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Grundy number Γc(G) gives the worst-case behavior for the connected first-fit coloring
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we present heuristic and exact approaches to the Grundy coloring problem and the
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obtaining the Grundy number and the connected Grundy number, respectively. This
study proposes the use of a algorithm Biased Random-Key Genetic Algorithm (BRKGA)
and the use of integer programming formulations using a more traditional (standard)
approach and a representative one. A new combinatorial upper bound is also propo-
sed that is valid for both problems and an algorithm using dynamic programming for
its calculation. The computational experiments show that the new upper bound can
improve over a well-established combinatorial bound available in the literature for se-
veral instances. The results also evidence that the formulation by representatives has
an overall superior performance than the standard formulation, achieving better re-
sults for the denser instances, while the latter performs better for the sparser ones to
the Grundy coloring problem. However, we show that these types of integer program-
ming formulations are computationally impractical for the connected version. Further-
more, the BRKGA can find high-quality solutions for both problems and can be used
with confidence in large instances where the formulations fail for the Grundy coloring
problem.
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RESUMO

Dado um grafo G, seu número de Grundy Γ(G) define o comportamento de pior caso para a
conhecida e amplamente utilizada heurística de coloração gulosa first-fit. Mais especificamente,
Γ(G) é o maior k para o qual uma k-coloração pode ser obtida com a heurística first-fit. O
número de Grundy conexo Γc(G) fornece o comportamento do pior caso para a heurística
de coloração first-fit conexa, ou seja, aquela em que cada vértice a ser colorido, exceto o
primeiro, é adicionado adjacente a um vértice já colorido. Ambos os problemas são NP-difíceis.
Nesta dissertação, apresentamos abordagens heurísticas e exatas para o problema da coloração
de Grundy e o problema de coloração de Grundy conexo, que são problemas de otimização
consistindo na obtenção do número de Grundy e do número de Grundy conexo, respectivamente.
Nesse estudo é proposto o uso do algoritmo genético de chaves aleatórias viesado (Biased
random-key genetic algorithm - BRKGA) e do uso de formulações de programação inteira
usando uma abordagem mais tradicional (padrão) e uma por representativos. Também é proposto
um novo limite superior combinatório que é válido para ambos os problemas e um algoritmo
usando programação dinâmica para o seu cálculo. Os experimentos computacionais mostram
que o novo limite superior pode melhorar o limite para vários casos em relação a um limite
combinatório bem estabelecido disponível na literatura. Os resultados também evidenciam
que a formulação por representativos tem um desempenho geral superior que a formulação
padrão, alcançando melhores resultados para as instâncias mais densas, enquanto esta última tem
melhor desempenho para as mais esparsas para o problema dos números de Grundy. Contudo
mostramos que este tipo de formulações com programação inteira são computacionalmente
impraticáveis para a versão conexa. Além disso, o BRKGA pode encontrar soluções de alta
qualidade para ambos os problemas e pode ser usado com confiança em grandes instâncias onde
as formulações falham para o problema da coloração de Grundy.

Palavras-chave: otimização combinatória; coloração de grafos; número de Grundy; BRKGA;
análise de pior caso.
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ABSTRACT

Given a graph G, its Grundy number Γ(G) defines the worst-case behavior for the well-
known and widely used first-fit greedy coloring heuristic. Specifically, Γ(G) is the largest
k for which a k-coloring can be obtained with the first-fit heuristic. The connected Grundy
number Γc(G) gives the worst-case behavior for the connected first-fit coloring heuristic, that
is, one in which each vertex to be colored, except the first, is added adjacent to an already
colored vertex. Both problems are NP-hard. In this master’s thesis, we present heuristic and
exact approaches to the Grundy coloring problem and the connected Grundy coloring problem,
which are optimization problems consisting of obtaining the Grundy number and the connected
Grundy number, respectively. This study proposes the use of a algorithm Biased Random-Key
Genetic Algorithm (BRKGA) and the use of integer programming formulations using a more
traditional (standard) approach and a representative one. A new combinatorial upper bound is
also proposed that is valid for both problems and an algorithm using dynamic programming for
its calculation. The computational experiments show that the new upper bound can improve
over a well-established combinatorial bound available in the literature for several instances. The
results also evidence that the formulation by representatives has an overall superior performance
than the standard formulation, achieving better results for the denser instances, while the latter
performs better for the sparser ones to the Grundy coloring problem. However, we show
that these types of integer programming formulations are computationally impractical for the
connected version. Furthermore, the BRKGA can find high-quality solutions for both problems
and can be used with confidence in large instances where the formulations fail for the Grundy
coloring problem.

Keywords: combinatorial optimization; graph coloring; Grundy number; BRKGA; worst-case
analysis.
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LIST OF MAIN NOTATIONS

The list below presents a summary of the main notations and definitions to this master’s
thesis and which will be used throughout this work, unless otherwise stated.

• G: simple undirected graph.

• V: set of vertices.

• E: set of edges.

• K: set of colors.

• c: color mapping function.

• c(v): color of vertex v.

• χ(G): chromatic number.

• N(v): neighborhood of v.

• N̄(v): anti-neighborhood of v.

• N̄[v]: closed anti-neighborhood of v.

• d(v): degree of v.

• ∆(G): the largest degree of G.

• den(G): the density of G.

• σ: vertex ordering.

• σc: connected vertex ordering.

• Γ(G): Grundy number.

• Γc(G): connected Grundy number.

• p: population size.

• pe: size of the elite population (%).

• pm: size of the mutant population (%).

• ρe: elite inheritance probability (%).

• ng: number of generations.
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Chapter

1
INTRODUCTION

1.1 MOTIVATION

Combinatorial optimization problems (COPs) consist of obtaining the best solution (mini-
mum or maximum) in a discrete set of possible solutions. Some COPs can be represented as
graph coloring problems and have wide practical applications in the real world, some examples
are scheduling,(Leighton, 1979; Gamache, Hertz, & Ouellet, 2007), timetabling (de Werra, 1985;
Burke, McCollum, Meisels, Petrovic, & Qu, 2007; Babaei, Karimpour, & Hadidi, 2015), register
allocation (Chow & Hennessy, 1990; Smith, Ramsey, & Holloway, 2004), communication
networks (Zhu, Dai, & Wang, 2015; Pateromichelakis & Samdanis, 2018), video synopsis (He,
Gao, Sang, Qu, & Han, 2017), and railway station design (Jovanović, Pavlović, Belošević, &
Milinković, 2020). Several of these problems are NP-hard, and for this reason, it is not known
whether there is an algorithm that can optimally solve them efficiently (polynomial time).

When it comes to optimization methods, we can classify them based on their capacity to
certify optimality. This classification includes exact methods and heuristics. The main difference
between them is that given enough time, an exact method will find the optimal solution, whereas
a heuristic is not able to certify that it has found the optimal solution. However, this extra time
for the exact methods to prove that they found the optimal solution can be very long. Sometimes
this approach could take a long time even to find an initial solution for a problem. Although
the heuristic does not guarantee an optimal solution, it can provide you with good solutions in
a satisfactory time, so it would be interesting to be able to evaluate how good a heuristic is to
solve a problem and even more to be able to analyze its worst case (if the result is close to the
worst possible value).

1.2 GOALS AND MAIN CONTRIBUTION

In this master’s thesis, our main objective is to study the effectiveness of applying the
biased random-key genetic algorithm (BRKGA) and formulations to determine the Grundy
and connected Grundy numbers. Additionally, we seek to analyze the problem’s structure to
derive an upper bound based on the vertex neighborhood. Furthermore, we aim to assess the
effectiveness of the methods in establishing upper bounds through a computational study for

1



1.3 ORGANIZATION 2

a large set of instances. We also intend to assess their performance as a worst-case analysis
criterion for certain minimization greedy criteria.

Unlike the literature on the problems studied in this work, our approach involves employing
both heuristic and exact methods, utilizing two integer programming formulations: standard and
by representatives. Additionally, we established the first benchmark for the problems through
computational tests with a diverse set of instances, since there are no tests on instances of the
approaches proposed in the literature. We also provide a new combinatorial upper bound that is
valid for both problems and can be computed in polynomial time using dynamic programming.
Finally, we will conduct a comparison of methods that aim to minimize the number of colors,
representing the worst-case scenario for them.

