5 0.505 26 0.001 89 0.503 37 0.149 63 0.353 73
Local (API) 10 – – 0.381 43 0.047 08 0.334 35
Local (Algorithm only) 10 0.251 29 0.000 35 0.250 93 0.046 90 0.204 03
Heroku (API) 10 0.245 09 0.000 52 0.244 58 0.066 80 0.177 78
PAW (API) 10 0.442 09 0.001 27 0.440 81 0.092 26 0.348 56

AVERAGE 0.415 55 0.000 81 0.406 68 0.091 91 0.314 77
STDV 0.214 266 11 0.000 683 309 959 1 0.189 323 877 4 0.067 317 310 27 0.132 172 621 6

Data size: 16 441, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation execution,
6 Data processing time (seconds), 7 Recommender algorithm execution time (seconds)

Table 5.15 Collaborative Filtering - 27k.

EENV
1 NREC

2 T 3 L4 R5 P 6 A7

Local (API) 3 – – 0.544 45 0.242 07 0.302 38

Local (Algorithm only) 3 0.565 44 0.001 24 0.564 20 0.253 07 0.311 13
Heroku (API) 3 0.502 77 0.001 85 0.500 92 0.245 77 0.255 14
PAW (API) 3 1.396 44 0.001 99 1.394 45 0.455 18 0.939 26
Local (API) 5 – – 0.577 33 0.109 02 0.468 31
Local (Algorithm only) 5 0.398 95 0.001 35 0.397 59 0.103 87 0.293 73
Heroku (API) 5 0.623 23 0.002 01 0.621 23 0.376 65 0.244 58
PAW (API) 5 1.087 05 0.002 71 1.084 34 0.317 17 0.767 17
Local (API) 10 – – 0.385 08 0.094 89 0.290 19
Local (Algorithm only) 10 0.419 93 0.001 76 0.418 17 0.099 65 0.318 52
Heroku (API) 10 0.758 26 0.002 04 0.756 22 0.262 42 0.493 79
PAW (API) 10 1.087 05 0.002 71 1.084 34 0.317 17 0.767 17

AVERAGE 0.719 01 0.001 87 0.669 95 0.231 77 0.438 18
STDV 0.351 996 386 1 0.000 454 546 018 2 0.328 884 526 8 0.127 977 538 8 0.237 469 963

Data size: 27 443, MO: Memory Overflow
1 Execution environment, 2 Number of recommended items, 3 Total API endpoint execution time (seconds), 4 Endpoint execution latency, 5 Recommendation execution,
6 Data processing time (seconds), 7 Recommender algorithm execution time (seconds)

62 EXPERIMENTAL EVALUATION

5.5 DISCUSSION

Overall, we found that the API performed well on all of our tests. However, there were
some differences in performance depending on the specific conditions. For example, we
found that the API performed better on smaller datasets and on more powerful hardware.
We also found that the API performed better with collaborative filtering than with con-
tent based filtering. Overall, our experiments showed that the recommender system API
is a powerful tool that can provide good results under a variety of conditions. The API
showed good results when tested on the ml-20m dataset. It was able to recommend items
with a high degree of accuracy. However, we did identify some areas where the API could
be improved. Each environment condition was evaluated, as well different dataset sizes,
in order to get a better overview on the API’s performance under different circumstances.

The first environment condition that was varied was the type of hardware that the
API was tested on. The API was tested on both high-end and low-end hardware. The
results showed that the API performed well on both types of hardware. However, the
low-end hardware was not able to handle the larger datasets as well as the high-end
hardware. This is to be expected, as the low-end hardware was not designed to handle
large amounts of data. The second environment condition that was varied was the load
condition. The load condition was varied by changing the dataset sizes from the API
deployments we were making requests. The performance of the API decreased as the
load increased. This is to be expected, as the API was not designed to handle high loads
in low powered hardware. Though the accuracy of the recommender system benefits
from having more data to process, the total API endpoint execution time increases as
the dataset size increases. The third environment condition that was varied was the
recommendation condition. The recommendation condition was varied by changing the
number of items that the recommender system was asked to recommend. The results
showed no difference in performance regarding the number of items, as the entire dataset
was being scored for item recommendation and classification. The number of items to be
recommended do not impact performance, as it was not identified a substantial difference
in total API endpoint execution time as the number of recommended items increases.

The recommender system usually performs best on the local API. The system also
performs well on the local algorithm only. The recommender system does not perform well
on the Heroku or PAW platforms, with both platforms experiencing memory overflows
over 16000 items to be recommended. The recommender system’s performance is limited
by the amount of data that can be processed in a given amount of time. The system is also
limited by the amount of time that can be spent executing the recommender algorithm.

Overall on smaller datasets, we can see that the content-based recommender system
performed well under all conditions considering the total API endpoint execution time.
However, there was significant variation in the execution times of the different components
of the system, for example, on the 3k Content-Based Filtering (CB) Table (5.4.6) with
the data processing time ranging from 0.5 to 4 seconds and the recommender algorithm
execution time ranging from 1 to 5 seconds. This suggests that the content-based rec-
ommender system is sensitive to the size of the dataset and the number of recommended
items, and that the execution time of the different components can vary significantly

5.6 SUMMARY 63

depending on the conditions under which the system is run. On the same table, we can
see that the content-based recommender system performed better under PAW conditions
than under Heroku conditions, with an average total API endpoint execution time of 4.9
seconds under PAW conditions and an average total API endpoint execution time of 3.5
seconds under Heroku conditions. However, we can also see that the recommender algo-
rithm execution time was significantly longer under PAW conditions than under Heroku
conditions, with an average recommender algorithm execution time of 4.8 seconds under
PAW conditions and an average recommender algorithm execution time of 3.1 seconds
under Heroku conditions. However, with a 16000 (content-based filtering) dataset, PAW
managed to handle the task while Heroku could not (it resulted in Memory Overflow).
This reveals that a larger memory pool is preferable over CPU performance in order to
process large datasets, as PAW did not suffer a timeout despite having a lower processing
time and managed to complete the task successfully.

5.6 SUMMARY

The experimental evaluation provides a comprehensive assessment of a proposed API ar-
chitecture for a recommender system, focusing on API usability and system performance.
Utilizing the MovieLens dataset, which comprises 20 million ratings for 27,000 movies,
the evaluation employed both high-end and low-end hardware configurations to ensure
a broad understanding of the system’s capabilities. The API was deployed on various
platforms, including local machines and cloud services like Heroku and PythonAnywhere,
and was tested using both content-based and collaborative filtering algorithms.

The metrics used for evaluation were meticulously chosen to cover all aspects of system
performance, from execution environment and dataset size to various time metrics like
API endpoint execution time and recommendation execution time. The results indicate
that the API generally performs well, particularly when deployed locally and when using
collaborative filtering algorithms. It is noteworthy that the system’s performance re-
mained relatively stable across different recommendation conditions, suggesting that the
number of items to be recommended does not significantly impact the system’s efficiency.

However, the evaluation also revealed some limitations. Memory overflows were ob-
served on Heroku and PythonAnywhere platforms when handling larger datasets, indi-
cating that these platforms may not be suitable for high-load conditions. Despite this,
the system performed admirably on low-end hardware, although it struggled with larger
datasets.

