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A 1-factorization is a partition of the edge set of a graph into perfect matchings. The
concept of 1-factorization is of great interest due to its applications in modeling sports
tournaments. Two 1-factorizations are said to be isomorphic (belong to the same iso-
morphism class) if there exists a bijection between their sets of vertices that trans-
forms one into the other. The non-isomorphic 1-factorization search space is a graph
in which each isomorphism class is represented by a vertex and each edge that con-
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which from a 1-factorization isomorphic to Fa generates a 1-factorization isomorphic
to Fb. An invariant of a 1-factorization is a property that depends only on its structure
such that isomorphic 1-factorizations are guaranteed to have equal invariant values.
An invariant is complete when any two non-isomorphic 1-factorizations have distinct
invariant values. This dissertation reviews seven invariants used to distinguish non-
isomorphic 1-factorizations of K2n (complete graph with an even number of vertices).
Additionally, considering that the invariants available in the literature are not com-
plete, we propose two new ones, denoted lantern profiles and even-size bichromatic
chains. The invariants are compared regarding their sizes and calculation time com-
plexity. Furthermore, we conduct computational experiments to assess their ability
to distinguish non-isomorphic 1-factorizations. To accomplish that we use the sets of
non-isomorphic 1-factorizations of K10 and K12, as well as the sets of non-isomorphic
perfect 1-factorizations of K14 and K16. We also consider algorithmic and computa-
tional aspects for exploring the generalized partial team swap (GPTS) neighborhood,
a neighborhood structure for round-robin sports scheduling problems recently pro-
posed in the literature. In this regard, we present algorithms for systematically ex-
ploring the GPTS neighborhood. Furthermore, a discussion is presented on how this
neighborhood structure increases the connectivity of the search space defined by non-
isomorphic 1-factorizations of K2n (for 8 ≤ 2n ≤ 12) when compared to other neigh-
borhood structures. Finally, preliminary computational experiments were conducted
to evaluate the performance of the GPTS neighborhood, having the Weighted Carry-
Over Effects Value Minimization Problem as a case study.
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RESUMO

Uma 1-fatoração é uma partição do conjunto de arestas de um grafo em emparelhamentos
perfeitos. O conceito de 1-fatoração é de grande interesse devido às suas aplicações na
modelagem de torneios esportivos. Duas 1-fatorações são ditas isomorfas (pertencem a
mesma classe de isomorfismo) se existir uma bijeção entre seus conjuntos de vértices que
transforme uma na outra. O espaço de busca de 1-fatorações não isomorfas é um grafo em
que cada classe de isomorfismo é representada por um vértice e cada aresta que conecta
os vértices Fa e Fb corresponde a um movimento em uma estrutura de vizinhança, que
a partir de uma 1-fatoração isomorfa a Fa gera uma 1-fatoração isomorfa a Fb. Uma in-
variante de uma 1-fatoração é uma propriedade que depende apenas de sua estrutura, de
modo que 1-fatorações isomorfas possuem valores de invariantes iguais. Uma invariante
é completa quando quaisquer duas 1-fatorações não isomorfas têm valores invariantes
distintos. Essa tese analisa sete invariantes utilizadas para distinguir 1-fatorações não
isomorfas de K2n (grafos completos com quantidade par de vértices). Considerando que
as invariantes disponíveis na literatura não são completas, propomos duas novas invari-
antes, denominadas lantern profiles e even-size bichromatic chains. As invariantes são
comparadas quanto aos seus tamanhos e à complexidade computacional do seu cálculo.
Além disso, realizamos experimentos computacionais para avaliar suas capacidades de dis-
tinguir 1-fatorações não isomorfas. Para tal, utilizamos os conjuntos de 1-fatorações não
isomorfas de K10 e K12, bem como os conjuntos de 1-fatorações perfeitas não isomorfas de
K14 e K16. Também consideramos aspectos algorítmicos e computacionais para explorar
a vizinhança generalized partial team swap (GPTS), uma estrutura de vizinhança para
problemas de planejamento de tabelas de torneios round-robin recentemente proposta
na literatura. Nesse sentido, apresentamos algoritmos para explorar sistematicamente a
vizinhança GPTS. Além disso, é apresentada uma discussão sobre como esta estrutura de
vizinhança aumenta a conectividade do espaço de busca definido por 1-fatorações não iso-
morfas de K2n (para 8 ≤ 2n ≤ 12) quando comparada a outras estruturas de vizinhança.
Por fim, experimentos computacionais preliminares foram conduzidos para avaliar o de-
sempenho da vizinhança GPTS, utilizando como estudo de caso o Weighted Carry-Over
Effects Value Minimization Problem.

Palavras-chave: 1-Fatorações, Teoria dos Grafos, Isomorfismo, Invariantes, Coloração
de arestas, Vizinhanças, Torneios round-robin
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ABSTRACT

A 1-factorization is a partition of the edge set of a graph into perfect matchings. The
concept of 1-factorization is of great interest due to its applications in modeling sports
tournaments. Two 1-factorizations are said to be isomorphic (belong to the same iso-
morphism class) if there exists a bijection between their sets of vertices that transforms
one into the other. The non-isomorphic 1-factorization search space is a graph in which
each isomorphism class is represented by a vertex and each edge that connects the ver-
tices Fa and Fb corresponds to a move in a neighborhood structure, which from a 1-
factorization isomorphic to Fa generates a 1-factorization isomorphic to Fb. An invariant
of a 1-factorization is a property that depends only on its structure such that isomorphic
1-factorizations are guaranteed to have equal invariant values. An invariant is complete
when any two non-isomorphic 1-factorizations have distinct invariant values. This dis-
sertation reviews seven invariants used to distinguish non-isomorphic 1-factorizations of
K2n (complete graph with an even number of vertices). Additionally, considering that
the invariants available in the literature are not complete, we propose two new ones,
denoted lantern profiles and even-size bichromatic chains. The invariants are compared
regarding their sizes and calculation time complexity. Furthermore, we conduct compu-
tational experiments to assess their ability to distinguish non-isomorphic 1-factorizations.
To accomplish that we use the sets of non-isomorphic 1-factorizations of K10 and K12,
as well as the sets of non-isomorphic perfect 1-factorizations of K14 and K16. We also
consider algorithmic and computational aspects for exploring the generalized partial team
swap (GPTS) neighborhood, a neighborhood structure for round-robin sports schedul-
ing problems recently proposed in the literature. In this regard, we present algorithms
for systematically exploring the GPTS neighborhood. Furthermore, a discussion is pre-
sented on how this neighborhood structure increases the connectivity of the search space
defined by non-isomorphic 1-factorizations of K2n (for 8 ≤ 2n ≤ 12) when compared
to other neighborhood structures. Finally, preliminary computational experiments were
conducted to evaluate the performance of the GPTS neighborhood, having the Weighted
Carry-Over Effects Value Minimization Problem as a case study.

Keywords: 1-factorizations, Graph Theory, Isomorphism, Invariants, Edge coloring,
Neighborhoods, Round-robin tournaments
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Chapter

1
INTRODUCTION

1.1 MOTIVATION

A 1-factorization is a partition of the edge set of a graph into perfect matchings Two
1-factorizations are said to be isomorphic if there exists a bijection between their sets
of vertices that transforms one into the other. The concept of 1-factorization is of great
interest due to its applications in modeling sports tournaments. Several sports tourna-
ments involving 2n teams are organized as Single Round-Robin (SRR) tournaments. It
is natural to model such a tournament as a 1-factorization of K2n (complete graph with
an even number of vertices), with each vertex representing a team and each edge repre-
senting the game between the teams corresponding to its endpoints. Therefore, advances
in the 1-factorization research area can influence the planning of sporting events in the
future.

To tackle optimization problems in the context of SRR, search procedures (such
as local search and explicit or implicit enumeration) are often used to explore the 1-
factorizations of K2n. Different neighborhood structures have been used in local search
procedures for SRR tournament scheduling problems. The Generalized Partial Team
Swap (GPTS) neighborhood was introduced by Januario et al. (2016). As pointed out
by Ribeiro, Urrutia and de Werra (2023), due to the size and complex structure of GPTS
neighborhood, it might be hard to design algorithms that systematically explore this
neighborhood. Considering this and taking into account the lack of study regarding algo-
rithmic and computational aspects of the GPTS neighborhood, it is necessary to design
strategies to explore this neighborhood.

It is known that these neighborhood structures used in local search procedures may get
stuck into a portion of the search space corresponding to 1-factorizations with the same
structure (Costa; Urrutia; Ribeiro, 2012; Januario; Urrutia, 2015). Thus, identifying
the isomorphism between two 1-factorizations becomes an important matter. Invariants
can be used to distinguish between non-isomorphic 1-factorizations of K2n. An invariant
is complete when any two non-isomorphic 1-factorizations have distinct invariant values.
There are several invariants for 1-factorizations of K2n described in the literature, such as
cycle profiles (Gelling, 1973), tricolor vectors (Griggs; Rosa, 1996), divisions (Mendelsohn;
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Rosa, 1985), and trains (Dinitz; Wallis, 1991). Given that the invariants available in the
literature are not complete and the research area related to the search for invariants to
increase the capacity of distinction remains open, new ones can be proposed.

1.2 OBJECTIVES AND CONTRIBUTIONS

The main objectives of this dissertation are to propose new invariants for 1-factorizations
of K2n and present algorithms for systematically exploring the GPTS neighborhood struc-
ture, proposed by Januario et al. (2016).

In order to achieve the first objective, two new invariants will be proposed, and their
capacities to distinguishing non-isomorphic 1-factorizations of K2n will be analyzed. Fur-
thermore, it is necessary to compare these invariants with other invariants available in the
literature. For that purpose, we aim to evaluate the invariants’ distinguish capacity on
different sets of non-isomorphic 1-factorizations of K2n. Besides, different combinations
of the invariants must be analyzed to assess their complementarity.

Regarding the second objective, it is necessary to propose and develop efficient strate-
gies for obtaining neighbors in this neighborhood. Additionally, it is important to investi-
gate the connectivity of the GPTS neighborhood structure. This investigation will address
whether the GPTS neighborhood structure increases the connectivity of the search space
defined by non-isomorphic 1-factorizations of K2n when compared to other neighborhood
structures.

The first contribution of this dissertation is a review of invariants used to distinguish
non-isomorphic 1-factorizations of K2n. Additionally, considering that these invariants are
not complete, we propose two new ones, denoted lantern profiles and even-size bichro-
matic chains. The invariants are compared regarding their sizes and calculation time
complexity. Furthermore, we conduct computational experiments to assess their ability
to distinguish non-isomorphic 1-factorizations. To accomplish that we use the sets of
non-isomorphic 1-factorizations of K10 and K12, as well as subsets of the non-isomorphic
1-factorizations of K14 and K16. Moreover, computational results show that four of the
invariants (including the two proposed invariants) have shown to be much stronger than
the others when considering the sets of non-isomorphic 1-factorizations of K12 tested.
Last but not least, the combinations of invariants were also evaluated, showing a com-
plementarity in their distinguishing abilities.

Regarding the GPTS neighborhood structure, the main contribution is to present
algorithms to systematically explore this neighborhood. Additionally, this dissertation
presents two strategies for obtaining neighbors in the GPTS neighborhood. An additional
contribution is a study on algorithmic and computational aspects of the GPTS neighbor-
hood. Furthermore, this work provides a discussion on how this neighborhood structure
increases the connectivity of the search space defined by non-isomorphic 1-factorizations
of K2n (for 8 ≤ 2n ≤ 12) when compared to other neighborhood structures. We show
that the GPTS is able to directly connect more pairs of non-isomorphic 1- factorizations
of both K8 and K10. Additionally, the GPTS is the only one capable of connecting the
non-isomorphic 1-factorization search space of K12. Finally, we present preliminary com-
putational experiments that were conducted to evaluate the performance of the GPTS,
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having the Weighted Carry-Over Effects Value (WCOEV) Minimization Problem as a
case study.

1.3 ELEMENTS OF GRAPH THEORY

This subsection describes the definitions of graph theory that are being used in this
work. Let G = (V,E) be a simple and undirected graph with vertex set V and edge set
E ⊂ V × V . If V ′ ⊆ V and E ′ ⊆ E, then G′ = (V ′, E ′) is a subgraph of G = (V,E). Two
vertices u, v joined by an edge e = uv are said to be adjacent, or neighbors, and that edge
is said to be incident to u and v. The set of neighbors of a vertex v in G is denoted by
N(v), also called the neighborhood of v. The degree d(v) of a vertex v is the number of
edges incident to it. The number ∆(G) = max{d(v) : v ∈ V } is the maximum degree of
a vertex in G.

A chain in a simple graph is a sequence of adjacent edges that allow linking two
vertices in the graph. A graph is connected if, for any pair of vertices, there is a chain
linking them. The length k of a chain is given by its number of edges. An even-size chain
is a chain of even length. A chain of length k is called a k-chain. If P = (v1, . . . , vk−1)
is a chain and k ≥ 3, then C = P · (v1) = (v1, . . . , vk−1, v1) is called a cycle. A cycle of
length k is called a k-cycle. A Hamiltonian Cycle (HC) is a cycle going through every
vertex of the graph.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there exists a bijective
function φ from VG to VH such that xy ∈ EG if and only if φ(x)φ(y) ∈ EH . Informally,
graphs G and H are isomorphic if it is possible to obtain H from G (and vice versa) just
by renaming its vertices.

A 1-factorization of G is a partition of E into perfect matchings. Each one of these
matchings is called a 1-factor of the 1-factorization. Figure 1.1 depicts a 1-factorization of
K4. Notice that not every graph has a 1-factorization. For instance, graphs with an odd
number of vertices do not have perfect matchings and, thus, cannot have 1-factorizations.
Complete graphs K2n do have 1-factorizations. The union of any two 1-factors of a given
1-factorization is a 2-regular graph consisting of a set of even-size cycles. A 1-factorization
is said to be perfect if the union of any two of its 1-factors forms a HC.

Two 1-factorizations F = {F1, . . . , Fk} and H = {H1, . . . , Hk} of G are called isomor-
phic if there exists a bijective function φ from the node set V of G onto itself such that
{Fφ

1 , . . . , F
φ
k } = {H1, . . . , Hk}, where Fφ

i is the set of all edges φ(x)φ(y) and xy is an
edge in Fi. We say that two isomorphic 1-factorizations belong to the same isomorphism
class (or equivalence class).

A proper edge coloring of a graph G is a mapping c : E → C so that c(ei) ̸= c(ej)
for any adjacent edges ei and ej, where the elements of C are the available colors. A k-
coloring is a proper edge coloring using k colors. Notice that a 1-factorization provides a
proper edge coloring of a graph by associating a color to each 1-factor. This is illustrated
in Figure 1.1 for a 1-factorization of K4, in which the edges colored with red, green, and
blue, belong, respectively, to the 1-factors F1, F2, and F3. A color α is incident to vertices
u and v if the edge e = uv has that color. A bichromatic chain is a chain in which its
edges are alternately colored with two different colors.
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v1 v2

v3 v4

F1

F1

F2 F2F3

F3

Figure 1.1: A 1-factorization F = {F1, F2, F3} of K4, with F1 = {v1v2, v3v4}, F2 =
{v1v3, v2v4}, and F3 = {v1v4, v2v3}.