1.3 ORGANIZATION

The remainder of this work is organized as follows. Chapter 2 presents some basic definitions
and explanations of the problem, greedy criteria, integer programming (IP), and BRKGA
metaheuristic. Chapter 3 provides a literature review of related works. Chapter 4 presents a
new combinatorial upper bound, two IP formulations, a biased random-key genetic algorithm
(BRKGA) metaheuristic applied to the Grundy coloring problem, and computational experiments.
Chapter 5 presents the BRKGA metaheuristic applied to the connected Grundy coloring problem,
two IP formulations, and computational experiments. Finally, Chapter 6 details the concluding
remarks of this master’s thesis and future works.



Chapter

2
DEFINITIONS

2.1 BASIC DEFINITIONS

Given a simple undirected graph G = (V, E), where V is the set of vertices and E = {uv | u, v ∈
V} and a set of colors K, a vertex coloring, or simply coloring, is the mapping c : V → K. A
coloring is said a proper coloring when c(u) , c(v) for all uv ∈ E. A k-coloring is a proper
coloring with exactly k colors. Another way to define it would be through color classes, in
which a k-coloring of graph G is a partition {V1,V2, ...,Vk} of V into k independent sets, where
these sets are the color classes.

The chromatic number of a graph G, χ(G), is the smallest k such that G admits a proper
k-coloring. For simplicity, in the remainder of this text, a coloring is defined as proper unless
stated otherwise. Furthermore, N(v) denote the neighborhood of v which is composed of all
vertices adjacent to v in a graph G and d(v) the degree of v, where d(v) = |N(v)|; and by N̄(v)
the anti-neighborhood of v (formed by the vertices that are not adjacent to v). Additionally,
let N̄[v] = N̄(v) ∪ {v} be the closed anti-neighborhood of v. Define the largest degree in G as
∆(G) = max{d(v)|v ∈ V} and the density of a graph as den(G) = (2 ∗ E)/(|V | ∗ (|V | − 1)).

Consider the greedy coloring heuristic first-fit which assigns to each vertex v the smallest
color that is not present in its neighborhood and given a vertex coloring order σ = (v1, v2, . . . , vn),
note that there is always exist an order σ for which the first-fit coloring heuristic gets a χ(G)-
coloring (Benevides et al., 2014). A Grundy coloring is a coloring that respects the properties
imposed by the first-fit heuristic for any order σ. The Grundy chromatic number (or simply
Grundy number), Γ(G), also known as first-fit chromatic number, is the largest k such that G
admits a Grundy k-coloring, considering an order σ. The Grundy coloring problem is defined as
an optimization problem that seeks to maximize the number of colors in a Grundy coloring.

Figure 2.1 presents two examples of coloring the same graph following the same order
σ = (b, d, e, c, f , a) in which one is a Grundy coloring and the other is not. The Subfigure 2.1(b)
does not represent a Grundy coloring. This is because, when coloring the vertex c, the smallest
color not present in its neighborhood was not selected; in this case, it would be 1.

An ordering σc = (v1, ..., vn) is said to be connected if the subgraph induced by {v1, ..., vi}

is connected for all 1 ≤ i ≤ n. A connected Grundy coloring respects the already mentioned
properties of the first-fit coloring heuristic using a connected ordering σc. The connected Grundy

3
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(a) Grundy 3-coloring.
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(b) Non-Grundy coloring.

Figure 2.1: Coloring examples using σ = (b, d, e, c, f , a)

number, Γc(G), is a more restricted variant where it defines the largest value of k such that G
admits a connected k-Grundy-coloring.

Figure 2.2 shows two examples of Grundy colorings, the one on the left 2.2(a) is a non-
connected coloring since the order is not connected once the first vertex is selected, and the next
one is not a neighbor of the same. It can be noted that there is no way to achieve this coloring
in a connected way. This is because for the vertex a receive color 4 and b receive color 3, the
vertices {d,c,e,f} need to be colored first and this subset does not induce a connected subgraph.
The right one 2.2(b) uses a connected order (σc) and colors each vertex respecting the first-fit
heuristic property, therefore the second order generates a connected Grundy coloring.

4a
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c
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d

2 e
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(a) σ = ( f , d, e, c, b, a)
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2

b
1

c
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1 e
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(b) σc = ( f , b, c, a, e, d)

Figure 2.2: Difference in coloring when using a non-connected and connected order with the
first-fit heuristic.

Given the characteristics of the first-fit algorithm, a Grundy coloring can be uniquely
determined by the order σ of the vertices, since the algorithm establishes that there will always
be only one choice for the color (the smallest possible color) for that vertex, depending solely
on the color of the neighbors that have already been colored, that is, that precede it in σ. The
same is valid for the connected version of the problem with a σc sequence.
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2.2 GREEDY CRITERIA

Greedy algorithms do not always produce optimal solutions, but for many problems, they
do or can produce good solutions. A greedy algorithm consistently opts for the most favorable
choice at the current moment (Cormen, Leiserson, Rivest, & Stein, 2009). This choice is based
on a greedy criterion that seems promising for the problem. Below we list some well-known
greedy criteria in the literature for graph coloring.

• maximum-degree first (MDF): Defines a sequence (v1, . . . , vn) in which the highest degree
vertex is iteratively chosen;

• adaptive-maximum degree first (AMDF): Defines a sequence (v1, . . . , vn) similar to MDF,
with the difference that the degrees of the neighbors of v are decreased by one whenever v
is selected;

• smallest-degree last (SDL) (Matula & Beck, 1983): Constructs the sequence (v1, . . . , vn)
based on the gradual removal of the lowest-degree vertex in a subgraph H ⊆ G;

• DSatur (Brélaz, 1979): Builds a sequence (v1, . . . , vn) using an adaptive criterion based
on the maximum degree of saturation, where the degree of saturation of a vertex is equal
to the number of vertices with different colors that are adjacent to it;

• connected maximum-degree first (CMDF): Defines a sequence (v1, . . . , vn) in which the
highest degree vertex is iteratively chosen that is a neighbor of at least one previously
chosen vertex.

Each of these criteria will produce a sequence to which the first-fit coloring heuristic can be
applied. All these criteria aim to minimize the total number of colors used.

2.3 INTEGER PROGRAMMING

This section focuses on defining what integer programming is and how it can be applied to
graph coloring problems and mainly explains the concept of using a formulation by representa-
tives.

"Integer Programming is about ways to solve optimization problems with discrete or integer
variables" (Wolsey, 2020). A Mixed Integer Programming (MIP) can be written as:

max cx + hy (2.1)
Ax +Gy ≤ b, (2.2)
x ≥ 0 and integer, y ≥ 0 (2.3)

Where A is a m by n matrix, G is a m by p, c is a n row-vector, h is a p row-vector, x is a n
column-vector of integer variables, and y is a p column-vector of real variables. If all variables
are integer, so we can simplify them as:
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max cx (2.4)
Ax ≤ b, (2.5)
x ≥ 0 and integer (2.6)

The first element (2.4) is the objective function, which can be maximization or minimization.
The (2.5) represent the set of constraints of a problem, and (2.6) is the integrality constraints. This
approach has already proven to be effective in several graph optimization problems, including
coloring problems (Melo, Samer, & Urrutia, 2016; Dias, de Freitas, Maculan, & Michelon,
2021). In coloring problems, the classical (standard) method is to use a variable that indicates
which color was assigned to a vertex. Let’s take the coloring problem where our objective is to
determine the chromatic number as an example where we want to minimize the total number of
colors used but guarantee a proper coloring. Initially, define a graph G = (V, E) where V is the
set of vertices, E is the set of edges and k = {1, . . . , |V |} the set of possible colors that can be
attributed to a vertex.

To formulate this coloring problem as an integer program, consider the decision variables:

xkv =

{
1, if vertex v ∈ V receives color k ∈ Kv, i.e., the k-th color,
0, otherwise;

wk =

{
1, if color k ∈ K is used,
0, otherwise.