Key findings suggest that the API is robust and performs exceptionally well on smaller
datasets and more powerful hardware configurations. The system is particularly efficient
when using collaborative filtering methods, and its performance is best when deployed
locally. While the API has shown some limitations in handling larger datasets on less
powerful hardware, these are areas ripe for future optimization.

Insights from the evaluation indicate that for larger datasets, a larger memory pool
is preferable over CPU performance. The content-based system, although generally ef-
ficient, is sensitive to dataset size and the number of recommended items, suggesting
that performance can vary under different conditions. These insights provide valuable

64 EXPERIMENTAL EVALUATION

directions for future improvements, particularly in optimizing the system for less powerful
hardware and larger datasets.

Chapter

6

USER TRIAL

This chapter presents an analysis of the results obtained from the survey applied to
the participants of the experiment, where the adoption of an API for Recommendation
Systems (RecSys) was proposed. The analysis is conducted with a critical eye to under-
stand the implications, limitations, and opportunities identified by the participants. The
main objective is to evaluate the user experience with the proposed RecSys API, focusing
specifically on the challenges encountered and the potential solutions suggested.

6.1 METHODOLOGY

User reports are an invaluable source of feedback that allows us to understand the dif-
ficulties they faced, as well as their ideas to improve the usability of the RecSys API.
These reports were gathered through an experiment conducted from 5th July to 26th
July 2023, where 27 developers were invited to participate. Out of the invitees, 21 par-
ticipated in the experiment. The goal was to inquire the users about the validation of
the recommender system API, assessing its usefulness and ease of use.

A questionnaire was created on Google Forms to facilitate the gathering of user feed-
back. A snapshot of the form can be seen in Figure 6.1, and the full form can be seen in
A.1.

65

66 USER TRIAL

Figure 6.1 Snapshot of the questionnaire used in the experiment.

This feedback is crucial for adjusting the API documentation and optimizing its func-
tionality to provide a better experience for developers. The users’ suggestions form the
basis for the development of a roadmap for future improvements, focusing on facilitat-
ing the adoption and effective implementation of the API. With the conclusion of this
chapter, we hope to have a clear action plan to enhance the RecSys API, making it more
friendly and useful for developers, regardless of their prior knowledge of RecSys.

6.1 METHODOLOGY 67

6.1.1 Survey questions

There are a total of 15 questions in the survey. These questions can be categorized
into two main groups. The first group consists of 4 theoretical questions. These ques-
tions explore the understanding and expectations related to recommendation systems
and their underlying concepts. The second group is comprised of 11 technical questions.
These questions examine the hands-on experience, implementation details, and practical
aspects of using APIs and systems. Overall, the survey seeks to gauge both the theoret-
ical knowledge and technical expertise of the respondent in the field of recommendation
systems.

Theoretical Questions:

1. How much do you know about the theory behind recommendation systems?

2. Did you manage to understand and effectively use recommendation systems by
Collaborative Filtering and Content-Based Filtering?

3. Were the recommendations generated by the system in line with your expectations?
Were they useful and relevant?

4. Do you believe that our API proposal can facilitate the adoption of Recommenda-
tion Systems by developers who do not have theoretical knowledge about RecSys?

Technical Questions:

1. How many years have you been a developer?

2. Have you ever implemented (coded) a Recommendation System?

3. How long did it take you to complete the experiment?

4. Are you familiar with any Recommendation System library?

5. Have you heard of any Web Service (e.g., REST API) for Recommendation Sys-
tems?

6. Regarding the experiment, how would you assess the overall performance of the
API?

7. What is the degree of difficulty in using the proposed API?

8. If you encountered difficulties, what were they?

9. Did you find the API documentation and the provided examples clear and useful?

10. Was there any specific functionality that you felt was lacking in the API?

11. Do you have any suggestions to improve the API or recommendation systems?

68 USER TRIAL

6.1.2 Profile of Participants

Participants in the study were not necessarily experienced developers or experts in rec-
ommender systems, reflecting a diverse pool of expertise. The distribution of software
development experience among the participants was as follows:

• 52.4% had 5 years of experience in software development.

• 23.8% had 4 years of experience in software development.

• 9.5% had 3 years of experience in software development.

• 14.3% had 2 years of experience in software development.

The participants displayed a varied range of expertise in software development, re-
flecting a broad spectrum of experience levels. The majority, comprising 52.4% of the
respondents, had 5 years of experience in the field. A significant portion, 23.8%, had 4
years of experience, followed by 9.5% with 3 years, and 14.3% with 2 years of experience
in software development. This distribution illustrates a predominantly experienced par-
ticipant pool, with most having 4 or more years of hands-on experience in the field of
software development.

• Knowledge in Recommender Systems

Interview questions about the participants’ backgrounds were designed to capture a
broad understanding of their familiarity with development and recommender systems.
Questions included the number of years in software development (with an option of "0" if
not a developer) and familiarity with the theory behind recommender systems on a scale
from 0 to 10. Participants were also asked if they had ever coded a recommender system.
Results indicated varying levels of experience in recommender systems:

• 3 people (14.3%) had no experience.

• 1 person (4.8%) rated their experience as 2.

• 6 people (28.6%) rated their experience as 7.

• 2 people (9.5%) rated their experience as 10.

This distribution underscores the varied levels of expertise in recommender systems
among the participants, ranging from complete novices to highly experienced individuals.
Most users seem to have at least some experience in Recommender System.

6.1 METHODOLOGY 69

Figure 6.2 Participants’ knowledge in RecSys.

6.1.3 Usage of RecSys

• Coding experience in Recommender Systems

55% of the participants had prior experience in coding a recommender system, while
45% had no such experience. This broad spectrum of experience provided a comprehen-
sive view of the utilization of the proposed API at different knowledge levels.

• Knowledge in Recommender Systems API

Most participants (55%) had not heard about some web service (REST API, for
instance) for recommendation systems, however, 45% of the participants had at least
heard about such services.

• Familiarity with Recommender System libs

The participants’ familiarity with various recommender system libraries was also ex-
plored during the experiment, revealing diverse levels of exposure and experience. The
breakdown of familiarity was as follows:

• 12 users were not familiar with any recommender system libraries.

• 6 users indicated familiarity but did not specify the libraries they knew.

• 1 user was familiar with Surprise, Rival, and LibRec.

• 1 user was familiar only with Surprise and Sklearn.

• 1 user was familiar only with Sklearn.

This distribution highlights the heterogeneity of the participants in terms of their
prior experience with specific tools in the recommender system domain. Such insights
can be invaluable in understanding the learning curve and potential challenges faced by

70 USER TRIAL

users, helping to shape the design and documentation of the API to better support users
of varying familiarity levels.

Figure 6.3 Participants’ knowledge in RecSys libraries.

6.2 API AND EXPERIMENT EVALUATION

6.2.1 Time required for the experiment

The evaluation of the API and the experiment focused on assessing the time required
for different users to complete the tasks. The time needed varied across the participants,
indicating different levels of familiarity and comfort with the tasks involved. Here’s a
detailed breakdown of the time taken:

• 2 users took 1 hour to complete the experiment.

• 2 users finished the experiment in 10 minutes.

• 5 users required 15 minutes to complete the experiment.

• 1 user took 20 minutes to finish the tasks.

• 2 users spent between 30 minutes and 1 hour on the experiment.

• 3 users completed the experiment in 5 minutes.

• 3 users needed 6 minutes to finish the experiment.

• 2 users took 8 minutes to complete the experiment.