The concept of isomorphic 1-factorizations can also be extended to isomorphic col-
orings, therefore two colorings are said to be isomorphic if, and only if, their associated
1-factorizations are isomorphic. In the remainder of this work, for the sake of simplic-
ity, we denote proper edge coloring by simply edge coloring or coloring, unless stated
otherwise.

1.3.1 1-factorizations and 1-factorization isomorphism

This subsection reviews some of the literature on 1-factorization isomorphism.
Different works are concerned with the computation of the largest possible set of non-

isomorphic 1-factorizations of complete graphs. It is known that this task has a high
computational cost since the number of non-isomorphic 1-factorizations of K2n increases
very fast with n. Dinitz, Garnick and McKay (1994) state that the computation of all
non-isomorphic 1-factorizations of K12 would require over 160 MIPS-years of CPU time
(which is equivalent to 160 years on a computer running at 1 million instructions per
second) on a single computer.

Regarding the number of 1-factorizations, there is a unique 1-factorization of K4,
six of K6, and 6, 240 of K8 (Wallis, 2007). There are 1, 255, 566, 720 1-factorizations of
K10 (Gelling, 1973), 252, 282, 619, 805, 368, 320 of K12 (Dinitz; Garnick; McKay, 1994),
and 98, 758, 655, 816, 833, 727, 741, 338, 583, 040 of K14 (Kaski; Östergård, 2009). Never-
theless, the number of isomorphism classes of 1-factorizations for such complete graphs
can be much smaller. There is a unique isomorphism class of 1-factorizations for K4 and
K6, six for K8 (Dickson; Safford, 1906), 396 for K10 (Gelling; Odeh, 1974), 526, 915, 620
for K12 (Dinitz; Garnick; McKay, 1994), and 1, 132, 835, 421, 602, 062, 347 for K14 (Kaski;
Östergård, 2009).

Among the studies on the number of non-isomorphic Perfect 1-factorizations (P1Fs),
the ones conducted in Petrenyuk and Petrenyuk (1980), Dinitz and Garnick (1996),
Meszka (2020), and Gill and Wanless (2020) stand out for the graphs K12, K14, and
K16. The reported results indicate that the numbers of isomorphism classes of P1Fs are
5 for K12, 23 for K14, and 3, 155 for K16. In addition, for 4 ≤ 2n ≤ 10 there is a unique
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perfect 1-factorization of K2n. A recent survey on P1Fs can be found in Rosa (2019).
A survey (Mendelsohn; Rosa, 1985) and an entire book (Wallis, 1997) were devoted

exclusively to 1-factorizations.

1.4 TEXT ORGANIZATION

The remainder of this dissertation is organized as follows. Chapter 2 reviews and de-
tails seven invariants available in the literature and proposes two new ones For all the
nine invariants presented, we analyzed their size and computational complexity. Fur-
thermore, we conduct computational experiments to assess their ability to distinguish
non-isomorphic 1-factorizations. Chapter 3 discusses the algorithmic and computational
aspects of the GPTS neighborhood and presents algorithms to systematically explore the
GPTS neighborhood. This chapter also presents some computational experimental analy-
ses that were carried out in order to compare the GPTS neighborhood structure to other
neighborhood structures. Chapter 4 presents some concluding remarks and discusses
possible research directions.





Chapter

2
A TUTORIAL ON INVARIANTS FOR

1-FACTORIZATIONS OF K2n: DESCRIPTION AND
COMPUTATION

Invariants are widely used in situations in which one wants to quickly verify whether
two structures are non-isomorphic. In particular, invariants are needed to speed up
classification algorithms. For instance, if the invariant values of two objects are different,
then no further tests are needed to determine that they are structurally different. An
invariant of a 1-factorization is a property that depends only on its structure such that
isomorphic 1-factorizations are guaranteed to have equal invariant values. As such, non-
isomorphic 1-factorizations may or may not have different invariant values. An invariant
is complete when any two non-isomorphic 1-factorizations have distinct invariant values.

This chapter reviews seven invariants used to distinguish non-isomorphic 1-factoriza-
tions of K2n (complete graphs with an even number of vertices). Additionally, considering
that the invariants available in the literature are not complete, we propose two new ones,
denoted lantern profiles and even-size bichromatic chains. The invariants are compared
regarding their sizes and calculation time complexity. Furthermore, we conduct compu-
tational experiments to assess their ability to distinguish non-isomorphic 1-factorizations.
To accomplish that we use the sets of non-isomorphic 1-factorizations of K10 and K12,
as well as the sets of non-isomorphic Perfect 1-factorizations (P1Fs) of K14 and K16.
Moreover, the experiments evaluate the combination of some of the invariants.

2.1 BASIC DEFINITIONS

A mapping I : G → Rm that extracts properties from a graph and maps them to an
m-dimensional vector is an invariant if it assigns equal values to isomorphic graphs, and
we say that this invariant has size m. Given the graphs G1 and G2, if G1 is isomorphic to
G2, then I(G1) = I(G2). In case I(G1) = I(G2) if only if G1 and G2 are isomorphic, then
the invariant is said to be complete. In other words, if G1 and G2 are not isomorphic and
I is a complete invariant, then I(G1) ̸= I(G2). Consider the two graphs illustrated in

7
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Figure 2.1. Both have the same number of vertices and edges. Thus, a simple invariant
that considers only these properties cannot distinguish between them. However, when
considering the sorted degree distributions at their vertices, we can define a new invariant
capable of distinguishing such graphs. It is much more efficient to test for isomorphism by
checking the invariant values instead of checking for all possible isomorphism functions.

(a) Graph G1.

1

2 4

3

(b) Graph G2.

a

b c

d

Figure 2.1: The graph G1 (on the left) and the graph G2 (on the right) have the same
number of vertices and edges. Therefore, an invariant based on those values would not
be able to distinguish them. By considering an invariant based on their sorted degree
distributions, i.e., I(G1) = (2, 2, 2, 2) and I(G2) = (1, 2, 2, 3), we can assert that they are
not isomorphic since their invariant values are different.

Two isomorphic 1-factorizations belong to the same isomorphism class (or equivalence
class). For instance, there are 6, 240 distinct 1-factorizations of K8, but they can be
classified into only six isomorphism classes. Figure 2.2 illustrates two isomorphic 1-
factorizations of K8. Table 2.1 presents six non-isomorphic 1-factorizations of K8, each
representing its isomorphism class.

(a) 1-factorization F of K8.

1

2

3 4

5

6

78

(b) 1-factorization H of K8.

4

5

3 1

2

8

76

Figure 2.2: Examples of isomorphic 1-factorizations of K8. The seven 1-factors of each
1-factorization are characterized by different colors. H (on the right) can be obtained
from F (on the left) with the function φ defined as follows: φ(1) = 4, φ(2) = 5, φ(3) = 3,
φ(4) = 1, φ(5) = 2, φ(6) = 8, φ(7) = 7, and φ(8) = 6.

The concept of invariant can be extended to 1-factorizations. A mapping If : F → Rm

that extracts properties of a 1-factorization and maps them to an m-dimensional vector is
a 1-factorization invariant if it assigns equal values to isomorphic 1-factorizations. This
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means that, given the 1-factorizations F1 and F2, if F1 is isomorphic to F2, then If (F1) =
If (F2). In case If (F1) = If (F2) only if F1 and F2 are isomorphic, then the invariant is
said to be complete. The strength of an invariant is defined as the number of isomorphism
classes identified in a set of non-isomorphic 1-factorizations, which is determined by the
quantity of distinct invariant values for the non-isomorphic 1-factorizations in this set.

Table 2.1: Six non-isomorphic 1-factorizations of K8. Each 8-digit block represents a
1-factor. For instance, 12345678 represents the 1-factor {12, 34, 56, 78}.

F1 F2 F3 F4 F5 F6 F7

F0 12345678 13245768 14235867 15263748 16253847 17283546 18273645
F1 12345678 13245768 14235867 15263748 16253847 17283645 18273546
F2 12345678 13245768 14235867 15273648 16283745 17253846 18263547
F3 12345678 13245768 14235867 15273846 16283745 17253648 18263547
F4 12345678 13245768 14253867 15273648 16283745 17234658 18263547
F5 12345678 13254768 14273658 15283746 16234857 17263845 18243567

2.2 CONTRIBUTIONS AND ORGANIZATION

In this chapter, we concentrate on ways to distinguish between non-isomorphic 1-factoriza-
tions of K2n. First, we review the invariants available in the literature. Second, we
propose two new invariants. Last but not least, computational results are performed
to evaluate the strength of the described invariants. The tests analyze their capacity
to distinguish non-isomorphic 1-factorizations. For that purpose, we consider the sets
of 1-factorizations of K10 and K12, as well as the sets of P1Fs of K14 and K16. Differ-
ent combinations of the invariants are also analyzed to evaluate their complementarity.
Finally, we considered randomly generated 1-factorizations of K16 and K20.

The remainder of this chapter is organized as follows. Section 2.3 reviews the related
literature. Section 2.4 details seven invariants for 1-factorizations from the literature. Sec-
tion 2.5 proposes two new invariants: lantern profiles and even-size bichromatic chains.
Section 2.6 summarizes the computational experiments. Section 2.7 discusses some con-
cluding remarks.

2.3 RELATED WORKS

This section reviews some of the literature on graph isomorphism and invariants.
Graph isomorphism as a computational problem first appeared in the chemistry lit-

erature of the 1950s as the problem of matching a molecular graph against a database
of such graphs (Grohe; Schweitzer, 2020). The question of whether graph isomorphism
is solvable in polynomial time remains open. However, polynomial algorithms are known
for testing the isomorphism of many classes of graphs. Additionally, it is claimed that
the general graph isomorphism problem can be solved in quasipolynomial time (Babai,
2015; Babai, 2016; Helfgott; Bajpai; Dona, 2017). Subgraph isomorphism, on the other
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hand, is long known to be NP-complete (Garey; Johnson, 1979). Although an efficient
algorithm for the graph isomorphism problem is not known, there are software available
that can be executed in low computational times in practice for certain graphs. McKay
and Piperno (2014) lists various software for isomorphism testing.

There are several invariants for graphs (Brigham; Dutton, 1985), some of which are
trivial as the number of vertices and edges. Other examples are the maximum, minimum,
and average degrees, connectivity, chromatic number, chromatic index, and the existence
of a cycle. Although these invariants are not complete, based on them, we can construct
invariants that can be used to distinguish non-isomorphic 1-factorizations of K2n.

2.4 EXISTING INVARIANTS FOR 1-FACTORIZATIONS

In this section, we detail seven invariants for 1-factorizations described in the literature:
cycle profiles (Gelling, 1973), tricolor vectors (Griggs; Rosa, 1996), divisions (Wallis,
1973; Wallis, 1997), trains (Dinitz; Wallis, 1991), and the three invariants proposed
in Gill and Wanless (2020), denoted by trains-path, row-cycles, and row-cycles-per-row.
To illustrate how each invariant works, we will use the six non-isomorphic 1-factorizations
of K8 presented in Table 2.1.

2.4.1 Cycle profiles

Given a 1-factorization F , let c(v, Fi, Fj) be the cycle size containing the vertex v ∈ V
in the subgraph formed by the two 1-factors Fi and Fj. Moreover, let ck(v) = |{(i, j) :
c(v, Fi, Fj) = k, 1 ≤ i < j ≤ 2n − 1}| be the number of k-cycles containing the vertex
v ∈ V considering any pair of distinct 1-factors. Given a 1-factorization F and an integer
k, 4 ≤ k ≤ 2n, the cycle profiles invariant (Gelling, 1973) is defined as the sorted sequence
(ck(vπk(1)), ck(vπk(2)), . . . , ck(vπk(2n))), where vπk(ℓ) is the vertex participating in the ℓth

largest number of k-cycles. In this work, we consider the cycle profiles invariant, which
we denote by Icpf (F), to be the vector formed from the concatenation of the sequences for
all the relevant values of k. Consequently, if two 1-factorizations have distinct sequences,
they are not isomorphic. Notice that this invariant has size Θ(n2). Furthermore, observe
that cycle profiles does not distinguish between P1Fs since for any vertex and pair of
1-factors, k = 2n is the only possible value.

Table 2.2 shows that cycle profiles is a complete invariant for the 1-factorizations of K8,
as the values for the six considered non-isomorphic 1-factorizations are pairwise different.
Notice that for the graph K8, the size of any cycle formed by two 1-factors will be either
four or eight. Thus, the choice for the parameter k is restricted to k ∈ {4, 8}. Moreover,
each vertex belongs to the same number of cycles of size k in every 1-factorization of K8

for both values of k.

Proposition 2.1. The cycle profiles invariant for a given 1-factorization can be computed
in O(n3).

Proof. Consider that each 1-factor is represented by adjacency lists. A traversal on the
union of each pair of distinct 1-factors (Fi, Fj), with i < j, can thus be performed in O(n)
to obtain all the disjoint cycles. After obtaining each cycle, it can be traversed, and the
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Table 2.2: Cycle profiles invariant values for the six non-isomorphic 1-factorizations of
K8. The value of ck(v) is the same for every v ∈ V (K8).

4-cycles: sorted c4(v) values 8-cycles: sorted c8(v) values
Icpf (F0) 21 21 21 21 21 21 21 21 0 0 0 0 0 0 0 0
Icpf (F1) 13 13 13 13 13 13 13 13 8 8 8 8 8 8 8 8
Icpf (F2) 7 7 7 7 7 7 7 7 14 14 14 14 14 14 14 14
Icpf (F3) 9 9 9 9 9 9 9 9 12 12 12 12 12 12 12 12
Icpf (F4) 3 3 3 3 3 3 3 3 18 18 18 18 18 18 18 18
Icpf (F5) 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21

value of c(v, Fi, Fj) can be set for every vertex v contained in it, which can be done in
O(n) for all the cycles. Thus, we have O(n2)×O(n), resulting in O(n3).

2.4.2 Tricolor vectors

Given a 1-factorization F and three distinct vertices, the edges between them belong to
exactly three distinct 1-factors. Denote this property by T (u, v, w) = {Fi, Fj, Fk} where
u, v, and w are the vertices and Fi, Fj, and Fk are the corresponding 1-factors. Let
N(Fi, Fj, Fk) = |{(u, v, w) : 1 ≤ u < v < w ≤ 2n, T (u, v, w) = {Fi, Fj, Fk}}| be the num-
ber of unordered triples of distinct vertices {u, v, w} such that T (u, v, w) = {Fi, Fj, Fk}.
The tricolor vectors invariant (Griggs; Rosa, 1996) of a 1-factorization, which we denote
by I tvf (F), is defined as the vector corresponding to the sequence (T0, T1, . . . , T2n), where
Tq is the number of triples {Fi, Fj, Fk} such that N(Fi, Fj, Fk) = q. The first element T0
is called the tricolor number (Wallis, 1997). Notice that the maximum number of times a
given set of three 1-factors may be the image of the function T is limited by the number
of vertices 2n. To see this observe that, in the 3-regular graph formed by three specific
1-factors, a given vertex may be part of at most

(
3
2

)
= 3 triangles. The result follows

since each triangle is composed of three distinct vertices. Notice that this invariant has
size Θ(n).