The coloring problem can thus be formulated as:

min
∑
k∈K

wk (2.7)

xkv + xkv ≤ 1, ∀ uv ∈ E (2.8)∑
k∈K

xkv = 1, ∀ v ∈ V (2.9)

xkv ≤ wk, ∀ k ∈ K and ∀ v ∈ V (2.10)
xkv ∈ {0, 1}, ∀v ∈ V, k ∈ K, (2.11)
wk ∈ {0, 1}, ∀k ∈ K. (2.12)

The objective function (2.7) aims to minimize the total number of colors used. Constraint
(2.8) guarantees a proper coloring. Constraint (2.9) implies that all vertices must receive exactly
one color and (2.10) a vertex v only can receive a color k if the color k was used (wk = 1).
Constraints (2.11) and (2.12) guarantee the integrality constraints.

Figure 2.3 illustrates a common problem of coloring problems that occur when using the
standard formulation presented previously, which are symmetrical solutions, the same happens
in the Grundy coloring problem and connected Grundy coloring problem. There are even more
symmetries there if we consider orders because for each of the subfigures, there are more than
twenty different vertex orderings that arrive at the same solution if applied the first-fit heuristic.
In the following section, another way of modeling the same problem will be presented, breaking
some symmetries.



2.3 INTEGER PROGRAMMING 7

2

a
1

b

2

c
1

d

2

e

(a) K1 = {b, d}, k2 = {a, c, e}
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(b) K1 = {a, c, e}, k2 = {b, d}

Figure 2.3: Example of possible solutions when coloring a graph using χ(G)-colors

2.3.1 Formulation by representatives

Formulations by representatives (Correa, 2004; Frota, Maculan, Noronha, & Ribeiro, 2010)
have been successfully applied to graph coloring and several other partitioning problems
(Campelo, 2005; Bahiense, Frota, Noronha, & Ribeiro, 2014; Melo & Ribeiro, 2015; Melo,
Queiroz, & Santos, 2021; Melo, Ribeiro, & Riveaux, 2022). Such formulations come from the
insight that one can represent subsets of vertices in the graph by choosing one vertex of the
subset to be its representative. To illustrate, let’s take the graph in Figure 2.3 and separate the
vertices by their color classes, so we have:

• V1: {a,c,e}

• V2: {b,d}

So if we consider this partition, we can see that they represent the two solutions, just
arbitrarily indicating which color each set represents and selecting a vertex from each set to
be the representative, in this case, we select the first by alphabetical order. Consequently,
symmetry was removed in solutions with the same number of colors that are generated by equal
partitioning of the vertices, and symmetry was removed within each set by defining a criterion
such as the first element in alphabetical order. This is the main idea behind the use formulation
by representatives for coloring problems.

A characteristic of coloring problems that need to guarantee a proper coloring is that there
are no two adjacent vertices within the same set Vi because this would imply that both have the
same color, therefore the construction always occurs with elements in the anti-neighborhood of
the representative.

Rewriting the formulation using the representative idea, we have the following decision
variables:

Xvu =

{
1, if vertex v ∈ V represents the color of vertex u ∈ N̄(v), for v ≤ u
0, otherwise;

Xvv =

{
1, if vertex v ∈ V is representative
0, otherwise;

Now this coloring problem using representative vertices in the decision variable can thus be
formulated as:
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min
∑
v∈V

Xvv (2.13)

Xvu + Xvw ≤ 1, ∀ v ∈ V, u,w ∈ N̄(v), s.t. uw ∈ E and v ≤ u < w (2.14)∑
v∈N̄[u],

v≤u

Xvu = 1, ∀ u ∈ V, (2.15)

Xvu ∈ {0, 1}, ∀v, u ∈ V, u ∈ N̄(v), s.t. v ≤ u. (2.16)

The objective function (2.13) aims to minimize the total number of representative vertices
and as each representative vertex refers to a color, consequently it minimizes the total number
of colors used. Constraint (2.14) guarantees that if two vertices are neighbors they cannot be
represented by the same vertex, i.e., they are not part of the same partition set, so they will
have different colors generating a proper coloring. Constraint (2.15) ensures that each vertex
is represented by exactly one vertex. The integrality of the variables is in the constraint (2.16).
Consequently, in the end, the formulation determines a partition of vertices that represent color
classes.

2.4 BIASED RANDOM-KEY GENETIC ALGORITHM

The biased random-key genetic algorithm (BRKGA) was introduced by Gonçalves and
Resende (2011) as a general-purpose search metaheuristic for finding good-quality solutions to
hard optimization problems. The BRKGA simplifies genetic algorithms in general by making
both the representation and the intensification-diversification mechanism problem-independent
as follows.

• Representation: Chromosomes in a BRKGA are represented as a vector of randomly
generated real numbers in the interval [0, 1), following the random-key genetic algorithm
by Bean (1994). Such random keys or alleles define, or encode, a single solution to the
problem at hand.

• Intensification: In the mating process of a BRKGA, which produces the next generation
of chromosomes, one parent is always an elite solution (i.e., one with a high fitness value).
Furthermore, such a parent has a higher probability of passing its characteristics (defined
by its alleles) to the offspring, the other one is a non-elite solution.

• Diversification: In every generation, a BRKGA introduces new randomly generated
solutions (i.e., mutants) in the population. This prevents premature convergence by
allowing the algorithm to escape from local optima regions.

Practitioners are left with the task of calculating the fitness of a chromosome, or decoding it.
Thus, the main component of a BRKGA implementation is its decoder, that is, a deterministic
algorithm responsible for mapping a chromosome to a possible solution of the optimization
problem at hand. Given a chromosome, the decoder maps it to a solution and computes its
objective value. This value is then associated with the chromosome’s fitness.
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In addition to the decoder, the BRKGA requires and is guided by the following parameters:
the population size (p), the size of the elite population (pe), the size of the mutant population
(pm), the elite inheritance probability (ρe), and the number of generations (ng) or some other
stopping criterion (such as maximum time).

NON- 
ELITE

NON- 
ELITE

ELITE ELITE

MUTANT

pe = 15%

actual population new population

pm = 10%

copy ELITE population

crossover

Figure 2.4: Example of how works the evolution stage of the BRKGA between two generations

Figure 2.4 illustrates the evolution between two generations, the entire ELITE population
is copied to the next generation, which guarantees non-decreasing (in maximization problems)
behavior of the value of the best solution, and the mutant population is created by generating
new chromosomes with random keys which is inserted directly into the new population, with no
"mutation" in the chromosomes coming from the previous generation.

The crossover (fig. 2.5) always occurs between a chromosome from the ELITE population
and a NON-ELITE chromosome, but there is a bias (ρe > 50%) so that there is a greater
probability of inheriting alleles from the ELITE chromosome.



Figure 2.5: Crossover between two chromosomes in which there is a bias for the inheritance of
alleles from the ELITE parent.
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3
RELATED WORKS

The concept of the Grundy number was first studied by Grundy (1939) in the context of game
theory and digraphs (Berge, 1973), where Γ(G) was related to the impartiality of a given game
state. This concept was formally introduced into graph theory by Christen and Selkow (1979)
when studying properties of perfect colorings in which some relationships were established
between the Grundy number Γ(G), the largest clique of a graph µ(G), the chromatic number
χ(G), and the ochromatic number ψ(G). The last one, the chromatic number was proposed
independently by Simmons (1983). Later it was demonstrated that ochromatic number and
Grundy number are equivalent in Erdős, Hare, Hedetniemi, and Laskar (1987).

The connected Grundy number, Γc(G), is a more restricted variant where it defines the largest
value of k such that G admits a connected k-Grundy-coloring. It should be noted that contrary
to what happens with greedy colorings, there are graphs that do not have a connected greedy
coloring with χ(G) colors (Benevides et al., 2014).

