
Smart prediction for test
smell refactorings

Luana Almeida Martins

Tese de Doutorado

Universidade Federal da Bahia

Programa de Pós-Graduação em
Ciência da Computação

Março | 2024

Test smells are considered bad practices for developing the test code. Their presence
can reduce the test code quality, thus harming software testing and maintenance ac-
tivities. Software refactoring has been a key practice to handle smells and improve
software quality without changing its behavior. However, existing refactoring tools
target production code with very different characteristics than test code. Despite the
research invested in test smell refactoring, little is known about whether current re-
factorings improve the test code quality. In this thesis, a machine learning-based ap-
proach is presented that can help developers decide when and how to refactor test
smells. First, we aim to mine refactorings performed by developers to derive a cata-
log of test-specific refactorings and their impact on the test code. Our findings show
that developers prefer specific features of the testing frameworks, which may lead to
test smells such as Inappropriate Assertion and Exception Handling. While the refac-
torings proposed in the literature aligned with the evolution of testing frameworks to
help refactor test smells, the Inappropriate Assertion remains unexplored in the litera-
ture. Second, we aim to understand whether developers target low-quality test codes
to perform refactorings and the effects of refactorings on test code quality improve-
ment. Our findings show that low-quality test code, especially regarding structural
metrics, is more likely to undergo refactorings. Common refactorings between test
and production code contribute more to improving test code quality in terms of cohe-
sion, size, and complexity. Test-specific refactorings enhance quality concerning the
resolution of test smells. Third, we aim to learn whether developers would perform
refactorings and which refactorings they would apply to improve the test code quality.
Results indicate that the accuracy of Support Vector Machines models varies between
30% and 100% in different projects for detecting when a developer would perform a
refactoring. However, accuracy decreases for detecting specific refactorings due to
the low data on test refactorings found in analyzed projects. Overall, this research de-
monstrates the feasibility of using structural metrics and test smells for detecting test
refactorings. In addition, it highlights the need for improvements through the analysis
of synthetic data and project development context. The proposed approach supports
the detection and refactoring of test smells aligned with development practices cur-
rently adopted by developers.
Palavras-chave: Test refactoring. Test smells. Machine Learning.

PGCOMP - Programa de Pós-Graduação em Ciência da Computação
Universidade Federal da Bahia (UFBA)
Av. Milton Santos, s/n - Ondina
Salvador, BA, Brasil, 40170-110

https://pgcomp.ufba.br
pgcomp@ufba.br

U
FBA

D
SC

|
49

|
2024

Sm
artprediction

fortestsm
ellrefactorings

Luana
Alm

eida
M

artins

UNIVERSIDADE FEDERAL DA BAHIA
INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA
COMPUTAÇÃO

SMART PREDICTION FOR TEST
SMELL REFACTORINGS

LUANA ALMEIDA MARTINS

TESE DE DOUTORADO

Salvador
26 de Março de 2024

LUANA ALMEIDA MARTINS

SMART PREDICTION FOR TEST SMELL REFACTORINGS

Esta Qualificação de Doutorado foi
apresentada ao Programa de Pós-
graduação em Ciência da Com-
putação da Universidade Federal da
Bahia, como requisito parcial para
obtenção do grau de Doutor em Ciên-
cia da Computação.

Orientador: Prof. Dr. Ivan do Carmo Machado
Co-orientador: Prof. Dr. Heitor Augustus Xavier Costa

Salvador
26 de Março de 2024

Ficha catalográfica elaborada pela Biblioteca Universitária de Ciências e Tecnologias
Prof. Omar Catunda, SIBI – UFBA.

M386 Martins, Luana Almeida.
Smart prediction for test smell refactorings / Luana Almeida Martins –

Salvador, 2024.
165p.: il.

Orientador: Prof. Dr. Ivan do Carmo Machado.
Co-orientador: Prof. Dr. Heitor Augustus Xavier Costa.
Tese (Doutorado) – Universidade Federal da Bahia, Instituto de Com-

putação, 2024.

1. Computação. 2. Test Smells. 3. Máquina - Aprendizado. I. Ivan
do Carmo Machado. II. Heitor Augustus Xavier Costa. III. Universidade
Federal da Bahia. Instituto de Computação. IV. Título.

CDU – 004.412.2

Termo de Aprovação

Luana Almeida Martins

Smart prediction for test smells refactorings

Esta tese foi julgada adequada à obtenção do

título de Doutora em Ciência da Computação e

aprovada em sua forma final pelo Programa de

Pós-Graduação em Ciência da Computação da

UFBA.

Prof. Dr. Ivan do Carmo Machado

(Orientador -UFBA)

Profa. Dra. Silvia Regina Vergilio

(UFPR)

Prof. Dr. Rohit Gheyi

(UFCG)

Prof. Dr. Eduardo Magno Lages Figueiredo

(UFMG)

Prof. Dr. Manoel Gomes de Mendonça Neto

(UFBA)

This thesis is dedicated to my parents,

Jair and Marilda.

ACKNOWLEDGEMENTS

I would like to express my gratitude to a number of people who supported me through-
out my PhD journey. Firstly, I am deeply thankful to my supervisor, Professor Ivan
Machado, for his invaluable guidance, encouragement, and support that have significantly
contributed to my academic achievements. I would also like to express my appreciation
to my co-supervisor, Professor Heitor Costa, for his guidance and support during the
entirety of my research journey. I would also like to thank Professor Fabio Palomba, who
supervised me during my internship at Università degli Studi di Salerno and provided
me with feedback during the later studies aggregated into this thesis.

I thank my colleagues from the Applied Research in Software Engineering (Aries)
Lab and the Laboratory of Applied Artificial Intelligence (LIAA) at the Federal University
of Bahia for our lively discussions whenever we get together. In particular, I want to thank
Denivan Campos, Railana Santana, Renata Souza, Tassio Virginio, and Joselito Mota. I
would like also to thank my colleagues from the Software Engineering in Salerno (SeSa)
Lab, whom I shared space with during my internship. In particular, I thank Gilberto
Recupito, Valeria Pontillo, and Giusy Anusiata for their dedication to helping ensure a
smooth transition during my stay in Salerno.

I am grateful for the financial support I received from Fundação de Amparo à
Pesquisa do Estado da Bahia (FAPESB) grant BOL0188/2020 and Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship during the intern-
ship in Salerno. I am also grateful for the ACM-W scholarship and ACM SIGSOFT
travel grants, which allowed me to attend two editions of the International Conference
in Software Engineering (ICSE 2022 and 2023) in person. During the conferences and
internships, I met mentors who are experts in my research area and found potential col-
laborators to work with. In particular, I thank Taher Ghaleb and Valeria Pontillo for
working with me in different stages of my research.

Finally, I am deeply thankful to my family for their moral support, assistance, and
understanding throughout my Ph.D. journey.

v

RESUMO

Os test smells são considerados más práticas durante o desenvolvimento do código de
teste. Sua presença pode reduzir a qualidade do código de teste, prejudicando as ativi-
dades de teste e manutenção de software. A refatoração de software é uma prática
fundamental para lidar com smells e melhorar a qualidade do software sem alterar seu
comportamento. No entanto, as ferramentas de refatoração existentes são voltadas para
o código de produção, com características muito diferentes do código de teste. Ape-
sar do esforço da comunidade em investigar sobre refatorações de test smells, pouco se
sabe sobre os efeitos das refatorações para a qualidade do código de teste. Nesta tese,
é apresentada uma abordagem baseada em aprendizado de máquina que pode ajudar os
desenvolvedores a decidir quando e como refatorar os test smells. O primeiro objetivo
é minerar as refatorações realizadas por desenvolvedores a fim de derivar um catálogo
de refatorações de teste e seu impacto no código de teste. Como resultados, pôde-se
perceber que os desenvolvedores têm preferência por recursos específicos dos frameworks
de teste, o que pode levar a test smells como o Inappropriate Assertion e o Exception
Handling. Enquanto as refatorações propostas na literatura alinhadas com a evolução
dos frameworks de teste auxiliam na refatoração de test smells, o Inappropriate Asser-
tion permanece pouco explorado na literatura. O segundo objetivo busca entender se os
códigos de teste com baixa qualidade são alvos de refatoração pelos desenvolvedores e os
efeitos das refatorações para a melhoria da qualidade. Como resultados, pôde-se observar
que códigos de teste com baixa qualidade, em especial, em termos de métricas estruturais,
possuem mais possibilidade de sofrer refatorações. Além disso, as refactorações comuns
entre código de teste e produção ajudam a melhorar a qualidade do código de teste em
relação à coesão, tamanho e complexidade, enquanto que, refatorações específicas de teste
ajudam na melhoria da qualidade em relação a resolução de test smells. O terceiro ob-
jetivo utiliza aprendizado de máquina para classificar onde e como os desenvolvedores
realizam refatorações teste com o potencial de corrigir os test smells. Os resultados in-
dicam que a acurácia do aprendizado de máquina, utilizando o algoritmo Support Vector
Machines, varia entre 30% e 100% em diferentes projetos para a detecção de quando o
desenvolvedor realizaria alguma refatoração no código. Porém, acurácia diminui para a
detecção de refatorações específicas, devido à quantidade de refatorações encontradas nos
projetos analisados. De modo geral, esta pesquisa mostra a viabilidade do uso de métricas
e test smells para a detecção de refatorações de teste, evidenciando ainda a necessidade
de melhorias por meio da análise de dados sintéticos e do contexto de desenvolvimento
dos projetos. A abordagem apoia a detecção e refatoração de test smells alinhadas às
práticas de desenvolvimento atualmente adotadas pelos desenvolvedores.

Palavras-chave: Refatoração de teste. Test smells. Aprendizado de máquina.

vi

ABSTRACT

Test smells are considered bad practices for developing the test code. Their presence can
reduce the test code quality, thus harming software testing and maintenance activities.
Software refactoring has been a key practice to handle smells and improve software quality
without changing its behavior. However, existing refactoring tools target production code
with very different characteristics than test code. Despite the research invested in test
smell refactoring, little is known about whether current refactorings improve the test
code quality. In this thesis, a machine learning-based approach is presented that can help
developers decide when and how to refactor test smells. First, we aim to mine refactorings
performed by developers to derive a catalog of test-specific refactorings and their impact
on the test code. Our findings show that developers prefer specific features of the testing
frameworks, which may lead to test smells such as Inappropriate Assertion and Exception
Handling. While the refactorings proposed in the literature aligned with the evolution
of testing frameworks to help refactor test smells, the Inappropriate Assertion remains
unexplored in the literature. Second, we aim to understand whether developers target
low-quality test codes to perform refactorings and the effects of refactorings on test code
quality improvement. Our findings show that low-quality test code, especially regarding
structural metrics, is more likely to undergo refactorings. Common refactorings between
test and production code contribute more to improving test code quality in terms of
cohesion, size, and complexity. Test-specific refactorings enhance quality concerning the
resolution of test smells. Third, we aim to learn whether developers would perform
refactorings and which refactorings they would apply to improve the test code quality.
Results indicate that the accuracy of Support Vector Machines models varies between 30%
and 100% in different projects for detecting when a developer would perform a refactoring.
However, accuracy decreases for detecting specific refactorings due to the low data on test
refactorings found in analyzed projects. Overall, this research demonstrates the feasibility
of using structural metrics and test smells for detecting test refactorings. In addition, it
highlights the need for improvements through the analysis of synthetic data and project
development context. The proposed approach supports the detection and refactoring of
test smells aligned with development practices currently adopted by developers.

Keywords: Test refactoring. Test smells. Machine Learning.

vii

CONTENTS

List of Figures xii

List of Tables xiv

List of Acronyms xv

Chapter 1—Introduction 1

1.1 Context and Motivation . 2

1.2 Research Statement . 6

1.3 Research Method . 7

1.4 Overview of the proposed solution by ARIES Lab . 10

1.5 Thesis outline . 12

Chapter 2—Background 14

2.1 An overview of automated software testing . 15

2.2 Test smells . 17

2.2.1 Test smells definition and examples . 17

2.2.2 Approaches to handle test smells . 25

2.3 Software Refactoring . 28

2.3.1 Refactoring operations . 30

2.3.2 Refactoring approaches . 32

viii

ix

2.4 Test Code Quality Assessment . 33

2.5 Machine Learning . 34

2.5.1 Supervised Machine Learning algorithms . 34

2.5.2 Evaluation Metrics . 47

2.5.3 Datasets for detection and refactoring of test smells 49

2.6 Chapter Summary . 50

Chapter 3—Related work 51

3.1 Catalogs and reviews on test smells and refactorings 52

3.2 Investigation of test smells effects on software quality 53

3.3 Investigation of test smells in different frameworks . 55

3.4 Automated tools to handle test smells . 56

3.5 Developers’ perception and awareness of test smells . 58

3.6 Refactorings to fix test smells . 60

3.7 Machine Learning techniques to handle test smells . 61

3.8 Limitations of prior work . 62

3.9 Chapter Summary . 63

Chapter 4—Mining test refactorings in practice 65

4.1 Research Questions and Objectives . 66

4.2 Approach to derive a catalog of test refactorings . 67

4.2.1 Selecting subject systems . 67

4.2.2 Extracting test code changes . 68

4.2.3 Classifying test code changes . 69

x

4.3 Deriving a catalog of test-specific refactorings . 71

4.3.1 The Exception Handling test smell . 73

4.3.2 The Inappropriate Assertion test smell . 78

4.3.3 The Assertion Roulette test smell . 83

4.3.4 The Bad Naming test smell . 86

4.3.5 Other test smells . 87

4.4 A Comparative and Practical Analysis of the catalog 92

4.4.1 How our catalog of test smell refactorings compares to the state-of-the-art? 93

4.4.2 How our catalog of test smell refactorings is acceptable in practice? 95

4.4.3 Implications for software engineering research and practice 98

4.5 Threats to Validity . 99

4.6 Chapter Summary . 100

Chapter 5—How Test Refactorings Affect Test Code Quality 101

5.1 Research Questions and Objectives . 102

5.2 Experimental Design . 104

5.2.1 Context of the study . 104

5.2.2 Data Collection . 107

5.2.3 Data Analysis . 108

5.3 Results . 110

5.3.1 Are test classes performed in classes with low quality? 112

5.3.2 What are the effects of test refactorings? . 113

5.4 Discussion . 118

5.5 Threats to validity . 119

5.6 Chapter Summary . 120

xi

Chapter 6—Developer-Oriented Test Refactoring Recommendations 122

6.1 Research Questions and Objectives . 123

6.2 Experimental Design . 124

6.2.1 Context of the Study . 124

6.2.2 Dependent Variables . 125

6.2.3 Independent Variables . 126

6.2.4 Research Method . 127

6.3 Analysis of the Results . 130

6.3.1 Classifying Where Developers Would do Test Refactoring 130

6.3.2 Classifying Specific Test Refactoring Operations . 133

6.4 Discussion . 136

6.4.1 Relation with Previous Work . 136

6.4.2 On the Features and their Predictive Power . 137

6.4.3 ML Models for Test Refactoring Recommendations: How Far Can We Go? 138

6.5 Threats To Validity . 139

6.6 Chapter summary . 140

Chapter 7—Conclusions 141

7.1 Results addressing our Goal and Research Questions 141

7.2 Contributions . 144

7.2.1 Research Contribution . 144

7.2.2 Materials and Tools . 144

7.2.3 Academic contributions . 146

7.3 Future research directions . 147

References 149

LIST OF FIGURES

1.1 Research Method. 8
1.2 Overview of our approach. 9
1.3 Overview of the ARIES Lab framework. 11
1.4 Schematic overview of the thesis structure. 13

2.1 Garousi and Küçük (2018)’s analyzed test smells at test method level. . . 18
2.2 Lifecycle of test smells (adapted from Garousi and Küçük (2018)). 26
2.3 Building the Decision Tree for the Test Refactoring classification. The

circles highlighted in blue represent the steps to classify the new instance
ReceiverEmailTest. 37

2.4 Building the Trees with Random Forest algorithm for the Test Refactoring
classification. 39

2.5 Building the Trees with ExT algorithm for the Test Refactoring classification. 40
2.6 Classification of the new instance EmailReceiverTest using LR algorithm. 42
2.7 Comparison among difference kernel functions for SVM algorithm. The x

highlighted in red represent the new instance ReceiverEmailTest. 46
2.8 Boundaries for ML algorithms based on a binary dummy dataset, where

the scattered points represent the training data points and respective clas-
sification. 47

4.1 Overview of the Proposed Approach. 67
4.2 Detection and refactoring the ECT test smell. 74
4.3 Detection and refactoring the InA test smell. 79
4.4 Detection and refactoring the AR test smell. 84
4.5 Detection and refactoring the BaN test smell. 86
4.6 Detection and refactoring the other test smell. 88
4.7 Comparison between our findings and the state-of-the-art regarding test

smells and test refactorings. 95

xii

LIST OF FIGURES xiii

5.1 Overview of the experimental design. 105
5.2 Boxplots for the distributions of metrics and test smells in the dataset. . 111

6.1 The results of the Nemenyi rank applied to the best model with balancing
techniques. 131

6.2 Predictive power of Test Code and Process Metrics. 131
6.3 Predictive power of Test Smells. 132

LIST OF TABLES

2.1 Characteristics of detection and refactoring tools to handle test smells
(extended from Aljedaani et al. (2021)). 29

2.2 Description of quality metrics (PECORELLI et al., 2020b) 33
2.3 Description of process metrics (SPADINI; ANICHE; BACCHELLI, 2018) 34
2.4 Dummy dataset for test class refactorings. 35
2.5 Confusion Matrix for smell detection outcomes. 48

4.1 Characterization of the studied projects in terms of the number of commits
and selected test files . 69

4.2 Summary of detection and refactorings for test smells 72

5.1 Results for the statistical model considering the quality metrics (Qmi). . 111
5.2 Results for the statistical model considering the test smells (Tsi). 114
5.3 Results of decrease and increase of quality and Wilcoxon Rank Sum Test

for Metrics (Qmi) . 115
5.4 Results of decrease and increase of quality and Wilcoxon Rank Sum Test

for Metrics (Tsi) . 117

6.1 Overview of the selected Java open-source projects. 125
6.2 Performance of the best classifiers for each project analyzed. 133
6.3 Performance obtained to classify specific refactoring operations in questdb.134
6.4 Performance obtained when classifying the remaining seven refactoring

operations. 135

xiv

LIST OF ACRONYMS

General acronyms

AST Abstract Syntax Tree
FAIR Findable, Accessible, Interoperable, and Reusable
JMX Java Management Extensions
RQ Research Questions
SSVT Setup, Stimulate, Verify, and Teardown
TTCN-3 Testing and Test Control Notation Version 3

Test smells acronyms

AR Assertion Roulette
BaN Bad Naming
CTL Conditional Test Logic
CI Constructor Initialization
DT Default Test
DpT Dependent Test
DA Duplicate Assert
ET Eager Test
EpT Empty Test
ECT Exception Handling
GF General Fixture
IgT Ignored Test
IdT Indirect Testing
InA Inappropriate Assertion
LT Lazy Test
MNT Magic Number Test
MG Mystery Guest
RP Redundant Print

xv

xvi

RA Redundant Assertion
RO Resource Optimism
SE Sensitive Equality
ST Sleepy Test
VT Verbose Test
UT Unknown Test

Process Metrics acronyms

CCM Code Churn Max
CCA Code Churn Average
Co Commits Count
Con Contributors Count
MCon Minor Contributors Count
ConE Contributors Experience
ALC Lines Added Count
ALM Lines Added Max
ALA Lines Added Average
RLC Lines Removed Count
RLM Lines Removed Max
RLA Lines Removed Average

Code Metrics acronyms

LOC Lines of Code
NOM Number of Methods
WMC Weighted Method per Class
RFC Response for a Class
AD Assertion Density

Machine Learning acronyms

ML Machine Learning
DT Decision Trees
ExT Extra-Tree
LR Logistic Regression

xvii

MCC Matthews Correlation Coefficient
NB Naive Bayes
RF Random Forest
SVM Support Vector Machine

Chapter

1
INTRODUCTION

Software testing is a fundamental activity for software quality assurance and consists of
developing helpful test cases to find bugs caused by code changes (GAROUSI; KüçüK,
2018; BELL et al., 2018). However, software companies often do not prioritize software
testing activities because they face difficulties selecting qualified personnel and allocating
resources (MELO et al., 2020; MARTINS et al., 2021b). Additionally, the testing activ-
ities, when carried out manually, consume much time and effort. The effort to perform
testing activities depends on the artifacts under test, e.g., large and complex produc-
tion classes require more effort to develop the test codes (TERRAGNI; SALZA; PEZZE,
2020).

The complexity of the software under test, the lack of expertise, and time pressure
can lead software developers to use bad practices to either design or implement the test
code, resulting in the so-called test smells (DEURSEN et al., 2001; TUFANO et al.,
2016; Silva Junior et al., 2020). The presence of test smells can negatively affect the test
code quality, harming the software testing and maintenance activities (BAVOTA et al.,
2015; PALOMBA et al., 2016; SPADINI et al., 2020; CAMPOS; ROCHA; MACHADO,
2021). Test smells differ from code smells defined by Fowler (1999) for the production
code. Specifically, the test smells reflect problems in the test cases’ organization, imple-
mentation, and interaction with one another (DEURSEN et al., 2001). Therefore, test
smells can require test code refactoring operations that differ from the ones applied in
the production code (DEURSEN et al., 2001; SOARES et al., 2020).

To fix test smells, developers should refactor the test code in a way that does not
change the test logic (FOWLER, 1999). While most refactoring recommendation tools

1

1.1. CONTEXT AND MOTIVATION 2

target the production code, little attention has been devoted to detecting test smells
and refactoring the test code (ALJEDAANI et al., 2021). Prior test code detection
and refactoring strategies, based on rules and metrics, were simplistic and not derived
from common practices used by developers (PERUMA et al., 2022). In particular, those
strategies mostly rely on predefined thresholds or rules to detect test smells. Still, deciding
whether a refactoring operation fixes a particular test smell requires developers’ expertise
and intuition (SPADINI et al., 2020).

In this work, we investigated Machine Learning (ML) techniques to classify the de-
velopers’ intention to apply test refactoring and which test-specific refactoring operations
they would apply. In this chapter, we contextualize the focus of this work. Section 1.1
presents our motivation and states the research problem. Section 1.2 provides details of
the thesis statement, highlighting the research goals. Section 1.3 presents the steps to
conduct this work. Section 1.4 presents the scope definition. Section 1.5 outlines the
thesis structure.

1.1 CONTEXT AND MOTIVATION

Refactoring is modifying the software code without changing its behavior (FOWLER,
1999). The concept of behavior is different for production and test codes. The production
code behavior refers to the effects of its execution, e.g., return values, changes in variables,
and impacts on external resources. After refactoring the production code, the test code
checks whether the behavior of the refactored code has not changed (FOWLER, 1999;
DEURSEN et al., 2001; BECK, 2003). Differently, the test code behavior refers to the
verification in the production code. A verification comprises one assertion and actions to
check the production code.

In light of the above, refactoring test code differs from the production code. Test
code has test smells that reflect problems in its organization, implementation, and in-
teraction with other codes (DEURSEN et al., 2001). Refactoring of test code combines
refactoring operations from Fowler (1999) and a set of test refactoring operations to deal
with the particularities in the test code structure (DEURSEN et al., 2001).

As a motivating example, we can consider a recurrent issue highlighted by re-
searchers involving the evolution of structures used in JUnit over time to handle expected
exceptions in test cases (SOARES et al., 2022). Listing 1.1 shows the testErrorListener

1.1. CONTEXT AND MOTIVATION 3

71 @Test
72 public void testErrorListener() throws Exception {
73 try {
74 RouteBuilder builder = createRouteBuilder();
75 CamelContext context = new DefaultCamelContext();
76 context.getRegistry().bind("myListener", listener);
77 context.addRoutes(builder);
78 context.start();
79 fail("Should have thrown an exception due XSLT file not found");
80 } catch (Exception e) {
81 // expected
82 }
83 }

Listing 1.1: Test code snippet with a ECT test smell.

74 @Test
75 public void testErrorListener() throws Exception {
76 RouteBuilder builder = createRouteBuilder();
77 CamelContext context = new DefaultCamelContext();
78 context.getRegistry().bind("myListener", listener);
79 context.addRoutes(builder);
80 assertThrows(RuntimeCamelException.class , () -> context.start());
81 }

Listing 1.2: Original refactoring using an assertThrows to fix the ECT test smell.

test method of the XsltCustomErrorListenerTest test class of the Camel project1. That
test class aims to verify whether a listener logs the errors and throws the exceptions for
errors in XSLT files. The testErrorListener method creates a listener if the XSLT
file exists; otherwise, it throws an exception using a try/catch structure (lines 73 - 82).
It represents an Exception Handling (ECT) test smell, which can hide real problems
and hamper debugging. In addition, the bug report using the fail statement is a bad
programming practice that masks the stack trace details (KIM; CHEN; YANG, 2021).

Developers should use the features available in the testing frameworks to automat-
ically pass or fail the test method. It means that developers should use the assert meth-
ods (e.g., assertThat, assertThrows, assertEquals, assertNull, etc) and annotations
(e.g., @Before, @After, @Ignore, @Rule, etc) implemented by the JUnit framework (PE-
RUMA et al., 2020a). Listing 1.2 presents the refactoring performed by the developers of
the Camel project, showing awareness of the design problem. As a refactoring strategy
to fix the test smell, the developers used the assertThrows method provided by JUnit5
with Java 8 lambda expressions to eliminate the need for manually passing or failing the
test method (line 80).

1Available at: <https://github.com/apache/camel/>

1.1. CONTEXT AND MOTIVATION 4

74 @Test(expected=RuntimeCamelException.class)
75 public void testErrorListener() throws Exception {
76 RouteBuilder builder = createRouteBuilder();
77 CamelContext context = new DefaultCamelContext();
78 context.getRegistry().bind("myListener", listener);
79 context.addRoutes(builder);
80 context.start();
81 }

Listing 1.3: Alternative refactoring using method annotation to fix the ECT test smell.

74 @Test
75 public void testErrorListener() throws Exception {
76 RouteBuilder builder = createRouteBuilder();
77 CamelContext context = new DefaultCamelContext();
78 context.getRegistry().bind("myListener", listener);
79 context.addRoutes(builder);
80 Throwable expect = catchThrowable(() -> context.start());
81 assertThat("XSLT file not found", expect, instanceOf(RuntimeCamelException.class));
82 }

Listing 1.4: Alternative refactoring using the Throwable class to fix the ECT test smell.

74 @Rule
75 public ExpectedException thrown = ExpectedException.none();
76

77 @Test
78 public void testErrorListener() throws Exception {
79 RouteBuilder builder = createRouteBuilder();
80 CamelContext context = new DefaultCamelContext();
81 context.getRegistry().bind("myListener", listener);
82 context.addRoutes(builder);
83 thrown.expect(RuntimeCamelException.class);
84 thrown.expectMessage("XSLT file not found");
85 context.start();
86 }

Listing 1.5: Alternative refactoring using @Rule annotation to fix the ECT test smell.

Listing 1.3 presents an alternative for refactoring the same test method using the
optional expected parameter of the @Test annotation to handle exceptions (line 74).
Listing 1.4 presents a refactoring of the same test method using the Throwable class
to catch the exception and the assertThat method to verify whether the exception is
the one expected (lines 80 and 81). Listing 1.5 uses the @Rule annotation to specify
(lines 74 and 75) and throws the exception and its message (lines 83 and 84). While all
those constructs are valid for handling exceptions with JUnit4, an old construct would
correspond to potential test smells when migrating the version of the JUnit framework.

1.1. CONTEXT AND MOTIVATION 5

When analyzing pull requests to fix ECT test smells, a researcher made a pull
request2 to the Hadoop project to understand developers’ perceptions about replacing
@Test(expected = IllegalStateException.class) JUnit4 with the JUnit5 struc-
ture assertThrows(IllegalStateException.class, () -> {...}).

Researcher:
(...) For example, the smell in TestSSLFactory.java occurs when exception handling
can alternatively be implemented using assertion rather than annotation: using
assertThrows(IllegalStateException.class, () -> {...}); instead of @Test(expected =
IllegalStateException.class). (...)

Although recognition of using test structures from older versions of the testing
framework is suboptimal, the contributor intends to retain the original solution to main-
tain consistency with the pattern of using AssertJ to handle exceptions. Additionally,
the contributor suggests addressing issues such as lacking error messages, reversed argu-
ments, and the use of try/catch constructs in tests. The developer even highlights a
pull request that lacks explanatory messages3, underscoring the challenges of manual test
refactoring. In the role of a code reviewer, the contributor dedicates significant time to
guiding others in meeting test-writing expectations.

Contributor:
I do think test age is an issue, and old code is suboptimal, but using test(expected)
over our own intercept() or even assertThrows isn’t something we’d do today. (...)
if anyone was to go near old tests, i’d target things i really don’t like
1. assertTrue/assertFalse without error messages or detail why the test failed. Fix: use
assertJ assertions with .describedAs(), or at least add messages
2. assertEquals with the arguments reversed. fix, swap, or better: assertj.
3. code which uses try/catch/fail rather than intercept()

Contributor:
now, one thing to consider there is: what stylecheckers etc can we use to stop new
prs coming in which don’t do all of this, or lose stack traces when validating caught
exceptions? As all to often, the work of getting a PR in is the time spent teaching people
how to write tests that meet my expectations (for me) and the time spent waiting for
review, making the changes and repeating (for them). see #6003 as an example. if we
have the CI tooling automatically imposing policies on tests, then everyone’s time is
better used.

2<https://github.com/apache/hadoop/pull/5982>
3see <https://github.com/apache/hadoop/pull/6003>

1.2. RESEARCH STATEMENT 6

The developer’s insights underscore the challenge of deciding which refactorings to
apply and how to address test smells, indicating a potential need for assistance from
an automated test refactoring recommendation tool with a developer-centric approach.
This aligns with our approach to analyze supervised ML algorithms to classify devel-
opers’ intentions in applying test refactoring and the specific test refactoring operation.
Currently, our understanding is based on the work of Aniche et al. (2022), in which the
authors investigated the effectiveness of supervised ML algorithms in predicting refactor-
ings in production code using structural metrics and code smells. While these algorithms
demonstrated proficiency in predicting refactoring opportunities in production code, it
remains uncertain whether they would perform similarly in identifying refactoring oppor-
tunities in test code.

Given the unique characteristics of production and test code, applying the findings
of (ANICHE et al., 2022) directly to test code encounters two primary challenges. Firstly,
the smells and structural metrics utilized as predictors of refactorings in production code
may not directly translate to test code. This disparity complicates the transferability of
predictive models from production to test code. Secondly, Fowler’s catalog (FOWLER,
1999) does not encompass certain test-specific refactorings proposed by (DEURSEN et
al., 2001) and others. Consequently, ML algorithms trained on Fowler’s catalog cannot
predict these additional refactorings specific to test code.

1.2 RESEARCH STATEMENT

This thesis investigates the feasibility of identifying test refactoring opportunities and
appropriate fixes using ML techniques. Our investigation is built upon two objectives:

O1. Mining common test smells and their refactorings in practice. Existing
test smells and test refactoring catalogs are primarily based on the researchers’ intu-
ition (FOWLER, 1999; DEURSEN et al., 2001; MESZAROS, 2007). Our approach
provides a catalog of test smells and test refactoring operations to fix them based
on actual development practices. We explored the change history of software repos-
itories to extract the refactoring operations performed on the test code. Analyzing
test refactoring operations helps reveal (a) the actual issues developers deemed as
test smells and (b) how such issues were fixed (i.e., refactored) in practice.

O2. Identifying refactoring opportunities in test code and proper fixings for
test smells. We derived a dataset containing smelly and non-smelly refactored

1.3. RESEARCH METHOD 7

test codes while we mined commonly used test code refactoring in practice. Then,
we used ML techniques to learn from the features extracted from the change history
of the test code stored in that dataset.

In order to address the outlined objectives, we have formulated three high-level
Research Questions (RQ) to guide this thesis:

RQ1. How do developers perform test code refactorings to fix test smells in open-source
projects?

In RQ1, our objective was to catalog test code refactorings commonly performed by
developers in practice to address test smells. To achieve this, we conducted a qualitative
analysis on a sample of open-source projects, manually classifying test code changes.
Additionally, we investigated developers’ preferences regarding refactoring operations for
fixing test smells by submitting pull requests to open-source projects.

RQ2. How do test refactoring operations affect test code quality?

In RQ2, our objective was twofold: i) To determine whether low-quality test classes,
as measured by structural metrics and the presence of test smells, are more likely to have
test refactorings; ii) To assess the impact of test code refactorings on test code quality. To
achieve these goals, we conducted an empirical study involving the analysis of refactorings
carried out by developers, mined from the version history of open-source projects.

RQ3. How accurately can we suggest test refactoring operations for fixing test smells
using ML techniques?

In RQ3, our objective was to explore the performance of supervised machine learn-
ing (ML) algorithms in classifying developers’ intentions regarding test refactoring. This
investigation encompassed two distinct classification tasks: i) Classifying code changes
where developers would conduct test refactoring; ii) Classifying the specific test refactor-
ing operations applied by developers.

1.3 RESEARCH METHOD

In this research, we employed a combination of various methods to address the research
problem and strengthen the conclusions of our study (HESSE-BIBER, 2010). Figure 1.1
outlines four specific components of our research design, detailed as follows:

1.3. RESEARCH METHOD 8

Conducting a literature review on
test refactorings

Conducting an ad-hoc review on
test smells

Conducting an ad-hoc review on
machine learning techniques

Designing the approach

Performing the feasibility study

Literature Search Design Data Collection

Selecting systems and variables

Analysis of test refactorings
performed in practice

Developing scripts and tools

Analysis of test refactorings
effects on test code quality

Analysis of the ML algorithms
accuracy on classifying test

refactorings

Collecting data

Data Analysis
and Report

Figure 1.1: Research Method.

• Literature search. This phase entails the analysis of the literature on test smells,
refactorings, and ML techniques to comprehend the state-of-the-art and establish
a foundation for defining our research problem. We conducted ad-hoc searches in
the literature and reviews to outline the background concepts (Chapter 2), grasp
the current state-of-the-art, and identify any gaps in the literature (Chapter 3);

• Design. This phase encompasses experimental design aimed at addressing our
research problem. We selected subject systems, identified variables, and conducted
feasibility studies for each research question. Figure 1.2 illustrates our approach to
investigating these questions through three steps:

– (1) Selecting subject projects: This step consists of selecting software
projects from GitHub. We have chosen diverse open-source Java projects with
tests written using the JUnit testing framework. Set #1 comprises 13 open-
source Java projects from the Apache Foundation, and we used it to perform
a manual analysis of test code. Set #2 comprises 63 projects from GitHub. It
was used for repository mining to gather data on test smells, refactorings, and
structural metrics using automated tools. Set #3 comprises ten projects from
GitHub, with information on test smells, refactorings, structural and process
metrics. It was used to train and evaluate machine learning models.

– (2) Deriving test refactorings: This step consists of extracting test code
changes from Set #1 of projects (step a) and manually classifying them into
test smells and test refactoring operations (step b), resulting in Dataset #1.
The outcome of this process is a catalog describing the reengineering process
required to perform test refactoring (step c). This catalog proved instrumental
in developing rules to enhance existing repository mining tools for detecting

1.3. RESEARCH METHOD 9

Selecting projects from Apache (Set #1 = 13 projects)

tsDetect

input

generate

input input

Dataset
#1

output
Dataset

#2

Deriving test refactorings Identifying refactorings for test smells

Analyzing the refactoring
operations and changes

of the test code

 Matching test smells,
refactorings, and

metrics

(a)

(b)

Refactoring
Miner 3.0

generate

(d)

Catalog of test
refactorings

List of
test smells

input

(e)

(f)(c)

generate

(2) (3)

input Classification of
refactorings

decision
analyze

input

Developing rules to
detect test refactorings

analyze

derive

input

code

generateinput

validate

Set of changes
between

statements

input

Mining commits with
changes in the test code

input

VITRuM

List of
 test metrics

generate

input

Classification of
refactoring
operations

(1)

Application of ML
techniques

Effects of test
code

refactorings

Application of statistical
methods

(1)

input

Pydriller

List of
process metrics

generate

Dataset
#3

List of
refactorings

 Matching test smells,
refactorings, metrics
and process metrics

Selecting projects from GitHub (Set #2 = 63 projects, Set #3 = 10 projects)

input

input

(1)

Figure 1.2: Overview of our approach.

test refactorings (see Chapter 5).

– (3) Identifying refactoring operations for test smells: This step in-
volves collecting data using automated tools (step d). In more detail, we
collected information on test smells, test refactoring operations, and struc-
tural metrics from Set #2, generating Dataset #2 (step e). In addition, it
involves the collection of process metrics from Set #3 to generate Dataset #3
(step e). Finally, we analyzed the data from both datasets (step f). We uti-
lized Dataset #2 to analyze the impacts of test code refactorings on test code
quality (refer to Chapter 5), and Dataset #3 to identify refactoring opportuni-
ties and specific operations developers would undertake in the test code (refer
to Chapter 6). It is worth noting that each dataset was used to investigate
a specific research question and, therefore, offers complementary insights for
our analysis.

• Data Collection: This phase involves developing the requisite tools, scripts, and
models to conduct the experiments. We automated the procedures employed in the
feasibility study to generate a comprehensive dataset comprising pairs of smelly and
refactored test codes. Specifically, we expanded existing automated tools for repos-
itory mining to gather data on test smells, test-specific refactorings, and structural
and process metrics (refer to Chapter 5 and Chapter 6).

• Data Analysis and Reporting: This phase involves analyzing the data collected
to address our research questions. Firstly, we analyzed the curated dataset of test
code refactorings carried out in practical scenarios to catalog the refactorings (refer
to Chapter 4). Secondly, we examined the effects of test code refactorings on code

1.4. OVERVIEW OF THE PROPOSED SOLUTION BY ARIES LAB 10

quality using the extensive dataset mined from the version history of open-source
projects (refer to Chapter 5). Finally, we employed the large dataset as input for
ML techniques to extract features and classify whether developers would undertake
refactoring operations and determine which specific test-specific refactorings they
would apply (refer to Chapter 6).

1.4 OVERVIEW OF THE PROPOSED SOLUTION BY ARIES LAB

This thesis is situated within the context of the ARIES Lab, which strives to develop
a comprehensive framework for detecting test smells and refactoring test codes. This
framework takes into account developers’ perceptions and daily practices that influence
the introduction and elimination of test smells. Figure 1.3 illustrates an abstract layered
flow synthesized from the analysis of our past, present, and potential future work. It has
six main approaches:

• Rules-based test smell detection (Figure 1.3 - steps 1.1 to 1.3): This ap-
proach utilizes the definition of test smells to derive rules for their detection. It
begins by generating the test code model through an Abstract Syntax Tree (AST)
(step 1.1). Subsequently, it employs conditional expressions to formulate the detec-
tion rules (step 1.2). Consequently, the approach detects a set of test smells when
the defined rules are satisfied (step 1.3).

• Metrics-based test smell detection (Figure 1.3 - steps 2.1 to 2.3): This
approach employs metrics to characterize test smells. It starts by generating the
source code model through an AST (step 2.1), then identifies a set of metrics and
applies suitable thresholds (step 2.2). Consequently, the approach detects a set of
test smells when the metric values satisfy the defined thresholds (step 2.3).

• Machine Learning-based test smell detection (Figure 1.3 - steps 3.1 to
3.6): This approach utilizes the source code model (step 3.1) and existing examples
(step 3.2) to detect a set of metrics characterizing test smells in the test code (step
3.3). Subsequently, it instantiates an ML model (step 3.4) and employs a set of ML
algorithms (step 3.5) to learn from the test code metrics. Consequently, it classifies
the test smells in the test code based on the test code metrics (step 3.6).

• Rules-based refactoring recommendation (Figure 1.3 - steps 4.1 to 4.8):
Similar to the Rules-based test smell detection approach, this method utilizes the

1.4. OVERVIEW OF THE PROPOSED SOLUTION BY ARIES LAB 11

Figure 1.3: Overview of the ARIES Lab framework.

definition of test smells to apply a set of rules in the test code model for detecting
test smells (steps 4.1, 4.2, and 4.3). It then matches the detected test smells with
their refactoring rules (step 4.4) and recommends the refactorings to developers
(step 4.5). Test code refactoring occurs once developers accept the recommendation
(step 4.6). Understanding the detection and refactoring of test smells can help
derive a catalog and guidelines for refactoring test smells (steps 4.7 and 4.8).

• Machine Learning-based refactoring recommendation (Figure 1.3 - steps
5.1 to 5.6): This approach utilizes the test code model (step 5.1) and existing ex-
amples (step 5.2) containing pairs of smelly and refactored test codes to instantiate
an ML model (step 5.3). Next, it applies ML algorithms (step 5.4) in the model to
detect the test smells (step 5.5). Consequently, it recommends proper refactorings

1.5. THESIS OUTLINE 12

to fix test smells in the test code (step 5.6).

• Guidelines for test smells prevention (Figure 1.3 - steps 6.1 to 6.5): This
approach utilizes historical information from the test code (step 6.1) to extract
information about human aspects (step 6.2), such as the frequency of developers’
contributions and experience in open-source projects, and the insertion and removal
of test smells from the test code (steps 6.3 and 6.4). Consequently, it aims to derive
guidelines for preventing test smells (step 6.5).

Scope Definition. We limited the scope of this thesis to the Machine Learning-based
refactoring recommendation (steps 5.1 to 5.6). We investigate the ML techniques con-
sidering occurrences of test smells in refactored and non-refactored test code to discover
the developers’ intention to apply test refactoring. Rather than refactoring the test code,
we expect a ML-based solution for classifying which refactoring operations developers
would perform in the test code, which can later blend with the Rules-based refactoring
recommendation approach. It is worth highlighting that our research has yielded signifi-
cant contributions regarding rules-based refactoring recommendations, such as tools for
mining repositories and a catalog of refactorings for test smells (steps 4.1 - 4.5, 4.7).

1.5 THESIS OUTLINE

Figure 1.4 shows a schematic overview of the thesis structure. Besides the Introduction
chapter, we outlined the remaining five chapters as follows.

• Background and Related work. This part presents the concepts of test smells,
refactorings, and ML techniques. In addition, it presents studies focusing on related
problems.

– Background (Chapter 2) provides the background concepts for the foun-
dation of knowledge on the topics involved in this investigation, namely test
smells, refactoring, and ML.

– Related work (Chapter 3) presents the current state-of-the-art research
concerning test smells, reveals limitations in present tools and techniques, and
identifies research opportunities.

• Understanding test refactorings. This part is divided into three main studies

1.5. THESIS OUTLINE 13

Chapter 2
Background

Chapter 3
Related work

Chapter 5
How Test Refactorings Affect Test

Code Quality

Chapter 4
Mining test refactorings

 in practice

Background and
Related work

Understanding
test refactorings

Chapter 7
ConclusionsConclusions

Chapter 1
IntroductionIntroduction

Chapter 6
Developer-Oriented Test

Refactoring Recommendations

Figure 1.4: Schematic overview of the thesis structure.

connected to the RQs, aiming to provide an understanding of the test refactorings
fix test smells.