Table 2.3 presents each one of the tricolor vectors of the six non-isomorphic 1-factoriza-
tions of K8. Observe that tricolor vectors is complete for the 1-factorizations of K8.

Table 2.3: Tricolor vectors invariant for for the six non-isomorphic 1-factorizations of K8.

T0 T1 T2 T3 T4 T5 T6 T7 T8
Itvf (F0) 28 0 0 0 0 0 0 0 7
Itvf (F1) 24 0 0 0 8 0 0 0 3
Itvf (F2) 18 0 8 0 8 0 0 0 1
Itvf (F3) 22 0 0 0 12 0 0 0 1
Itvf (F4) 9 8 12 0 6 0 0 0 0
Itvf (F5) 0 14 21 0 0 0 0 0 0
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Proposition 2.2. The tricolor vectors invariant for a given 1-factorization can be com-
puted in O(n3).

Proof. Consider the 1-factorization represented as an adjacency matrix with each element
indicating the 1-factor in which each pair of vertices is adjacent. For each vertex u ∈ V ,
we consider all the pairs (v, w) of vertices in V \ u, with v ̸= v′. Let Fi, Fj, and Fk be
the 1-factors of the edges uv, vw, and wu, respectively. We just have to account this
triangle towards the value N(Fi, Fj, Fk). This can be done in O(n2) for each vertex,
implying O(n3) for all the vertices. Notice that the value of each N(Fi, Fj, Fk) must be
divided by three since each triangle will be found three times, once from each one of its
vertices. Given the values of N(Fi, Fj, Fk) for every triplet {Fi, Fj, Fk}, we now compute
the invariant using counting in O(n3).

2.4.3 Divisions

Given a 1-factorization F , a d-division is a set of d 1-factors whose union is disconnected.
A d-division is considered maximal if it is not contained in a (d + 1)-division, i.e., any
1-factor added to this d-division will make their union connected. As an example, for
d = 2, taking Fi and Fj as two 1-factors of a 1-factorization, their union will have at least
one cycle. If the subgraph induced by the union of these two 1-factors has more than one
cycle, we have a 2-division. Let the value αd(F) be the number of maximal d-divisions in
the 1-factorization F . The divisions invariant (Mendelsohn; Rosa, 1985; Wallis, 1997),
which we denote by Idf (F), is given by the vector formed by the values αd for all the
possible d. Observe that the divisions value for P1Fs is always zero as the union of any
two 1-factors is a Hamiltonian Cycle (HC).

Table 2.4 shows the divisions invariant values for the six non-isomorphic 1-factorizations
of K8. The table also provides the maximal divisions corresponding to those values. No-
tice that the 1-factorization F2 of K8 has a unique maximal 3-division = {{F1, F2, F3}}
and four 2-divisions = {{F3, F4}, {F3, F6} , {F4, F6}, {F5, F7}}. Except for F1 ∪ F2,
F1 ∪ F3, F2 ∪ F3, and each one of the four combinations that form a maximal 2-division,
the remaining 14 combinations of two 1-factors of F2 from K8 form a HC. Notice that
divisions is a complete invariant for the 1-factorizations of K8.

Proposition 2.3. The divisions invariant for a given 1-factorization can be computed in
O(nd × nd).

Proof. Observe that there are
(
2n
d

)
= O(nd) combinations of d 1-factors. For each one of

these combinations, connectivity can be evaluated in O(nd). Thus, all the calculations
can be performed in O(nd × nd). This leads to O(nd+1) whenever d is a constant.

2.4.4 Trains

Given a 1-factorization F , its associated train graph T (F) is a directed graph with n(2n−
1)2 vertices in which each vertex is a triple {u, v, F}, where {u, v} is an unordered pair
of vertices and F is a 1-factor of F . In a T (F), exactly one arc leaves from each vertex,
and the direction of each arc is determined as follows:
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(i) a loop at the vertex {u, v, Fi}, if uv ∈ Fi;

(ii) an arc from the vertex {u, v, Fi} to {w, z, Fj}, if uw ∈ Fi, vz ∈ Fi and uv ∈ Fj.

Figure 2.3 illustrates the train graph associated with the 1-factorization of K4 depicted
in Figure 1.1.

Table 2.4: Divisions invariant for the six non-isomorphic 1-factorizations of K8 (Adapted
from (Wallis, 2007)).

α3 α2 3-division maximal 2-division maximal

Idf (F0) 7 0 {F1, F2, F3}, {F1, F4, F5}, {F1, F6, F7},
{F2, F4, F6}, {F2, F5, F7}, {F3, F4, F7},
{F3, F5, F6}

Idf (F1) 3 4 {F1, F2, F3}, {F1, F4, F5}, {F1, F6, F7} {F2, F4}, {F2, F5}, {F3, F4}, {F3, F5}
Idf (F2) 1 4 {F1, F2, F3} {F3, F4}, {F3, F6}, {F4, F6}, {F5, F7}
Idf (F3) 1 6 {F1, F2, F3} {F4, F5}, {F4, F6}, {F4, F7}, {F5, F6},

{F5, F7}, {F6, F7}
Idf (F4) 0 3 {F1, F2}, {F3, F6}, {F5, F7}
Idf (F5) 0 0

v3, v4, F2 v3, v4, F3

v1, v2, F1

v2, v4, F1 v2, v4, F3

v1, v3, F2

v2, v3, F1 v2, v3, F2

v1, v4, F3

v1, v2, F2 v1, v2, F3

v3, v4, F1

v1, v3, F1 v1, v3, F3

v2, v4, F2

v1, v4, F1 v1, v4, F2

v2, v3, F3

Figure 2.3: A train graph obtained from the K4 in Figure 1.1.

Two isomorphic 1-factorizations have isomorphic associated train graphs. However,
whether verifying the isomorphism of train graphs can be solved in polynomial time is
unknown. The simplified trains invariant (Dinitz; Wallis, 1991) is based on the sequence
of indegrees of the vertices in the train graph. Thus, for a given 1-factorization F ,
let (t0, t1, . . . , tℓmax) be a sequence, where tℓ is equal to the number of vertices in T (F)
that have ℓ input arcs, with ℓmax defining the index of the last nonzero element. The
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trains invariant, which we denote by I tf (F), is defined as the vector corresponding to the
sequence (t0, t1, . . . , tℓmax). Dinitz and Wallis (1991) showed that ℓmax ≤ 2n−1 and, thus,
the invariant has size Θ(n). The trains invariant associated with the 1-factorization of K4

depicted in Figure 1.1, whose train graph is provided in Figure 2.3, is given by (12, 0, 0, 6).
This means that twelve vertices have an indegree equal to zero, and six vertices have an
indegree equal to three.

Table 2.5 shows the simplified trains invariant values for the six non-isomorphic 1-
factorizations of K8. It shows that trains is complete for K8.

Table 2.5: Trains invariant values for the six non-isomorphic 1-factorizations of K8.

t0 t1 t2 t3 t4 t5 t6 t7

Itf (F0) 168 0 0 0 0 0 0 28
Itf (F1) 144 0 16 8 8 16 0 4
Itf (F2) 112 16 36 24 4 4 0 0
Itf (F3) 108 48 0 12 28 0 0 0
Itf (F4) 72 64 48 12 0 0 0 0
Itf (F5) 42 112 42 0 0 0 0 0

Proposition 2.4. The simplified trains invariant for a given 1-factorization can be com-
puted in O(n3).

Proof. Assume that each 1-factor is represented by adjacency lists. In addition, assume
an adjacency matrix is available with each element indicating the 1-factor in which each
pair of vertices is adjacent. For each combination of pair of vertices and 1-factor {u, v, F}
forming a vertex of the trains graph, the outgoing arc must be computed. The destination
of this arc can be computed in constant time by using the adjacency matrix to determine
the 1-factor where the edge [u, v] is and the adjacency lists to consult the vertices that
are adjacent to them in F . After computing the indegree of each vertex in O(n3), the
invariant can be computed by using counting sort to determine the number of vertices
with each possible indegree in O(n3).

2.4.5 Trains-path

For each vertex {u, v, Fi} of the train graph (see Section 2.4.4), define p({u, v, Fi}) as the
length of the shortest directed path from {u, v, Fi} to any vertex {w, z, Fj} belonging to
a directed cycle. Notice that if {u, v, Fi} itself is in a cycle then p({u, v, Fi}) = 0. Given
a 1-factorization F , the trains-path invariant (Gill; Wanless, 2020), which we denote by
I tpf (F), is defined as the vector (p0, p1, . . . , pℓmax), where pℓ is the number of vertices in
T (F) that have p(u, v, F ) = ℓ. Notice that trains-path has size O(n3). For the train
graph in Figure 2.3, the value of the invariant is obtained from (p0, p1) = (6, 12). This
is because the six vertices that are in a cycle (they have a loop) have p(u, v, F ) = 0,
while the other twelve vertices have p(u, v, F ) = 1. Table 2.6 presents the value of the
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trains-path invariant for each one of the six non-isomorphic 1-factorizations of K8. It
shows that, like the previous invariants, trains-path is complete for K8.

Table 2.6: The trains-path invariant values for the six non-isomorphic 1-factorizations of
K8.

p0 p1 p2 p3 p4 p5

Itpf (F0) 28 168 0 0 0 0
Itpf (F1) 28 104 64 0 0 0
Itpf (F2) 28 56 80 32 0 0
Itpf (F3) 28 72 96 0 0 0
Itpf (F4) 28 24 48 48 24 24
Itpf (F5) 154 42 0 0 0 0

Proposition 2.5. The trains-path invariant for a given 1-factorization can be computed
in O(n3).

Proof. Recall that the trains graph has O(n3) vertices and arcs. Besides, every vertex
has an outdegree one. The value p({u, v, F}) for all the vertices of the train can be
computed with a DFS traversal of the trains graph as follows. Starting from an unvisited
vertex, the search recursively visits its successor. Whenever a directed cycle is found,
the search starts traversing the path backward, labeling the vertices in the cycle and
setting their p({u, v, F}) values to 0. Besides, for the remaining vertices in the current
DFS-tree (that is, in fact, a path) that are not in the cycle, the p({u, v, F}) values are
determined by adding one unit to that of its DFS-tree descendant stopping in the original
unvisited vertex. Then the search continues from another unvisited vertex if there is any.
Whenever the traversal reaches a vertex that was already visited before, the search starts
to traverse the path backward, setting the value p({u, v, F}) as the value of its successor
plus one. Recall that the construction of the trains graph takes O(n3). Thus, as the DFS
traversal on the trains graph can be performed in linear time on the size of the graph,
that is O(n3), the whole procedure takes O(n3).

We remark that Proposition 2.5 answers a question of the authors in Gill and Wanless
(2020), that claimed that trains-path could not be obviously computed in cubic time.

2.4.6 Row-cycles and row-cycles-per-row

A Latin square of order m is an m ×m array containing m different symbols such that
each symbol occurs exactly once in each line and column of the array. A Latin Square L
is said to be symmetric if L(i, j) = L(j, i) for all 1 ≤ i, j ≤ m and is said to be unipotent
if L(i, i) = a for all 1 ≤ i ≤ m and some value a. A symmetric and unipotent Latin
square provides a natural way to describe a 1-factorization F , and it is denoted by U(F ).
The element L(u, v) of a symmetric and unipotent Latin square determines the 1-factor
containing the edge uv.
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A Latin rectangle of L is a matrix in which each symbol occurs exactly once in each
row and at most once in each column. A Latin subrectangle is a submatrix that is a
Latin rectangle. If R is a 2 × l-Latin subrectangle of L, and R is minimal in that it
does not contain any 2 × l′-Latin subrectangle for 2 ≤ l′ < l, then, we say that R is a
row cycle of length l in L (Wanless, 2004; Gill; Wanless, 2020). Table 2.7 shows two
Latin subrectangles from U(F2) of K8. The cells that are double underlined form a 2× 2
Latin subrectangle, i.e., a row cycle of length two. On the other hand, the cells that are
underlined form a 2× 6 Latin subrectangle, i.e., a row cycle of length six.

The last two invariants from Gill and Wanless (2020) are based on the row cycles of
a U(F), which were used to modify 1-factorizations in Kaski et al. (2014). We will refer
to these two invariants as row-cycles and row-cycles-per-row.

Table 2.7: Symmetric unipotent Latin square corresponding to 1-factorization F2 of K8.

· 1 2 3 4 5 6 7
1 · 3 2 6 7 4 5
2 3 · 1 7 4 5 6
3 2 1 · 5 6 7 4
4 6 7 5 · 1 2 3
5 7 4 6 1 · 3 2
6 4 5 7 2 3 · 1
7 5 6 4 3 2 1 ·

2.4.6.1 Row-cycles

Given a 1-factorization F , for each pair of rows of U(F), determine the Latin sub-
rectangles that can be formed. The row-cycles invariant, which we denote by Irf (F), is
defined as the vector formed by the number of row cycles of each size that can be found
in U(F). Notice that row-cycles has size Θ(n).

In Table 2.7, the subrectangle in rows 1 and 3 (double underlined) forms a row-cycle
of size two, and the subrectangle in lines 4 and 8 (underlined) forms a row-cycle of size
six. Table 2.8 displays the value of the row-cycles invariant for each one of the six non-
isomorphic 1-factorizations of K8.

Proposition 2.6. The row-cycles invariant for a given 1-factorization can be computed
in O(n3).

Proof. We consider an auxiliary data structure that stores, for each row and symbol, the
column in which that symbol is in the row. For each pair of rows (r1, r2), the subrectangles
formed from these rows can be obtained in linear time. Starting from the first unvisited
column c, look for the symbol in s = U(F)(r1, c) and search in constant time, using the
auxiliary data structure, the column having symbol s in row r2. This becomes the new
current column. Continue in this way until the symbol stored in the current column of the
line r1 is the starting symbol s. At this point, a subrectangle is found, and it is accounted
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for based on its size. The procedure continues finding each subrectangle involving r1 and
r2.

Table 2.8: The row-cycles invariant values for the six non-isomorphic 1-factorizations of
K8.

size 2 size 3 size 4 size 6

Irf (F0) 84 0 0 0
Irf (F1) 52 0 16 0
Irf (F2) 28 0 16 8
Irf (F3) 36 0 0 16
Irf (F4) 12 8 12 12
Irf (F5) 0 14 0 21

2.4.6.2 Row-cycles-per-row

Given a 1-factorization F , the row-cycles-per-row invariant, which we denote by
Irrf (F), is defined as the vector formed by the number of Latin subrectangles of each
size that can be found in each line U(F). The values for each row should be sorted in
lexicographical order. Row-cycles-per-row has size Θ(n2).

In Table 2.7, the subrectangle in rows 1 and 3 (double underlined) forms a row-cycle
of size two accounted for rows 1 and 3, and the subrectangle in rows 4 and 8 (simple
underlined) forms a row-cycle of size six accounted for rows 4 and 8. Table 2.9 shows
the value of the row-cycles-per-row invariant for each one of the six non-isomorphic 1-
factorizations of K8.

