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"The mind that opens to a new idea never returns to its
original size."

—ALBERT EINSTEIN



RESUMO

Uma das novas tecnologias que vêm impulsionando a ciência de dados são os Notebooks
Computacionais, que permitem aos usuários construir códigos orientados a dados, enfa-
tizando a análise realizada e os dados obtidos. Apesar de os Notebooks computacionais
ganharem visibilidade, problemas e soluções já discutidos e estudados pela engenharia
de software precisam ser abordados, impactando a qualidade do software desenvolvido
e, consequentemente, a análise de dados. Isso também pode levar à disseminação de
práticas de programação inadequadas. Notebooks computacionais, como o Jupyter, têm
sido amplamente adotados por cientistas de dados para escrever código para análise e
visualização de dados. Apesar de sua crescente adoção e popularidade, poucos estudos
foram encontrados para compreender os desafios de desenvolvimento do Jupyter do ponto
de vista dos praticantes. Este estudo apresenta uma investigação sistemática de bugs e
desafios que os praticantes do Jupyter enfrentam por meio de uma investigação empírica
em larga escala. Mineramos 14.740 commits de 105 projetos de código aberto do GitHub
com código de Notebooks Jupyter. Em seguida, analisamos 30.416 postagens no Stack
Overflow, que nos deram insights sobre bugs que os praticantes enfrentam ao desenvolver
projetos de Notebooks Jupyter. Conduzimos dezenove entrevistas com cientistas de dados
para descobrir mais detalhes sobre os bugs do Jupyter e obter insights sobre os desafios
dos desenvolvedores do Jupyter e por fim, para validar todas as informações obtidas,
realizamos um survey com diversos cientistas de dados e uma análise com regras de asso-
ciação utilizando o algoritmo Apriori. Propomos uma taxonomia de bugs para projetos
Jupyter com base em nossos resultados. Também destacamos categorias de bugs, suas
causas raiz e os desafios que os praticantes do Jupyter enfrentam.

Palavras-chave: Notebooks Jupyter, Bugs, Entrevistas, Repositórios de Software de
Mineração (MSR), Stack Overflow, Estudo Empírico, Notebooks Computacionais, De-
senvolvimento Orientado a Dados
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ABSTRACT

One of the new technologies driving data science projects is Computational Notebooks,
which allow users to build data-oriented codes, emphasizing the data collected and the
analysis performed. Although Computational Notebooks have gained visibility, some
problems and solutions already discussed and studied by the software engineering com-
munity must be addressed, impacting the quality of the developed software and, conse-
quently, data analysis. In addition, neglecting these aspects can lead to the spread of bad
programming practices. Computational Notebooks, such as Jupyter, have been widely
adopted by data scientists to write code for analyzing and visualizing data. Despite their
growing adoption and popularity, few studies are available to understand Jupyter devel-
opment challenges from the practitioners’ point of view. This dissertation systematically
studies bugs and challenges that Jupyter practitioners face through a large-scale empiri-
cal investigation. We mined 14,740 commits from 105 GitHub open-source projects with
Jupyter Notebook code. Next, we analyzed 30,416 Stack Overflow posts, which gave us
insights into bugs that practitioners face when developing Jupyter Notebook projects. We
conducted nineteen interviews with data scientists to uncover more details about Jupyter
bugs and to gain insight into Jupyter developers’ challenges and finally, to validate all
the information obtained, we carried out a survey with several data scientists and an
analysis with association rules using the Apriori algorithm. We propose a bug taxonomy
for Jupyter projects based on our results. We also highlight bug categories, their root
causes, and Jupyter practitioners’ challenges.

Keywords: Jupyter Notebooks, Bugs, Interviews, Mining Software Repositories (MSR),
Stack Overflow, Empirical Study, Computational Notebooks, Data-driven Development
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Chapter

1
INTRODUCTION

Data science and data analysis are emerging areas with professionals from different back-
grounds, such as mathematics, statistics, and computer science. They combine this di-
verse knowledge with domain knowledge to obtain strategic insights through exploration,
quantification, qualification, and data prediction (DHAR, 2013; TAO et al., 2020; CAO,
2017).

Over the years, special attention has been given to the data analysis and processing areas
due to the large amount of data available (BEGEL; ZIMMERMANN, 2014). With this
growth in data science and analysis, Jupyter Notebook has become one of the most used
tools (PIMENTEL et al., 2019; KOENZEN; ERNST; STOREY, 2020). Jupyter is a
computational notebook, a web application that allows data scientists to write text and
code in a documentation structure that describes the data analysis process and that is
commonly used to refine code, explore unknown data, test hypotheses, and build models
(WANG; LI; ZELLER, 2020a; HEAD et al., 2019). Although Jupyter offers a new type
of development, different from the traditional model found in traditional IDEs, it can
bring benefits and problems to the data analysis development process, such as the ease of
exploration and documentation, weighed against the potential for promoting undesirable
development practices.

1.1 MOTIVATION

The growing use of computer notebooks, especially the Jupyter Notebook, presented
benefits to the data scientist, but several problems also accompanied it. Wang et al.
(WANG; LI; ZELLER, 2020a) analyzed 1982 Jupyter notebooks and found their code
incompatible with Python development standards, having unused variables and obsolete
functions. Pimentel et al. (PIMENTEL et al., 2019) analyzed 1,159,166 notebooks and
found that 24.11% of them could be reproduced without errors. Some studies focused on
highlighting the discomfort that the user has when using Jupyter (HEAD et al., 2019;
CHATTOPADHYAY et al., 2020), Others identified specific and important problems such
as name-value inconsistency found in numerous notebooks (PATRA; PRADEL, 2021) or
the lack of formal declaration of the notebook’s dependencies, a gap present in about 94%

1



2 INTRODUCTION

of the notebooks studied, making it difficult or impossible to reproduce them (WANG;
LI; ZELLER, 2021).

In addition, Jupyter’s popularity grows with the popularity of data science (Glassdoor
ranks data science as the #3 job in America for 20221), and these errors can have serious
consequences. For example, because of these problems, there is a tendency for data
scientists and analysts to see notebooks as an ad-hoc, experimental, and throw-away code
(KANDEL et al., 2012) tool, besides describing them as messy (KERY et al., 2018;
RULE; TABARD; HOLLAN, 2018a) and containing ugly code and dirty tricks in need of
cleaning and polishing (RULE; TABARD; HOLLAN, 2018a). Understanding these issues
more deeply can help the data scientist community identify points of improvement and
care when using the tool.

1.2 PROBLEM STATEMENT

Previous studies by the Software Engineering community investigated bugs in different
domains (THUNG et al., 2012; ZHANG et al., 2018; ISLAM et al., 2019; GARCIA et
al., 2020; RAHMAN et al., 2020; MAKHSHARI; MESBAH, 2021; WANG et al., 2021).
These studies demonstrate how important historical bug analysis is for bug reduction
(THUNG et al., 2012), and provide important information for improving Jupyter and
similar tools. The community has also stressed "the strong need to analyze the quality of
the notebooks" (WANG; LI; ZELLER, 2020a; CHATTOPADHYAY et al., 2020; WANG;
LI; ZELLER, 2021) to improve the quality and reliability of the code. However, bugs and
their characteristics in Jupyter projects have not yet been studied.

As evidenced in previous research (WANG; LI; ZELLER, 2020a; PIMENTEL et al.,
2019; HEAD et al., 2019; CHATTOPADHYAY et al., 2020; PATRA; PRADEL, 2021;
WANG; LI; ZELLER, 2021), Jupyter notebook has a series of limitations, problems and
challenges faced by its users, especially related to its layout, and the bugs that may be
appearing in this scenario can cause serious damage to a data science project, (like what
happened in the UK when nearly 16,000 COVID-19 cases were lost from exceeding the
spreadsheet data limit 2). Thus, analyzing and improving Jupyter Notebook projects
have a potentially relevant impact.

1.3 GOAL

Motivated by the problems and challenges presented in the previous sections, the objective
of this work can be stated as follows:

Investigate the bugs in Jupyter projects, including their characteristics, such as root
causes, the impact of their occurrence, the challenges data scientists face, and how it

150 Best Jobs in America for 2022 - https://www.glassdoor. com/List/Best-Jobs-in-America-LST_-
KQ0,20.htm

2Thousands of coronavirus cases were not reported for days in the UK because officials exceeded the
data limit on their Excel spreadsheet - https://www.businessinsider.com/uk -missed-16000-coronavirus-
cases-due-to-spreadsheet-failure-2020-10
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affects them.

We follow four steps to understand bugs in Jupyter projects better. First, we extracted
commits from open source GitHub repositories, referring to the Jupyter Notebooks code
(Appendix A.1). We then did a similar process with the Stack Overflow platform, using
the bug-related posts on Jupyter and their responses. This way, we had a distinct raw
dataset with information about the errors data scientists face when developing projects
on the Jupiter notebook. Next, we carried out recursive processes of sampling, clas-
sifying, and categorizing the databases to identify our bug taxonomy. We conducted
semi-structured interviews with data scientists to validate the findings identified in the
previous steps and understand how these bugs affect the scientists’ daily lives, providing
findings on the challenges data scientists face at Jupyter. Finally, to validate all the
information obtained, we carried out a survey with several data scientists and an analysis
with association rules using the Apriori algorithm (AGRAWAL; SRIKANT, 1994).

1.4 STATEMENT OF THE CONTRIBUTIONS

As a result of the work presented in this dissertation, a list of the main contributions
may be enumerated:

• We provide a comprehensive understanding of bug classes and their underlying root
causes within the context of Jupyter Notebook projects.

• We propose a comprehensive taxonomy comprising eight distinct bug categories
specifically tailored for Jupyter Notebook projects.

• Drawing upon our analysis of data collected from the mining software repository
study, encompassing observations from GitHub and Stack Overflow, coupled with
insights garnered through interviews, we provide a set of recommendations tailored
to benefit both researchers and practitioners within the field.

• For replication and reproducible research, we make our materials available on our
project website. These include a dataset of Jupyter notebook bugs collected from
GitHub and Stack Overflow, and all interview data (prompt, summary of profes-
sional and demographic information from Participants, and codebook). Our arti-
facts can be found at the accompanying website3.

1.5 OUT OF SCOPE

As Jupyter notebooks are part of a broader context, a set of related aspects will be outside
their scope. Therefore, the following questions are not directly addressed by this work:

• Other computing notebooks. Jupyter is the pioneer and one of the best-known
computing notebooks in the community. There are other notebooks that may have
similar problems and challenges or provide solutions to some of the problems high-
lighted in this work; however, we only focused on Jupyter in our study.

3https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper



4 INTRODUCTION

• Minor bugs. This work took random samples from a raw database for analysis and
focused on classifying, labeling, and characterizing the most common bugs. Minor
bugs may have been left out of the analysis.

• Characteristics of bugs. This work characterizes bugs by type, root cause, and
impact; however, it was not the focus of this study to deepen this analysis with
details of how each type of bug can be avoided, how each type of bug behaves, or
what damage is caused by each type.

1.6 DOCUMENT STRUCTURE

The remainder of this document is organized as follows: Chapter 2 summarizes the most
important topics to understand Computational Narrative, Computational Notebooks,
and Bugs. Chapter 3 discusses related work. Chapter 4 presents the research questions
and the proposed methodology. Chapter 5 shows the results found in this research.
Finally, the chapter 6 summarizes and discusses the main findings.



Chapter

2
BACKGROUND

This chapter describes the fundamental concepts relevant to this work: Computational
Narratives, Computational Notebooks, Jupyter Notebooks, and other Notebooks, such
as Google Collaboratory and RMarkdown. Section 2.1 defines computational narratives
and their importance. Section 2.2 correlates the importance of computational narratives
with computational notebooks and definitions. Section 2.3 presents the Jupyter notebook
and section 2.4 some of its issues. Finally, section 2.5 describes the IDE with notebooks
and brings a non-exhaustive list of the main computing notebooks used, such as Google
Collaboratory and RMarkdown. The challenges described in this chapter highlight the
importance of computational notebooks for data analysis and data scientists. In particu-
lar, it motivates our work to understand more deeply the problems related to computing
notebooks, what can arise from this scenario related to bugs, and how this can impact
the daily lives of computer scientists.

2.1 COMPUTATIONAL NARRATIVES

While computers consume, produce and process data, humans need context to process
information. Thus, a narrative needs to order and connect events and facts in a chronology
that makes sense to the reader, contextualizing and facilitating the understanding of the
human being (RULE; TABARD; HOLLAN, 2018a).

Exploring data and extracting insights is made up of numerous blocks of code reviewed,
duplicated, and reordered countless times. It is challenging to organize, document, review,
and replicate the analysis performed, making each code unique and situational.

The computational narrative can be a possible solution for promoting the construction
of development narratives in an orderly and documented way in a single story.

2.2 COMPUTATIONAL NOTEBOOKS

To develop in a narrative way, it is necessary to document the code and the analysis
process. How each step was performed, the logic of the general analysis, analysis changes,
and their intermediate and final results. In addition, for this narrative to be helpful to

5



6 BACKGROUND

the data scientist and community, it needs to meet three fundamental aspects 1 : First,
allow the analysis to be developed and detailed in different ways, texts, images, graphics,
codes, etc., to compose a story that the different public can read. Secondly, data analysis
must be reproducible for future corrections, validations, and improvements. Moreover,
finally, it must be possible to work collaboratively.

In this context, computer notebooks were designed to support the construction of com-
putational narratives, combining text, graphics, images, code, and output into a single
document.