– Mining test refactorings in practice (Chapter 4) presents an exploratory
empirical study on open-source projects from GitHub to analyze test refactor-
ings. It reveals i) the actual issues developers deemed as test smells and ii)
how they were fixed (i.e., refactored) in practice.

– How Test Refactorings Affect Test Code Quality (Chapter 5) presents
an empirical study to analyze low-quality test classes regarding structural
metrics and test smells. In addition, it provides indications on which test
classes are more likely to be refactored and to what extent test refactoring
operations are effective in improving code quality.

– Developer-Oriented Test Refactoring Recommendations (Chapter 6)
presents an empirical study to investigate the performance of supervised ML
algorithms in classifying the developers’ intention to apply test refactoring
and which developers apply test-refactoring operations.

• Conclusions (Chapter 7). This part summarizes the achieved contributions and
discusses the perspectives on future research directions.

Chapter

2
BACKGROUND

Manual or automated software testing aims to demonstrate that the software works as
expected, i.e., meeting customer needs and finding errors (QUADRI; FAROOQ, 2010;
AMANNEJAD et al., 2014). Manual software testing requires a tester to manually in-
teract with the software under test to verify its behavior. Automated software testing
requires the development of test scripts to verify the behavior of the software under test.
Although both approaches detect defects in the software, automated software testing
has some benefits compared with manual software testing, such as repeatability, pre-
dictability, and efficiency in test runs (GAROUSI; AMANNEJAD; BETIN CAN, 2015).
Therefore, the software industry predominantly uses automated testing as a safe way
to maintain software, i.e., fixing bugs, adding new features, and improving code quality
(BOWES et al., 2017).

Developing test scripts for automated software testing is a nontrivial task. Devel-
opers can use testing tools and frameworks (e.g., JUnit1) to facilitate the development
of test scripts and the interpretation of their results (GAROUSI; AMANNEJAD; BETIN
CAN, 2015; BOWES et al., 2017). Even though developers can adopt bad design prac-
tices to either design or implement the test code, leading to the insertion of test smells
(BAVOTA et al., 2015). Test smells can decrease the test code quality, harming the test-
ing and maintenance activities (BAVOTA et al., 2015; PALOMBA et al., 2016; SPADINI
et al., 2020). Therefore, it is essential to employ practices and tools that could support
fixing test smells properly.

1<https://junit.org/>

14

2.1. AN OVERVIEW OF AUTOMATED SOFTWARE TESTING 15

This chapter introduces the fundamentals of automated software testing, test smells,
test refactorings, and techniques for handling test smells. Section 2.1 briefly overviews
automated software testing, test frameworks, and test code. Section 2.2 presents the
definitions and examples of test smells. Section 2.3 presents the definition and types of
refactoring recommendation tools to support developers handling test smells. Section
2.4 presents structural and process metrics to evaluate the test code quality. Section 2.5
presents the Machine Learning (ML) techniques.

2.1 AN OVERVIEW OF AUTOMATED SOFTWARE TESTING

Amannejad et al. (2014) categorized software testing into four key activities:

• Test case design. It involves designing test cases to satisfy coverage criteria
or other engineering goals, involving sub-activities such as identifying test data,
including test inputs and expected test outputs;

• Test scripting. It involves documenting test cases in manual software testing or
developing test code in automated software testing. Many test tools and frameworks
support test scripting (GAMIDO; GAMIDO, 2019), e.g., IBM Rational Manual
Tester2 for manual software testing and JUnit for automated software testing;

• Test execution. It consists of running test cases (a set of tests performed on
the same unit software under test) on the software under test and recording the
outputs. There is a dependency between the test scripting and test execution
regarding using a manual or automated approach, i.e., the test execution always
uses the same approach as the test scripting;

• Test evaluation. It consists of evaluating the testing results (pass or fail). A
human tester can analyze the results against the expected ones or incorporate ver-
ification points in the test code.

We can perform those four activities manually or automatically. However, manu-
ally developing tests is time and effort-consuming and can only sometimes be as effective
as automated tests in finding defects (GAROUSI; AMANNEJAD; BETIN CAN, 2015).

2<https://www.ibm.com/support/pages/ibm-rational-manual-tester-version-7017>

2.1. AN OVERVIEW OF AUTOMATED SOFTWARE TESTING 16

Automated software testing is more effective, allowing test execution quickly and repeat-
edly. In this direction, the software industry predominately uses it as a cost-effective way
for the regression testing of software with a long maintenance life (GAROUSI; AMAN-
NEJAD; BETIN CAN, 2015; BOWES et al., 2017).

Automated software testing requires testing tools or frameworks to test the software
under test. A testing framework is a software library that helps to standardize the test
specification, execution, and reporting (ROMPAEY et al., 2007). In particular, a test
script is a code written in programming languages using a testing framework (e.g., Java
and JUnit) executed on the software to analyze its result against the expected output
(GAROUSI; AMANNEJAD; BETIN CAN, 2015). A test script usually codes a given
test case into a consistent structure that involves the following (SSVT) steps executed in
sequence (ROMPAEY et al., 2007):

• Setup (S). The test fixture sets up the production code in the desired state. It
instantiates the production code using attributes, setup methods, and test data;

• Stimulate (S). The test code sends a stimulus for the production code to provoke
an action (a state change), i.e., the stimulus refers to any object manipulation in
the test code that is not an assertion;

• Verify (V). The test code queries the production code and fetches the result of
the stimulus through assertions. The assertions report the test outcome and do not
make any change in the production code;

• Teardown (T). All the resources used to instantiate, stimulate, and verify the
production code are released to avoid dependencies among different tests.

Listing 2.1 presents all the above steps in the EndpointTest test class from the
Camel project3, written with the JUnit framework. The test class uses the Java Man-
agement Extensions (JMX) to set up the context (lines 30, 32-37 - Setup step), uses
the context to get the status of a Beanstalk job (line 41 - Stimulate step), and verifies
whether the status is not null and its priority (lines 42 and 43 - Verify step), then puts
the context back into the initial state (lines 77-80 - Teardown step).

3Available at: <https://github.com/apache/camel/>

2.2. TEST SMELLS 17

29 public class EndpointTest {
30 CamelContext context;
31
32 @BeforeEach
33 public void setUp() throws Exception {
34 context = new DefaultCamelContext(false);
35 context.disableJMX();
36 context.start();
37 }
38
39 @Test
40 void testPriority() {
41 BeanstalkEndpoint endpoint = context.getEndpoint("beanstalk:default",

BeanstalkEndpoint.class);
42 assertNotNull(endpoint , "Beanstalk endpoint");
43 assertEquals(1000, endpoint.getJobPriority(), "Priority");
44 }
…

77 @AfterEach
78 public void tearDown() {
79 context.stop();
80 }
81 }

Listing 2.1: An example of setup, stimulation, verify, and teardown in test code.

2.2 TEST SMELLS

Test smells have gained importance over the last few years among researchers and prac-
titioners. Deursen et al. (2001) earlier introduced the concept of test smells to denote
poorly designed test codes. Meszaros, Smith and Andrea (2003) broaden that concept,
specifying seven test smells related to the test code level and five test smells related to the
test behavior. Later, several researchers extended the catalog of test smells (GREILER
et al., 2013; PALOMBA et al., 2016), investigated the impacts of test smells on the test
code quality (BAVOTA et al., 2015; TUFANO et al., 2016), and proposed solutions to
handle test smells (VIRGINIO et al., 2020; PERUMA et al., 2020a). The remaining
sections present examples of test smells, strategies, and automated tools to handle them.

2.2.1 Test smells definition and examples

Garousi and Küçük (2018) conducted a multivocal literature mapping on formal and
informal sources. They obtained 196 test smells, mainly discussed among practitioners
in informal sources. The authors classified them into eight high-level categories: i) Test
execution/behavior, ii) Test semantic/logic, iii) Design related, iv) Issues in test steps,
v) Mock and stub related, vi) In association with production code, vii) Code related, and
viii) Dependencies. While the detection of certain test smells occurs at the method level

2.2. TEST SMELLS 18

and does not require code execution, other test smells require viewing the entire test class
(e.g., the Lazy Test) or even executing the test suite (e.g., the Slow Test) (Figure 2.1). In
this thesis, we considered 21 test smells detected by tsDetect4, a tool that presents the
highest accuracy among the existing detection tools (ALJEDAANI et al., 2021). Next,
we describe the test smells that most contributed to our approach, along with examples
within the context of the Camel project.

Test semantic / logic

(1) Assertion Roulette - AR

(2) Conditional Test Logic CTL

(3) Eager Test - ET

Issues in test steps

(6) Empty Test - EpT

(7) Exception Handling - ECT

(8) General Fixture - GF

Code related

(11) Bad Naming - BaN

(12) Duplicate Assert - DA

(13) Ignored Test - IgT

(9) Redundant Assertion - RA(4) Lazy Test - LT

(10) Unknown Test - UT

(14) Magic Number Test - NMT

(5) Sleepy Test - ST (15) Redundant Print - RP

Figure 2.1: Garousi and Küçük (2018)’s analyzed test smells at test method level.

Test semantic/logic

This category refers to test smells related to test logic and several responsibilities per test
(GAROUSI; KüçüK, 2018; MARTINS et al., 2023). Some test smells in this category are
described as follows.

(1) Assertion Roulette (AR). It occurs when a test method has multiple as-
sertions without an explanation message, making it hard to understand the goal of
the assertion (DEURSEN et al., 2001). Listing 2.2 presents an AR test smell in the
testNoMatch1ThenMatchingJustException method. That test method verifies whether
an ExceptionPolicy object equals another through an assertEquals assertion (line
162). Still, there is no string message (1st or 3rd parameter according to particularities
of the JUnit versions) in the assertion explaining its goal.

4Available at: https://testsmells.org/pages/testsmelldetector-architecture.html

2.2. TEST SMELLS 19

48 public class DefaultExceptionPolicyStrategyTest {
49 private ExceptionPolicy type2;
50
…

158 @Test
159 public void testNoMatch1ThenMatchingJustException() {
160 setupPolicies();
161 ExceptionPolicy result = findPolicy(new AlreadyStoppedException());
162 assertEquals(type2, result);
163 }
164 }

Listing 2.2: An example of the AR test smell.

39 @Test
40 public void testRoute() {
41 Route route = context.getRoutes().get(0);
42 DefaultRoute consumerRoute = assertIsInstanceOf(DefaultRoute.class , route);
43
44 Processor processor = unwrap(consumerRoute.getProcessor());
45 Pipeline pipeline = assertIsInstanceOf(Pipeline.class , processor);
…

49 for (Processor child : pipeline.next()) {
50 Channel channel = assertIsInstanceOf(Channel.class , child);
51 assertNotNull(channel.getErrorHandler(), "There should be an error handler");
52 assertIsInstanceOf(DefaultErrorHandler.class , channel.getErrorHandler());
53 }
54 }

Listing 2.3: An example of the CTL test smell.

(2) Conditional Test Logic (CTL). It occurs when a test method contains one
or more control statements, whereas it should be simple and execute all statements.
Tests with branch points require greater care when analyzing whether the test is correct
(MESZAROS, 2007). Listing 2.3 presents a CTL test smell in the testRoute test method
of the DefaultErrorHandlerTest test class. It verifies whether there is a default error
handler in the pipeline using the assertNotNull test method inside a loop (lines 49-53).

(3) Eager Test (ET). It occurs when a test method invokes several methods of
the production code, making the test code hard to understand and more difficult to
use as documentation. Moreover, it makes tests more dependent on each other and
harder to maintain (DEURSEN et al., 2001). Listing 2.4 shows the ET test smell in the
testBytesSourceCtr test method of the BytesSourceTest test class. That test method
verifies different attributes of the bs object, calling the getData(), getSystemId(),
getInputStream(), and getReader() production methods (lines 30, 32, 34, and 35).

2.2. TEST SMELLS 20

27 @Test
28 public void testBytesSourceCtr() {
29 BytesSource bs = new BytesSource("foo".getBytes());
30 assertNotNull(bs.getData());
31 assertEquals("BytesSource[foo]", bs.toString());
32 assertNull(bs.getSystemId());
33
34 assertNotNull(bs.getInputStream());
35 assertNotNull(bs.getReader());
36 }

Listing 2.4: An example of the ET test smell.

231 @Test
232 public void testParseLoadBalance() throws Exception {
233 RouteDefinition route = assertOneRoute("routeWithLoadBalance.xml");
234 assertFrom(route, "seda:a");
235 LoadBalanceDefinition loadBalance = assertOneProcessorInstanceOf(LoadBalanceDefinition.

class , route);
236 assertEquals(3, loadBalance.getOutputs().size(), "Here should have 3 output here");

…
239 }
240
241 @Test
242 public void testParseStickyLoadBalance() throws Exception {
243 RouteDefinition route = assertOneRoute("routeWithStickyLoadBalance.xml");
244 assertFrom(route, "seda:a");
245 LoadBalanceDefinition loadBalance = assertOneProcessorInstanceOf(LoadBalanceDefinition.

class , route);
246 assertEquals(3, loadBalance.getOutputs().size(), "Here should have 3 output here");

…
252 }

Listing 2.5: An example of the LT test smell.

(4) Lazy Test (LT). It occurs when multiple test methods invoke the same production
method, making the test code hard to maintain as responsibilities related to one produc-
tion method are tested across different test methods (DEURSEN et al., 2001). Listing 2.5
shows the LT test smell in the testParseLoadBalance and testParseStickyLoadBalance
test methods of the XmlParseTest test class. Those test methods call the same produc-
tion methods (lines 233 - 236 and 243 - 246).

(5) Sleepy Test (ST). It occurs when a test method explicitly calls a thread sleep.
Different devices might have different processing times for a task, leading to unexpected
results (PERUMA et al., 2019). Listing 2.6 presents the ST test smell on line 62 occur-
ring of the testGrouped test method of the AggregateGroupedExchangeBatchSizeTest
class. In that case, after sending the initial set of messages, the test waits for one second
before checking for additional received messages.

2.2. TEST SMELLS 21

37 @Test
38 public void testGrouped() throws Exception {
…

58 assertEquals("100", grouped.get(0).getIn().getBody(String.class));
59 assertEquals("150", grouped.get(1).getIn().getBody(String.class));
60
61 // wait a bit for the remainder to come in
62 Thread.sleep(1000);
63
64 if (result.getReceivedCounter() == 2) {
…

72 assertEquals("130", grouped.get(0).getIn().getBody(String.class));
73 assertEquals("200", grouped.get(1).getIn().getBody(String.class));
74 }
75 }

Listing 2.6: An example of the ST test smell.

59 @Test
60 public void testSendAndReceive() throws Exception {
61 }

Listing 2.7: An example of the EpT test smell.

Issues in the test steps

This category refers to test smells occurring in specific language constructs, such as
assertions and setup methods, leading to incomplete test steps. (GAROUSI; KüçüK,
2018; MARTINS et al., 2023). Some test smells in this category are described as follows.

(6) Empty Test (EpT). It occurs when a test method has no executable statements.
An empty test can be considered more dangerous than not having a test case since
JUnit will indicate that the test passes even if there are no executable statements in
the method body (PERUMA et al., 2019). Listing 2.7 presents an EpT test smell in the
testSendAndReceive test method with no executable statements (lines 60 and 61).

85 @Test
86 public void testMandatoryConvertToNotPossible() {
87 try {
88 CamelContextHelper.mandatoryConvertTo(context , CamelContext.class , "5");
89 fail("Should have thrown an exception");
90 } catch (IllegalArgumentException e) {
91 // expected
92 }
93 }

Listing 2.8: An example of the ECT test smell.

2.2. TEST SMELLS 22

34 @BeforeEach
35 public void setUp() {
36 camelContext = new DefaultCamelContext();
37 Message message = new DefaultMessage(camelContext); message.setBody("This is the

message body");
38 exchange = new DefaultExchange(camelContext);
39 exchange.setIn(message);
40 exchangeFormatter = new DefaultExchangeFormatter();
41 }
42
43 @Test
44 public void testDefaultFormat() {
45 String formattedExchange = exchangeFormatter.format(exchange);
46 assertTrue(formattedExchange.contains("This is the message body"));
47 }

Listing 2.9: An example of the GF test smell.

73 @Test
74 public void testLine1LF() throws Exception {
75 assertReadAsWritten("line1LF", "line1\n", "line1\n");
76 }

Listing 2.10: An example of the RA test smell.

(7) Exception Handling (ECT). It occurs when a test method for which pass
or failure depends on the production/test method to throw an exception instead of us-
ing the testing framework constructs (PERUMA et al., 2019). Listing 2.8 shows the
testMandatoryConvertToNotPossible test method of the CamelContextHelperTest
class. It contains an ECT test smell as it uses a try/catch block (lines 87-92) to capture
the exception thrown by the mandatoryConvertTo() production method (line 88).

(8) General Fixture (GF). It occurs when not all test methods use the test case
fixture, indicating that the setup is too general. Consequently, it may slow down the
test execution as the setup may become complex, with unnecessary steps for tests that
don’t require them (PERUMA et al., 2019). Listing 2.9 shows the setup of the test class
(DefaultExchangeFormatterTest) instantiating objects, but the testDefaultFormat
test method does not use them, e.g., the exchangeFormatter object (line 40).

(9) Redundant Assertion (RA). It occurs when a test method contains assertions
whose results are always true or are always false. A test must return a binary outcome
of whether the intended result is or is not correct and should not return the same output
regardless of the input (PERUMA et al., 2019). Listing 2.10 presents an RA test smell
in the testLine1LF test method of the IOHelperTest test class. The assertion contains

2.2. TEST SMELLS 23

64 @Test
65 public void testAddDuplicateTypeConverter() {
66 DefaultCamelContext context = new DefaultCamelContext();
67
68 context.getTypeConverterRegistry().addTypeConverter(MyOrder.class , String.class , new

MyOrderTypeConverter());
69 context.getTypeConverterRegistry().addTypeConverter(MyOrder.class , String.class , new

MyOrderTypeConverter());
70 }

Listing 2.11: An example of the UT test smell.

23 public class OnCompletionAfterChainedSedaRoutes extends ContextTestSupport {
24
25 @Test
26 public void testOnCompletionChained() throws Exception {
…

84 }

Listing 2.12: An example of the BaN test smell.

three parameters: the assertion message, the expected value, and the actual result (line
75). However, the expected and actual values are the same strings.

(10) Unknown Test (UT). It occurs when a test method does not contain assertions.
As a result, JUnit shows the test method as passing unless the statements raise an excep-
tion in the test method (PERUMA et al., 2019). Listing 2.11 presents a UT test smell in
the testAddDuplicateTypeConverter test method of the TypeConverterRegistryTest
test class. That method contains executable statements but not assertions (lines 65-69).

Code Related

This category refers to test smells related to test code duplication, long, complex, and
hard-to-understand tests, and tests that do not follow coding best practices regarding
naming conventions and code organization (GAROUSI; KüçüK, 2018; MARTINS et al.,
2023). Some test smells in this category are described as follows.

(11) Bad Naming (BaN). It occurs when the test classes do not follow the JUnit
naming conventions (MESZAROS; SMITH; ANDREA, 2003), i.e., the test class should be
in the same package hierarchy as its respective production class, and the test class name is
the production class name append or pre-pend with the “Test” word. Listing 2.12 shows
the test class OnCompletionAfter ChainedSedaRoutes extending ContextTestSupport;
however, its name does not contain the “Test” word (line 23).

2.2. TEST SMELLS 24

851 @Test
852 public void testReset() throws Exception {
853 NotifyBuilder notify = new NotifyBuilder(context).whenExactlyDone(1).create();
854
855 template.sendBody("direct:foo", "Hello World");
856 assertEquals(true, notify.matches());
857
858 template.sendBody("direct:foo", "Bye World");
859 assertEquals(false , notify.matches());
860
861 // reset
862 notify.reset();
863 assertEquals(false , notify.matches());
864
865 template.sendBody("direct:foo", "Hello World");
866 assertEquals(true, notify.matches());
867
868 template.sendBody("direct:foo", "Bye World");
869 assertEquals(false , notify.matches());
870 }

Listing 2.13: An example of the DA test smell.

95 @Disabled("Manually enable this once you configure the parameters in the placeholders above")
96 @Test
97 public void testListUsers() throws Exception {
…

111 }

Listing 2.14: An example of the IgT test smell.

(12) Duplicate Assert (DA). It occurs when a test method that checks the same
condition with different values. Whether the test method needs to test the same condition
using different values,the developers should create a new test method (PERUMA et al.,
2019). Listing 2.13 presents a DA test smells in the testReset test method of the
NotifyBuilderTest. That method instantiates a NotifyBuilder object and verifies
whether the message sent matches the notification (lines 855-859). The same test method
calls the reset statement (line 861). It repeats the same assertions to verify whether the
message sent matches the notification (lines 865-869). In addition, such assertions also
contain the AR test smell.

(13) Ignored Test (IgT). It occurs when developers suppress test methods from
running using the tags @Ignore or @Disabled. Consequently, the ignored test methods
add unnecessary overhead regarding compilation time, making it hard to understand the
test code (PERUMA et al., 2019). Listing 2.14 shows the testListUsers method of the
ListUsersFunctionalTest test class with the @Disabled tag, with a comment to enable
the test after configuring the parameters (line 95).

2.2. TEST SMELLS 25

57 @Test
58 public void testTimeout1() throws Exception {
59 initResequencer(500, 10);
60 resequencer.insert(4);
61 assertNull(buffer.poll(250));
62 assertEquals((Object) (Integer) 4, (Object) buffer.take());
63 assertEquals((Object) (Integer) 4, (Object) resequencer.getLastDelivered());
64 }

Listing 2.15: An example of the MNT test smell.

33 @Test
34 public void testGenerateUUID() {
35 ClassicUuidGenerator uuidGenerator = new ClassicUuidGenerator();
36
37 String firstUUID = uuidGenerator.generateUuid();
38 String secondUUID = uuidGenerator.generateUuid();
39 System.out.println(firstUUID);
40
41 assertNotSame(firstUUID , secondUUID);
42 }

Listing 2.16: An example of the RP test smell.

(14) Magic Number Test (MNT). It occurs when assert statements in a test
method contain numeric literals as parameters that cannot provide their meaning. Magic
numbers should be replaced by a named constant, where the name describes where the
value comes from or what it represents (PERUMA et al., 2019). Listing 2.15 present
MNT test smells in the testTimeout1 test method of the ResequencerEngineTest test
class. That method uses numeric literals to verify buffer size and timeout (lines 59-63).

(15) Redundant Print (RP). It occurs when a test method contains print state-
ments. It can consume computing resources or increase execution time if the developer
calls a long-running method from within the print method (PERUMA et al., 2019).
Listing 2.16 presents a RP test smell in the testGenerateUUID test method of the
ClassicUuidGeneratorTest test class. There is a call for the System.out.println()
method to print the string value assigned to the firstUUID object (line 39). In addition,
the test method has an AR test smell (line 41).

2.2.2 Approaches to handle test smells

In their work, Garousi and Küçük (2018) introduced a lifecycle for the manifestation of
test smells and outlined approaches to address them. The lifecycle begins with the devel-
opment of automated software tests, where developers have the option to either utilize

2.2. TEST SMELLS 26

automated tools to design and code the test suite or proceed with manual implementa-
tion. When manually coding the test suite, developers should adhere to testing guidelines
to prevent the introduction of test smells (MESZAROS; SMITH; ANDREA, 2003). How-
ever, adherence to these guidelines is not always consistent, leading to the insertion of
test smells. Some test smells are indicative of defects in the test code, such as tests that
consistently pass or non-deterministic tests like flaky tests (BELL et al., 2018; FATIMA;
GHALEB; BRIAND, 2022). Therefore, developers are encouraged to utilize catalogs and
tools for detecting and eliminating test smells to enhance the quality of the test code. As
a software project evolves and already includes a test suite, developers must maintain it
to test new or modified features. Figure 2.2 outlines the lifecycle, which comprises three
key activities:

Figure 2.2: Lifecycle of test smells (adapted from Garousi and Küçük (2018)).

(1) Developing and maintaining the test suite. Developers should follow good
practices in designing or implementing the test code to prevent the insertion of test
smells. The adherence to the Setup, Stimulate, Verify, and Teardown (SSVT) structure
is beneficial for the key test design criteria (MESZAROS; SMITH; ANDREA, 2003;
MESZAROS, 2007):

• Concise. Tests should be standardized in execution behavior, reporting, and error
processing;

2.2. TEST SMELLS 27

• Self Checking. Tests should report their results without human interpretation;

• Repeatable. Tests should run several times without human intervention;

• Robust. Tests should run several times and always produce the same result;

• Sufficient. Tests should verify all the requirements of the software under test;

• Necessary. Tests should not be duplicated;

• Clear. Tests should be easy to understand;

• Efficient. Tests should run in a suitable amount of time;

• Specific. Failing tests should point to a piece of broken functionality to provide
defect triangulation;

• Independent. Tests should run without depending on other tests in any order;

• Maintainable. Tests should follow the design principles of object-oriented;

• Traceable. It should be easy to trace the requirement the tests verify.

(2) Detecting test smells. Assessing the test design criteria of the prior item is a non-
trivial task. The catalogs of test smells can facilitate the detection of potential violations
of those criteria by exploiting their relationship with the SSVT structure (ROMPAEY et
al., 2007). While some test smells are generic (independent of any test framework/tool),
others are specific to certain frameworks/tools. In this direction, Garousi and Küçük
(2018) presented a unified catalog of 196 test smells discussed in the formal and informal
literature. Still, the manual detection of test smells can become challenging for large
test suites in practice. In addition, several automated tools have been proposed in the
literature to support developers in detecting test smells. Besides 22 tools that implement
different strategies to detect test smells mapped by Aljedaani et al. (2021), other tools
are also available (Table 2.1). Usually, the automated tools implement the following
detection strategies (ALJEDAANI et al., 2021):

• Metrics-based. The test code is parsed and converted into an Abstract Syntax
Tree (AST). The AST is analyzed to calculate structural and semantic metrics;
then the metrics are interpreted according to threshold values;

2.3. SOFTWARE REFACTORING 28

• Rules or Heuristic-based. The rules or heuristic-based test smell detection
approach augments the metrics-based approach by combining the metrics values
with patterns found in the test code;

• Information Retrieval. The information retrieval-based approach consists of
extracting textual content (e.g., source code identifier and source comments) from
the test code and normalizing it. The textual content is taken as pre-processed
features to serve as input to the ML algorithms;

• Dynamic Tainting. The dynamic tainting-based approach monitors the test code
while it executes. It runs the test code with a predefined value to detect test smells.

(3) Fixing test smells. Fixing test smells occurs mostly through refactorings. Fowler
(1999) presents a catalog of refactoring to improve the production code quality. Later,
Deursen et al. (2001) extended such a catalog with refactorings for the test code. As
the test code refactoring to fix test smells can become challenging for large test suites
in practice, other studies have proposed tools to support developers in refactoring the
test code (ALJEDAANI et al., 2021). Table 2.1 shows which detection tools support
refactoring strategies. The TestHound tool provides textual information for the test
smell refactoring. Differently, RAIDE, RTj, DARTS, and TRex tools provide a (semi)
automated refactoring to fix test smells. However, those tools neither provide details
concerning the accuracy nor support recent features of JUnit5.

2.3 SOFTWARE REFACTORING

Refactoring is one of the most important activities to improve code quality. The ob-
jectives of refactoring include but are not limited to (MENS; TOURWE, 2004; KIM;
ZIMMERMANN; NAGAPPAN, 2012; BAVOTA et al., 2015): combating software de-
sign degradation, reducing the effort to perform maintenance activities, facilitating the
implementation of new features, correcting bugs, and removing anomalous structures
such as smells from the code. Regardless of the refactoring objective, an expectation is
that refactorings contribute to improving the resulting code structure without altering
its behavior (OPDYKE, 1992; FOWLER, 1999; DEURSEN et al., 2001).

From the perspective of refactoring, test smells are code fragments that suggest the
possibility of refactoring test codes (DEURSEN et al., 2001). Most integrated develop-

2.3. SOFTWARE REFACTORING 29

Table 2.1: Characteristics of detection and refactoring tools to handle test smells (ex-
tended from Aljedaani et al. (2021)).

Tool Framework Precision Detection technique Interface #Smells

DARTS† JUnit 76% Information Retrieval IntelliJ plugin 3
DrTest SUnit UKN Rule, Dynamic Tainting Pharo plugin 1
DTDetector JUnit UKN Dynamic Tainting Command line 1
ElectricTest JUnit UKN Dynamic Tainting Command line 1
JNose Test JUnit 91-100% Rule Web application 21
JTDog⋆ JUnit UKN Dynamic Tainting IntelliJ plugin 10
Neutrino† ⋆ JUnit UKN Rule Eclipse plugin 7
OraclePolish JUnit UKN Dynamic Tainting Command line 2
PyNose⋆ Unittest UKN Rule Command line 17
PyTest-Smell⋆ PyTest UKN Rule Command line 17
PolDet JUnit UKN Dynamic Tainting UKN 1
PraDeT JUnit UKN Dynamic Tainting Command line 1
RAIDE† JUnit UKN Rule Eclipse plugin 2
RTj† JUnit UKN Rule, Dynamic Tainting Command line 1
SoCRATES Scala 98.94 Rule IntelliJ plugin 6
Taste JUnit 57%-75% Information Retrieval UNK 3
TeCReVis JUnit UKN Metrics, Dynamic Tainting Eclipse plugin 1
TEDD JUnit 80% Information Retrieval Command line 1
TeReDetect JUnit UKN Metrics, Dynamic Tainting Eclipse plugin 1
TestEvoHound JUnit, TestNG UKN Metrics UKN 6
TestHound† JUnit, TestNG UKN Metrics Desktop 6
TestLint Sunit UKN Rule, Dynamic Tainting UKN 27
TestQ CppUnit, JUnit UKN Metrics Desktop 12
TRex† TTCN-3 UKN Rule Eclipse plugin 38
tsDetect JUnit 85%-100% Rule Command line 19
Unnamed JUnit 88% Rule Command line 9
VITRuM⋆ JUnit 85%-100% Rule IntelliJ plugin 7
TSVizz⋆ JUnit UKN Rule Standalone 19
MeteoR†⋆ JUnit UKN Dynamic Tainting Eclipse plugin 1
SniffTest⋆ JUnit 96%, 97% Rules/Heuristic GUI 5
TESTAXE†⋆ JUnit 100% Rules Command line 5

† Refactoring support, ⋆Tool released after the publication of the mapping study

ment environments provide (semi-)automatic refactoring derived from Fowler’s catalog
to support developers refactoring the test code (e.g., Eclipse IDE5 and IntelliJ IDEA6).
Although some refactorings are common to the production and test code, the test code
can require specific refactorings for fixing test smells (DEURSEN et al., 2001). In this di-
rection, some studies have proposed strategies and tools to support test code refactoring
(ALJEDAANI et al., 2021).

The remaining subsections present the base refactorings from Fowler’s catalog, refac-
5Available at: https://www.eclipse.org/ide/
6Available at: https://www.jetbrains.com/idea/

2.3. SOFTWARE REFACTORING 30

torings specific to test code, and the approaches to perform such refactorings.

2.3.1 Refactoring operations

Each refactoring consists of one or more atomic code transformations, i.e., refactoring
operations (OPDYKE, 1992; FOWLER, 1999). Opdyke (1992) proposed a set of 25
language-independent low-level refactoring operations (and one more for C++) organized
into five groups:

(i) Creating a program entity. Those refactorings create one class or one class
member. They encompass: 1) Creating an empty class, 2) Creating a variable,
and 3) Creating a function.

(ii) Deleting a program entity. Those refactorings delete an unreferenced class or
an unreferenced or redundant class member. They encompass: 4) Delete unrefer-
enced class, 5) Delete unreferenced variable, and 6) Delete functions.

(iii) Changing a program entity. Those refactorings change the name of one class
or the attributes of one class member. They encompass: 7) Change class name, 8)
Change variable name, 9) Change function name, 10) Change type, 11) Change
access control mode, 12) Add function argument, 13) Delete function argument,
14) Reorder function arguments, 15) Add function body, 16) Delete function body,
17) Convert variable references to function calls, 18) Replace statement list with
function call, 19) Inline function call, and 20) Change superclass.

(iv) Moving a variable. Those refactorings move a variable to a superclass or sub-
class. They encompass: 21) Move variable to superclass, and 22) Move variable to
subclasses.

(v) Composite refactorings. Those refactorings are built on top of the primitive
refactorings to perform more powerful operations. They encompass: 23) Abstract
access to variable, 24) Convert code segment to function, and 25) Move class.

The low-level refactoring operations are the most primitive refactorings to create,
delete, change, and move object-oriented entities. The Composite refactorings cate-
gory is less primitive and supports slightly more powerful refactoring operations. The
low-level refactorings support the high-level ones. Concerning the refactorings for the
production code, Opdyke (1992) proposed three high-level refactorings:

2.3. SOFTWARE REFACTORING 31

• Creating an Abstract Superclass. Define an abstract superclass for a set of
concrete classes and migrate the common behavior to an abstract superclass;

• Subclassing and Simplifying Conditionals. Define subclasses corresponding
to the cases and migrate case-specific behavior down to the subclasses;

• Aggregations & Reusable Components. An aggregate object comprises com-
ponents stored in the object as member variables. Refactorings involving aggregate
objects and their components require that a component object be exclusive to one
aggregate object.

Later, Fowler (1999) extended Opdyke’s (1992) catalog with 72 low and high-level
refactorings. Concerning the refactorings for the test code, Deursen et al. (2001) adapted
and extended Fowler’s (1999) catalog for fixing test smells. We describe them as follows.

Test refactorings. Those refactorings are built on top of the primitive refactorings
to perform test refactorings.

• Inline Resource. Set up a fixture in the test code that holds the contents of the
external resource. This fixture is then used instead of the resource to run the test;

• Setup External Resource. Make sure that the test using external resources
explicitly creates or allocates them;

• Make Resource Unique. Use unique identifiers for all allocated resources, in-
cluding a time stamp;

• Reduce Data. Minimize the data set up in fixtures to the bare essentials;

• Add Assertion Explanation. Add an explanatory message in the optional first
argument of the assertions in the JUnit framework;

• Introduce Equality Method. Add an implementation for the “equals” method
to verify the necessity of checking the equality of the object;

• Parameterize Test. Remove duplicate code using the parameterized test
annotation to define a variety of arguments.

2.3. SOFTWARE REFACTORING 32

2.3.2 Refactoring approaches

According to Fowler (1999), refactoring consists of two distinct steps: i) detecting the
location to refactor the code and ii) identifying which refactoring should be applied. We
can carry out those steps through manual or automated approaches.

Manual refactoring. Fowler (1999) and Deursen et al. (2001) provided a list of smells
and possible test refactorings for fixing them in the production and test code, respectively.
According to Fowler (1999), the most reliable approach to manually detecting smells and
refactoring the test code is through code reviews. Manual approaches for detecting smells
require a great human effort to interpret and analyze the code; thus, we can use them in
smaller test suites. Another issue is that manual detection is highly subjective, relying
on the developers’ experience and knowledge of the software and domain. Concerning
manual refactorings, Opdyke (1992) proposed the definition of pre and post-conditions
to preserve the software behavior when applying refactorings. Besides finding the best
refactoring to fix the smell, the developers must ensure keeping the test code behavior.

Automated refactoring. Refactoring recommendation solves two problems in au-
tomatic software refactoring (MENS; TOURWE, 2004): i) identification of refactoring
opportunities and ii) selection of the correct refactoring. Many tools detect test smells
and recognize them as a refactoring opportunity. However, only a few tools support devel-
opers with automatic refactoring. The RTj, DARTS, and TRex tools provide a complete
solution for refactoring the detected smells. Developers should accept the entire refactor-
ing solution, i.e., the tools do not provide the flexibility to adapt the suggested solution.
The TestHound tool provides textual information (GREILER; DEURSEN; STOREY,
2013), and the RAIDE tool provides semi-automated test refactoring to fix test smells
(SANTANA et al., 2020). Developers should analyze whether and how to apply com-
plementary refactorings to fix test smells. While automation is important, it is essential
to understand the points at which human oversight, intervention, and decision-making
should impact automation. Human developers might reject changes made by any auto-
mated programming technique, especially if they feel they have little control; there will be
a natural reluctance to trust and use the automated refactoring tool (MURPHY-HILL;
PARNIN; BLACK, 2011).

2.4. TEST CODE QUALITY ASSESSMENT 33

2.4 TEST CODE QUALITY ASSESSMENT

Software metrics offer quantitative evidence that aids software engineers in comprehend-
ing the impact of code structure on various quality attributes such as reusability, main-
tainability, and testability (TEMPERO et al., 2010). This evidence supports the pro-
cesses of planning, creating, and evaluating software. Although the presence of smells in
test code may indeed influence its quality, particularly in terms of comprehension and
readability (BAVOTA et al., 2015; TUFANO et al., 2016), other structural and process
metrics can provide a comprehensive overview of test quality.

According to Pecorelli et al. (2020b), a valuable approach to identifying test code in
need of maintenance operations is to evaluate the overall quality of test suites and their
alignment with good practices in the object-oriented paradigm. In particular, throughout
this study, we utilize five metrics related to test code size, complexity, and coupling. While
many automated tools are available for calculating structural metrics from the source code
(e.g., Eclipse Metrics and CK Metrics), we opted to utilize VITRuM (VIsualization
of Test-Related Metrics), a plug-in specifically designed to calculate and visualize test-
related metrics (PECORELLI et al., 2020b) (refer to Table 2.2).

Table 2.2: Description of quality metrics (PECORELLI et al., 2020b)

Acronym Quality Metrics Description

LOC Number of Lines Counts the number of lines
NOM Number of Methods Counts the number of methods
WMC Weight Method Class Counts the number of branch instructions in a class
RFC Response for a Class Counts the number of method invocations in a class
AsD Assertion density Percentage of assert statements concerning the total num-

ber of statements in a test class

Another factor influencing test code quality is developers’ experience and roles
within the project (CAMPOS et al., 2023; CAMPOS; MARTINS; MACHADO, 2023).
To capture aspects of the development process rather than aspects of the code itself, we
analyze several ad-hoc metrics extracted from open-source repositories to characterize
developers’ experience and activities in the test code throughout this study. Specifically,
we utilize PyDriller (SPADINI; ANICHE; BACCHELLI, 2018), a Python framework
for mining software repositories, to gather information on commits, developers, modifi-
cations, diffs, and source code (refer to Table 2.3).

2.5. MACHINE LEARNING 34

Table 2.3: Description of process metrics (SPADINI; ANICHE; BACCHELLI, 2018)

Acronym Quality Metrics Description

CCT Code Churn Total It measures the total number of lines of code that have been
modified across the analyzed commits

CCM Code Churn Max It represents the maximum amount of code churn for a file
in a single commit

CCA Code Churn Average It measures the average code churn per commit
Co Commits Count It measures the number of commits made to a file
Con Contributors Count It counts the number of developers that contributed to a

file
MCon Minor Contributors Count It counts the number of contributors that contributed with

less than 5% to the file
ConE Contributors Experience It measures the percentages of the lines authored by the

highest contributor of a file
ALC Lines Added Count It counts the total lines added across the commits
ALM Lines Added Max It represents the maximum number of added lines for a file

in a single commit
ALA Lines Added Average It measures the average number of lines added across the

commit
RLC Lines Removed Count It counts the total lines removed across the commits
RLM Lines Removed Max It represents the maximum number of removed lines for a

file in a single commit
RLA Lines Removed Average It measures the average number of lines removed across the

commits

2.5 MACHINE LEARNING

We can categorize the ML techniques as supervised, unsupervised, self-supervised, and re-
inforcement learning (KAELBLING; LITTMAN; MOORE, 1996; SARKER et al., 2020).
Supervised learning is typically the task of ML to learn a function that maps an input
to an output based on sample input-output pairs (HAN; KAMBER; PEI, 2011). Unsu-
pervised learning analyzes unlabeled datasets without the need for human interference,
i.e., a data-driven process (HAN; KAMBER; PEI, 2011). We can define self-supervised
learning as hybridizing supervised and unsupervised algorithms because it operates on
labeled and unlabeled data (SARKER et al., 2020). Finally, reinforcement learning en-
ables software agents and machines to automatically evaluate the optimal behavior in a
particular context to improve efficiency (KAELBLING; LITTMAN; MOORE, 1996).

2.5.1 Supervised Machine Learning algorithms

This section explores supervised ML algorithms used throughout this thesis to perform
classification tasks. As the literature on test refactoring classification is embryonic, we

2.5. MACHINE LEARNING 35

took this opportunity to benchmark learning algorithms with different characteristics.
They are: 1) Decision Trees (DT), 2) Random Forest (RF), 3) Extra-Tree (ExT), 4)
Logistic Regression (LR), 5) Naive Bayes (NB), and 6) Support Vector Machine (SVM).
In order to show how the algorithms work, please consider the dataset of Table 2.4 with
two features related to test code quality and the class label indicating whether the test
class was refactored.

Table 2.4: Dummy dataset for test class refactorings.

ID Class Name Complexity Test Smells Refactored

I0 UserServiceTest Low True Yes
I1 DatabaseConnectionTest Medium False No
I2 GUIControllerTest High True Yes
I3 FileParserTest Low False No
I4 ReportGeneratorTest High True Yes
I5 DataValidatorTest Medium False No
I6 LoggingManagerTest Low True Yes
I7 PaymentProcessorTest High True No
I8 ConfigurationReaderTest Medium False Yes
I9 EmailSenderTest High True No

(1) Decision Tree (DT). The DT algorithm approximates robust discrete functions
in noise and can express disjunctive learning (QUINLAN, 1993; FREUND; MASON,
1999). In more detail, each node of a DT algorithm specifies a test of some attribute,
and the branch descending specifies the possible values for the attribute. Therefore,
a DT algorithm classifies instances by sorting them down the tree until a leaf node
(MITCHELL, 1997).

While multiple ways exist to select the best attribute at each node, the Information
Gain (IG) is a popular splitting criterion for decision tree models. Entropy (E) is a
concept that stems from information theory, which measures the impurity of the sample
values. The Entropy is given by the equation:

E(S) = −
∑
c∈C

p(c)log2p(c) (2.1)

where S is the dataset to calculate the entropy, c represents the classes in S, p(c) repre-
sents the proportion of data points that belong to class c to the total of data points.

Information Gain represents the difference in entropy before and after a split on
a given attribute. The attribute with the highest information gain will produce the

2.5. MACHINE LEARNING 36

best split as it is doing the best job classifying the training data according to its target
classification. The Information Gain is given by the equation:

IG(S, a) = E(S)−
∑

v∈values(a)

|Sv|
S

E(Sv) (2.2)

where a represents an attribute or class, E(S) is the entropy of a dataset S, |Sv|/|S|
represents the proportion of the values in Sv to the number of values in S, and E(Sv) is
the entropy of the Sv dataset.