The wide range of completion times illustrates the diversity in user experience and
may reflect different levels of prior knowledge and expertise with recommender systems
and the specific tasks involved in the experiment. Understanding these variations can
provide valuable insights for optimizing the API and tailoring the support and resources
to better meet the needs of different users.

6.2 API AND EXPERIMENT EVALUATION 71

Figure 6.4 Participants’ time required to perform the experiment.

6.2.2 Overall API quality

The assessment of the overall quality of the API was an essential part of the experiment,
revealing insights into user satisfaction and areas for potential improvement. Participants
were asked to evaluate the API, and their responses were as follows:

• 1 person (4.8%) considered the API unsatisfactory.

• 7 people (33.3%) rated the API as regular.

• 1 person (4.8%) found that the API functions well.

• 12 people (57.1%) considered the API satisfactory.

The majority of the participants found the API to be satisfactory, accounting for
57.1% of the responses. However, a significant proportion also had mixed or negative
feelings, with 33.3% rating it as regular and 4.8% finding it unsatisfactory. Only one
participant explicitly stated that the API functions well.

These results highlight the importance of continuous improvement and responsive sup-
port. While the API met the needs of most participants, there are evidently areas where
enhancements could improve the user experience. Understanding the specific concerns
and preferences of those who found the API regular or unsatisfactory could be a valuable
next step in refining and optimizing the API to meet the diverse needs and expectations
of all users.

72 USER TRIAL

Figure 6.5 Participants’ perception of the overall API quality.

6.2.3 Difficulty in understanding the API

Understanding the perceived difficulty in using the API is critical for enhancing user
experience and optimizing the design and documentation. Participants were asked to
rate the difficulty of using the API on a scale from 1 to 10, with 1 being difficult and 10
being easy. The results were as follows:

• 1 user (4.8%) rated the difficulty level as 4.

• 2 users (9.5%) rated the difficulty level as 5.

• 1 user (4.8%) rated the difficulty level as 6.

• 2 users (9.5%) rated the difficulty level as 7.

• 3 users (14.3%) rated the difficulty level as 8.

• 4 users (19%) rated the difficulty level as 9.

• 8 users (38.1%) rated the difficulty level as 10, indicating the highest ease of use.

The majority of the participants (71.4%) rated the API’s ease of use at 8 or above,
indicating a generally positive experience. However, there were still participants who
found the API more challenging to use, with ratings ranging from 4 to 7.

These results emphasize the need for continued attention to user support, documen-
tation, and training. While many users find the API easy to use, there is still a segment
of the user base that may benefit from additional guidance and resources. Efforts to
understand the specific challenges faced by these users and to provide targeted assistance
could further enhance the usability and appeal of the API.

6.3 PERCEPTIONS ON GENERATED RECOMMENDATIONS AND API 73

Figure 6.6 Participants’ perception of the overall API difficulty of use.

6.3 PERCEPTIONS ON GENERATED RECOMMENDATIONS AND API

6.3.1 Recommendation accuracy

An essential aspect of any recommender system is the accuracy of its recommendations.
In the context of this study, accuracy refers to how well the recommendations align with
the users’ preferences and needs. Participants were asked to evaluate the utility of the
recommendations provided by the system. The findings were notably positive:

• 81% of users found the recommendations to be useful, which suggests a high degree
of alignment with their preferences and needs.

• Conversely, 19% of users did not agree with the recommendations, indicating that
there was room for improvement in matching the recommendations to their specific
tastes or requirements.

These results reflect a generally favorable perception of the recommendation accuracy,
with a significant majority of users expressing satisfaction with the system’s outputs.
However, the feedback from the 19% of users who were not satisfied points to areas
where the system’s recommendation algorithms could be refined.

Understanding the reasons behind the dissatisfaction of this minority group could lead
to further improvements in the system’s performance. Continuous feedback and iterative
refinement are vital to maintaining the relevance and quality of the recommendations,
ensuring that they remain aligned with evolving user needs and preferences.

6.3.2 Usage of the collaborative filtering and content-based filtering techniques

Collaborative filtering and content-based filtering are two fundamental techniques in rec-
ommender systems. They serve distinct purposes and are built on different principles,
but both aim to provide personalized recommendations to users. In the context of this

74 USER TRIAL

study, participants were asked whether they were able to understand and utilize these
recommendation systems effectively.

The results revealed a division in the respondents’ experiences:

• 66.7% of users responded affirmatively, indicating that they were able to grasp and
employ these systems effectively. This suggests that the majority of participants
found the design and documentation of the collaborative filtering and content-based
filtering components to be accessible and user-friendly.

• 33.33% of users responded negatively, revealing a challenge in understanding or
utilizing these techniques. This feedback points to an area where improvements
might be made, potentially in the areas of documentation clarity, user guidance, or
system design.

These results underline the importance of designing systems that are not only power-
ful but also comprehensible and approachable for users with varying levels of expertise.
The feedback from those who struggled with these systems could be used to make tar-
geted enhancements, ensuring that future users can fully leverage the capabilities of both
collaborative and content-based filtering in their work with the API.

6.3.3 API documentation

Effective documentation is vital for the usability and adoption of any API, serving as a
guide to help users understand its functionality and best practices. For the RecSys API,
participants were asked to evaluate the clarity and utility of the documentation, including
any examples provided. An overwhelming majority, 95% of the users, reported that they
found the API’s documentation and the examples provided to be clear and useful. This
indicates that the material is well-written, understandable, and aptly illustrates the API’s
functions and capabilities. It can be seen as a sign of success in the endeavor to create
accessible, developer-friendly resources. However, a small proportion, 4.8% of the users,
did not share this sentiment. While this is a minor percentage, it should not be overlooked.
The feedback from these users might contain valuable insights into specific areas where
improvements could be made, or additional examples or clarifications might be required.
Overall, the positive response to the API’s documentation underscores its quality and
user-centric design. It serves as an endorsement of the efforts put into making the API
approachable for developers, while also highlighting opportunities for further refinement
and enhancements.

6.4 API ACCEPTANCE AND IMPROVEMENT SUGGESTIONS

The main difficulties faced by developers when using the proposed API were related to
a lack of clarity in the experiment documentation particularly challenges in using the
collaborative filtering, which required the item name instead of the item ID. Develop-
ers suggested improvements to the documentation and examples provided, the inclusion
of user authentication, and general improvements in system robustness and reliability.
When asked about specific features that might be lacking in the API, some suggestions

6.4 API ACCEPTANCE AND IMPROVEMENT SUGGESTIONS 75

were given, including the option to edit or delete a specific item, the addition of an op-
tion for hybrid recommendation, single user recommendations, authentication of the user
conducting the experiment, and improvements in the Swagger documentation.

Several participants made suggestions for improving the API. These included enhanc-
ing the documentation and examples, including user authentication to ensure data secu-
rity, expanding the API functionalities to include item editing and deletion, and general
improvements in system robustness and reliability. The experiment results indicate that
although there is room for improvement, the proposed API has potential to facilitate the
implementation of recommendation systems, even among developers with less experience
in RecSys theory and practice.

6.4.1 User testimonials

The following testimonials have been collected from users to gauge their experiences and
opinions on various aspects of the system, such as recommendations, missing features
in the API, suggestions for improvement, and the potential of the API to facilitate the
adoption of RecSys by developers.

6.4.1.1 Regarding Recommendations

• Satisfaction with Recommendations: “The recommendations were accurate
and satisfactory.”