The structure of a notebook consists of a single page, composed of blocks divided into
types, Markdown blocks, which can contain texts, images, and links; code blocks and
output blocks, which are the outputs resulting from the execution of the code blocks (see
figure 2.1).

Figure 2.1 Notebook layout.
(RULE; TABARD; HOLLAN, 2018b)

The blocks are sequentially organized and are executed and re-executed in any order. It
enables greater freedom of exploration. However, it also makes the development messy
and confusing (HEAD et al., 2019; WANG et al., 2020). Rule et al. suggest ten rules
on how to write a good notebook, such as modularizing code, registering dependencies,

1https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-
data-science-2b5fb94c3c58
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using version control, and planning notebooks thinking they will be read, executed, and
explored by others (RULE et al., 2019).

2.3 JUPYTER NOTEBOOKS

Jupyter is the computational notebook chosen by data scientists and has been gain-
ing popularity since 2016 (PERKEL, 2018). It is a free tool that combines code, text,
computational outputs, and multimedia resources in a single document. It results in a
computational narrative from data analysis mixed with models to test hypotheses and
conjectures.

The Jupyter notebook format is ".ipynb" (JSON schema 2), which can be ported and run
on any platform with the same kernel. There are some kernels in Jupyter Project 3 that
supports other languages besides Julia, Python, and R.

In addition to the classic web solution, there is also the Jupyter Lab, which was designed
to be an extensible environment, which adds the Jupyter notebook experience to a user
interface.

The Jupyter Lab mix text editors, a more flexible view of the development and mainly
the possibility to use and develop Jupyter extensions4.

The notebook interface works as follows 5, the notebook runs the code, stores the output,
and text blocks into a single editable document. When this document is saved, it is sent
from the browser to the server, which maintains it in the ".ipynb" format. The server is
responsible for saving and loading notebooks, making it possible to edit the document
without linking a kernel (see figure 2.2). In addition, its architecture allows the Jupyter
notebook also run outside the machine where the kernel is.

The Jupyter project developed this flexible interface of the notebook architecture as a
solution to the following problem:

"the collaborative creation of reproducible computational narratives that can be used across
a wide range of audiences and contexts." 6.

2https://github.com/jupyter/nbformat/blob/main/nbformat/v4/nbformat.v4.schema.json
3https://jupyter.org/
4https://jupyterlab.readthes.io/en/stable/index.html
5https://docs.jupyter.org/en/latest/projects/architecture/content-architecture.html
6https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-

data-science-2b5fb94c3c58
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Figure 2.2 Jupyter notebook interface.

2.4 JUPYTER PROBLEMS

The Jupyter Notebook has emerged as a great solution to optimize data analysis and
document the process in an interactive way. It simplifies its use. However, it demands
from users a greater discipline to guarantee reuse and reproducibility.

There are several researches dedicated to understanding and suggesting improvement
points or tools (extensions) that can help in the process, so that notebook development
does not allow errors originating from cell executions out of order, bad readability, bad
modularity, lack of debugging, bad programming practices, among others (KOENZEN;
ERNST; STOREY, 2020; KERY et al., 2020; HEAD et al., 2019; PIMENTEL et al.,
2019; WANG; LI; ZELLER, 2020a; WANG et al., 2020; CHATTOPADHYAY et al.,
2020; RULE; TABARD; HOLLAN, 2018a).

The process of exploring the data as mentioned before is exhaustive, repetitive and full
of details and a small problem can impact a whole bad analysis or even wrong results.
Which can generate dissatisfaction of data scientists 7.

2.5 SOFTWARE DEVELOPMENT IDES SUPPORTING NOTEBOOKS

The Jupyter Notebook’s popularity makes it an important tool for data science, especially
for beginners, due to its layout simplicity and user-friendliness. However, if the analysis

7https://conferences.oreilly.com/jupyter/jup-ny/public/schedule/detail/68282.html
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requires more advanced functionalities, the Jupyter Notebook could not be helpful due
to its limitations.

In the annual survey carried out by the Stack Overflow8 platform, Jupyter appeared in
2016 as one of the most used tools by developers.

Over the years, its number of users has grown, and in 2019, the survey itself noted its
results:

"Visual Studio Code is a dominant player among developer environment tools this year.
There are differences in tool choices by developer type and role, but Visual Studio Code was
a top choice across the board. Developers who write code for mobile apps are more likely
to choose Android Studio and Xcode. The popular choice for DevOps and SREs is Vim,
and data scientists are more likely to work in IPython/Jupyter, PyCharm,
and RStudio." 9

In the 2021 survey 10, the Jupyter users itself start to migrate to another tools:

"We see IPython/Jupyter users want to work in VS Code. This is likely due to VS Codes
adding a Notebook API to their IDE." 11

The limitations of Jupyter Notebook can generate dissatisfaction in its users, either be-
cause of its difficulties or even bugs resulting from them. However, despite these limita-
tions, Jupyter Notebook is a solution that adds value to the exploratory data analysis
process, as highlighted earlier by its growing popularity.

As a solution to these limitations, many IDE’s have added to their platforms the possi-
bility of creating and importing the Jupyter file (.ipynb), adding a set of typical IDE’s
functionalities to the Jupyter solution without abandoning its popular concept of com-
putational narrative.

The VSCode IDE12 provides for its user’s text editor, with version control, plugins, coding
assistant and also allows the use of .py files associated with the notebook.

The Pycharm IDE 13 is another popular and robust editor as VSCode and has provided
integration with the notebook.

The DataSpell IDE 14 is dedicated to data science projects. It is similar to a notebook and
provides intelligent coding assistance, version control, a debugger, connection to different
database tools, and others.

8https://insights.stackoverflow.com/survey
9https://insights.stackoverflow.com/survey/2019

10https://insights.stackoverflow.com/survey/2021
11https://insights.stackoverflow.com/survey/2021#section-worked-with-vs-want-to-work-with-

collaboration -tools
12https://code.visualstudio.com/docs/datascience/jupyter-notebooks
13https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html
14https://www.jetbrains.com/help/dataspell/jupyter-notebook-support.html



10 BACKGROUND

The Jupyter Lab itself, is a natural evolution of Jupyter Notebook to advanced user needs,
providing an improved interface with a file browser, consoles, terminals, text editors,
Markdown editors, CSV editors, JSON editors, interactive maps and widgets.

All these Jupyter Lab functionalities, in addition to improving the user experience, allow
the build of extensions that expand the scope of features of the notebook development
environment15

In addition to Jupyter Notebook and the IDE’s (with notebooks) mentioned above, there
are other platforms with their notebooks or adaptations (see Appendix B.1).

2.6 CHAPTER SUMMARY

This chapter covers the fundamental concepts relevant to this work, including Computa-
tional Narratives, Computational Notebooks, Jupyter Notebooks, and other notebooks
such as Google Collaboratory and RMarkdown. It begins by defining computational nar-
ratives and their importance, followed by the correlation with computational notebooks.
It describes the Jupyter Notebook, its issues and challenges, and concludes with a dis-
cussion of IDEs that support notebooks, highlighting the significance of these tools for
data analysis and data scientists.

Computational narratives are essential for organizing and contextualizing data analysis,
allowing humans to understand complex information. Computational notebooks, such as
Jupyter, combine text, code, and visualizations in a single document, facilitating repro-
ducibility and collaboration. However, they present challenges, including execution order
errors and poor programming practices. IDEs like VSCode, PyCharm, and DataSpell are
integrating notebook functionalities, offering advanced features to enhance user experi-
ence and effectiveness in data analysis.

In the next chapter, related work will be reviewed, grouped into five key areas: exten-
sions for Jupyter notebooks, usage patterns, quality assessment, bug studies, and bug
taxonomies.

15https://ipython-books.github.io/36-introducing-jupyterlab
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3
RELATED WORK

In this section, we discuss the main work related to our study, grouping it into five
conceptual sections. Session 3.1 presents work that analyzes the main pain points of
Jupyter users and brings the development of an extension as a solution for them. Session
3.2 highlights particularities in the use of computing notebooks. Session 3.3 discusses
work on analyzing the quality of notebooks already developed by the community. Session
3.4 lists more recent works that study the occurrence of bugs in open source software.
Finally, Session 3.5 discusses bug studies that have similarities to our study.

3.1 JUPYTER NOTEBOOKS - EXTENSIONS

The Jupyter Notebook Project aims to provide the data science community with a simple
graphic interface to promote the computational narrative based on usability, collabora-
tion, and portability (JUPYTER, 2015). Some studies have been proposing different
ways to improve these aspects.

Rule et al. (RULE et al., 2018) investigated how cell folding can contribute to notebook
navigation and reading. They developed an extension for it, but in some cases, folded
sections were ignored or increased the time of notebook revisions. It shows how the
analysis process in a notebook can be confusing and hard to understand, especially in
large documents. Head et al. (HEAD et al., 2019) developed a solution to collect and
organize code versions, helping the analyst to study, review, and recover old codes and
analysis.

Computer notebooks unify text, code, and visual outputs, and being able to interact with
the graphical outputs increases the data analysis power of scientists. Kery et al. (KERY
et al., 2020) developed an API for this.

With respect to supporting reproducibility, Wang et al. carried out two studies. The
first one is to recover the notebook’s reproducibility with a tool that generates possible
execution schemes (WANG et al., 2020), and the second one to retrieve and install the
notebook’s experimental dependencies (WANG; LI; ZELLER, 2021).

11
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Our study is not focused on producing new features for Jupyter Notebooks. We analyze,
identify, and classify bugs in the Jupyter notebook to provide a systematic overview of
bugs and developer challenges and an initial body of knowledge for future work on gaps
and limitations in the daily use of the Jupyter notebook.

Our work understands the importance of notebooks for the data science community. It
intends to study their weaknesses and bring important information to evolve the tool and
improve the user experience. However, although this study can inspire new features, we
intend to produce something other than new features for the Jupyter Notebook. Instead,
we review, identify, and classify bugs in the Jupyter Notebook to provide a systematic
overview of bugs and developer challenges. We also provide initial knowledge for future
work on gaps and limitations in everyday Jupyter notebook use.

3.2 JUPYTER NOTEBOOKS - HOW DATA SCIENTISTS USE IT

Some studies explore how the data scientists use the notebooks in their daily usage.
Code duplication, for example is a common practice from data scientists. Koenzen et
al. (KOENZEN; ERNST; STOREY, 2020) studied how these duplication happen and
identified that although there is an approximately 8% rate of duplicate code in GitHub
databases, users prefer not to duplicate their own code.

Data analysis processes provide insights that need to be demonstrated, shared and dis-
seminated. Wang et al. (WANG et al., 2019) studied the real-time collaboration and
identified that working on synchronous notebooks encourages exploration and reduces
communication costs, but the resources currently available for this imply the need for
greater team coordination.

Our study also intends to understand more about notebook usage, but we focus on
something other than a specific type of usage, as highlighted by the studies. We focus
on mapping and quantifying the bugs in the user’s daily life to understand its dynamics
and how their specificities can bring more difficulty, deficiency, or problem with the tool.

3.3 JUPYTER NOTEBOOK - NOTEBOOK QUALITY

Chattopadhyay et al. conducted a study (CHATTOPADHYAY et al., 2020) that in-
volved observing five data scientists at their work with computational notebooks. They
interviewed 15 data scientists and next surveyed 156 data scientists. They cataloged nine
main problems and difficulties faced by data scientists using computer notebooks. Unlike
this research, our study highlights the challenges faced by users from the perspective of
real bugs that data scientists encounter in their daily work.

Rule et al. (RULE; TABARD; HOLLAN, 2018b) analyzed the structure of 1 million note-
books to assess whether they were being in such a way that the development was reflected
in well-structured computational narratives. They identified that most of the notebooks
are built without proper cleaning or documentation, making readability, replication, code
reuse and consequently reproducibility a difficult task. Pimentel et al. (PIMENTEL et
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al., 2019) conducted a large-scale study on notebook reproducibility problems. Their
results show that only 24.11% of notebooks run without errors, and out of that percent-
age, only 4.03% are able to produce the original results. Later, they conducted another
study that conducted a more detailed analysis (PIMENTEL et al., 2021). While the
authors are interested in analyzing notebooks regarding their structure, our study aims
to understand the notebook code quality throughout the existing bugs.

Investigating the coding quality of Jupyter notebooks, Wang et al. (WANG; LI; ZELLER,
2020b) developed a preliminary study where the results revealed a high amount of bad
coding practices in Jupyter notebooks. However, unlike the previous study, Patra et al.
(PATRA; PRADEL, 2021) decided to focus on a single type of coding inconsistency that
appears in Jupyter notebooks, Name-Value, and its implications for understanding and
maintaining code. Unlike the previous studies that cite specific bugs, our work categorize
and quantify types of bugs and root causes in the domain of Jupyter notebooks.

All these studies evaluate the quality of notebooks and how the pain points pointed
out by users are related to this quality. Similarly, we aim to cross-reference bugs users
report with their complaints and how this impacts their use. Empirically, we observe a
relationship between the quality of the notebook developed and the occurrence of some
bugs, but we do not intend to deepen this relationship between them. On the other hand,
some of these studies cite or highlight some bugs, but they need to go into depth, as we
are doing here in this work.