Now, let us calculate the Entropy and Information Gain for each feature in the
dataset in Table 2.4 and determine the best feature to split on. For simplicity, we use a
binary split for each feature.

E(S) = −p(Refactored) · log2(p(Refactored))− p(NotRefactored) · log2(p(NotRefactored))

= − 5

10
· log2

(
5

10

)
− 5

10
· log2

(
5

10

)
= 1

(2.3)

Then, we calculate the information gain for the complexity subset IG(Complexity, S):

IG(Complexity, S) = E(S)−
∑

v∈{Low,Medium,High}

|Sv|
|S|

E(Sv)

= 1−
(

3

10
E(SLow) +

3

10
E(SMedium) +

4

10
E(SHigh)

) (2.4)

where SLow, SMedium, and SHigh are the subsets of the dataset where Complexity is Low,
Medium, and High, respectively. When calculating their entropy, we have:

• E(SLow) = −3
3
· log2

(
3
3

)
− 0 · log2 (0) = 0

• E(SMedium) = −0
3
· log2

(
0
3

)
− 3

3
· log2

(
−3

3

)
= 0

• E(SHigh) = −3
4
· log2

(
3
4

)
− 1

4
· log2

(
−1

4

)
≈ 0.811

Replacing those values in the Equation 2.4, we have:

2.5. MACHINE LEARNING 37

IG(Complexity, S) = 1−
(

3

10
· 0 + 3

10
· 0 + 4

10
· 0.811

)
≈ 0.317 (2.5)

Similarly, we calculate the information gain for IG(TestSmells, S), resulting in:

IG(Code Smells, S) = E(S)−
∑

v∈{True,False}

|Sv|
|S|

E(Sv)

= 1−
(

6

10
E(STrue) +

4

10
E(SFalse)

)
= 1−

(
6

10
· 0.65) + 4

10
· 0
)

≈ 0.369

(2.6)

where DTrue and DFalse are the subsets of the dataset where Test Smells is True and
False, respectively.

Subsequently, we choose the feature with the highest information gain as the root
node of the decision tree. In this case, it’s Complexity. Then, we continue the process
recursively for each branch until we build the tree in Figure 2.3.

Complexity

Refactored

Low

Test Smells

Medium

Refactored

True

Not refactored

False

Test Smells

High

Not refactoredRefactored

False True

Figure 2.3: Building the Decision Tree for the Test Refactoring classification. The circles
highlighted in blue represent the steps to classify the new instance ReceiverEmailTest.

Finally, we can classify the new instance ⟨EmailReceiverTest, Medium, True⟩ by
comparing the values with the tree nodes and branches. In particular, we follow the
branch Medium below Complexity. Then, we follow the branch True under Medium.
Therefore, the classification for the instance is Refactored.

2.5. MACHINE LEARNING 38

(2) Random Forest (RF). The RF algorithm contains trees based on the values of a
random subset of instances experimented individually and with the same distribution for
all trees in the forest (HO, 1995; BREIMAN, 2001). The RF algorithm’s key idea is to
introduce randomness in data selection and the features considered during tree-building.

While the DT algorithm is based upon a fixed set of attributes and often overfit, RF
uses the bagging technique to build full DTs in parallel from random bootstrap samples
of the dataset. The representation of bagging for the RF algorithm is given by:

Bagging : D
′

i = (x1, y1), (x2, y2), ..., (xn, yn) (2.7)

where D
′
i is the randomly sampled subset of the D original dataset.

In addition to using a random subset of instances, each DT in the RF algorithm
considers only a random subset of features at each split. This randomness helps in
decorating the trees and improves the diversity among them. With this, the RF algorithm
combines the predictions of trees through voting for classification tasks, providing a more
robust and accurate model compared to individual DTs. As a result, it helps overcome
overfitting associated with individual DTs.

In each iteration of building a decision tree within the RF algorithm, a random
subset of instances is selected with replacement (bootstrapping). For example, let us
consider RF with three trees with the following instances randomly selected from Table
2.4:

• Random Forest #1: with the instances [I7, I6, I4, I0, I6, I6, I8, I2, I8, I0]

• Random Forest #2: with the instances [I3, I8 I5, I2, I0, I3, I8, I2, I8, I6]

• Random Forest #3: with the instances [I3, I2, I9, I4, I4, I2, I8, I3, I4, I3]

Figure 2.4 presents the results for the Entropy at each node of the decision trees built
with the RF algorithm. To classify the new instance ⟨EmailReceiverTest, Medium, True⟩,
we can consider the categories Low, Medium, and High from the categorical variable
Complexity as numerals 0, 1, and 2, respectively. Similarly, we consider the True values
for test smells as 1. Therefore, in Random Forest #1, we classify the new instance as
Refactored because of the Complexity. In Random Forest #2, we follow the right branch
below Test Smells, as the new instance contains smells. In Random Forest #3, we follow

2.5. MACHINE LEARNING 39

Complexity

RefactoredRefactored

<= 1.5 > 1.5

Test Smells

RefactoredComplexity

<= 0.5

RefactoredNot
Refactored

<= 0.5 > 0.5

> 0.5

Complexity

Test SmellsNot
Refactored

<= 0.5

Refactored Refactored

> 0.5

> 0.5<= 0.5

(a) Random Forest #1 (b) Random Forest #2 (c) Random Forest #3

Figure 2.4: Building the Trees with Random Forest algorithm for the Test Refactoring
classification.

to the right branch below Complexity, as the new instance has Medium complexity (1).
Then, we follow to the right branch below Test Smells, and classify the instance as
Refactored.

(3) Extra-Tree (ExT). ExT is another ensemble learning method based on the RF
algorithm. It introduces additional randomness during rebuilding, making it even more
robust to overfitting. In particular, ExT algorithm uses random subsets of instances
(bagging) and random subsets of features and selects split points at random rather than
searching for the optimal split (GEURTS; ERNST; WEHENKEL, 2006). Overall, the
added randomness in ExT algorithm enhances diversity, reduces computational costs as
the algorithm does not need to search for optimal split points, and helps improve the
performance generalization of the model.

In each iteration of building a decision tree within the ExT algorithm, a random
subset of instances is selected with replacement as well as the features (Test Smells,
Complexity). For example, let us consider ExT with three trees with the following features
and instances randomly selected from Table 2.4:

• Extra-Tree #1: with the instances [I6, I4, I9, I5, I4, I8, I5, I7, I1, I8], and features
[Complexity, Test Smells].

• Extra-Tree #2: with the instances [I3, I2, I9, I4, I7, I3, I0, I6, I7, I2], and features
[Complexity, Test Smells].

• Extra-Tree #3: with the instances [I6, I9, I0, I9, I4, I9, I1, I5, I0, I2], and features
[Complexity].

2.5. MACHINE LEARNING 40

Complexity

RefactoredComplexity

<= 1.25

RefactoredNot
Refactored

<=0.92 > 0.92

> 1.25

Complexity

Not
RefactoredTest Smells

<= 1.26

RefactoredNot
Refactored

<= 0.63 > 0.63

> 1.26

Complexity

ComplexityRefactored

<= 0.81

Refactored Not
Refactored

> 0.81

<= 1.42> 1.42

(a) Extra-Tree #1 (b) Extra-Tree #2 (c) Extra-Tree #3

Figure 2.5: Building the Trees with ExT algorithm for the Test Refactoring classification.

Figure 2.5 presents the decision trees built with the ExT algorithm by calculating
the Entropy and Info-Gain as discussed previously. In order to classify the new instance
⟨EmailReceiverTest, Medium, True⟩, we can consider the categories Low, Medium, and
High from the categorical variable Complexity as numerals 0, 1, and 2, respectively.
Similarly, we consider the True values for test smells as 1. Therefore, in Extra-Tree #1,
we follow the left branch below Complexity, as the new instance has Medium complexity
(1 < 1.99). Then, we follow the right branch below Test Smells as the new instance is
smelly, classifying the new instance as Refactored. In Extra-Tree #2, we follow the left
branch below Complexity, then the right branch below Test Smells, classifying the new
instance as Refactored. In Extra-Tree #3, we follow the left branch below Complexity
twice and classify the new instance as Not Refactored. As the ExT algorithm decides the
new instance class by voting, 2 out of 3 trees classified the instance as Refactored, which
is the final label.

(4) Logistic Regression (LR). LR algorithm uses linear functions as f : X → Y

or P (Y |X) where Y is a discrete-valued, and X = ⟨X1...Xn⟩ is any vector containing
discrete or continuous variables to establish a correlation between the unobserved and
observed instances (MITCHELL, 1997; BISHOP, 2006). In particular, we considered Y
as a boolean variable, e.g., for classifying whether a test class refactored (Y = 1) or not
refactored (Y = 0). The model assumed by LR algorithm where Y is boolean is:

P (Y = 0|X) =
exp(w0 +

∑n
i=1 wiXi)

1 + exp(w0 +
∑n

i=1 wiXi)

P (Y = 1|X) =
1

1 + exp(w0 +
∑n

i=1 wiXi)

(2.8)

2.5. MACHINE LEARNING 41

where exp models the odds ratio using the exponential function of the linear combination
of the coefficients and independent variables, w refers to the log-odds of the probability
of the dependent variable being 1 when all independent variables are 0 (w0) and when
each independent variable is 0 (wi).

The probability transformed into odds using the sigmoid function:

Y =
1

1 + exp(−X)
(2.9)

Now, considering the dataset of test code refactorings in Table 2.4, we have to
find the vector of weights w. Typically, LR model involves an optimization algorithm,
such as gradient descent, to find the optimal values for the weights that minimize a
cost function. Therefore, we will not calculate them here but rely on the algorithm
execution. As an output, the algorithm returns the intercept (w0 = −0.39), and the
weights (w1 = 0.01w2 = 0.63). Therefore, we have:

P (Y = 0|X) =
exp(−(0.39 + 0.01 · Complexity + 0.63 · TestSmells))

1 + exp(−(0.39 + 0.01 · Complexity + 0.63 · TestSmells))

P (Y = 1|X) =
1

1 + exp(−(0.39 + 0.01 · Complexity + 0.63 · TestSmells))

(2.10)

Now, let us classify the new instance ⟨EmailReceiverTest, Medium, True⟩. We can
transform the categorical into numerical variables. As a result, the values Low, Medium,
High are converted into 0, 1, and 2 for the Complexity feature. Similarly, the value True
for the Test Smells feature is 1, and False is 0. It means that the new instance has
Complexity = 1 and TestSmells = 1, resulting in:

P (Y = 0|X) =
exp(−(0.39 + 0.01 · 1 + 0.63 · 1))

1 + exp(−(0.39 + 0.01 · 1 + 0.63 · 1))

P (Y = 1|X) =
1

1 + exp(−(0.39 + 0.01 · 1 + 0.63 · 1))

(2.11)

P (Y = 0|X) ≈ 0.26

P (Y = 1|X) =≈ 0.73
(2.12)

2.5. MACHINE LEARNING 42

As P (Y = 1|X) ≈ 0.73, we classify the new instance as Refactored. Figure 2.6
shows the distribution of data points in the feature space (yellow points for Refactored
classes), the new instance classification (red x marker), and the decision boundary to
indicate predicted probabilities of a class being Refactored (superior area).

Figure 2.6: Classification of the new instance EmailReceiverTest using LR algorithm.

(5) Naive Bayes (NB). The NB algorithm is a classification algorithm based on
Bayes’ rule and conditional independence assumptions (MITCHELL, 1997; BISHOP,
2006). Considering a classification task with Y representing a binary class of refactored
and non-refactored test classes and a set of features X = ⟨X1...Xn⟩, the goal is to predict
the probability of a class refactored given the observed features. The NB algorithm
calculates that probability using Bayes’ theorem:

P (Y |X1, X2, · · · , Xn) =
P (Y) · P (X1|Y) · P (X2|Y) · · · · · P (Xn|Y)

P (X1) · P (X2) · · · · · P (Xn)
(2.13)

where P (Y) is the prior probability of a class refactored, P (X1) · P (X2) · · · · · P (Xn)

serves as a normalization constant, and P (Xi|Y) is the likelihood of feature Xi given a
class refactored Y = 1, and P (Y |X1, X2, · · · , Xn) is the posterior probability of a class
refactored.

The naive assumption is that features are conditionally independent given the class
label, simplifying the calculation, as it allows us to model the likelihood of each feature
independently:

2.5. MACHINE LEARNING 43

P (Xi|Y) = P (Xi|Y,X1, X2, · · · , Xi−1, Xi+1, · · · , Xn) (2.14)

Under this assumption, the formula simplifies to:

P (X1...Xn|Y) =
n∏

i=1

P (Xi|Y) (2.15)

Now, let us consider a practical example using a dataset with features representing
the complexity, the presence of test smells, and the class being refactored (Table 2.4).
Supposing we want to classify the new class ⟨EmailReceiverTest, Medium, True⟩ using
the NB algorithm, we first have to calculate the number of instances as:

• Total number of instances (N): 10

• Number of refactored instances (Y): 5

• Number of not refactored instances (N): 5

• Number of refactored instances with Medium Complexity (M |Y): 1

• Number of not refactored instances with Medium Complexity (M |N): 2

• Number of refactored instances with Code Smells = True (T |Y): 4

• Number of not refactored instances with Code Smells = True (T |N): 1

We calculate the probabilities considering each feature:

• P (Y) = Y
N

= 5
10

= 0.5

• P (N) = N
N

= 5
10

= 0.5

• P (M |Y) = M |Y
Y

= 1
5
= 0.2

• P (T |Y) = T |Y
Y

= 4
5
= 0.8

• P (M |N) = M |N
N

= 2
5
= 0.4

• P (T |N) = T |N
N

= 1
5
= 0.2

2.5. MACHINE LEARNING 44

Then, we calculate the probability for the new instance being refactored using Bayes’
Theorem:

P (Y |M,T) =
P (M |Y) · P (T |Y) · P (Y)

P (M |Y) · P (T |Y) · P (Y) + P (M |N) · P (T |N) · P (N)
(2.16)

P (Y |M,T) =
0.2 · 0.8 · 0.5

0.2 · 0.8 · 0.5 + 0.4 · 0.2 · 0.5
=

0.08

0.08 + 0.04
=

0.08

0.12
≈ 0.67 (2.17)

Therefore, the probability that the new instance is refactored is approximately 0.67,
and the probability that it is not refactored is 1− 0.67 = 0.33. Consequently, we classify
the new instance as Refactored.

(6) Support Vector Machines (SVM). SVM algorithm computes a hyper-plane in
high-dimensional space to classify data into predefined classes. The algorithm searches for
the best hyperplane for error minimization and geometric margin maximization (CORTES;
VAPNIK, 1995). While SVM algorithm is versatile enough to handle linear and nonlin-
ear classification tasks, kernel functions become essential when dealing with non-linearly
separable data (NOBLE, 2006).

In the case of Linear SVM algorithm, it creates a hyperplane separating the linearly
separable data into classes. The hyperplane is defined by a weight vector w and a bias
term b. The decision function for a binary classification problem is given by:

ŷ =

{
1 : wTx+ b ≥ 0

0 : wTx+ b < 0
(2.18)

where x represents the input feature vector, w is the weight vector, b is the bias term,
and ŷ is the predicted class.

Supposing that we want to classify a new instance ⟨EmailReceiverTest, Medium, True⟩,
denoted as input vector x, based on the dataset in Table 2.4. We first need to encode the
categorical feature Complexity into numerical values, 0, 1, and 2, for the categories Low,
Medium, and High. So, for the new instance, the encoded feature vector is x = ⟨1, 1⟩.

Subsequently, we use the dataset to calculate the weight vector w:

2.5. MACHINE LEARNING 45

w =
n∑

i=1

αiyixi (2.19)

However, we need to find the Lagrange multipliers (αi) for the support vectors in
the dataset. The Lagrange multipliers involve solving a quadratic optimization problem,
which is typically done using optimization algorithms such as Sequential Minimal Op-
timization (SMO); therefore, we will not calculate them here but rely on the algorithm
execution. Considering the support vectors

• DatabaseConnection, encoded as [2, 0], has α = −0.2

• FileParser, encoded as [0, 1], has α = −1.0

• DataValidator, encoded as [1, 0], has α = −1.0

• PaymentProcessor encoded as [1, 0], has α = −1.0

• EmailSender, encoded as [1, 0], has α = −1.0

• UserService, encoded as [0, 1], has α = −1.0

• GUIController, encoded as [2, 1], has α = 0.2

• ReportGenerator, encoded as [2, 1], has α = −1.0

• LoggingManager, encoded as [0, 1], has α = −1.0

• ConfigurationReader, encoded as [1, 0], has α = −1.0

Now, we replace the values in the equation 2.19, as follows:

w = −0.2× 1× ⟨2, 0⟩+ (−1.0)× 1× ⟨0, 0⟩+ (−1.0)× 1× ⟨1, 0⟩

+(−1.0)× 1× ⟨2, 1⟩+ (−1.0)× 1× ⟨2, 1⟩+ 0.2× 1× ⟨0, 1⟩

+1.0× 1× ⟨2, 1⟩+ 1.0× 1× ⟨2, 1⟩+ 1.0× 1× ⟨0, 1⟩

+1.0× 1× ⟨1, 0⟩ = ⟨−0.4, 1.2⟩

(2.20)

Therefore, the weight vector w is ⟨−0.4, 1.2⟩. This vector defines the normal to the
hyperplane that separates the classes. The bias term b can be obtained from any support

2.5. MACHINE LEARNING 46

vector. let us use the first support vector

b = y1 − w · x1b = 1− ⟨−0.4, 1.2⟩ · ⟨2, 0⟩ = 1.8 (2.21)

Now, we can use this w to classify the instance ⟨EmailReceiverTest,Medium, True⟩:

ŷ

{
1 if ⟨−0.4, 1.2⟩ · ⟨1, 1⟩+ 1.8 ≥ 0

0 if ⟨−0.4, 1.2⟩ · ⟨1, 1⟩+ 1.8 < 0
(2.22)

In this case, 2.6 ≥ 0, so the new instance is classified as Refactored.

On the other hand, nonlinear SVM algorithm is used when the data is not linearly
separable. It involves transforming the input data into a higher-dimensional feature space
through kernel functions, which are classified using a hyperplane in the new space.

f(x) = sign
(

N∑
i=1

αiyiK(x, xi) + b

)
(2.23)

where N is the number of support vectors, yi represents the class label in the support
vector, K(X,Xi) is the kernel function, and b is the bias.

Figure 2.7 presents a comparison among the linear SVM and Kernel functions. In
particular, the Kernel functions considered to classify the new instance are:

• Radial Basis Function or Gaussian Kernel, given by K(x, xi) = exp
(
−∥x−xi∥2

2σ2

)
• Sigmoid, given by K(xi, xj) = tanh(αxiTxj + b)

(a) Linear (b) Radial Basis Function (c) Sigmoid

Figure 2.7: Comparison among difference kernel functions for SVM algorithm. The x
highlighted in red represent the new instance ReceiverEmailTest.

2.5. MACHINE LEARNING 47

Conclusion. The ML algorithms exhibit varied strengths and weaknesses based on the
characteristics of the dataset to which they are applied. The DT algorithm can be prone
to overfitting high-dimensional data and capturing noise, while the SVM algorithm excels
in such spaces. The NB algorithm is robust in handling sparse data, particularly in text
and categorical contexts. Due to their ensemble nature, the RF and ExT algorithms
are adept at managing high-dimensional and sparse datasets. The LR algorithm is well-
suited for linear relationships, making it effective when dealing with linear data. Figure
2.8 shows the boundaries for the ML algorithms for a classification task using a dummy
dataset with two features. The dataset is relatively dense, with no redundant features.

Figure 2.8: Boundaries for ML algorithms based on a binary dummy dataset, where the
scattered points represent the training data points and respective classification.

2.5.2 Evaluation Metrics

We can use the Precision, Recall, F1-Score, and Matthews Correlation Coefficient (MCC)
standard evaluation metrics to evaluate the performance of machine learning models.
Those metrics analyze four possible outcomes from the confusion matrix in Table 2.5. To

2.5. MACHINE LEARNING 48

understand the confusion matrix, consider a task of identifying which instances of the
test code contain a test smell.

Table 2.5: Confusion Matrix for smell detection outcomes.

Actual
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

• True Positive (TP). A smelly instance is classified as smelly;

• False Negative (FN). A smelly instance is classified as non-smelly;

• True Negative (TN). A non-smelly instance is classified as non-smelly;

• False Positive (FP). A non-smelly instance is classified as smelly.

Therefore, the confusion matrix represents a valuable asset for evaluating the per-
formance of an ML model. We can calculate the metrics (KUHN; JOHNSON, 2013):

• Recall. This metric represents how much the model detects existing smelly in-
stances. The recall is the percentage of the true positives (TP) over the number of
true positives (TP) and false negatives (FN);

recall =
TP

TP + FN
(2.24)

• Precision. This metric represents how much the predictions of smelly instances
are correct. The precision is the percentage of the true positives (TP) over the
number of true positives (TP) and false positives (FP);

precision =
TP

TP + FP
(2.25)

• F1-Score. This metric represents the harmonic mean of precision and recall. The
F-Score is the weighted average of the precision and recall times two. It also refers
to F1 or F-Measure.

f1 = 2 ∗ precision ∗ recall
precision+ recall

(2.26)

2.5. MACHINE LEARNING 49

• Matthews Correlation Coefficient (MCC). This metric considers both false
positives and false negatives. Therefore, it provides a useful and balanced measure
when dealing with imbalanced datasets.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.27)

2.5.3 Datasets for detection and refactoring of test smells

There are few publicly available datasets with information on test smells. The datasets
differ regarding the test smell detection tools and domain and project versions, making
it hard to compare their outcomes. The existing datasets are:

• Detection of the presence of test smells. Peruma et al. (2020a) released an
accurate dataset7 with information on test smells in 60 test classes from Android
apps. The dataset contains test smells detected with the tsDetect tool, which
returns a boolean value for a given test smell in the test class;

• Detection of test smells. Virginio et al. (2021) used the same dataset as Peruma
et al. (2020a) to compare the accuracy between the JNose Test8 and the tsDe-
tect tools to detect test smells. Therefore, the authors expanded the dataset9 to
a finer granularity (method, block, and line level), providing the exact location and
number of test smells in a test class;

• Detection of test smells through the evolution of the test code. Kim,
Chen and Yang (2021) extended the tsDetect tool to detect test smells in a finer
granularity (method and line level) and aggregated them per file. The authors
created a new dataset10 using the tool extension to detect test smell through the
lifetime of 13 open-source projects.

7Available at: <https://testsmells.org/pages/research/experimentdata.html>
8Available at: https://jnosetest.github.io/
9Available at: <https://github.com/arieslab/JNose-Validation>

10Available at: <https://github.com/SPEAR-SE/TestSmellEmpirical_Data>

2.6. CHAPTER SUMMARY 50

2.6 CHAPTER SUMMARY

Software testing is a fundamental activity for software quality assurance. Frequently,
developers count on testing frameworks (e.g., JUnit) to write, organize, and execute
test suites. However, developers can insert test smells while writing the test code, which
can negatively affect the test code quality, harming the software testing and maintenance
activities. To eliminate test smells, developers should refactor the test code in a way that
does not alter test logic. This background chapter presented the basic concepts of test
smells, testing frameworks, and test refactorings.

We also introduced the concepts related to techniques used to handle test smells. In
particular, we focused on using ML techniques, which we consider relevant for developing
and evaluating our approach to identify refactoring opportunities and suggest proper
refactoring operations through this thesis.

Chapter

3
RELATED WORK

Since its inception, both interests in understanding test smells and their consequences on
test and software quality have been growing and evolving rapidly (ALJEDAANI et al.,
2021). We know several recently published and ongoing studies on test smell that can be
important to incorporate and discuss in this thesis. Therefore, we performed an ad-hoc
review in cycles to cope with the rapid research development on test smells.

We conducted an ad-hoc search on Google Scholar using the string created by
Garousi and Küçük (2018): ((bad OR code OR test) AND (smell OR antipattern))
AND ("test code" OR "unit test"). Initially, we compiled a list of 54 studies up to
2020 and subsequently added more as they were published. In the second cycle, we
included 21 additional studies (from 2021 to 2022), and in the third cycle, we added 20
more studies (from 2023 to 2024). In total, we synthesized 95 studies to avoid duplicate
efforts and to identify further strategies, methods, techniques, and tools for addressing
test smells. This review process facilitated continuous evidence monitoring.

The remainder of the chapter presents a body of knowledge on test smells that
provides an understanding of the developers’ perception, the impacts on the software
quality, and the current practices to handle test smells. Section 3.1 presents the catalogs
and literature reviews on test smells and test refactorings. Section 3.2 focuses on the
literature regarding the diffusion and effects of test smells on the test code quality. Section
3.3 presents the studies of test smells in testing frameworks besides JUnit. Section 3.4
lists the tools to identify test smells and refactor test codes. Section 3.5 presents studies
investigating the developers’ perception of the test smells. Section ?? presents the studies

51

3.1. CATALOGS AND REVIEWS ON TEST SMELLS AND REFACTORINGS 52

investigating the influence of the developers’ experiences on the test code quality. Section
3.6 presents the literature regarding the test refactorings to fix test smells. Section 3.7
presents the usage of Machine Learning (ML) techniques to handle test smells. Section
3.8 summarizes the main limitations found in the related work.

3.1 CATALOGS AND REVIEWS ON TEST SMELLS AND REFACTORINGS

Deursen et al. (2001) introduced the concept of test smells to denote poorly designed
test cases. The authors proposed a first catalog describing test smells and refactorings
to fix them. Meszaros, Smith and Andrea (2003) broaden that concept, specifying seven
test smells related to the test code level and five test smells related to the test behavior.
Later on, Guerra and Fernandes (2007), Reichhart, Gîrba and Ducasse (2007), Greiler,
Deursen and Storey (2013), Kummer, Nierstrasz and Lungu (2015), Peruma et al. (2019),
Delplanque et al. (2019), and Yang et al. (2023) proposed new test smells based on
test code analysis and developers’ perceptions. Bowes et al. (2017) listed relevant best
practices for tests with their possible quantification concerning test smells.

Garousi and Küçük (2018) and Garousi, Küçük and Felderer (2019) presented a
multivocal literature mapping of the scientific and grey literature to analyze and classify
the body of knowledge on test smells. The authors collected data from 120 sources from
the industry (e.g., posts in blogs and videos) and 46 sources from academia published until
April 2016. They presented an extensive set of test smells in the literature1, including 196
test smells and 12 tools. In addition, they provided a summary of guidelines, techniques,
and approaches to dealing with test smells.

Aljedaani et al. (2021) conducted a systematic mapping to complement the men-
tioned reviews regarding the available tools. The authors selected 47 peer-reviewed papers
published until December 2020. Their contributions include a list of 22 tools and their
comparison regarding the supported test smells, environment, and detection strategies.
In summary, the tools support the detection of 66 test smells, and five tools support test
refactorings to fix 10 test smells across seven different testing frameworks.

Rather than relying on preexisting catalogs, our study identifies test smells based on
developers’ perceptions of issues they consider significant and essential to address in real-
world scenarios (RQ1). Therefore, we could identify emerging test-specific refactorings
beyond the capabilities of state-of-the-art automated tools for handling test smells.

1Available at: https://goo.gl/1ZrL65

3.2. INVESTIGATION OF TEST SMELLS EFFECTS ON SOFTWARE QUALITY53

3.2 INVESTIGATION OF TEST SMELLS EFFECTS ON SOFTWARE QUALITY

Several studies explored the relationship between test smells and software quality from
different perspectives. Bavota et al. (2012) conducted two key empirical studies. The first
was an exploratory study on the diffusion of nine test smells in 18 software projects. The
second study was a controlled experiment with 20 participants to investigate the effects
of test smells on software maintenance. Later, Bavota et al. (2015) extended both studies
by analyzing 27 software projects with 61 participants. Both studies (BAVOTA et al.,
2012; BAVOTA et al., 2015), had similar results. The exploratory research presented a
high diffusion of test smells in JUnit test classes. The controlled experiment showed
test smells could reduce test code comprehension compared to the absence of test smells.
Similarly, Peruma et al. (2019) performed an empirical study on the distribution and
survivability of test smells on 656 open-source Android apps. The results indicated the
widespread occurrence of test smells in apps, which emerge early in their lifetime.

Other studies have investigated the relationship between test smells and structural
metrics. Rompaey et al. (2007) proposed a set of metrics defined in concepts of unit tests
to formalize and detect test smells. Tahir, Counsell and MacDonell (2016) conducted an
exploratory study with five open-source projects to investigate the relationship between
five structural metrics of production classes and nine test smells. The results indicated
the complexity of the production classes is a good indicator of test smells. Pecorelli et
al. (2020a) performed an empirical study with 1,780 open-source Android apps to assess
how tested those apps are and how well-designed the tests are, considering test smells and
structural metrics of the test code. Although the authors did not perform a correlation
study, their results indicated the test classes have a low design quality, considering the
structural metrics and test smells.

Similarly, Martins, Costa and Machado (2023) conducted an empirical study on
13,703 open-source Java systems to investigate i) the relationship between test smells
and structural metrics of test code and ii) the relationship between test smells. Results
indicated the Sleepy Test (ST), Mystery Guest (MG), and Resource Optimism (RO) test
smell rarely occur, and the last two are strongly correlated, indicating those test smells
are more severe than others. Additionally, test smells have a moderate correlation with
structural metrics. Stefano et al. (2022) investigated the relationship between architec-
tural and test smells from 40 open-source Java projects. As a result, the Eager Test (ET)
and Assertion Roulette (AR) test smells often occur with architectural smells.

3.2. INVESTIGATION OF TEST SMELLS EFFECTS ON SOFTWARE QUALITY54

All the studies above investigated manually written tests. However, the production
code quality can also influence the test code generation by automated tools. In this
direction, Palomba et al. (2016) analyzed the diffusion of test smells in the test code of
110 open-source projects generated with the support of the Evosuite tool2. The results
indicated that 83% of JUnit tests exhibited at least one test smell, similar to the test
suites manually written. When comparing different test generation tools, Grano et al.
(2019) studied the influence of production class properties on the generation of smelly
test code using automated tools (Randoop3,JTExpert4, and Evosuite) in ten open-source
projects. Results showed the production code size and cohesion influence the generation
of smelly test classes, mainly with the Evosuite tool.

Similarly, Virginio et al. (2020) investigated the generated test code quality by
automated test tools (Randoop and Evosuite) with the existing unit test suite of 21
open-source Java projects regarding the presence of 19 test smells. Results indicated a
significant difference in test suite quality; the existing tests had a smaller distribution
of test smells than those generated by tools. Panichella et al. (2020) investigated how
effective the test smell detection tools are on automatically generated test suites for 100
Java classes (Evosuite). Unlike preceding investigations, the authors found test smells
are commonly present in a small but nontrivial portion of automatically generated test
suites. Later, Panichella et al. (2022) extended their study and compared a curated
dataset with the output of the Test Smell Detector (BAVOTA et al., 2012) and
tsDetect (PERUMA et al., 2020a) tools. Results indicated the tools are limited and
misclassified over 70% of test smells, suggesting they need more appropriate metrics to
match the development practices. More recently, Afonso and Campos (2023) augmented
the EvoSuite tool by considering metrics of test smells. They found the number of
smelly tests reduced by 3% compared to the default of the EvoSuite tool, and the tests
had similar coverage and fault detection effectiveness.

Other studies explored the software quality from code coverage, defect, and change
proneness perspectives. Virginio et al. (2019) performed an empirical study with 11 open-
source projects to investigate the relationship between test coverage and 21 test smells.
Their results indicated a positive relationship between test smells and test coverage.
Conversely, Qusef, Elish and Binkley (2019) performed a case study with 28 versions
of Apache Ant to investigate the relationship between test smells and production code

2<https://www.evosuite.org/>
3<https://randoop.github.io/randoop/>
4<https://sites.google.com/site/saktiabdel/JTExpert>

3.3. INVESTIGATION OF TEST SMELLS IN DIFFERENT FRAMEWORKS 55

faults. Results indicated the number of test smells increases as the project evolves, and
a positive correlation exists between some test smells and faults in the production code.
Spadini et al. (2018) investigated ten open-source projects to find a relation between six
test smells and the change and defect-proneness. They found smelly JUnit tests are
more change-prone and defect-prone than non-smelly ones. Besides, the more test smells,
the higher this effect, especially for the ET, AR and Indirect Testing (IdT) test smells.
The production code is more defect-prone when tested by smelly tests. Wu et al. (2022)
explored the impact of eliminating test smells on the production code quality of ten open-
source projects. Results indicated refactoring the test code to fix test smells improves
the code quality. The authors also identified eliminating test smells, especially the AR
test smell, significantly reduces the defect- and change-proneness of the production code.

In contrast, our work extends current knowledge by assessing how test refactoring
is applied and its impact on multiple aspects of test code. Specifically, we do not limit
ourselves to analyzing test smells but also consider additional indicators of test code
quality. In this sense, our study represents a more comprehensive analysis of the role of
test refactoring (RQ2).

3.3 INVESTIGATION OF TEST SMELLS IN DIFFERENT FRAMEWORKS

Although most of the research on test smells focused on Java programming language
with the JUnit testing framework, other studies have investigated test smells in other
frameworks. Baker et al. (2006) and Zeiss et al. (2006) identified test smells specific to
Testing and Test Control Notation Version 3 (TTCN-3) test suites. Later, Counsell and
Hierons (2007) explored the trade-offs of TTCN-3 refactorings. Results indicated that
considering the dependencies among tests is essential to deciding whether to refactor a
test code. Gatrell, Counsell and Hall (2009) investigated test code refactorings over 270
commercial C# software versions. Results indicated base refactorings are common, and
complex structural refactorings are relatively rare. Bleser, Nucci and Roover (2019a)
performed two empirical studies to analyze the diffusion of test smells at the class level
of 164 open-source SCALA projects and assess the developers’ perception of test smells.
Results showed test smells have a low diffusion across test classes, and many developers
perceived test smells but did not identify them.

Fernandes, Machado and Maciel (2021) analyzed the strategies for handling test
smells in 90 open-source Python projects. As a result, the authors proposed and vali-

3.4. AUTOMATED TOOLS TO HANDLE TEST SMELLS 56

dated four test smells through a survey with 40 Python developers. Jorge, Machado and
Andrade (2021) performed an empirical study with 11 open-source JavaScript projects.
They aimed to investigate which test smells occur more frequently, whether they are likely
to occur together, and whether the presence of test smells is related to classical bad design
indicators on the test code. Aranega et al. (2021) analyzed Pharo, Java, and Python
projects to investigate whether they exhibit similar categories of rotten green tests, i.e.,
a test method that always passes. As a result, the authors found all three languages
contain smells related to conditional statements to stop the test method execution and
assertion calls that force the test method to fail. Fushihara et al. (2023) analyzed test
smells in Python and revealed test smells increase over commits and remain in test
code as technical debt. Rwemalika et al. (2023) performed an exploratory analysis of test
smells in system users’ interactive tests with the Robot framework. Soares et al. (2023)
analyzed manually tested software and contributed to a catalog and detection strategies
for natural language test smells.

Besides having extensive ecosystems and tooling support available, Java and JUnit
are mature technologies with well-established best practices and guidelines for software
development and testing. Therefore, we contribute to the state-of-the-art with those
technologies as they provide a solid foundation for conducting research on test smells, and
are likely to have applicability to a large audience of software developers and researchers.

3.4 AUTOMATED TOOLS TO HANDLE TEST SMELLS

Aljedaani et al. (2021) listed 22 tools to detect test smells, from which only five tools
support developers refactoring the test code. Most of those tools detect test smells
in the test code written with the JUnit framework, whereas some focus on detecting
specific test smells, such as redundant tests and dependency tests. Koochakzadeh and
Garousi (2010b) released the TeReDetect (Test Redundancy Detection) tool that
implements a strategy based on the code coverage to detect redundant tests. Later,
Koochakzadeh and Garousi (2010a) improved on their tool (TeReDetect) and released
the TeCReVis (Test Coverage and Test Redundancy Visualization) plugin to visualize
redundant tests and test coverage. To detect dependent tests, Zhang et al. (2014) released
the DTDetector tool, Bell et al. (2015) released the ElectricTest tool, Biagiola et
al. (2019) released the TEDD (Test Dependency Detector) tool, and Fraser, Gambi and
Rojas (2020) released the PraDeT tool. Gyori et al. (2015) released the PolDet tool
to detect dependencies regarding shared resources.

3.4. AUTOMATED TOOLS TO HANDLE TEST SMELLS 57

Other test smells can occur in test code written with the JUnit framework. Bavota
et al. (2012) released an unnamed tool to detect the presence of nine test smells. Greiler
et al. (2013) released the TestEvoHound tool to analyze the evolution of test smells
related to the test fixture over the life of projects. Huo and Clause (2014) released the
OraclePolish tool to detect brittle assertions and unused inputs. Palomba, Zaidman
and Lucia (2018) released the Taste (Textual AnalySis for Test smEll detection) tool,
which uses information retrieval techniques to detect test smells. Peruma et al. (2020a)
released the tsDetect tool to detect 19 test smell. Virginio et al. (2020) extended the
tsDetect tool and released the JNose Test tool, which detects 21 test smells and
calculates code coverage. Later, Virginio et al. (2021) validated the JNose Test tool
compared with the tsDetect tool.

In addition, Aljedaani et al. (2021) identified tools for detecting test smells in test
code written with other testing frameworks. Reichhart, Gîrba and Ducasse (2007) re-
leased the TestLint tool to detect 27 test smells in SmallTalk test suites. Breugelmans
and Rompaey (2008) released the TestQ tool to detect 12 test smells in C++ test
suites. Bleser, Nucci and Roover (2019b) released the SoCRATES (SCala RAdar for
TEst Smells) tool to detect the presence of six test smells in Scala. Delplanque et al.
(2019) released the DrTest tool to detect rotten green tests in the Pharo ecosystem.

Concerning test code refactoring, Aljedaani et al. (2021) listed five refactoring rec-
ommendation tools to support developers in fixing test smells. Baker et al. (2006) released
the TRex tool to analyze and refactor test smells specific to TTCN-3 test suites. Greiler,
Deursen and Storey (2013) released the TestHound tool to detect six test smells related
to test fixtures and recommend refactorings to fix them. Lambiase et al. (2020) released
the DARTS (Detection And Refactoring of Test Smells) plugin, which utilizes informa-
tion retrieval to detect test smells and rule-based refactorings to fix them. Santana et al.
(2020) released the RAIDE plugin to detect two test smells and provide semi-automated
support for refactoring the test code; after, Santana et al. (2022) and Santana et al.
(2024) evaluated the usability of the RAIDE plugin. Martinez et al. (2020) released the
RTj tool to detect and recommend test refactorings to fix rotten green test smells.

Complementary to the mapping performed by Aljedaani et al. (2021), we found
other tools recently published. Marinke et al. (2019) developed the Neutrino plugin
to detect and refactor seven test smells in JUnit test suites. Pecorelli et al. (2020b)
extended the tsDetect tool to the VITRuM (VIsualization of Test-Related Metrics)
plugin, which supports a visual interface of static and dynamic test-related metrics and

3.5. DEVELOPERS’ PERCEPTION AND AWARENESS OF TEST SMELLS 58

test smells. Wang et al. (2021) released the PyNose plugin to detect 17 test smells and
Fernandes, Machado and Maciel (2022) released the TEMPY tool to detect ten test
smells in Python built with the Unittest framework. Similarly, Bodea (2022) released
the PyTest-Smell tool, which focuses on detecting test smells in Python built with
the Pytest framework. Taniguchi, Matsumoto and Kusumoto (2021) introduced the
JTDog plugin to detect three test smells in JUnit dynamically. Cruz and Costa (2020)
released the TSVizzEvolution tool, which uses the output of the JNose Test tool
to present the test smells evolution through a graphical interface. Paula and Bonifácio
(2022) proposed TestAXE to support developers migrating for the JUnit5 framework
and removing up to 13 test smells. Fulcini et al. (2022) proposed the FragilityLinter
linter as a plugin with good practices to prevent test smells. Teixeira, Silveira and
Guerra (2023) released the MeteoR plugin to detect test smells using the tsDetect
tool (PERUMA et al., 2020a), refactor them using Neutrino (MARINKE et al., 2019),
and identify the issues that can arise by checking the code coverage. Maier and Felderer
(2023) released the SniffTest tool, which uses natural language processing to detect
five test smells.

In order to support our research, we have extended some of the state-of-the-art tools
to handle test smells. For example, we developed a tool that integrates the tsDetect (PE-
RUMA et al., 2020a), VITRuM (PECORELLI et al., 2020b) and TestRefactoringMiner
(MARTINS et al., 2023a) to collect data on test smells, structural metrics, and test-
specific refactorings from software repositories.

3.5 DEVELOPERS’ PERCEPTION AND AWARENESS OF TEST SMELLS

While some studies explained the relationship between test smells and software quality,
others pointed out developers sometimes perceive test smells as problematic. Rompaey,
Bois and Demeyer (2006) proposed a metric-based heuristic approach to rank occurrences
of test smells according to their relative significance. As a result, refactoring starting can
be by the ranking. Tufano et al. (2016) surveyed 19 developers from open-source projects
to investigate whether they could recognize occurrences of test smells in software projects.
Besides, they performed an empirical study to investigate the survivability of test smells
in 152 open-source projects belonging to two ecosystems (Apache and Eclipse). The
results indicated that developers are unaware of test smells and hardly remove them
from the test code. Spadini et al. (2020) argued developers could not recognize test smells
as problematic due to the lack of thresholds. The authors analyzed 1,500 open-source

3.5. DEVELOPERS’ PERCEPTION AND AWARENESS OF TEST SMELLS 59

projects to identify thresholds for nine test smells and evaluated the thresholds with 31
developers from 47 open-source projects. Results included the definition of non-binary
thresholds for four test smells, supporting the user-perceived maintainability impact.

Silva Junior et al. (2020) and Silva Junior et al. (2021) surveyed 60 practitioners to
investigate their awareness of test smells. Results indicated practitioners introduce test
smells during their daily programming tasks. However, the practitioners’ experience can-
not be considered a root cause for the insertion of test smells in the test code. Santana et
al. (2021) surveyed 87 practitioners and interviewed eight other practitioners to investi-
gate their perception of test smells and strategies to handle them. Results indicated most
participants consider they should refactor test smells but do not always do it. Campos,
Rocha and Machado (2021) interviewed six developers to investigate their perception of
the severity of test smells in their developed test code. Results indicated despite devel-
opers perceiving test smells as non-severe, they can negatively impact the project. Chen,
Embury and Vigo (2023) surveyed developers to understand whether they consider test
smells as sources of technical debt and whether removing them is worth spending effort.
Results showed some test smells rarely occur and do not show a consistent pattern of
quick or delayed removal.