• Confusion about Recommendation Logic: “In the query item/neighbors?itemno
=2&nitems=5, the Tower of Pisa appears in the second position and the Palace of
Versailles in the third. I don’t understand if the palace should be more related to
the Eiffel Tower because they are in France, or if the Tower of Pisa is closer because
it is also a tower.”

6.4.1.2 About Missing Features in the API

• No Missing Features: Multiple responses simply saying “No.”

• Desire for Specific Functions: “I missed the option to edit or delete a specific
item,” “Maybe in the future, include the option for a hybrid recommendation,”
“Authentication of the user conducting the experiment,” “Selection of the attributes
used for calculating similarity between items,” etc.

• Issues with API Functionality: “The API is working but has some flaws,”
“The POST method works, but the ID is inserted manually,” “The DELETE works
correctly for the database, but it is not possible to delete a specific item.”

6.4.1.3 Suggestions for Improvement

• No Suggestions: “No.”

76 USER TRIAL

• Technical Enhancements: “There are 2 errors when generating recommenda-
tions based on Collaborative Filtering,” “It would be interesting if the API returned
messages explaining the errors instead of just status 500,” “Provide the function-
ality to return recommendations from both content-based and collaborative SRs,”
etc.

• Documentation & User-Friendly Interface: “Create a wiki to more easily
expose all the functionalities of the API,” “A front-end (a screen) for conducting
tests.”

6.4.1.4 Opinions on API Facilitating Adoption of RecSys

• Positive Feedback: “Yes,” “Yes, absolutely. Many developers have no knowledge
of RecSys, but everyone knows how to consume data from an API,” “Yes, certainly.
It’s a great tool to add value in a web system,” etc.

• Constructive Criticism: “Not yet. But it’s on the way.”

6.4.1.5 Opinions on API Facilitating Adoption of RecSys

• Positive Feedback: “Yes,” “Yes, absolutely. Many developers have no knowledge
of RecSys, but everyone knows how to consume data from an API,” “Yes, certainly.
It’s a great tool to add value in a web system,” etc.

• Constructive Criticism: “Not yet. But it’s on the way.”

6.5 ALIGNMENT WITH OBJECTIVES

As outlined in Chapter 1, this project is guided by four specific objectives aimed at ad-
dressing key aspects of Recommender Systems, from the literature review to the API’s
deployability. These objectives serve as the foundation for the experimental design,
methodology, and analysis undertaken in the subsequent sections. As the first objec-
tive is related to literature review, let’s discuss the other three objectives as they are
more pertinent to this chapter.

6.5.1 Alignment with the Objectives

SO2 Alignment: The API was designed for easy integration into larger applications.
Survey feedback called for improved documentation and user-friendly web architectures,
aligning with the objective of seamless integration into complex systems.

SO3 Alignment: The API simplifies interactions for its users and offers both col-
laborative and content-based filtering, as suggested by the positive reception from the
study’s participants. The focus on both recommendation methodologies and the feedback
for future enhancements, like hybrid recommendation systems, align closely with SO3.

SO4 Alignment: The project encompasses extensive evaluation of the API, focus-
ing on its deployability, scalability, and documentation. Feedback suggested a need for

6.6 DISCUSSION 77

enhanced security features and advanced functionalities like item manipulation and data
validation, which align with ensuring the API’s comprehensive documentation and de-
ployability as a scalable service.

As observed, the research and its outcomes strongly align with the objectives outlined
in Chapter 1, especially concerning the last three objectives that are directly connected to
the experimental findings. The API has been favorably designed for easy integration into
larger systems, validated by the positive feedback from developers. It also successfully
simplifies user interactions and offers diverse recommendation methodologies, fulfilling
the aspirations for a multi-faceted recommendation service. Additionally, the project
has engaged in an extensive evaluation process to ensure the API’s deployability and
scalability, further resonating with the objectives. While there are areas earmarked for
improvement, the project has laid a robust foundation for future advancements in line
with its initial goals.

6.6 DISCUSSION

This research delves deep into developers’ perceptions and usability of the proposed API
for Recommendation Systems (RecSys). The diverse experience levels of the participants
have enriched the perspectives amassed, guiding the trajectory of future API improve-
ments.

A significant proportion of the participants had a positive interaction with the API,
lauding the relevance and efficacy of its recommendations. This underscores the API’s
potential to streamline the application of recommendation systems, a boon especially for
developers with a limited understanding of theoretical RecSys. On the other hand, the
feedback illuminated pivotal areas for enhancement. Key recommendations encompassed
refining the API’s documentation, ushering in user authentication for bolstered data
security, and expanding functionalities, such as item editing and deletion. In addition,
there’s a discernible need to elevate the system’s robustness and reliability.

Despite these challenges, the research outcomes lay a solid foundation for upcoming
enhancements. The insights gathered are set to inform documentation revisions and drive
the API’s functionality optimization, amplifying the user experience. The unwavering
commitment exhibited by study participants heralds the RecSys API proposal as an
impactful strategy, poised to spur its more widespread adoption among developers.

Specific areas of improvement emerged from the survey feedback. Participants high-
lighted challenges with certain API parameters, suggesting more lucid user-friendly doc-
umentation, such as a dedicated wiki. There was also palpable confusion surrounding
the user/recommendations endpoint and a clamor for more descriptive endpoint infor-
mation. Enhanced error messaging, hybrid recommendation suggestions, data isolation,
and advanced security features like JWT were among the other sought-after enhance-
ments. Several developers encountered hiccups in configuration and detected issues in
recommendations derived from Collaborative Filtering.

The demand for a user-friendly front-end interface for effortless testing was evident,
with some suggesting a comparison video to juxtapose the API with third-party libraries.
The ensemble of suggestions also touched upon the integration of varied recommendation

78 USER TRIAL

types, and a shift from generic error statuses to more explanatory error messages. The
feedback underscored the necessity for features like item manipulation, data validation,
hybrid recommendation methodologies, and hardware acceleration. Concurrently, there’s
an amplified call for refined database management and validation.

In essence, the survey underscored the imperative of making recommendation sys-
tem tools more intuitive, user-centric, and versatile. As the digital age progresses, the
demand for personalized services escalates, making the efficient adoption of these tools
paramount. The invaluable feedback acquired will be instrumental in refining the pro-
posed API, positioning it as an invaluable asset for developers navigating the realm of
recommendation systems.

6.7 SUMMARY

This chapter presents an analysis of the results obtained from a survey conducted with
developers who participated in an experiment involving the proposed API for Recom-
mendation Systems (RecSys). The survey aimed to evaluate the user experience with
the API, focusing on challenges encountered and potential solutions. The methodology
included gathering user reports through the experiment and utilizing a questionnaire on
Google Forms.

The chapter discusses the participants’ profiles, including their software development
experience and familiarity with recommendation systems. It analyzes the users’ per-
ceptions of the API, including aspects such as recommendation accuracy, ease of use,
understanding of filtering techniques, and API documentation quality. The feedback
collected from participants provides insights into their satisfaction with the recommen-
dations, challenges faced, and suggestions for improvement.

The survey results indicated that the majority of participants found the recommen-
dations useful and relevant, although there were suggestions for enhancing accuracy.
Some users found certain aspects of the API challenging, especially in understanding col-
laborative and content-based filtering techniques. The documentation received positive
feedback, with most users finding it clear and helpful, but some suggested improvements
for clarity and examples.