Table 2.9: The row-cycles-per-row invariant values for the six non-isomorphic 1-
factorizations of K8.

row 0 row 1 row 2 row 3 row 4 row 5 row 6 row 7

Irrf (F0) 21 0 0 0 21 0 0 0 21 0 0 0 21 0 0 0 21 0 0 0 21 0 0 0 21 0 0 0 21 0 0 0
Irrf (F1) 13 0 4 0 13 0 4 0 13 0 4 0 13 0 4 0 13 0 4 0 13 0 4 0 13 0 4 0 13 0 4 0
Irrf (F2) 7 0 4 2 7 0 4 2 7 0 4 2 7 0 4 2 7 0 4 2 7 0 4 2 7 0 4 2 7 0 4 2
Irrf (F3) 9 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4
Irrf (F4) 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3
Irrf (F5) 0 2 0 0 0 2 0 6 0 2 0 6 0 2 0 6 0 2 0 6 0 2 0 6 0 2 0 6 0 14 0 6

Proposition 2.7. The row-cycles-per-row invariant for a given 1-factorization can be
computed in O(n3).

Proof. This can be accomplished with a slight variation of the procedure described for
row-cycles. The only difference is that we have to consider the size of the subrectangle
obtained when accounting for the two rows under consideration.
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2.5 NEW INVARIANTS FOR 1-FACTORIZATIONS

In this section, we propose two new invariants. Subsection 2.5.1 presents the lantern
profiles invariant. Subsection 2.5.2 introduces the even-size bichromatic chains invari-
ant. Subsection 2.5.3 summarizes the sizes and the computational complexities for the
invariants described in this tutorial.

2.5.1 Lantern profiles

Given a vertex v and W ⊂ N(v), define B(v,W ) = {vw | w ∈ W}. Consider two
vertices u and v, with u ̸= v, and W ⊂ N(u) ∩ N(v) \ {u, v}. Let C(E ′) be the set
of colors occurring in E ′ ⊆ E in a coloring of K2n. Consider the graph formed by
B(u,W )∪B(v,W ) and assume a coloring C(E). If C(B(u,W )) = C(B(v,W )), with W ̸=
∅ and inclusion-wise minimal for equality to hold, the subgraph wih vertices {u, v} ∪W
and edges B(u,W ) ∪ B(v,W ) is called a colorful chordless lantern L(u, v,W ) (Urrutia;
de Werra; Januario, 2021). Colorful chordless lanterns are illustrated in Figure 2.4.

u v

w1

w2

w3

w4

w5

w6

F4

F6

F3

F1 F2

F5

Figure 2.4: Two colorful chordless lanterns L(u, v,W1) and L(u, v,W2) associated with
a 1-factorization of K8. The first one has W1 = {w1, w2} while the second takes W2 =
{w3, w4, w5, w6}.

Let the degree of a lantern l = ∆(L(u, v,W )) be the degree of vertex u in the lantern.
Note that for each pair of vertices (u, v), the graph formed by B(u, V \ {u, v})∪B(v, V \
{u, v}) is divided by the 1-factorization in a number of lanterns, each of them with some
degree 2 ≤ l ≤ 2n− 2. The sum of the degrees of such lanterns is 2n− 2.

Let f(w, u, v), with w ̸= u, w ̸= v, and u ̸= v, be the degree of the lantern L(u, v,W )
with w ∈ W . Let fk(w) = |{(u, v) : f(w, u, v) = k, w ̸= u,w ̸= v, u ̸= v}| be the total
number of lanterns of degree k containing the vertex w considering any pair of distinct
vertices u and v. Given a 1-factorization F and an integer k, 2 ≤ k ≤ 2n− 2, the lantern
profiles invariant, which we denote by I lpf (F), is defined as the vector corresponding
to the concatenation of the sorted sequences (fk(vπk(1)), fk(vπk(2)), . . . , fk(vπk(2n))), where
vπk(ℓ) is the vertex participating in the ℓth largest number of lanterns of degree k, for all
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possible values of k. Consequently, if two 1-factorizations have distinct profiles, they are
not isomorphic. Table 2.10 shows the value of the lantern profiles invariant for each one
of the six non-isomorphic 1-factorizations of K8. Notice that in the graph K8, the degree
of any lantern will be either two, three, four, or six. Thus, the choice of the value of the
parameter k is restricted to k ∈ {2, 3, 4, 6}. The values show that lantern profiles is a
complete invariant for the 1-factorizations of K8.

Table 2.10: Lantern profiles invariant values for the six non-isomorphic 1-factorizations
of K8.

Lanterns with degree 2 Lanterns with degree 3 Lanterns with degree 4 Lanterns with degree 6

I lpf (F0) 21 21 21 21 21 21 21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I lpf (F1) 13 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0
I lpf (F2) 7 7 7 7 7 7 7 7 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6
I lpf (F3) 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12 12 12 12 12 12 12
I lpf (F4) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 9 9 9 9 9 9 9 9
I lpf (F5) 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15 21

Proposition 2.8. The lantern profiles invariant for a given 1-factorization can be com-
puted in O(n3).

Proof. For each pair of vertices {u, v}, one can determine all the lanterns L(u, v,W )
from the graph formed by B(u, V \ {u, v}) ∪ B(v, V \ {u, v}) in linear time. Starting
from u, traverse the edge colored with a previously unselected color c reaching vertex
wi. Let ci be the color of the edge wiv. The procedure iteratively traverses the edge uwj

with color ci and continues computing color cj as the color of wjv. Whenever cj = c, a
complete lantern L(u, v,W ) was obtained, and its degree k is accounted for in fk(w) for
every w ∈ W . The procedure thus resumes by starting from an edge with a previously
unselected color. Thus, the complete procedure can be implemented to run in O(n3).

Notice that row-cycles are alternative ways to see lanterns. For instance, the row
cycles of length two and six, shown in Table 2.7, correspond to the two lanterns described
in Figure 2.5 (a) and Figure 2.5 (b), respectively. The first lantern has degree two, while
the second has degree six. Thus, the lantern profiles invariant is strongly related to the
row-cycles and row-cycles-per-row invariant. Besides that, the distinguishing capacities
of row-cycles-per-row and lantern profiles are very similar, as we will see in the next
section.

2.5.2 Even-size bichromatic chains

Let F be a 1-factorization, and u and v be a pair of distinct vertices. Denote by q(u, v)
the number of even-size bichromatic chains connecting u and v. Figure 2.6 illustrates the
four even-size bichromatic chains connecting the vertices u and v, implying q(u, v) = 4.

Let qk = |{{u, v} : q(u, v) = k, u, v ∈ V }| for 2n − 2 ≤ k ≤ 2
(
2n−2

2

)
. The lower

bound for k comes from the fact that any of the other 2n − 2 vertices w ∈ V \ {u, v}
form the even-size bichromatic chain (u,w, v). The upper bound is defined as twice the
number of possible pairs of colors, not taking into account the color of the edge [u, v].
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The even-size bichromatic chains invariant, which we denote by Iecf (F), is defined as the
vector formed by the sequence of qk for the possible values of k.

1 3

2

4

4 8

1

2

3

5

6

7

(a) A lantern with degree 2 (b) A lantern with degree 6

Figure 2.5: Two colorful chordless lanterns. The first one (on the left) and the second (on
the right) correspond, respectively, to the row cycles of length two and six, illustrated in
Table 2.7.

u v

F6

F3

F1
F5F2 F4

Figure 2.6: Vertices u and v are linked by four even-size bichromatic chains corresponding
to the pairs of 1-factors (F1, F4) and (F2, F5).

Table 2.11 shows the value of the even-size bichromatic chains invariant for each one
of the six non-isomorphic 1-factorizations of K8. It can be noticed that the invariant is
complete for the 1-factorizations of K8.
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Table 2.11: Even-size bichromatic chains invariant values for the six non-isomorphic 1-
factorizations of K8.

6 10 12 14 16 18 22

Iesf (F0) 28 0 0 0 0 0 0
Iesf (F1) 8 16 0 0 0 0 4
Iesf (F2) 0 8 8 4 0 4 4
Iesf (F3) 0 0 16 12 0 0 0
Iesf (F4) 0 0 4 0 12 12 0
Iesf (F5) 0 0 0 0 0 28 0

Proposition 2.9. The even-size bichromatic chains invariant for a given 1-factorization
can be computed in O(n4).

Proof. For each pair of colors, consider the resulting graph formed by the edges having
these colors. Notice that such a graph is composed of even-size cycles. Thus, for each
vertex v, traverse the cycle to which it belongs, and for every other vertex u that is at
an even distance from v, take such chain into account for q(u, v). This can be done in
O(n2) for each pair of colors, implying O(n4). The values of qk can thus be determined
by going through the values of q(u, v) for every pair {u, v} in O(n2) and using a counting
technique. Thus, the overall procedure takes O(n4).

2.5.3 Summary of the sizes, calculation times and classification of the considered
invariants

Table 2.12 summarizes the invariants detailed in this tutorial. It provides their sizes,
complexities for calculation, and classifications (i.e., what they are based on).

Table 2.12: Invariant sizes, running times for their calculation, and classifications.

Invariant Size Calculation time Classification (based on)

cycle profiles Θ(n2) O(n3) union of two 1-factors
tricolor vectors Θ(n) O(n3) union of three 1-factors
divisions Θ(d) O(nd × nd) union of d 1-factors
trains Θ(n) O(n3) trains graph
trains-path Θ(n3) O(n3) trains graph
row-cycles Θ(n) O(n3) row-cycles / lanterns
row-cycles-per-row Θ(n2) O(n3) row-cycles / lanterns
lantern profiles Θ(n2) O(n3) row-cycles / lanterns
even-size bichromatic chains Θ(n2) O(n4) union of two 1-factors
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2.6 EXPERIMENTAL RESULTS

In this section, we summarize the results of the experiments carried out to evaluate the
strength of the invariants on different sets of non-isomorphic 1-factorizations found in the
literature. The benchmark set consists of

(a) the set of 396 non-isomorphic 1-factorizations of K10;

(b) the sets of 5 non-isomorphic P1Fs of K12, 23 non-isomorphic of K14, and 3,155
non-isomorphic of K16;

(c) subsets of the 526,915,620 non-isomorphic 1-factorizations of K12;

(d) sets of 25,000,000 randomly generated 1-factorizations of K16 and K20.

The set of 396 non-isomorphic 1-factorizations of K10 can be found in Colbourn
and Dinitz (2006) (Table 5.31). The complete set of non-isomorphic 1-factorizations
of K12 (Dinitz; Garnick; McKay, 1994) was provided by Petteri Kaski. Regarding the set
of 23 non-isomorphic P1Fs of K14, twenty were obtained in Seah and Stinson (1987) and
the other three in Seah and Stinson (1988) and Dinitz and Garnick (1996). Finally, the
set of 3,155 non-isomorphic P1Fs of K16 can be downloaded from Wanless (2023).

All the experiments were performed on a machine running under Ubuntu 22.04.1 LTS
with an Intel Core i5-9300H 2.40 GHz processor and 8 GB of RAM. The codes were
written in C++ and compiled with g++ version 11.3.0, using the options ’-O3’ and
’-std=c++20’.

Given our hardware limitations, we did not run computational experiments to cal-
culate the strength of the invariants on the full set of non-isomorphic 1-factorizations of
K12. Therefore, we did not experimentally measure the effort to compute each invariant,
nor pairwise compare their values for the considered non-isomorphic 1-factorizations of
K12.

Each one of the following subsections considers one of the enumerated benchmark
sets. More specifically, Subsection 2.6.1 presents the results of the invariants for the
non-isomorphic 1-factorizations of K10. Subsection 2.6.2 shows the results for the non-
isomorphic P1Fs of K12, K14, and K16. Subsection 2.6.3 displays the results for the
non-isomorphic 1-factorizations of K12 and also evaluates the combination of different
invariants in an attempt to improve the distinguishing ability. Subsection 2.6.4 presents
the results for some randomly generated 1-factorizations of K16 and K20.

2.6.1 Non-isomorphic 1-factorizations of K10

Table 2.13 shows the strength of the different invariants to distinguish between the 396
non-isomorphic 1-factorizations of K10. The first column presents the invariant, and
the second column the amount (absolute value and percentage) of isomorphism classes
distinguished, that is, the strength of this invariant. For instance, the tricolor vectors
can classify the 396 non-isomorphic 1-factorizations of K10 into 323 isomorphism classes.
More specifically, this invariant can distinguish only 262 non-isomorphic 1-factorizations
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and there are 51 pairs, 8 triples, and 2 sets of four pairwise non-isomorphic 1-factorizations
with the same values.

Table 2.13: Strength of the invariants to distinguish non-isomorphic 1-factorizations of
K10.

Invariant Isomorphism classes

cycle profiles 346 (87.4%)
tricolor vectors 323 (81.6%)
divisions 46 (11.6%)
trains 394 (99.5%)
trains-path 396 (100.0%)
row-cycles 374 (94.4%)
row-cycles-per-row 395 (99.7%)
lantern profiles 395 (99.7%)
even-size bichromatic chains 396 (100.0%)

The table shows that trains-path and even-size bichromatic chains are complete for
the non-isomorphic 1-factorizations of K10. Besides, row-cycles-per-row and lantern pro-
files can distinguish all but a single pair of non-isomorphic 1-factorizations. Moreover,
divisions has very poor performance for this benchmark set, as it can only distinguish 46
isomorphism classes (11.6%). Given the low performance of divisions for K10, it will not
be considered in the remaining tests.

2.6.2 Non-isomorphic perfect 1-factorizations of K12, K14, and K16

Table 2.14 shows the strength of the different invariants to distinguish between the five
non-isomorphic P1Fs of K12, 23 non-isomorphic P1Fs of K14, and 3,155 non-isomorphic
P1Fs of K16. The table does not present values for cycle profiles as it cannot distinguish
between P1Fs (see Section 2.4.1).

Table 2.14: Strength of the invariants to distinguish non-isomorphic perfect 1-
factorizations of K12, K14, and K16.

Invariant K12 K14 K16

tricolor vectors 5 23 2,320
trains 5 23 3,104
trains-path 5 23 3,155
row-cycles 4 22 3,155
row-cycles-per-row 4 22 3,155
lantern profiles 4 22 3,155
even size bichromatic chains 4 23 3,155

The table shows that trains-path is complete for the non-isomorphic P1Fs of K12,
K14, and K16. Tricolor vectors and trains are complete for the non-isomorphic P1Fs of
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K12 and K14. Even size bichromatic chains is complete for the non-isomorphic P1Fs of
K14 and K16. Row-cycles, row-cycles-per-row, and lantern profiles are only complete for
the non-isomorphic P1Fs of K16.

2.6.3 Non-isomorphic 1-factorizations of K12

This subsection reports the results for the non-isomorphic 1-factorizations of K12. In
the first moment, we consider a preliminary subset of 5,000,000 1-factorizations on which
we test all the invariants. Based on the results of this first experiment, we select the
strongest invariants to be part of the experiments carried out in the second part of this
section.