Other studies investigated how the developers’ expertise can influence their percep-
tion of test smells. In particular, Lima et al. (2023) investigated whether the developers’
profiles and experience can influence their perception of ten different test smells. The
developers exhibited a low level of agreement, mostly influenced by specific heuristics
applied to detect test smells. Campos et al. (2023) and Campos, Martins and Machado
(2023) conducted two empirical studies to investigate the relationship between develop-
ers’ experience and the survivability of test smells during test code refactoring. As a
result, they found that 67.28% of test smells are inserted during test class creation, while
20.88% of test smells are removed during project evolution. Additionally, core developers
are responsible for inserting 88.91% of test smells and removing 89.82% of test smells.
Damasceno et al. (2023a) and Damasceno et al. (2023b) surveyed 20 developers while
removing five types of test smells to investigate the impact of test smell refactoring on
quality attributes, the influence of developers’ experience, and their perceptions of refac-
toring test smells. Results showed an improvement in quality attributes, such as cohesion
and complexity. Additionally, less experienced developers took more time to refactor test
smells compared to experienced ones.

Concerning the awareness of test smells, the studies discussed above focused on the

3.6. REFACTORINGS TO FIX TEST SMELLS 60

existing catalog of test smells. This approach can lead to a limited perspective, poten-
tially causing developers to overlook or misjudge certain test code issues not explicitly
listed in the catalog. In contrast, we did not rely on existing catalogs of test smells and
refactorings but identified the smells that developers find problematic in practice. Addi-
tionally, the previous studies sought developers’ opinions on test smells, which vary based
on their experiences, viewpoints, and familiarity with certain code practices. Instead, we
mined refactorings from the projects’ commit history to reveal developers’ actual decisions
regarding addressing test smells. This approach potentially minimizes the subjectivity in
developers’ awareness and perceptions of test smells (RQ1).

3.6 REFACTORINGS TO FIX TEST SMELLS

Peruma et al. (2020b), have investigated the relationship between refactoring changes and
their effect on test smells. The authors used the Refactoring Miner tool to detect
refactoring operations and the tsDetect tool to identify the test smells from unit test
files of 250 open-source Android Apps. Results showed refactoring operations in test and
non-test files differ, and refactorings co-occur with test smells. However, refactorings
occur for reasons other than fixing test smells. Similarly, Kim, Chen and Yang (2021)
conducted an empirical study on the evolution and maintenance of test smells in 12
open-source projects. The authors analyzed the commits that removed test smells and
concluded the removal of test smells was due to maintenance activities.

A second line of research is represented by qualitative studies targeting the devel-
oper’s perception of test refactoring. Soares et al. (2020) investigated how developers
refactor test code to eliminate test smells. The authors surveyed 73 open-source develop-
ers to assess their preference and motivation to choose between 10 smelly and refactored
test code samples. Next, they submitted 50 pull requests to assess developers’ acceptance
of the proposed refactorings. The results showed developers preferred the refactored test
code for most test smells. In another work, Soares et al. (2022) investigated whether the
JUnit5 features help refactor test code to remove test smells. They conducted a mixed-
method study to analyze the usage of JUnit5 features in 485 popular Java open-source
projects. They identified the features helpful for test smell removal and proposed novel
refactorings to fix test smells. The results indicated that using the JUnit5 features was
only 17.6% during the test code creation and maintenance.

Pizzini, Reinehr and Malucelli (2023a) proposed and evaluated a method to address

3.7. MACHINE LEARNING TECHNIQUES TO HANDLE TEST SMELLS 61

the ET test smell through experiments, comparing the original version of the test code
with its refactored version. Results indicated an increase in test execution time and Lines
of Code (LOC) while removing the test smell, with no occurrence of test errors or failures.
Pizzini, Reinehr and Malucelli (2023b) investigated the effects of automatic refactoring
on test codes. The authors concluded that the effects are related to compilation errors,
execution failures, and changes in the behavior of unit tests. Additionally, they presented
a process for developing automatic refactoring tools aimed at improving test code quality
by eliminating test smells.

When asking developers to choose between smelly and refactored test code, a no-
table observation was their lack of awareness of features provided by testing frameworks.
This knowledge gap could lead to the rejection of certain refactoring strategies intended
to fix test smells. In contrast, we analyzed the actual refactorings developers performed
in test code over time, providing a more objective insight into how they tackle test smells.
Understanding these developer practices not only enlightens us on the prevalent features
regularly employed in test code but also empowers us to propose test refactorings that
better align with developers’ perspectives and preferences (RQ1).

3.7 MACHINE LEARNING TECHNIQUES TO HANDLE TEST SMELLS

Given the gap between developers’ perceptions and approaches implemented by tools for
detecting test smells and refactoring the test code, other studies have investigated the
feasibility of using ML techniques to handle test smells. Martins et al. (2021a) used struc-
tural metrics of test code to train ML algorithms for classifying four test smells. Results
indicated the algorithms performed well in detecting test smells, especially the Random
Forest algorithm. Similarly, Hadj-Kacem and Bouassida (2021) analyzed the agreement
level among the detection tools, and they suggested a multi-label classification approach
to detect test smells based on a deep representation of the test code. Similarly, they
found the Random Forest algorithm presented the best results, alleviating the limita-
tions of heuristic-based techniques.

While some studies have used ML techniques to detect test smells, we observe a lack
of studies that explicitly consider the classification of test code refactoring operations.
The closest work is the one by Aniche et al. (2022), in which the authors proposed
an approach to predict refactoring operations only in production code using process
and structural metrics as predictors. Our study addresses this gap by focusing on test

3.8. LIMITATIONS OF PRIOR WORK 62

code, considering its peculiarities and the evolutionary nature of the test source code—a
perspective not explicitly considered by Aniche et al. (2022) (RQ3).

3.8 LIMITATIONS OF PRIOR WORK

As some limitations of prior work, we can cite:

• The lack of agreement among the detection tools regarding the definition of test
smells and accuracy leads developers not to perceive test smells as problematic.
In addition, most of the test smells defined in the literature focus on the JUnit4
features. Once the testing framework has evolved, many test smells can no longer
represent problems in the test code. It suggests that we should focus on the de-
velopers’ practices to derive more appropriate metrics or approaches for suggesting
more assertive information to developers;

• Studies investigating the correlation of test smells and structural metrics aimed
to highlight a potential relationship between the production code and test code.
Therefore, there are still gaps in expanding state-of-the-art practices by providing
a deeper understanding of test smells and their relationship with the test quality;

• Few studies investigated the relationship of test smells with coverage, faults, and
flakiness. It would be interesting to replicate or apply alternative experimental
settings to understand how well the previous findings generalize;

• Although many studies investigate developers’ perceptions of test smells, few con-
sider the extent to which developers’ experience and roles during software develop-
ment influence test code quality. Deeper investigations into this area could explore
varying levels of experience, different roles within development teams, and overall
familiarity with testing best practices that contribute to handling test smells. Such
research could provide valuable insights into how developers’ backgrounds and ex-
pertise impact their ability to address test smells and enhance test code quality
effectively;

• Although the studies provide replication packages, most have become inaccessi-
ble. The datasets contain information from the different sets of projects regard-
ing the presence and location of test smells and other structural metrics; such
datasets do not store the test codes. The assessment of the detection tools uses

3.9. CHAPTER SUMMARY 63

datasets containing different information, making it hard to compare their accu-
racy. Therefore, more effort is necessary to build Findable, Accessible, Interopera-
ble, and Reusable (FAIR) datasets (KATZ; GRUENPETER; HONEYMAN, 2021)
with metrics calculated from the test code and the test code itself;

• There are numerous tools available for detecting test smells, primarily based on
heuristics and rules. However, only a few of these tools support refactoring the test
code to address test smells. Exploring the potential of an automated test refactor-
ing recommendation tool guided by a developer-centric approach holds substantial
promise. Such a tool could identify refactoring candidates and suggest appropriate
refactorings to improve test code quality. This approach could significantly assist
developers in efficiently addressing test smells and enhancing the overall quality of
their test suites.

• Studies using ML techniques require executing tools on the production or test
code to calculate metrics to serve as features for the ML algorithms. Other ML
techniques using pre-trained language models can rely solely on test code to detect
whether a test is smelly or not

In comparison to the current literature on test smells, we make several contribu-
tions to the scientific community through four main investigations. Firstly, we delve into
developers’ practices in open-source projects to derive a catalog of test-specific refactor-
ings aimed at addressing test smells. Secondly, we employ supervised machine learning
(ML) algorithms to classify developers’ intentions in applying test refactoring and specific
test refactoring operations. This marks a significant step towards the development of an
automated test refactoring recommendation tool guided by a developer-centric approach.
Thirdly, we analyze whether test refactorings are driven by low-quality test codes and to
what extent these refactorings contribute to improving code quality. To support these
investigations, we also contribute to the community by releasing datasets and extensions
of state-of-the-art tools for repository mining. These tools enable the collection of struc-
tural and process metrics, test smells, and test refactorings, facilitating further research
in this area.

3.9 CHAPTER SUMMARY

This chapter reported on the results of an ad-hoc review on test smells. It mapped 95
studies in the literature to understand the approaches and tools to handle test smells.

3.9. CHAPTER SUMMARY 64

Despite an increasing interest in test smells, the review led us to claim the need for
more effective metrics, methods, and techniques for detecting test smells and test-specific
refactorings to fix them.

Given the lack of agreement among the tools to handle test smells aligned with
the advances of the testing frameworks, developers cannot recognize some test smells as
a problem of the current development practices in the test code. Consequently, there
emerges a demand for practical, real-world guidelines that enable developers to recognize
the detrimental impact of test smells.

In response, ML techniques become a promising attempt to detect test smells and
suggest refactorings closer to the current development practices. Thus, shifting towards
ML addresses the current gaps in tooling and holds great potential to enhance the effec-
tiveness and adaptability of test smell detection and refactoring to different scenarios.

Chapter

4
MINING TEST REFACTORINGS IN PRACTICE

To keep up with the advances in testing frameworks or improve the test code structure
by eliminating test smells, developers should refactor the test code in a way that does not
change test logic (FOWLER, 1999). Although refactoring has been extensively studied in
the literature to address code smells (VIDAL; MARCOS; DÍAZ-PACE, 2016; CEDRIM et
al., 2017; TUFANO et al., 2017b; PANTIUCHINA et al., 2020; LACERDA et al., 2020),
test code can exhibit unique smells that reflect issues with its organization, implemen-
tation, or even interaction with other test code, requiring a different set of refactorings
(DEURSEN et al., 2001). According to recent mapping literature (ALJEDAANI et al.,
2021), recent studies have proposed strategies and tools for detecting and refactoring test
smells. However, existing tools are not widely used in practice as they implement sim-
plistic strategies based on predefined thresholds or rules to detect test smells (SPADINI
et al., 2020; PANICHELLA et al., 2022). In addition, those tools implement refactor-
ing strategies not derived from current development practices, and they lack support for
many problems developers face when refactoring the test code (PANICHELLA et al.,
2022; SOARES et al., 2022; PERUMA et al., 2022).

Considering the gap between the research on test code refactoring and its adoption
in practice, we argue analyzing the refactorings performed by developers may provide
insights into the problems they commonly face and the current development practices
they use to refactor the test code. This chapter presents an empirical study to answer
RQ1: How do developers perform test code refactorings to fix test smells in
open-source projects?. First, we analyzed the change history of 13 open-source Java

65

4.1. RESEARCH QUESTIONS AND OBJECTIVES 66

projects with test cases written with either JUnit4, JUnit5, or both over three years
to catalog the refactoring operations performed in the test code to address test smells.
Second, we sought feedback from software developers who have contributed to the projects
included in our dataset to allow gathering their perspectives on several aspects regarding
test smells and refactorings.

The remainder of this chapter is structured as follows. Section 4.1 presents our goals
and research questions. Section 4.2 presents the data collection and analysis approach
to catalog test refactorings performed in practice. Section 4.3 reports and describes the
refactoring operations found in practice for test smells. Section 4.4 discusses the practical
implications of test-specific refactorings. Section 4.5 points out the possible threats that
could affect our results.

4.1 RESEARCH QUESTIONS AND OBJECTIVES

The goal of our empirical study is to analyze the test refactoring operations performed by
developers in practice, with the purpose of creating a catalog of the test smells developers
deem as problematic and which test refactoring operations developers apply to fix the
test smells. The perspective is both researchers and practitioners who are interested in
the problems affecting the test code and how to solve them.

More specifically, we aim to answer the research question (RQ):

RQ1.1. What common refactoring operations do developers apply to fix test smells in
the test code?

Through RQ1.1, we aim to manually analyze the changes applied to a version vn of
a test class to classify the refactoring operations applied by developers and its previous
version vn−1 to classify the test smell fixed through the refactoring operation. Once we
have the pairs of smelly and refactored test code, we can generate a catalog to specify
the test-specific refactorings for fixing test smells.

Upon completion of this investigation, we further elaborate on the acceptance of
our catalog, addressing the RQ:

RQ1.2. To what extent are refactoring operations relevant to developers handling test
smells?

Through RQ1.2, we investigate the developers’ perception of the usefulness of our

4.2. APPROACH TO DERIVE A CATALOG OF TEST REFACTORINGS 67

catalog in practice. In addition, we perform a comparison of our catalog with the existing
ones in the current literature to highlight the novel refactoring operations found in our
investigation.

4.2 APPROACH TO DERIVE A CATALOG OF TEST REFACTORINGS

In order to answer RQ1.1, we follow the approach in Figure 4.1 to analyze the test code
changes. The approach consists of four main steps: Selecting subject systems (Section
4.2.1), Extracting test code changes (Section 4.2.2), Classifying test code changes (Sec-
tion 4.2.3), and Deriving a catalog of test refactorings (Section 4.3). We made all artifacts
generated through our approach publicly available (MARTINS et al., 2023b).

Figure 4.1: Overview of the Proposed Approach.

4.2.1 Selecting subject systems

We analyzed 13 open-source Java projects from Apache Foundation selected by Kim,
Chen and Yang (2021), covering different domains, from big data processing and ware-
housing solutions to distributed databases and programming languages. Test suites of
those projects are written using either JUnit4, JUnit5, or sometimes a combination of
both. Some of those projects migrated from JUnit4 to JUnit5.

4.2. APPROACH TO DERIVE A CATALOG OF TEST REFACTORINGS 68

4.2.2 Extracting test code changes

To extract the test code changes, we automatically analyzed the commit history of the
projects, and we selected a stratified random sample of modified test files from each
project for manual analysis through the following activities.

Mining commits with changes in test files. For each project, we analyzed all
commits over one three-year period for two main reasons. First, analyzing modifications
in project revisions might hide test code refactorings since revisions often exhibit changes
in software functionality (CEDRIM et al., 2017). Second, diving into modifications at
the commit level offers insights into minor improvements in the test code (CEDRIM
et al., 2017) but at the expense of the computational time required for mining all test
code modifications and the manual effort required to analyze them (TUFANO et al.,
2017a). Therefore, considering the latest advancements in the JUnit testing framework,
we restricted our analysis to the commit level between 2019 and 2021 to understand how
developers refactor test code to address test smells.

We developed a Git commit history analyzer using the JGit API1 to extract all the
commits of the set of projects between 2019 and 2021. The JGit API is a Java library
that implements all the Git commands. Given a set of files as input, our analyzer selects
the commits related to changes in the test files and discards the other commits from
further analysis. A commit changes the test file if the involved files have the extension
.java and a prefix or a suffix of[Tt]est(s*) (at least in the current commit, to indicate
a rename of a test file). Lastly, the analyzer stores the information obtained from each
test file in the commits. As a result, the analyzer identified 18,532 commits with 132,819
modified test files (see Table 4.1).

Stratified sampling of test files. We selected a statistically significant sample of 375
modified test files. First, we analyzed whether the commit message suggests changes in
the test files or whether the changes represent the co-evolution between test and produc-
tion code. Therefore, we developed a script to parse all the commit messages of the 18,532
commits and only select the relevant ones containing the “test” word and, optionally, the
“improvement” or “refactoring” words. As a result, we identified 3,786 relevant commits
containing 14,829 modified test files with potential test-specific refactorings. Second, we

1Available at: <https://www.eclipse.org/jgit/>

4.2. APPROACH TO DERIVE A CATALOG OF TEST REFACTORINGS 69

applied stratified random sampling with a 95% confidence level and a 5% confidence in-
terval. Hence, given that our variable of interest is the potential refactorings in test files
(Table 4.1: Test files w/ potential refactorings), we randomly sampled a certain number
of test files from each project relative to its proportion in the dataset, ensuring that each
project is sufficiently represented in the sample. As a result, we selected 375 test files
from all projects with potential refactorings. Table 4.1 shows the distribution of test files
per project.

Table 4.1: Characterization of the studied projects in terms of the number of commits
and selected test files

Projects
Commits w/

modified
test files

Modified
test files

Commits w/
potential

refactorings

Test files w/
potential

refactorings

Sample of test files
w/ potential
refactorings

1 Accumulo 315 1,691 129 820 21
2 Bookkeeper 198 625 61 362 10
3 Camel 5,295 80,219 1,200 7,133 180
4 Cassandra 650 2,143 200 483 12
5 Cxf 691 10,230 395 961 24
6 Flink 7,152 25,451 237 490 12
7 Groovy 187 502 29 47 1
8 Hadoop 183 375 89 109 3
9 Hive 101 135 23 28 1

10 Kafka 2,896 8,751 1,141 3,463 88
11 Karaf 209 484 57 198 5
12 Wicket 294 908 58 133 3
13 Zookeeper 361 1,305 167 602 15

Total 18,532 132,819 3,786 14,829 375

4.2.3 Classifying test code changes

We conducted a manual analysis on a statistically significant sample of 375 modified test
files to classify the patterns of changes related to test smells and refactoring operations.
Our activities included:

Classifying change patterns to test refactorings. We manually analyzed the git
diff representing the changes in the test files. Two coders (persons) applied open coding
to label test smells (in parent commits) and refactoring operations (in current commits).
In particular, we analyzed whether the removed lines of code in the parent commit are
related to test smells (e.g., assertion parameters, try/catch blocks, conditional or loop

4.2. APPROACH TO DERIVE A CATALOG OF TEST REFACTORINGS 70

structures, threads, print statements, annotation tags, and methods signature). Then, we
analyzed whether the added lines of code address test smells without changing the test
logic. It is worth noting changes in test files can add or remove test classes or methods,
but we only consider refactoring whether they address a certain smell in the test code.
We standardized all the labels assigned by coders by cross-referencing them with the
existing literature.

Listing 4.1 presents a unified git diff for the testHelloWorldWithDummyPlugin
test method in the CodeGenTest class from the Cxf project (APACHE CXF, 2019b). In
that figure, (i) two line numbers precede each line to indicate its relative location in the
parent and current commit, respectively, (ii) a ‘-’ or ‘+’ symbol precedes each modified
line where the ‘-’ symbol indicates removals in the parent commit (highlighted lines in
red) and the ‘+’ symbol indicates additions in the current commit (highlighted lines in
green), (iii) highlighted lines in blue indicate omitted lines and (iv) a header indicates the
test method in which the change occurred. In some cases, labels were inconsistent across
coders, though they referred to the same test smell. For example, when analyzing the
modifications in the testHelloWorldWithDummyPlugin test method, Coder A labeled the
parent commit (line 644 highlighted in red) with a Simplify logic test smell and Coder B
with an Inappropriate Assertion (InA) test smell; both coders labeled the current commit
(line 644 highlighted in green) with a Modify Assert Type refactoring. To resolve labeling
inconsistency, we searched for the test smells and refactoring operations in the literature
to standardize the labels of the two coders. As a result, in the above example, we agreed
to use the InA (KUMMER; NIERSTRASZ; LUNGU, 2015) and the Modify Assert Type
refactoring instead of Simplify logic test smell.

Listing 4.1: The git diff of the CodeGenTest class of the Cxf project (APACHE CXF,
2019b). The diff highlights in red the lines removed, and in green the lines added.

Assessing coders’ reliability. To assess the reliability of the manual classification,
two researchers (Coder A and Coder B) analyzed a set of test files to calculate the Kappa

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 71

statistics (COHEN, 1960). Coder A analyzed the 375 modified test files and classified
the diff in the test code changes regarding the test smells and the refactoring operations.
For example, Coder A analyzed the instance presented in Listing 4.1 and classified the
lines highlighted in red as an InA test smell (diff - left side) and the lines highlighted in
green as a Modify assert type refactoring (diff - right side). Then, we randomly sampled
50 modified test files out of 375 for Coder B to classify the test smells and refactorings.
Coder A and Coder B found 198 instances containing pairs of smelly and refactored
test codes in the same set of test files. The agreement level between the coders was
high; they agreed on 196 instances, and each one missed two instances (Cohen’s kappa
= 0.98). Next, a third researcher (Coder C) joined the discussion to classify the four
missed instances. The coders added the four missed instances in the final set, totaling
200 instances. The final set contains 611 smelly and refactored test code pairs from 156
test files (i.e., 41.7% of the modified test classes are related to test smells); 200 pairs
identified by Coder A and Coder B, plus 413 (611 - 198) pairs identified by Coder A.
In addition, Coder C helped standardize the labels given to each instance. For example,
while Coder A classified some instances of test cases with no assertion as the Unknown
Test (UT) test smell, Coder B recognized a problem in the test code but did not know
the test smell name, classifying the instances with No test smell. During the discussions,
we agreed on classifying those instances as the UT test smell.

4.3 DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS

After classifying test code modifications, we presented the TSR-Catalog, a catalog for
Test Smells Refactorings (MARTINS et al., 2023c), outlining the reengineering process for
conducting test-specific refactorings and leveraging the identified patterns. That catalog
was the foundation for deriving systematically organized insights into how developers
refactor test code in practice, and then, we compared it with existing literature.

Although the literature reports more than 180 test smells (GAROUSI; KüçüK,
2018), we found nine test smells in our stratified sample of refactored test smells. Table
4.2 summarizes the detection and test-specific refactorings of the test smells found (high-
lighted in gray). The Detection and (%) (1st and 2nd) columns present 13 rules for detect-
ing the test smells and their respective distributions in the dataset, e.g., (2) Identify @Test
expected annotation corresponds to 80.4% instances of Exception Handling (ECT) test
smell. The Refactoring and (%) (3rd and 4th) columns present 11 refactoring opera-
tions to solve test smells and their respective frequency in the dataset, e.g., (b) Replace

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 72

Table 4.2: Summary of detection and refactorings for test smells

Detection (%) Refactoring (%)
Exception Handling (336 instances)

(1) Identify try/catch blocks 14.6 (a) Replace try/catch block with @Test
expected annotation

0.0 I

(2) Identify @Test expected annotation 80.4 (b) Replace try/catch block, @Test
expected or @Rule annotations with the
assertThrows

100.0 H

(3) Identify @Rule annotation 5.0
Inappropriate Assertion (40 instances)

(4) Identify the not operator within a pa-
rameter

22.5 (c) Replace the not operator within the
assertions

22.5 J

(5) Identify conditional expressions as pa-
rameter

25.0 (d) Split conditional expressions into two
different parameters

25.0 J

(6) Identify reserved words as parameters 52.5 (e) Replace reserved words with inappro-
priate assertion

52.5 J

Assertion Roulette (135 instances)
(7) Identify undocumented assertions in a
test method

100.0 (f) Add an explanation message to the as-
sertion

100.0 H

(g) Split assertions into single test meth-
ods

0.0 I

(h) Surround assertions with assertAll 0.0 I

Bad Naming (30 instances)
8) Identify test classes’ names without the
word “Test” in it

100.0 (i) Rename test classes 100.0 H

Ignored Test (2 instances)
(9) Identifying ignored methods 100.0 (j) Code Removal 100.0 H

Redundant Print (2 instances)
(10) Identifying calls for the
System.out.print method

100.0 (j) Code Removal 100.0 H

Empty Test (4 instances)
(11) Identifying methods with no exe-
cutable body

100.0 (j) Code Removal 50.0 H

(k) Code Addition 50.0 H

Unknown Test (50 instances)
(12) Identifying methods with an exe-
cutable body but no assertions

100.0 (k) Code Addition 100.0 H

Sleepy Test (12 instances)
(13) Identifying Thread.sleep method 100.0 (k) Code Addition 100.0 H

Classification: (H) refactorings from literature applied in practice, (J) applied in practice but not found
in literature (I), and from literature not applied in practice

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 73

try/catch block, @Test expected or @Rule annotations with the assertThrows fixed
100% instances of the ECT test smell. Finally, the classification symbols show whether
the test-specific refactorings are i) novel or proposed in the literature and ii) applied in
practice.

We have the following distribution when considering the pairs of test smells and
refactorings in the entire dataset. The ECT test smell consists of 49 instances for the 1-b
pair (8.0%), 270 instances for the 2-b pair (44.2%), and 17 instances for pairs 3-b (2.8%)
(Section 4.3.1). The Inappropriate Assertion (InA) test smell consists of 9 instances for
the 4-c pair (1.5%), 10 instances for the 5-d pair (1.6%), and 21 instances for the 6-e pair
(3.5%) (Section 4.3.2). The Assertion Roulette (AR) test smell consists of 135 instances
for the 7-f pair (22.1%) (Section 4.3.3). The Bad Naming (BaN) test smell consists of
30 instances for the 8-i pair (4.9%) (Section 4.3.4). The Ignored Test (IgT) test smell
consists of 2 instances for the 9-j pair (0.3%). The Redundant Print (RP) test smell
consists of 2 instances for the 9-j pair (0.3%). The Empty Test (EpT) test smell consists
of 2 instances for the 11-j pair (0.3%) and 2 instances for the 11-k pair (0.3%). The
Unknown Test (UT) test smell consists of 50 instances for the 12-k pair (8.2%). Finally,
the Sleepy Test (ST) test smell consists of 12 instances for the 13-k pair (2.0%) (Section
4.3.5).

The last five test smells in Table 4.2 were addressed using irregular refactoring oper-
ations (i.e., different from one instance to another) performed through miscellaneous code
additions or deletions in the current commit. This resulted in a lack of identifiable pat-
terns to precisely describe their refactoring, making them not aligned with the refactoring
techniques outlined in our catalog. While the refactorings involving only code deletion
were trivial, code addition requires a deeper understanding of the production code to
develop the test code. Therefore, we did not extensively describe these test smells and
their refactorings as others, but we present some examples from our dataset in Section
4.3.5.

4.3.1 The Exception Handling test smell

Meszaros (2007) defined the Exception Handling (ECT) test smell to verify whether the
error scenarios have been coded correctly by using the language constructor to catch
errors. Peruma et al. (2019) stated the ECT test smell occurs when developers write
custom exception-handling code or throw an exception. Instead, developers should use

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 74

the exception handling of JUnit to automatically pass or fail the test method.

In practice, developers use three different test structures that lead to the insertion
of the ECT test smell, and they can use two refactoring strategies defined in the lit-
erature to fix it. Figure 4.2 illustrates the detection and refactoring operations to fix
the ECT test smell. The circles indicate the test smell detection, whereas the squares
represent the refactoring operations. In that figure, stmt, stmt′, and stmt′′ are a set
of statements, stmt′i ∈ stmt′ statements that raise the E exceptions, evs is an optional
exception verification, and M is an optional message.

Figure 4.2: Detection and refactoring the ECT test smell.

Detecting the Exception Handling test smell

(1) Identify try/catch blocks. Peruma et al. (2019) state the ECT test smell occurs
when a test method contains either a throw statement or catch statement. Following
that definition, the JNose Test and tsDetect tools identify a try/catch block in the
test method to detect the ECT test smell.

(2) Identify @Rule annotation. The @Rule annotation checks whether a test method
throws an exception through the ExpectedException rule. Unlike the try/catch block,
the @Rule annotation does not require the developer to customize the exception handling

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 75

or throw an exception to pass or fail the test. It means the test method passes if the
statements within it did not result in an exception. Although previous studies (KIM;
CHEN; YANG, 2021; SOARES et al., 2020) showed developers are unaware of the @Rule
annotation, we found developers using and fixing it in practice.

(3) Identify @Test expected annotation. The @Text expected annotation indicates
that an exception can be thrown anywhere in the test method. The annotation makes it
hard for developers to track which statement fails the test (KIM; CHEN; YANG, 2021;
SOARES et al., 2020).

Refactoring the Exception Handling test smell

(a) Replace the try/catch block with the @Test expected annotation. Meszaros
(2007) and Peruma et al. (2019) suggested using JUnit features instead of the try/catch
blocks. JUnit4 provides the expected attribute of the @Test expected annotation and
the Rule check to handle exceptions. According to Peruma et al. (2019), developers
should split the test method into multiple test methods to verify different error scenar-
ios. Besides, test methods that generate exceptions should contain the @Test expected
annotation to fail when the exception occurs. The refactoring consists of the following
operations:

1. Add an @Test expected annotation as a parameter in the E exception class. The
exception class is a parameter in the catch statement.

2. Copy the code within the try/catch block containing the stmt statements, the
stmt′ statements that raise the exception, the evs optional exception verification,
and the stmt′′ optional statements.

3. Remove the try/catch block.

We did not find developers performing that refactoring in practice. But, they per-
ceive the refactoring suggested by Peruma et al. (2019) as an improvement.

(b) Replace the try/catch block, @Test expected, and @Rule annotations with
the assertThrows method. More recently, Soares et al. (2022) investigated whether the
developers use the assertThrows method of JUnit5 to handle exceptions. In practice,
we identified developers using the assertThrows method for refactoring the try/catch
block and the @Test expected and @Rule annotations. The refactoring consists of the
following operations:

1. Add an assertThrows method:

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 76

• Pass the E exception class as the first parameter of the assertThrows method.
The exception class is a parameter in the catch statement or within the @Test
expected annotation.

• Pass the stmt′i statements from the set of stmt′ statements that raise the E

expected exception within a lambda expression passed as a parameter of the
assertThrows method. Instead of identifying the stmt′i statements that raise
an exception, the developers can optionally select all statements stmt, stmt′,
stmt′′, and the evs exception verification to compose a lambda expression.

• Pass the M fail message as the optional parameter in the assertThrows
method to describe the assertion.

2. Copy the first stmt statements before the assertThrows method.
3. Copy the evs optional exception verification and the further stmt′′ optional state-

ments after the assertThrows method.
4. Remove the try/catch block, the @Rule annotation, or the @Test expected an-

notation.
5. Remove the throws exception from the method signature.

Samples from practice

Replacing the try/catch block with the assertThrows method (1-b). Listing 4.2
presents a try/catch block within the testBadConfiguration test method of the Camel
project (APACHE CAMEL, 2021b). The refactoring consists of removing the try/catch
block (lines 109 - 114, highlighted in red) and adding the parameters in the assertThrows
method (lines 113 - 114, highlighted in green): i) the ResolveEndpointFailedException
exception class found in the catch statement, ii) the call for the sendBody production
method raises the exception, and iii) the optional message explains the assertion.

Replacing the @Rule annotation with the assertThrows method (2-b). Listing
4.3 presents the UnsynchronizedBufferTest test class of the Accumulo project, declar-
ing the ExpectedException rule through the @Rule annotation and checking whether the
exception behaves as expected in the testByteBufferConstructor method (APACHE
ACCUMULO, 2021). The refactoring consists of removing the @Rule annotation (lines
35 and 36, highlighted in red) of the class and the expected exception from the
method (lines 57 - 59, highlighted in red). Then, the refactoring consists of adding
the assertThrows method in the test method with the parameters: i) the optional mes-
sage that explains the assertion, ii) the ArrayIndexOutOfBoundsException exception

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 77

Listing 4.2: Diff between the original and refactored testBadConfiguration method of
the MinaCustomCodecTest class of the Camel project (APACHE CAMEL, 2021b).

Listing 4.3: Diff between the original and refactored testByteBufferConstructor
method of the UnsynchronizedBufferTest class of the Accumulo project (APACHE
ACCUMULO, 2021).

class found in the thrown.expect method, and iii) the call for the readBytes production
method raising the exception (lines 54 - 58, highlighted in green).

Replacing the @Test expected annotation with the assertThrows method (3-
b). Listing 4.4 presents the testNonDefaultConfig test method of the Camel project
(APACHE CAMEL, 2019a), which uses the @Test expected annotation to handle the
exception (line 41, highlighted in red). The refactoring consists of removing the @Test

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 78

expected annotation and adding the assertThrows method with the parameters: i) the
IllegalArgumentException exception class found in the @Test expected annotation,
and ii) the statements raising or not the exception (44 - 51, highlighted in green). It is
worth noting that developers consider the @Test expected annotation hard to trace the
method raising the exception, which justifies inserting all the statements in the lambda
expression.

Listing 4.4: Diff between the smelly and refactored testNonDefaultConfig of the
TelegramComponentParametersTest class of the Camel project (APACHE CAMEL,
2019a).

4.3.2 The Inappropriate Assertion test smell

The Assert class has assert methods that differ in parameters and semantics about what
they assert. For example, the assertTrue method receives a mandatory parameter with
a condition and asserts whether the condition is valid. Differently, the assertEquals
method asserts whether two objects are equal through two mandatory parameters for the
expected and actual values. According to Schmetzer’s online post2, many developers use
a single assertion method to develop all the assertions they need. Commonly, developers
pass conditional expressions as a parameter of the assertTrue method to check whether
two objects are equal instead of using the assertEquals method, characterizing the
Inappropriate Assertion (InA) test smell (KUMMER; NIERSTRASZ; LUNGU, 2015).

Figure 4.3 illustrates the detection and refactoring of the InA test smell we found in
practice. stmt is a set of optional statements, a and b are the expected and actual values

2Available at: <https://exubero.com/junit/anti-patterns/>

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 79

of an object, and M is an optional message to describe the assertion. It is important to
note that JUnit5 receives M as the last parameter, while previous versions of the testing
framework receive M as the first parameter.

Figure 4.3: Detection and refactoring the InA test smell.

Detecting the Inappropriate Assertion test smell

(4) Identify the not operator within a parameter. For readability purposes, the
assert methods are given in pairs to assert whether a condition is true (assertTrue
method) or false (assertFalse method), two objects are equal (assertEquals method)
or different (assertNotEquals method), two objects refer to the same object (assertSame
method) or different objects (assertNotSame method), and an object is null (assertNull
method) or not null (assertNotNull method). However, developers can be unaware of
assert methods and create logic using the not (!) operator within the assertions.

(5) Identify conditional expressions as a parameter. The assertTrue and
assertFalse methods assert whether a condition is true or false, respectively. The
test smell occurs when developers force a conditional expression into the parameter of
those assertions. For example, developers can create an expression with the .equals
method and pass it as a parameter to the assertEquals method instead of using the
assertEquals method to assert that two objects are equal. Similarly, developers can use
the == operator to assert that two objects refer to the same object instead of using the
assertSame method and other methods such as .contains to match values instead of
using the assertThat method.

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 80

(6) Identify reserved words as parameters. The assertEquals method asserts
whether two objects are equal, and the assertNotEquals method asserts whether they
are different. The assertSame and assertNotSame methods assert whether two objects
refer or do not to the same object, respectively. Such methods require two mandatory
parameters (expected value and actual value). The test smell occurs when developers
pass a reserved word as the expected value in those methods to verify whether the actual
value equals true, false, or null.

Refactoring the Inappropriate Assertion test smell

(c) Replace the not (!) operator within the assertions with an appropriate
assertion. Instead of creating a conditional logic in the assertions using the not (!)
operator, developers should choose the corresponding pair of the specific assert method.
The refactoring consists of the following operations:

1. Replace the assert method with its respective pair. More specifically:

• the assertTrue method by the assertFalse method, or vice-versa;

• the assertNull method by the assertNotNull method, or vice-versa;

• the assertEquals method by the assertNotEquals method, or vice-versa;

• the assertSame method by the assertNotSame method, or vice-versa;

• the assertNull method by the assertNotNull method, or vice-versa.

2. Remove the not (!) operator of the a or b corresponding parameter in the asser-
tion.

3. Add the M explanation message as an optional parameter.

(d) Split conditional expressions into two different parameters. The refactor-
ing consists of splitting the conditional expression of the assertTrue or assertFalse
methods into two parameters for an adequate assert method. The refactoring consists
of the following operations:

1. Replace the assert method with:

• If the assertion checks whether an a object equals a b object using the .equals
method, replace the assertion with the assertEquals method;

• If the assertion checks whether an a object refers to the same b object using
the == operator, replace the assertion with the assertSame method;

• If the assertion checks whether an a object matches the b object using the
.contains method, replace the assertion with the assertThat method;

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 81

2. Split the conditional expression to pass the a and b objects as two mandatory
parameters of the assertEquals or assertSame methods.

3. Add an M explanation message as an optional parameter.

(e) Replace the reserved words with an appropriate assertion. JUnit supports
specific assert methods for reserved words. The refactoring consists of the following
operations:

1. Replace the assert method with:

• If the assertion of the b expected value equals true, replace the assertion with
the assertTrue method;

• If the assertion of the b expected value equals false, replace the assertion
with the assertFalse method;

• If the assertion of the b expected value equals null, replace the assertion with
the assertNull method;

2. Pass the a actual value as a mandatory parameter of the assertTrue, assertFalse,
or assertNull methods;

3. Add an M explanation message as an optional parameter.

It is worth noting that developers can combine those refactoring operations to ad-
dress more complicated inappropriate assertions. For example, an assertTrue method
verifies whether the a value equals true. First, the developer splits the conditional expres-
sion into two different parameters using the assertEquals method (5-d), then replaces
the assert method with the assertTrue method according to its reserved word (6-e).

Samples from practice

Replacing the assertTrue method with the assertFalse method (4-c). List-
ing 4.5 presents the testGenerateClientId test method of the Kafka project (APACHE
KAFKA, 2021b). It uses an assertTrue method to check whether the ids.contains(id)
condition is false (line 293, highlighted in red). Refactoring the assertion consists of re-
moving the not (!) operator of the conditional expression and replacing the assertTrue
method with the assertFalse method (line 293, highlighted in green). In addition, the
developer could use the assertThat method instead of the .contains method.

Replacing the assertTrue method with the assertEquals method (5-d). Listing
4.6 presents the testPhases test method of the Cxf project (APACHE CXF, 2019c). It
contains an assertTrue method checking whether cxfPhases and defaultPhases ob-

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 82

Listing 4.5: Diff between the smelly and refactored testGenerateClientId method of
the KafkaAdminClientTest class of the Kafka project (APACHE KAFKA, 2021b).

Listing 4.6: Diff between the smelly and refactored testPhases method of the
SpringBusFactoryTest class of the Cxf project (APACHE CXF, 2019c).

jects are equal (lines 171 and 175, highlighted in red). Refactoring consists of passing the
two objects as parameters in the assertEquals method (lines 171 and 175, highlighted
in green).

Replacing the assertEquals method with the assertTrue method (6-e). List-
ing 4.7 presents the testSoapHeader test method of the Cxf project (APACHE CXF,
2019a). It uses an assertEquals method with a true value as a parameter (line 879,
highlighted in red). Refactoring consists of replacing the assertEquals method with an
assertTrue method and removing the unnecessary parameter for fixing the test smell
(line 879, highlighted in green).

(e) Replacing the assertTrue method with the assertNotNull method (4-c)(5-
d)(6-e) Listing 4.8 presents the testValidSecurityContextToken test method of the
Cxf project (APACHE CXF, 2019a). It uses an assertTrue method to check whether

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 83

Listing 4.7: Diff between the smelly and refactoredtestSoapHeader method of the
CodeGenTest class of the Cxf project (APACHE CXF, 2019a).

Listing 4.8: Diff between the smelly and refactored testValidSecurityContextToken
method of the SCTValidatorTest class of the Cxf project (APACHE CXF, 2019a).

an object is not null (lines 83 and 84, highlighted in red). Refactoring combines all the
operations we listed above (lines 83 and 84, highlighted in green): i) replacement of the
assertTrue method with the assertFalse method and removal of the not (!) operator
(4-c), ii) split the conditional expression of the assertFalse method in two parameters
for the assertEquals method (5-d), and iii) replacement of the reserved word with the
assertNull method (6-e).

4.3.3 The Assertion Roulette test smell

According to Meszaros (2007), test methods should verify a single test condition. Con-
versely, Deursen et al. (2001) defined the Assertion Roulette (AR) test smell as a collection
of assertions without an explanation message within a single test method. Undocumented
assertions that can check different conditions make it hard for developers to trace which
one indicates a problem.

Figure 4.4 presents the detection and refactoring of the AR test smell. In that
figure, stmt and stmt′ are a set of statements, A is a set of assertions that comprises all
assert methods implemented by the Assert class of JUnit, and M is a set of optional
messages to describe assert methods.

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 84

Figure 4.4: Detection and refactoring the AR test smell.

Detecting the Assertion Roulette test smell

(7) Identify undocumented assertions in a test method. According to Peruma et
al. (2019), detecting the AR test smell consists of identifying multiple assertion statements
in a test method without a descriptive message. Existing detection tools implement
different rules to detect that test smell. For example, the tsDetect tool verifies whether a
test method contains more than one assertion statement without an explanation message,
and the JNose Test tool counts all of them as a test smell.

Refactoring the Assertion Roulette test smell

(f) Add an explanation message to the assertions. Deursen et al. (2001) suggested
using the optional first parameter of the assert methods of JUnit to give an explanatory
message to the user when the assertion fails. Figure 4.4 presents a T test method that
contains an optional set of stmt statements, followed by a set of n sequential A assertions,
and finalized by a set of optional stmt′ statements. The set of A assertions comprises
all assert methods implemented by the Assert class of JUnit. Refactoring consists of
adding an M message as an optional parameter in the set of A assertions. The existing

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 85

test refactoring recommendation tools have implemented that refactoring operation to fix
the AR test smell, converging with the developers’ practices.

(g) Split the assertions into single test methods. Meszaros (2007) suggested split-
ting the test method into single-condition tests with more than one assertion statement.
Figure 4.4 presents a T test method that contains an optional set of stmt statements,
followed by a set of n sequential A assertions, and finalized by a set of optional stmt′

statements. The set of A assertions comprises all assert methods implemented by the
Assert class of JUnit. Refactoring consists of splitting the T test method into a set of
T1...Tn test methods, each one comprising a single assertion.

(h) Surround assertions with assertAll method. Soares et al. (2022) proposed
using the assertAll method, a feature specific to JUnit5, to group all the assertions
without explanation of a test method. Figure 4.4 presents a T test method that contains
an optional set of stmt statements, followed by a set of n sequential A assertions, and
finalized by a set of optional stmt′ statements. The set of A assertions comprises all
assert methods implemented by the Assert class of JUnit. Refactoring consists of using
lambdas expressions ()− > to pass the set of assertions as a parameter of the assertAll.

Samples from practice

Adding an explanation message as an optional parameter (7-f). Listing 4.9
presents refactoring for a group of undocumented assertions (lines 170, 173, and 176
highlighted in red) in the MirrorSourceConnectorTest test method from the Kafka
project (APACHE KAFKA, 2021a). Given that the test code is in JUnit5, refactoring
consists of adding a third optional parameter with the explanation messages (lines 170,
173, and 176 highlighted in green).

Listing 4.9: Diff between the smelly and refactored testMirrorSource
ConnectorTaskConfig method of the MirrorSourceConnectorTest class of the
Kafka project (APACHE KAFKA, 2021a).