3.4 EMPIRICAL STUDIES ON BUGS

Some related work are not directly related to data science, such as: Zhang et al. (ZHANG
et al., 2018) mined bugs in deep learning applications based on Tensorflow. They analyzed
GitHub commits, pull requests and issues and StackOverflow questions. Using similar
mining strategies and same data sources, Islam et al. (ISLAM et al., 2019) extended
the search for other popular deep learning libraries, Caffe, Keras, Tensorflow, Theano,
and Torch. In addition, Thung et al. (THUNG et al., 2012) analyzed bugs in machine
learning systems, but their research used the issues reported on Jira database as a data
source. However, to the best of our knowledge, this is the first empirical study of bugs
in Jupyter Notebook projects.

Other studies focused on bugs by only analyzing the GitHub projects in different domains,
such as bugs in autopilot software in unmanned aerial vehicles (WANG et al., 2021), bugs
in IoT systems (MAKHSHARI; MESBAH, 2021), bugs in autonomous vehicles (GARCIA
et al., 2020) and bugs involving Infrastructure as Code Scripts (RAHMAN et al., 2020).

All previous research focused on analyzing specific aspects of bugs, such as symptoms,
commonality, bug evolution, bug prone stages, and bug detection. Our work is a prelim-
inary study that focuses on providing the characterization of bugs in Jupyter Notebook
projects, such as the types of bugs, the potential root causes, their frequency, and the
impact and challenges for data scientists.

Similar to previous articles, we also studied bugs, their main characteristics, and how this
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impacts the user’s challenges in their daily lives. However, we focused only on specific
characteristics: root cause, bug type, and impact. Furthermore, although two of these
articles are in the domain of data science, these articles focus on something other than
computational and/or Jupyter notebooks.

3.5 STUDIES ON BUGS WITH TAXONOMIES

Although different domains, four studies had a similar approach to our study: research
into bugs in autopilot software in unmanned aerial vehicles (WANG et al., 2021), bugs in
IoT systems (MAKHSHARI; MESBAH, 2021), bugs in autonomous vehicles (GARCIA
et al., 2020) and bugs involving Infrastructure as Code Scripts (RAHMAN et al., 2020).

Considering their particularities, all of them aimed to identify and characterize the bugs
in the researched domain, contributing to a deeper understanding of the problems. Thus,
processes such as database mining (such as GitHub), manual classification and labeling
were common in all studies for the empirical construction of a first bug taxonomy.

Interviews and surveys were used in some of these studies as a way of validating and
understanding how bugs can create challenges in the developer’s daily life.

It is also important to highlight that to create a new taxonomy for bugs empirically, stud-
ies such as that of autonomous vehicles (GARCIA et al., 2020), observed taxonomies from
previous studies and adapted them to their research domain. Still, the need for manual
analysis and recursive cross-validations between experts were crucial in all research to
achieve the domain-specific taxonomy.

Strategies such as "five whys technique" (MAKHSHARI; MESBAH, 2021) or "Cohen’s
Kappa" (RAHMAN et al., 2020), were used as a way of establishing well-defined rules so
that manual interaction processes were possible identify the saturation point of classifi-
cations and labeling.

In our study, we propose to carry out all the questions, analyzes and validations of
previous research that would add value to a better understanding of bugs and challenges
for data scientists in the field of Jupyter computing notebooks.

3.6 CHAPTER SUMMARY

This chapter reviews related work, grouping them into five key areas: extensions for
Jupyter notebooks, usage patterns, quality assessment, bug studies, and bug taxonomies.
Several studies aimed to enhance Jupyter notebooks by developing extensions to im-
prove navigation, code versioning, and reproducibility. Other research examined how
data scientists use notebooks, revealing practices such as code duplication and real-time
collaboration challenges. Quality assessments highlighted issues with notebook readabil-
ity, replication, and reproducibility, while studies on coding practices identified common
problems and inconsistencies.

Our study focuses on identifying and classifying bugs in Jupyter notebooks to provide
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a systematic overview of the challenges faced by developers. Unlike previous research
that introduced new features or analyzed specific notebook uses, our goal is to map and
quantify bugs, offering insights into their frequency, types, root causes, and impact on
daily use. By characterizing these bugs, we aim to inform future improvements in Jupyter
notebooks, enhancing their utility for the data science community.

The next chapter details a comprehensive methodology for characterizing Jupyter Note-
book bugs, including GitHub repository mining, StackOverflow post analysis, and inter-
views with data scientists, addressing key research questions, data collection and analysis,
and validation of results.



Chapter

4
METHODOLOGY

This section describes the methodology used in our study to characterize Jupyter Note-
book bugs which involve GitHub repository mining, StackOverflow posts analysis, and
semi-structured interviews with data scientists.

4.1 RESEARCH DESIGN

To fulfill the purpose highlight, our study aims to answer the following research questions
(RQs):

• RQ1. What types of bugs are more frequent? Motivation: The types of bug
identification and the comprehension of how often they appear are the first step
toward better understanding and building a taxonomy of bugs in Jupyter Notebooks
projects. It is an important step for researchers and practitioners who use this tool
in their daily lives.

• RQ2. What are the root causes of bugs? Motivation: The root cause of bugs
provides additional information to understand the bugs better. Comprehending
these causes can help understand what is needed to work around, fix, or improve
the Jupyter environment.

• RQ3. What are the frequent impacts of bugs? Motivation: Understanding and
quantifying the impact of a bug can help prioritize and scale how severe it is.

• RQ4. What challenges do data scientists face in practice on Jupyter Projects?
Motivation: The Jupyter Notebook is commonly adopted by data scientists from
different domains, from finance systems to the car industry. Despite their growing
adoption and popularity, there has been no study to understand Jupyter Notebook
usage challenges from practitioners’ points of view. The current environmental
limitations can also be analyzed.

In order to answer these questions, the following steps were performed. Firstly, (i) a

17
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GitHub1 Repository Mining analysis was performed to characterize bugs in the context
of Jupyter Notebooks2 projects. In this analysis, only commits related to bug fixing were
considered by inspecting the commit message (MAKHSHARI; MESBAH, 2021; ISLAM
et al., 2019; WANG et al., 2021; GARCIA et al., 2020). Next, (ii) the StackOverflow3

posts analysis was performed to characterize data science difficulties/issues/questions
when using Jupyter Notebooks. Next,(iii) manual labeling and classification were per-
formed in both datasets (Github and StackOverflow) to identify the main bug types, root
causes, and impact. The coding process applied during the labeling used a set of first-
cycle, and second-cycle coding methods for data analysis (SALDANA, 2015). Next, (iv)
semi-structured interviews were conducted with data scientists to obtain and validate
insights on the main issues when developing using Jupyter Notebooks projects. Finally,
(v) a Survey was carried out with 91 developers to validate out findings and proposed
taxonomy. Figure 4.1 shows the overall research methodology used in our study. All the
quantitative and qualitative data is available online at the accompanying website4.

1https://github.com
2https://jupyter.org
3https://en.stackoverflow.com
4https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper
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Figure 4.1 Research Methodology.

4.2 REPOSITORIES AND POSTS SELECTION AND MINING

We chose GitHub repositories predominantly written in the "Jupyter Notebook" language
in the initial step since we are interested in Data Science projects using this environment.
Following, the projects were sorted by star. Next, to filter out the most relevant and
active projects from the 11010 projects collected, some inclusion and exclusion criteria
were applied as recommended by (MUNAIAH et al., 2016).

• Inclusion/Exclusion Criteria:

– Projects wrote in the "Jupyter Notebook" language sorted by the number
of stars in descending order. The following information was retrieved: id,
name, description, URL, commits, forks, star, subscribes, issues, watch, re-
leases, contributors, languages, create at and last modified. It resulted in 11010
projects;
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– Projects without description ("None") were removed. It resulted in 9866
projects;

– Projects written in Chinese, Japanese, and any language other than English
were removed. It resulted in 8612 projects;

– Projects related to courses, tutorials, and books were removed. The following
keywords were used to identify the projects handbook, book, cookbook, tutorial,
course, training, tracking, 2nd edition, bootCamp, workshop, hackathons, and
presentations. It resulted in 6910 projects;

– Projects without any update(commit) in 2020 were removed. It resulted in
6885 projects;

– The repository must have at least 24 commits in 2020 (corresponding to two
commits per month in 2020). This criterion was used to filter out inactive
repositories. It resulted in 3714 projects;

– The repository must have at least ten contributors in 2020. This criterion
was used to eliminate irrelevant repositories, c.f., (AGRAWAL et al., 2018),
(KRISHNA et al., 2018), (RAHMAN et al., 2018). It resulted in 115 projects;

– Finally, the repository must have commits in Jupyter file format (.ipynb)
with the following keywords in the commit message: ’fix’, ’fixes’, ’fixed’,
’fixing’, ’defect’, ’defects’, ’error’, ’errors’, ’bug’, ’bug fix’, ’bugfixing’ ’bugfix’,
’bugs’, ’issue’, ’issues’, ’mistake’, ’mistakes’, ’mistaken’, ’incorrect’, ’fault’,
’faults’,’flaws’, ’flaw’, ’failure’, ’correction’, ’corrections’. This criterion was
used to filter out commits not related to bug fixing. (MAKHSHARI; MES-
BAH, 2021; GARCIA et al., 2020). It resulted in 105 projects;

After filtering, we selected the top 105 Jupyter repositories, resulting in 14740 valid com-
mits in our GitHub raw dataset. Next, the StackOverflow posts were retrieved using
the query ("select Id, PostTypeId, AcceptedAnswerId, ParentId, CreationDate, Deletion-
Date, Score, ViewCount, OwnerUserId, OwnerDisplayName, LastEditorUserId, LastEdi-
torDisplayName, LastEditDate, LastActivityDate, Tags, AnswerCount, CommentCount,
FavoriteCount, ClosedDate, CommunityOwnedDate, ContentLicense, Title from Posts
where Tags LIKE jupyter-notebook) applied to the StackOverflow API 5 resulting in 30416
posts. Incomplete and inaccessible posts were removed bringing out 29654 posts in our
StackOverflow raw dataset. Finally, the .csv generated was analyzed.

4.3 CLASSIFYING AND LABELING BUGS

We created a spreadsheet with all GitHub commits and StackOverflow posts filtered,
containing the bug type, root cause, and impact. The bug type refers to errors found in
Jupyter Notebook projects and grouped into categories. The grouping process and la-
beling were iteratively performed from scratch by classifying and validating the commits

5https://data.stackexchange.com/stackoverflow/query/1541588/jupyternotebookbugs
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and posts. The coding process applied used a set of first-cycle, and second-cycle coding
methods for data analysis (SALDANA, 2015). The first methods are those processes
during the initial coding of data. The second methods, if needed, are an advanced way
of reorganizing and reanalyzing data coded by first-cycle methods. We used the codes
created in the first cycle to cluster into categories in the second. These clusters (bug
types), then, served as the source of our results. In order to analyze them, we investi-
gated the title, body, pull requests, and other information that can assist us in gaining
a comprehensive understanding of issues on GitHub commits. Regarding StackOverflow,
we analyzed the title, body, the comments of the selected posts, and also the accepted
answers (MAKHSHARI; MESBAH, 2021; RAHMAN et al., 2020; ISLAM et al., 2019;
THUNG et al., 2012). To explore the root cause, we analyzed the reason that triggered
the error by analyzing the changes made in the bug-fixing commits, and the answers that
provide a solution in the StackOverflow (MAKHSHARI; MESBAH, 2021; YANG et al.,
2021; GARCIA et al., 2020; ZHANG et al., 2018). We applied the Root Cause Anal-
ysis (MAKHSHARI; MESBAH, 2021) using the five whys technique (SERRAT, 2017).
Finally, regarding impact, we analyzed major effects of bugs by reading the commit mes-
sage, pull request messages and the associated issues. In the StakOverflow, the question
description was important to understand the impact (GARCIA et al., 2020; ISLAM et
al., 2019; THUNG et al., 2012).
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Table 4.1 shows different metrics extracted from StackOverflow database. The metrics are
the following described: The Occurrence is the number of questions from each type of bug;
Voting Score is the sum of the up and down votes on a post; Views is the number of post
visualizations; Answers is the number of answers of each post; Comments is the number
of comments per posts; Favorites this is what we used to refer as an “interesting” post.
A correlation analysis was performed to evaluate the relationship between the number
of occurrences and all metrics. The Pearson correlation was 0.92 between Occurrences
and Voting Score, 0.95 between Occurrences and Views, 0.99 between Occurrences and
Answers, 0.99 between Occurrences and Comments, and 0.90 between Occurrences and
Favorites. It indicates a high correlation in all comparisons, showing that the results
will be the same as whatever metric is used in the analysis. We used the number of
occurrences in both commits and posts to answer the research questions based on bug
frequency.

Once the 14740 commits and 30416 posts were collected, in this stage of classification and
labeling, 4 experts participated. the first and second specialist applied the coding process
using a set of first-cycle, and second-cycle coding methods (SALDANA, 2015) to identify
the bug types. In addition, both specialist used the Root Cause Analysis (MAKHSHARI;
MESBAH, 2021) using the five whys technique (SERRAT, 2017) to identify the root cause
and impact. The label (bug type, root cause, and impact) identification was performed
iteratively as commits and posts were parsed. It was performed until reaching a saturation
state where no new categories appeared (FUSCH; NESS, 2015). This saturation was
achieved when analyzing 855 of 14740 commits, giving us a margin of error of 3% at 95%
confidence level. In addition, analyzing 2585 of 30416 posts gave us a margin of error
of 2% at a 95% confidence level. Finally, having established the reliability of judgment,
new commits and posts were classified by a single author. This reliability and saturation
of judgment were achieved with 855 commits and 2585 posts. During this step, some
commits were discarded since they were unrelated to bugs (270 commits) or reported
"typo" errors (129 commits) and improvements unrelated to bug fixing (839 commits).
Some StackOverflow posts were also discarded since they mentioned some hacking and not
bugs (14914 posts) or only questions related to Jupyter Notebook usage (1950 posts not
related to Jupyter). Next, three specialist (2nd, 3rd, and 4th) independently classified 145
commits randomly, and 137 posts were selected to validate the first author classification.
When a conflict happens, all specialist vote to solve the conflict. We measured the inter-
rater agreement among the specialist using Cohen’s Kappa coefficient (TABA et al.,
2013). A training session was performed among the specialist to clarify the labeling and
what they mean. After that, Cohen’s Kappa coefficient was more than 81% for bug type,
95% for the root cause, and 95% for impact, according to Landis and Koch (LANDIS;
KOCH, 1977), which is ‘substantial agreement’.