Studies on the Grundy number have focused especially on its complexity for specific graph
classes. Despite this, some algorithms have already been proposed to solve the problem, such
as a linear time algorithm to find a Grundy coloring in trees (Hedetniemi, Hedetniemi, &
Beyer, 1982), this result being extended in (Telle & Proskurowski, 1997) who proposed a
dynamic programming algorithm with complexity kO(w) ∗ 2O(wk) ∗ n = O(n3w2

), where w is the
(treewidth). Bonnet, Foucaud, Kim, and Sikora (2018) presented an exact exponential time
algorithm O(2.443n) to the Grundy number problem but left open the question whether there is
an O(cn) exact algorithm for the connected problem, with c a constant. However, there are no
computational results from the application of such proposed algorithms in any instance.

When it comes to computational complexity, determining whether Γ(G) ≥ k is NP-complete
for graphs in general (Goyal & Vishwanathan, 1997). Furthermore, the problem is NP-complete
even for the complement of bipartite graphs (Zaker, 2005, 2006) and for bipartite graphs (Havet
& Sampaio, 2013). However, it can be determined in polynomial time whether the Grundy
number is greater than k, as long as k is fixed (Zaker, 2006), on the other hand, it is NP-complete
to obtain the connected Grundy number for any k ≥ 7 (Bonnet et al., 2018). Effantin and
Kheddouci (2007) conduct a study on the Grundy number for the following classes of graphs:
stable, complete, path, cycle of order n, complete bipartite graphs in n + p vertices, and the
cartesian product of two graphs.

11
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The last class of graphs mentioned was the focus of the article in which they related the
behavior of the Grundy number for a graph G and the Grundy number for the cartesian product
between G and some other graph H. In particular, when assuming these graphs as bipartite, path,
complete, and a cycle of order m. Finally, the case of the cartesian product between multiple
path graphs was studied. Effantin and Kheddouci (2007) brought another interesting contribution
on this article was an algorithm on how to generate all graphs G with the minimum number
of edges such that Γ(G) = k, which can be very useful as a method to generate instances for
computational experiments where the optimum is already known, facilitating the evaluation of
methods for computing the Grundy number.

A sequence of r different vertices (u1, . . . , ur) of G is denoted a feasible Grundy sequence if,
for 1 ≤ i ≤ r, the degree of gi in G − {gi+1, . . . , gr} is at least i − 1. An available upper bound for
the Grundy number in G, denoted the stair factor ζ(G), is defined as the size of its maximum
cardinality feasible Grundy (Shi et al., 2005).

Note that, in addition to its theoretical aspects, the Grundy number has valuable applicability,
as it offers a quality performance comparison (worst-case scenario) for the greedy coloring
heuristic first-fit that is widely used (Gyárfás & Lehel, 1988; Al-Omari & Sabri, 2006; Ehmsen,
Favrholdt, Kohrt, & Mihai, 2010). It can also be used with the same comparative purpose for
other heuristics that aim to minimize the number of colors. Also, Effantin and Kheddouci (2007)
exemplified two practical applications for the Grundy number problem, related to scheduling
problems and multiprocessor architecture. Just think of a system in which a process Pi can only
be carried out if the processes P1, P2, ..., Pi−1 have been carried out. Therefore, calculating the
Grundy number would answer how many processes can be loaded in this architecture and how
many times we need to load processes in the architecture to be able to compute Pn.

Another concept adjacent to the Grundy number is partial Grundy coloring (Shi et al., 2005).
The basic idea when coloring vertices is to separate them into color classes {V1,V2, ...,Vk}, in
which each vertex appears in only one class, introducing the concept of Grundy vertex which
would be a vertex v ∈ Vi where it is neighboring at least one vertex V j for all j < i. In partial
coloring, for each color class there is at least one Grundy vertex. Then the partial Grundy number
(∂ Γ(G)) is the largest k such that the graph accepts a partial k-coloring. Shi et al. (2005) showed
that ∂ Γ(G) ≤ Γ(G) and ∂ Γ(G) ≤ ζ(G) ≤ ∆(G) + 1, which leads to the following extended result:

χ(G) ≤ ∂ Γ(G) ≤ Γ(G) ≤ ζ(G) ≤ ∆(G) + 1.

It should be noticed, however, that the difference Γ(G)−χ(G) can be arbitrarily large (Bonnet
et al., 2018). Figure 3.1 exemplifies how the difference can grow arbitrarily, just take two
binomial trees Tk−1 making the root of one a child of the root of the other, and the root of the
latter is declared as the root to generate a graph with Γ(Tk) = k and χ(Tk) = 2 (Aboulker, Bonnet,
Kim, & Sikora, 2023).

In this paper, it was shown that as long as a graph has a sufficiently large girth, then there is a
partial Grundy coloring for any viable Grundy sequence. Furthermore, if the waist of the graph
is greater than 8, then ∂ Γ(G) = ζ(G), and also presenting a linear time algorithm for obtaining
the Grundy number of a tree. Finally, obtaining the partial Grundy number is NP-hard, as shown
in an article through a reduction to the problem of whether the graph is 3-colorable (Shi et al.,
2005).
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(b) Grundy χ(T4)-coloring

Figure 3.1: Binomial tree T4 exemplifying the difference between Γ(G) and χ(G) where numbers
denote the color of each vertex, and which can be generated using the first-fit heuristic.

Connected colorings were also studied in Mota, Rocha, and Silva (2020), in which case
they investigated when χc(G) = χ(G) in H-free graph, being an H-free graph when a graph G
does not contain a copy of H as an induced subgraph. The theoretical results involve knowing
when one assumes that H belongs to a specific class of graphs, the problem of deciding whether
χ(G) ≤ k becomes trivial and when it is still NP-complete, the same for the decision problem
χc(G) ≤ k. Note that here we are dealing with the minimization problem.

Bonamy et al. (2021) did a study on connected edge coloring, in which colors are assigned
to the edges, always indicating the smallest color available for that edge. The minimum number
of colors is called the chromatic index χ′(G) and the maximum is called the Grundy index Γ′(G),
with χ′c(G) being defined as the smallest number of colors for a connected coloring of the edges.
It has been proven that it is NP-hard to determine whether χ′c(G) > χ′(G), but it is trivial in the
case of bipartite graphs resulting in χ′c(G) = χ′(G).

Furthermore, we observed that other problems are somehow related to Grundy coloring.
For example, Campêlo and Severín (2021) studied a more generic concept called the Grundy
dominant number. A legal dominant sequence of a graph is an ordered dominant set of vertices
where each element dominates at least one other not dominated by its predecessors in the
sequence, and the size of the largest sequence is called the Grundy dominant number.

This is a particular case of the Grundy coverage problem in hypergraphs, an edge coverage
problem, as previously mentioned, is called Grundy’s dominant number and also has a version
called Grundy’s total domination number (Campêlo & Severín, 2021). This problem originates
from a problem in the area of game theory, as well as the original problem, in which two players
have opposing interests, being exemplified as a problem in which companies compete for service
concessions, in which the government wants to maximize the number of companies that offer the
service and once the company serves a point A, it needs to provide the service to A’s neighbors.

Campêlo and Severín (2021) was one of the few articles that dealt with a variant of Grundy’s
problem and that proposed an algorithmic approach, using tabu search and integer programming
and that also provided the results of computational experiments on a set of instances already
used in the literature, as well as a real instance.

Masih and Zaker (2021) studied the relationship between the Grundy number and the b-
chromatic number, these two elements are important parameters for graph coloring problems and
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have been studied separately, and in this article, some relationships between them are established.
The same authors even established the relationship Γ(G) − logΓ(G) ≤ b(G), as long as the
graph has a sufficiently large girth (Masih & Zaker, 2022). Some other minor findings are more
specific to some specific classes of graphs.

Another related concept is that of graphs hard-to-color (Janczewski, Kubale, Manuszewski,
& Piwakowski, 2001), in which a graph is said to be hard-to-color for a given algorithm if every
implementation of that algorithm results in a non-optimal coloration. In this situation we are
talking about minimization algorithms in which their result is A(G) > χ(G), in the worst case
being A(G) = Γ(G).