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 86

4.3.4 The Bad Naming test smell

Software projects with test suites written in JUnit should follow the naming conventions
as pre-pending or appending the word “Test” to the name of the production class under
test in the same package hierarchy (PERUMA et al., 2020a). For example, a production
class in the /src/java/example/ package is called ExampleName.java, so its test class
should be in the /src/test/example package and named ExampleNameTest.java or
TestExampleName.java.

Figure 4.5 presents the detection and refactoring of the Bad Naming (BaN) test
smell. The test class name should be the production class name with the word “Test” in
it and be in the same package hierarchy (e.g., src/main/ProductionClassName and
src/test/ProductionClassName). Therefore, the refactoring operation changes the
name of the test class by adding the prefix or suffix Test.

Figure 4.5: Detection and refactoring the BaN test smell.

Detecting Bad Naming test smell

(8) Identify test classes’ names without the word “Test” in it. The detection
consists of identifying classes without the word Test in their names. The test classes
should be located at the /test/ package and contain test methods with the @Test an-
notation.

Refactoring Bad Naming test smell

(i) Rename test classes. The refactoring consists of pre-pending or appending the
Test word in the test class name.

Samples from practice

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 87

Renaming the test class (8-i). Listing 4.10 presents the ProducerUploadFile test
class of the Camel project (APACHE CAMEL, 2019b). The class does not follow the
naming convention of JUnit (line 35, highlighted in red). Its refactoring consists of
renaming the class to ProducerUploadFileTest by appending the Test word (line 35,
highlighted in green).

Listing 4.10: Diff between the smelly and refactored ProducerUploadFile class of the
Camel project (APACHE CAMEL, 2019b)

4.3.5 Other test smells

Our analysis found five additional test smells within our sample, although they occurred
less frequently. Some test smells, such as removing a single line or method, were relatively
simple to resolve. We chose non-provide detailed descriptions of those straightforward
cases to avoid redundancy. However, other refactorings proved more intricate, demanding
a deeper comprehension of the production code. In light of that complexity, we avoid
delineating the specific strategies for those intricate refactorings, acknowledging that
standardized procedures might inadequately encompass their contextual nuances.

Figure 4.6 illustrates the detection and refactoring of various test smells. In that
figure, the circle symbolizes the detection of test smells, and the square represents the
corresponding refactoring operations. In that visual representation, stmt and stmt′ de-
note sets of statements, A refers to a set of assertions, and M represents a set of optional
messages. The specific test smells involved are elaborated upon in Peruma et al.’s paper
(PERUMA et al., 2019). We explained them next.

Ignored Test (IgT). It occurs when suppressing the test methods of the running. The
ignored test methods result in overhead concerning compilation time (PERUMA et al.,
2019).

(9) Identifying ignored methods. The detection consists of identifying classes or
methods with the @Disabled annotation in JUnit5 or @Ignored annotation in

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 88

Figure 4.6: Detection and refactoring the other test smell.

previous versions of the JUnit testing framework.

(j) Refactoring by code removal. We found the fixing of two instances of the IgT
test smell by removing the test method with the @Disabled or @Ignored annotation
from the test suite.

Redundant Print (RP). It occurs when test methods use print statements. The unit
tests are executed as part of an automated script, making the print statements redundant
(PERUMA et al., 2019).

(10) Identifying calls for the System.out.print method. The detection consists
of identifying lines where developers call the System.out.print method of Java
to print the test methods output instead of using assertions.

(j) Refactoring by code removal. We found the fixing of two instances of the RP
test smell by removing the lines with a call to the System.out.println method.

Empty Test (EpT). It occurs when a test method has no executable statements. As
the test method does not assert any condition, JUnit always indicates that the test

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 89

passes (PERUMA et al., 2019).

(11) Identifying methods with no executable body. The detection consists of
identifying test methods containing an empty or commented body, i.e., with no
executable statements.

(j) Refactoring by code removal. We found the fixing of two instances of the EpT
test smell by removing the test method.

(k) Refactoring by code addition. We found the fixing of two instances of the EpT
test smell by completing the body of the test method.

Unknown Test (UT). It occurs when a test method has an executable body but no
assertions. JUnit shows the test method as passing if the statements within the test
method did not result in a thrown exception when executed (PERUMA et al., 2019).

(12) Identifying methods with executable body but no assertions. The de-
tection consists of identifying test methods that do not assert any condition while
meeting the criteria: (i) contain an executable body, (ii) do not throw an exception,
(iii) it is not ignored, and (iv) do not call the System.out.print method.

(k) Refactoring by code addition. the fixing of 50 instances of the UT test smell
by completing the body of the test method.

Sleepy Test (ST). It occurs when a test method needs to pause its execution for a
certain duration and then continue its execution. Depending on the testing environment,
it can lead to unexpected results (PERUMA et al., 2019).

(13) Identifying Thread.sleep method. The detection consists of identifying test
methods that call the Thread.sleep method to force the test code to wait for some
result and then proceed with its execution.

(k) Refactoring by code addition. We found the fixing of 12 instances of the ST
test smell by writing a new logic to replace the Thread.sleep method. Often, the
new solution involved the Java Awaitility library.

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 90

Samples from our dataset

Removal of the unused test method that contains the @Ignore annotation (9-
j). Listing 4.11 presents the InMemoryMapTest test class of the Camel project (APACHE
ACCUMULO, 2019). It contains the ignored method parallelWriteSpeed using the
@Ignore annotation of JUnit4. As the test method was non-used, removing it from the
test class (lines 516 - 554) was the solution.

Listing 4.11: Diff between the smelly and refactored InMemoryMapTest class of the Camel
project (APACHE ACCUMULO, 2019).

Removal of calls for the System.out.print method (10-j). Listing 4.12 presents
idtestMultipleMessageConsumedByClusterwithConcurrentConfiguration method of
the PulsarConcurrentConsumerInTest test class from the Camel project (APACHE
CAMEL, 2020a), which has the RP test smell. The solution was removing calls for
the System.out.print method that prints the communication status at the test method
(lines 108 and 110, highlighted in red).

Listing 4.12: Diff between the smelly and refactored PulsarConcurrentConsumerInTest
class of the Camel project (APACHE CAMEL, 2020a).

Removal of methods with no executable body (11-j). Listing 4.13 presents the
EpT test smell in the build method of the BigDecimalFormatFactoryTest test class
from the Camel project (APACHE CAMEL, 2020b). The solution was removing the
entire method as it does not contain a body (lines 44 - 48, highlighted in red).

4.3. DERIVING A CATALOG OF TEST-SPECIFIC REFACTORINGS 91

Listing 4.13: Diff between the smelly and refactored BigDecimalFormatFactoryTest
class of the Camel project (APACHE CAMEL, 2020b).

Listing 4.14: Diff between the smelly and refactored
HttpInvalidHttpClientConfigurationTest.java class of the Camel project
(APACHE CAMEL, 2020b).

Addition of an executable body to empty methods (11-k). Listing 4.14 presents
the testInvalidHostConfiguration method from the Camel project (APACHE CAMEL,
2020b), which has the EpT test smell. It does not contain an executable body (lines 50
and 51, highlighted in red). The solution was adding a body to the test method (lines 51
- 53, highlighted in green).

Addition of assertion to test methods without assertions (12-k). Listing 4.15
presents the testAcceptVariantString method of the ServerLocalTest test class from
the Camel project (APACHE CAMEL, 2020b). The test method has an executable body
but no assertions, corresponding to UT test smell (line 66, highlighted in red). The
solution was identifying which assert method and the production code it should verify
(line 67, highlighted in green).

Replacing the test code logic to remove the Thread.sleep (13-k). Listing 4.16
presents the Sleep Thread test smell in the testDefaultTimeoutMapPurge method of the
DefaultTimeoutMapTest test class from the Camel project (APACHE CAMEL, 2021a).

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 92

Listing 4.15: Diff between the smelly and refactored ServerLocalTest class of the Camel
project (APACHE CAMEL, 2020b).

Listing 4.16: Diff between the smelly and refactored DefaultTimeoutMapTest class of
the Camel project (APACHE CAMEL, 2021a).

The test method has a conditional statement combined with the use of the Thread.sleep
method to slow down the test method execution (lines 61 - 67, highlighted in red). The
solution was removing the entire logic, evolving the Thread.sleep, and adding one using
the await method (lines 62 and 63, highlighted in green). We noticed the await method
often replaces the Thread.sleep method, but we could not establish a pattern to refactor
the test code logic.

4.4 A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG

To answer RQ1.2, we analyzed our catalog of test refactorings compared to the ones
proposed in the literature and the practices adopted on open-source projects.

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 93

4.4.1 How our catalog of test smell refactorings compares to the state-of-the-art?

This section discusses our findings in comparison with the state-of-the-art. Figure 4.7(a)
shows the test smells considered in previous studies (manually or automatically refac-
tored) compared to the ones in our catalog. Figure 4.7(b) shows the test smell refactoring
strategies considered in previous studies compared to the ones in our catalog.

Test smell detection and refactoring tools.

Many tools exist in the literature for detecting and refactoring test smells. Aljedaani et
al. (2021) conducted a systematic mapping study that reported 22 peer-reviewed tools
for test smell detection, with only four of them supporting refactorings for JUnit, as
follows:

• RTj is a framework that analyzes test cases developed with JUnit4 to detect and
refactor test cases that always pass (MARTINEZ et al., 2020);

• TestHound is a tool that detects test smells related to the fixture strategies used
in test code developed with JUnit or TestNG (GREILER; DEURSEN; STOREY,
2013);

• DARTS is an IntelliJ plug-in to detect and refactor non-cohesive test methods
written with JUnit (version independent) (LAMBIASE et al., 2020);

• RAIDE is an Eclipse plug-in to detect and refactor duplication and lack of doc-
umentation in assert methods (SANTANA et al., 2020).

However, according to Figure 4.7 (a&b), we observed that refactoring recommen-
dation tools only support some of the test smells and the test refactorings.

Test smell refactoring catalogs.

Several catalogs of test smell refactoring strategies exist in the literature.

• Deursen et al. (2001) proposed the first catalog of test smells and a variant of an
existing refactoring from Fowler’s catalog or one specific test-refactoring;

• Peruma et al. (2019) proposed an extended catalog of test smells with strategies to
prevent their insertion in the test code;

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 94

• Kim, Chen and Yang (2021) utilized existing catalogs to identify test refactorings
applied in practice to fix test smells;

• Differently from the above catalogs, which focused on JUnit4 and earlier versions,
Soares et al. (2022) investigated test smells and refactorings that can occur with
the newly introduced features of JUnit5.

Though JUnit constructs developers use are syntactically and semantically valid,
they do not guarantee the absence of test smells in test suites. Hence, testing frameworks
evolve to enhance testing practices, allowing developers to create robust, maintainable,
and smell-free test suites. For example, the @Test annotation with the expected param-
eter and the @Rule annotation are valid constructs when using JUnit4. However, when
migrating to JUnit5, those constructs would correspond to potential test smells since
JUnit5 introduced a (assertThrows) method for exception handling, making the previ-
ous methods less relevant. That shift illustrates how the evolution of testing frameworks
can lead to certain test smells becoming obsolete or less appropriate.

Interestingly, as Figure 4.7 (a-b) shows, we observe a test smell that received little
attention in the literature (the InA test smell). However, that test smell showed great
importance to developers, primarily inferred by the high acceptance and appreciation of
our refactoring of this particular smell, as indicated by the results of our submitted pull
requests. Besides, we found three different refactoring strategies for that test smell not
reported in prior research.

Test smell refactorings with varying complexity and context dependency.

Our dataset includes test smells that vary in the complexity of their refactorings, ranging
from straightforward to complex, each requiring context-specific strategies. The more
complex refactorings are particularly challenging due to their context-sensitive nature,
encouraging future research to develop standardized procedures that effectively capture
this context dependency. For example, when refactoring the ST test smell, it is important
to ensure the modification considers the test logic and does not change it since the
Thread.sleep method can force the test method execution to slow down to wait for or
simulate an event.

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 95

Figure 4.7: Comparison between our findings and the state-of-the-art regarding test smells
and test refactorings.

4.4.2 How our catalog of test smell refactorings is acceptable in practice?

The main goal of RQ1.2 is to explore the refactorings that developers implement in prac-
tice to gain a deeper understanding of the common challenges they face and the methods
they currently employ to refine test code. To enrich our insights beyond our automated
and manual empirical analyses, we sought feedback from software developers who have
contributed to the projects included in our dataset to allow gathering their perspectives
regarding several aspects: their awareness of test smells within their projects, their accep-
tance of the test smell refactorings we identified, and their views on the reasons behind
the existence of such test smells. Additionally, we sought their opinions on how useful

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 96

the refactorings are in their software development and testing process.

We adopted a proactive and collaborative approach further to understand test smells
and their refactorings in practice to achieve the above objectives. In particular, we
submitted pull requests to the 13 GitHub projects included in our dataset, proposing
refactorings based on our empirical findings. We randomly selected samples of different
test smell types that still exist in those projects and applied refactorings manually on
their remote repositories on GitHub. That hands-on approach allowed us to assess the
acceptability and practical implications of our identified refactorings and gather feedback
on those refactorings by directly interacting with the software development community.

Submitting pull requests was only the first step in our engagement, as we provided
developers context about our research and requested their opinion about the test smells
and refactorings under study. Post-submission, we actively followed up with the develop-
ers, engaging in discussions about the changes we proposed. Developers often provided
justifications not only for why certain test smells existed but also for why certain refac-
torings were not worth the change, which offered historical or functional insights that
might take time to be apparent from data analysis. Moreover, those discussions often led
to further improvements and refinements to the changes beyond our initial suggestions,
which refactored more instances of certain test smells in some projects. Through that
iterative and interactive process, we validated our research and contributed directly to
enhancing test code quality in active projects.

We submitted 13 pull requests, one for each project we studied. We addressed one
to two test smells in each pull request, in which we refactored multiple instances of each
test smell. More specifically, we refactored (i) 95 instances related to the Inappropriate
Assertion test smell in nine projects, (ii) 24 instances related to the ECT test smell in
six projects, and (iii) 24 instances related to the AR test smell in 3 projects. Overall, 10
of the 13 pull requests (77%) have successfully been merged by developers with positive
responses, with one pull request already being approved and receiving a response, but we
still need to merge them. Two pull requests are still open but we received responses from
developers.

We performed a qualitative analysis of the comments and categorized them into
themes to better understand the sentiments of developers and their reasons for accepting
or rejecting the refactorings. Our analysis of the feedback provided valuable insights into
the perceptions and challenges of test smells in open-source projects. It can inform future
research and tool development efforts to improve test quality. We summarize our analysis

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 97

in the following.

• Acknowledgment of improvement (5 comments): Developers’ feedback sug-
gests a general appreciation for the efforts to improve test quality. We captured
that sentiment when a developer stated: “Thanks for your contribution cleaning up
our tests. We love those!”;

• Request for rationale (2 comments): While the intent behind the pull requests
was clear to some, others sought further clarity. One developer remarked: “I was
curious the rationale for why assertThrows should replace the annotation. After
clarifying what test smells are... This was a nice thing to know!”

• Historical context (2 comments): A developer offered a historical codebase
context: “Actually, in this case, you should probably say that they became inap-
propriate. When this test infrastructure was built, assertNotEquals did not even
exist.” That comment highlights how certain test smells might have originated due
to the limitations or norms of the time, suggesting that developers may sometimes
be behind recent advancements in testing frameworks;

• Developer Preferences (3 comments): Several developers emphasized the
value of explicit failure messages. One such comment pointed out: “The use of
assertNotEquals instead of assertTrue seems fine. Those specific assertion method
changes are enough to add a more detailed message from JUnit on failure.” That
feedback highlights the need for tooling that refactors code and enhances its clarity
and debuggability;

• Prior Awareness (1 comment): A developer from one project mentioned: “For
the problem you noticed, the community has started the shift from JUnit4 to
JUnit5+AssertJ a while ago... However, due to the huge size of the codebase, the
shift may take some extra months to finish.” That comment indicates an awareness
and proactive approach to modernizing testing practices;

• More important test smells than others (2 comments): The feedback of-
fered potential focus areas for researchers and tool developers. As one developer
suggested: “If anyone were to go near old tests, I’d target things I really don’t like
- assertTrue/assertFalse without error messages or detail why the test failed.”

4.4. A COMPARATIVE AND PRACTICAL ANALYSIS OF THE CATALOG 98

4.4.3 Implications for software engineering research and practice

We identified several implications for software engineering research and practice.

Awareness of test smells. Our data collection indicated developers had refactored
many instances of test smells without explicitly highlighting such particular refactorings
in their changes (i.e., commit messages). In addition, we could prove this by our sub-
mitted pull requests, in which we targeted projects from our dataset but observed that
developers appreciated our refactorings and did not have or had little idea about certain
test smells and their impact. Therefore, it is crucial to increase developers’ awareness of
test smells, their impact on test quality, and how to refactor them properly. Those test
smells can propagate without such awareness, making future refactorings harder and po-
tentially introducing fragility into the test suite. Raising awareness can be done through
workshops, documentation, and peer reviews. If developers recognize test smells like the
AR or InA, they could more proactively address them during regular development.

Extended tool support for test smell detection and refactorings. Automated
tools can assist developers in identifying and refactoring test smells. Our research identi-
fied new test smells (e.g., the InA test smell) and test smells straightforward yet context-
specific (e.g., the ST test smell), where existing tools cannot detect and/or refactor them.
Therefore, it is important to extend existing test smell detection and refactoring tools
to detect and refactor test smells, provide adequate context guidance on why a certain
practice is considered a test smell, and offer suggestions for refactorings. For example,
suppose a tool detects one ECT test smell. In that case, it should point it to the de-
velopers and suggest ways to refactor and ensure that such refactoring is consistent and
does not change the testing logic. That context ensures developers rectify the issue and
understand the reasoning behind the refactoring, reinforcing best practices.

Historical analysis of test smells. While much research exists on test smells and
their refactorings, little attention has been paid to the evolution of test smells across
software projects. Our results showed that test smells could emerge due to a possible
upgrade to the testing framework (e.g., from JUnit4 to JUnit5), such as the ECT test
smell. Understanding the origin and evolution of test smells in a codebase is invaluable.
Therefore, future work should conduct extensive research to analyze the history of test
code, which can provide insights into why certain smells emerge and how testing and
refactoring practices evolved. Moreover, observing the refactoring trends of test smells
can provide insights into developers’ and researchers’ testing best practices.

4.5. THREATS TO VALIDITY 99

4.5 THREATS TO VALIDITY

This section discusses the validity threats to our results.

External Validity. We studied 13 open-source Java projects, with test code
written with JUnit testing framework, selected by Kim, Chen and Yang (2021). Al-
though the projects are large in scale and cover various domains, other projects might
exhibit different test smells and refactoring operations. Therefore, the results can be
non-generalized to other contexts and programming languages.

Construct Validity. We selected a stratified sampling of modified test classes
that follow the JUnit naming convention. Therefore, we could have missed some test
classes we did not retrieve by the regular expression used to find the word “Test” in the
name of test classes. Additionally, we selected the samples from the projects over three
years. Since test classes are commonplace to receive new tests, we assume that most
of the changes in the test classes would not be test refactorings. Therefore, we filtered
the commits with the potential to exhibit test refactorings by analyzing the commits’
messages. As a result, 41.7% of the test files have test refactoring operations that fix test
smells. We could have used other approaches to filter test classes with a non-negligible
probability of being refactorings. For example, we could consider test classes of no-
modified production classes. Finally, we based our catalog of test smells and refactorings
on a manual analysis of commits performed by two coders. It could lead to inconsistency
or mislabeling of the changes in the test code. To address this issue, we conducted
collaborative discussions to resolve any disagreement by using standardized categories
from the literature as a reference.

Internal Validity. A potential threat in this study is the manual analysis of the
test code to label the test refactorings that fixed test smells. Two authors independently
inspected the test refactorings of 50 test files to calculate the kappa statistic and minimize
the bias, and one author inspected the remaining files. Still, we could have mislabeled
some test refactorings, leading to an incorrect interpretation of the results.

Conclusion Validity. During our data collection process, we used the commit
messages to distinguish the test code changes meant to refactor test smells from other
evolutionary changes. The data collection process could have biased the conclusions
for two main reasons. First, developers rarely document refactoring activities explicitly
(WEISSGERBER; DIEHL, 2006; WEISSGERBER; BIEGEL; DIEHL, 2007), but when
they do, they can misuse the term “refactoring” to indicate normal code modifications

4.6. CHAPTER SUMMARY 100

(DI et al., 2018). Second, some evolutionary changes overlap the changes for fixing test
smells, distinct from pure test code refactoring. As such, our conclusions can be due to
evolutionary changes other than refactoring.

4.6 CHAPTER SUMMARY

This chapter presents our empirical study to catalog test refactorings used to fix test
smells. Our analysis revealed 156 test files containing 611 pairs of smelly and refactored
test codes. In particular, three test-specific refactorings are associated with upgrading
the JUnit version, targeting two test smells (ECT and AR). Another eight test-specific
refactorings are version-agnostic concerning JUnit, targeting seven test smells (InA, AR,
BaN, IgT, EpT, UT, and ST). Additionally, our findings show that developers have a
common interest in specific assert methods of the testing frameworks. For example, devel-
opers can force conditional expressions or redundant parameters within assert methods,
leading to the InA test smell, which remains unexplored in the literature. To enrich
our insights beyond our empirical analyses, we sought feedback from software developers
regarding test smells and refactorings.

In summary, this chapter provides the following contributions:

• We presented an accurate and manually validated dataset (MARTINS et al., 2023b)
of test-specific refactorings based on 375 test files in 13 projects, showing how
developers refactor test code in practice;

• We presented a catalog, publicly available (MARTINS et al., 2023c), listing the
test smells observed in practice and their corresponding test-specific refactorings
derived from both the literature and practice;

• We submitted 13 pull requests, utilizing our catalog, for refactoring 143 test smells
in the test suites of Apache projects, reaching a 77% acceptance rate.

Chapter

5
HOW TEST REFACTORINGS AFFECT TEST CODE

QUALITY

Over the last decades, researchers have been proposing automated refactoring recom-
menders (BAVOTA et al., 2014) and investigated how refactoring relates to code qual-
ity (BOIS; DEMEYER; VERELST, 2004; CHáVEZ et al., 2017; SOBRINHO; LUCIA;
MAIA, 2018; AZEEM et al., 2019). In particular, they identified both benefits and draw-
backs of its application (DALLAL, 2015; BAQAIS; ALSHAYEB, 2020; LACERDA et al.,
2020), finding that, while refactoring is theoretically associated with modifications that
do not affect the external behavior of source code, it can induce defects (BAVOTA et al.,
2012; FERREIRA et al., 2018; PENTA; BAVOTA; ZAMPETTI, 2020), vulnerabilities
(IANNONE et al., 2023), or even code smells (TUFANO et al., 2017b). Those drawbacks
are mainly due to refactoring activities performed manually without the support of auto-
mated tools and interleaved with other code changes (MURPHY-HILL; BLACK, 2007).
This chapter is motivated by those previous studies. On the one hand, most of them
focused on production code refactoring. Therefore, we argue there is a lack of investiga-
tion into how refactoring is applied to test code. On the other hand, we do not know if
similar effects observed in previous work can arise with test refactoring, i.e., it can have
some impact on both test quality, for instance, in cases where refactoring actions target
the logic of a test case. Hence, we point out a there is limited knowledge of the effects of
refactoring on both test quality.

An improved understanding of test refactoring would have several potential benefits
for research and practice. In the first place, test cases represent a crucial asset for software

101

5.1. RESEARCH QUESTIONS AND OBJECTIVES 102

dependability: developer’s productivity is partly dependent on the quality of test cases
(MICCO, 2017), as they help practitioners decide on whether to merge pull requests or
deploy the system (GRANO et al., 2020). As such, analyzing how refactoring affects test
cases can significantly impact practice. Secondly, researchers have shown test code design
is approached substantially differently than traditional development (MESZAROS, 2007).

For those reasons, new refactoring practices were proposed to deal with quality
concerns (DEURSEN et al., 2001; MESZAROS; SMITH; ANDREA, 2003). While those
refactoring practices were the target of some previous investigations, researchers limited
their focus to how refactoring can influence test smells, i.e., symptoms of poor test code
quality (SOARES et al., 2020; PERUMA et al., 2020b; SOARES et al., 2022). Hence,
it does not comprehensively analyze the nature and effects of test refactoring. More
specifically, we highlight a lack of knowledge on (1) whether developers apply test refac-
toring operations on test classes affected by quality concerns and (2) what the effect of
refactoring is on both test case qualities.

This chapter addresses this knowledge gap by carrying out an exploratory empirical
study. We first collected test refactoring data from the change history of open-source Java
projects from GitHub. Next, we combined them with data from automated instruments
able to profile test code from the perspective of quality metrics and test smells. Afterward,
we applied statistical analyses to address two main research goals targeting (1) whether
test classes with a low level of quality, in terms of test smells and code metrics, are
associated with more test refactoring, and (2) what extent the removal of test smells
improve the test code quality.

The remainder of this chapter is structured as follows. Section 5.1 presents the goal
and research questions explored. Section 5.2 presents the experimental design to conduct
the study. Section 5.3 presents the results. Section 5.4 shows the discussion of those
results. Section 5.5 lists the threats to validity.

5.1 RESEARCH QUESTIONS AND OBJECTIVES

The goal of the empirical study is to analyze the test refactoring operations performed
by developers over the history of software projects, with the purpose of understanding
(1) whether low-quality test classes, in terms of structural metrics and test smells, pro-
vide indications on which test classes are more likely of being refactored, and (2) as a
consequence, to what extent test refactoring operations are effective in improving quality

5.1. RESEARCH QUESTIONS AND OBJECTIVES 103

of test classes. In other terms, we are first interested in assessing the quantity of test
refactoring operations performed on classes exhibiting test code quality issues and, in
the second place, the quality of the test refactoring operations applied in terms of im-
provements provided to test code quality. The perspective is researchers and practitioners
interested in understanding the relationship and effects of test refactoring operations on
the quality of test classes.

More specifically, our empirical investigation will first aim at addressing the follow-
ing research questions (RQs):

RQ2.1. To what extent are test refactoring operations performed on test classes having
a low level of quality, as indicated by quality metrics and test smell detectors?

Through RQ2.1, we aim to investigate whether the low-quality test classes are asso-
ciated with more test refactoring operations. It might help us to understand whether the
characteristics of the test suites trigger more refactoring operations, possibly informing
researchers on (1) the factors associated with test refactoring and (2) the design of novel
or improved instruments to better support developers in their activities. For instance,
when discovering refactoring is not frequent on smelly test classes, it is necessary to
conduct further research on the motivations leading developers to refactor test code and
know as to design test smell detectors to ease the application of refactoring operations.

Upon completing that investigation, we elaborate on the impact of test refactoring,
addressing the following RQ:

RQ2.2. What is the effect of test refactoring on test code quality, as indicated by quality
metrics and test smell detectors?

Through RQ2.2, we aim to extend the current knowledge on the impact of test
refactoring, assessing whether the test code quality changes or remains the same after
applying test refactoring operations. It is worth mentioning that addressing that research
question would be important, independent of the results from RQ2.1. Indeed, regardless
of the amount of refactoring operations performed on low-quality and smelly test classes,
it would still be possible that the specific refactoring actions targeting those classes have
any impact.

To make our argument more practical, consider the case of Extract Method refac-
toring, whose suboptimal implementation can potentially affect test code effectiveness.
Given a verbose test method with several steps and assertions, refactoring enables the
extraction of multiple more cohesive and focused test methods on the verification of spe-

5.2. EXPERIMENTAL DESIGN 104

cific conditions of production methods. However, if developers inappropriately perform
such an extraction, it could potentially change the test logic and harm test effectiveness.
For instance, consider the T test, which verifies the B1 and B2 branches of the M pro-
duction method. In this case, an Extract Method operation is supposed to split the T

test so that the T1 and T2 resulting tests target the B1 and B2 branches individually.
However, whether a logical relation exists between the B1 and B2 branches, the T2 test
will still need to pass through the T1 test to ensure the meeting of the logical relation:
suboptimal refactoring can overlook that requirement, possibly not embedding in the T2

test the statements required to reach the B1 branch.

As such, RQ2.2 provides an orthogonal view of the matter. Also, in this case, the
outcome of our investigation can have implications for research and practice. First, our
findings can help researchers measure the actual and practical impact of test refactor-
ing, driving considerations on how future research efforts should be prioritized, e.g., by
favoring more research on impactful refactoring operations. Second, our results can in-
crease the practitioner’s awareness of test refactoring, possibly increasing its application
in practice.

5.2 EXPERIMENTAL DESIGN

This section reports the research method we apply to address our RQs. Figure 5.1 depicts
the steps to execute our study.

5.2.1 Context of the study

The context of our investigation is composed of (i) software systems, (ii) metrics col-
lected from software systems, i.e., variables, and (iii) empirical study variables, i.e., the
independent and dependent variables we statistically analyzed.

Software Systems. We considered three main criteria to select suitable software
systems. First, we selected open-source projects, as we need access to change history
information. Second, we relied on popular, large, and real-world projects with enough
releases to collect data for statistical analysis. Third, we standardized the building process
to ease dependency management and streamline build configurations across all projects.
As such, we used SEART tool1 to select open-source and non-fork projects from GitHub

1<https://seart-ghs.si.usi.ch/>

5.2. EXPERIMENTAL DESIGN 105

...

[c75, c112] = V2.0

(a) Context of the study

Selection of projects
with SEART tool

Filter #1
Projects built with

Maven

Filter #2
Projects written with

Java 1.8

Filter #4
Removing projects

that are clones

5,126
projects

1,901
projects

269
projects

175
projects

Test smells
detection (Tsi)

[TsDetect]

Test refactoring
detection (refk)

[TestRefactoringMiner]

Quality Metrics (QMi)
[VITRuM]

[c113, c128] = V2.1

Run script to get
commits and tags

List of
commits

(b) Data Collection

... ...
c111 c113 c114 c127

c128

V2.0 V2.1

c112

(c) Data Analysis
RQ2.1:

significant difference of refk

for different values of Tsi/Qmi

c75

RQ2.2:
significant difference of

Qmi/Tsi before and after ref

Filter #3
Projects by number of

lines and test files

187
projects

...

... ...
c111 c113 c114 c127

c128

V2.0 V2.1

c112

...

... ...
c111 c113 c114 c127

c128c112

c75

c75

63 projects w/
metrics

Projects
characterization

Figure 5.1: Overview of the experimental design.

with at least 100 stars, ten major releases, 1,000 lines of code, and 10 test classes. We
sought Java projects to compile them with Maven and Java 8—Java 8 is the most
popular Java version currently used2. As a result, we selected 175 projects.

Variables.We first collected test refactoring data from the change history of open-
source Java projects from GitHub. Next, we combined them with data from automated
instruments able to profile test code from the perspective of quality metrics and informa-
tion on test smells.

Test Smells. In particular, we considered six test smells: 1) Assertion Roulette (AR), 2)
Duplicate Assert (DA), 3) Exception Handling (ECT), 4) Eager Test (ET), 5) General
Fixture (GF), and 6) Lazy Test (LT).

Test code quality. Features in that category derive from the test code attributes. In
2<https://www.jetbrains.com/lp/devecosystem-2021/java/>

5.2. EXPERIMENTAL DESIGN 106

particular, we selected metrics related to test code size, complexity, and coupling:
1) Lines of Code (LOC), 2) Number of Methods (NOM), 3) Weighted Method per
Class (WMC), 4) Response for a Class (RFC), and 5) Assertion Density (AD).

Refactorings. We considered test-specific refactorings applied to fix test smells and the
following refactorings from Fowlers’ catalog (FOWLER, 1999): 1) Add assert expla-
nation, 2) Extract Class, 3) Extract Method, 4) Inline Method, 5) Rename Class,
6) Replace conditional by Parameterized Test, 7) Replace NOT operator, 8) Replace
Reserved Words, 9) Replace Test annotation w/ assertThrows, 10) Replace Rule anno-
tation w/ assertThrows, 11) Replace try/catch w/ assertThrows, 12) Split Conditional
Statement in Assertions, and 13) Split method.

Empirical Study Variables. In the context of RQ2.1, we are interested in assess-
ing whether refactoring operations are more likely to be observed on test classes exhibiting
test code quality concerns. As such, we defined the following empirical study variables:

Independent Variables. Those variables are factors related to the application of test
refactoring, namely (i) test code quality metrics and (ii) the presence of test smells
(of different types). We calculated the metrics across releases of different software
systems and statistically analyzed them, as described later in this section. Multiple
considerations drove the selection of those independent variables. First, we considered
test code quality metrics and test smells, targets of previous research in the field
(CATOLINO et al., 2019; PECORELLI; PALOMBA; LUCIA, 2021), and impact test
code in different manners (SPADINI et al., 2018; KIM; CHEN; YANG, 2021);

Dependent Variables. Those variables are refactoring operations (of different types)
observed across releases of different software systems. To select them suitably, we
investigated the literature to elicit test refactoring operations previously associated
with our independent variables.

When it turns to RQ2.2, we assessed the impact of test refactoring on the test code
quality. As such, we swapped independent and dependent variables: indeed, in this case,
we observed how refactoring impacts test code properties rather than the opposite:

Independent Variables. Those variables are different types of refactoring operations
computed across the releases of software systems considered;

5.2. EXPERIMENTAL DESIGN 107

Dependent Variables. Those variables are test smells and test code metrics described
and computed across releases of software systems.

5.2.2 Data Collection

We used different automated tools available in the literature to extract data on quality
metrics, test smells, and refactoring operations. Then, we merged the data to compose
our dataset.

Collecting test code quality. To collect test code quality metrics, we executed
VITRuM to calculate five static metrics from the test code (PECORELLI et al., 2020b).

Collecting test smells. Among the test smell detection tools available for Java
code (ALJEDAANI et al., 2021), we used the tsDetect tool(PERUMA et al., 2020a),
the most accurate tool, with a precision score ranging from 85% to 100% and a recall
score ranging from 90% to 100%. That tool performs a test code static analysis through
an AST (Abstract Syntax Tree) to apply detection rules of test smells in the test files. A
test file in the JUnit testing framework should follow the naming conventions of either
pre-pending or appending the "Test" word to the name of the production class under test
and at the same package hierarchy (PERUMA et al., 2020a). With the detection rules,
the tool can detect (i) the presence or absence of a test smell in a test class or (ii) the
number of instances per test smell in a test class. In addition, it receives a configuration
of the severity thresholds for each test smell (SPADINI et al., 2020).

Collecting refactoring data. To detect test refactoring operations, we used
the TestRefactoringMiner tool (MARTINS et al., 2023a). We integrated the test
detection mechanisms proposed by RefactoringMiner team in late 20213 and built
TestRefactoringMiner on top of their refactoring mining tool. Refactoring-
Miner implements rules to detect 1999 refactorings from Fowler’s catalog and has the
highest precision (99.8%) and recall (97.6%) scores among the currently available refactor-
ing mining tools (TSANTALIS; KETKAR; DIG, 2020). In more detail, the TestRefac-
toringMiner tool analyzes the added, deleted, and changed files between two project
versions to detect specific test refactorings, reaching 100% precision and 92.5% recall
scores. The tool operationalizes detecting all refactoring operations considered in the

3Available at: https://github.com/tsantalis/RefactoringMiner/pull/225

5.2. EXPERIMENTAL DESIGN 108

study. It is worth noting that the test refactorings consider various aspects of the test
code, such as integrating new technologies like JUnit5 or improving the organization of
test classes.

Data integration. Although some tools allow a finer granularity during the code
analysis, they can all report the results at the class level. Therefore, we established
traceability links between the test classes reported by the tsDetect, VITRuM, and
TestRefactoringMiner tools. Finally, we integrated their outcome into a unique
data source to be further analyzed statistically. In Figure 5.1, after executing the tools in
the Data Collection step, the dataset remained with 63 projects because not all projects
have refactorings in the test code (i.e., no intersection between the tools’ outputs).

5.2.3 Data Analysis

We first formulated the working hypotheses we statistically assessed. As for RQ2.1, given
a Qmi quality metric Qmi in {LOC, NOM, WMC, RFC, AD} and a refk refactoring
in the set of refactoring operations considered in the study, our null hypothesis is the
following:

Hn1Qmi−refk . No significant difference exists in the amount of refk performed on test
classes with different Qmi value.

As in RQ2.1, we evaluated the relation between test refactoring and test smells.
Given a Tsi test smell in the set of test smells and a refkrefactoring in the set of refactoring
operations, both considered in the study, we defined a second null hypothesis:

Hn2Tsi−refk . No significant difference exists in the amount of refk performed on test
classes affected and not affected by Tsi.

As for RQ2.2, given a Qmi quality metric, a Tsi test smell, and a refk refactoring,
the null hypotheses are:

Hn3Qmi−refk . No significant difference exists in Qmi before and after the application of
refk.

Hn4Tsi−refk . No significant difference exists in the number of Tsi instances before and
after the application of refk.

5.2. EXPERIMENTAL DESIGN 109

The statistical rejection of one of the null hypotheses leads us to accept the corre-
sponding alternative hypothesis, namely:

An1Qmi−refk . The amount of refk operations on test classes having different values of
Qmi is statistically different.

An2Tsi−refk . The amount of refk on test classes affected and not affected by Tsi is
statistically different.

An3Qmi−refk . The Qmi before and after the application of refk is statistically different.

An4Tsi−refk . The number of Tsi instances before and after the application of refk is
statistically different.

We build statistical models to verify the working hypotheses, accepting or rejecting
the hypotheses.

Statistical modeling for RQ2.1. We devised a Logistic Regression Model for
each refactoring operation considered in the study. Such a model belongs to the class of
Generalized Linear Models (GLM) (NELDER; WEDDERBURN, 1972) and relates a (di-
chotomous) dependent variable with either continuous or discrete independent variables.
In our case, whether or not a particular type of refactoring is performed is the depen-
dent variable, and the quality metrics are the independent variables. Before building the
statistical model, we assessed the presence of multi-collinearity (O’BRIEN, 2007), which
arises when two or more independent variables are highly correlated and one can predict
the other. We used the vif (Variance Inflation Factors) function and discarded highly
correlated variables with a threshold value equal to 5 (O’BRIEN, 2007).

For each statistical model, we (i) assessed whether each independent variable signif-
icantly correlates with the dependent variable (using a significance level of α = 5%, and
(ii) quantified this correlation using the Odds Ratio (OR) (BLAND; ALTMAN, 2000),
a strength measure of the association between an independent variable and a dependent
variable. Higher OR values for an independent variable indicate a higher probability of
explaining the dependent variable, i.e., a higher likelihood the independent variable has
triggered a refactoring operation. Nonetheless, the interpretation of OR values changes
depending on the different measurement scales of the independent variables, i.e., the ratio
for the test code quality metrics and definite for the test smells. As for the metrics, the
OR for an independent variable indicates the increment of chances for a test class to be

5.3. RESULTS 110

subject to refactoring due to a one-unit increase of the independent variable. As for test
smells, the OR indicates how likely a smelly test class is involved in refactoring operations
concerning a non-affected class.

The statistical significance of the correlation between independent and dependent
variables allows us to accept or reject Hn1Qmi−refk and Hn2Tsi−refk , while OR values
will measure the strengths of the correlations.

Statistical modeling for RQ2.2. To statistically assess the impact of test refac-
toring on test code quality metrics and smells, we first collected all the test classes subject
to the refactoring type refk in a generic release Ri. Afterward, we computed on the re-
lease Ri the value of test code quality metrics and test smells. Similarly, we computed
on the release Ri−1 the value of test code quality metrics and test smells. We produced
two distributions: the first represents the number of test smells in Ri−1, i.e., before the
application of refk; the second represents the number of test smells in Ri, i.e., after the
application of refk. On this basis, we employed the non-parametric Wilcoxon Rank Sum
Test (MCKNIGHT; NAJAB, 2010) (with α-value = 0.05), through which we accepted or
rejected the null hypotheses Hn3Qmi−refk and Hn4Tsi−refk .

In addition, we computed the difference between the distributions of quality metrics
and test smells computed on the release Ri, and the value of the metrics and test smells
computed on the release Ri−1. Then, we classified whether the difference between the
distributions (Ri−Ri−1) was positive, negative, or neutral, indicating whether there was
an improvement in the test code quality.

5.3 RESULTS

Figure 5.2 depicts the boxplots of the distributions of metrics and test smells for the
sets of refactored and non-refactored tests in our dataset. It is worth mentioning all the
12,578 test classes in our dataset have refactorings from Fowler’s catalog. However, we
considered the test-specific refactorings with the potential to contribute to removing test
smells. Therefore, we have 1,023 refactored test classes (8.1%) and 11,555 non-refactored
test classes (91.8%) from that set of test-specific refactorings.

5.3. RESULTS 111

Figure 5.2: Boxplots for the distributions of metrics and test smells in the dataset.

Table 5.1: Results for the statistical model considering the quality metrics (Qmi).

Variable Estimate SE Pr(>|z|) OR Variable Estimate SE Pr(>|z|) OR
Add Assert Explanation Replace NOT operator

Intercept -5.884 0.223 2e-16 0.001 Intercept -6.519 0.305 2e-16 4e-04
NOM 2.129 2.149 0.322 8.405 WMC -7.659 6.185 0.215 0.000
RFC -0.112 1.865 0.952 0.894 LOC 6.345 2.416 0.008 5e+01
AsD 2.695 0.706 0.000 14.799 AsD 2.803 0.923 0.002 1e+02

Extract Class Replace conditional by ParameterizedTest
Intercept -4.159 0.134 2e-16 0.016 Intercept -6.322 0.364 2e-16 1e-03
WMC 0.476 1.883 0.800 1.610 LOC 7.960 4.389 0.069 2e+03
RFC 0.507 1.357 0.709 1.660 WMC -20.544 14.810 0.165 1e-09
AsD -1.604 0.653 0.014 0.201 AsD 1.130 1.250 0.366 3.09

Extract Method Replace Rule with assertThrows
Intercept -2.912 0.066 2e-16 0.016 Intercept -6.167 0.319 2e-16 3e-04
NOM 1.102 0.719 0.126 1.610 NOM 2.834 4.147 0.494 7e+02
RFC 2.725 0.464 0.000 1.660 RFC -2.155 3.929 0.583 6e-04
AsD -0.703 0.300 0.019 0.201 AsD 0.609 1.245 0.625 1e+02

Inline Method Replace @Test w/ assertThrowsassertThrows
Intercept -4.437 0.148 2e-16 0.016 Intercept -6.341 0.299 2e-16 3e-04
NOM 1.985 1.578 0.208 1.610 WMC -3.140 5.816 0.589 7e+02
RFC 0.954 1.242 0.443 1.660 RFC 1.931 2.527 0.445 6e-04
AsD -1.717 0.740 0.020 0.201 AsD 2.411 0.954 0.011 1e+02

Rename Class Replace try/catch with assertThrows
Intercept -5.744 0.263 2e-16 0.001 Intercept -7.364 0.442 2e-16 3e-04
LOC 4.972 2.048 0.015 144.442 WMC -3.554 8.124 0.662 7e+02
NOM -11.060 6.821 0.104 0.000 RFC 2.684 3.115 0.389 6e-04
AsD 0.813 0.979 0.406 2.255 AsD 3.464 1.251 0.006 1e+02

Replace Reserved Words Split conditional in statements
Intercept -5.501 0.137 2e-16 0.001 Intercept -5.489 0.190 2e-16 4e-03
LOC 5.778 1.341 0.000 0.004 LOC 6.145 1.132 0.000 4e+02
NOM -8.593 3.426 0.012 0.000 NOM -3.003 2.131 0.158 0.158
AsD 3.961 0.455 2e-16 52.521 AsD 1.669 0.669 0.012 5.30

5.3. RESULTS 112

5.3.1 Are test classes performed in classes with low quality?

Table 5.1 reports the results of the Logistic Regression Model for the refk refactoring in
the set of refactoring operations considered in the study and the Qmi quality metric in
{LOC, NOM, WMC, RFC, AsD}. In addition, Table 5.2 reports the results of the Logistic
Regression Model for the refk refactoring in the set of refactoring operations and the Tsi

test smell in {AR, DA, ECT, ET, GF, LT}. For each variable, the tables report the
value of the estimate, the SE standard error, and the p-value indicating the statistical
significance. The latter is formatted in bold to indicate whether a p− value < 0.05.