2.6.3.1 Preliminary subset

Table 2.15 shows the strength of the different invariants to distinguish between 5,000,000
non-isomorphic 1-factorizations of K12. This is a proper subset of the set with 526,915,620
non-isomorphic 1-factorizations of K12. The first column presents the invariant, and the
second column the amount (absolute value and percentage) of isomorphism classes dis-
tinguished.

Table 2.15: Strength of the invariants to distinguish 5,000,000 non-isomorphic 1-
factorizations of K12.

Invariant Isomorphism classes

cycle profiles 2,984,500 (59.690%)
tricolor vectors 283,044 (05.661%)
trains 1,698,355 (33.967%)
trains-path 4,999,812 (99.996%)
row-cycles 3,371,571 (67.431%)
row-cycles-per-row 4,999,564 (99.991%)
lantern profiles 4,999,624 (99.992%)
even-size bichromatic chains 4,999,375 (99.987%)

The table shows that trains-path, row-cycles-per-row, lantern profiles, and even-size
bichromatic chains are much stronger than the others. All of them distinguish more than
99.9% of the isomorphism classes, while the others distinguish less than 68% of them.
For that reason, in the following experiments, we only show the results for these four
strongest invariants and their combinations.

2.6.3.2 Larger sets of non-isomorphic 1-factorizations

Table 2.16 shows the average strength of the selected invariants to distinguish between
5,000,000 non-isomorphic 1-factorizations for 105 disjoint subsets of non-isomorphic 1-
factorizations of K12. Notice that, in this way, 525,000,000 (almost all of the 526,915,620)
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non-isomorphic 1-factorizations of K12 are considered in this experiment.

Table 2.16: Average strength of the invariants to distinguish 5,000,000 non-isomorphic
1-factorizations of K12, considering 105 sets of 5,000,000.

Invariant Isomorphism classes (avg)

trains-path 4,999,992.428
row-cycles-per-row 4,999,979.371
lantern profiles 4,999,983.695
even-size bichromatic chains 4,998,103.457

The table shows that trains-path is slightly stronger than the other invariants. Among
the invariants with guaranteed quadratic size, lantern profiles was the strongest, followed
by row-cycles-per-row.

The next experiment considers 21 subsets of 25,000,000 non-isomorphic 1-factorizations
of K12. Table 2.17 shows that the strength order of the invariants is preserved from the
previous experiment. The four invariants identify, on average, more than 99.8% of the
isomorphism classes.

Table 2.17: Average strength of the invariants to distinguish 25,000,000 non-isomorphic
1-factorizations of K12, considering 21 sets of 25,000,000.

Invariant Isomorphism classes (avg)

trains-path 24,999,964.75
row-cycles-per-row 24,999,877.15
lantern profiles 24,999,902.55
even-size bichromatic chains 24,955,330.70

To measure the significance difference between the strength of the four invariants, a
pairwise statistical comparison was performed using the Wilcoxon test (Demsar, 2006)
at a significance level of 1%. The Wilcoxon test is a non-parametric statistical test
that ranks the differences in performances of two classifiers for each data set and com-
pares the ranks for the differences. Here, the classifiers are the invariants, and the data
set are the strength values obtained by each invariant considering 21 sets of 25,000,000
non-isomorphic 1-factorizations. The Wilcoxon test indicates if there is any statistical
difference between each analyzed set. It was found that there is a statistical difference
between even-size bichromatic chains and the other invariants, and there is a statistical
difference between the row-cycles-per-row and lantern profiles invariants, because p-value
< 0.01. There is no statistical difference for the remaining pairwise comparisons, because
p-value > 0.01.
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2.6.3.3 How can the combination of invariants improve the distinguishing
strength?

We now analyze the strength of different invariant combinations. We consider all the
possible combinations of the four selected invariants. Given a 1-factorization F and two
invariants Iaf and Ibf , the combination of these invariants consists of the joint set of their
values, denoted by Iaf (F)⊕ Ibf (F).

Table 2.18 shows the average strength of the different combinations of the invariants
to distinguish between 5,000,000 non-isomorphic 1-factorizations for 105 disjoint subsets
of non-isomorphic 1-factorizations of K12.

Table 2.18: Average strength of the invariant combinations to distinguish 5,000,000 non-
isomorphic 1-factorizations of K12, considering 105 sets of 5,000,000.

Invariant combination Isomorphism classes (avg)

trains path ⊕ row-cycles-per-row 4,999,999.723
trains path ⊕ lantern profiles 4,999,999.809
trains path ⊕ even-size bichromatic chains 4,999,999.885
row-cycles-per-row ⊕ lantern profiles 4,999,983.742
row-cycles-per-row ⊕ even-size bichromatic chains 4,999,999.685
lantern profiles ⊕ even-size bichromatic chains 4,999,999.657
trains path ⊕ row-cycles-per-row ⊕ lantern profiles 4,999,999.809
trains path ⊕ row-cycles-per-row ⊕ even-size bichromatic chains 4,999,999.942
trains path ⊕ lantern profiles ⊕ even-size bichromatic chains 4,999,999.942
row-cycles per row ⊕ lantern profiles ⊕ even-size bichromatic chains 4,999,999.685
trains path ⊕ row-cycles-per-row ⊕ lantern profiles ⊕ even-size bichromatic chains 4,999,999.942

The table shows that although the even-size bichromatic chains invariant was shown
to be the weakest of the invariants individually, when combined with a strong comple-
mentary invariant such as trains-path, it is able to obtain promising results. Notice that
the combination of row-cycles-per-row with lantern profiles is slightly weaker than the
combination of any other two invariants. This shows that contrary to what happens
with trains-path and even-size bichromatic chains, the invariants are strongly related,
and their distinguishing capacities seem very similar. The combination of more than two
invariants is not significantly stronger than the best combinations of two invariants.

To measure the significance difference between the strength of all combinations of in-
variants (described in Table 2.18), we performed a pairwise statistical comparison using
the Wilcoxon test at a significance level of 1%. The results indicated that there is a statis-
tical difference only between the combination row-cycles-per-row ⊕ lantern profiles and
the other combinations. For the remaining pairwise comparisons, there is no statistical
difference.

Given our hardware limitations, we do not analyze the combinations of invariants for
the 21 subsets of 25,000,000 non-isomorphic 1-factorizations of K12.
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2.6.4 Randomly generated 1-factorizations of K16 and K20

In this experiment, we used a randomized variant of Vizing’s algorithm (Vizing, 1964;
Misra; Gries, 1992) to randomly generate sets of 25,000,000 1-factorizations of K16 and
K20. The results in Table 2.19 show that the four selected invariants are able to distinguish
between all the 25,000,000 1-factorization for both sets.

Table 2.19: Strength of the invariants to distinguish 25,000,000 randomly generated 1-
factorizations of K16 and K20.

Invariant K16 K20

trains-path 25,000,000 25,000,000
row-cycles-per-row 25,000,000 25,000,000
lantern profiles 25,000,000 25,000,000
even size bichromatic chains 25,000,000 25,000,000

2.7 CONCLUDING REMARKS

We analyzed invariants for 1-factorizations of K2n. We described seven of the main
invariants available in the literature (cycle profiles, tricolor vectors, divisions, trains,
trains-path, row-cycles, and row-cycles-per-row). Furthermore, we proposed two new
invariants, denoted lantern profiles and even-size bichromatic chains. For all the nine
invariants presented, we analyzed their size and computational complexity.

Furthermore, we performed experiments to evaluate the strength of the invariants. We
used a benchmark set composed of the non-isomorphic 1-factorizations of K10, the non-
isomorphic P1Fs of K12, K14, and K16, and subsets of the non-isomorphic 1-factorizations
of K12. The results show that trains-path and even-size bichromatic chains are complete
for the non-isomorphic 1-factorizations of K10. Besides, only trains-path is complete for
all the three sets of non-isomorphic P1Fs considered. Moreover, four of the invariants
(trains-path, row-cycles-per-row, lantern profiles, and even-size bichromatic chains) have
shown to be much stronger than the others when considering the sets of non-isomorphic
1-factorizations of K12 tested. Last but not least, the strengths of the combinations of
invariants were also evaluated, showing a complementarity in their distinguishing abilities.

To measure the statistical significance between the strength of the four strongest
invariants it was performed a pairwise statistical comparison. The statistical analyses
showed that there is a statistical difference between even-size bichromatic chains and the
other three invariants, and there is a statistical difference between the row-cycles-per-row
and lantern profiles invariants. For all combinations of invariants, it was also performed a
pairwise statistical comparison. The results showed a statistical difference only between
the combination row-cycles-per-row ⊕ lantern profiles and the other combinations.





Chapter

3
THE GENERALIZED PARTIAL TEAM SWAP

NEIGHBORHOOD: ALGORITHMIC AND
COMPUTATIONAL ASPECTS

The concept of 1-factorization is of great interest due to its applications in modeling sports
tournaments. Different neighborhood structures have been used in local search procedures
for tournament scheduling problems. These neighborhood structures can be associated
with partial modifications of a given 1-factorization. The resulting 1-factorization rep-
resents a neighbor of the current 1-factorization in the neighborhood structure under
consideration.

This chapter introduces algorithms to explore the Generalized Partial Team Swap
(GPTS) neighborhood, a neighborhood structure recently proposed in the literature. In
this regard, this chapter presents a study on algorithmic and computational aspects of this
neighborhood. Furthermore, we provide a discussion on how this neighborhood structure
increases the connectivity of the search space defined by non-isomorphic 1-factorizations
of K2n (for 8 ≤ 2n ≤ 12) when compared to other neighborhood structures. Finally,
we present preliminary computational experiments that were conducted to evaluate the
performance of the GPTS, having the Weighted Carry-Over Effects Value (WCOEV)
Minimization Problem as a case study.

3.1 INTRODUCTION

Several sports tournaments involving 2n teams are organized as Single Round-Robin
(SRR) tournaments in which teams face each other once. In such a tournament, there
is a sequence of 2n − 1 rounds, with each team playing once in each round. In a basic
sports scheduling problem, one has to determine in which round each pair of teams will
face each other. It is natural to model such a problem as a 1-factorization of a graph
K2n, with each vertex representing a team and each edge representing the game between
the teams corresponding to its endpoints. In this way, a schedule for such a tournament
can be determined by computing a 1-factorization of the graph such that each one of its

29
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1-factors represents a round of the schedule. Figure 3.1 illustrates a SRR schedule with
six teams (vertices) and five rounds (1-factors), represented by a 1-factorization of K6.

v3 v2

v6 v1

v4 v5

Figure 3.1: A 1-factorization F = {F1, F2, F3, F4, F5} of K6, with F1 = {v1v2, v3v6, v4v5},
F2 = {v1v3, v2v4, v5v6}, F3 = {v1v4, v2v6, v3v5}, F4 = {v1v5, v2v3, v4v6}, and F5 =
{v1v6, v2v5, v3v4}.

The GPTS neighborhood was introduced by Januario et al. (2016). As pointed out
by Ribeiro, Urrutia and de Werra (2023), due to the size and complex structure of
GPTS neighborhood, it might be hard to design algorithms that systematically explore
this neighborhood. By taking this challenge into consideration, this chapter introduces
algorithms to explore the GPTS neighborhood and presents a study on algorithmic and
computational aspects of this neighborhood.

3.1.1 Basic definitions

Compatible chains, compatible set, and balanced set

Two bichromatic chains are said to be compatible if they are edge-disjoint; otherwise,
they are said to be incompatible. A set of bichromatic chains is said to be a compatible set
if all its chains are pairwise compatible; otherwise, it is said to be an incompatible set. A
balanced set is a set in which each of the 2n− 1 colors of the graph K2n is present on the
edges of exactly two or zero bichromatic chains. A set of bichromatic chains that is both
balanced and compatible is said to be a compatible balanced set. A α/β-chain (or γα

β ) is
a bichromatic chain in which its edges are alternately colored with two different colors α
and β, starting from α. A γα

β (u, v) is a γα
β that links two vertices u and v, starting from

u. These concepts are illustrated in Example 1.

Example 1. Consider the colored graph K6 in Figure 3.1. The vertices v2 and v3 are
linked by the following eight even-size bichromatic chains: γ1

2(v2, v3), γ
2
1(v2, v3), γ

1
3(v2, v3),

γ3
1(v2, v3), γ

2
5(v2, v3), γ

5
2(v2, v3), γ

3
5(v2, v3), and γ5

3(v2, v3). Figure 3.2 illustrates four of
these chains. Among these, the chains γ1

2(v2, v3) (Figure 3.2 (a)) and γ3
1(v2, v3) (Fig-

ure 3.2 (b)) are compatible. On the other hand, the chains γ2
1(v2, v3) (Figure 3.2 (c)) and

γ1
3(v2, v3) (Figure 3.2 (d)) are incompatible, because they have a common edge e = v4, v5.
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Note that, from these eight even-size bichromatic chains, it is possible to construct five
compatible balanced sets, namely: {γ1

2(v2, v3), γ
2
1(v2, v3)}, {γ1

2(v2, v3), γ
2
5(v2, v3), γ

5
3(v2, v3),

γ3
1(v2, v3)}, {γ1

3(v2, v3), γ
3
1(v2, v3)}, {γ2

5(v2, v3), γ
5
2(v2, v3)}, and {γ3

5(v2, v3), γ
5
3(v2, v3)}. △

v3 v2

v1

v3 v2

v6

v4 v5

v3 v2

v1

v4 v5

v3 v2

v6

1
2

(a) (v2, v1, v3) is a γ1
2(v2, v3)

1

2

(c) (v2, v4, v5, v6, v3) is a γ2
1(v2, v3)

1

3

(d) (v2, v1, v4, v5, v3) is a γ1
3(v2, v3)

1
3

(b) (v2, v6, v3) is a γ3
1(v2, v3)

Figure 3.2: Four even-size bichromatic chains linking the vertices v2 and v3 of the edge
colored graph K6 illustrated in Figure 3.1.

In the remainder of the chapter, we denote bichromatic chains by chains, unless stated
otherwise.

Search space, neighborhood, and local search

The search space of an optimization problem can be defined by a directed graph
U = (S,A), where the set of vertices S corresponds to the solutions of the problem and
the set of arcs A corresponds to the move operators used to generate new neighborhood
solutions. There is an arc between solutions sa, sb ∈ S, if the solution sb can be generated
from the solution sa using a move operator. A search space is connected if, for any pair
of solutions sa and sb, it is possible to generate sb from sa, using a finite number of move
operators.

The non-isomorphic 1-factorization search space can be modeled through a graph
GM2n in which each vertex of this graph represents a 1-factorization belonging to an iso-
morphism class of 1-factorizations of K2n. Each edge that connects the vertices Fa and
Fb corresponds to a move operator M , which from a 1-factorization isomorphic to Fa

generates a 1-factorization isomorphic to Fb.
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A neighborhood structure V is a mapping that assigns to each solution s ∈ S a set of
neighboring solutions V(s) that are neighbors of s. Each neighboring solution s′ is gen-
erated from a move in the neighborhood V that performs a modification in the structure
of the solution s. A neighborhood is connected if it is possible to move from any solution
to any other with a finite number of moves using the neighborhood.