Chapter

4
GRUNDY COLORING PROBLEM

This chapter presents the study carried out for the Grundy coloring problem. A new
combinatorial limit for the Grundy coloring problem is proposed in Section 4.1 as well as an
efficient way to compute it using dynamic programming. Two integer programming formulations
are presented in Section 4.2. The standard formulation incorporates the new proposed limit as
well as the stair-factor limit in an approach that aims to reduce the total number of variables and
constraints to be evaluated in relation to a form that does not take this into account. The other
formulation is by representatives that exploits the advantages compared to the standard approach
mentioned in Section 2.3.1. A metaheuristic approach using the BRKGA for the problem is
presented in Section 4.3. Finally, computational experiments with the analysis of the results are
presented in Section 4.4.

4.1 A NEW COMBINATORIAL UPPER BOUND

Consider the values ψ(v, k) for v ∈ V and k ∈ {1, . . . ,∆(G) + 1} recursively as

ψ(v, k) =
{

max{l | ∃(u1, . . . , ul−1) ⊆ N(v) such that ψ(ui, k − 1) ≥ i,∀i, 1 ≤ i ≤ l − 1}, if k ≥ 2;
1, otherwise.

Define the connected degree sequence value Ψ(G) as:

Ψ(G) = max
u∈V
{ψ(u,∆(G) + 1)}.

Proposition 1. Γ(G) ≤ Ψ(G) ≤ ∆(G) + 1.

Proof. Consider any feasible Grundy coloring c using k colors. Notice that any vertex can
receive color 1. On the other hand, for a vertex v to receive color k, all the other colors in
{1, . . . , k − 1} have to be already used for its neighbors. Recursively, each neighbor receiving
color i ∈ {2, . . . , k − 1} must have at least one neighbor with each of the colors in {1, . . . , i − 1}.
Therefore, c(v) ≤ ψ(v, c(v)). In addition, as ψ is a nondecreasing function of k, it follows that
ψ(v, c(v)) ≤ ψ(v,∆(G) + 1). Hence, Γ(G) ≤ Ψ(G).

15
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Proposition 2. Ψ(G) can be calculated in polynomial time.

Proof. We provide a simple O(|V |∆(G)2) dynamic programming-based algorithm for calculating
Ψ(G). We remark that ψ(v, k) can be calculated in linear time O(∆(G)) using dynamic program-
ming for each pair (v, k) if the values for ψ(u, k − 1) are known for every u ∈ V . To see how,
assume that the vertices in N(v) are in nondecreasing order based on the values ψ(u, k − 1),
as such an ordering can be performed in O(∆(G)) using counting sort. Define M( j) to be the
largest l such that there is a sequence (0, 1, . . . , l) in the vertices indexed from 0 to j, where
index 0 corresponds to a dummy vertex and 0 ≤ j ≤ |N(v)|. Besides, let P( j) be the last
element in such a sequence. Define M(0) = P(0) = 0. Thus, if d(v j) ≤ M( j − 1), we set
M( j) = M( j − 1) and P( j) = P( j − 1). Otherwise, we set M( j) = M( j − 1) + 1 and P( j) = j.
Finally, Ψ(G) = max

u∈V
{ψ(u,∆(G) + 1)}. Thus, the O(|V |∆(G)) elements of ψ can be calculated in

O(|∆(G)|) each, implying a total running time of O(|V |∆(G)2).

4.2 INTEGER PROGRAMMING FORMULATIONS

Integer programming (IP) has shown to be effective for tackling several graph optimization
problems, including graph coloring and variants (Melo et al., 2016; Furini, Malaguti, & Santini,
2018; de Freitas, Dias, Maculan, & Szwarcfiter, 2021; Dias et al., 2021; Marzo, Melo, Ribeiro,
& Santos, 2022; Melo & Ribeiro, 2022, 2023). In this section, we formulate the Grundy
coloring problem as integer programs. Section 4.2.1 presents a formulation applying a standard
methodology in integer programming for coloring problems, while Section 4.2.2 describes a
formulation employing a methodology known as representatives. In what follows, for the sake of
simplicity, denote the set of vertices by V = {1, . . . , n}. Besides, define the sequence of available
colors as K = {1, . . . ,min(ζ(G),Ψ(G))}, and Kv = {k′ ∈ K | k′ ≤ min(ζ(G), ψ(v,∆(G) + 1))} the
sequence of possible colors for the vertex v. Finally, define Vk = {v ∈ V | k ∈ Kv} as the set of
vertices that can receive the k-th color.

4.2.1 Standard formulation

To formulate the Grundy coloring problem as an integer program, consider the decision
variables:

xkv =

{
1, if vertex v ∈ V receives color k ∈ Kv, i.e., the k-th color,
0, otherwise;

wk =

{
1, if color k ∈ K is used,
0, otherwise.

The Grundy coloring problem can thus be formulated as:

max
∑
k∈K

wk (4.1)

xku + xkv ≤ wk, ∀k ∈ Kv ∩ Ku, uv ∈ E, (4.2)
xkv ≤ wk, ∀k ∈ Kv, v ∈ V, s.t. |N(v)| = 0, (4.3)
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k∈Kv

xkv = 1, ∀v ∈ V, (4.4)

wk ≤
∑
v∈Vk

xkv, ∀k ∈ K, (4.5)

xk′v ≤
∑

u∈N(v)∩Vk

xku, ∀v ∈ V, k, k′ ∈ Kv, with k < k′, (4.6)

wk′ ≤ wk, ∀k, k′ ∈ K, with k < k′, (4.7)
xkv ∈ {0, 1}, ∀v ∈ V, k ∈ Kv, (4.8)
wk ∈ {0, 1}, ∀k ∈ K. (4.9)

The objective function (4.1) maximizes the number of used colors. Constraints (4.2)-(4.3)
ensure that adjacent vertices do not receive the same color and that a vertex can only receive
a color when that color is used. Constraints (4.4) establish that each vertex receives exactly
one color. Constraints (4.5) determine that wk is only set to one if color k is used for at least
one vertex. Constraints (4.6) guarantee the Grundy property, i.e., that a color is only used for a
vertex if each of the previous colors was used for at least one of its neighbors. Constraints (4.7)
impose an order on the used colors. Constraints (4.8)-(4.9) define the integrality requirements
of the variables.

4.2.2 Formulation by representatives

In the following, we describe a formulation by representatives for the Grundy coloring
problem. Besides the variables representing the subsets of vertices, we use a second set of
variables to represent the relative order between the colors (representatives) to ensure the Grundy
property.

Consider the decision variables defined as follows:

Xvu =

{
1, if vertex v ∈ V represents the color of vertex u ∈ N̄(v), for v ≤ u;
0, otherwise;

Xvv =

{
1, if vertex v ∈ V is a representative,
0, otherwise;

yvu =


1, if vertices v, u ∈ V are representatives and the color of v precedes the

color of u, for v , u,
0, otherwise.

Additionally, let ϕv be a potential variable associated with each vertex v ∈ V . The potential
variables ensure the solution is acyclic by defining that the potential of a vertex increases as the
number of vertices preceding it in the sequence grows. The problem can be cast as the following
IP formulation by representatives:

max
∑
v∈V

Xvv (4.10)

Xuv + Xuw ≤ Xuu, ∀ u ∈ V, v,w ∈ N̄(u), s.t. vw ∈ E and u ≤ v < w, (4.11)
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Xuv ≤ Xuu, ∀ u ∈ V, v ∈ N̄(u), s.t. N(v) ∩ N̄(u) = ∅ and u ≤ v, (4.12)∑
v∈N̄[u],

v≤u

Xvu = 1, ∀ u ∈ V, (4.13)

Xuv ≤
∑

w∈N(v)∩N̄[p],
w≥p

Xpw + 1 − ypu, ∀ u, p ∈ V, v ∈ N̄[u], s.t. p , u and u ≤ v, (4.14)

yvu + yuv ≥ Xuu + Xvv − 1, ∀ u, v ∈ V, s.t. u < v, (4.15)
yuv + yvu ≤ Xuu, ∀ u, v ∈ V, s.t. u , v, (4.16)
ϕu − ϕv + 1 ≤ |V |(1 − yuv) ∀u, v ∈ V, s.t u , v, (4.17)
0 ≤ ϕv ≤ |V | − 1 ∀ v ∈ V, (4.18)
Xuv ∈ {0, 1}, ∀ u ∈ V, v ∈ N̄[u], s.t. u ≤ v, (4.19)
yuv ∈ {0, 1}, ∀ u, v ∈ V, s.t. u , v, (4.20)
ϕv ∈ R+, ∀ v ∈ V. (4.21)