The chapter aligns the survey findings with the project’s objectives and discusses how
the API’s design and functionality aligned with the goals set out in the initial stages. It
also presents testimonials from participants, highlighting their experiences, suggestions,
and opinions on the API’s potential to facilitate the adoption of recommendation systems
by developers.

Finally, the chapter provides a comprehensive overview of the experiment’s outcomes,
highlighting both the strengths and areas for improvement of the proposed RecSys API
based on developers’ perspectives and feedback.

Chapter

7
CONCLUSION

This chapter concludes the work by presenting an overview of the results achieved, the
contributions made, its limitations, and suggestions for future work. We will also discuss
insights derived from the survey and the implications of these findings on the trajectory
of the proposed API, before concluding with the final considerations.

7.1 OVERVIEW

Throughout this work, a comprehensive literature review on Recommender Systems was
conducted, delving into the nuances of their concepts, modeling, techniques, evaluation
forms, and practical applications. Simultaneously, this work shed light on Web Architec-
tures, illustrating the potential synergy when these principles are correctly employed in
software development. Given the intricate nature of recommendation systems, this work
proposed and subsequently developed a recommendation service API, targeting a simpli-
fied interaction for its consumers, sidestepping the inherent complexities. The overarch-
ing aim was to seamlessly incorporate recommendation services into larger applications,
thereby broadening its accessibility and utility.

The survey significantly informed this conclusion, painting a vivid picture of develop-
ers’ interactions with the API. A sizeable fraction of participants responded positively,
which emphasizes the API’s potential to democratize recommendation system utilization.
However, constructive feedback was also received, pointing out areas of enhancement.
This feedback predominantly pertained to refining the API’s documentation, enhanc-
ing its security measures, expanding its range of functionalities, and boosting its overall
reliability.

Summarizing the significant achievements:

• Conducted a literature review on the application of Recommendation Systems as
services, spanning both commercial and non-commercial domains.

• Developed a recommender system API capable of implementing collaborative fil-
tering and content-based filtering.

79

80 CONCLUSION

• Designed the API to be deployable as a service, ensuring easy integration into
various applications.

• Ensured the API’s scalability and furnished comprehensive documentation to assist
developers.

7.2 LIMITATIONS

The journey of developing this project has encountered several challenges and limitations
that are crucial for understanding the scope and potential areas for improvement.

7.2.1 Performance and Usability Concerns

• The API’s performance in high-demand scenarios with numerous concurrent users
remains untested. This raises questions about its scalability and efficiency under
heavy loads.

• The absence of an intuitive Graphical User Interface (GUI) might pose usability
challenges, particularly for users who are not well-versed in command-line interfaces.

• The system’s runtime, especially concerning hardware considerations, has not been
meticulously analyzed, leaving uncertainties about its operational efficiency.

7.2.2 Feedback and Survey Insights

• Feedback from the survey revealed areas of improvement such as enhanced error
messaging, data isolation features, and clearer documentation. This suggests a need
for more user-friendly and informative system interactions.

• Suggestions from the survey also revealed a demand for features like item manipula-
tion, data validation, hybrid recommendation methods, and hardware acceleration,
pointing towards a broader and more complex set of user requirements.

7.2.3 Technical and Comparative Limitations

• Difficulty in exemplifying the use of libraries, making it challenging to understand
the practical application of the project’s technical aspects.

• A need for more rigorous validation of information sources, especially those dis-
cussing technical difficulties faced by developers.

• The absence of a comparative experiment with other APIs, which limits the ability
to objectively assess the efficiency and quality of the developed system.

• Challenges related to performance and viability in the initial project design, par-
ticularly regarding the intended use of a fixed platform for JSON processing.

7.3 ASSESSMENT OF OBJECTIVES AND RESEARCH QUESTIONS 81

Despite these challenges, the developed API stands as a testament to the immense
potential of recommendation systems, especially when molded to cater to developer pref-
erences and requirements. The acknowledgment of these limitations paves the way for
future enhancements and the evolution of the system into a more robust and versatile
tool.

7.3 ASSESSMENT OF OBJECTIVES AND RESEARCH QUESTIONS

7.3.1 Objective Assessment

The work carried out in this project significantly aligns with the outlined objectives.

• SO1: A comprehensive literature review was successfully conducted. It covered all
essential aspects of Recommender Systems and also looked into web architectures
suitable for handling multiple service calls effectively.

• SO2: The synergy between web architectures and recommender systems was in-
vestigated. The project exemplified how these can be cohesively integrated for the
benefit of both developers and end-users.

• SO3: The developed API offers both collaborative and content-based filtering meth-
ods. This meets the objective of providing a simplified interaction interface while
encompassing the complexity of recommendation systems.

• SO4: The API was designed with scalability in mind and deployed as a service.
Comprehensive documentation was also provided, thereby aiding developers in un-
derstanding and utilizing the API effectively.

7.3.2 Research Questions Assessment

• RQ1: The research successfully examined the synergy between Web Architectures
and Recommender Systems. The RESTful architecture was identified as being
optimal for a Recommendation System service due to its scalability and ease of
integration.

• RQ2: The survey conducted with developers provided valuable insights into the key
features and functionalities that they expect from a recommendation service API.
These expectations were then integrated into the API design to facilitate seamless
integration into larger applications.

• RQ3: The API was designed with the aim of reducing the inherent complexities
tied to recommendation systems. Features like filtering methods were abstracted
to provide an easy-to-use API for developers.

• RQ4: The API has shown promise in terms of scalability and deployability based on
the initial evaluations. The feedback from developers has been vital in identifying
areas for improvement, thereby aligning well with this research question.

82 CONCLUSION

The project successfully addresses the scarcity of non-commercial, cloud-ready Rec-
ommendation System services, meeting the general objective laid out at the beginning
of the work. Furthermore, the specific objectives (SO1 to SO4) were satisfactorily met.
The answers to the research questions (RQ1 to RQ4) not only validate the effectiveness
of the proposed solution but also guide its future trajectory.

By achieving these objectives and answering these questions, the work contributes
to the existing body of knowledge in Recommendation Systems and Web Architectures,
providing practical solutions that can be integrated into a broad range of applications.

7.4 FUTURE WORKS

Future work for this project spans several areas, based on limitations identified and
feedback from the survey. Here are the key avenues for further research and development:

• Performance Testing and Scalability: Rigorous performance tests should be
conducted to assess how the API behaves under high-demand scenarios, particularly
with many concurrent users.

• User Interface: Development of an intuitive graphical user interface (GUI) could
make the API more user-friendly, allowing for easier interaction, test queries, and
performance monitoring. Further work could focus on enhancing the GUI to facili-
tate a more engaging user experience.

• Runtime Optimization: Investigate the system’s runtime performance with re-
spect to hardware considerations. Optimizations may include algorithmic tweaks
or the introduction of hardware acceleration.

• Expanded Functionality: Additional features like item manipulation, data val-
idation, and advanced recommendation techniques such as hybrid methods could
be introduced in future iterations. Further exploration into combining offline and
online evaluation methods could also be beneficial.

• Enhanced Security Measures: Improve security features to protect the sensitive
nature of user data commonly used in recommendation systems.

• Documentation and Usability: While the documentation is generally clear,
future work could focus on making it more robust with clearer explanations and
more illustrative examples.