Local search is a simple heuristic method that uses the concept of neighborhoods
to move from one solution s to a neighbor solution s′ ∈ V(s) (Talbi, 2009). The local
search starts from a given initial solution s associated with a cost function denoted by
f(s). Then, at each iteration, the current solution is replaced by a neighbor solution that
improves the cost function. When all the neighbors are worse than the current solution,
it means that a local optimum has been found. One of the most important aspects of
local search, widely used in optimization problems, it is the definition of its neighborhood
structure.

PRS, PTS, and GPTS neighborhood structures

In the following, all neighborhood structures are modeled as operators over 1-factoriza-
tions of K2n. Each neighborhood structure can be associated with partial modifications of
a given 1-factorization. The resulting 1-factorization represents a neighbor of the current
1-factorization in the neighborhood structure under consideration.

To perform a move in the Partial Round Swap (PRS) neighborhood structure, select
two distinct colors and consider a cycle in the subgraph induced by the edges colored
with these two colors. Then, exchange the color assignment of edges in the cycle, leading
to a neighbor coloring. Figure 3.3 illustrates a move in the PRS neighborhood, in which
the color of the edges in the cycle formed by vertices v5, v6, v7, v8, v9, and v10 have
been exchanged (Januario et al., 2016). Note that, if this cycle is a Hamiltonian Cycle
(HC), then the neighbor coloring is isomorphic to the original one, since the recoloring is
equivalent to exchange two 1-factors.

v7v5

v6 v8

v9 v10

v1 v2

v3 v4

v7v5

v6 v8

v9 v10

v1 v2

v3 v4

1

2

(a) Subgraph before a PRS move

2

1

(b) Subgraph after a PRS move

Figure 3.3: Illustration of a PRS move: (a) a subgraph induced by edges with colors 1
and 2, obtained from a 1-factorization of K10; (b) the same subgraph after a PRS move,
by exchanging the color assignment of edges in the 6-cycle.
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In order to obtain a neighbor in a Partial Team Swap (PTS) neighborhood, we select
a set A of edge-disjoint chains of length two between two vertices u and v of K2n. In
addition, the set Υ of colors assigned to the edges of the chains in A adjacent to u is the
same set of colors assigned to the edges of the chains in A adjacent to v. We choose Υ to
be minimal, i.e., no proper subset of A satisfies this same condition. Next, exchanging the
color assignment of edges in each chain, leading to a neighbor coloring (Ribeiro; Urrutia;
de Werra, 2023).

Figure 3.4 illustrates a move in the PTS neighborhood with the set of chains {γ6
5(v1, v3),

γ7
6(v1, v3), γ5

4(v1, v3), γ4
7(v1, v3)}. Note that, if the number of chains is equal to 2n−2, then

the neighbor coloring is isomorphic to the original one, since the recoloring is equivalent
to exchange the labels of vertices u and v.

v1 v3

v2

v4

v7

v8

v6

v5

v1 v3

v2

v4

v7

v8

v6

v5

4

6 5

74

67

5

(a) Subgraph before a PTS move

5

5 6

47

76

4

(b) Subgraph after a PTS move

Figure 3.4: Illustration of a PTS move: (a) a subgraph K2,6 obtained from a 1-
factorization of K8; (b) the same subgraph after a PTS move using the set of chains
{γ6

5(v1, v3), γ7
6(v1, v3), γ5

4(v1, v3), γ4
7(v1, v3)}.

Generalized Partial Team Swap (GPTS) neighborhood involves a set of edge-disjoint
chains of even length between two vertices u and v of K2n. As in PTS, the set of colors
on edges of these chains incident to vertex u is the same set of colors on edges incident
to v. Finally, exchanging the color assignment of edges in each chain gives a neighbor
coloring (Januario et al., 2016).

Figure 3.5 illustrates a move in the GPTS neighborhood with the set of chains
{γ1

4(v1, v11), γ5
2(v1, v11), γ4

5(v1, v11), γ2
1(v1, v11)}. In the subgraph on the left, γ1

4(v1, v11) is
a 4-chain, γ5

2(v1, v11) is a 2-chain, γ4
5(v1, v11) is a 4-chain, and γ2

1(v1, v11) is a 6-chain.
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v1 v11

v10

v4

v5

v9

v3

v7

v12 v6v2

1
25 4

4

1

5

2

(a) Subgraph before a GPTS move

v1 v11

v10

v4

v5

v9

v3

v7

v12 v6v2

4
52 1

5

2

4

1

(b) Subgraph after a GPTS move

Figure 3.5: Illustration of a GPTS move: (a) a subgraph obtained from a 1-factorization
of K12; (b) the resulting subgraph after a GPTS move, using the set of chains {γ1

4(v1, v11),
γ5
2(v1, v11), γ4

5(v1, v11), γ2
1(v1, v11)}.

3.1.2 Contributions and organization

The main contribution of this chapter is a study of algorithmic and computational aspects
of the GPTS neighborhood. First, we present algorithms to systematically explore this
neighborhood. After that, we provide a discussion on how this neighborhood structure
increases the connectivity of the non-isomorphic 1-factorization search space of K2n (for
8 ≤ 2n ≤ 12) when compared to the PRS and PTS neighborhood structures. Finally,
we conduct preliminary computational experiments to evaluate the performance of PRS,
PTS, and GPTS, having the WCOEV Minimization Problem as a case study.

The remainder of this chapter is organized as follows. Section 3.2 reviews the re-
lated literature. Section 3.3 discusses the algorithmic aspects of exploring the GPTS
neighborhood. Section 3.4 presents a discussion analyzing the structure of the neighbor-
hoods PRS, PTS, and GPTS for non-isomorphic 1-factorizations. Section 3.5 presents
preliminary computational results.

3.2 LITERATURE REVIEW

This section reviews some of the literature on Sport Scheduling Problems and search
methods on 1-factorizations.
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3.2.1 Applications in sports scheduling

The study of the relationship between single round-robin scheduling problems and 1-
factorizations of complete graphs began in the 1970s with the work of Gelling (1973). Sev-
eral types of 1-factorizations can be constructed based on specific requirements of sports
leagues (de Werra, 1980; de Werra, 1982; de Werra, 1985; Geinoz; Ekim; de Werra, 2008).
In the sports scheduling literature, some of the common solution approaches are: integer
programming (Briskorn; Drexl, 2009; Durán et al., 2019), constraint programming (Trick,
2001; Russell; Urban, 2006), and local search metaheuristics such as simulated anneal-
ing (Anagnostopoulos et al., 2006; Lim; Rodrigues; Zhang, 2006), tabu search (Hamiez;
Hao, 2000; di Gaspero; Schaerf, 2007), and iterated local search (Costa; Urrutia; Ribeiro,
2012).

The traveling tournament problem (TTP) is one of the most studied problems in
sports scheduling (Easton; Nemhauser; Trick, 2001). Its goal consists in minimizing
the total distance traveled by the teams throughout a double round-robin tournament
with some additional constraints. Single round-robin variants of the TTP are studied
in the literature, such as the mirrored TTP (Ribeiro; Urrutia, 2007) and the TTP with
predefined venues (Melo; Urrutia; Ribeiro, 2009; Costa; Urrutia; Ribeiro, 2012).

Several authors presented literature reviews about sports scheduling problems, their
different solution approaches, and applications (Rasmussen; Trick, 2008; Kendall et al.,
2010; Ribeiro, 2012; Durán, 2021). A recent book on the subject was written by Ribeiro,
Urrutia and de Werra (2023). In general, sports scheduling problems tend to be NP-
hard, and they deal with a large solution space related to different 1-factorizations of
K2n. Consequently, heuristics are often used in practice.

3.2.2 Search methods on 1-factorizations

Different neighborhood structures have been used in local search procedures for sports
scheduling problems (Anagnostopoulos et al., 2006; di Gaspero; Schaerf, 2007; Ribeiro;
Urrutia, 2007; Costa; Urrutia; Ribeiro, 2012; Januario; Urrutia, 2016). Januario et
al. (2016) describe, from an edge coloring perspective, four neighborhoods commonly
used in local search heuristics for sports scheduling problems: Round Swap, Team Swap,
PRS, and PTS. Kaski et al. (2014) defined two types of switching operations between
1-factorizations of complete graphs, called factor-switching and vertex-switching. These
operations allow converting a 1-factorization F of K2n into a different 1-factorization
F ′ of the same graph. A factor-switching operation is equivalent to a PRS move and a
vertex-switching operation is equivalent to a PTS move.

It is known that these neighborhoods do not fully connect the solution space, as the
solutions obtained with the neighborhoods belong to a proper subset of the set of non-
isomorphic 1-factorizations of K2n. Costa, Urrutia and Ribeiro (2012) investigated the
connectivity of the solution space of single round-robin tournaments. They established
that the solution space is not connected by the Team swap, Round swap, PTS, and PRS
neighborhood structures for tournaments with 20 teams, since these neighborhoods are
not able to escape from 1-factorizations that are isomorphic to the 1-factorization gener-
ated by the circle method (Kirkman, 1847). Later, Januario and Urrutia (2015) extended
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the research and showed that these neighborhoods do not connect the solution space for
several values of 2n ≤ 100. Their study showed that when 2n = p+1 (with p being a prime
number) PRS neighborhood is not connected and if the initial 1-factorization is built with
the circle method, it is impossible to move to other non-isomorphic 1-factorization with
a PRS move. Januario, Urrutia and de Werra (2016) proved the conjecture introduced
by Januario and Urrutia (2015), characterizing the cases in which one can escape from
1-factorizations generated by the circle method using PTS neighborhood. Kaski et al.
(2014) studied the connectivity of the non-isomorphic 1-factorization search space under
a so-called switching operation. The study refers to the connectivity of non-isomorphic
1-factorizations of K8, K10, and K12.

3.3 ALGORITHMIC ASPECTS FOR EXPLORING THE GPTS NEIGHBORHOOD

In this section, we discuss the algorithmic aspects for exploring the GPTS neighborhood.
The exploration of the GPTS neighborhood structure consists of three phases: selection,
construction, and change.

Consider a complete graph K2n together with a proper edge coloring c and two distinct
vertices u, v ∈ K2n. First, the selection phase constructs a list Lcomp with all the pairs
of compatible even-size chains linking u and v. Given Lcomp as input, the construction
phase builds a list Lbal of compatible balanced sets. The change phase generates neighbor
colorings by modifying the color assignments in the subgraphs corresponding to each of
the compatible balanced sets in Lbal. Finally, the change phase returns the list S of
neighbor colorings. In what follows, we detail the selection phase in Subsection 3.3.1. In
Subsection 3.3.2, we describe the construction phase and propose two possible strategies.
Last, in Subsection 3.3.3, we explain the change phase.

3.3.1 The selection phase

Given a complete graph K2n, a proper edge coloring c, and two distinct vertices u, v ∈ K2n,
the selection phase builds a list with all the pairs of compatible even-size chains linking
u and v. Algorithm 1 details the procedure. Initially, lists Leven and Lcomp are initialized
as empty in line 1. After that, for each pair of distinct colors (α, β), it is checked whether
there is an even size chain γα

β (u, v). If so, such a chain is inserted into Leven (line 4).
Then, the pairs of distinct chains belonging to Leven that are compatible are inserted into
Lcomp (lines 5-7). Finally, the algorithm ends by returning the list Lcomp containing all
the pairs of compatible chains that link u and v (line 8). Example 2 illustrates this phase.

Example 2. Consider as input for the selection phase the graph K6 of Figure 3.1 with
the coloring corresponding to the depicted 1-factorization and the vertices v2 and v3.
This implies that this phase will return an Lcomp list containing the following pairs of
compatible chains: {γ1

2(v2, v3), γ
2
1(v2, v3)}, {γ1

2(v2, v3), γ
3
1(v2, v3)}, {γ1

2(v2, v3), γ
2
5(v2, v3)},

{γ1
2(v2, v3), γ

3
5(v2, v3)}, {γ1

2(v2, v3), γ
5
3(v2, v3)}, {γ2

1(v2, v3), γ
3
5(v2, v3)}, {γ2

1(v2, v3), γ
5
3(v2, v3)

}, {γ1
3(v2, v3), γ

3
1(v2, v3)}, {γ1

3(v2, v3), γ
2
5(v2, v3)}, {γ1

3(v2, v3), γ
5
2(v2, v3)}, {γ3

1(v2, v3), γ
2
5(v2,

v3)}, {γ3
1(v2, v3), γ

5
2(v2, v3)}, {γ3

1(v2, v3), γ
5
3(v2, v3)}, {γ2

5(v2, v3), γ
5
2(v2, v3)}, {γ2

5(v2, v3), γ
5
3

(v2, v3)}, {γ3
5(v2, v3), γ

5
3(v2, v3)}. △
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Algorithm 1: SELECTION-PHASE
Input : graph K2n, coloring c, and two distinct vertices u, v ∈ K2n

Output: list Lcomp with all the pairs of compatible even-size chains linking u
and v

1 Leven ← Lcomp ← ∅;
2 foreach (α, β) ∈ C do
3 if there is an γα

β (u, v) then
4 Add γα

β (u, v) to Leven;

5 foreach (γα1
β1
(u, v), γα2

β2
(u, v)) ∈ Leven do

6 if γα1
β1
(u, v) and γα2

β2
(u, v) are compatible then

7 Add (γα1
β1
(u, v), γα2

β2
(u, v)) to Lcomp;

8 return Lcomp;

3.3.2 The construction phase

The construction phase builds different compatible balanced sets based on an auxiliary
graph, given as input a list Lcomp of pairs of compatible chains obtained in the selection
phase. We describe the auxiliary graph in Subsection 3.3.2.1 and present two possible
strategies to be used in this phase in Subsection 3.3.2.2.

3.3.2.1 Graph H

The auxiliary graph H is obtained as follows. Its vertex set V (H) is composed of a
vertex for each color α ∈ C such that there is a chain in Lcomp with color α. Its edge
set E(H) is built as follows: there is an edge αβ if and only if there is a pair of chains
(γα

β (u, v), γ
β
α(u, v)) ∈ Lcomp. Example 3 illustrates the construction of H.

Example 3. To construct the graph H illustrated in Figure 3.6, consider the list Lcomp

containing all the pairs of compatible chains linking the vertices v2 and v3 of the edge
colored graph K6 in Figure 3.1. First, for each of the colors found in these chains, we
have a vertex labeled by this color in the graph H, i.e., the colors in {1, 2, 3, 5}. Next, for
each pair of chains that have the same two colors, we insert an edge between the vertices
labeled by these two colors. For example, the edge e = 13 ∈ H was inserted as a result
of the chains γ1

3(v2, v3) and γ3
1(v2, v3). △

Proposition 3.1 establishes properties of the graph H.

Proposition 3.1. The following properties hold for H:

1. H has 2n− 2 vertices.

2. H has at least (2n− 2)/2 edges.

3. The number of edges in H is equal to half the number of chains used to construct
H.
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4. Each edge of H represents a compatible balanced set of two chains.