The objective function (4.10) maximizes the number of representative vertices, which
determine the colors. Constraints (4.11)-(4.12) guarantee that adjacent vertices do not receive
the same color (do not have the same representative) and that a vertex can only represent others
if it is a representative. Constraints (4.13) ensure that every vertex has a color. Constraints
(4.14) force a vertex v receiving color u to have at least one neighbor w that receives the color
represented by a vertex p whenever the color represented by p precedes that of u. Constraints
(4.15)-(4.16) determine an order between two vertices if and only if both are representatives.
Constraints (4.17)-(4.18) guarantee the order between the representative vertices. Constraints
(4.17) implies that if a representative vertex precedes another one, then it must have a smaller
potential. Constraints (4.18) define the potential range of a vertex. Constraints (4.19)-(4.20)
define the integrality requirements on the variables. Constraints (4.21) restrain the domain of
the potential variables.

4.3 BIASED RANDOM-KEY GENETIC ALGORITHM

This section presents the chromosome encoding and the decoder algorithm used in BRKGA
for the Grundy coloring problem.

4.3.1 Solution encoding

Each solution is encoded as a vector x of random keys of length Υ = |V |, where the i-th
random key corresponds to the i-th vertex of G. So, in the example 4.1 the first vertex has key
0.25, the second one has the key 0.90, and so on.

4.3.2 Solution decoder

The decoder defines the vertex coloring order: the i-th random key determines the priority of
the i-th vertex to be selected. The decoder sorts the vector of random keys in non-increasing
order, thus inducing a coloring order for the nodes of the graph. A simple function is then
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V 1 2 3 4 5 6

key 0.25 0.90 0.12 0.88 0.55 0.34

Figure 4.1: Encoded chromosome representing the solution to a graph with 6 vertices where
the indices in the first line represent the vertices and the line below contains the key for each of
them.

performed on each selected key to color the vertex associated with that key with the smallest
possible color based on the first-fit algorithm. By design, the resulting coloring is a Grundy
coloring.

Algorithm 1 implements the decoder, using the vector of random keys x to construct the
Grundy coloring for G. The line 1 initializes the vector that stores the selected colors for
each vertex. The loop at lines 2-3 is responsible for coloring the vertex with the highest key
at each iteration. The procedure Color-Vertex at line 3 implements the first-fit algorithm that
chooses the lowest-index color possible for vertex v that has not yet been selected for any of
its neighbors. The line 4 returns the total number of colors used, i.e., the fitness of the Grundy
coloring constructed from x for the graph G.

Algorithm 1: Decoder-Grundy (G, x)
1 colors← {0, . . . , 0};
2 foreach v ∈ V in non increasing order of their keys xv do
3 colors[v]← Color-Vertex(G, v, colors);

4 return max
v∈V

colors[v];

The running time of Algorithm 1 can be determined as follows. Notice that sorting the
vertices according to their keys can be done in O(|V | log |V |). The complexity of the loop
in lines 2-3 corresponds to the cost of traversing the graph’s adjacency list, which runs in
O(|V | + |E|). Retrieving the maximum value in colors (line 4) can be computed in O(|V |).
Therefore, Algorithm 1 can be implemented to run in O(|V | log |V | + |E|) time.

4.4 COMPUTATIONAL EXPERIMENTS

All the experiments were executed on a machine running Ubuntu x86-64 GNU/Linux, with
an Intel Core i7-10700 Octa-Core 2.90 GHz processor and 16Gb of RAM. The formulations
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were implemented in Julia and solved with Gurobi 10.0.1. The BRKGA was developed in C++
using the BRKGA API (Toso & Resende, 2015; Toso, 2018).

4.4.1 Benchmark instances

The benchmark set comprises graphs that were already used in the literature for other
coloring problems (Melo et al., 2021). It contains (a) random graphs, (b) geometric graphs, (c)
bipartite graphs, (d) the complements of bipartite graphs, and (e) instances from the second
DIMACS Implementation Challenge (Trick et al., 2015).

Instances (a)-(c) were created with the graph generator ggen (Morgenstern, n.d.) by Melo et
al. (2021). They have |V | ∈ {50, 60, 70, 80} and were generated with η ∈ {0.2, 0.4, 0.6, 0.8} as the
probability of having an edge (for random and bipartite graphs) or the existence of an edge if
the Euclidean distance between vertices is less than or equal to η (for geometric graphs). The
instances (d) correspond to the complements of the bipartite graphs defined in (c). To control for
the randomness of the instance generator, there are five instances for each instance group, where
a group corresponds to a combination of graph class, number of vertices, and Euclidean distance
(or probability for random and bipartite graphs). The groups are identified by C_|V |_η, where C
represents the graph class: random (rand), geometric (geo), bipartite (bip), and complement of
bipartite (cbip). The results are aggregated for each instance group and presented as the average
among its five instances. Notice that there are 320 of such instances, 80 for each graph class.
From now on, we denote these by small instances.

Instances (e) are a subset of instances from the Second DIMACS Implementation Challenge
with up to 500 vertices. This set consists of 42 instances with |V | ∈ [28, 500]. Their charac-
teristics (number of vertices and density) are shown in Table 4.1. These instances are widely
used in the literature, especially for coloring and maximum clique problems (Avanthay, Hertz, &
Zufferey, 2003; Lü & Hao, 2010; Moalic & Gondran, 2018; Nogueira, Pinheiro, & Subramanian,
2018; San Segundo, Coniglio, Furini, & Ljubić, 2019; Melo et al., 2021).

4.4.2 Tested approaches and parameter settings

The following approaches were considered in the computational experiments:

• The new combinatorial upper bound proposed in Section 4.1 (Ψ(G));

• The standard formulation described in Section 4.2.1 (std);

• The formulation by representatives detailed in Section 4.2.2 (rep);

• The BRKGA described in Section 4.3 (BRKGA);

• The greedy criterion minimum-degree first (MinDF), that defines a coloring sequence
(v1, . . . , vn) prioritizing the vertices with lower degree.

The goal of MinDF is to generate a sequence that maximizes the number of colors used by
giving priority to the lowest-degree vertices. Thus, the greedy criterion tries to force vertices
with lower degrees to receive the lowest colors, attempting to allow vertices with higher degrees
to receive colors with higher indices. Additionally, some widely-used and well-established
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Table 4.1: Characteristics of the DIMACS instances

instance |V | den(G)
johnson8-2-4 28 0.55
johnson8-4-4 70 0.78
mann_a9 45 0.92
hamming6-2 64 0.90
hamming6-4 64 0.34
c125.9 125 0.89
dsjc125.1 125 0.09
dsjc125.5 125 0.50
dsjc125.9 125 0.89
r125.1 125 0.02
r125.1c 125 0.96
r125.5 125 0.49
keller4 147 0.64
mulsol.i.1 197 0.20
mulsol.i.2 188 0.22
mulsol.i.3 184 0.23
mulsol.i.4 185 0.23
mulsol.i.5 186 0.23
brock200_2 200 0.49
c-fat200-1 200 0.07
c-fat200-2 200 0.16

instance |V | den(G)
c-fat200-5 200 0.42
zeroin.i.1 211 0.18
zeroin.i.2 206 0.15
zeroin.i.3 206 0.16
dsjc250.1 250 0.10
r250.1 250 0.02
hamming8-2 256 0.96
hamming8-4 256 0.63
fpsol2.i.2 451 0.08
fpsol2.i.3 425 0.09
le450_5a 450 0.05
le450_5b 450 0.05
le450_5c 450 0.09
le450_5d 450 0.09
le450_15a 450 0.08
le450_15b 450 0.08
le450_25a 450 0.08
le450_25b 450 0.08
dsjr500.1 500 0.02
c-fat500-1 500 0.03
c-fat500-2 500 0.07

greedy criteria for the coloring problem (that aims to minimize the number of colors) were used
as baselines: MDF, AMDF, SDL, DSatur.