• Community Involvement: Consider open-sourcing the API or involving the de-
veloper community for faster identification of bugs and the creation of new features.

• Integration with Other Services: Extend the API to allow for seamless in-
tegration with various types of databases, third-party services, and cloud-based
solutions.

7.5 FINAL CONSIDERATIONS 83

• Real-world Testing and Case Studies: Conduct real-world case studies to gain
invaluable insights into the API’s usability, effectiveness, and impact. This could
include comparative studies with other existing APIs to evaluate ease of use and
effectiveness.

• Comparative Studies with Other APIs: Undertake comparative studies to
benchmark the performance and usability of the developed API against other ex-
isting recommendation system APIs. This will help identify areas of strength and
potential improvements.

• Online and Offline Evaluation Scalability: Address challenges in scaling offline
evaluations and in encouraging user participation in online evaluations. Explore
strategies to effectively balance and integrate both methods in future research.

By addressing these focus areas, the API has the potential to evolve substantially,
further democratizing the use of recommendation systems for developers and end-users
alike.

7.5 FINAL CONSIDERATIONS

Drawing from both the developmental journey and feedback, it’s evident that the digital
realm is shifting towards a more personalized, user-centric mode of operation. The role
of recommendation systems is set to expand exponentially in this landscape. While the
developed API has charted a promising trajectory, the road ahead is long and filled
with opportunities for refinement and expansion. With continued dedication, feedback,
and innovation, this API can truly revolutionize the way developers perceive and utilize
recommendation systems.

BIBLIOGRAPHY

ABBAS, A. et al. A cloud based health insurance plan recommendation system: A
user centered approach. Future Generation Computer Systems, v. 43-44, p. 99–109,
fev. 2015. ISSN 0167739X. Disponível em: <https://linkinghub.elsevier.com/retrieve/
pii/S0167739X14001587>.

ABDOLLAHPOURI, H.; BURKE, R.; MOBASHER, B. Controlling Popularity Bias in
Learning-to-Rank Recommendation. In: Proceedings of the Eleventh ACM Conference
on Recommender Systems. Como Italy: ACM, 2017. p. 42–46. ISBN 9781450346528.
Disponível em: <https://dl.acm.org/doi/10.1145/3109859.3109912>.

ADOMAVICIUS, G.; TUZHILIN, A. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge & Data Engineering, IEEE, n. 6, p. 734–749, 2005.

AMIES et al. DEVELOPING AND HOSTING APPLICATIONS ON THE CLOUD.
NEW YORK: IBM PRESS., 2012. OCLC: 1005344067. ISBN 9780133066852.

ANANICH, A. What is IaaS? 2016. Disponível em: <https://ananich.pro/2016/02/
what-is-iaas/>.

BALDOMINOS, A. et al. An efficient and scalable recommender system for the smart
web. In: 2015 11th International Conference on Innovations in Information Technology
(IIT). Dubai, United Arab Emirates: IEEE, 2015. p. 296–301. ISBN 9781467385091
9781467385114. Disponível em: <http://ieeexplore.ieee.org/document/7381557/>.

BANERJEE, S. A survey on Software as a service (SaaS) using quality model in cloud
computing. 2014.

BARAN, R.; DZIECH, A.; ZEJA, A. A capable multimedia content discovery plat-
form based on visual content analysis and intelligent data enrichment. Multimedia Tools
and Applications, v. 77, n. 11, p. 14077–14091, jun. 2018. ISSN 1380-7501, 1573-7721.
Disponível em: <http://link.springer.com/10.1007/s11042-017-5014-1>.

BARJASTEH, I. et al. Cold-Start Item and User Recommendation with Decoupled Com-
pletion and Transduction. In: Proceedings of the 9th ACM Conference on Recommender
Systems. New York, NY, USA: Association for Computing Machinery, 2015. (RecSys
’15), p. 91–98. ISBN 9781450336925. Disponível em: <https://doi.org/10.1145/2792838.
2800196>.

85

86 BIBLIOGRAPHY

BEN-SHIMON, D. et al. Configuring and monitoring recommender system as a service.
In: Proceedings of the 8th ACM Conference on Recommender systems - RecSys ’14. Foster
City, Silicon Valley, California, USA: ACM Press, 2014. p. 363–364. ISBN 9781450326681.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2645710.2645713>.

BETTINGER, D. SOA vs. Microservices: What’s the Difference? 2020. Disponível em:
<https://www.ibm.com/cloud/blog/soa-vs-microservices>.

BHOWMIK, S. Service-oriented architecture. In: . [S.l.: s.n.], 2020. p. 207–223.
ISBN 9781316941386.

BOOTH, D.; HAAS, H.; MCCABE, F. Web Services Architecture. 2004. Disponível em:
<https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/\#relwwwrest>.

BURKE, R. Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction, Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 4,
p. 331–370, nov. 2002. ISSN 0924-1868. Disponível em: <http://dx.doi.org/10.1023/A:
1021240730564>.

BUTLER, B. PaaS Primer: What is platform as a service and why does it
matter? 2013. Disponível em: <https://www.networkworld.com/article/2163430/
paas-primer--what-is-platform-as-a-service-and-why-does-it-matter-.html>.

CELMA, Ò. Music Recommendation and Discovery in the Long Tail. Tese (Doutorado)
— Universitat Pompeu Fabra, Barcelona, 2008.

CHANG, W. Y.; ABU-AMARA, H.; SANFORD, J. F. Transforming Enterprise Cloud
Services. [S.l.]: Springer Science & Business Media, 2010. Google-Books-ID: yyiPyIXg-
bxMC. ISBN 9789048198467.

CHEN, H. et al. Collabseer: a search engine for collaboration discovery. In: ACM/IEEE
Joint Conference on Digital Libraries (JCDL). [S.l.: s.n.], 2011.

CHEN, H.-H.; II, A. G. O.; GILES, C. L. ExpertSeer: a Keyphrase Based Expert Rec-
ommender for Digital Libraries. arXiv:1511.02058 [cs], nov. 2015. ArXiv: 1511.02058.
Disponível em: <http://arxiv.org/abs/1511.02058>.

CHEN, L. Microservices: Architecting for continuous delivery and devops. In: . [S.l.:
s.n.], 2018.

CHENG, P. et al. Learning to Recommend Accurate and Diverse Items. In: Proceed-
ings of the 26th International Conference on World Wide Web. Republic and Can-
ton of Geneva, CHE: International World Wide Web Conferences Steering Commit-
tee, 2017. (WWW ’17), p. 183–192. ISBN 9781450349130. Disponível em: <https:
//doi.org/10.1145/3038912.3052585>.

CORDEIRO, E. SOA - Arquitetura Orientada a Serviços | Blog da iProcess-
Blog da iProcess. 2012. Disponível em: <https://blog.iprocess.com.br/2012/10/
soa-arquitetura-orientada-a-servicos/>.

BIBLIOGRAPHY 87

DESROSIERS, C.; KARYPIS, G. A comprehensive survey of neighborhood-based rec-
ommendation methods. In: Recommender Systems Handbook. [S.l.: s.n.], 2011.

FAYYAZ, Z. et al. Recommendation Systems: Algorithms, Challenges, Metrics, and
Business Opportunities. Applied Sciences, v. 10, n. 21, p. 7748, jan. 2020. ISSN 2076-
3417. Disponível em: <https://www.mdpi.com/2076-3417/10/21/7748>.