5. Each k-cycle in H represents a balanced set of k chains.

Proof. The result follows from Lemmas 3.2, 3.6, 3.7, and 3.8 that are demonstrated in
the following.

Lemma 3.1. There are 2n− 2 chains of length two linking vertices u and v.

Proof. Urrutia, de Werra and Januario (2021) (in Proposition 1) showed that for each
pair of vertices u, v ∈ K2n, there is one or more compatible balanced set consisting of
chains of length two linking u and v. For each set, the subgraph formed by the chains
linking u and v is called a colorful chordless lantern, each of them with some degree
2 ≤ l ≤ 2n − 2, such that the sum of the degrees is 2n − 2. This implies that there are
2n− 2 chains of length two linking u and v.

Lemma 3.2. H has 2n− 2 vertices.

Proof. From Lemma 3.1, at least 2n−2 colors are represented by the pairs of compatible
chains in Lcomp. Furthermore, notice that a chain with a given color either starts or ends
with that color. Thus, the color of edge uv is not present in any chain linking u and v.
This implies that exactly 2n − 2 colors are represented in Lcomp. Thus, H has 2n − 2
vertices.

Lemma 3.3. H has at least (2n− 2)/2 edges.

Proof. From Lemma 3.1, there are 2n− 2 chains of length two linking vertices u and v.
Note that if u and v are linked by exactly 2n − 2 chains of even length and all colorful
chordless lantern have degree equal to two, then H has (2n− 2)/2 edges.

Lemma 3.4. Two even-size chains γα
β (u, v) and γβ

α(u, v) are always compatible.

Proof. Observe that the subgraph of K2n formed by the union of the edges colored with
α and β always form one or more cycles. Thus, the chains γα

β (u, v) and γβ
α(u, v) have no

edges in common.

1

3

2

5

Figure 3.6: Graph H constructed using the even-size chains linking the vertices v2 and v3
of the edge colored graph K6 in Figure 3.1, whose vertices {1, 2, 3, 5} represent the four
colors found in these chains.
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Lemma 3.5. If there is an even-size chain γα
β (u, v), then there is an even-size chain

γβ
α(u, v).

Proof. Since γα
β (u, v) has even size, then its first and last edges are colored, respectively,

with the colors α and β. It is known from Lemma 3.4 that γα
β (u, v) is in a bichromatic

cycle. Thus there must be an even-size chain γβ
α(u, v) in such a cycle.

Lemma 3.6. The number of edges in H is equal to half the number of chains used to
construct H.

Proof. From Lemma 3.5, for each pair of chains with the same colors connecting u and
v, there will be an edge in the graph H. Thus, the result follows.

Lemma 3.7. Each edge of H represents a compatible balanced set of two chains.

Proof. From Lemmas 3.4 and 3.5, an edge corresponds to two even-size compatible chains
γα
β (u, v) and γβ

α(u, v). Notice that for the set {γα
β (u, v), γ

β
α(u, v)}, the colors α and β

belong to two chains and the other colors are not present. Thus, {γα
β (u, v), γ

β
α(u, v)} is a

compatible balanced set.

Lemma 3.8. Each k-cycle in H represents a balanced set of k chains.

Proof. In a k-cycle (e1, e2, . . . , ek) in the graph H, the chain represented by edge ei has its
second color equal to the first color of the chain represented by edge ei+1, for 1 ≤ i < k.
In addition, the chain represented by edge ek has its second color equal to the first color of
the chain represented by edge e1. This implies that the k colors represented in this k-cycle
are present at the edges of exactly two chains, thus this k-cycle represents a balanced set
of k chains.

Notice that the balanced sets defined in Lemma 3.8 are not necessarily compatible.

3.3.2.2 Two strategies to obtain compatible balanced sets

In what follows, we present two strategies to be used in this phase: the complete
systematic and the incomplete systematic. Both strategies obtain compatible balanced
sets by identifying cycles in the auxiliary graph H. The complete systematic strategy ob-
tains such cycles using backtracking-based enumeration while the incomplete systematic
traverses H using graph-search algorithms such as depth-first search (DFS).

Given the graph H as input, for each k-cycle (x1, . . . , xk, x1) obtained, we extract the
chains represented by the edges of this cycle, e = xixi+1 for all 1 ≤ i < k and e = xkx1,
such that the chain γxi

xi+1
(u, v) is represented by the edge e = xixi+1. Thus, each k-cycle

represents a balanced set of k chains. Note that the chains extracted from the cycle de-
pend on the vertex order, so cycles (x1, . . . , xk, x1) and (x1, xk, . . . , x1) represent distinct
balanced sets, since γx1

xk
(u, v) ̸= γxk

x1
(u, v). Finally, for each edge of H we obtain a com-

patible balanced set consisting by the two chains that have the two colors associated with
the labels of the vertices connected by this edge. Example 4 presents all the compatible
balanced sets extracted from the cycles or edges of the graph H depicted in Figure 3.6.



40 THE GENERALIZED PARTIAL TEAM SWAP NEIGHBORHOOD

Example 4. In the graph of Figure 3.6, the cycles (1, 2, 5, 3, 1) and cycle (1, 3, 5, 2, 1)
represent different balanced sets with four chains. However, only the first cycle represents
a compatible balanced set, namely, {γ1

2(v2, v3), γ
2
5(v2, v3), γ

5
3(v2, v3), γ

3
1(v2, v3)}. The sec-

ond cycle, on the other hand, represents the balanced set {γ1
3(v2, v3), γ

3
5(v2, v3), γ

5
2(v2, v3),

γ2
1(v2, v3)}, in which four pairs of chains are incompatible. At last, from edges e =

12, e = 25, e = 53, and e = 31, we obtain, respectively, the following compatible
balanced sets: {γ1

2(v2, v3), γ
2
1(v2, v3)}, {γ2

5(v2, v3), γ
5
2(v2, v3)}, {γ3

5(v2, v3), γ
5
3(v2, v3)}, and

{γ1
3(v2, v3), γ

3
1(v2, v3)}. In such a way, a total of five compatible balanced sets are built.

Figure 3.7 illustrates these five compatible balanced sets. △

v2 v3
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v2 v3

v4 v6
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v4
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v2 v3

v6 v4

v1
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v1

v3

v5

v4
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1
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5

5

3

(a) {γ1
2(v2, v3), γ

2
5(v2, v3), γ

5
3(v2, v3), γ

3
1(v2, v3)}

2
1 2

1

21

(b) {γ1
2(v2, v3), γ

2
1(v2, v3)}

5
2 5

2

52

(c) {γ2
5(v2, v3), γ

5
2(v2, v3)}

3

5 3

5

35

(d) {γ3
5(v2, v3), γ

5
3(v2, v3)}

1

3 1

3

3 1

(e) {γ1
3(v2, v3), γ

3
1(v2, v3)}

Figure 3.7: Five compatible balanced sets extracted from the cycles or edges of the graph
H depicted in Figure 3.6.

3.3.2.2.1 Complete systematic strategy

The complete systematic strategy traverses the graph H using a backtracking-based
enumeration algorithm that can find all the cycles in H that represent compatible bal-
anced sets. The procedure is described in Algorithms 2 and 3.
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Algorithm 2 receives as inputs the graph H and the list Lcomp. Initially, the list Lcycles

is initialized as empty (line 1). Lines 2-3 label all the vertices as unvisited. The foreach-
loop in lines 4-7 explores all vertices of H. For each vertex w ∈ H, P is initialized as a
single-vertex path (w) (line 5), x is set as w (line 6), and a call to BACKTRACKING
(Algorithm 3) is performed in line 7. Finally, the algorithm ends by returning the list
Lcycles containing all the cycles in H that represent compatible balanced sets (line 8).

Algorithm 2: ENUMERATE
Input : graph H and list Lcomp

Output: list Lcycles of cycles
1 Lcycles ← ∅;
2 foreach w ∈ H do
3 Mark w as unvisited ;

4 foreach w ∈ H do
5 P ← (w);
6 x← w;
7 BACKTRACKING (H,w, x, P,Lcomp,Lcycles);

8 return Lcycles;

Algorithm 3 is a recursive algorithm with backtracking used to explore cycles in graph
H. Algorithm 3 takes as input graph H, the root vertex w, a vertex x adjacent to w,
the path P , and two lists Lcomp, Lcycles. First, if vertex x is marked as visited, then the
algorithm returns (lines 1-2). In line 3, x is marked as visited. The foreach-loop in lines 4-
15 visits every unvisited vertex a adjacent to x. The variable compatible is set to True in
line 5. For each vertex a and for each edge yz belonging to path P (line 6), it is verified
whether γx

a (u, v) is incompatible with γy
z (u, v) in line 7. If they are incompatible, it means

that the addition of vertex a will not constitute a promising path (that is, a compatible
set). In this case, the variable compatible is set to False (line 8), the inner loop stops
(line 9), and the algorithm resumes. If the variable compatible is True (line 10), then,
there are two possibilities. Line 11 checks if a = w and in case this is true, it means that
the addition of vertex a forms a cycle, and thus the path P · (a) is inserted into Lcycles

(line 12). Otherwise (i.e., a ̸= w), the vertex a is appended to the end of the path P
(line 14) and line 15 makes a recursive call to Algorithm 3. Finally, at the end of the
algorithm, we mark x as unvisited (line 16) and remove it from the path P (line 17).

Observation. During the search, after visiting all successor vertices of a vertex w, we have
marked w as not visited. Thus making it possible to find all the cycles in the graph H
that represent compatible balanced sets. Note that, by selecting an unvisited vertex, we
have been selecting an edge that corresponds to a chain and this one may be incompatible
with the other chains, represented by the edges previously selected in this path. Then
we can perform a forward checking of the addition of this edge, ensuring that every cycle
found corresponds to a compatible set. In this way, no cycles representing incompatible
sets are accounted in graph H.
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Algorithm 3: BACKTRACKING
Input: graph H, vertices w, x ∈ H, path P , and lists Lcomp, Lcycles

1 if x is visited then
2 return;

3 Mark x as visited ;
4 foreach unvisited vertex a adjacent to x do
5 compatible← True;
6 foreach egde (y, z) ∈ P do
7 if chains γx

a (u, v) and γy
z (u, v) are incompatible then

8 compatible← False;
9 break;

10 if compatible = True then
11 if a = w then
12 Add P · (a) to Lcycles;

13 else
14 Add vertex a into P ;
15 BACKTRACKING (H,w, a, P,Lcomp,Lcycles);

16 Mark x as unvisited ;
17 Remove vertex x from P ;

3.3.2.2.2 Incomplete systematic strategy

The incomplete systematic strategy, which we describe in this section, traverses the
graph H using DFS. Starting from an unvisited vertex, the search recursively visits an
unvisited neighbor. Whenever the traversal reaches a vertex that was already visited be-
fore, the search continues from another unvisited vertex if there is any. Besides, whenever
a cycle is found, we extract the chains represented by the edges of this cycle, which repre-
sents a balanced set of chains, and the search continues from another unvisited vertex in
case there is any. The procedure is quite similar to that described in Algorithms 2 and 3.
The only difference is that in Algorithm 3 there is no line 16, since during the search no
vertex is marked as unvisited.

Note that the goal of both strategies is to find only the cycles in the graph H that rep-
resent compatible balanced sets. In preliminary studies, we used Tarjan’s algorithm (Tar-
jan, 1973), however, this algorithm proved to be unfeasible, as it exploits all the cycles
of the graph. Therefore, to enable the use of the GPTS neighborhood in larger graphs,
the algorithms described here were implemented.

3.3.3 The change phase

The change phase generates different neighbor colorings given as input a list Lbal of
compatible balanced sets obtained in the construction phase, the graph K2n, a coloring
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c, and two distinct vertices u, v ∈ K2n. Algorithm 4 describes the change phase. The
foreach loop in lines 1-5 is executed for each of the compatible balanced sets in Lbal.
First, the new coloring c′ is initialized as the input coloring c (line 2). After that, for
each chain γα

β (u, v) belonging to set, we exchange the color assignment of its edges in
order to change the coloring c′ (lines 3-4). In the following, the new neighbor coloring c′

is inserted into S (line 5). Finally, the list S of neighbor colorings is returned in line 6.
Algorithm 4: CHANGE-PHASE
Input : list Lbal, graph K2n, coloring c, and two distinct vertices u, v ∈ K2n

Output: list S of neighbor colorings
1 foreach set ∈ Lbal do
2 c′ ← c;
3 foreach γα

β (u, v) ∈ set do
4 Exchange the color assignment of edges in γα

β (u, v) ∈ c′;

5 Insert c′ into S;

6 return S;

Observation. Note that any chain or set of chains connecting a pair of vertices of K2n

is a subgraph of K2n. However, such a set of chains is valid for a GPTS move if it is a
compatible balanced set. In addition, it is not possible to perform a GPTS move using
a single chain, as it would imply an invalid resulting coloring. Observe that in each
subgraph constructed, one must obtain the same set of colors on edges that incident on
the two vertices used as parameters in the selection phase. Note that this will always
occur since the subgraph is constructed from a compatible balanced set. This implies
that each color is present in two or zero chains, thus ensuring the same set of colors at
the edges incident on these two vertices. Also, because it is a balanced set, the cardinality
of this set is equal to the number of colors present in the chains of this set.

3.4 SOME EXPERIMENTAL RESULTS FOR 1-FACTORIZATIONS OF SMALL
COMPLETE GRAPHS

In this section, we present a brief discussion on how the GPTS neighborhood increases the
connectivity of the non-isomorphic 1-factorization search space of K2n (for 8 ≤ 2n ≤ 12)
when compared to PRS and PTS neighborhood structures. To accomplish that we use
the graphs GPRS

2n , GPTS
2n , and GGPTS

2n , for 2n ∈ {8, 10, 12}. Subsection 3.4.1 investigates the
connectivity of these graphs and Subsection 3.4.2 reports some measures corresponding
to each of these graphs.

3.4.1 Connectivity of the non-isomorphic 1-factorization search space

In this subsection, we investigate the connectivity of the graphs GPRS
2n , GPTS

2n , and GGPTS
2n ,

for 2n ∈ {8, 10, 12}. To accomplish that we use the neighborhood structures PRS, PTS,
and GPTS and the sets of non-isomorphic 1-factorizations of K8 and K10, as well as
the set of Perfect 1-factorizations (P1Fs) of K12. We seek to answer whether, given any
1-factorization of K2n, it is possible to transform it into any other non-isomorphic 1-
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factorization, through a sequence of moves. Remember that if a neighborhood structure
is connected, it is possible, from any isomorphism class, to generate any other with a
finite number of moves using the neighborhood.

First, we report the results on the connectivity of the graphs GPRS
8 , GPTS

8 , and GGPTS
8 .