4.4 DATA SCIENTISTS INTERVIEWS

To validate the findings identified in the previous steps and understand how these bugs
impact the daily life of data scientists working with Jupyter notebook projects, we con-
ducted semi-structured interviews with data scientists. We contacted by email profes-
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sionals from companies and researchers who work with data science by inviting them
to participate in our interview. Once we received the acceptance reply, we started the
interviews. The list of interview questions is available at the website 6

Protocol. We designed the interview prompt to understand and validate previous find-
ings on the data scientists’ usage of Jupyter notebook projects. It was composed of
eighteen open questions. The participants were informed they could omit to answer a
question to avoid arbitrary answers. The interviews started with some demographic ques-
tions and participants’ expertise. The technical section comprises questions about the
Jupyter Notebook environment and the tool’s problems and challenges.

The interview pilot was performed using one data scientist. After that, the 2nd and 3rd
specialist also support the interview improvement, solving questions difficulties based on
pilot feedback. Some questions were added, updated, and removed to make the inter-
view easier to understand and answer. The pilot interview responses were only used to
calibrate the instrument, and these responses were not included in the final results. The
interview instrument can be seen in the supplementary material 7. All the interviews were
conducted remotely, and we recorded the audio to further analysis with the participants’
consent. The interviews took about 43 minutes on average. We transcribed the recorded
interviews using QDA Miner8.

Participants. After conducting a pilot interview with one data scientist (not included
in the study) as a pretest (SEIDMAN, 2006), nineteen data scientists were interviewed.
All of them have at least one year of data science experience from several companies
and domains as seen in Table 4.2. The data scientists came from 12 different companies,
working in domains such as mobile games, finance, car, petrochemical, mining, etc. 40%
of participants hold a Ph.D., 25% hold a master’s degree, 25% hold a bachelor’s degree,
and 10% conducted post-doctoral studies.

Analysis. The audio transcription was the first step (14 hours and 33 minutes). The first
author was responsible for conducting the transcription process using the OTranscribe 9

tool. We also performed a minor review to validate the transcriptions and clarify some
answers.

Next, the first author started the coding process using the QDA Miner Lite tool. The
first author and two experts iteratively worked in the coding step to reduce the subjective
bias during the open coding process. We used a set of first-cycle, and second-cycle
coding methods for data analysis (SALDANA, 2015). The first cycle methods are those
processes during the initial coding of data. Second-cycle methods, if needed, are ways of
reorganizing and reanalyzing data coded through first-cycle methods. All codes created
in our study were later on clustered into categories. Analyzing our data, we could define
categories to understand the answers from interview participants. Next, the specialist

6https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper
7https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper
8https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/
9https://otranscribe.com/
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Id Role Company Area Exp. (Years)
DS1 Data Engineer Petrochemical Industry 5
DS2 Feature Owner Car Industry 8
DS3 Data Scientist Finance 13
DS4 Coordinator Mining Company 10
DS5 Data Scientist Finance 8
DS6 Software Engineer Engineering solutions 10
DS7 Data Scientist Mobile Games 11
DS8 IA Researcher University 20
DS9 Data Scientist IT Services 18
DS10 Teacher University 15
DS11 ML Engineer Mobile Games 13
DS12 Data Scientist Finance 12
DS13 Data Scientist Finance 25
DS14 Business Manager Finance 17
DS15 Data Scientist Finance 15
DS16 Data Scientist Finance 14
DS17 Data Scientist Finance 11
DS18 Data Scientist Finance 9
DS19 DS Researcher University 9

Table 4.2 Interview participants background.

resolved the potential conflicts in the labels and categories. It resulted in 52 codes, 7
categories, and 5 challenges.

4.5 SURVEY

To validate the study results and proposed taxonomy, we conducted a survey with 91
data scientists. We contacted companies and linkedin profiles and then sent the survey
link.

Protocol. We created a 10-minutes survey designed to validate our findings and proposed
bug taxonomy. It was composed of 11 open questions and 14 closed questions. Nine of the
fourteen questions used a Likert scale (Strongly Disagree, Disagree, Neutral, Agree, and
Strongly Agree). The survey also collected demographic information from respondents.
The survey design followed Kitchenham and Pfleeger’s guidelines for personal opinion
surveys (KITCHENHAM; PFLEEGER, 2008).

We pilot out a survey with two researchers (both with Ph.D. degrees) with experience
in the area to get feedback on the questions and their corresponding answers; difficul-
ties faced to answer the survey, and time to finish it. We rephrased some questions and
removed others to make the survey easier to understand and answer. We used an anony-
mous survey. However, in the end, the respondents could inform their email to receive a
summary of the results. The survey instrument is available on the website. 10

The Respondents are spread out over fourteen countries around four continents. The
top three countries where the respondents come from are Brazil, India, and the United

10https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper
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States. The professional experience of these 90 respondents varies from less than a year
to eight to ten years.

Regarding the experience area, 86% of the respondents already work with Data Process-
ing, 84% of the respondents work with Data cleaning, 82% of the respondents work with
Exploratory Data Analysis, 63% of the respondents work with Modeling and Algorithms,
56% of the respondents work with Data collection, 31% of the respondents work with
Data requirements and 30% of the respondents work with Communication (BI).

Data Analysis. We collected the ratings that our respondents provided for each ques-
tion. Next, we converted these ratings to Likert scores from Strongly Disagree to Strongly
Agree. We computed the Likert score of each question related to the taxonomy valida-
tion and plotted a Likert Scale graph. This bar chart shows the number of responses
corresponding to strongly disagree, disagree, neutral, agree, and strongly agree.

Next, we applied the coding process (SALDAÑA, 2009) to analyze the answers from the
survey open questions and the respondent’s perception of our taxonomy by analyzing
each bug classification. We used a set of first-cycle and second-cycle coding methods for
data analysis (SALDAÑA, 2009). The First cycle methods are the steps applied in the
initial coding of data. Second-cycle methods, if needed, are advanced ways to reorganize
and reanalyze data coded in the first cycle. The codes created were clustered in categories
and then analyzed to understand the answers from the respondents.

To reduce the bias during the coding process, the open questions were analyzed by two
specialist with previous experience in this type of study. Each author analyzed the
answers independently and conduct the coding process. In the end, both specialist met
to analyze the differences in coding. After that, we defined an "agreement level" of 0.80
measured using Cohen’s kappa (LANDIS; KOCH, 1977). As Cohen Kappa measures
agreement between only two evaluators, the evaluation of the first expert was used versus
the consensus of the evaluation of the others.

4.6 CHAPTER SUMMARY

This chapter details the methodology used to characterize Jupyter Notebook bugs through
GitHub repository mining, StackOverflow post analysis, and interviews with data scien-
tists. The study investigates four research questions (RQs): the frequency of bug types
(RQ1), their root causes (RQ2), their impacts (RQ3), and the challenges faced by data
scientists (RQ4). The methodology encompasses multiple steps: mining GitHub reposi-
tories to identify bug-related commits, analyzing StackOverflow posts to understand user
issues, and manually labeling and classifying bugs to identify types, causes, and impacts.
Semi-structured interviews with data scientists validate these findings, while a survey
involving 91 developers further strengthens the results and the proposed taxonomy.

Repositories were selected based on criteria such as language, activity, and number of con-
tributors, resulting in 105 repositories and 14,740 valid commits. StackOverflow posts
were filtered, resulting in 29,654 relevant entries. A comprehensive spreadsheet was cre-
ated to categorize bug types, their root causes, and impacts through iterative classification
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and coding techniques. Interviews with 19 data scientists provided qualitative insights,
and a survey validated the results with diverse demographic representation. The study
achieved high agreement among classifiers and utilized correlation analysis to validate the
robustness of the collected data, providing comprehensive insights into Jupyter Notebook
bugs and their implications for users.

The next chapter presents a comprehensive analysis of bugs in Jupyter projects, covering
types, root causes, and impacts. It proposes an initial taxonomy refined through qual-
itative and statistical analyses based on GitHub and StackOverflow data. It highlights
challenges in code quality, deployment, and the need for software engineering practices
to enhance user experience.



Chapter

5
RESULTS

This Chapter reports the answers to our targeted research questions and findings collected
from GitHub, StackOverflow, and interview responses. In addition, a survey was carried
out and an analysis using association rules (Apriori Algoritimo) for general validations.

5.1 TYPES OF BUGS IN JUPYTER PROJECTS (RQ1)

Data scientists face different types of bugs when using Jupyter notebooks. To understand
these bugs, we classified them into different types and created an initial taxonomy. Next,
we used the interviews to validate and improve the proposed taxonomy. Figure 5.1 shows
the taxonomy, and then we describe the types of bugs with examples and their occurrence
percentage (in parenthesis) in StackOverflow and GitHub.

Figure 5.1 Taxonomy of Jupyter Notebook bugs.

29
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Kernel Bugs | KN - (StackOverflow - 10.8% | GitHub - 2.9%). This type
covers the bug problems in the kernel operation when using Jupyter Notebooks. The most
common occurrences of Kernel Bugs are crashing, booting, installation, and unresponsive
problems.

• Kernel Crash: A common bug that happens during notebook usage is when the
kernel breaks. Sometimes the crashing is followed by a warning message, and the
kernel is unusable in other cases. According to participants in our interviewees, it
is a common bug fixed by kernel restarting

• Kernel Not Found: It happens when the user starts the Jupyter Notebook, but it is
not linked to a Kernel. This way, the Kernel not found message is displayed. Some
StackOverflow posts relate this bug to installation issues.

• Initialization Bugs: It happens during kernel initialization, usually caused by wrong
installations or conflict with the installed kernel.

• Kernel Restart: The kernel unexpectedly restarts during its usage.

Example: Kernel bugs can cause many problems, such as data and information loss and,
delays in project time, repeating the lost analyses. In bug #107937815 (GitHub) or
#35673530 (StackOverflow) where the Python updating generated incompatibility among
packages used in the notebook and as reported by DS13:

✓ DS13: " The Kernel bugs are the most frequent ones (...). It impacts project execution
time since it interrupts the data analysis."

Conversion | CV - (StackOverflow - 6.7% | GitHub - 10.6%) . It comprehends
bugs related to errors during notebook conversion from .ipynb file type to other formats.
Data scientists commonly use the conversion function to distribute their analyses and
results to different audiences. This type refers to bugs during conversion, resulting in
poorly rendered conversions or corrupted files.

• Conversion Interrupted: It occurs when there is an attempt to convert a notebook
to another format, but this conversion is interrupted.

• Conversion with defects: It happens when a conversion task finishes successfully,
but its result contains unintended defects, for example, PDFs generated without
images.

• Nbconvert bugs: It is related to bugs from nbconvert module, responsible for con-
versions using command line commands. In these cases, the conversation does not
even start.

Example: Conversion is one of the essential Jupyter functionalities. Bugs #99244384
(GitHub) and #46415269 (StackOverflow) are examples involving the nbconvert module.
It impacts the user experience, mainly for new users, as reported by DS12:

✓ DS12: "It happens with new users, which spend considerable time performing the export
procedure."
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Portability | PB - (StackOverflow - 2.7% | GitHub - 1.3%). It involves bugs
that are related to Jupyter notebook execution in different environments. Although
this feature is one of the pillars in the Jupyter project (JUPYTER, 2015), we found
different bug occurrences, such as compatibility, rendering, and environment configuration
problems. Thus, this bug refers to errors obtained when rendering the notebook in
environments and platforms other than the original one.

• GitHub Bugs. It is related to bugs when executing .ipynb files in the GitHub
environment. It happens when the notebook is not rendered or shows rendering
defects.

• Nbviewer Bugs. Similar to the previous one, it happens when the user tries to
execute the .ipynb file in the nbviewer platform.

• Different Platforms: This bug is related to the attempt to run the notebook on
a different platform from its origin, which can happen in situations of different
Operating Systems, machines, and browsers (even situations of execution of a .ipynb
in a Google Colab, Jupyter-Lab or any platform other than the original). This bug
is generally related to the difference in configurations between the platform it was
originally developed on and the platform it was ported to.

Example: Problems at this stage make it difficult to disseminate the analysis. Bugs
#200722670 (GitHub) and #47868625 (StackOverflow) describe the need for modifica-
tions to correctly display the notebook on the GitHub environment. Participant DS11
reported a similar problem:

✓ DS11: "GitHub has a tool to view Jupyter notebooks, right, but it’s kind of random, it
opens whenever it wants. It doesn’t always work to open Jupyter notebook in the browser."

Environments and Settings | ES - (StackOverflow - 43.2% | GitHub - 35.6%).
It is related to bugs in the development environment and configuration issues. It can
happen due to several aspects, such as missing libraries, issues during libraries installation,
deprecated libraries, incompatibility between components and libraries, incompatibility
with operational systems, problems with a package manager (such as Anaconda, PIP),
and problems with installation and configuration of extensions.