FELFERNIG, A. et al. The vita financial services sales support environment. In: . [S.l.:
s.n.], 2007. v. 2, p. 1692–1699.

FIELDING, R. T. Fielding Dissertation: CHAPTER 5: Representational State Transfer
(REST). 2000. Disponível em: <https://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm>.

FIELDS, B. et al. Contextualize your listening: the playlist as recommendation engine.
Tese (Doutorado), 2011.

FOWLER, M. Microservices. 2014. Disponível em: <https://martinfowler.com/articles/
microservices.html>.

FRANCESCO, P. D.; LAGO, P.; MALAVOLTA, I. Migrating Towards Microservice Ar-
chitectures: An Industrial Survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA). [S.l.: s.n.], 2018. p. 29–2909.

FRANKLIN, C.; CHEE, B. Software as a service. In: . [S.l.: s.n.], 2019. p. 95–104.
ISBN 9780367259433.

GARBIS, J.; CHAPMAN, J. Software as a service. In: . [S.l.: s.n.], 2021. p. 185–
191. ISBN 978-1-4842-6701-1.

GARCíA, I.; BELLOGíN, A. Towards an open, collaborative REST API for recommender
systems. In: Proceedings of the 12th ACM Conference on Recommender Systems. Vancou-
ver British Columbia Canada: ACM, 2018. p. 504–505. ISBN 9781450359016. Disponível
em: <https://dl.acm.org/doi/10.1145/3240323.3241615>.

GOS, K.; ZABIEROWSKI, W. The Comparison of Microservice and Monolithic Architec-
ture. In: 2020 IEEE XVIth International Conference on the Perspective Technologies and
Methods in MEMS Design (MEMSTECH). Lviv, Ukraine: IEEE, 2020. p. 150–153. ISBN
9781728171791 9781728171807. Disponível em: <https://ieeexplore.ieee.org/document/
9109514/>.

GUPTA, P. et al. WTF: the who to follow service at Twitter. In: Proceedings of the
22nd international conference on World Wide Web. New York, NY, USA: Association for
Computing Machinery, 2013. (WWW ’13), p. 505–514. ISBN 9781450320351. Disponível
em: <https://doi.org/10.1145/2488388.2488433>.

88 BIBLIOGRAPHY

HERLOCKER, J. L. et al. Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., Association for Computing Machinery, New York, NY, USA, v. 22, n. 1,
p. 5–53, jan. 2004. ISSN 1046-8188. Disponível em: <https://doi.org/10.1145/963770.
963772>.

HIJIKATA, Y.; IWAHAMA, K. Content-based music filtering system with editable user
profile. In: Proceedings of the 2006 ACM Symposium on Applied Computing. New York,
NY, USA: ACM, 2006. (SAC ’06), p. 1050–1057. ISBN 1-59593-108-2. Disponível em:
<http://doi.acm.org/10.1145/1141277.1141526>.

INNVONIX. The Difference Between SaaS (Software as a Service) and SOA (Service-
Oriented Architecture). 2019. Disponível em: <shorturl.at/fgu45>.

ISINKAYE, F.; FOLAJIMI, Y.; OJOKOH, B. Recommendation systems: Principles,
methods and evaluation. Egyptian Informatics Journal, v. 16, n. 3, p. 261 – 273,
2015. ISSN 1110-8665. Disponível em: <http://www.sciencedirect.com/science/article/
pii/S1110866515000341>.

ISO/IEC/IEEE International Standard - Systems and software engineering â€“ Vocabu-
lary. ISO/IEC/IEEE 24765:2010(E), p. 1–418, dez. 2010.

JAFARKARIMI, H.; SIM, A. T. H.; SAADATDOOST, R. A Naïve Recommendation
Model for Large Databases. In: International Journal of Information and Education
Technology. [S.l.: s.n.], 2012. vol. 2, p. 216 & 219.

JAIN, H.; KAKKAR, M. Job Recommendation System based on Machine Learning
and Data Mining Techniques using RESTful API and Android IDE. In: 2019 9th
International Conference on Cloud Computing, Data Science & Engineering (Conflu-
ence). Noida, India: IEEE, 2019. p. 416–421. ISBN 9781538659335. Disponível em:
<https://ieeexplore.ieee.org/document/8776964/>.

JENSON, G. grahamjenson/list_of_recommender_systems. 2020. Original-date:
2015-06-12T07:31:32Z. Disponível em: <https://github.com/grahamjenson/list_of\
_recommender_systems>.

KALE, V. Service-oriented architecture. In: . [S.l.: s.n.], 2018. p. 183–204. ISBN
9780429453311.

KAVITHA, M.; DAMODHARAN, P. Software as a service in cloud computing. Interna-
tional Journal Of Recent Advances in Engineering Technology, v. 08, p. 1–4, 04 2020.

KNAPP, B. An introduction to IaaS (Infrastructure-as-a-Service), its components, ad-
vantages, pricing, and how it relates to PaaS, SaaS, BMaaS, containers, and serverless.
2019. Disponível em: <https://www.ibm.com/cloud/learn/iaas>.

KOREN, Y.; BELL, R. Advances in collaborative filtering. In: . [S.l.: s.n.], 2015.
p. 77–118. ISBN 978-1-4899-7636-9.

BIBLIOGRAPHY 89

LOPS, P.; GEMMIS, M. de; SEMERARO, G. Content-based recommender systems:
State of the art and trends. In: RICCI, F. et al. (Ed.). Recommender Systems Handbook.
Springer US, 2011. p. 73–105. ISBN 978-0-387-85819-7. Disponível em: <http://dx.doi.
org/10.1007/978-0-387-85820-3_3>.

LUCIAN, R. Repensando o uso da escala likert: Tradição ou escolha técnica? PMKT -
Revista Brasileira de Pesquisa de Marketing, Opinião e Mídia., v. 18, p. 13–32, 04 2016.

MACMANUS, R. 5 Problems of Recommender Systems. 2009. Disponível em: <https:
//readwrite.com/5_problems_of_recommender_systems/>.

MARTIN-LOPEZ, A.; SEGURA, S.; RUIZ-CORTéS, A. Test coverage criteria for REST-
ful web APIs. In: Proceedings of the 10th ACM SIGSOFT International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation. Tallinn Estonia: ACM, 2019. p.
15–21. ISBN 9781450368506. Disponível em: <https://dl.acm.org/doi/10.1145/3340433.
3342822>.

MCNEE, S.; RIEDL, J.; KONSTAN, J. Being accurate is not enough: How accuracy
metrics have hurt recommender systems. In: . [S.l.: s.n.], 2006. p. 1097–1101.

MELL, P. M.; GRANCE, T. The NIST definition of cloud computing. Gaithersburg, MD,
2011. NIST SP 800–145 p. Disponível em: <https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-145.pdf>.

MELVILLE, P.; SINDHWANI, V. Recommender Systems. In: Encyclopedia of Machine
Learning. [S.l.: s.n.], 2010.

MITTELSTADT, B.; RUSSELL, C.; WACHTER, S. Explaining Explanations in AI.
Proceedings of the Conference on Fairness, Accountability, and Transparency, p. 279–
288, jan. 2019. ArXiv: 1811.01439. Disponível em: <http://arxiv.org/abs/1811.01439>.

MOONEY, R. J.; ROY, L. Content-based book recommendation using learning for text
categorization. In: Workshop Recom. Sys.: Algo. and Evaluation. [S.l.: s.n.], 1999.