Figure 3.8 presents these three graphs. From left to right, the edge set of graphs GPRS
8 ,

GPTS
8 , and GGPTS

8 corresponds, respectively, to a set of moves in the neighborhood struc-
tures PRS, PTS, and GPTS. Each edge that connects the vertices Fa and Fb indicates
that the corresponding move is capable of generating a 1-factorization isomorphic to Fa

(resp. Fb) from a 1-factorization isomorphic to Fb (resp. Fa). Note that, the graph GPRS
8

(Figure 3.8 (a)) is disconnected, whereas the graphs GPTS
8 (Figure 3.8 (b)) and GGPTS

8

(Figure 3.8 (c)) are connected. In addition, the GPTS move operator is the only one
capable of directly connecting the 1-factorizations F2 and F5. The number of edges in
each graph is respectively 5, 6, and 7 edges.

F0

F1 F2

F4

F5

F3

F0

F1 F2

F4

F5

F3

F0

F1 F2

F4

F5

F3

(a) GPRS
8 (b) GPTS

8 (c) GGPTS
8

Figure 3.8: Three graphs GM8 . From left to right, the graphs GPRS
8 , GPTS

8 , and GGPTS
8 .

Experimental results on the connectivity of the graphs GPRS
10 , GPTS

10 , and GGPTS
10 , show

that the graph GPRS
10 is disconnected, whereas the graphs GPTS

10 and GGPTS
10 are connected.

The number of edges corresponding to the GPRS
10 , GPTS

10 , and GGPTS
10 , is equal to 1,667,

5,212, and 40,127, respectively.
According to Kaski et al. (2014), the graphs GPRS

12 and GPTS
12 are disconnected. Ad-

ditionally, there are five isolated vertices in GPRS
12 , each one representing an isomorphism

class of perfect 1-factorization. In GPTS
12 there are eight isolated vertices, including the

two that are isolated vertices in GPRS
12 . In other words, the graph formed by the union of

the edges sets for GPRS
12 and GPTS

12 , has only two isolated vertices, each one representing
a isomorphism class of perfect 1-factorization. Thus, such a graph has three connected
components: two involving an isolated vertex and one involving the remaining vertices.

Our experimental results using the set of non-isomorphic P1Fs of K12 and the GPTS
move operator, show that it is possible to transform any perfect 1-factorization into other
1-factorizations, which are not P1Fs. In other words, for both isolated vertices, the GPTS
move operator can connect them to other vertices. It was established in Ribeiro, Urrutia
and de Werra (2023) that the GPTS generalizes both PRS and PTS. Thus, we can
conclude that the graph GGPTS

12 is connected.
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3.4.2 Other graph measures

Let Fu and Fv be two vertices of a connected GM2n. The distance d(Fu,Fv) is the length of
the smallest chain (not a bichromatic chain) that links these two vertices. The eccentricity
of Fu is the maximum distance from Fu to any other vertex. The diameter and radius of
GM2n are the largest and smallest eccentricity of all vertices of GM2n, respectively. If a GM2n has
a radius equal to r, there exists some vertex that connects to all others through at most
r moves. A diameter equal to d implies that each pair of vertices can be connected by at
most d moves. Note that a disconnected graph has infinite radius and infinite diameter.
The density of a GM2n is the ratio between its number of edges and the number of possible
edges, that is, the density of a graph G = (V,E) is 2|E|

|V |(|V |−1)
.

Table 3.1 presents the density (den), radius (rad), and diameter(dia) values for the
graphs GM8 and GM10 , for M ∈ {PRS, PTS,GPTS}. We can use the density as a metric
to indicate which move operator is able to directly connect more pairs of vertices. The
table shows that the GPTS move operator is able to directly connect more pairs of non-
isomorphic 1-factorizations of both K8 and K10. Note that for K8, the density values are
relatively similar. The GPRS

8 is approximately 39.39% smaller than GGPTS
8 , and GPTS

8 is
15% smaller than GGPTS

8 . However, for the K10, the density values differ significantly,
since the GPRS

10 and GPTS
10 are approximately 2342.86% and 677.27% smaller than GGPTS

10 ,
respectively. For both graphs GPTS

8 and GGPTS
8 , the radius is equal to 2 and that means

there is at least one vertex that requires 2 moves to connect to the other vertices. The
diameter equal to 4 and equal to 3, respectively, for the graphs GPTS

8 and GGPTS
8 , indicates

that every pair of vertices requires, at most, 4 and 3 moves to connect to each other. For
the graph GPTS

10 the radius is equal to 3 and the diameter equal to 6. For the graph GGPTS
10

the radius is equal to 2 and the diameter equal to 4.

Table 3.1: Density, radius, and diameter values for GM8 and GM10 , for M ∈
{PRS, PTS,GPTS}.

M
GM8 GM10

den rad dia den rad dia

PRS 0.33 ∞ ∞ 0.021 ∞ ∞
PTS 0.40 2 4 0.066 3 6

GPTS 0.46 2 3 0.513 2 4

Given our hardware limitations, we do not report values for the graph GM12 . Accord-
ing to Kaski et al. (2014), the density of GPTS

12 is 0.0000001295 (and that of GPRS
12 is

0.0000000423).
The results showed that the GPTS neighborhood structure increases the connectivity

of the non-isomorphic 1-factorization search space of K2n (for 8 ≤ 2n ≤ 12) when com-
pared to PRS and PTS neighborhood structures. Although GPTS is more efficient at
directly connecting more pairs of non-isomorphic 1-factorizations of K2n, exploring the
GPTS neighborhood has a higher computational cost than exploring the PRS and PTS
neighborhoods. This is because, in addition to GPTS generalizing PRS and PTS, in this
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neighborhood, there are more neighbor colorings than those found in the PRS and PTS
neighborhoods. In Subsection 3.5.2, we illustrate a comparison of the number of neighbor
colorings obtained using each of these neighborhood structures.

3.5 PRELIMINARY COMPUTATIONAL RESULTS

In this section, we summarize the results of the preliminary experiments carried out to
evaluate the performance of the neighborhood structures PRS, PTS, and GPTS using
the WCOEV Minimization Problem (Guedes; Ribeiro, 2011) as a case study. We also
illustrate a comparison of the number of neighbor colorings obtained using each of these
neighborhood structures. Subsection 3.5.1 presents the results on the performance of
neighborhood structures and Subsection 3.5.2 illustrates the comparison as to the number
of neighbor colorings.

3.5.1 Experimental results

In the following, we describe the WCOEV Minimization Problem. Let a, b, and c be
three teams from an SRR tournament with 2n teams. If team c plays against teams a
and b in two consecutive rounds, team b is said to receive a carry-over effect from team
a. Let Cab denote the number of times team b receives a carry-over effect from team a
during the tournament. In the WCOEV Minimization Problem, we assign a weight wab

to every ordered pair (a, b) of teams and minimize the total weighted carry-over effects
value, given by WCOEV =

∑2n
a=1

∑2n
b=1 wab × C2

ab.
In order to conduct the experiments, instances for the WCOEV Minimization Problem

were used. In each experiment, we evaluated the performance of neighborhood structures
through a local search based on one iteration of the best improvement strategy. Al-
gorithm 5 details the procedure. First, the algorithm starts by constructing an initial
solution s with the circle method (line 1). After that, the solution s⋆ is set as s (line 2).
Then, a local search procedure is applied (line 3) to the initial solution s, using the GPTS
(complete or incomplete systematic), PRS, or PTS neighborhood structure. After that,
for each solution s′ (neighbor of s), it is verified whether the cost function of s′ is smaller
than the cost function of s⋆ (line 4). In this case, s⋆ is replaced by s′ in line 5. Finally,
the algorithm ends by returning the local optimum solution s⋆ in line 6.

Algorithm 5: SINGLE-ITERATION-BEST-IMPROVEMENT
1 Build a solution s with the circle method;
2 s⋆ ← s;
3 foreach solution s′ ∈ V(s) do
4 if f(s′) < f(s⋆) then
5 s⋆ ← s′;

6 return s⋆;

All the experiments were performed on a machine running under Ubuntu 22.04.1 LTS
with an Intel Core i5-9300H 2.40 GHz processor and 8 GB of RAM. The codes were
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written in C++ and compiled with g++ version 11.3.0, using the options ’-O3’ and
’-std=c++20’.

In the remainder of this section, the GPTS complete systematic may be referenced as
GPTS-C. Likewise, the GPTS incomplete systematic may be referenced as GPTS-I.

3.5.1.1 Results

In this subsubsection, we present the experiments and discuss the results found. Each
experiment was carried out using 10 instances generated by Guedes and Ribeiro (2011).
Each instance has a size corresponding to the number of teams involved in the tournament.
On all instances (except for instances of size equal to 24) and for each of the neighbor-
hood structures, Algorithm 5 was run for 100 distinct (and isomorphic) 1-factorizations.
Whereas, for the two instances of size equal to 24, this Algorithm 5 was run for 10 distinct
(and isomorphic) 1-factorizations, for each the neighborhood structures. We reduced to
10 distinct 1-factorizations because, when using GPTS-C for instances of size 24, the
execution took about 91 hours. The results were compared over the cost function value.

Table 3.2 presents the results on the performance of neighborhood structures. Ob-
serving the table, each row represents an instance. The first column shows the instance
sizes and the second column gives the instance names. The third, fourth, fifth, and
sixth columns presents the average percentage improvement of the cost function value
obtained using the PRS, PTS, GPTS-C, and GPTS-I, respectively, considering all initial
1-factorizations. For each initial 1-factorization and each neighborhood, the value was
computed as f(s)−f(s⋆)

f(s)
× 100%, where f(s) stands for the initial cost function value and

f(s⋆) represents the value obtained with the best improvement strategy using the cor-
responding neighborhood structure. Experimental results showed that for all instances,
GPTS-C and GPTS-I outperform PRS and PTS neighborhood structures. Finally, as
expected, it is observed that GPTS-C outperforms GPTS-I, regardless of the instance.

Table 3.2: Numerical results for the WCOEV Minimization Problem, considering a set
of distinct (and isomorphic) 1-factorizations of K2n for each instance.

Size Instance PRS PTS GPTS-C GPTS-I

8 Perturbed,8,C 31.5% 28.0% 41.9% 41.2%
10 Perturbed,10,C 44.6% 35.3% 54.7% 52.1%
12 Perturbed,12,C 47.7% 24.0% 66.1% 62.6%
14 Perturbed,14,C 48.3% 17.7% 71.3% 67.7%
16 Perturbed,16,C 36.4% 26.9% 60.0% 55.2%
18 Perturbed,18,C 39.9% 17.4% 72.4% 67.7%
20 Perturbed,20,C 40.9% 27.5% 83.4% 79.4%
22 Brazil,22,2005 36.3% 32.8% 78.8% 74.0%
24 Brazil,24,2003 33.6% 27.3% 82.9% 78.0%
24 Brazil,24,2004 32.6% 17.6% 81.0% 75.3%
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Lastly, we present a comparison of the duration of the experiments by considering a
single 1-factorization per instance. In all experiments, when using the PRS or PTS, the
execution lasted less than 1 second, regardless of the instance. In the experiments for
instances of size smaller than or equal to 20, when using GPTS-I the execution lasted less
than 1 second. On the other hand, for instances of size equal to 22 and 24, the execution
took about 1 and 3 seconds, respectively. In the experiments for instances of size smaller
than or equal to 18, when using GPTS-C the execution lasted less than 1 second. On
the other hand, for instances of size equal to 20, 22, and 24, the execution took about
29 minutes, 07 hours, and 91 hours, respectively. According to these durations and the
obtained performances, the GPTS-I is a viable alternative to be used for instances greater
than or equal to 20, rather than GPTS-C.

3.5.2 Number of neighbor colorings

This subsection illustrates a comparison of the number of neighbor colorings obtained by
using the PRS, PTS, and GPTS neighborhood structures. To accomplish that we use
nine 1-factorizations of K2n (for 8 ≤ 2n ≤ 24), generated by the circle method. For each
1-factorization and neighborhood structure, we counted the number of neighbor colorings
obtained by using this neighborhood. The number of neighbors is determined according
to the definitions described in Subsection 3.1.1. Table 3.3 shows the number of neigh-
bor colorings obtained by using the PRS, PTS, and GPTS (complete and incomplete
systematic) neighborhood structures. Note that even using the incomplete systematic
(for 2n ∈ {8, 10}), the GPTS neighborhood obtains at least three times more neighbor
colorings than the sum of neighbor colorings obtained when using PRS and PTS. Addi-
tionally, the incomplete systematic obtains at least twelve times more neighbor colorings
than the sum of neighbor colorings obtained when using PRS and PTS, for 2n ≥ 12.

Table 3.3: Number of neighbor colorings obtained by using the PRS, PTS, and GPTS
(complete and incomplete systematic) neighborhood structures.

K2n PRS PTS GPTS-C GPTS-I

K8 21 35 224 168
K10 45 72 990 394
K12 55 66 16,005 1,452
K14 78 91 71,032 3,177
K16 165 285 308,940 4,089
K18 136 170 8,306,421 11,485
K20 171 190 77,178,513 18,731
K22 336 567 1,287,482,301 21,707
K24 253 299 16,311,678,499 45,635
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4
CONCLUDING REMARKS

This dissertation proposed two new invariants (denoted lantern profiles and even-size
bichromatic chains) for 1-factorizations of K2n and presented algorithms to systematically
explore the Generalized Partial Team Swap (GPTS) neighborhood structure, proposed
in Januario et al. (2016). In this dissertation, we described seven invariants available in
the literature. For all the nine invariants presented, we analyzed their size and compu-
tational complexity. Furthermore, we performed experiments to evaluate the strength
of the invariants. Last, the strengths of the combinations of invariants were also evalu-
ated, showing a complementarity in their distinguishing abilities. A preliminary version
of the results in Chapter 2 was presented at the LV Simpósio Brasileiro de Pesquisa
Operacional (Matos et al., 2023).

An important contribution of this work was to present a study on algorithmic and
computational aspects of the GPTS neighborhood structure. Furthermore, two strategies
to obtain compatible balanced sets were presented. This dissertation provided a brief
discussion on how the GPTS neighborhood structure increases the connectivity of the
non-isomorphic 1-factorization search space of K2n (for 8 ≤ 2n ≤ 12) when compared
to Partial Round Swap (PRS) and Partial Team Swap (PTS) neighborhood structures.
We showed that the GPTS move operator is able to directly connect more pairs of non-
isomorphic 1- factorizations of both K8 and K10. Additionally, the GPTS move operator
is the only one capable of connecting the non-isomorphic 1-factorization search space
of K12. Finally, preliminary computational experiments were conducted to evaluate the
performance of the GPTS, PRS, and PTS neighborhood structures, using the Weighted
Carry-Over Effects Value (WCOEV) Minimization Problem as a case study.

IDEAS FOR FUTURE RESEARCH

Considering that all the invariants presented in this work are not complete, it is relevant
to propose new invariants for 1-factorizations of K2n. Additionally, to obtain more robust
results, it will be necessary to computational experiments to calculate the strength of the
invariants on the full set of non-isomorphic 1-factorizations of K12.

49
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Regarding the study of aspects of the GPTS neighborhood, another research direction
would be to analyze the structure of the subgraphs obtained in the GPTS neighborhood to
identify patterns that facilitate the exploration of the solution space graph. Furthermore,
it is important to study other strategies to obtain compatible balanced sets in addition
to the two strategies presented in Chapter 3.
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