• Update and Downgrade Version: It happens due to incompatibility with the cur-
rently installed version of a library or extension, and this library or extension needs
to be updated or downgraded to work correctly.

• Installation Bugs: Wrong installations may cause this bug or lack of dependencies
during installation.

• Incompatible Component: The components used in notebooks can be different, and
some of them or versions of some of them generate incompatibilities for use in the
same notebook. When installed or used, reports of extensions generate incompati-
bilities with various components.

Example: The environment setup is a time-consuming task. The Bug #200722670
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(GitHub) and #35561126 (StackOverflow) show the cost of solving a problem due to
a wrong Python version. Participant DS13 suggested that the notebook could aid the
user with this setup checking:

✓ DS13: "Depending on the project you’re working on and the dependencies you need to
install, the setup environment is a laborious task. Maybe it could be managed by Jupyter
Notebooks. It is hard to say how it would be possible, but the environment creation could
help to avoid configuration problems and everything else."

Connection Bugs | CN - (StackOverflow - 6.2% | GitHub - 0.9%). It happens
when connecting the notebook with external resources, such as databases, hardware, and
repositories. It can occur in two ways:

• External Resource Access Bugs: It happens when the notebook disconnects or is no
longer available to external resources.

• Disconnection and Connection Establishment Bugs: In this bug, the notebook itself
loses connection to its server.

Example: The Bugs #107937815 ( GitHub) and #63863571 (StackOverflow) report prob-
lems related to url and external image connection. Another connection problem reported
happens when receiving data through a serial port, as highlighted by Participant DS2:

✓ DS2: "... during Arduino usage some problems are difficult to know the root cause.
It this situation, we looked at the Arduino board, try to disconnect and connect again,
turn it on and off, replace the Arduino board to see if one of the work around solve our
problem. After all tries, for some reason we get the Arduino board connected to Jupyter
notebook."

Processing | PC - (StackOverflow - 4.9% | GitHub - 1.9%). Data analysis
often requires high processing power. Thus, memory availability and concurrency are
valuable resources. Bugs of this type are related to Timeout, Memory Errors, and longer
processing tasks.

• Memory Leak: It occurs when a large memory allocation is incompatible with the
process that is being executed. In general, the user identifies this bug when there
is a delay in the execution.

• RAM and GPU Bugs: All bugs related to memory overflow and slow processing fall
into this category.

Example: This bug may affect data scientists by increasing analysis time, interruptions,
and data loss. Bugs #86884600 (GitHub) and #643288550 (StackOverflow) report a
bug related to high-resolution images, in which a workaround should be performed to
get the notebook processed. Chattopadhyay et. al (CHATTOPADHYAY et al., 2020)
also reported Jupyter lack of support for handling large volumes of data, and one of our
participants also reported this:

✓ DS10: "It has happened several times with me, and it happened when I was manipulat-
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ing large datasets. I spent some time understanding, debugging, and identifying the root
cause of this bug."

Cell Defect (CD) - (StackOverflow - 3.6% | GitHub - 2.6%). It involves bugs
related to notebook cell rendering, such as code cells, markdown, or outputs, and it
usually happens when using interactive components, latex, markdown, or cells. Next, we
present some groups of this bug.

• Layout Bugs: It refers to cell rendering problems, such as results beyond the mar-
gin, unexpected formulas, testing formatting, blank cells, graphics visualization
problems, and so on. It can happen in any Jupyter notebook cell.

• Interactive Components Bugs: It happens with components that allow the users to
interact directly with the rendered cells.

Example: Bugs #237890763 (GitHub) and #69695030 (StackOverflow) are examples in
which the user faces problems with "input()" or notebook scrollbar. Participant DS14
highlighted this as follows:

✓ DS14: "It was a very annoying error, and it frequently occurs on a personal computer
as a Mac. For some reason, the cell size reduced and ended up cutting the text in half. I
don’t know, I could not identify what caused it (...) and it happens a lot."

Implementation | IP - (StackOverflow - 22% | GitHub - 44.2%). Bugs related
to implementation in general, syntax, logical, non-instantiated variables, algorithms, and
semantics are examples of this type of bug. Analyzing all the posts and commits, we
identified the following implementation bugs:

• Semantic Error : Bugs related to logic misunderstandings. In this bug, the code
executes correctly, but its execution generates a different output than expected,
either due to poorly defined parameters or wrong algorithms.

• Syntax Error : Programming bugs include incorrect variable or function declaration
and calls, missing or incorrectly assigned parameters, missing or misplaced paren-
theses, warnings or errors generated by nonstandard Python (PEP8) coding, and
other general programming errors.

• Data Science lib wrong usage: Bugs related to the inappropriate use of functions
from typical data science libraries, such as Pandas, Scikit-learn, TensorFlow, and
so on.

• Data Science Algorithm Error : Bugs in the logic of statistical analysis or machine
learning models.

Example: The implementation bugs are common for developers, but in Jupyter note-
books, the chance of bugs occurring may be higher by the possibility of creating duplicated
cells and cells out of order. Bugs #222507066 (GitHub) and #45946060 (StackOverflow)
are examples where changes were made to fix errors of duplicate code and out-of-order
cell execution. Participant DS14 reported this bug as follows:
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✓ DS14: "When you’re writing in your notebook, you can write your code along with your
text and it’s easy to lose context at some point. For example, if you write in a cell at the
top of the notebook, keeping the context of the cells running part bottom of the notebook,
when you run your code nothing will make sense."

Frequent bug types - In order to understand the frequency of each bug type previously
discussed, we statistically analyzed the labeled data. Figure 5.2 shows the distribution
of bug types in GitHub and StackOverflow. Bugs were caught on different platforms
that have different dynamics and functionality. While on Github, bugs are reported
during the development of a project, and their resolution directly impacts that project,
Stackoverflow is a more diversified environment where bugs may be related to a specific
question from a user or a project. Thus, some differences in the number of occurrences
of bugs between the two databases may be related to these differences, such as Kernel
bugs, which in general have the "Restart" of the Kernel as a workaround and appear with
more difficulty on GitHub.

Figure 5.2 Frequency of bug types (a) StackOverflow and (b) Github.

Looking at Github and StackOverflow datasets, the most frequent bug type was the "En-
vironment and Settings" with 35.6% and 43.2%, respectively. It was also reinforced by
the interviewers, which highlighted problems with version control, component incompat-
ibility, wrong or missing installations, and problems with extensions. The second most
frequent bug type was "Implementation" with 44.2% (GitHub) and 22% (StackOverflow).

We calculated the average annual growth (2014 - 2021) in the StackOverflow dataset
for a more in-depth analysis of the bug types and their occurrences. We calculate the
annual average growth by first calculating the annual growth per year, then calculating
the annual average growth.

Four types of bugs are growing above the general annual average (see Fig. 5.3).
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The "Implementation" and "Environment and Settings" bugs grow at a rate of 48% and
38%, respectively, which is reflected in the total percentage of the number of occurrences.
The two bugs correspond to more than 60% of the total bug occurrences in the two
analyzed databases (see Fig. 5.2).

However, the "Portability" and "Cell Defect" bug types show an annual growth rate higher
than the total average, 39% and 37%, respectively, despite a low overall occurrence rate.

Figure 5.3 Average annual growth of bugs extracted from StackOverflow.

Previous research (PIMENTEL et al., 2019; PIMENTEL et al., 2021; WANG; LI; ZELLER,
2021) analyzed exceptions related to reproducibility errors to get insights about the er-
rors found. In the same way, we correlate the exceptions found with the bug types to
understand them better.

The exceptions reported in StackOverflow were also collected and analyzed to understand
better the most frequent type of bugs (see Table 5.1). While the "ImportError", "Mod-
uleNotFoundError" and "AttributeError" frequently occur in Environment and Settings
bugs, the "TypeError", "AttributeError" and "NameError" appears in Implementation
bugs. Table 5.1 summarizes the main problems found in each type of bug.
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Exception ES IP KN CN CV PC PB CD Total
ImportError 297 3 11 8 4 0 0 0 323
ModuleNotFoundError 266 5 5 3 0 0 2 0 281
TypeError 31 222 4 0 1 0 0 0 258
AttributeError 116 101 2 8 1 1 0 1 230
NameError 14 76 1 0 0 0 0 0 91
FileNotFoundError 14 9 12 2 2 0 0 0 39
ValueError 12 15 3 1 4 0 0 0 35
OSError 17 8 2 2 3 1 0 0 33
RuntimeError 16 2 2 0 1 7 0 0 28
SyntaxError 2 1 0 1 0 0 1 0 5
Total 785 442 42 25 16 9 3 1
(KN) Kernel, (CV) Conversion, (PB) Portability, (ES) Environment and Settings, (CN) Connec-
tion, (PC) Processing, (CD) Cell Defect, (IP) Implementation.

Table 5.1 Python Exceptions per Type of Bugs.

Finally, we used the Apriori algorithm (AGRAWAL; SRIKANT, 1994) for association
rules to understand the association between the bug type and the exceptions. It enables
researchers to identify interesting patterns and insights from data. Table 5.2 shows the
top 10 associations between bug types and exceptions.

It is possible to observe in Table 5.2 that some relationships highlighted only by the
volume of occurrence (Table 5.1) are validated, "ImportError", "ModuleNotFoundError"
actually have a very strong relationship with the bug "Environments and Configurations"
since the confidence level, is more significant than 99%. In addition, both have a “lift”
above 1, reinforcing the actual existence of the occurrence relationship between exceptions
and the type of bug. On the other hand, the confidence level of "AttributeError" against
"Environments and Settings" is 52%. With a "Lift" less than one, there is unlikely any
relationship between these occurrences.

It happens similarly to "TypeError", "AttributeError" and "NameError" concerning the
"implementation" bugs, highlighted in Table 5.1. The result of the algorithm also rein-
forces the relationship between "TypeError" and "NameError" with "implementation" , as
they have a confidence level of 92% and 89% consecutively and a high "lift". However, the
"AttributeError" for the "implementation" bug does not have a confidence level as high
as the others, 47%, but the "lift" greater than one indicates that there is a relationship
between the occurrence of the exception and the bug and also the exception bug, as the
inverse relationship appears in the results and with a "lift" greater than one as well.
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Finding 1
The most frequent bugs in the Jupyter notebook are those related to Environ-
ments and Settings (StackOverflow - 43.2% | GitHub - 35.6%) and Implementation
(StackOverflow - 22% | GitHub - 44.2%), which also show an annual growth rate
above the average, 38%, and 48% respectively. Although the Portability and Cell
Defect bugs have had fewer occurrences, they have had above-average growth over
the years.

Figure 5.4 Bug Type Survey Validation.

In our survey (Figure 5.4), we defined each bug type category and then asked the respon-
dents if they agreed/disagreed with each bug type. Among the 90 survey respondents,
(i) 67,8 % agreed, whereas 11,2 % disagreed that "Kernel Bugs" should be considered as
bug type. The average Likert score for this statement is 3,9 (i.e., between ”agree” and
”neutral”). Even for the "Implementation bugs" which had more disagree answers, the
average Likert score was 3,5 (i.e., between ”agree” and ”neutral”). This is important to
reinforce our findings.

5.2 ROOT CAUSES OF BUGS (RQ2)

The root cause of bugs helps us understand their origin and how we can correct them.
Table 5.3 shows the distribution of bug types according to their root causes. Following,
we describe each one and show its percentage of occurrence.

Install and Configuration Problems - (StackOverflow - 32.1% | GitHub -
16.3%). Bugs with this type of root cause are common for programmers, who generally
spend time configuring their development environment as completely as possible, even
before starting development. However, due to the exploratory nature of the data analysis
activity, there is a recurring need to use other tools and configurations to correct, improve,
or extract new insights. Thus, when bugs with this type of root cause occur, the analysis
process is interrupted, causing a loss of time and productivity.
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Example: In the dataset, the bug with the highest number of views on Stackoverflow was
# 15514593, whose root cause is a system path configuration problem when using the
notebook.

✓DS013: "Depending on the project you are going to develop and the dependencies you
need to install, you may have problems with delays ... The Jupyter Notebook could improve
by creating environments to avoid configuration problems."

Version Problems - (StackOverflow - 19.0% | GitHub - 22.5%). Bugs with
root causes related to incompatible versions require an update or downgrade on the
Notebook. In addition, these root causes may be related to components with conflicting
versions. Unlike other classic IDEs(VSCode or PyCharm) Jupyter Notebook does not
have alerts and intelligent version controls. The user manages the versions, and conflicts
are challenging to solve.

Example: An example of this root cause is Stackoverflow post #54966280, which high-
lights a cross-environment conflict issue that forced the user to downgrade the library
being used. It was described too by interviewee’s speech below:

✓ DS01: ".. maybe this version problem cost me the most Man-Hour. Although I did not
find the solution very complex, it was quite annoying. I even had to create a TXT with a
list of these issues and how I got around them because they happen frequently."

Coding Error - (StackOverflow - 17.6% | GitHub - 31.5%). Implementation
bug caused by code errors. Such as incorrectly assigning variables, developing repeating
structures, errors in using libraries and functions, wrong plotting configuration, etc. This
root cause has the main characteristic of causing a Run Time Error during code execution.