Looking at Table 5.1, we considered only three quality metrics in the models and
discarded the LOC, NOM, RFC, and WMC metrics in pairs from the models due to
multi-collinearity. The AsD metric was the only one with no multi-collinearity and was
statistically significant for the Add Assert Explanation refactoring. The value of the
estimate was positive (2.69), meaning an increase in the assertion density leads to an
increase in the likelihood of the refactoring occurring in the test class. The AsD metric
was statistically significant for other refactorings, with a positive value for the estimate
to the Replace NOT Operator (2.80), Replace @Test Expected with assertThrows (2.41),
Replace Try/Catch With AssertThrows (3.46), Replace Reserved Words (3.96), and Split
Conditional in statements (1.66) refactorings. The RFC metric was also statistically
significant, with a positive value for the Extracted Method (2.72) refactoring. The LOC
metric was statistically significant with a positive value for the Rename Class (4.97),
Replace Reserved Words (5.77), Replace NOT operator (6.34), and Split Conditional in
Statements (6.14) refactorings.

After building the statistical models, we analyzed the Odds Ratio (OR) to measure
the likelihood the independent variable has triggered a refactoring operation and the
significance of their association. The last column of Table 5.1 shows the OR values and
those in bold present p − value < 0.05. Odds Ratios greater than 1 suggest a positive
association, while those less than 1 suggest a negative association. For the Add Assert
Explanation refactoring, the AsD metric shows a statistically significant Odds Ratio of
14.80 with a p-value=1.34e-04. In this case, the odds ratio of the event associated with
the AsD metric increases by 14.80 when the refactoring is applied. The intercept values
are also included for each refactoring, indicating the baseline odds ratio of the dependent
variable when no refactoring is applied.

5.3. RESULTS 113

 Summary3.1.1. Our results show structural metrics (Qmi−refk), specifically the AsD
metric, significantly influence the likelihood of most test refactorings. In addition, the
Add Assert Explanation refactoring stands out with a statistically significant Odds Ratio
(14.80) for the AsD metric. Therefore, we rejected the null hypothesis Hn1Qmi−refk .

Turning to Table 5.2, we considered all test smells in the models except the ET test
smell for the Rename Class refactoring. No test smell was statistically significant for the
Add Assert Explanation, Extract Class, Replace @Rule With AssertThrows, and Inline
Method refactorings. As for the other refactorings, the DA test smell was statistically
significant with a positive value of estimate for the Replace NOT Operator (6.34), Extract
Method (2.33), Rename Class (6.46), and Replace Try/Catch With AssertThrows (11.81)
refactorings. That test smell was also statistically significant with a negative estimate
value for the Replace @Test Expected with assertThrows (-32.80) refactoring. The Ex-
tract Method (AR: 1.45, DA: 2.33, ECT: 1.68, ET: -6.17, GF: 1.73) and Replace Reserved
Words (AR: 6.27, DA: 4.89, ECT: -11.89, LT: 6.5) refactorings were those with more sta-
tistically significant test smells in their models. All the test smells that have a statistical
significance for the models also have a statistical significance for the Odds Ratio. For
instance, the Odds Ratio for the AR test smell is 529.9, suggesting a substantial increase
in the odds of the event associated with the response variable when the AR test smell
increases by one unit.

 Summary3.1.2. For Add Assert Explanation, Extract Class, Replace @Rule With
AssertThrows, and Inline Method, no test smell reached statistical significance. How-
ever, several test smells exhibit statistical significance in influencing test refactorings
for the remaining test refactorings. For example, the DA holds significance for seven
test refactorings. Therefore, we can reject the null hypothesis Hn2Tsi−refk

5.3.2 What are the effects of test refactorings?

Table 5.3 reports the analysis of the impact of the refk refactoring in the set of refac-
toring operations considered in the study for the Qmi in {LOC, NOM, WMC, RFC,
AsD}. In addition, Table 5.4 reports the impact of the refk refactoring concerning the
Tsi test smells in {AR, DA, ECT, ET, GF, LT}. For each variable, the tables report
the percentage of test classes with no changes in the values of the variables before and
after applying the refactoring (≡), the percentage of test classes where the values of the
variables decreased after applying the refactoring (↓), and the percentage of test classes

5.3. RESULTS 114

Table 5.2: Results for the statistical model considering the test smells (Tsi).

Variables Estimate SE Pr(>|z|) OR Variables Estimate SE OR OR
Add Assert Argument Replace NOT operator

Intercept -5.358 0.139 2e-16 0.005 Intercept -5.843 0.189 2e-16 2e-03
AR 0.259 2.630 0.921 1.296 AR 4.770 2.226 0.031 1e+02
DA 1.891 1.605 0.239 6.628 DA 5.511 1.546 0.000 2e+02
ECT 1.183 2.479 0.633 3.264 ECT -19.011 10.606 0.0730 5e-09
ET 2.220 3.691 0.548 9.203 ET 6.238 12.557 0.619 5e+02
GF 0.570 2.370 0.810 1.769 GF -20.037 17.786 0.259 1e-09
LT -2.333 7.104 0.743 0.097 LT -29.129 29.848 0.329 2e-13

Extract Class Replace conditional by Parameterized
Intercept -4.383 0.092 2e-16 0.012 Intercept -4.879 0.221 2e-16 7e-03
AR -1.214 2.320 0.601 0.297 AR 4.175 14.587 0.774 6e+01
DA -0.132 1.635 0.935 0.876 DA -2e+01 2e+01 0.294 1e-11
ECT 1.524 1.467 0.299 4.591 ECT -1e+03 6e+02 0.018 0.000
ET 0.712 1.729 0.680 2.038 ET -9e+01 8e+1 0.226 3e-43
GF -5.470 4.570 0.231 0.004 GF -8e+01 1e+02 0.483 1e-38
LT 2.454 2.157 0.255 1e+01 LT -58.729 1e+02 0.627 3e-26

Extract Method Replace Rule w/ assertThrows
Intercept -2.959 0.045 2e-16 0.052 Intercept -6.106 0.209 2e-16 2.2e-03
AR 1.459 0.703 0.038 4.304 AR 3.516 2.284 0.124 3.4e+01
DA 2.330 0.483 0.000 10.281 DA -3.613 4.026 0.370 2.7e-02
ECT 1.687 0.737 0.022 5.402 ECT -1.932 5.394 0.720 1.4e-01
ET -6.176 1.783 0.001 0.002 ET 2.838 3.192 0.374 1.7e+01
GF 1.739 0.635 0.006 5.691 GF -2.638 7.520 0.726 7.2e-02
LT 2.089 1.490 0.161 8.078 LT 0.429 7.752 0.956 1.5e+00

Inline Method Replace @Test w/ assertThrows
Intercept -4.687 0.101 2e-16 0.009 Intercept -5.477 0.180 2e-16 4.2e-03
AR 1.036 1.761 0.556 2.819 AR 0.865 3.830 0.821 2.4e+00
DA 0.969 1.256 0.440 2.636 DA -32.840 15.920 0.039 5.5e-15
ECT 0.541 2.108 0.797 1.718 ECT -2.712 7.397 0.714 6.6e-02
ET 0.170 2.312 0.941 1.185 ET 0.497 3.064 0.871 1.6e+00
GF -0.662 2.259 0.769 0.516 GF -2e+03 1e+05 0.984 0.000
LT 1.401 3.020 0.643 4.061 LT 5.726 6.188 0.355 3.1e+02

Rename Class Replace try/catch w/ assertThrows
Intercept -5.550 0.170 2e-16 3e-03 Intercept -6.524 0.276 2e-16 1.5e-03
AR 1.365 4.339 0.753 3.920 AR -29.561 11.610 0.011 1e-13
DA 6.448 1.832 0.000 6e+02 DA 11.811 3.175 0.000 1e+05
ECT -33.873 15.842 0.032 1e-15 ECT -14.973 16.355 0.360 3e-07
GF -9.121 8.968 0.309 1e-04 ET 6.716 3.322 0.043 8e+02
LT -6.716 6.591 0.308 1e-03 GF 5.124 7.030 0.466 1e+02

LT 1.338 7.303 0.855 3.8e+00
Replace Reserved Words Split conditional in statements

Intercept -4.506 0.100 2e-16 1e-02 Intercept -5.128 0.120 2e-16 4e-03
AR 3.844 1.56 0.014 4e+01 AR 2.892 1.743 0.014 4e+01
DA 4.575 1.077 2e-05 9e+01 DA 4.374 0.878 6e-07 1e+01
ECT -20.498 6.986 0.003 1e-09 ECT -3.389 3.684 0.357 9e-06
ET -9.720 3.640 0.007 6e-05 ET 1.197 3.094 0.698 1e-02
GF -20.910 10.306 0.042 8e-10 GF -2.340 2.770 0.398 7e-05
LT 6.074 1.632 0.000 4e+02 LT -1.571 4.857 0.746 2e-06

where the values of the variables increased after applying the refactoring (↑). In addition,
we performed the Wilcoxon Rank Sum Test to analyze whether there is a statistically

5.3. RESULTS 115

significant difference between the distributions corresponding to the test code quality
before and after refactorings, with the p− value indicating the statistical significance.

Table 5.3: Results of decrease and increase of quality and Wilcoxon Rank Sum Test for
Metrics (Qmi)

Metrics ≡ (%) ↓ (%) ↑ (%) p-value Metrics ≡ (%) ↓ (%) ↑(%) p-value
Add Assert Argument Replace NOT Operator

LOC 0.00 28.57 71.43 0.90 LOC 54.55 9.09 36.36 1.00
NOM 16.67 16.67 66.67 0.80 NOM 90.91 9.09 0.00 0.97
WMC 14.29 28.57 57.14 0.85 WMC 90.91 9.09 0.00 1.00
RFC 0.00 28.57 71.43 0.80 RFC 45.45 18.18 36.36 0.92
AsD 28.57 28.57 42.86 1.00 AsD 81.82 9.09 9.09 1.00

Extract Class Replace conditional by Parameterized
LOC 60.87 26.09 13.04 0.90 LOC 9.09 81.82 9.09 0.67
NOM 56.52 34.78 8.70 0.80 NOM 72.73 27.27 0.00 0.55
WMC 60.87 30.43 8.70 0.85 WMC 63.64 27.27 9.09 0.67
RFC 56.52 34.78 8.70 0.80 RFC 27.27 63.64 9.09 0.58
AsD 39.13 34.78 26.09 1.00 AsD 45.45 18.18 36.36 0.95

Extract Method Replace Rule w/ assertThrows
LOC 61.70 21.28 17.02 0.43 LOC 0.00 100.00 0.00 0.013
NOM 58.51 30.85 10.64 0.25 NOM 100.00 0.00 0.00 NaN
WMC 62.77 25.53 11.70 0.29 WMC 100.00 0.00 0.00 NaN
RFC 60.64 21.28 18.09 0.37 RFC 0.00 0.00 100.00 0.013
AsD 38.30 31.91 29.79 0.93 AsD 0.00 0.00 100.00 0.013

Inline Method Replace @Test w/ assertThrows
LOC 31.25 43.75 25.00 0.87 LOC 0.00 88.89 11.11 0.42
NOM 31.25 37.50 31.25 0.62 NOM 88.89 11.11 0.00 1.00
WMC 31.25 37.50 31.25 0.81 WMC 55.56 44.44 0.00 0.74
RFC 25.00 37.50 37.50 0.92 RFC 0.00 88.89 11.11 0.25
AsD 56.25 18.75 25.00 0.82 AsD 11.11 0.00 88.89 0.10

Rename class Replace Try/Catch w/ AssertThrows
LOC 50.00 0.00 50.00 0.08 LOC 0.00 0.00 0.00 NaN
NOM 50.00 0.00 50.00 0.09 NOM 0.00 0.00 0.00 NaN
WMC 50.00 0.00 50.00 0.09 WMC 0.00 0.00 0.00 NaN
RFC 50.00 0.00 50.00 0.12 RFC 0.00 0.00 0.00 NaN
AsD 50.00 50.00 0.00 1.00 AsD 0.00 0.00 0.00 NaN

Replace Reserved Words Split conditional in statements
LOC 64.29 11.90 23.81 0.98 LOC 65.22 0.00 34.78 0.89
NOM 76.19 9.52 14.29 0.91 NOM 91.30 0.00 8.70 0.96
WMC 71.43 11.90 16.67 0.91 WMC 86.96 0.00 13.04 0.97
RFC 64.29 11.90 23.81 0.91 RFC 56.52 13.04 30.43 0.96
AsD 71.43 14.29 14.29 0.86 AsD 91.30 4.35 4.35 0.96

When analyzing the values of the Qmi metric in Table 5.3, we noticed an increase
in the metrics values of most test classes after applying the Add Assert Argument and
Rename Class refactorings. For example, 71.43% of test classes where developers applied
the Add Assert Argument refactoring increased the LOC metric, 66.67% increased the
NOM metric, 57.14% increased the WMC metric, 71.43% increased the RFC metric, and
42.86% increased the AsD metric. Thus, evidence exists that the main goal of those refac-

5.3. RESULTS 116

torings might not be associated with improving the size, coupling, and complexity of test
codes. While most test classes kept the same values for quality metrics after applying the
Extract Class, Extract Method, and Inline Method refactorings, at least other 30% showed
a decrease in metrics values after applying those refactorings. We expect those results
as refactorings are from Fowler’s catalog and are known for improving code organization
and redistributing responsibilities. With concerns to test-specific refactorings, at least
63% of the test classes showed an improvement of the LOC metric after applying the
Replace Rule w/ assertThrows, Replace Conditional by ParameterizedTest, and Replace
@Test with assertThrows refactorings. In addition, the last two refactorings also showed
an improvement in the RFC and WMC metrics.

In addition, Table 5.3 shows a statistically significant difference in three metrics
(LOC: 0.01, RFC: 0.01, and AsD: 0.01) before and after the Replace Rule with assert-
Throws refactoring. For the remaining refactorings, no statistically significant differences
exist. In addition, the Wilcoxon Rank Sum Test did not perform for some refactoring
types (e.g., the Replace @Rule with assertThrows, and Replace try/catch with assert-
Throws refactorings), indicated by NaN values; maybe due to the absence of data and
the difference in the Replace Rule with assertThrows refactoring.

 Summary3.2.1. Several structural metrics did not exhibit statistical significance
differences before and after applying the test refactorings; therefore, accept the null
hypothesis Hn3refk−Qmi

for most of the refactorings. Yet, the test code quality had a
slight improvement in terms of complexity, coupling, and size when considering the
refactorings from Fowler’s catalog and some test-specific refactorings (i.e., the Replace
Rule w/ assertThrows, Replace Conditional by ParameterizedTest, and Replace @Test
with assertThrows refactorings).

Focusing on Table 5.4, we observe most test classes where developers applied refac-
torings from Fowler’s catalog retain the same values of test smells. However, around 30%
of the test classes presented an improvement in terms of the AR and ECT test smells
after the Extract Class and Extract Method refactorings. Interestingly, around 21% of the
test classes had an improvement in terms of the LT and DA test smells with the Extract
Class and the GF test smell with the Extract Method refactorings. The Replace Con-
ditional by Parameterized and Replace @Test w/ assertThrows test-specific refactorings
decreased the test smells in around 30% of the test classes. Other test-specific refactor-
ings, such as the Replace Reserved Words, Replace NOT operator and Split Conditional
into Statements refactorings, did not contribute as much to the decrease of test smells

5.3. RESULTS 117

Table 5.4: Results of decrease and increase of quality and Wilcoxon Rank Sum Test for
Metrics (Tsi)

Metrics ≡ (%) ↓ (%) ↑ (%) p-value Metrics ≡ (%) ↓ (%) ↑ (%) p-value
Add Assert Argument Replace NOT Operator

AR 57.14 14.29 28.57 1.00 AR 81.82 18.18 0.00 0.97
ECT 42.86 28.57 28.57 0.95 ECT 81.82 18.18 0.00 0.65
GF 80.00 0.00 20.00 0.85 GF 100.00 0.00 0.00 0.53
ET 85.71 0.00 14.29 1.00 ET 81.82 18.18 0.00 0.17
LT 85.71 0.00 14.29 0.77 LT 81.82 18.18 0.00 NaN
DA 57.14 14.29 28.57 1.00 DA 90.91 9.09 0.00 0.17

Extract Class Replace Conditional by Parameterized
AR 65.22 30.43 4.35 1.00 AR 45.45 54.55 0.00 0.01
ECT 47.83 43.48 8.70 0.95 ECT 63.64 36.36 0.00 NaN
GF 86.96 8.70 4.35 0.85 GF 63.64 36.36 0.00 0.04
ET 86.96 8.70 4.35 1.00 ET 90.91 9.09 0.00 0.36
LT 69.57 21.74 8.70 0.77 LT 81.82 18.18 0.00 0.04
DA 73.91 21.74 4.35 1.00 DA 100.00 0.00 0.00 0.17

Extract Method Replace Rule w/ AssertThrows
AR 59.57 29.79 10.64 0.92 AR 0.00 0.00 100.00 0.01
ECT 59.57 30.85 9.57 0.94 ECT 100.00 0.00 0.00 NaN
GF 74.47 21.28 4.26 0.63 GF 100.00 0.00 0.00 NaN
ET 88.30 6.38 5.32 0.87 ET 100.00 0.00 0.00 NaN
LT 87.23 6.38 6.38 0.65 LT 100.00 0.00 0.00 NaN
DA 78.72 13.83 7.45 0.90 DA 100.00 0.00 0.00 NaN

Inline Method Replace @Test w/ assertThrows
AR 75.00 0.00 25.00 0.82 AR 22.22 33.33 44.44 1.00
ECT 62.50 0.00 37.50 0.87 ECT 55.56 44.44 0.00 0.37
GF 75.00 6.25 18.75 0.74 GF 55.56 44.44 0.00 0.10
ET 93.75 0.00 6.25 0.98 ET 77.78 22.22 0.00 0.25
LT 93.75 0.00 6.25 0.71 LT 44.44 55.56 0.00 0.03
DA 87.50 0.00 12.50 0.97 DA 88.89 11.11 0.00 0.01

Rename Class Replace Try/Catch w/ AssertThrows
AR 100.00 0.00 0.00 0.42 AR 0.00 0.00 0.00 NaN
ECT 100.00 0.00 0.00 0.66 ECT 0.00 0.00 0.00 NaN
GF 100.00 0.00 0.00 0.51 GF 0.00 0.00 0.00 NaN
ET 100.00 0.00 0.00 0.82 ET 0.00 0.00 0.00 NaN
LT 100.00 0.00 0.00 0.97 LT 0.00 0.00 0.00 NaN
DA 100.00 0.00 0.00 0.66 DA 0.00 0.00 0.00 NaN

Replace Reserved Words Split Conditional into Statements
AR 83.33 4.76 11.90 0.93 AR 91.30 4.35 4.35 0.91
ECT 83.33 7.14 9.52 0.89 ECT 86.96 4.35 8.70 0.70
GF 97.62 2.38 0.00 0.67 GF 100.00 0.00 0.00 0.97
ET 90.48 9.52 0.00 0.40 ET 95.65 4.35 0.00 0.34
LT 88.10 9.52 2.38 0.33 LT 95.65 4.35 0.00 NaN
DA 92.86 2.38 4.76 0.44 DA 95.65 4.35 0.00 0.34

maybe because they are intrinsically related to the InA test smell, not supported by the
detection tools.

Regarding the Wilcoxon Rank Sum Test, Table 5.4 shows statistically significant dif-
ferences in test smells before and after three refactorings. The AR metric differs among

5.4. DISCUSSION 118

versions when applying the Replace Conditional by ParameterizedTest and Replace Rule
with assertThrows refactorings. Besides the AR metric, ECT and GF metrics differed
among the versions when applying the Replace Conditional by ParameterizedTest refac-
toring. The DA and LT test smells also differed among the versions when applying the
Replace @Test with assertThrows refactoring. Like Table 5.3, the Wilcoxon Rank Sum
Test did not perform for some refactorings.

 Summary3.2.2. The Replace @Rule with assertThrows, Replace @Test with assert-
Throws and Replace conditional bt ParameterizedTest refactorings influenced the GF,
LT, AR, and ECT test smells. As most test refactorings did not differ statistically
significantly, we accepted the Hn4refk−Qmi

null hypothesis.

5.4 DISCUSSION

When analyzing whether the low-quality test code drives test refactorings, we observed
the AsD metric is related to most test refactorings, indicating the more assertions in
the test code, the more likely developers would refactor it. However, test refactorings,
such as the Rename Class, Replace @Rule with assertThrows, and Replace conditional
by ParameterizedTest refactorings, were not related to the number of assertions because
they refer to changes in the test structure or address some other non-density related
concern. For example, developers usually place assertions within loop structures in the
test code to assert the same condition with different values. With the Replace conditional
by ParameterizedTest refactoring, developers remove the loop structure, but the test
method continues under tests with a set of values passed as parameters. As for the
negative relation of the Extract Class and Extract Method refactorings to the AsD metric,
we can understand it allows classes and methods to focus on specific aspects of the test
logic, leading to a more modular structure. For example, some test methods implement
hard logic to stimulate the production class but have few assertions, indicating developers
could place logic into another class or method to allow reusability.

In addition, unexpected results when analyzing whether the presence of test smells
drives the test refactorings. The Add Assert Argument refactoring is applied to solve
the AR test smell, and the Replace try/catch with assertThrows refactoring is often used
to remove the ECT test smell. However, no significant correlation exists between them,
indicating those refactorings can stem from variations in coding styles or project-specific
guidelines. As a result, the Replace NOT Operator, Replace Reserved Words, and Split

5.5. THREATS TO VALIDITY 119

conditional in statements refactorings positively relate to the AR test smell. It is explain-
able as most assertions in the test code do not have an explanatory message, resulting
in an AR, test smell, and those refactorings occur within the assertions to change their
parameters. Meanwhile, it is also interesting to notice that while the Extract Method
refactoring is positively related to most test smells, it is negatively related to or does not
have a relationship with the test smells responsible for indicating the method has spread
or tangled concerns, i.e., the ET and LT test smells. It might indicate developers use the
Extract Method refactoring for general code improvement but not to solve those specific
test smells.

Finally, the analysis of whether the test refactorings improve the code quality shows
that most test classes maintained stable metric values. Yet, approximately 30% of test
classes exhibited a decrease in metrics after applying refactorings from Fowler’s catalog.
Despite the overall stability, some test classes experienced enhancements, particularly
in test smells such as the AR and ECT test smells. While improving the test code in
terms of quality metrics is expected after applying those refactorings, they can yield sub-
stantial benefits concerning specific test smells. Concerning the test-specific refactorings,
notably, the Replace Conditional by ParameterizedTest and Replace @Test w/ assert-
Throws refactorings demonstrated positive effects, contributing to a significant reduction
in test smells and quality metrics in approximately 30% of the test classes. Although we
could notice test refactorings influence the test code quality regarding structural metrics
and test smells, we could not observe a statistical significance. The lack of statistical
significance could be due to a limited number of instances of the test refactorings in the
dataset.

5.5 THREATS TO VALIDITY

This section discusses the potential threats that can affect the validity of our study.

Construct validity. The first threat concerns the test smells and structural met-
rics used to assess the test code quality. We did not calculate all the Chidamber &
Kemerer metrics as some do not apply to the context of the test code (e.g., Depth In-
heritance Tree - DIT). Nevertheless, we chose a mix of metrics capturing the test code
size, coupling, and cohesion. Another threat to validity concerns the identification of
test smells and refactoring operations. We used tools validated and used by the research
community. Although the tools present high precision and recall scores, they can report

5.6. CHAPTER SUMMARY 120

some false positive or false negative instances of test smells or refactorings. In response
to this limitation, we performed a preliminary and manual investigation to assess the
degree of accuracy of the tools before running them on a large scale.

Internal Validity. That category of threats to validity concerns by-product
changes of other maintenance activities (e.g., bug fixes or changes in requirements) that
could also contribute to removing test smells. Therefore, the data analysis does not in-
dicate a causal relationship, but there is a possibility of a relationship to investigate in
the future.

External Validity. That class of threats to validity mainly concerns the subject
projects of our study. We selected open-source Java projects from GitHub, which are
only a fraction of the complete picture of open-source software and do not necessarily rep-
resent industrial practices. Therefore, we can not generalize the results to the industrial
context and other programming languages.

Conclusion validity. To address how frequently test refactoring on test classes
affects quality concerns, we used logistic regression models to identify correlations. Other
than highlighting cases of significant correlations, we reported and discussed the Odds
Ratio values. In addition, to investigate the effect of test refactoring on test code quality,
we also employed well-established statistical tests such as the Wilcoxon Rank Sum Test
(MCKNIGHT; NAJAB, 2010).

5.6 CHAPTER SUMMARY

This chapter presented a study to understand whether the test code quality indicates
which test classes are more likely to be refactored and to what extent test refactoring
operations can improve the test code quality. We conducted that study on a set of
open-source Java projects, starting from collecting data on the test code quality, test
smells, and refactoring operations arising in the major releases of the projects. Then, we
employed statistical approaches to address the goals of our investigation.

The findings from that study can benefit researchers and practitioners from multiple
perspectives. In the first place, our research can reveal insights into the refactoring
types that can deteriorate test code quality. Such information would be relevant for
researchers in both the fields of refactoring and testing, as it can lead them to (1) extend
the knowledge of the best and bad practices to apply test refactoring properly; (2) devise

5.6. CHAPTER SUMMARY 121

novel test refactoring approaches aware of the possible side effects of refactoring, e.g., we
can envision multi-objective search-based refactoring approaches to optimize refactoring
recommendations based on both quality attributes; and (3) design novel recommendation
systems to support developers in understanding how refactorings can impact different
test code properties. The results would also be useful to practitioners, who can have
additional proof of the side effects of refactoring, hence possibly being stimulated further
on the need to employ automated refactoring tools. In the second place, our findings
indicate the nature of the test cases more likely to be subject to refactoring operations.
Researchers can use that information to define refactoring recommenders and refactoring
prioritization approaches, while practitioners can acquire awareness of their actions.

In summary, this chapter provided with the following key contributions:

1. An empirical understanding of the factors triggering test refactoring operations,
which comprises an analysis of how test code quality comes into play;

2. Evidence of the impact of test refactoring on test code quality;

3. An online appendix (MARTINS et al., 2023d) which provides all material and
scripts employed to address the goals of the study.

Chapter

6
DEVELOPER-ORIENTED TEST REFACTORING

RECOMMENDATIONS

While academic research recommends refactoring to fix test smells and improve structural
metrics (LAMBIASE et al., 2020; PECORELLI et al., 2020b; SANTANA et al., 2020),
a gap exists that consists in the lack of adoption of refactoring tools in practice (KIM;
ZIMMERMANN; NAGAPPAN, 2014). That gap is attributed, in part, to the need for
more support for the types of problems developers face when refactoring and the high
number of false positives.

Recent studies have explored two approaches to bridge the gap in understanding
test refactorings: i) Analyzing Stack Exchange sites to comprehend the motivations be-
hind refactorings (PERUMA et al., 2022; MARTINS et al., 2023); and ii) Submitting pull
requests to open-source projects to gain insights into the developer’s perspective on test
refactorings, particularly those aimed at addressing test smells (SOARES et al., 2022).
These studies provide valuable insights into the motivations and perspectives of devel-
opers regarding test refactorings, helping to advance our understanding of this critical
aspect of software development.

Machine Learning (ML) emerges as a promising solution to overcome the need for
more tool adoption in software development. ML algorithms can support identifying
refactoring opportunities and recommending proper refactorings that align closely with
developers’ practices (SAGAR et al., 2021; ANICHE et al., 2022). For instance, Aniche
et al. (2022) investigated the effectiveness of six supervised ML algorithms trained on

122

6.1. RESEARCH QUESTIONS AND OBJECTIVES 123

code smells and structural metrics to predict 20 software refactorings from Fowler’s cat-
alog. While these algorithms performed well in predicting refactoring opportunities in
production code, it’s important to note that their findings may not be directly applicable
to test code.

In this chapter, we present our investigation of the performance of supervised ML
algorithms in classifying the developers’ intention to apply test refactoring, answering
RQ3: How accurately can we suggest test refactoring operations for fixing
test smells using ML techniques?. That investigation involved two distinct classifi-
cation tasks: (i) the classification of code changes where developers would perform some
test refactoring and (ii) the classification of specific test refactoring operations developers
apply. To conduct it, we built a dataset encompassing information on 50 different test
refactoring operations on ten open-source Java projects. In addition, the dataset com-
prises 21 test smells identified in test classes, 5 test metrics extracted from test classes,
and 13 process metrics extracted from both production and test classes. Then, we trained
six ML algorithms to select the best one for classifying the developers’ intentions and the
specific test refactoring operations.

The remaining chapter is structured as follows. Section 6.2 outlines the context of
our study and the methods used to address the research questions. Section 6.3 reports
on the results of our work. Section 6.4 discusses additional insights and implications of
our results. Section 6.5 outlines the potential threats to validity.

6.1 RESEARCH QUESTIONS AND OBJECTIVES

Our goal was to investigate the effectiveness of supervised ML algorithms in classifying the
code changes where practitioners apply test refactoring actions, considering two levels of
granularity: i) the classification of code changes where practitioners apply a refactoring
in test classes and ii) the classification of the specific test refactoring action applied
by practitioners in a certain code change. Both levels have the purpose of studying the
feasibility of an automated instrument for test code quality assurance, which practitioners
can use to identify test classes requiring maintenance effort and assess how to improve
them. The perspective is of researchers and practitioners: the former are interested in
understanding the performance and limitations of classification models to identify test
refactoring opportunities. At the same time, the latter assesses how feasible the proposed
automated solution of test code quality assurance would be in practice.

6.2. EXPERIMENTAL DESIGN 124

Our empirical investigation slued round two research objectives. As a first step,
we explored how six supervised ML algorithms (Decision Trees - DT, Naive Bayes -
NB, Logistic Regression - LR, Extra-Tree - ExT, Support Vector Machine - SVM, and
Random Forest - RF) accurately classify the code changes where developers would apply
test refactoring. Then, we verified the performance of classifying a specific test code
refactoring operation. So, we asked:

RQ3.1. How accurate are supervised ML algorithms in classifying the code changes
where developers would do test refactoring?

After analyzing the performance of ML models in classifying the developer’s inten-
tion to perform test refactoring, we verified the performance of classifying a specific test
code refactoring operation. So, we asked:

RQ3.2. How accurate are supervised ML algorithms in classifying specific test refac-
toring operations?

6.2 EXPERIMENTAL DESIGN

This section reports the research method we applied to address our RQs.

6.2.1 Context of the Study

The context of our study consisted of ten open-source Java projects that met the fol-
lowing selection criteria: i) we focused on open-source projects, as we needed access to
change history information; ii) we decided to rely on popular and real-world projects
having enough releases to collect data; and iii) we standardized the building process to
streamline build configurations across all projects and use supplementary tools (i.e., the
TestRefactoringMiner and VITRuM tools). As such, we used the SEART tool1 to
select open-source and non-fork projects from GitHub with at least 100 stars, 10 major
releases, 1,000 lines of code, and 5 test classes. In addition, we sought Java projects
for compiling with Maven and Java 8—Java 8 is the most popular Java version used
nowadays2.

Table 6.1 reports, for each project, the number of Lines of Code (LOC), Test Meth-
1<https://seart-ghs.si.usi.ch/>
2<https://www.jetbrains.com/lp/devecosystem-2021/java/>

6.2. EXPERIMENTAL DESIGN 125

ods (NOM), Test Refactorings, and Test Classes. Those projects together have a history
of 1,270 tags and 120,107 commits measured at the moment of data collection in October
2023.

Table 6.1: Overview of the selected Java open-source projects.

Owner / Repository name LOC NOM # Test Classes # Refactored
Classes (RQ1)

Refactorings
per Type (RQ2)

graphhopper/graphhopper 54,654 3,870 182 96 154
itext/itext7 102,215 8,189 332 250 318
fabric8io/kubernetes-client 5,946 776 78 33 42
apache/iotdb 4,371 250 23 9 9
nationalsecurityagency/emissary 26,296 2,570 239 152 295
seleniumhq/htmlunit-driver 1,420 201 8 4 6
cmu-phil/tetrad 304 30 10 4 5
questdb/questdb 190,559 37,465 562 258 424
zanata/zanata-platform 2,923 229 17 12 17
googleapis/google-http-java-client 2,799 269 20 8 13
Total 391,417 53,849 1,471 826 1,283

6.2.2 Dependent Variables

The dependent variable of our study is a binary variable that shows the presence or
absence of test refactoring operations within the code changes of the projects. That
variable operationalizes differently depending on the RQ, as explained in the following.

We used the TestRefactoringMiner tool (MARTINS et al., 2023a) to analyze
the test code changes from the oldest ones to the most recent revision. Building of that
tool was on top of the RefactoringMiner state-of-the-art tool, which has the highest
accuracy among the currently available refactoring mining tools, with an average precision
of 99.8% and recall of 97.6% (TSANTALIS; KETKAR; DIG, 2020). In particular, the
TestRefactoringMiner tool analyzes the added, deleted, and changed files between
two project versions to detect specific test refactorings.

Fowlers’ catalog (FOWLER, 1999) presents a set of refactorings commonly applied
to test and production code. Hence, we considered refactorings from his catalog: 1) Add
Class Annotation, 2) Add Method Annotation, 3) Encapsulate Attribute, 4) Extract And
Move Method, 5) Extract Attribute, 6) Extract Class, 7) Extract Interface, 8) Extract
Method, 9) Extract Subclass, 10) Extract Superclass, 11) Extract Variable, 12) Inline At-
tribute, 13) Inline Method, 14) Inline Variable, 15) Invert Condition, 16) Merge Attribute,
17) Merge Class, 18) Merge Method, 19) Merge Variable, 20) Modify Class Annotation,

6.2. EXPERIMENTAL DESIGN 126

21) Modify Method Annotation 22) Move And Inline Method, 23) Move Attribute, 24)
Move Class, 25) Move Method, 26) Pull Up Attribute, 27) Pull Up Method, 28) Push
Down Attribute, 29) Push Down Method, 30) Remove Class Annotation, 31) Remove
Method Annotation, 32) Replace Anonymous With Lambda, 33) Replace Attribute, 34)
Replace Attribute With Variable, 35) Replace Loop With Pipeline, 36) Replace Pipeline
With Loop, 37) Replace Variable With Attribute, 38) Split Attribute, 39) Split Class,
40) Split Conditional, and 41) Split Variable. In addition, we considered other test-
specific refactorings applied only to test code: 42) Add Assert Argument, 43) Replace
@test(expected) with assertThrows, 44) Replace Conditional by ParameterizedTest, 45)
Replace NOT operator, 46) Replace Reserved Words, 47) Replace Rule With Assert-
Throws, 48) Replace Try/Catch With AssertThrows, 49) Replace Try/Catch With Rule,
and 50) Split Conditional Statement in Assertions. A complete description of test refac-
torings is available in our online appendix (MARTINS et al., 2023e). All the refactorings
are collected based on what developers modified throughout the projects’ lifecycle; there-
fore, they indicate the code changes where developers applied test refactoring. In the
context of RQ3.1, we analyzed the performance in classifying those test code changes. As
for RQ3.2, we independently considered the various refactoring operations and analyzed
the performance in classifying specific test refactoring.

6.2.3 Independent Variables

To verify the extent to which statically computable metrics we can adopt to classify test
code refactorings, we considered 39 features along three dimensions: test code metrics,
test smells, and process metrics. Those features are the independent variables of the study,
and we chose them based on previous researches that show their impact on quality aspects
of test code (SPADINI et al., 2018; CATOLINO et al., 2019; PECORELLI; PALOMBA;
LUCIA, 2021; KIM; CHEN; YANG, 2021). For space limitations, a description of the
independent variables is available in our online appendix (MARTINS et al., 2023e).

Test Code Metrics. Features in this category derive from the test code attributes.
In particular, we selected six test code metrics related to size, complexity, and coupling.
Although many automated tools calculate structural metrics of source codes (e.g., the
Eclipse Metrics and CK Metrics tools), we used the VITRuM plug-in specifically de-
signed to calculate and present the visualization of test-related metrics (PECORELLI
et al., 2020b). More specifically, we collected the metrics: 1) Lines of Code (LOC), 2)

6.2. EXPERIMENTAL DESIGN 127

Number of Methods (NOM), 3) Weighted Method per Class (WMC), 4) Response for a
Class (RFC), and 5) Assertion Density (AD).

Test Smells. Test smells are bad design or implementation choices in the test code
(DEURSEN et al., 2001). In particular, we considered 21 test smells detected by the
tsDetect tool (PERUMA et al., 2020a). Among the test smell detection tools available
for Java code (ALJEDAANI et al., 2021), that tool presents the highest accuracy, with
an average precision score of 96% and an average recall score of 97%. It reports either
(i) the presence or absence of a test smell in a test class or (ii) the number of instances
per test smell in a test class. In addition, it receives a configuration of the severity
thresholds for each test smell (SPADINI et al., 2020). We ran it with default values
for the severity thresholds and detected the test smells: 1) Assertion Roulette (AR), 2)
Constructor Initialization (CI), 3) Conditional Test Logic (CTL), 4) Default Test (DT),
5) Dependent Test (DpT), 6) Duplicate Assert (DA), 7) Eager Test (ET), 8) Exception
Handling (ECT), 9) Empty Test (EpT), 10) General Fixture (GF), 11) Ignored Test (IgT),
12) Lazy Test (LT), 13) Mystery Guest (MG), 14) Magic Number Test (MNT), 15)
Redundant Assertion (RA), 16) Resource Optimism (RO), 17) Redundant Print (RP), 18)
Verbose Test (VT), 19) Sensitive Equality (SE), 20) Sleepy Test (ST), and 21) Unknown
Test (UT).

Process Metrics. Since refactoring represents an activity based on the developer’s ex-
perience, we computed and analyzed several ad-hoc metrics extracted from Git reposito-
ries. Specifically, we ran the PyDriller tool (SPADINI; ANICHE; BACCHELLI, 2018)
to collect: 1) Code Churn Max (CCM), 2) Code Churn Average (CCA), 3) Commits
Count (Co), 4) Contributors Count (Con), 5) Minor Contributors Count (MCon), 6)
Contributors Experience (ConE), 7) Lines Added Count (ALC), 8) Lines Added Max
(ALM), 9) Lines Added Average (ALA), 10) Lines Removed Count (RLC), 11) Lines
Removed Max (RLM), and 12) Lines Removed Average (RLA).

6.2.4 Research Method

This section discusses the research methods employed to address our RQs. It is important
to emphasize that the research method performed was the same for both RQs, while
the level of analysis was different. In RQ3.1: How accurate are supervised ML

6.2. EXPERIMENTAL DESIGN 128

algorithms in classifying the code changes where developers would do test
refactoring?, we classified the code changes where practitioners would do some test
refactoring. In RQ3.2: How accurate are supervised ML algorithms in classifying
specific test refactoring operations?, we classified specific test refactoring operations
performed by practitioners.

The first step is related to the feature selection to identify the relevant metrics to use
as predictors. We quantified the predictive power of each metric in terms of information
gain (QUINLAN, 1986) to measure how much a model would benefit from the presence
of a metric. At the end, we considered the metrics having an information gain higher
than zero as predictors, i.e., we discarded the metrics that did not provide any beneficial
effect.

After completing the feature selection, we identified the best ML algorithm. The
literature on test refactoring classification is embryonic; therefore, we took this opportu-
nity to benchmark learning algorithms with different characteristics. We evaluated the
Logistic Regression (LR) (LAVALLEY, 2008), Naive Bayes (NB) (KHOMH et al., 2009),
(NOBLE, 2006), Decision Tree (FREUND; MASON, 1999), Random Forest (RF) (HO,
1995), and Extra-Tree (GEURTS; ERNST; WEHENKEL, 2006) algorithms. To assess
the performance of our models, we performed a walk-forward validation (FALESSI et al.,
2020), applying it to individual projects. We decided to apply that validation because we
relied on temporal data, so it is crucial to maintain the chronological order to avoid data
leakage. In the k-fold cross-validation (widely used), the data is randomly partitioned,
which can break the temporal structure.

In a walk-forward validation, the dataset reports a time series we can divide into
chronologically orderable parts, e.g., a project release or a commit. In each run, all data
available before the part to predict are used as the training set, while the part to predict
is used as the test set, preventing the test set from having data antecedent to the training
set. Specifically, the number of iterations equals the number of parts minus one. We
trained each model on the first n releases and tested on the (n+1)-th release. After
splitting the training and test sets, we normalized the metric values through the min-
max scaling to perform a realistic validation of the model where the training and test sets
were individually normalized based on their distributions. To implement the algorithms,
we employed the Scikit-Learn library (KRAMER, 2016) in Python, which provides
public APIs to configure, execute, and validate all the above-mentioned classifiers.

After collecting the performance of the algorithms, we statistically verified our con-

6.2. EXPERIMENTAL DESIGN 129

clusions by using the Friedman (SHELDON; FILLYAW; THOMPSON, 1996) and Ne-
menyi (NEMENYI, 1963) tests on the distribution of F-Measure values of ML models
over the different projects and test refactoring operations. We used the former to deter-
mine whether or not there is a statistically significant difference between the F-Measure
values and the latter to report its results using MCM (i.e., Multiple Comparisons with
the best) plots (MCMINN, 2004). We used 0.05 as a significance level, so the elements
plotted above the gray band were statistically larger than the others. In addition, the
dots in the plot represent the median MCC of the algorithms obtained in the projects:
a blue dot indicates the MCC of an algorithm was statistically better than the other
algorithms. In contrast, red dots indicate the performance was not statistically different.
At the end of this step, we selected the best model to classify the dependent variable.