The Gurobi solver was set with the default configurations and a single thread. A time limit
of 3600 seconds (1 hour) was given for each formulation to solve each of the instances. A warm
start (i.e., initial feasible solution) was given to the formulations, provided by the best solution
achieved using any of the greedy heuristics (MinDF, MDF, AMDF, SDL, DSatur).

The settings for the BRKGA were defined as follows. All executions were performed using
a single thread. A time limit of 300 seconds (five minutes) was defined as the stopping criterion
instead of the number of generations. Though this choice makes it harder to reproduce, it
facilitates the control of the total run time and benefits efficient decoders. The parameters
were defined based on preliminary tests considering a subset of 28 instances. The instances
were chosen to be a representative sample, ensuring that at least 5 instances were randomly
selected from each class and varying the densities and number of vertices. The test considered
the following possible settings: p = {1 × |V |, 2 × |V |, 3 × |V |}, pe = {5%, 15%, 30%}, pm =

{5%, 10%, 30%} and ρe = {60%, 70%, 90%}. In total, 81 configurations were tested for which
the BRKGA was run with five different seeds. The considered values were based on how the
metaheuristic converges over the generations by varying each of the parameters (Gonçalves &
Resende, 2011). Finally, the configuration selected for the overall experiments was (p, pe, pm, ρe)
= (2 × |V |, 30%, 10%, 60%).
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4.4.3 New upper bound results

In this section, we summarize the results achieved using the new upper bound Ψ(G) when
compared to the trivial upper bound ∆(G) + 1 and ζ(G). Table 4.2 shows, for each instance class
(first column), the percentage of the instances for which Ψ(G) strictly improves over ∆(G) + 1
(second column), strictly improves over ζ(G) (third column), and at least matches ζ(G). We
remark that the DIMACS instances do not exactly represent a graph class, but we consider them
as one only for presentation purposes. The results indicate that the new upper bound is able to
improve over the best available combinatorial bound for several instances (19.0%). Most of
the improvements are concentrated on the bipartite graphs (63.7%), followed by the DIMACS
instances (19.0%) and the random graphs (11.3%).

Table 4.2: Comparison of upper bounds

Class Ψ(G) < ∆(G) + 1 Ψ(G) < ζ(G) Ψ(G) ≤ ζ(G)
Random 60.0% 11.3% 33.7%
Geometric 32.5% 1.2% 15.0%
Bipartite 73.7% 63.7% 95.0%
Complement of bipartite 22.5% 0.0% 5.0%
DIMACS 54.7% 19.0% 30.0%
Total 48.0% 19.0% 36.3%

Figure 4.2 visually compares the bounds Ψ(G) and ζ(G) for all instances with the exception
of the DIMACS instances. Its y-axis represents the percentage difference between the bounds,

with diff =
100 × (Ψ(G) − ζ(G))

Ψ(G)
and its x-axis provides the instances in non-decreasing order

of their diff values. Notice that negative values of diff indicate that Ψ(G) improves over ζ(G),
and positive values indicate the opposite. We can see that ζ(G) provides a better bound for a
larger number of instances. However, the negative values on the left side of the graph show that
Ψ(G) can significantly improve the bounds provided by ζ(G) for a subset of the instances, and
these improvements can be as large as 60%.

Figure 4.3 provides the same information as Figure 4.2, but now for the DIMACS instances.
It shows that the bounds provided by ζ(G) and Ψ(G) are the same for several instances and
that ζ(G) achieves better bounds than Ψ(G) for a more significant number of instances. We can
observe that the improvements achieved by Ψ(G) over ζ(G) can reach values as high as 13%.

4.4.4 Results for IP formulations

Tables 4.3-4.6 summarize the results using the formulations for the benchmark instances
(a)-(d), which have up to 80 vertices. In these tables, the first column represents the instance
group so that each row corresponds to the average values over its five instances. The second
column (UB) provides the best upper bound, considering ζ(G) and Ψ(G). The third (h) indicates
the average value of the initial solution value provided for the formulation. In what follows, for
each of the formulations, the columns indicate the average of the best solutions found (best),
the average execution time (time), the average optimality gap in percentage, and the number of
instances solved to optimality (#opt). The last two rows of the tables indicate the average of the
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Figure 4.3: Difference in percent between the bounds ζ(G) and Ψ(G) for the DIMACS instances

values across all rows and the total number of instances solved to optimality. The largest values
in the columns best are highlighted in bold.

Table 4.3 shows the results for the random graphs. It shows that the formulations managed
to improve the initial solutions for all the instance groups. In addition, on average, the formu-
lation by representatives reached better solutions, finding five optimal solutions for the group
rand_50_0.8 and two for rand_60_0.8. However, the average gap in the standard formulation
was smaller. It is interesting to notice the pattern in this table, in which the standard formulation
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Table 4.3: Results using the formulations for the random graphs

std rep
group ub h best time gap #opt best time gap #opt
rand_50_0.2 17.0 7.6 10.8 3600.0 33.7 0 10.4 3600.0 123.6 0
rand_50_0.4 26.0 11.8 15.8 3600.0 57.3 0 15.4 3600.0 84.6 0
rand_50_0.6 35.4 16.6 22.6 3600.0 59.4 0 22.6 3600.0 33.7 0
rand_50_0.8 43.4 23.8 29.6 3600.0 52.9 0 31.6 146.5 0.0 5
rand_60_0.2 18.4 8.6 12.0 3600.0 45.3 0 11.6 3600.0 156.3 0
rand_60_0.4 31.2 12.8 18.8 3600.0 67.0 0 17.8 3600.0 97.2 0
rand_60_0.6 42.4 19.0 25.0 3600.0 71.2 0 26.2 3600.0 44.4 0
rand_60_0.8 52.0 27.6 34.2 3600.0 57.9 0 36.8 2754.8 2.2 2
rand_70_0.2 21.2 9.2 12.6 3600.0 58.7 0 12.0 3600.0 194.0 0
rand_70_0.4 36.8 15.8 20.2 3600.0 82.3 0 19.8 3600.1 111.2 0
rand_70_0.6 48.6 21.0 27.4 3600.0 80.4 0 28.6 3600.0 57.4 0
rand_70_0.8 60.6 30.8 37.6 3600.3 68.2 0 40.0 3600.0 12.5 0
rand_80_0.2 24.4 11.2 13.6 3600.0 73.6 0 12.8 3600.0 219.7 0
rand_80_0.4 40.6 16.0 21.0 3600.0 92.6 0 20.2 3600.0 137.7 0
rand_80_0.6 55.6 23.8 29.8 3600.1 90.2 0 30.6 3600.0 69.4 0
rand_80_0.8 68.6 32.6 40.8 3600.2 74.6 0 44.8 3600.0 16.1 0
Mean 38.8 18.0 23.3 3600.0 66.5 23.8 3331.1 85.0
Total 0 7

performs the best for the values of probability ρ ∈ {0.2, 0.4}, while the formulation by represen-
tatives achieves the best results for p ∈ {0.6, 0.8}. A possible explanation for this is as follows.
If we observe the formulation by representatives (Section 4.2.2), the denser a graph, the smaller
the anti-neighborhood of a vertex, then it will have a reduced number of variables X and fewer
constraints. This ends up reducing the number of possible choices.