Example: In interviews, many users report common mistakes during development and
claim that this is part of the data analysis process, reported in post #62103298 (Stack-
overflow) and highlighted in the speech:

✓ DS03: "Bugs are part of the nature of the work, every developer will deal with bugs,
mainly Jupyter notebook bugs (...) what exists is inherent to usability, which is very
common. As it is done in cells, and you can execute these cells regardless of the order, it
often happens to execute in different orders and lose the correct value of the variables (...)
So this, non-linearity of the execution causes many problems with execution usability."

Hardware and Software Limitation - (StackOverflow - 6.7% | GitHub - 6.1%).
Limitations found in the software and hardware during the creation and execution of the
notebook.

Example: Post #44719592 (Stackoverflow) highlights a slowdown in data processing per-
formance caused by operating system changes. Similar report below from an interviewee:

✓ DS10: "(..) I turned everything off, and I just tried to run it (jupyter), I had other
windows open, and it went wrong, so I closed everything to test if it resolved, and it did,
it took a while and I had to turn off everything running in the background."
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Memory Error - (StackOverflow - 5.6% | GitHub - 1.5%). The root cause
related to the memory overflow in an active process.

Example: The post #54823185 (Stackoverflow) comments on a Crash in the notebook
possibly related to a memory overflow. Likewise, the interviewee reports a similar problem
in his speech:

✓ DS12: "(...) This happens often, especially when the memory runs out, then the
notebook crashes, and you have to run everything again."

Deprecation - (StackOverflow - 0.9% | GitHub - 0.1%). It happens when a
component was or will be suspended.

Example: The post #63279999 and #67344009 (Stackoverflow) raised a Warning related
to a matplotlib.

Permission Denied - (StackOverflow - 0.9% | GitHub - 0.1%). It happens when
the notebook has its permission to access an external resource blocked. For example, when
trying to access external databases.

Example: The post #63339420(Stack Overflow) describes a permission error when trying
to access a database external to .ipynb.

TimeOut - (StackOverflow - 1.9% | GitHub - 0.1%). The root cause related to
the timeout of an active process.

Example: The post #49611472 (Stackoverflow) highlights a failure in the notebook that
without a specific reason crashes the kernel, requiring a restart. A similar situation is
reported by an interviewee:

✓ DS03: "The Kernel Crash happens often; you are doing data loading, and after hours
of processing, it times out, the Kernel dies, and you lose 3 hours of processing. It’s
challenging."

Logic Error - (StackOverflow - 2.0% | GitHub - 13.7%). Errors in the logic of
the developed code cause it. Unlike the root cause, "Coding error" mentioned earlier, this
root cause usually does not generate a "Run Time Error". It happens due to an error
in the code logic. The Bugs with this root cause do not interrupt the code execution;
instead, they impact code quality or expected results.

Example: The post #69041030 (Stackoverflow) highlights an implementation flaw caused
by incorrect handling of ’nan’ values. As with the Root Cause Coding Error, respondents
also identify logical errors as part of the data analysis process, as highlighted in the
following speech: ✓DS02: "I’ve certainly had something like this, but I think it’s more a
human error than a tool error, we always type something wrong, forget something, think
it’s a method and it’s a function... happens"

Unknown - (StackOverflow - 13.3% | GitHub - 8.1%). The root cause was not
evident during the analysis. These bugs usually have no solution or alternative solutions
that do not effectively solve the problem generated.
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Example: The post #44634070 (Stackoverflow) highlights a kernel failure caused by an
unknown situation, similarly the respondent reports: ✓ DS07: "(...) I already had a
problem with the Kernel crashing for no apparent reason that I had to reset, sometimes
you lose things, and it has happened a few times.(...), normally you restart and it works
again and all is well. "

Table 5.3, shows the three most frequent root causes are Install and Configuration Prob-
lems (StackOverflow - 32.1% | GitHub - 16.3%), Version Problems (StackOverflow - 19.0%
| GitHub - 22.5%) and Coding error (StackOverflow - 17.6% | GitHub - 31.5%). These are
bugs whose causes are related to component installation or configuration problems, wrong
component versions, and coding problems such as semantic, logical, or syntax errors.
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We could not identify all the root causes for some bugs in our dataset. Thus, some bugs
were classified using the Unknown category (StackOverflow - 13.3% | GitHub - 8.1%).
This category is present in all bug types, especially those related to Kernel. It can
reinforce the user’s difficulty in understanding that bug type.

The root cause of Hardware and Software Limitations (StackOverflow - 6.7% | GitHub -
6.1%) occurs when there are limitations in the software or hardware where the notebook
is running. It happens in all types of bugs; however, the Memory Error (StackOverflow
- 5.6% | GitHub - 1.5%) frequently appears as a root cause of the processing bugs.

The other root causes occur occasionally, such as Logic error (StackOverflow - 2.0% |
GitHub - 13.7%) in the developed code; TimeOut (StackOverflow - 1.9% | GitHub -
0.1%), when an active process achieves time limit; Deprecation (StackOverflow - 0.9% |
GitHub - 0.1%), where a component or functionality is outdated; and Permission denied
(StackOverflow - 0.9% | GitHub - 0.1%), when the permission to access an external
resource is denied.

The Apriori algorithm (AGRAWAL; SRIKANT, 1994) was also applied to understand
the association between the bug type and root causes. Table 5.4 shows the top 10 as-
sociations between bug types and root causes. The results of the algorithm reinforce
the most frequent relationships between bug types and root causes, where "Installation
and configuration issues" and "Version issues" are for "Environments and configurations"
bugs and "Coding error" with "implementation" , both have a "Lift" above 1 highlight the
bidirectional relationship found in the results for all these combinations.
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Finding 2
The most frequent Root Causes in Jupyter Notebook projects are: Configuration
issues (StackOverflow - 32.1% | GitHub - 16.3%), Version issues (StackOverflow -
19.0% | GitHub - 22.5%) and Coding Error (StackOverflow - 17.6%) | GitHub -
31.5%) they are the cause of most Implementation and Environments and Settings
bugs. The root cause Unknown (StackOverflow - 13.3% | GitHub - 8.1%) appears
more related to Kernel bugs suggesting a difficulty in identifying its cause.

Figure 5.5 Root Cause Survey Validation. (KN) Kernel, (CV) Conversion, (PB) Portability, (ES)
Environment and Settings, (CN) Connection, (PC) Processing, (CD) Cell Defect, (IP) Implementation.

Figure 5.5 shows an in-depth view of each root cause for each bug type. We defined each
root cause and asked the respondents if they agreed/disagreed with each root cause. All
root causes had agreement levels higher than disagreement levels. These results reinforce
our findings and validate the proposed taxonomy.

5.3 IMPACTS OF BUGS (RQ3)

The impact caused by a bug can help increase its severity and serve as a prioritization
model and alert for users. Table 5.5 shows the distribution of bug types according to
their impact. All of them are following described.
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Crash - (StackOverflow - 24.3% | GitHub - 3.3%)

Bugs whose occurrence generates a break in one or more components of the platform
where the notebook is running, interrupting the operation or initialization of the entire
platform. This error can occur without generating a specific warning.

Example: a common situation of this impact is highlighted in the post #53179558 (Stack-
overflow) where the kernel dies and the UI sends a message: "Dead kernel - The kernel has
died, and the automatic restart has failed. It is possible the kernel cannot be restarted.
If you are not able to restart the kernel, you will still be able to save the notebook, but
running code will no longer work until the notebook is reopened."

Bad Performance - (StackOverflow - 3.0% | GitHub - 7.5%)

The occurrence of these bugs does not prevent the correct execution, but they impact on
the decrease of its quality or performance.

Example: In the post #67356512 (Stackoverflow) the user highlights the execution of a
code where, despite executing as expected, each round of execution consumes more of
your RAM memory, reducing the performance of your application.

Incorrect Functionality - (StackOverflow - 13.5% | GitHub - 57.3%)

The result of these bugs generate unwanted/unexpected or incorrect outputs.

Example: The post #69351179 (Stackoverflow) shows a conversion error when using
nbconvert.

Run time Error - (StackOverflow - 57.5% | GitHub - 31.2%)

Execution failure, usually accompanied by an error message.

Example: In post #70058518 (Stack Overflow) the user reported an error when execut-
ing his code, which stopped mid-execution.

Warning - (StackOverflow - 1.7% | GitHub - 0.7%)

Bug with apparent correct functioning, but with alert triggering to the user.

Example: In the post #65666665 (Stack Overflow) the user reports discomfort with the
"Warnings" alerts issued when executing the code and tries to find a solution to hide these
alerts, as they have no impact on the final result.
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The most frequent impacts are Run Time Errors, Incorrect Functionality, and Crashes.
The Run Time Error was the most frequent impact in the StackOverflow (57.5%) dataset
and the second most frequent in GitHub (31.2%). It is characterized by execution failures
followed by an error message. It is commonly found in the Environments and Settings
and Implementations types of bugs.

The impact Incorrect Functionality, which is characterized by bugs that the code can be
executed, but the result is not what was expected, had the highest occurrence on GitHub
(57.3%) and appeared on StackOverflow as the third largest impact (13.5%).

The crash, as mentioned before, happens when an interruption in the normal operation or
startup of the notebook occurs without any error message, exception, or warning. Consid-
ering the GitHub dataset, it happens (3.3%) in a smaller amount than on StackOverflow
(24.3%). A possible explanation for this is that Crash is an impact that happens more
with Kernel bugs, and one of the solutions to solve Kernel Crashes is restarting Kernel,
which is not showing up in fix commits.

Kernel Crash was the only bug/impact mentioned by all participants in our interview
session. According to users, even being an annoying bug, it is easy to get around it just
restarting the kernel:

✓ DS12: “ The Kernel Crash happens a lot, especially when the memory runs out and
the notebook crashes, we need to run it all over again."

✓ DS7: "The Kernel Crash, is usually solved by restarting and returning back to work
and that’s ok..."

The other impacts had a smaller volume of occurrences. Bad Performance bugs (Stack-
Overflow - 3.0% | GitHub - 7.5%), whose occurrence does not prevent the correct exe-
cution, but decreases the quality or performance and Warning (StackOverflow - 1.7% |
GitHub - 0.7%), which does not impact on notebook functioning, but triggering an alert
for the user.

The Apriori algorithm (AGRAWAL; SRIKANT, 1994) was also applied to understand
the association between the bug type and impact. Table 5.6 shows the top 10 associations
between bug types and impact. The results of the algorithm highlight the main relation-
ships between types of bugs and impacts, "Run Time Error" is for "Environments and
Configurations" and "Incorrect Functionality" is for "implementation", all have a "Lift"
above 1 with emphasis on the bidirectional relationship found in the results for both
combinations. In addition, despite the combination "Kernel Crash" not appearing in the
number of occurrences in the data, the analysis of the algorithm highlights it as one of
the main relationships between types of bugs and impacts, with a confidence level above
97%, reinforcing the statements of all interview participants have already encountered the
bug/impact. This difference in the results between the analyses may be further evidence
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that there is, in fact, a simple workaround solution used by users for the bug/impact,
such as the "restart" of the kernel, as also mentioned by some interviewees.

Antecedents Consequents Support Confidence Lift
Kernel Crash 0.0811 0.9753 5.0530
Environments and Set-
tings

Run Time Error 0.3199 0.7773 1.5172

conversion Incorrect Functionality 0.0549 0.7110 2.9734
Run Time Error Environments and Set-

tings
0.3199 0.6244 1.5172

implementation Run Time Error 0.1578 0.5749 1.1222
Crash Kernel 0.0811 0.4201 5.0530
Incorrect Functionality implementation 0.0917 0.3833 1.3969
implementation Incorrect Functionality 0.0917 0.3340 1.3969
Run Time Error implementation 0.1578 0.3079 1.1222
Incorrect Functionality conversion 0.0549 0.2297 2.9734

Table 5.6 Apriori Analysis Bug Type and Impact.

Finding 3
The most frequent impacts from bugs in Jupyter notebooks are: Run Time Error
(StackOverflow - 57.5% | GitHub - 31.2%), Incorrect Functionality (StackOverflow -
13.5% | GitHub - 57.3%), and Crash (StackOverflow - 24.3% | GitHub - 3.3%). They
are the effects related to bug types Environments and settings, Implementation and
Kernel bugs. The Kernel Crash is a common bug/impact in the daily activities of
Jupyter users and has as the main workaround solution, the restart of the Kernel.

5.4 CHALLENGES IN JUPYTER NOTEBOOK PROJECTS (RQ4)

Data science is a multidisciplinary area involving physicists, mathematicians, statisti-
cians, IT professionals, and others. This diversity is also observed in computational
notebooks usage. Thus, we interviewed professional Jupyter users from the industry to
understand the dynamics of bugs in Jupyter Notebook projects. We used the interviews
to validate our results from mining and collect insights, impressions, and challenges about
environmental usage. Next, the main challenges identified by professionals are discussed.

Backgrounds, and requirements. The way in which the users realize the bug can
influence how to fix it. Kim et al. (KIM et al., 2016) highlighted the existence of a
diversity of profiles of data science professionals. This diversity makes it possible for many
Jupyter users not to come from the computing field or even not have enough experience
to feel the need to follow patterns and strategies that help to reduce or identify errors.

Users with less experience or knowledge tend to produce messy, dirty notebooks. It can
eventually generate errors, having the challenge of using a tool with a simplistic layout
(compared to a traditional IDE). This simple layout can also induce the users to avoid
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development standards that bring gain in code quality and consequently reduction of
errors.