It is important to point out that test refactoring is an unbalanced problem. The
number of test cases refactored instances represents almost 2% of the total amount of test
cases on our dataset. As such, the problem was largely underrepresented, threatening the
ability of ML algorithms to learn the characteristics of test refactoring properly. For this
reason, we tried to improve the performance by experimenting with several under- and
over-sampling techniques to balance the data. As for under-sampling, we experimented
the advanced NearMiss 1, NearMiss 2, and NearMiss 3 algorithms (YEN; LEE,
2006). We also experimented with the Random Undersampling approach, which
randomly explores the distribution of majority instances and under-samples them. In
terms of over-sampling approaches, we experimented with SMOTE (CHAWLA et al.,
2002), and advanced versions of this algorithm such as ADASYN (HE et al., 2008) and
Borderline-SMOTE (HAN; WANG; MAO, 2005). In addition, we also experimented
with the Random Oversampling approach, which randomly explores the distribution
of the minority class and over-samples them.

Once we have collected the performance of the various algorithms, we statistically
verified our conclusions by using the Friedman (SHELDON; FILLYAW; THOMPSON,
1996) and Nemenyi (NEMENYI, 1963) tests on the distribution of F-Measure values of
the ML models over the different projects and test refactoring operations. We used the
former to determine whether or not there is a statistically significant difference between
the F-Measure values and the latter to report its results using MCM (i.e., Multiple
Comparisons with the best) plots (MCMINN, 2004). We used 0.05 as a significance
level, so the elements plotted above the gray band were statistically larger than the
others. In addition, the dots in the plot represent the median F-Measure value that the
algorithms obtained in the projects: a blue dot indicates that the F-Measure distribution

6.3. ANALYSIS OF THE RESULTS 130

of an algorithm was statistically better than the other algorithms. In contrast, red dots
indicate that the F-Measure distribution was not statistically different. To perform this
last step, we relied on the nemenyi function available in R toolkit.3

6.3 ANALYSIS OF THE RESULTS

This section provides an overview of the results for each RQ. We reported the detailed
results in our online appendix (MARTINS et al., 2023e).

6.3.1 Classifying Where Developers Would do Test Refactoring

We ran and analyzed 540 different models to classify the code changes in test classes. The
Friedman test showed that the F-Measure distributions had no statistically significant
differences, i.e., p-value>=0.05. However, we still decided to apply the Nemenyi test to
analyze which model showed higher values, even if not statistically significant. Figure
6.1 shows the result of the Nemenyi test, where the circle dots are the median likelihood
and the error bars indicate the 95% confidence interval. For the interpretation of the
results, 60% of likelihood means that a model appears at the top rank for 60% of the
projects. We can observe that some balancing techniques failed to generate models, i.e.,
their distribution is absent in the plot. In addition, balancing techniques did not always
provide benefits, as we can assume from the fact that the distributions of the models
without balancing techniques are in the middle of the plot. As a result, the best classifier
is SVM with Random Undersampling technique.

We reported all the variables that contributed at least once to the predictions to
answer the RQ, while our online appendix (MARTINS et al., 2023e) contains the infor-
mation gain computed for every project. Figure 6.2 shows violin plots concerning Test
Code Metrics and Process Metrics. With respect to the Test Code Metrics, we can ob-
serve that for the Lines of Code (LOC), Weight Method Class (WMC), and Response for
a Class (RFC), most of the values are condensed around the median of the distribution.
At the same time, the data for the Number of Methods (NOM) and Assertion Density
(AD) follow the distribution. Looking at the Process Metrics, we notice that most metrics
follow the distributions, except for Con and MCon (respectively, the Contributors and
the Minor Contributors of a commit), in which the values are condensed around 0.

3<https://www.r-project.org/>

6.3. ANALYSIS OF THE RESULTS 131

F
1−

S
co

re
 P

re
di

ct
in

g
Te

st
 R

ef
ac

to
rin

g

ne
ar

m
is

su
nd

er
1_

N
B

 −
 1

2.
30

ne
ar

m
is

su
nd

er
1_

E
T

 −
 1

3.
90

ra
nd

om
ov

er
_D

T
 −

 1
4.

15

ne
ar

m
is

su
nd

er
2_

D
T

 −
 1

4.
30

ra
nd

om
un

de
r_

N
B

 −
 1

4.
50

R
F

 −
 1

4.
60

ra
nd

om
ov

er
_R

F
 −

 1
4.

75

ra
nd

om
un

de
r_

D
T

 −
 1

4.
80

ne
ar

m
is

su
nd

er
2_

N
B

 −
 1

4.
85

ne
ar

m
is

su
nd

er
2_

R
F

 −
 1

4.
90

ne
ar

m
is

su
nd

er
1_

S
V

M
 −

 1
4.

95

ra
nd

om
un

de
r_

E
T

 −
 1

5.
05

ne
ar

m
is

su
nd

er
1_

R
F

 −
 1

5.
25

ra
nd

om
ov

er
_E

T
 −

 1
5.

30

ne
ar

m
is

su
nd

er
2_

LR
 −

 1
5.

35

ne
ar

m
is

su
nd

er
1_

D
T

 −
 1

5.
80

E
T

 −
 1

5.
80

D
T

 −
 1

5.
85

ne
ar

m
is

su
nd

er
1_

LR
 −

 1
5.

90

ra
nd

om
ov

er
_N

B
 −

 1
5.

95

ne
ar

m
is

su
nd

er
2_

S
V

M
 −

 1
6.

25

LR
 −

 1
6.

30

ne
ar

m
is

su
nd

er
2_

E
T

 −
 1

6.
35

ra
nd

om
ov

er
_L

R
 −

 1
6.

35

N
B

 −
 1

6.
45

S
V

M
 −

 1
6.

60

ra
nd

om
un

de
r_

R
F

 −
 1

6.
85

ra
nd

om
un

de
r_

LR
 −

 1
7.

10

ra
nd

om
ov

er
_S

V
M

 −
 1

7.
20

ra
nd

om
un

de
r_

S
V

M
 −

 1
7.

30

5
10

15
20

25

Figure 6.1: The results of the Nemenyi rank applied to the best model with balancing
techniques.

Figure 6.2: Predictive power of Test Code and Process Metrics.

A different discussion can be drawn for Test Smells. Figure 6.3 shows that four test
smells (Default Test, Empty Test, Verbose Test, and Dependent Test), did not contribute
to the model (the predictive power of these metrics was always zero). Then, for most
of the test smells in analysis, i.e., Constructor Initialization (CI), General Fixture (GF),
Ignored Test (IgT), Mystery Guest (MG), Redundant Assertion (RA), Resource Optimism
(RO), and Sleepy Test (ST), the values are condensed around zero, so their contribution to
the models is minimal. This result suggests that while some smells can be good indicators
to classify test code changes, they did not represent the best dimension to use.

Finally, Table 6.2 reports Precision, Recall, Accuracy, and F-Measure, for each

6.3. ANALYSIS OF THE RESULTS 132

Figure 6.3: Predictive power of Test Smells.

project. The performance obtained varies: in terms of F-Measure, the algorithm failed
to finish the computation in one case, while for the other projects, the metric ranges
between 30% and 100%. For Precision, Recall and F-Measure, the values are generally
high: both indicators vary between 20% and 100%. The only exception is represented
by htmlunit-driver project: in this case, the indicators are close to zero or NaN.
Analyzing such data in detail, we could observe the presence of two projects, i.e., tetrad
and zanata-platform, with a low amount of test classes and test refactoring operations
but for which the model could still be built. To further understand the differences between
these cases, we analyzed the values for each feature. While we did not find particular
differences in test code and process metrics, test smells have a higher information gain in
the htmlunit-driver project than in the other two projects under analysis. This result
again confirms that test smells are not good indicators for test refactoring operations.

6.3. ANALYSIS OF THE RESULTS 133

Table 6.2: Performance of the best classifiers for each project analyzed.

Project TP FP TN FN Precision Recall Acc. F1

emissary 128 73 13 19 0.63 0.87 0.60 0.73
google-http-java-client 2 6 2 1 0.25 0.66 0.36 0.36
graphhopper 67 63 16 18 0.51 0.78 0.50 0.62
htmlunit-driver 0 2 1 2 0.0 0.0 0.2 NaN
iotdb 4 6 4 3 0.40 0.57 0.47 0.47
itext7 130 35 45 98 0.78 0.57 0.57 0.66
kubernetes-client 8 14 21 23 0.36 0.25 0.44 0.30
questdb 177 193 101 58 0.48 0.75 0.52 0.58
tetrad 2 0 4 0 1.0 1.0 1.0 1.0
zanata-platform 1 2 0 1 0.33 0.50 0.25 0.40

 Summary3.1. The best model to predict test code changes is SVM with Random
Undersampling as balancing technique. The F-Measure obtained varies between
30% and 100%, while the other metrics range between 20% and 100%. The info gain
analysis shows that test code and process metrics have higher contributions to the model.
Finally, most of the test smells show low contributions (near to zero), and four smells
never contributed to the predictions.

6.3.2 Classifying Specific Test Refactoring Operations

In the context of this research question, we analyzed how supervised ML models classify
specific test refactoring operations. Before proceeding, it is important to highlight a
consideration that reduced the number of refactorings analyzed. First, we ran 540 models
for each test refactoring, for a total of 27,000 models. Once we had collected the results,
we observed that for 32 refactorings, not enough information was found to train our
models due to the low number of true instances. On the remaining 18 refactorings, for 11
we were able to gather information from only one project, for 4 cases from two projects,
and for the last three refactorings, i.e., Modify Method Annotation, Remove Method
Annotation, and Add Method Annotation, we gathered information from four, six, and
seven projects, respectively.

The Friedman test computed did not show statistically significant differences be-
tween the various distributions, and the Nemenyi Test confirmed this result—we reported
the plots in our online appendix (MARTINS et al., 2023e). From the statistical tests per-
formed for refactoring operations classified in at least two projects, we observed that the
over-sampling techniques, specifically Borderline-SMOTE in the context of Extract

6.3. ANALYSIS OF THE RESULTS 134

Method detection, worked better than the under-sampling techniques. In addition, for
the detection of the Inline Method, Modify Method Annotation, and Move Method, al-
gorithms without any balancing techniques performed better.

Regarding the predictive power of the independent variables, we did not report
the violin plot for each refactoring analyzed—the detailed results are in the online ap-
pendix (MARTINS et al., 2023e). Regarding the test code metrics dimension, we observed
a similar trend to that previously reported, but with slightly lower values: the median
of the distributions changed from the range [0.3, 0.5] obtained in RQ3.1, to the range
[0.2, 0.4]. Looking at the process metrics dimension, we noticed a different trend in the
context of Inline Method classification with respect to RQ3.1. In this case, all the met-
rics pertaining to this dimension followed the distribution, including the Con and MCon
(Contributors and Minor Contributors) metrics. This result may depend on the different
number of projects analyzed; in fact, for this test refactoring operation, we collected in-
formation only from two projects. Finally, analyzing the Test Smell dimension, we again
found that the contribution made by these metrics was minimal.

Table 6.3: Performance obtained to classify specific refactoring operations in questdb.

Precision Recall Acc. F1 Precision Recall Acc. F1 Precision Recall Acc. F1

Extract and Move Method
DT - Random Over

Extract Attribute
ExT

Extract SUperclass
LR - Borderline-SMOTE

0.20 0.13 0.88 0.16 1.00 0.20 0.97 0.33 0.11 0.14 0.95 0.12

Extract Variable
DT

Move Class
SVM - Random Over

Pull upo Attribute
LR

0.18 0.54 0.66 0.28 0.10 0.43 0.89 0.15 0.20 0.14 0.93 0.17

Pull up Method
ExT

Remove Class Annotation
LR - Random Over

Replace Anonymous with Lambda
DT - Random Over

0.08 0.16 0.89 0.11 0.02 0.50 0.88 0.03 0.04 0.14 0.90 0.07

Replace Attribute with Variable
SVM Borderline-SMOTE

Split Conditional
SVM - Borderline-SMOTE

0.14 0.50 0.95 0.22 0.25 0.33 0.97 0.28

Tables 6.3 and 6.4 report the performance of the best ML algorithm for the test
refactoring operations in analysis. Regarding F-Measure, the performance reported in
Table 6.3 shows a range between 3% and 33%. Looking at Table 6.4, we can observe that
the computation failed in six projects and for four test refactoring operations, while for
projects in which the algorithm finished the computation, the F-Measure ranges between
19% and 60%. At the same time, we obtained one 100% during the detection of Add

6.3. ANALYSIS OF THE RESULTS 135

Table 6.4: Performance obtained when classifying the remaining seven refactoring oper-
ations.

Project Precision Recall Accuracy F1

Add Method Annotation — SVM NearMiss2

google-http-java-client 0.14 0.25 0.25 0.18
htmlunit-driver 0.0 0.0 0.0 NaN
itext7 0.37 0.76 0.60 0.50
questdb 0.07 0.54 0.60 0.13
tetrad 1.0 1.0 1.0 1.0
zanata-platform 0.0 0.0 0.25 0.0

Inline Method — SVM

questdb 0.10 0.40 0.89 0.16
zanata-platform 0.0 0.0 0.66 0.0

Extract Method — Logistic Regression Borderline-Smote

itext7 0.06 0.33 0.78 0.10
questdb 0.20 0.66 0.66 0.31

Inline Variable — SVM NearMiss3

itext7 0.08 0.40 0.59 0.13
questdb 0.06 0.83 0.56 0.11

Modify Method Annotation — SVM

graphhoopper 0.1 0.33 0.74 0.16
kubernetes-client 0.19 0.37 0.62 0.25
itext7 0.20 0.20 0.76 0.20
zanata-platform 0.0 0.0 0.0 NaN

Move Method — Decision Tree

htmlunit-driver 0.0 0.0 0.40 NaN
itext7 0.07 0.5 0.81 0.12

Remove Method Annotation — Extra Tree NearMiss1

emissary 0.49 0.78 0.59 0.60
htmlunit-driver 0.0 0.0 0.33 NaN
iotdb 0.0 0.0 0.64 NaN
itext7 0.16 0.93 0.36 0.28
questdb 0.08 0.89 0.17 0.13
tetrad 0.0 0.0 0.66 NaN
zanata-platform 0.0 0.0 0.0 0.0

Method Annotation in the Tetrad project. A similar discussion can be drawn for the
Precision: we can observe several 0% and values that did not exceed 50%, except for
two projects in two different cases, in which the Precision reached 100% (Questdb in
Extract Attribute classification and Tetrad in Add Method Annotation classification).
Finally, looking at Recall and Accuracy, the values range between 13% and 97%. These

6.4. DISCUSSION 136

results were somewhat expected because the number of specific refactorings to classify
is low with respect to RQ3.1, in which we have classified the test code changes. There-
fore, ML algorithms did not have enough information to train the models. This is the
case of Htmlunit-driver project, which has only one true instance of Add Method,
Move Method, and Remove Method Annotation refactorings, or the Tetrad and iotdb
projects with only one true instance for Remove Method Annotation refactoring.

 Summary3.2. When we classify specific test refactoring operations, performance
decreases due to a lower amount of data. Both under- and over-sampling techniques
contribute to ML models except for seven refactorings, i.e., Extract Attribute, Extract
Variable, Pull Up Attribute, Pull Up Method, Inline Method, Modify Method Annota-
tion, and Move Method. Finally, regarding info gain analysis, the results are similar
to those already discussed in RQ3.1.

6.4 DISCUSSION

In the following, we first discuss our findings in relation to the work proposed by Aniche
et al. (ANICHE et al., 2022). Moreover, we report some points worthy of further analysis
and discussion, which we elaborate on in this section.

6.4.1 Relation with Previous Work

Our work was inspired by the one proposed by Aniche et al. (2022) in the context of
code refactoring. However, there are differences in terms of the dataset employed, the
approach taken, and the results achieved that are worth discussing below.

Starting from the data, while Aniche et al. (2022) proposed a large-scale empirical
study with a dataset comprising over two million refactorings from 11,149 real-world
projects from different ecosystems, our work is a preliminary study on a smaller sample
in terms of refactorings (826) and projects (10). Nonetheless, our work represents the first
attempt to analyze the extent to which supervised ML can be employed in the context
of test code refactoring recommendations: as such, it explicitly targets the peculiarities
of test code, investigating the effect of specific test code predictors on refactoring types
that developers may apply on test code.

Several differences exist in the research method employed. First, we performed a

6.4. DISCUSSION 137

walk-forward validation (FALESSI et al., 2020) by preserving the chronological order of
the data, while Aniche et al. (2022) used a stratified 10-fold cross-validation. A second
difference is related to the data balancing techniques analyzed. We performed a more
comprehensive analysis of the data balancing step by experimenting and statistically
verifying several under- and over-sampling techniques. While in the context of RQ3.1 we
found that Random Undersampling is used in the best classifier, the result changed
in the context of RQ3.2, where other balancing techniques have shown themselves to
be more relevant, i.e., NearMiss and Borderline-SMOTE algorithms. The use of
multiple balancing techniques combined with the use of statistical tests to evaluate the
performance obtained may have contributed to the different results in terms of the best
ML model compared with the work of Aniche et al. (2022).

Finally, looking at the results, we obtained performance lower with respect to Aniche
et al. (2022). This represents something expected because of the different number of
instances analyzed and the lower number of projects. In addition, we observed that for
four specific refactoring operations, i.e., Inline Method, Inline Variable, Extract Method,
and Move Method, the performance is lower than those obtained by Aniche et al. (2022),
but promising. We believe that our study poses the basis for further investigation on the
matter.

6.4.2 On the Features and their Predictive Power

Our study analyzed test codes, test smells, and process metrics as features. We chose
the features based on the previous research on test code quality (SPADINI et al., 2018;
CATOLINO et al., 2019; PECORELLI; PALOMBA; LUCIA, 2021; KIM; CHEN; YANG,
2021). When deciding on those features, we conjectured the structure of a class, the
presence of smells, and the developer’s experience are crucial factors developers consider
when identifying test code to refactor. The performance obtained in the context of RQ3.1

confirms that conjecture. Despite this, it is important to emphasize that the test smell
dimension metrics have the lowest or even zero values. This observation implies that
although previous studies suggest refactoring when a smell is detected, this is not a
factor that leads the developer to refactor.

Interestingly, features that make more sense to humans (e.g., the number of test
class lines or methods) contribute most to model building. Moreover, while test code
metrics can capture the structure of an element, process metrics can capture its evolution

6.4. DISCUSSION 138

history. The selection of the metrics suggests, once again, that refactoring represents
a human activity. While previous works (KIM; ZIMMERMANN; NAGAPPAN, 2012;
SILVA; TSANTALIS; VALENTE, 2016; PALOMBA et al., 2018) investigated those as-
pects in production refactoring, we noticed a lack of knowledge of the motivations leading
developers to refactor test code. Our work poses the basis for further investigating the
socio-technical factors influencing the developer’s activities in test code refactoring.

6.4.3 ML Models for Test Refactoring Recommendations: How Far Can We Go?

While the performance decrease observed in RQ3.2 was somehow expected because of the
fewer instances available for specific refactoring operations, we also noticed that such a
decrease reflects a more fundamental problem connected to supervised ML algorithms.
To better explain this point, let us discuss the Add Method Annotation refactoring rec-
ommendation case in the htmlunit-driver and itext7 projects.

Looking at Table 6.3, we can observe contrasting performance indicators (NaN
versus 45% regarding the F-Measure metric) when considering the RF algorithm. It is
not due to the number of instances of the Add Method Annotation refactoring (which
represent ∼ 25% of the entire dataset in both cases) but to the total number of test
classes used to train the model (8 versus 332). This indicates the lack of data to properly
feed recommendation systems based on supervised ML. This observation has three key
implications. First, our work suggests that supervised ML algorithms present a good
performance in specific cases, namely when there is a sufficient amount of test classes (at
least 10 test classes based on our study): in this sense, novel screening mechanisms should
be able to analyze the context of a project to establish whether ML solutions would be
worth might be devised. Second, our results indicate that future research efforts might
be devoted to defining mechanisms through which synthetic data should be created to
enable an effective training of ML models. Last but not least, our work stimulates further
studies on the capabilities of supervised ML for test refactoring recommendations and,
more importantly, on how to complement those recommenders with alternative methods,
e.g., heuristic approaches.

6.5. THREATS TO VALIDITY 139

6.5 THREATS TO VALIDITY

This section discusses the potential threats that can affect the validity of our empirical
study.

Construct validity. The main threat related to the relationship between theory
and observation concerns possible imprecision in the data used as the dependent variable
in the study. We relied on the TestRefactoringMiner tool (MARTINS et al., 2023a),
which is already validated in the literature, making us confident of the reliability of the
data. As for the set of independent variables, we chose a mix of metrics capturing the size
and structure of test codes and process characteristics. For instance, we know the possible
introduction of noise regarding false positive codes and test smells. To partially mitigate
this threat, we collected metrics through previously evaluated and well-established tools,
showing good accuracy (SPADINI; ANICHE; BACCHELLI, 2018; PECORELLI et al.,
2020b; PERUMA et al., 2020a).

Internal Validity. The main threat that could affect the variables and relation-
ships under investigation concerns the imbalanced dataset, i.e., there are more instances
of the non-refactoring class in our dataset than instances of the refactoring class. There-
fore, we analyzed several under- and over-sampling techniques to understand their impact
on the data and performance.

External Validity. The main threat concerning the generalization of results is the
selection of subject projects. We selected ten open-source Java projects from GitHub,
only a fraction of the complete picture of open-source Java projects. Consequently, we
can not generalize the results to distinct domains, industrial projects, and other program-
ming languages. Therefore, replications of this study would corroborate our findings in
different contexts. Our appendix (MARTINS et al., 2023e) provides all materials and
scripts used in this study to stimulate further research.

Conclusion validity. Threats of this category are related to the relationship be-
tween treatment and outcome. A key potential source of bias can have been related to
the presence of independent variables providing a similar contribution to the performance
of the experimented models (O’BRIEN, 2007). To account for this threat, we computed
the information gain provided by each feature used to feed the models. That computa-
tion allowed us to verify the independent variables were orthogonal, contributing to the
models built. To further corroborate the conclusions drawn in the study, we applied the

6.6. CHAPTER SUMMARY 140

Friedman and Nemenyi tests (NEMENYI, 1963; SHELDON; FILLYAW; THOMPSON,
1996), which allowed us to report our findings from a statistical perspective.

Our work represents the first attempt to recommend test refactoring operations.
As such, we experimented with multiple techniques to identify the best algorithm. Our
online appendix (MARTINS et al., 2023e) includes all our findings, which researchers can
use to understand further the impact of ML techniques.

6.6 CHAPTER SUMMARY

Our results show that using ML to classify test code changes is feasible. Still, the per-
formance decreases when classifying specific test refactoring operations due to the lower
amount of test classes analyzed. Our qualitative analysis shows the need to explore the
socio-technical factors influencing the developer’s activities. To sum up, our main contri-
butions are: (1) we devised a ML approach to classify the developers’ intention to apply
test refactoring and the test-specific operations applied, and (2) we released a publicly
available replication package (MARTINS et al., 2023e) with data, scripts, and results of
our experiment.

In this chapter, we performed an empirical study to assess the performance of
supervised ML algorithms to classify test code refactoring operations in 10 Java projects.
In RQ3.1, we evaluated the performance of six ML algorithms to classify specific test code
changes in which practitioners would do test refactoring using test smells, test metrics,
and process variables, i.e., code churn, as predictors. As a result, we found that the
Support Vector Machine (SVM) algorithm outperforms the others, with performance
varying between 30% to 100%. In RQ3.2, we evaluated the classification of specific
test refactoring operations, and we found that performance decreases due to a lower
amount of data. The discussion focused on the predictive power of the features as well as
the feasibility of the approach, suggesting the need to change our current vision of test
refactoring.

As for our future work, we aim to continue exploring the capabilities of supervised
ML in providing recommendations for test refactoring. In addition, we can investigate the
generation of synthetic data for training ML models and the influence of socio-technical
factors on developers’ activities in test code refactoring.

Chapter

7
CONCLUSIONS

This thesis investigated how developers refactor the test code to fix test smells in prac-
tice and what factors drive developers to refactor the test code. In addition, we explored
Machine Learning (ML) techniques to classify whether developers would apply refactor-
ings in the test code and which test-specific refactoring operations they would apply. By
considering the developers’ perspective, we aim to gain ground to elaborate on more in-
teractive refactoring techniques that can help overcome current limitations related to the
lack of support for test-specific refactorings and the number of false positives detected
by automated refactoring recommendation tools.

This chapter presents the final remarks of this thesis. Section 7.1 summarizes the
results of our research. Section 7.2 lists the main scientific contributions we have achieved
so far. Section 7.3 elaborates our vision for future work.

7.1 RESULTS ADDRESSING OUR GOAL AND RESEARCH QUESTIONS

To answer our goal, we present the summary of results for our high-level research questions
(RQs) in the following.

RQ1. How do developers perform test code refactorings to fix test smells
in open-source projects? To answer our RQ1, we started by manually classifying
changes performed by developers in the test code of 13 open-source Java projects of the
Apache Foundation. We classified the changes into test smells and refactorings. Then,

141

7.1. RESULTS ADDRESSING OUR GOAL AND RESEARCH QUESTIONS 142

we compiled a catalog of test-specific refactorings to fix test smells, compared the catalog
with state-of-the-art catalogs, and gathered developers’ feedback on the usefulness of our
test-specific refactorings. In summary, the main outcomes include:

• We identified 9 test smells refactored in the projects. Although we can widely find
the investigation of eight test smells in the literature (the ECT, AR, BaN, IgT,
RP, EpT, UT, and ST test smells), we found one test smell still not investigated
(Inappropriate Assertion - InA);

• We identified 11 test refactorings in practice and literature to fix test smells. Al-
though we can widely find the use of three refactorings in practice (Replace try/-
catch with @Test annotation, Split assertions into single methods, and Surround
assertions with assertThrows), we found another three refactorings not previously
defined in the literature (Replace NOT operator, Split Conditional into statements,
and Replace Reserved Words);

• When asking for developers’ feedback on the set of test-specific refactorings, most
showed appreciation for the efforts to improve test quality. They also considered a
historical context to highlight that certain constructs of the testing framework were
unavailable when creating the tests. Still, there are better ways to implement the
same test. In addition, some developers showed awareness of current best practices
and proactiveness to improve the test code.

RQ2. How do test refactoring operations affect test code quality? In our RQ2,
we collected a dataset containing test smells, test refactorings, and structural metrics
from 63 open-source Java projects. Next, we investigated whether developers targeted
low-quality test code when refactoring and whether the refactorings improved the code
quality. In summary, we could observe that:

• Structural metrics and test smells influence the likelihood of developers applying
most test refactorings. In particular, the AsD metric and the DA test smell hold
significance for most test refactorings than the other metrics and test smells;

• Test refactorings derived from Fowler’s catalog (FOWLER, 1999) and some test-
specific refactorings (Replace Rule w/ assertThrows, Replace Conditional by Pa-
rameterizedTest, and Replace @Test with assertThrows) were responsible for most
improvements in the test code regarding its complexity, size, and coupling. The

7.1. RESULTS ADDRESSING OUR GOAL AND RESEARCH QUESTIONS 143

same test-specific refactorings also influenced fixing the GF, LT, AR, and ECT test
smells.

RQ3: How accurately can we suggest test refactoring operations for fixing
test smells using ML techniques? To answer RQ3, we collected test smells, test
refactorings, and process and structural metrics from 10 open-source Java projects. Sub-
sequently, we modeled a binary classification problem to investigate whether developers
would refactor the test class in the projects using ML algorithms (Random Forest - RF,
Decision Trees - DT, Extra-Tree - ExT, Logistic Regression - LR, Naive Bayes - NB, and
Support Vector Machine - SVM). Similarly, we modeled a binary classification problem to
classify whether developers would apply a specific test refactoring operation. Our results
show that:

• The SVM algorithm was the best ML algorithm, and the AR, CTL, DA, ET, ECT,
LT, MNT, PS, SE, and UT test smells can be good predictors to classify whether
developers would perform test refactorings. Yet, structural and process metrics
contributed more to the models than test smells;

• The best ML algorithm varied for analyzing specific refactoring operations. In par-
ticular, the RF algorithm presented the best results for the Add Method Annotation
refactoring, the DT algorithm presented the best results for the Inline Variables
refactoring, the ExT algorithm presented the best results for the Remove Method
Annotation refactoring, the NB algorithm presented the best results for the Extract
Method and Move Method refactorings, and the SVM algorithm resented the best
results for the Inline Method and Modify Method Annotation refactorings;

• The classification of whether developers would refactor the test code varied in dif-
ferent projects (from 0% to 100% of precision and recall scores, with average values
of 47% and 60%, respectively). However, the performance decreased in classify-
ing specific test refactoring operations due to less data. It indicates supervised
ML algorithms worked when a sufficient amount of test classes exists, calling for
more investigations regarding searching for ML solutions specific to the specific
context of projects, creating synthetic data to enable the training of ML models,
and complementing models with alternative approaches.

Now, back to the research objective of investigating the feasibility of identify-
ing test refactoring opportunities and proper fixings based on ML techniques,

7.2. CONTRIBUTIONS 144

our approach demonstrated promise to classify specific test refactorings based on struc-
tural metrics and test smells.

7.2 CONTRIBUTIONS

This section presents our main contributions regarding research investigations, supple-
mentary materials and tools, and academic publications.

7.2.1 Research Contribution

The main contributions of this work are:

1. Body of knowledge on test code refactorings and test smells. The number
of studies on test smells is increasing year by year. We performed ad-hoc reviews
to synthesize state-of-the-art evidence on test code refactorings and test smells for
use in various investigations in the field;

2. Catalog with common test smells and test refactorings in practice. We
manually analyzed modified test files of open-source projects to compile a catalog
of test smells and the refactoring operations used to fix them based on actual
development practices;

3. Identifying refactoring opportunities in test code and proper fixings for
test smells. We developed ML models to learn from the features extracted from the
change history of the test code, including process metrics, structural metrics, and
test smells. These models were designed to classify the code changes where devel-
opers would undertake test refactoring and to predict which specific test refactoring
operations developers would apply.

7.2.2 Materials and Tools

We also contributed to the community to support the investigations with computational
tools, datasets, and other materials. The main contributions are:

• Extension of RefactoringMiner. We built theTestRefactoringMiner tool
on top of the RefactoringMiner tool (TSANTALIS; KETKAR; DIG, 2020).

7.2. CONTRIBUTIONS 145

We extended the set of changes reported by the tool to detect the refactorings:
1) Add explanation message, 2) Replace reserved words, 3) Split conditional pa-
rameters, 4) Replace the not (!) operator, 5) Replace try/catch with asserThrows,
6) Replace @Rule annotation with assertThrows, and 7) Replace @Test annotation
with assertThrows. The tool is made available in a GitHub repository1;

• Extension of VITRuM tool. The VITRuM tool is a plugin for IntelliJ IDE
and calculates structural metrics (e.g., the AsD, LOC, NOM, RFC, and WMC
metrics) and coverage and mutation scores. We changed it to allow it to collect
data on a large scale, as its original version is IDE-dependent. The tool adaptation
is available in a GitHub repository2;

• Extension of tsDetect tool. The tsDetect tool works via the command line
and requires the execution of three different modules to generate the final results
containing the test smells per class. We changed it to execute all modules with-
out manual intervention and added functionality to clone projects automatically,
allowing the tool to collect data on a large scale. The tool adaptation is available
in a GitHub repository3;

• Datasets. First, we released a curated dataset containing 611 instances of pairs of
test code, with test smells and their respective test refactorings (MARTINS et al.,
2023b). Subsequently, we extended the TestRefactoringMiner, tsDetect,
and VITRuM tools to collect large-scale datasets combining information on test
smells, test refactorings, and structural metrics for 63 projects (MARTINS et al.,
2023d). Last, we created a smaller dataset to add information on process metrics
for ten projects (MARTINS et al., 2023e);

• Catalog of test-specific refactorings. We proposed the TSR-Catalog (Cat-
alog of Test Smells Refactorings). That catalog outlines the reengineering process
for conducting test-specific refactorings to remove test smells. Initially, it possesses
information on test smells and test refactorings manually classified from 375 test
files from the Apache Foundation. The catalog is available online4.

1Available at: https://github.com/arieslab/TestRefactoringMiner
2Available at: https://github.com/luana-martins/MyVITRuM
3Available at: https://github.com/luana-martins/tsDetectExtended
4Available at: https://tsr-catalog.readthedocs.io/en/latest/

7.2. CONTRIBUTIONS 146

7.2.3 Academic contributions

Next, we list the set of papers resulting from this investigation:

• Luana Almeida Martins, Taher Ahmed Ghaleb, Heitor A. X. Costa, Ivan Machado:
A comprehensive catalog of refactoring strategies to handle test smells in Java-based
systems. Softw. Qual. J. 32(2): 641-679 (2024)

• Luana Almeida Martins, Heitor A. X. Costa, Ivan Machado: On the diffusion of
test smells and their relationship with test code quality of Java projects. J. Softw.
Evol. Process. 36(4) (2024)

• Luana Almeida Martins, Heitor A. X. Costa, Márcio Ribeiro, Fabio Palomba, Ivan
Machado: Automating Test-Specific Refactoring Mining: A Mixed-Method Inves-
tigation. SCAM 2023: 13-24

• Luana Martins, Valeria Pontillo, Heitor Costa, Filomena Ferrucci, Fabio Palomba,
Ivan Machado. 2023. Test Code Refactoring Unveiled: Where and How Does It
Affect Test Code Quality and Effectiveness? In Proceedings of the 39th IEEE Inter-
national Conference on Software Maintenance and Evolution, Registered Reports
track, 1-9

• Luana Almeida Martins, Denivan Campos, Railana Santana, Joselito Mota Júnior,
Heitor A. X. Costa, Ivan Machado: Hearing the voice of experts: Unveiling Stack
Exchange communities’ knowledge of test smells. CHASE 2023: 80-91

• Luana Almeida Martins, Carla I. M. Bezerra, Heitor A. X. Costa, Ivan Machado:
Smart prediction for refactorings in the software test code. SBES 2021: 115-120

Other important publications from this thesis, in which there are other main (first)
authors but still hold the importance for this work:

• Railana Santana, Luana Almeida Martins, Tássio Virgínio, Larissa Rocha, Heitor
A. X. Costa, Ivan Machado: An empirical evaluation of RAIDE: A semi-automated
approach for test smells detection and refactoring. Sci. Comput. Program. 231:
103013 (2024)

7.3. FUTURE RESEARCH DIRECTIONS 147

• Tássio Virgínio, Luana Almeida Martins, Railana Santana, Adriana Cruz, Larissa
Rocha, Heitor A. X. Costa, Ivan Machado: On the test smells detection: an em-
pirical study on the JNose Test accuracy. J. Softw. Eng. Res. Dev. 9: 8:1-8:14
(2021)

• Nildo Silva Junior, Luana Almeida Martins, Larissa Rocha, Heitor A. X. Costa,
Ivan Machado: How are test smells treated in the wild? A tale of two empirical
studies. J. Softw. Eng. Res. Dev. 9: 9:1-9:16 (2021)

• Denivan Campos, Luana Almeida Martins, Carla I. M. Bezerra, Ivan Machado:
Investigating Developers’ Contributions to Test Smell Survivability: A Study of
Open-Source Projects. SAST 2023: 86-95

• Denivan Campos, Luana Almeida Martins, Ivan Machado: An empirical study on
the influence of developers’ experience on software test code quality. SBQS 2022:
3:1-3:10

• Railana Santana, Luana Almeida Martins, Tássio Virgínio, Larissa Rocha Soares,
Heitor A. X. Costa, Ivan Machado: Refactoring Assertion Roulette and Duplicate
Assert test smells: a controlled experiment. CIBSE 2021: 1-16.

• Nildo Silva Junior, Larissa Rocha Soares, Luana Almeida Martins, Ivan Machado:
CIBSE 2020: 462-475

• Tássio Virgínio, Luana Almeida Martins, Larissa Rocha Soares, Railana Santana,
Heitor A. X. Costa, Ivan Machado: An empirical study of automatically-generated
tests from the perspective of test smells. SBES 2020: 92-96

• Railana Santana, Luana Almeida Martins, Larissa Rocha, Tássio Virgínio, Adriana
Cruz, Heitor A. X. Costa, Ivan Machado: RAIDE: a tool for Assertion Roulette
and Duplicate Assert identification and refactoring. SBES 2020: 374-379

• Tássio Virgínio, Luana Almeida Martins, Larissa Rocha Soares, Railana Santana,
Adriana Cruz, Heitor A. X. Costa, Ivan Machado: JNose: Java Test Smell Detector.
SBES 2020: 564-569

7.3 FUTURE RESEARCH DIRECTIONS

This section points out avenues for future research regarding automating test refactoring.

7.3. FUTURE RESEARCH DIRECTIONS 148

Empirical validation with developers. The proposed catalog of test smells and refac-
toring strategies can further benefit from empirical validation with software practitioners
in the field, including surveys, interviews, or focus groups of practitioners to gather their
feedback and experiences with the identified refactorings. In addition, in-depth case
studies with developers can offer insights into the challenges developers could face, the
reasoning behind refactoring decisions, and observed benefits after refactoring.

Experimentation with real-world projects. While our research identified test smells
and their respective refactorings in real-world projects, our findings can be context-specific
to the projects we selected. To enhance the external validity of our research, conducting
more extensive experiments or case studies involving industry practitioners would be
beneficial, helping to generalize the results.

Assessment of refactoring impact on quality attributes. Future research is encour-
aged to perform controlled experiments to assess the impact of the proposed refactorings
on key quality attributes, such as test reliability, maintainability, and execution time.
Such experiments are crucial for providing evidence of the practical advantages of test
smell refactorings compared to alternative approaches or the option of not refactoring.

Investigating the generation of synthetic data for model training. While our
approach holds promise in identifying refactoring opportunities and proper fixings, it is
limited due to the number of refactorings composing the datasets. The investigation of
methods for creating realistic and diverse synthetic data can help address limitations in
the data availability, improving the generalization and robustness of the models.

Analyzing socio-technical factors in developers’ test code refactoring activi-
ties. The process metrics selected to analyze the developers’ activities in the test code
contributed the most to the ML models. Therefore, understanding the human and social
aspects of test code refactoring can provide valuable insights into improving the adoption
and effectiveness of automated recommendations.

Exploring supervised ML algorithms for test refactoring recommendations.
We can delve deeper into our investigation to improve the capabilities of ML models. In
particular, we could refine existing models, explore different algorithms, explore different
contexts of software projects, and incorporate additional features to enhance the accuracy
and relevance of the recommendations.

REFERENCES

AFONSO, J.; CAMPOS, J. Automatic generation of smell-free unit tests. In: IEEE. 2023
IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT). [S.l.],
2023. p. 9–16.

ALJEDAANI, W.; PERUMA, A.; ALJOHANI, A.; ALOTAIBI, M.; MKAOUER, M. W.;
OUNI, A.; NEWMAN, C. D.; GHALLAB, A.; LUDI, S. Test smell detection tools: A
systematic mapping study. In: Evaluation and Assessment in Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2021. (EASE 2021), p. 170–180.

AMANNEJAD, Y.; GAROUSI, V.; IRVING, R.; SAHAF, Z. A search-based approach
for cost-effective software test automation decision support and an industrial case study.
In: IEEE. 2014 IEEE Seventh International Conference on Software Testing, Verification
and Validation Workshops. New York, NY, USA, 2014. p. 302–311.

ANICHE, M.; MAZIERO, E.; DURELLI, R.; DURELLI, V. H. S. The effectiveness of
supervised machine learning algorithms in predicting software refactoring. IEEE Trans-
actions on Software Engineering, v. 48, n. 4, p. 1432–1450, 2022.

APACHE ACCUMULO. Remove unused code. 2019. Available at: <https://github.
com/apache/accumulo/commit/f10b4073dba6b8095e9934e9ea158eb9f45c6f67>. Last ac-
cess: 11-08-2023.

APACHE ACCUMULO. Backport JUnit upgrade from #1562 to 1.10.1.
2021. Available at: <https://github.com/apache/accumulo/commit/
d4fd27f32dc2611a23f67b1d3e8dafd8ee05a1cb>. Last access: 11-08-2023.

APACHE CAMEL. CAMEL-11807: Migrated camel-telegram tests to JU-
nit 5. 2019. Available at: <https://github.com/apache/camel/commit/
626196af0baf18a859c55bdf91526b447b367faf>. Last access: 11-08-2023.

APACHE CAMEL. CAMEL-13629: Renamed tests to follow *Test pat-
tern. 2019. Available at: <https://github.com/apache/camel/commit/
9dc4dc6cd2c6cee75892e9a57105d79bfdcc8f5c>. Last access: 11-08-2023.

APACHE CAMEL. Camel-Pulsar: Removed System.out statements from
tests. 2020. Available at: <https://github.com/apache/camel/commit/
f7d1dbbf736e8b50ac5f17e5d25829a0a6aa5d4e>. Last access: 11-08-2023.

APACHE CAMEL. Fixed missing assertions in test code #6002).
2020. Available at: <https://github.com/apache/camel/commit/
7a43633b3c3587d949724f580ad0015a6f65ef82>. Last access: 11-08-2023.

149

150

APACHE CAMEL. core/camel-core: replace Thread.sleep with Awaitility
in tests. 2021. Available at: <https://github.com/apache/camel/commit/
d58c7318cb81f8faa5f2f4acd28d7a215855450d>. Last access: 11-08-2023.

APACHE CAMEL. Test-cleanups: fixed incorrect assertions for excep-
tions. 2021. Available at: <https://github.com/apache/camel/commit/
c30deabcaed4726bce4371d76257db63f2eba87c>. Last access: 11-08-2023.

APACHE CXF. More test assertion cleanup. 2019. Available at: <https://github.com/
apache/cxf/commit/7e11da7a566a95adc64143c0575b7ef86e0fbe5a>. Last access: 11-08-
2023.

APACHE CXF. Using assertEquals instead of assertTrue in some of
the tests. 2019. Available at: <https://github.com/apache/cxf/commit/
4955ca652f16e781524612383af27c650e10cbdc>. Last access: 11-08-2023.

APACHE CXF. Using assertEquals instead of assertTrue in some of
the tests. 2019. Available at: <https://github.com/apache/cxf/commit/
4955ca652f16e781524612383af27c650e10cbdc>. Last access: 11-08-2023.

APACHE KAFKA. KAFKA-12819: Add assert messages to MirrorMaker tests plus other
quality of life improvements. 2021. Available at: <https://github.com/apache/kafka/
commit/56d9482462c2aa941b151015499fc59485fe7426>. Last access: 11-08-2023.

APACHE KAFKA. MINOR: Optimize assertions in unit tests
(#9955). 2021. Available at: <https://github.com/apache/kafka/commit/
f4c2030b2006fc0c447a10f8b251579424f39f7b>. Last access: 11-08-2023.