MOZILLA. HTTP request methods - HTTP | MDN. 2020. Disponível em: <https://
developer.mozilla.org/en-US/docs/Web/HTTP/Methods>.

MOZILLA. HTTP status codes - HTTP | MDN. 2021. Disponível em: <https://
developer.mozilla.org/pt-BR/docs/Web/HTTP/Status>.

NADAREISHVILI, I. Microservice architecture : Aligning principles, practices, and cul-
ture. Sebastopol, CA: O’Reilly Media, 2016. ISBN 1491956259.

NEWMAN, S. Building microservices: designing fine-grained systems. First edition. Bei-
jing Sebastopol, CA: O’Reilly Media, 2015. OCLC: ocn881657228. ISBN 9781491950357.

Okon E Uko; B O Eke; ASAGBA, P. O. An Improved Online Book Recommender Sys-
tem using Collaborative Filtering Algorithm. 2018. Disponível em: <http://rgdoi.net/
10.13140/RG.2.2.24240.46086>.

90 BIBLIOGRAPHY

PAUTASSO, C. et al. Microservices in Practice, Part 1: Reality Check and Service Design.
IEEE Software, v. 34, n. 1, p. 91–98, jan. 2017. ISSN 0740-7459, 1937-4194. Disponível
em: <https://ieeexplore.ieee.org/document/7819415/>.

PESKA, L.; VOJTAS, P. Enhancing Recommender System with Linked Open Data. In:
Proceedings of the 10th International Conference on Flexible Query Answering Systems -
Volume 8132. Berlin, Heidelberg: Springer-Verlag, 2013. (FQAS 2013), p. 483–494. ISBN
9783642407680. Disponível em: <https://doi.org/10.1007/978-3-642-40769-7_42>.

PHAN, M. Coupling and cohesion in OOP. 2019. Disponível em: <http://ducmanhphan.
github.io/2019-03-23-Coupling-and-Cohension-in-OOP/>.

QIN, Y. A Historical Survey of Music Recommendation Systems: Towards Evaluation.
Tese (Doutorado), 2013.

RAUF, I.; TROUBITSYNA, E.; PORRES, I. A systematic mapping study of
API usability evaluation methods. Computer Science Review, v. 33, p. 49–68, ago.
2019. ISSN 15740137. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/
S1574013718301515>.

RECOMMENDERSYSTEMS.COM. Recommendations-As-a-Service (RaaS) –
RS_c. 2020. Disponível em: <https://recommender-systems.com/resources/
recommendations-as-a-service-raas/>.

RESNICK, P.; VARIAN, H. R. Recommender systems. Commun. ACM, ACM, New
York, NY, USA, v. 40, n. 3, p. 56–58, mar. 1997. ISSN 0001-0782. Disponível em: <http:
//doi.acm.org/10.1145/245108.245121>.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Introduction to Recommender Systems Hand-
book. In: RICCI, F. et al. (Ed.). Recommender Systems Handbook. Boston, MA: Springer
US, 2011. p. 1–35. ISBN 9780387858203. Disponível em: <https://doi.org/10.1007/
978-0-387-85820-3_1>.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Introduction to recommender systems hand-
book. In: Recommender systems handbook. [S.l.]: Springer, 2011. p. 1–35.

RIGHTBRAINNETWORKS. Why SaaS and Microservices are Crit-
ical to Developing in the Cloud – RightBrain Networks. 2015.
Disponível em: <https://www.rightbrainnetworks.com/2015/01/29/
why-saas-and-microservices-are-critical-to-developing-in-the-cloud/>.

RUDMARK, D. The practices of unpaid third-party developers – implications for api
design. In: . [S.l.: s.n.], 2013. v. 5.

RUNGTA, K. RESTful Web Services Tutorial with REST API Example. 2020. Disponível
em: <https://www.guru99.com/restful-web-services.html>.

SCHAFER, B. et al. Collaborative filtering recommender systems. In: . [S.l.: s.n.], 2007.

BIBLIOGRAPHY 91

SILVEIRA, T. et al. How good your recommender system is? a survey on evaluations in
recommendation. International Journal of Machine Learning and Cybernetics, v. 10, 12
2017.

SINGH, S. K. et al. Software as a service. In: . [S.l.: s.n.], 2019. p. 95–118. ISBN
978-93-8817-666-8.

SONG, H. et al. Customizing multi-tenant saas by microservices: A reference architecture.
In: 2019 IEEE International Conference on Web Services (ICWS). [S.l.: s.n.], 2019. p.
446–448.

STECK, H. Calibrated recommendations. In: Proceedings of the 12th ACM Conference
on Recommender Systems. New York, NY, USA: Association for Computing Machinery,
2018. (RecSys ’18), p. 154–162. ISBN 9781450359016. Disponível em: <https://doi.org/
10.1145/3240323.3240372>.

SU, X.; KHOSHGOFTAAR, T. A survey of collaborative filtering techniques. Adv. Arti-
ficial Intellegence, v. 2009, 10 2009.

TECHCELLO. Why Microservices adoption is crucial for SaaS
companies. 2020. Disponível em: <https://www.techcello.com/
Why-Micro-Services-adoption-is-crucial-for-SaaS-companies/>.

TERUYA, H. S. et al. URecommender: An API for Recommendation Systems. In:
2020 15th Iberian Conference on Information Systems and Technologies (CISTI). Sevilla,
Spain: IEEE, 2020. p. 1–6. ISBN 9789895465903. Disponível em: <https://ieeexplore.
ieee.org/document/9141055/>.

VINEELA, A. et al. A Comprehensive Study and Evaluation of Recommender Systems.
In: CHOWDARY, P. S. R. et al. (Ed.). Microelectronics, Electromagnetics and Telecom-
munications. Singapore: Springer, 2021. p. 45–53. ISBN 9789811538285.

WATTS, S.; HAZA, M. SaaS vs PaaS vs IaaS: What’s The Difference
& How To Choose. 2019. Disponível em: <https://www.bmc.com/blogs/
saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/>.

WOLFF, E. Microservices: flexible software architecture. Boston: Addison-Wesley, 2017.
OCLC: ocn965730846. ISBN 9780134602417.

ZANARDI, V.; CAPRA, L. Dynamic updating of online recommender systems via feed-
forward controllers. In: Proceedings of the 6th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems. New York, NY, USA: Association for
Computing Machinery, 2011. (SEAMS ’11), p. 11–19. ISBN 9781450305754. Disponível
em: <https://doi.org/10.1145/1988008.1988011>.

ZHANG, Z. zhenghaoz/gorse. 2021. Original-date: 2018-08-14T11:01:09Z. Disponível em:
<https://github.com/zhenghaoz/gorse>.

92 BIBLIOGRAPHY

ZIBRAN, M. F.; EISHITA, F. Z.; ROY, C. K. Useful, But Usable? Factors Affecting the
Usability of APIs. In: 2011 18th Working Conference on Reverse Engineering. Limerick:
IEEE, 2011. p. 151–155. ISBN 9781457719486. Disponível em: <http://ieeexplore.ieee.
org/document/6079520/>.

ÇANO, E. Cloud-based Recommendation Systems: Applications and Solution.
2017. Disponível em: <https://iris.polito.it/retrieve/handle/11583/2669861/149344/
ErionCanoCRSAS.pdf>.