Analyzing the interview responses with demographic data (Table 4.2), we realized that,
for example, software engineering knowledge is important for identifying the root cause
and fixing the bug as highlighted by a professional:

✓DS3: "Another very common thing is the knowledge that the person has. Data science
is kind of a combination of statistics and computing and within that world you see people
from physics, engineering and so on. The concern with having a structured, readable,
documented code usually comes from the computing area, as the guy studied software en-
gineering. So you take these people, they have an organized code."

The lack of support for the software quality. Due to user diversity, some lack
software engineering practices. Jupyter notebooks potentialize this problem since the
environment allows users to duplicate cells, drag and drop cells to different locations,
and so on. In addition, notebooks do not provide any mechanism to control and support
the users so that these possibilities do not harm good software engineering practices.
Although Jupyter provides flexibility and allows users with different backgrounds to use
it, no support is provided regarding code quality. This aspect was also mentioned by a
professional:

✓DS14: "The lack of some functionality can be a problem, it can discourage the data sci-
entist writing better code, using good software engineering practices. I see this a lot, my
codes when I’m writing in VSCode, for example, are much better than when I’m writing
in Jupyter, I feel this also happens in RStudio (...) I can write code better in an IDE
than in the Jupyter."

Testing and debugging. Some interviewees pointed out the lack of basic testing tools
as a challenge to be addressed. They also detailed the process of fixing a bug using a trial
and error approach. Among the interviewees, especially those with a software engineering
background, they pointed out specific functions that could provide important support to
this task :

✓DS11: "I really miss writing unit testing and being able to lint code. The Jupyter note-
book does not have linting, everyone writes the code they want, and today we have tools,
such as Black, Isort, Pylint, Flake8, Bandit, and it is very difficult for you to use them
in Jupyter notebooks. I think this lack of lint, this lack of testing is crucial for me."

In addition, software debugging is an essential activity to improve code quality during
development, as well as the difficulty in developing tests; according to the interviewees’
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reports, debugging the code may have the same root cause, the difficulty of inspecting
the code, can influence the data scientist’s ability to identify or even fix a bug, which may
affect the number of accepted answers (the answer that solved the problem), the number
of unanswered posts, or the acceptance time of an answer in StackOverflow.

Figure 5.6 shows the number of questions reported with the accepted answer, considering
each bug type in our StackOverflow dataset. All the bug types have a similar average
(27.9%) of accepted answers. Figure 5.7 shows the average time to get an acceptable
answer. The average time to obtain an acceptable answer in the Jupyter notebooks
domain is 21 days, at least 4 out of 8 bug types are above average.

Figure 5.6 Bug reports with accepted answers (StackOverflow).

Figure 5.7 Average accepted response time (in days).
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Finding 4
Data scientists perceive bugs differently. Their hands-on experience with software
engineering techniques can change how they identify bugs. In addition, the lack
of basic features in Jupyter to promote code testing and debugging can generate
difficulties in fixing bugs.

Data analysis deployment. Jupyter notebooks are used in two distinct scenarios:
first, the notebook itself is a product and it is further used to replicate or perform new
analyses; and next, it can be encapsulated and added to another system to use it (CHAT-
TOPADHYAY et al., 2020). Some interviewees (DS3, DS5, DS7, DS8, DS9, DS11, DS12,
DS14, DS15, DS16, DS17, DS18) reported that Jupyter notebook is a good tool for ex-
ploratory analysis and prototyping, but it has some limitations, such as the lack of basic
features that could help convert notebook code or facilitate this process when generating
a final product to be deployed:

✓DS11: "It has some issues, especially if you want to generate a deliverable of what you
are doing inside a Jupyter notebook."

✓DS7: "You can opt for a workaround, but it’s not trivial when you are dealing with
libraries you build, functions you build, or classes. (...) How do you matter, how do you
build this environment, where you have solutions that use a library you created, for exam-
ple. Maybe if Jupiter itself helped the user to already build the entire class structure and
the entire code structure, or even if it offers tools to facilitate things like encapsulating a
library, it could be something interesting too."

Many interviewees use Jupyter notebook in industrial and robust projects and deploy it
inside company systems to perform the analysis:

✓DS7: "When you intend to deploy the Jupyter notebook code inside the system code, it
is not a trivial task since some changes need to be performed to be properly deployed in
production environment. It would be interesting if the Jupyter Notebook provide tools to
support this deployment."

Bad Programming Practices. Except for DS1, all other interviewees whose aca-
demic background was not computer science started in the field of data science and/or
programming in Python through Jupyter, which raises the concern about what culture
of code quality in computational notebooks is being propagated..

The Jupyter notebook appears in StackOverflow annual survey1 since 2017, and as shown
in Table 5.7, the posts and bugs on StackOverflow only increased. It reinforces the im-

1https://insights.StackOverflow.com/survey
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2014 2015 2016 2017 2018 2019 2020 2021 2022
General Posts 37 381 1688 2559 3976 5490 7107 8607 531

Posts related to Bugs 9 121 663 1054 1712 2482 3378 3879 251

Table 5.7 Jupyter History in StackOverflow - General Posts related to Jupyter vs Posts related
to Bugs in Jupyter

portance of evolving the tool with features to mitigate bugs and help data scientists to
do exploratory analysis, prototyping, computational narratives, and generate products
without losing quality. These aspects were also highlighted by a professional during our
interviews:

✓ DS11: "Another mistake is also... Generally when we write a Jupyter notebook we do
not care much about the quality of the code, we write code in almost any way, we do not
care about a Lint, things like that, right. People do not bother to test too, so I think it
is one of Jupyter biggest problems. We do not appreciate our code, we do not care much
about code quality, we do not care much about unit tests."

Finding 5
Transforming an analysis developed in Jupyter into a product can be one of the
most important features for data scientists in the industry. However, there is still
a lack of resources to improve the code quality and this transition process. Some
users have been looking for alternative solutions that combine the benefits of a
Jupyter notebook and an IDE. The lack of resources focused on code quality can
also lead new data scientists to have bad programming habits.

5.5 DISCUSSION

In this section, we discuss the implications of our study’s results. In particular, the
implication for tool builders, researchers, and data scientists.

As highlighted in Finding 1, the most frequent bugs in the Jupyter notebook are related
to Environments and Settings, consisting of 43.2% of analyzed posts from StackOverflow
and 35.5% of the issues analyzed in GitHub. The majority of the root causes of this
bug category were configuration issues, version issues, and deprecation-related issues,
suggesting that a significant amount of effort is spent by data scientists dealing with these
issues. If software engineering research can aid data scientists, this would potentially save
a substantial amount of time.

Incorrect algorithm implementations cause many bugs (44.2% of GitHub issues and 22%
of StackOverflow posts). Most of them are related to coding and logical errors resulting
in "Incorrect Functionality" (Table 4). We posit that this is happening because data
scientists are not familiar with the existing software quality assurance techniques such as
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unit testing, bug localization, and repair. Our intuition is corroborated by the findings
reported in Finding 4. This calls for action from the software engineering community
researchers and practitioners alike to increase awareness about the existing techniques
and make such tools available for data scientists. Also, researchers need to develop tools
that can seamlessly integrate with the Jupyter notebook, making it easy for data scientists
to adopt the techniques.

Our study highlights the lack of functionalities that are standard practice in Software
Engineering. For instance, Version control systems (i.e., Git) are standard tools used in
software development. However, in Jupyter notebook development, it is not standard
practice yet, as mentioned by interviewee DS7 and by DS11 previously. Since existing
version control systems do not compare differences in the generated Graphical User Inter-
face (GUI) components, it is difficult to identify the differences between GUI components
across different versions of a given notebook. While it is possible to use version control
with Jupyter files, as they can be treated as text files, it is not possible to apply the same
version control in a way that allows visualizing the differences in a graphical manner
through the graphical interface. So, a tool helping developers to compare GUI changes
instead of only textual changes can help Jupyter notebook developers significantly. Inter-
viewees also highlighted the lack of functionality to preview, explore, and interact with
the raw dataset before starting analysis and modeling, which can be a better alternative
than the notebook cell visualization. Another common feature requested by interviewees
was advanced debugging capabilities, such as a viewer of the variables defined in the
notebook and the values assigned in each cell. We posit that such easy-to-use debug-
ging capabilities will help reduce the significant time it takes to identify, analyze, and fix
implementation errors in Jupyter notebooks.

In our study, we noticed that Jupyter Notebook is a very useful solution when it comes
to analyzing, investigating, and exploring data. 95% of our respondents reported un-
derstanding that the main (or only) usefulness is in these steps, as in contrast to other
traditional IDEs like R-Studio or VS-Code, its simple layout facilitates and highlights
the analysis performed. Although almost all respondents reported this tool’s potential
in data exploration, 79% of them reported difficulty in transforming the analysis done in
the Jupyter Notebook into code to be put into production and the lack of features that
facilitate cleaning and adaptation of the code for transposition.

Finally, with the analysis of bugs and interviews, we brought a non-exhaustive list (see
Table 5.8) of features desired by users. Some features already have ready-made extensions,
but in our analysis, the use of some extensions is not trivial, in addition to generating
compatibility, version, and configuration errors. That’s why it’s important to have an
extension with a unified package of solutions for Jupyter Notebook or that some of these
solutions are in the standard version of the tool.
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5.6 LESSONS LEARNED

When it comes to the execution of surveys, interviews, and data mining, there are sev-
eral valuable lessons for researchers and practitioners. Here are some important lessons
learned related to each of these methods:

• Data Mining:

– Define clear research questions: Clearly define the research questions or ob-
jectives before engaging in data mining. This will help focus the analysis and
guide the selection of appropriate data mining techniques.

– Gather high-quality data: The quality of data used in data mining greatly
impacts the results. Ensure that the data collected is accurate, complete, and
relevant to the research questions at hand. Preprocess and clean the data as
necessary to remove noise or inconsistencies.

– Validate and interpret results: Validate the results of data mining models or
algorithms to ensure their reliability and accuracy. Interpret the findings in
the context of the research objectives and consider potential limitations or
biases in the data.

• Interview:

– Prepare thoroughly: Prior to conducting interviews, prepare a well-defined
interview guide or set of questions. Familiarize yourself with the topic and
execute a pilot to refine your questions.

– Ensure confidentiality and anonymity: Assure interviewees that their responses
will be kept confidential and, if desired, provide options for anonymity. This
helps create a safe space for participants to share their thoughts and experi-
ences more openly.

– Use coding techniques: Utilize coding techniques to explore interviewees’ re-
sponses in more depth by identifying key points and insights from the tran-
scribed interview.

• Survey:

– Clearly define research objectives: Before conducting a survey, it is crucial
to clearly define the research objectives and identify the specific information
needed. This helps in designing relevant survey questions and collecting mean-
ingful data. It will also help to correlate the answers from the set of questions.

– Use a mix of question types: A combination of different question types (e.g.,
multiple-choice, Likert scale, open-ended) can provide a comprehensive under-
standing of the topic. However, keep the survey length reasonable to avoid
respondent fatigue.
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5.7 THREATS TO VALIDITY

In this section, we discuss several threats to validity for our study.

Projects Selection. We have not analyzed proprietary repositories, and our findings
are limited to open-source projects, which may not be representative and comprehensive.
We mitigate this limitation by mining a large number of (105) open source projects from
GitHub selected based on a well-defined set of criteria.

Bug Selection. We only collected the issues with a set of keywords in the commit
message (see Section 2.1.). Even with a predefined list also used in previous research
(GARCIA et al., 2020; MAKHSHARI; MESBAH, 2021), it is possible to miss some real
bugs that do not have these keywords.

Manual Analysis of Bugs. Our study involved manual inspection of bugs, which is a
potentially error-prone process. In order to mitigate this threat, three authors (2nd, 3rd,
and 4th) analyzed the bugs separately. Next, all divergence in the process was discussed
with the whole team until a consensus was reached. Our results are also online for public
scrutiny.

Quality of posts. The trustworthiness of the posts collected from Stack Overflow can
be a threat to our study. To mitigate this threat, we used an approach similar to (ISLAM
et al., 2019), which collected the posts based on a score of at least 5 and the reputation
of users asking the questions. This score can be used as a good indicator to trust the
post as a good discussion topic among the developers’ community that cannot merely be
solved using an internet search. In addition, the reputation of the users asking questions
on Stack Overflow can be a threat to the quality of the posts. We only investigated
top-scored posts which are from users with different ranges of reputations ranging from
novices to experts.

Taxonomy. The final taxonomy depends on the collected commits, posts on Stack
Overflow, and authors’ judgment. We mitigated this threat by investigating 105 Jupyter
Notebook repositories, 14,740 valid commits, 30,416 Stack Overflow posts, and performing
a cross-validation survey.

Interviews. The interviews were conducted with open-ended questions, where the par-
ticipants were asked to express their perceptions and opinions. The interviews were
conducted at 12 different companies and when these happened in the same company, the
participants were informed not to talk to each other about it to avoid bias. In addition,
we did our best to select experienced professionals at each company to avoid our sample
not being mature enough to have expressive knowledge about our area of investigation.
Another aspect that is critical for validity is the quality of the material used in the study.
Thus, to ensure that the interview prompt had high quality, a pilot interview was con-
ducted with a professional data scientist. Finally, to avoid the threat of concluding false
conclusions based on the interview data, we carefully validated our interviews and findings
with the participants as we performed analysis, sometimes asking for clarifications.
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5.8 CHAPTER SUMMARY

This chapter examines various types of bugs encountered in Jupyter projects, drawing
from data collected from GitHub, StackOverflow, and interviews. It proposes an initial
taxonomy refined through qualitative and statistical analyses, highlighting the prevalence
of bugs related to environment settings and implementation.