ARANEGA, V.; DELPLANQUE, J.; MARTINEZ, M.; BLACK, A. P.; DUCASSE, S.;
ETIEN, A.; FUHRMAN, C.; POLITO, G. Rotten green tests in java, pharo and python:
An empirical study. Empirical Software Engineering, Springer, v. 26, n. 6, p. 1–41, 2021.

AZEEM, M. I.; PALOMBA, F.; SHI, L.; WANG, Q. Machine learning techniques for
code smell detection: A systematic literature review and meta-analysis. Information and
Software Technology, Elsevier, v. 108, p. 115–138, 2019.

BAKER, P.; EVANS, D.; GRABOWSKI, J.; NEUKIRCHEN, H.; ZEISS, B. Trex-the
refactoring and metrics tool for ttcn-3 test specifications. In: IEEE. Testing: Academic
& Industrial Conference-Practice And Research Techniques (TAIC PART’06). New York,
NY, USA, 2006. p. 90–94.

BAQAIS, A. A. B.; ALSHAYEB, M. Automatic software refactoring: a systematic liter-
ature review. Software Quality Journal, Springer, v. 28, n. 2, p. 459–502, 2020.

BAVOTA, G.; CARLUCCIO, B. D.; LUCIA, A. D.; PENTA, M. D.; OLIVETO, R.;
STROLLO, O. When does a refactoring induce bugs? an empirical study. In: IEEE. 2012
IEEE 12th International Working Conference on Source Code Analysis and Manipulation.
[S.l.], 2012. p. 104–113.

151

BAVOTA, G.; De Lucia, A.; Di Penta, M.; OLIVETO, R.; PALOMBA, F. An experi-
mental investigation on the innate relationship between quality and refactoring. Journal
of Systems and Software, v. 107, p. 1–14, 2015.

BAVOTA, G.; LUCIA, A. D.; MARCUS, A.; OLIVETO, R. Recommending refactoring
operations in large software systems. Recommendation Systems in Software Engineering,
Springer, p. 387–419, 2014.

BAVOTA, G.; QUSEF, A.; OLIVETO, R.; LUCIA, A. D.; BINKLEY, D. An empirical
analysis of the distribution of unit test smells and their impact on software maintenance.
In: IEEE. 2012 28th IEEE International Conference on Software Maintenance (ICSM).
New York, NY, USA, 2012. p. 56–65.

BAVOTA, G.; QUSEF, A.; OLIVETO, R.; LUCIA, A.; BINKLEY, D. Are test smells
really harmful? an empirical study. Empirical Softw. Engg., Kluwer Academic Publishers,
USA, v. 20, n. 4, p. 1052–1094, Aug. 2015.

BECK, K. L. Test-driven Development: by example. Upper Saddle River, NJ: Addison-
Wesley, 2003. (The Addison-Wesley signature series). ISBN 978-0-321-14653-3.

BELL, J.; KAISER, G.; MELSKI, E.; DATTATREYA, M. Efficient dependency detec-
tion for safe java test acceleration. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2015. (ESEC/FSE 2015), p. 770–781.

BELL, J.; LEGUNSEN, O.; HILTON, M.; ELOUSSI, L.; YUNG, T.; MARINOV, D.
Deflaker: Automatically detecting flaky tests. In: Proceedings of the 40th International
Conference on Software Engineering. New York, NY, USA: ACM, 2018. p. 433–444.

BIAGIOLA, M.; STOCCO, A.; MESBAH, A.; RICCA, F.; TONELLA, P. Web test de-
pendency detection. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering. New York, NY, USA: Association for Computing Machinery, 2019. (ESEC/FSE
2019), p. 154–164.

BISHOP, C. M. Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN 0387310738.

BLAND, J. M.; ALTMAN, D. G. The odds ratio. Bmj, British Medical Journal Publishing
Group, v. 320, n. 7247, p. 1468, 2000.

BLESER, J. D.; NUCCI, D. D.; ROOVER, C. D. Assessing diffusion and perception of
test smells in scala projects. In: IEEE. 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). New York, NY, USA, 2019. p. 457–467.

BLESER, J. D.; NUCCI, D. D.; ROOVER, C. D. Socrates: Scala radar for test smells.
In: Proceedings of the Tenth ACM SIGPLAN Symposium on Scala. New York, NY, USA:
Association for Computing Machinery, 2019. (Scala ’19), p. 22–26.

152

BODEA, A. Pytest-smell: A smell detection tool for python unit tests. In: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
New York, NY, USA: Association for Computing Machinery, 2022. (ISSTA 2022), p.
793–796.

BOIS, B. D.; DEMEYER, S.; VERELST, J. Refactoring - improving coupling and cohe-
sion of existing code. In: 11th Working Conf. on Reverse Engineering. [S.l.: s.n.], 2004.
p. 144–151.

BOWES, D.; HALL, T.; PETRIC, J.; SHIPPEY, T.; TURHAN, B. How good are my
tests? In: Proceedings of the 8th Workshop on Emerging Trends in Software Metrics.
New York, NY, USA: IEEE Press, 2017. (WETSoM ’17), p. 9–14.

BREIMAN, L. Random forests. Mach. Learn., Kluwer Academic Publishers, USA, v. 45,
n. 1, p. 5–32, Oct. 2001.

BREUGELMANS, M.; ROMPAEY, B. V. Testq: Exploring structural and maintenance
characteristics of unit test suites. In: IEEE. WASDeTT-1: 1st International Workshop
on Advanced Software Development Tools and Techniques. New York, NY, USA, 2008.

CAMPOS, D.; MARTINS, L.; BEZERRA, C.; MACHADO, I. Investigating developers’
contributions to test smell survivability: A study of open-source projects. In: Proceedings
of the 8th Brazilian Symposium on Systematic and Automated Software Testing. New
York, NY, USA: Association for Computing Machinery, 2023. p. 86–95.

CAMPOS, D.; MARTINS, L.; MACHADO, I. An empirical study on the influence of
developers’ experience on software test code quality. In: Proceedings of the XXI Brazil-
ian Symposium on Software Quality. New York, NY, USA: Association for Computing
Machinery, 2023.

CAMPOS, D.; ROCHA, L.; MACHADO, I. Developers perception on the severity of test
smells: an empirical study. In: Iberoamerican Conference on Software Engineering. Costa
Rica: arxiv, 2021. p. 1–14.

CATOLINO, G.; PALOMBA, F.; ZAIDMAN, A.; FERRUCCI, F. How the experience
of development teams relates to assertion density of test classes. In: ICSME 2019. Cleve-
land,USA: IEEE, 2019. p. 223–234.

CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.; MELLO, R. de;
FONSECA, B.; RIBEIRO, M.; CHáVEZ, A. Understanding the impact of refactoring
on smells: A longitudinal study of 23 software projects. In: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2017. (ESEC/FSE 2017), p. 465–475. ISBN 9781450351058.

CHáVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; GARCIA, A. How does
refactoring affect internal quality attributes? a multi-project study. In: Proceedings of the
XXXI Brazilian Symposium on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2017. (SBES ’17), p. 74–83. ISBN 9781450353267.

153

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
v. 16, p. 321–357, 2002.

CHEN, Z.; EMBURY, S. M.; VIGO, M. Who is afraid of test smells? assessing technical
debt from developer actions. In: SPRINGER. IFIP International Conference on Testing
Software and Systems. [S.l.], 2023. p. 160–175.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46,
1960.

CORTES, C.; VAPNIK, V. Support-vector networks. Mach. Learn., Kluwer Academic
Publishers, USA, v. 20, n. 3, p. 273–297, Sep. 1995.

COUNSELL, S.; HIERONS, R. M. Refactoring test suites versus test behaviour: A ttcn-
3 perspective. In: Fourth International Workshop on Software Quality Assurance: In
Conjunction with the 6th ESEC/FSE Joint Meeting. New York, NY, USA: Association
for Computing Machinery, 2007. (SOQUA ’07), p. 31–38.

CRUZ, A.; COSTA, H. Uma abordagem visual para evolução de test smells em sistemas
de software java. In: Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e
Prática. Porto Alegre, RS, Brasil: SBC, 2020. p. 63–69.

DALLAL, J. A. Identifying refactoring opportunities in object-oriented code: A system-
atic literature review. IST, Elsevier, v. 58, p. 231–249, 2015.

DAMASCENO, H.; BEZERRA, C.; CAMPOS, D.; MACHADO, I.; COUTINHO, E.
Test smell refactoring revisited: What can internal quality attributes and developers’
experience tell us? Journal of Software Engineering Research and Development, p. 13–1,
2023.

DAMASCENO, H.; BEZERRA, C.; COUTINHO, E.; MACHADO, I. Analyzing test
smells refactoring from a developers perspective. In: Proceedings of the XXI Brazilian
Symposium on Software Quality. New York, NY, USA: Association for Computing Ma-
chinery, 2023. (SBQS ’22). ISBN 9781450399999.

DELPLANQUE, J.; DUCASSE, S.; POLITO, G.; BLACK, A. P.; ETIEN, A. Rotten
green tests. In: Proceedings of the 41st International Conference on Software Engineering.
New York, NY, USA: IEEE Press, 2019. (ICSE ’19), p. 500–511.

DEURSEN, A.; MOONEN, L. M.; BERGH, A.; KOK, G. Refactoring Test Code. NLD,
2001.

DI, Z.; LI, B.; LI, Z.; LIANG, P. A preliminary investigation of self-admitted refactorings
in open source software. In: KSI RESEARCH INC. AND KNOWLEDGE SYSTEMS
INSTITUTE GRADUATE SCHOOL. Int.l Conf. on Software Engineering and Knowledge
Engineering. [S.l.], 2018. v. 2018, p. 165–168.

154

FALESSI, D.; HUANG, J.; NARAYANA, L.; THAI, J. F.; TURHAN, B. On the need
of preserving order of data when validating within-project defect classifiers. Empirical
Software Engineering, Springer, v. 25, p. 4805–4830, 2020.

FATIMA, S.; GHALEB, T. A.; BRIAND, L. Flakify: A black-box, language model-based
predictor for flaky tests. IEEE Transactions on Software Engineering, IEEE, 2022.

FERNANDES, D.; MACHADO, I.; MACIEL, R. Handling test smells in python: Results
from a mixed-method study. In: Brazilian Symposium on Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2021. p. 84–89.

FERNANDES, D.; MACHADO, I.; MACIEL, R. Tempy: Test smell detector for python.
In: Proceedings of the XXXVI Brazilian Symposium on Software Engineering. New York,
NY, USA: Association for Computing Machinery, 2022. (SBES ’22), p. 214–219. ISBN
9781450397353.

FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHôA, A.; BIBIANO, A. C.; GAR-
CIA, A.; CORREIA, J. a. L.; SANTOS, F.; NUNES, G.; BARBOSA, C.; FONSECA,
B.; MELLO, R. de. The buggy side of code refactoring: Understanding the relationship
between refactorings and bugs. In: Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings. New York, NY, USA: Association for
Computing Machinery, 2018. (ICSE ’18), p. 406–407. ISBN 9781450356633. Available at:
<https://doi.org/10.1145/3183440.3195030>.

FOWLER, M. Refactoring - Improving the Design of Existing Code. Upper Saddle River,
NJ: Addison-Wesley, 1999. (Addison Wesley object technology series).

FRASER, G.; GAMBI, A.; ROJAS, J. M. Teaching software testing with the code de-
fenders testing game: Experiences and improvements. In: IEEE. 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). New
York, NY, USA, 2020. p. 461–464.

FREUND, Y.; MASON, L. The alternating decision tree learning algorithm. In: Proceed-
ings of the Sixteenth Int.l Conf. on Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999. p. 124–133. ISBN 1558606122.

FULCINI, T.; GARACCIONE, G.; COPPOLA, R.; ARDITO, L.; TORCHIANO, M.
Guidelines for gui testing maintenance: a linter for test smell detection. In: Proceedings
of the 13th International Workshop on Automating Test Case Design, Selection and
Evaluation. New York, NY, USA: Association for Computing Machinery, 2022. p. 17–24.

FUSHIHARA, Y.; AMAN, H.; AMASAKI, S.; YOKOGAWA, T.; KAWAHARA, M.
A trend analysis of test smells in python test code over commit history. In: 2023 49th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA). [S.l.:
s.n.], 2023. p. 310–314.

155

GAMIDO, H. V.; GAMIDO, M. V. Comparative review of the features of automated
software testing tools. International Journal of Electrical and Computer Engineering,
IAES Institute of Advanced Engineering and Science, v. 9, n. 5, p. 4473, 2019.

GAROUSI, V.; AMANNEJAD, Y.; BETIN CAN, A. Software test-code engineering: A
systematic mapping. Information and Software Technology, v. 58, p. 123–147, 2015.

GAROUSI, V.; KüçüK, B. Smells in software test code: A survey of knowledge in industry
and academia. Journal of Systems and Software, v. 138, p. 52–81, 2018.

GAROUSI, V.; KüçüK, B.; FELDERER, M. What we know about smells in software
test code. IEEE Software, v. 36, n. 3, p. 61–73, 2019.

GATRELL, M.; COUNSELL, S.; HALL, T. Empirical support for two refactoring studies
using commercial C# software. In: Proceedings of the 13th International Conference on
Evaluation and Assessment in Software Engineering. Swindon, GBR: BCS Learning and
Development Ltd., 2009. (EASE’09), p. 1–10.

GEURTS, P.; ERNST, D.; WEHENKEL, L. Extremely randomized trees. Machine learn-
ing, Springer, v. 63, p. 3–42, 2006.

GRANO, G.; IACO, C. D.; PALOMBA, F.; GALL, H. C. Pizza versus pinsa: On the
perception and measurability of unit test code quality. In: IEEE. 2020 IEEE Int.l Conf.
on Software Maintenance and Evolution (ICSME). [S.l.], 2020. p. 336–347.

GRANO, G.; PALOMBA, F.; NUCCI, D. D.; LUCIA, A. D.; GALL, H. C. Scented since
the beginning: On the diffuseness of test smells in automatically generated test code.
Journal of Systems and Software, Elsevier, v. 156, p. 312–327, 2019.

GREILER, M.; DEURSEN, A. van; STOREY, M.-A. Automated detection of test fixture
strategies and smells. In: IEEE. 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. New York, NY, USA, 2013. p. 322–331.

GREILER, M.; ZAIDMAN, A.; DEURSEN, A. V.; STOREY, M.-A. Strategies for avoid-
ing text fixture smells during software evolution. In: IEEE. 2013 10th Working Conference
on Mining Software Repositories (MSR). New York, NY, USA, 2013. p. 387–396.

GUERRA, E. M.; FERNANDES, C. T. Refactoring test code safely. In: IEEE. Inter-
national Conference on Software Engineering Advances (ICSEA 2007). New York, NY,
USA, 2007. p. 44–44.

GYORI, A.; SHI, A.; HARIRI, F.; MARINOV, D. Reliable testing: Detecting state-
polluting tests to prevent test dependency. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. New York, NY, USA: Association for
Computing Machinery, 2015. (ISSTA 2015), p. 223–233.

HADJ-KACEM, M.; BOUASSIDA, N. A multi-label classification approach for detecting
test smells over java projects. Journal of King Saud University-Computer and Information
Sciences, Elsevier, 2021.

156

HAN, H.; WANG, W.; MAO, B. Borderline-smote: a new over-sampling method in
imbalanced data sets learning. In: Int.l Conf. on intelligent computing. Hefei China:
Springer, 2005. p. 878–887.

HAN, J.; KAMBER, M.; PEI, J. Data mining concepts and techniques third edition. The
Morgan Kaufmann Series in Data Management Systems, v. 5, n. 4, p. 83–124, 2011.

HE, H.; BAI, Y.; GARCIA, E. A.; LI, S. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In: Int.l joint Conf. on neural networks. Hong Kong: IEEE,
2008. p. 1322–1328.

HESSE-BIBER, S. N. Mixed methods research: Merging theory with practice. New York,
NY, USA: Guilford Press, 2010.

HO, T. K. Random decision forests. In: Document analysis and recognition, 1995., pro-
ceedings of the third Int.l Conf. on. Montreal, QC, Canada: IEEE, 1995. v. 1, p. 278–282.

HUO, C.; CLAUSE, J. Improving oracle quality by detecting brittle assertions and unused
inputs in tests. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2014. (FSE 2014), p. 621–631.

IANNONE, E.; CODABUX, Z.; LENARDUZZI, V.; LUCIA, A. D.; PALOMBA, F.
Rubbing salt in the wound? a large-scale investigation into the effects of refactoring on
security. Empirical Software Engineering, Springer, v. 28, n. 4, p. 89, 2023.

JORGE, D.; MACHADO, P.; ANDRADE, W. Investigating test smells in javascript test
code. In: Brazilian Symposium on Systematic and Automated Software Testing. New
York, NY, USA: Association for Computing Machinery, 2021. (SAST’21), p. 36–45.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement learning: A
survey. Journal of artificial intelligence research, v. 4, p. 237–285, 1996.

KATZ, D. S.; GRUENPETER, M.; HONEYMAN, T. Taking a fresh look at fair for
research software. Patterns, v. 2, n. 3, p. 100222, 2021.

KHOMH, F.; VAUCHER, S.; GUÉHÉNEUC, Y.-G.; SAHRAOUI, H. A bayesian ap-
proach for the detection of code and design smells. In: Int.l Conf. on Quality Software.
Jeju, Korea: IEEE, 2009. p. 305–314.

KIM, D. J.; CHEN, T.-H. P.; YANG, J. The secret life of test smells-an empirical study
on test smell evolution and maintenance. Empirical Software Engineering, Springer, v. 26,
n. 5, p. 1–47, 2021.

KIM, M.; ZIMMERMANN, T.; NAGAPPAN, N. A field study of refactoring challenges
and benefits. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2012. (FSE ’12).

157

KIM, M.; ZIMMERMANN, T.; NAGAPPAN, N. An empirical study of refactoringchal-
lenges and benefits at microsoft. IEEE Transactions on Software Engineering, IEEE,
v. 40, n. 7, p. 633–649, 2014.

KOOCHAKZADEH, N.; GAROUSI, V. Tecrevis: A tool for test coverage and test re-
dundancy visualization. In: BOTTACI, L.; FRASER, G. (Ed.). Testing – Practice and
Research Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 129–136.

KOOCHAKZADEH, N.; GAROUSI, V. A tester-assisted methodology for test redun-
dancy detection. Advances in Software Engineering, Hindawi, v. 2010, 2010.

KRAMER, O. Scikit-learn. In: Machine learning for evolution strategies. Switzerland:
Springer, 2016. p. 45–53.

KUHN, M.; JOHNSON, K. Applied predictive modeling. New York, NY, USA: Springer,
2013.

KUMMER, M.; NIERSTRASZ, O.; LUNGU, M. Categorising test smells. Bachelor The-
sis. University of Bern, Citeseer, 2015.

LACERDA, G.; PETRILLO, F.; PIMENTA, M.; GUéHéNEUC, Y. G. Code smells and
refactoring: A tertiary systematic review of challenges and observations. Journal of Sys-
tems and Software, v. 167, p. 110610, 2020. ISSN 0164-1212.

LAMBIASE, S.; CUPITO, A.; PECORELLI, F.; LUCIA, A. D.; PALOMBA, F. Just-in-
time test smell detection and refactoring: The darts project. In: Proceedings of the 28th
International Conference on Program Comprehension. New York, NY, USA: ACM, 2020.
p. 441–445.

LAVALLEY, M. P. Logistic regression. Circulation, Am Heart Assoc, v. 117, n. 18, p.
2395–2399, 2008.

LIMA, R.; COSTA, K.; SOUZA, J.; TEIXEIRA, L.; FONSECA, B.; D’AMORIM, M.;
RIBEIRO, M.; MIRANDA, B. Do you see any problem? on the developers perceptions
in test smells detection. In: Proceedings of the XXII Brazilian Symposium on Software
Quality. New York, NY, USA: Association for Computing Machinery, 2023. (SBQS ’23),
p. 21–30. ISBN 9798400707865.

MAIER, F.; FELDERER, M. Detection of test smells with basic language analysis meth-
ods and its evaluation. In: IEEE. 2023 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). [S.l.], 2023. p. 897–904.

MARINKE, R.; GUERRA, E. M.; SILVEIRA, F. F.; AZEVEDO, R. M.; NASCIMENTO,
W.; ALMEIDA, R. S. de; DEMBOSCKI, B. R.; SILVA, T. S. da. Towards an extensible
architecture for refactoring test code. In: Computational Science and Its Applications –
ICCSA 2019. Cham: Springer International Publishing, 2019. p. 456–471.

158

MARTINEZ, M.; ETIEN, A.; DUCASSE, S.; FUHRMAN, C. Rtj: a java framework for
detecting and refactoring rotten green test cases. In: IEEE. Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion Proceedings. New
York, NY, USA, 2020. p. 69–72.

MARTINS, L.; BEZERRA, C.; COSTA, H.; MACHADO, I. Smart prediction for refac-
torings in the software test code. In: Brazilian Symposium on Software Engineering. New
York, NY, USA: ACM, 2021. p. 115–120.

MARTINS, L.; BRITO, V.; FEITOSA, D.; ROCHA, L.; COSTA, H.; MACHADO, I.
From blackboard to the office: A look into how practitioners perceive software testing
education. In: Evaluation and Assessment in Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2021. (EASE 2021), p. 211–220.

MARTINS, L.; CAMPOS, D.; SANTANA, R.; JUNIOR, J.; COSTA, H.; MACHADO,
I. Hearing the voice of experts: Unveiling stack exchange communities’ knowledge of test
smells. In: IEEE/ACM 16th Int.l Conf. on Cooperative and Human Aspects of Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society, 2023. p. 80–91.

MARTINS, L.; COSTA, H.; MACHADO, I. On the diffusion of test smells and their
relationship with test code quality of java projects. Journal of Software: Evolution and
Process, Wiley Online Library, p. e2532, 2023.

MARTINS, L.; COSTA, H.; RIBEIRO, M.; PALOMBA, F.; MACHADO, I. Automating
test-specific refactoring mining: A mixed-method investigation. In: Proceedings of the
23rd IEEE Int.l Working Conf. on Source Code Analysis and Manipulation. Los Alamitos,
CA, USA: IEEE Computer Society, 2023. p. 12.

MARTINS, L.; GHALEB, T.; COSTA, H.; MACHADO, I. Curated dataset of
test-specific refactorings. Figshare, 2023. Available at: <https://figshare.com/s/
3cd337c00ba36954854e>.

MARTINS, L.; GHALEB, T.; COSTA, H.; MACHADO, I. TSR-Catalog: The Catalog
of Test Smells Refactorings. ReadTheDocs, 2023. Available at: <https://tsr-catalog.
readthedocs.io/en/latest/>.

MARTINS, L.; PONTILO, V.; COSTA, H.; PALOMBA, F.; MACHADO, I. Data Col-
lection and analysis for EMSE. 2023. Accessed on 12.07.2023. Available at: <https:
//figshare.com/s/2f1d6dc0134f5a95d745>.

MARTINS, L.; PONTILO, V.; COSTA, H.; PALOMBA, F.; MACHADO, I. Toward
Developer-Oriented Test Refactoring Recommendations Through Supervised Machine
Learning Algorithm — Online Appendix. 2023. Available at: <https://figshare.com/s/
f1bfa5fdbf1d4caf1d27>.

MCKNIGHT, P. E.; NAJAB, J. Mann-whitney u test. The Corsini encyclopedia of psy-
chology, Wiley Online Library, p. 1–1, 2010.

159

MCMINN, P. Search-based software test data generation: a survey. Software Testing,
Verification and Reliability, Wiley Online Library, v. 14, n. 2, p. 105–156, 2004.

MELO, S.; MOREIRA, V.; PASCHOAL, L. N.; SOUZA, S. Testing education: A survey
on a global scale. In: In 34th Brazilian Symposium on Software Engineering. New York,
NY, USA: ACM, 2020. p. 554–563.

MENS, T.; TOURWE, T. A survey of software refactoring. IEEE Transactions on Soft-
ware Engineering, v. 30, n. 2, p. 126–139, 2004.

MESZAROS, G. xUnit test patterns: Refactoring test code. Upper Saddle River, NJ:
Addison-Wesley, 2007. (Addison-Wesley Signature Series).

MESZAROS, G.; SMITH, S. M.; ANDREA, J. The test automation manifesto. In: MAU-
RER, F.; WELLS, D. (Ed.). Extreme Programming and Agile Methods - XP/Agile Uni-
verse 2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. p. 73–81.

MICCO, J. The state of continuous integration testing at google. 2017.

MITCHELL, T. M. Machine learning. [S.l.]: McGraw-hill, 1997.

MURPHY-HILL, E.; BLACK, A. P. Why don’t people use refactoring tools? In: Pro-
ceedings of the 1st Workshop on Refactoring Tools. [S.l.: s.n.], 2007. p. 61–62.

MURPHY-HILL, E.; PARNIN, C.; BLACK, A. P. How we refactor, and how we know
it. IEEE Transactions on Software Engineering, IEEE, v. 38, n. 1, p. 5–18, 2011.

NELDER, J. A.; WEDDERBURN, R. W. Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), Wiley Online Library, v. 135, n. 3, p. 370–384,
1972.

NEMENYI, P. B. Distribution-free multiple comparisons. [S.l.]: Princeton University,
1963.

NOBLE, W. S. What is a support vector machine? Nature biotechnology, Nature Pub-
lishing Group, v. 24, n. 12, p. 1565–1567, 2006.

OPDYKE, W. F. Refactoring Object-Oriented Frameworks. PhD Thesis (PhD Thesis) —
University of Illinois at Urbana-Champaign, USA, 1992.

O’BRIEN, R. M. A caution regarding rules of thumb for variance inflation factors. Quality
& quantity, Springer, v. 41, n. 5, p. 673–690, 2007.

PALOMBA, F.; NUCCI, D. D.; PANICHELLA, A.; OLIVETO, R.; LUCIA, A. D. On
the diffusion of test smells in automatically generated test code: An empirical study. In:
Proceedings of the 9th International Workshop on Search-Based Software Testing. New
York, NY, USA: ACM, 2016. p. 5–14.

160

PALOMBA, F.; TAMBURRI, D. A. A.; FONTANA, F. A.; OLIVETO, R.; ZAIDMAN,
A.; SEREBRENIK, A. Beyond technical aspects: How do community smells influence
the intensity of code smells? IEEE transactions on software engineering, IEEE, v. 47, p.
108–129, 2018.

PALOMBA, F.; ZAIDMAN, A.; LUCIA, A. D. Automatic test smell detection using infor-
mation retrieval techniques. In: IEEE. 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). New York, NY, USA, 2018. p. 311–322.

PANICHELLA, A.; PANICHELLA, S.; FRASER, G.; SAWANT, A. A.; HELLEN-
DOORN, V. J. Revisiting test smells in automatically generated tests: limitations, pit-
falls, and opportunities. In: IEEE. 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). New York, NY, USA, 2020. p. 523–533.

PANICHELLA, A.; PANICHELLA, S.; FRASER, G.; SAWANT, A. A.; HELLEN-
DOORN, V. J. Test smells 20 years later: Detectability, validity, and reliability. Em-
pirical Software Engineering, Springer, 2022.

PANTIUCHINA, J.; ZAMPETTI, F.; SCALABRINO, S.; PIANTADOSI, V.; OLIVETO,
R.; BAVOTA, G.; PENTA, M. D. Why developers refactor source code: A mining-based
study. ACM Trans. Softw. Eng. Methodol., Association for Computing Machinery, New
York, NY, USA, v. 29, n. 4, sep 2020. ISSN 1049-331X.

PAULA, E. A. de; BONIFÁCIO, R. Testaxe: Automatically refactoring test smells using
junit 5 features. In: SBC. Anais Estendidos do XIII Congresso Brasileiro de Software:
Teoria e Prática. [S.l.], 2022. p. 89–98.

PECORELLI, F.; CATOLINO, G.; FERRUCCI, F.; LUCIA, A. D.; PALOMBA, F.
Testing of mobile applications in the wild: A large-scale empirical study on android
apps. In: Proceedings of the 28th International Conference on Program Comprehension.
New York, NY, USA: Association for Computing Machinery, 2020. p. 296–307.

PECORELLI, F.; LILLO, G. D.; PALOMBA, F.; LUCIA, A. D. Vitrum: A plug-in for the
visualization of test-related metrics. In: Proceedings of the International Conference on
Advanced Visual Interfaces. New York, NY, USA: Association for Computing Machinery,
2020. (AVI ’20).

PECORELLI, F.; PALOMBA, F.; LUCIA, A. D. The relation of test-related factors to
software quality: a case study on apache systems. EMSE, Springer, v. 26, p. 1–42, 2021.

PENTA, M. D.; BAVOTA, G.; ZAMPETTI, F. On the relationship between refactoring
actions and bugs: a differentiated replication. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. [S.l.: s.n.], 2020. p. 556–567.

PERUMA, A.; ALMALKI, K.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.;
PALOMBA, F. On the distribution of test smells in open source android applications:

161

An exploratory study. In: Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering. USA: IBM Corp., 2019. (CASCON ’19), p.
193–202.

PERUMA, A.; ALMALKI, K.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.;
PALOMBA, F. Tsdetect: An open source test smells detection tool. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2020. (ESEC/FSE 2020), p. 1650–1654.

PERUMA, A.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.; PALOMBA, F. An
exploratory study on the refactoring of unit test files in android applications. In: IEEE.
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops. New York, NY, USA, 2020. p. 350–357.

PERUMA, A.; SIMMONS, S.; ALOMAR, E. A.; NEWMAN, C. D.; MKAOUER, M. W.;
OUNI, A. How do i refactor this? an empirical study on refactoring trends and topics in
stack overflow. Empirical Software Engineering, Springer, v. 27, n. 1, p. 1–43, 2022.

PIZZINI, A.; REINEHR, S.; MALUCELLI, A. Automatic refactoring method to remove
eager test smell. In: Proceedings of the XXI Brazilian Symposium on Software Quality.
New York, NY, USA: Association for Computing Machinery, 2023.

PIZZINI, A.; REINEHR, S.; MALUCELLI, A. Sentinel: A process for automatic remov-
ing of test smells. In: Proceedings of the XXII Brazilian Symposium on Software Quality.
New York, NY, USA: Association for Computing Machinery, 2023. (SBQS ’23), p. 80–89.
ISBN 9798400707865. Available at: <https://doi.org/10.1145/3629479.3630019>.

QUADRI, S.; FAROOQ, S. U. Software testing–goals, principles, and limitations. Inter-
national Journal of Computer Applications, International Journal of Computer Applica-
tions, New York, NY, USA, v. 6, n. 9, p. 1, 2010.

QUINLAN, J. R. Induction of decision trees. Machine learning, Springer, v. 1, n. 1, p.
81–106, 1986.

QUINLAN, J. R. C4.5: Programs for Machine Learning. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 1993. ISBN 1558602380.

QUSEF, A.; ELISH, M. O.; BINKLEY, D. An exploratory study of the relationship
between software test smells and fault-proneness. IEEE Access, IEEE, v. 7, p. 139526–
139536, 2019.

REICHHART, S.; GÎRBA, T.; DUCASSE, S. Rule-based assessment of test quality. J.
Object Technol., Citeseer, v. 6, n. 9, p. 231–251, 2007.

ROMPAEY, B. V.; BOIS, B. D.; DEMEYER, S. Characterizing the relative significance
of a test smell. In: 2006 22nd IEEE International Conference on Software Maintenance.
Philadelphia, PA, USA: IEEE, 2006. p. 391–400.

162

ROMPAEY, B. V.; BOIS, B. D.; DEMEYER, S.; RIEGER, M. On the detection of test
smells: A metrics-based approach for general fixture and eager test. IEEE Trans. Softw.
Eng., IEEE Press, New York, NY, USA, v. 33, n. 12, p. 800–817, dec 2007.

RWEMALIKA, R.; HABCHI, S.; PAPADAKIS, M.; TRAON, Y. L.; BRASSEUR, M.-C.
Smells in system user interactive tests. Empirical Software Engineering, Springer, v. 28,
n. 1, p. 20, 2023.

SAGAR, P. S.; ALOMAR, E. A.; MKAOUER, M. W.; OUNI, A.; NEWMAN, C. D.
Comparing commit messages and source code metrics for the prediction refactoring ac-
tivities. Algorithms, MDPI, v. 14, n. 10, p. 289, 2021.

SANTANA, R.; FERNANDES, D.; CAMPOS, D.; SOARES, L.; MACIEL, R.;
MACHADO, I. Understanding practitioners’ strategies to handle test smells: A multi-
method study. In: . Proceedings of the XXXV Brazilian Symposium on Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2021. (SBES
’21), p. 49–53.

SANTANA, R.; MARTINS, L.; ROCHA, L.; VIRGINIO, T.; CRUZ, A.; COSTA, H.;
MACHADO, I. Raide: A tool for assertion roulette and duplicate assert identification and
refactoring. In: Proceedings of the XXXIV Brazilian Symposium on Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2020. (SBES ’20), p. 374–
379.

SANTANA, R.; MARTINS, L.; VIRGÍNIO, T.; ROCHA, L.; COSTA, H.; MACHADO,
I. An empirical evaluation of raide: A semi-automated approach for test smells detection
and refactoring. Science of Computer Programming, Elsevier, v. 231, p. 103013, 2024.

SANTANA, R.; MARTINS, L.; VIRGíNIO, T.; SOARES, L.; COSTA, H.; MACHADO,
I. Refactoring assertion roulette and duplicate assert test smells: a controlled experiment.
In: Anais do XXV Congresso Ibero-Americano em Engenharia de Software. Porto Alegre,
RS, Brasil: SBC, 2022. p. 263–277.

SARKER, I. H.; KAYES, A.; BADSHA, S.; ALQAHTANI, H.; WATTERS, P.; NG, A.
Cybersecurity data science: an overview from machine learning perspective. Journal of
Big Data, Springer, v. 7, n. 1, p. 1–29, 2020.

SHELDON, M. R.; FILLYAW, M. J.; THOMPSON, W. D. The use and interpretation
of the friedman test in the analysis of ordinal-scale data in repeated measures designs.
Physiotherapy Research Int.l, Wiley Online Library, v. 1, n. 4, p. 221–228, 1996.

SILVA, D.; TSANTALIS, N.; VALENTE, M. T. Why we refactor? confessions of github
contributors. In: Proceedings of the 2016 24th ACM SIGSOFT Int.l Symposium on Foun-
dations of Software Engineering. New York, NY, USA: ACM, 2016. p. 858–870.

Silva Junior, N.; MARTINS, L.; ROCHA, L.; COSTA, H.; MACHADO, I. How are test
smells treated in the wild? a tale of two empirical studies. Journal of Software Engineering
Research and Development, v. 9, n. 1, p. 9:1 – 9:16, Sep. 2021.

163

Silva Junior, N.; SOARES, L. R.; MARTINS, L.; MACHADO, I. A survey on test prac-
titioners’ awareness of test smells. CoRR, abs/2003.05613, p. 1–14, 2020. Available at:
<https://arxiv.org/abs/2003.05613>.

SOARES, E.; ARANDA, M.; OLIVEIRA, N.; RIBEIRO, M.; GHEYI, R.; SOUZA, E.;
MACHADO, I.; SANTOS, A.; FONSECA, B.; BONIFÁCIO, R. Manual tests do smell!
cataloging and identifying natural language test smells. In: IEEE. 2023 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM).
[S.l.], 2023. p. 1–11.

SOARES, E.; RIBEIRO, M.; AMARAL, G.; GHEYI, R.; FERNANDES, L.; GARCIA,
A.; FONSECA, B.; SANTOS, A. Refactoring test smells: A perspective from open-source
developers. In: Proceedings of the 5th Brazilian Symposium on Systematic and Automated
Software Testing. New York, NY, USA: Association for Computing Machinery, 2020.
(SAST 20), p. 50–59.

SOARES, E.; RIBEIRO, M.; GHEYI, R.; AMARAL, G.; SANTOS, A. M. Refactoring
test smells with junit 5: Why should developers keep up-to-date. IEEE Transactions on
Software Engineering, p. 1–1, 2022.

SOBRINHO, E. V. de P.; LUCIA, A. D.; MAIA, M. de A. A systematic literature review
on bad smells–5 w’s: which, when, what, who, where. IEEE TSE, IEEE, v. 47, n. 1, p.
17–66, 2018.

SPADINI, D.; ANICHE, M.; BACCHELLI, A. Pydriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conf. and Symposium on the Foundations of Software Engineering.
New York, NY, USA: ACM, 2018. p. 908–911.

SPADINI, D.; PALOMBA, F.; ZAIDMAN, A.; BRUNTINK, M.; BACCHELLI, A. On
the relation of test smells to software code quality. In: IEEE. 2018 IEEE international
conference on software maintenance and evolution (ICSME). New York, NY, USA, 2018.
p. 1–12.

SPADINI, D.; SCHVARCBACHER, M.; OPRESCU, A.-M.; BRUNTINK, M.; BAC-
CHELLI, A. Investigating severity thresholds for test smells. In: Proceedings of the 17th
International Conference on Mining Software Repositories. New York, NY, USA: ACM,
2020. p. 311–321.

STEFANO, M. D.; PECORELLI, F.; NUCCI, D. D.; LUCIA, A. D. A preliminary evalu-
ation on the relationship among architectural and test smells. In: IEEE. 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation (SCAM).
[S.l.], 2022. p. 66–70.

TAHIR, A.; COUNSELL, S.; MACDONELL, S. G. An empirical study into the relation-
ship between class features and test smells. In: IEEE. 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC). New York, NY, USA, 2016. p. 137–144.

164

TANIGUCHI, M.; MATSUMOTO, S.; KUSUMOTO, S. Jtdog: A gradle plugin for dy-
namic test smell detection. In: Proceedings of the 36th IEEE/ACM International Confer-
ence on Automated Software Engineering. New York, NY, USA: IEEE Press, 2021. (ASE
’21), p. 1271–1275.

TEIXEIRA, T. S. R.; SILVEIRA, F. F.; GUERRA, E. M. Moving towards a mutant-
based testing tool for verifying behavior maintenance in test code refactorings. Computers,
MDPI, v. 12, n. 11, p. 230, 2023.

TEMPERO, E.; ANSLOW, C.; DIETRICH, J.; HAN, T.; LI, J.; LUMPE, M.; MELTON,
H.; NOBLE, J. The qualitas corpus: A curated collection of java code for empirical
studies. In: IEEE. 2010 Asia Pacific Software Engineering Conference. [S.l.], 2010. p.
336–345.

TERRAGNI, V.; SALZA, P.; PEZZE, M. Measuring software testability modulo test
quality. In: Proceedings of the 28th International Conference on Program Comprehension.
New York, NY, USA: ACM, 2020. p. 241–251.

TSANTALIS, N.; KETKAR, A.; DIG, D. Refactoringminer 2.0. IEEE Transactions on
Software Engineering, v. 1, n. 1, p. 1–21, 2020.

TUFANO, M.; PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LUCIA,
A. D.; POSHYVANYK, D. An empirical investigation into the nature of test smells.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2016. p. 4–15.

TUFANO, M.; PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LUCIA, A.
D.; POSHYVANYK, D. There and back again: Can you compile that snapshot? Journal
of Software: Evolution and Process, Wiley Online Library, v. 29, n. 4, p. e1838, 2017.

TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.; PENTA, M. D.; LUCIA,
A. D.; POSHYVANYK, D. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering, v. 43, n. 11, p. 1063–1088,
2017.

VIDAL, S. A.; MARCOS, C.; DÍAZ-PACE, J. A. An approach to prioritize code smells
for refactoring. Automated Software Engg., Kluwer Academic Publishers, USA, v. 23, n. 3,
p. 501–532, sep 2016. ISSN 0928-8910.

VIRGINIO, T.; MARTINS, L.; ROCHA, L.; SANTANA, R.; CRUZ, A.; COSTA, H.;
MACHADO, I. Jnose: Java test smell detector. In: Proceedings of the 34th Brazilian
Symposium on Software Engineering. New York, NY, USA: ACM, 2020. p. 564–569.

VIRGINIO, T.; MARTINS, L.; SANTANA, R.; CRUZ, A.; ROCHA, L.; COSTA, H.;
MACHADO, I. On the test smells detection: an empirical study on the jnose test ac-
curacy. Journal of Software Engineering Research and Development, v. 9, n. 1, p. 8:1 –
8:14, 2021.

165

VIRGINIO, T.; MARTINS, L. M.; SOARES, L. R.; SANTANA, R.; COSTA, H.;
MACHADO, I. An empirical study of automatically-generated tests from the perspective
of test smells. In: Proceedings of the 34th Brazilian Symposium on Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2020. (SBES ’20), p. 92–96.

VIRGINIO, T.; SANTANA, R.; MARTINS, L. M.; SOARES, L. R.; COSTA, H.;
MACHADO, I. On the influence of test smells on test coverage. In: Proceedings of the
XXXIII Brazilian Symposium on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2019. (SBES 2019), p. 467–471.

WANG, T.; GOLUBEV, Y.; SMIRNOV, O.; LI, J.; BRYKSIN, T.; AHMED, I. Pynose:
A test smell detector for python. In: Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering. New York, NY, USA: IEEE Press, 2021.
(ASE ’21), p. 593–605.

WEISSGERBER, P.; BIEGEL, B.; DIEHL, S. Making programmers aware of refactor-
ings. In: WRT. [S.l.: s.n.], 2007. p. 58–59.

WEISSGERBER, P.; DIEHL, S. Identifying refactorings from source-code changes. In:
IEEE. 21st IEEE/ACM international conference on automated software engineering
(ASE’06). [S.l.], 2006. p. 231–240.

WU, H.; YIN, R.; GAO, J.; HUANG, Z.; HUANG, H. To what extent can code quality
be improved by eliminating test smells? In: IEEE. 2022 International Conference on
Code Quality (ICCQ). New York, NY, USA, 2022. p. 19–26.

YANG, Y.; HU, X.; XIA, X.; YANG, X. The lost world: Characterizing and detecting
undiscovered test smells. ACM Transactions on Software Engineering and Methodology,
ACM New York, NY, 2023.

YEN, S.; LEE, Y. Under-sampling approaches for improving prediction of the minority
class in an imbalanced dataset. In: Intelligent Control and Automation. Berlin, Heidel-
berg: Springer, 2006. p. 731–740.

ZEISS, B.; NEUKIRCHEN, H.; GRABOWSKI, J.; EVANS, D.; BAKER, P. Refactoring
and metrics for ttcn-3 test suites. In: SPRINGER. International Workshop on System
Analysis and Modeling. Berlin, Heidelberg, 2006. p. 148–165.

ZHANG, S.; JALALI, D.; WUTTKE, J.; MUSLU, K.; LAM, W.; ERNST, M. D.;
NOTKIN, D. Empirically revisiting the test independence assumption. In: Proceedings
of the 2014 International Symposium on Software Testing and Analysis. New York, NY,
USA: Association for Computing Machinery, 2014. (ISSTA 2014), p. 385–396.