The investigation of root causes of bugs in Jupyter projects reveals common issues like
installation, version conflicts, and coding errors. Statistical analysis validates these find-
ings, emphasizing the importance of addressing these issues to improve user experience
and efficiency in Jupyter projects.

Examining the impacts of bugs categorizes them based on severity, with runtime errors
and incorrect functionality emerging as the most common. Statistical analysis highlights
the relationships between bug types and impacts, underscoring the critical need to address
bugs effectively to maintain stability and usability in Jupyter notebook projects.

Next chapter concludes a detailed study on the challenges in Jupyter Notebook develop-
ment, providing insights into the most common bugs and their causes, such as configura-
tion and version issues. It highlights the lack of standard software engineering practices,
such as version control, and the need for advanced debugging tools. The research also
lists user-desired features to facilitate the transition from analysis to production. The
research outputs include empirical data, a taxonomy of bugs, and a published paper.
The chapter suggests future improvements and the development of algorithms to classify
bugs, aiming to enhance the tool and assist data scientists in their projects.



Chapter

6
CONCLUSIONS

The research contributes valuable insights into the challenges and opportunities within
Jupyter Notebook development, addressing key issues that impact data scientists.

6.1 SUMMARY OF RESEARCH CONTRIBUTIONS

The main contributions of the work are:

Identification of Most Frequent Bugs. The study reveals that the most common bugs
in Jupyter notebooks are related to Environments and Settings, constituting a significant
portion of the analyzed posts from StackOverflow and GitHub issues. Configuration
issues, version problems, and deprecation-related issues emerge as major root causes.
This finding emphasizes the need for interventions to streamline these issues, potentially
saving substantial time for data scientists.

Addressing Incorrect Algorithm Implementations. Incorrect algorithm implemen-
tations are a prevalent source of bugs, indicating a lack of familiarity among data scien-
tists with well known software quality assurance techniques such as unit testing and bug
localization. The study calls for action within the software engineering community to
increase awareness and provide tools that seamlessly integrate with Jupyter notebooks,
facilitating the adoption of these techniques.

Highlighting Missing Software Engineering Functionalities. The research un-
derscores the absence of standard software engineering practices in Jupyter notebook
development. Notably, the lack of widespread use of version control systems like Git in
Jupyter notebooks is highlighted. The study suggests the need for tools that enable visu-
alizing differences in GUI components across notebook versions. Additionally, it identifies
a demand for features like previewing raw datasets, advanced debugging capabilities, and
tools for efficient code cleaning and adaptation.

Understanding Jupyter Notebook’s Strengths and Challenges. The study ac-
knowledges Jupyter Notebook’s strength in data analysis, investigation, and exploration.
However, it points out challenges in transitioning analysis into production code. A sub-
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stantial percentage of respondents reported difficulties in cleaning and adapting code
for deployment. This insight sheds light on the practical challenges faced by users and
provides a basis for improving the tool’s functionality.

Compilation of User-Requested Features. Through bug analysis and interviews, the
research compiles a non-exhaustive list of desired features by users. The identified features
encompass extensions for data exploration, transformation of analysis into production
code, and streamlined solutions for common issues. The study emphasizes the importance
of unified packages or standard tool versions to ensure seamless integration and avoid
compatibility and configuration errors.

In summary, this work contributes significantly to the understanding of challenges in
Jupyter notebook development and provides valuable recommendations for improving
the tool’s functionality, fostering collaboration between data scientists and the software
engineering community.

6.2 RESEARCH PRODUCTS

The conducted research has generated several tangible results that provide support for
highly relevant contributions to the scientific community. These contributions have been
thoroughly explored throughout this dissertation and summarized in this chapters .

Empirical Data. Encompassing raw data, analyzed data, and the associated procedures
for their collection and analysis. Empirical data serves as a robust foundation for under-
standing and validating the presented findings, promoting transparency and replicability
in research. 1

Taxonomy. Noteworthy is the creation of an initial Taxonomy (Figure 5.1), providing
a primary classification of bugs in Jupyter projects. This taxonomic framework offers
a systematic and comprehensible organization of the various bug categories identified,
facilitating understanding and practical approaches to these issues.

Journal Paper. A paper resulting from this investigation was accepted for publication:

• SANTANA, Taijara; ANSELMO, Paulo; ALMEIDA, Eduardo; AHMED, Iftekhar.
Bug Analysis in Jupyter Notebook Projects: An Empirical Study. In: Transactions on
Software Engineering and Methodology. (SANTANA et al., 2024)

6.3 FUTURE WORK

Based on the study’s conclusions, some suggestions for future work could include:

Enhancement of Analysis-to-Production Transition. Given the reported difficulty
users face in transitioning from analysis in Jupyter Notebook to production code, a
future project could explore solutions to facilitate this transition. This might involve
developing features that streamline code cleaning and adaptation, as well as building

1https://github.com/bugsjupyterempiricalstudy/BugJupyterPaper
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bridges between the exploratory environment of Jupyter and more traditional production
environments. This approach aims to optimize the effective integration of analysis results
into the software development workflow.

Machine Learning Algorithm. The development of a machine learning algorithm
using the manually categorized dataset as a base. This algorithm could be trained to
classify the entire historical dataset available on Stack Overflow, enabling the evolution
of the current taxonomy.

6.4 CONCLUDING REMARKS

In this work, we conducted a large-scale empirical study to characterize bugs in Jupyter
notebook projects. First, we analyzed 855 commits from 105 GitHub open-source repos-
itories. Next, we analyzed 2,585 Stack Overflow posts, which gave us insights into bugs
that data scientists face when developing Jupyter notebook projects. Finally, we con-
ducted semi-structured interviews with 19 data scientists from 12 companies to validate
the findings. We proposed a taxonomy of Jupyter notebook-specific bugs by analyzing
these bugs. In particular, we identify eight classes of bugs, ten types of root causes, and
the impact of bugs.

The most frequent bugs in the Jupyter notebook are those related to Environments
and Settings and Implementation. Regarding the root causes, the most frequent were:
Configuration issues, Version issues, and Coding Errors. They are the cause of most
Implementation and Environments and Settings bugs. The most frequent bug impact
was Run Time Error, followed by Incorrect Functionality. In addition, we found that
the data scientist’s background determines how the bugs are identified, highlighting the
importance of testing and debugging tools. Finally, we identified the Jupyter notebook
deployment as a challenging and poorly supported task.

We believe this study can facilitate practitioners’ understanding of the nature of bugs
and define possible strategies to mitigate them. Our findings can guide future research in
related areas, such as developing tools for detecting and recommending bug fixes in the
Jupyter notebook and an empirical study to understand the issues in private projects.
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APPENDIX A

LIST OF GITHUB PROJECTS

Table A.1 shows all GitHub projects analyzed in this work.

Id URL Repository
65392849 https://github.com/ratschlab/metagraph
237890763 https://github.com/fastai/fastpages
126337574 https://github.com/pyiron/pyiron
219892487 https://github.com/aws/aws-neuron-sdk
99244384 https://github.com/Qiskit/qiskit-tutorials
35236880 https://github.com/AllenInstitute/AllenSDK
114581326 https://github.com/MinaProtocol/mina
247054942 https://github.com/dsfsi/covid19za
114898943 https://github.com/SeldonIO/seldon-core
141692400 https://github.com/UCL-CCS/EasyVVUQ
86884600 https://github.com/openforcefield/openff-toolkit
112729129 https://github.com/CLIMADA-project/climada-python
129317474 https://github.com/tensorflow/docs
125098252 https://github.com/onnx/tensorflow-onnx
178290396 https://github.com/fastestimator/fastestimator
40307735 https://github.com/flatironinstitute/CaImAn
142140875 https://github.com/signals-dev/Orion
160882537 https://github.com/ecmwf/magics
62352963 https://github.com/kundajelab/tfmodisco
249056404 https://github.com/Yu-Group/covid19-severity-prediction
265612440 https://github.com/coqui-ai/TTS
161231707 https://github.com/rapidsai/cuxfilter
246738676 https://github.com/google/automl
151619717 https://github.com/google-research/google-research
40161124 https://github.com/vega/ipyvega
34146607 https://github.com/mmagnus/rna-tools
248347348 https://github.com/lindawangg/COVID-Net
195062961 https://github.com/kili-technology/kili-playground
261861733 https://github.com/keras-team/keras-io
234676361 https://github.com/usc-isi-i2/kgtk
24733345 https://github.com/3dmol/3Dmol.js
166853419 https://github.com/lappis-unb/rasa-ptbr-boilerplate
246634306 https://github.com/NVIDIA/TRTorch
81518954 https://github.com/quiltdata/quilt
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10456942 https://github.com/MTG/essentia
244029618 https://github.com/data-science-on-aws/workshop
161840815 https://github.com/goldmansachs/gs-quant
90328920 https://github.com/intel-analytics/analytics-zoo
278415292 https://github.com/open-mmlab/mmclassification
203975315 https://github.com/gazprom-neft/seismiqb
180192894 https://github.com/google/neural-tangents
75641327 https://github.com/ExoCTK/exoctk
233594133 https://github.com/nccr-itmo/FEDOT
169880381 https://github.com/facebook/Ax
157752451 https://github.com/rapidsai/cugraph
119419202 https://github.com/wandb/examples
254453761 https://github.com/reichlab/covid19-forecast-hub
193922326 https://github.com/enzoampil/fastquant
56300322 https://github.com/pastas/pastas
186871969 https://github.com/peterdsharpe/AeroSandbox
85799683 https://github.com/christophM/interpretable-ml-book
110973589 https://github.com/Eomys/pyleecan
32540955 https://github.com/datacarpentry/python-ecology-lesson
101073856 https://github.com/zlatko-minev/pyEPR
43358723 https://github.com/OceanParcels/parcels
240286467 https://github.com/galaxyproject/SARS-CoV-2
96946693 https://github.com/tensorflow/tpu
251355291 https://github.com/micro-manager/pycro-manager
123097163 https://github.com/GeoscienceAustralia/dea-notebooks
223636350 https://github.com/pycaret/pycaret
211972484 https://github.com/tensorflow/fairness-indicators
249628101 https://github.com/datadesk/california-coronavirus-data
116963730 https://github.com/LiberTEM/LiberTEM
107937815 https://github.com/aws/amazon-sagemaker-examples
251363143 https://github.com/Azure-Samples/Synapse
165826654 https://github.com/deepmind/deepmind-research
97071697 https://github.com/ironmussa/Optimus
237077697 https://github.com/AnalyticalGraphicsInc/STKCodeExamples
143113454 https://github.com/alan-turing-institute/MLJ.jl
247269797 https://github.com/Azure/live-video-analytics
180872240 https://github.com/numenta/nupic.research
24510911 https://github.com/NOAA-GFDL/MOM6-examples
249465310 https://github.com/rajeshrinet/pyross
1404690 https://github.com/PmagPy/PmagPy
287642401 https://github.com/whylabs/whylogs
108200238 https://github.com/geomstats/geomstats
102973646 https://github.com/fastai/fastai
239769118 https://github.com/mackelab/sbi
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112795497 https://github.com/SURGroup/UQpy
254142161 https://github.com/Seagate/cortx
222507066 https://github.com/fastai/nbdev
212628259 https://github.com/Azure/Azure-Sentinel-Notebooks
54376220 https://github.com/AtsushiSakai/PythonRobotics
108053674 https://github.com/tensorflow/probability
180372498 https://github.com/plotly/dash-sample-apps
73234795 https://github.com/SMTorg/smt
235856774 https://github.com/tensorflow/docs-l10n
17371412 https://github.com/h2oai/h2o-3
205382115 https://github.com/SubstraFoundation/distributed-learning-contributivity
47548304 https://github.com/ARM-software/lisa
201998885 https://github.com/theislab/scarches
200722670 https://github.com/NVIDIA/NeMo
145183271 https://github.com/Azure/Azure-Sentinel
60551519 https://github.com/spacetelescope/jwst
256832500 https://github.com/castorini/pygaggle
8308849 https://github.com/siddhartha-gadgil/ProvingGround
148885351 https://github.com/scikit-hep/boost-histogram
42720167 https://github.com/KDE/cantor
169442310 https://github.com/amaiya/ktrain
178316220 https://github.com/collective-action/tech
266882295 https://github.com/undark-lab/swyft
190487408 https://github.com/Synthetixio/SIPs
142918121 https://github.com/batfish/pybatfish
7228447 https://github.com/scikit-hep/iminuit
43830532 https://github.com/dereneaton/ipyrad

Table A.1: List of GitHub projects



APPENDIX B

LIST OF OTHER NOTEBOOKS

Table B.1 shows other computational notebook solutions.

Id URL Repository
Google Collaboratory https://research.google.com/colaboratory/

RMarkdown https://rmarkdown.rstudio.com/

nteract https://nteract.io/

Azure Notebooks https://visualstudio.microsoft.com/pt-
br/vs/features/notebooks-at-microsoft/

Deepnote https://deepnote.com/

Apache Zeppelin https://zeppelin.apache.org/

Mode Notebooks https://mode.com/notebooks/

JetBrains Datalore https://datalore.jetbrains.com/

Nextjournal https://nextjournal.com/

Count https://count.co/

Hex https://hex.tech/

Kaggle https://www.kaggle.com/docs/notebooks

Databricks notebooks https://databricks.com/product/collaborative-notebooks

CoCalc https://cocalc.com/features/jupyter-notebook

Observable notebook https://observablehq.com/

Jupyterlite https://jupyterlite.readthedocs.io/en/latest
Table B.1: Other Notebooks List
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