Table 4.4: Results using the formulations for the geometric graphs

std rep
group ub h best time gap #opt best time gap #opt
geo_50_0.2 10.6 7.2 9.0 34.7 0.0 5 9.0 3600.0 91.5 0
geo_50_0.4 25.4 18.0 22.2 3600.0 19.8 0 22.2 3600.0 29.4 0
geo_50_0.6 35.2 26.6 31.0 3600.0 41.1 0 31.2 3434.3 7.5 1
geo_50_0.8 41.0 34.8 37.6 3600.0 32.6 0 38.2 642.6 0.0 5
geo_60_0.2 12.2 7.8 10.2 730.1 1.8 4 10.0 3600.0 140.9 0
geo_60_0.4 31.2 19.4 26.6 3600.0 23.9 0 26.4 3600.0 35.1 0
geo_60_0.6 42.6 32.6 37.6 3600.0 44.1 0 37.8 3600.0 8.2 0
geo_60_0.8 50.8 44.6 47.2 3600.0 26.3 0 47.6 57.2 0.0 5
geo_70_0.2 14.4 9.6 12.6 1367.6 1.4 4 12.2 3600.0 146.7 0
geo_70_0.4 33.8 21.0 28.4 3600.0 27.5 0 27.4 3600.0 52.9 0
geo_70_0.6 48.0 36.4 41.8 3600.0 44.5 0 42.0 3600.0 14.1 0
geo_70_0.8 58.4 48.6 53.4 3600.1 31.5 0 54.4 935.4 0.3 4
geo_80_0.2 15.0 10.4 12.8 2010.9 3.4 3 11.8 3600.0 190.6 0
geo_80_0.4 38.0 24.4 32.2 3600.0 28.5 0 31.6 3600.1 53.7 0
geo_80_0.6 55.8 40.6 47.6 3600.0 50.0 0 48.2 3600.0 15.1 0
geo_80_0.8 68.4 58.2 61.6 3600.1 29.9 0 63.2 206.9 0.0 5
Mean 36.6 27.5 31.9 2959.0 25.4 32.0 2804.8 49.1
Total 16 20
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Table 4.4 provides the results for the geometric graphs. It indicates that the geometric
instances seem to be easier to solve, with the standard formulation and that of representatives
being able to prove optimality of, respectively, 16 and 20 instances. Again, the formulation by
representatives achieved better results for most instances. However, on average, the performances
of the two formulations were very close. Another interesting point is that the pattern found for
random instances is repeated for the geometric instances with 60 or more vertices. That is, the
formulation by representatives has better results when the Euclidean distance is 0.6 and 0.8,
and the standard formulation in the others. It should be noticed that, together, the formulations
solved 36 out of the 80 instances.

Table 4.5: Results using the formulations for the bipartite graphs

std rep
group ub h best time gap #opt best time gap #opt
bip_50_0.2 9.8 4.8 8.2 636.1 0.0 5 7.2 3600.0 142.1 0
bip_50_0.4 15.8 4.0 10.8 3600.0 33.5 0 10.0 3600.0 130.0 0
bip_50_0.6 20.4 2.8 13.8 3600.0 40.5 0 13.8 3600.0 82.7 0
bip_50_0.8 21.0 2.0 16.8 3600.0 19.3 0 17.0 3137.9 21.5 1
bip_60_0.2 11.6 4.2 9.2 2369.3 4.4 3 7.8 3600.0 198.2 0
bip_60_0.4 17.2 2.4 11.6 3600.0 36.5 0 11.0 3600.0 158.2 0
bip_60_0.6 23.2 3.4 14.8 3600.0 48.5 0 14.4 3600.0 111.1 0
bip_60_0.8 27.4 2.2 19.8 3600.0 35.1 0 19.6 3600.0 47.8 0
bip_70_0.2 12.4 5.0 9.4 2882.5 16.9 1 8.6 3600.1 230.3 0
bip_70_0.4 18.6 3.4 12.6 3600.0 41.3 0 11.6 3600.0 192.0 0
bip_70_0.6 25.4 2.8 16.4 3600.0 50.1 0 15.8 3600.0 130.3 0
bip_70_0.8 29.6 2.0 21.0 3600.0 37.7 0 21.2 3600.0 65.0 0
bip_80_0.2 14.4 5.4 10.0 3600.0 30.0 0 8.8 3600.3 272.5 0
bip_80_0.4 23.0 4.2 13.6 3600.0 64.7 0 11.6 3600.0 247.3 0
bip_80_0.6 29.4 2.4 18.4 3600.0 56.8 0 17.6 3600.1 145.7 0
bip_80_0.8 35.4 2.4 22.8 3600.0 51.7 0 22.8 3600.0 87.9 0
Mean 20.9 3.3 14.3 3292.9 35.4 13.6 3571.6 141.4
Total 9 0

Table 4.5 shows the results for the bipartite graphs. It evidences a clear predominance of
the standard formulation as it could prove the optimality for nine instances and had an average
gap approximately four times smaller. It is worth mentioning that this set of bipartite graphs
is not very dense. On the other hand, the results for the complements of these graphs, which
are available in Table 4.6, show the advantage of the formulation by representatives for denser
graphs. They show that this formulation achieved optimality for 14 instances and obtained
an average gap of 11.2%, being approximately three times smaller than that of the standard
formulation.

Table 4.7 presents the results of the formulations for the DIMACS instances with up to 64
vertices. Unlike Tables 4.3-4.6, each of its rows corresponds to a single instance. Thus, although
the columns have the same meaning as the previous ones, each row no longer provides the
average values but that found for the specific instance. It can be noticed that both formulations
arrive at the same result in four of the five cases, but the formulation by representatives proves
the optimality for two of these cases. We remark that the experiments performed showed that
the formulations started facing difficulties with instances having more than 80 vertices with our
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Table 4.6: Results using the formulations for the complements of bipartite graphs

std rep
group ub h best time gap #opt best time gap #opt
cbip_50_0.2 46.4 30.0 34.0 3600.0 42.4 0 34.6 7.5 0.0 5
cbip_50_0.4 43.0 26.6 30.4 3600.0 45.4 0 31.2 3600.0 5.1 0
cbip_50_0.6 38.6 26.6 29.0 3600.0 35.9 0 29.2 3600.0 13.0 0
cbip_50_0.8 35.2 29.6 30.4 3600.0 21.4 0 30.4 3600.0 13.3 0
cbip_60_0.2 56.0 35.6 39.4 3600.1 47.6 0 41.4 36.3 0.0 5
cbip_60_0.4 51.6 34.2 37.0 3600.0 46.1 0 37.8 3120.4 7.1 1
cbip_60_0.6 46.4 32.6 35.0 3600.0 38.4 0 35.2 3600.0 15.0 0
cbip_60_0.8 41.0 33.0 34.4 3600.0 22.3 0 34.4 3600.0 18.6 0
cbip_70_0.2 65.2 40.8 45.8 3600.1 47.7 0 47.2 2189.1 1.7 2
cbip_70_0.4 60.0 41.4 43.8 3600.1 44.4 0 44.4 3600.0 9.7 0
cbip_70_0.6 54.8 39.8 41.2 3600.0 38.6 0 42.0 3600.0 15.0 0
cbip_70_0.8 48.4 40.4 41.0 3600.0 23.1 0 41.0 3600.0 17.1 0
cbip_80_0.2 72.6 44.0 50.0 3600.1 50.4 0 51.4 3366.8 4.2 1
cbip_80_0.4 68.6 42.2 45.8 3600.1 54.6 0 47.2 3600.0 16.4 0
cbip_80_0.6 61.8 43.8 45.6 3600.1 40.6 0 46.0 3600.0 18.4 0
cbip_80_0.8 54.2 43.6 44.6 3600.1 25.6 0 44.2 3600.0 23.4 0
Mean 52.7 36.1 39.2 3600.0 39.0 39.8 3020.0 11.2
Total 0 14

available computational resources. In such cases, the processes in execution were killed by the
operating system due to the excessive use of memory required by the solver. For this reason, we
do not provide the results for these instances.

Table 4.7: Results using the formulations for the DIMACS instances with up to 64 vertices

std rep
instance ub h best time gap best time gap
johnson8-2-4 16.0 7.0 12.0 3600.0 33.3 12.0 46.8 0.0
johnson8-4-4 54.0 21.0 26.0 3600.0 107.6 29.0 3600.0 41.3
maan_a9 42.0 21.0 21.0 3600.0 100.0 21.0 0.1 0.0
hamming6-2 58.0 37.0 40.0 3600.0 10.0 40.0 3600.0 10.0
hamming6-4 23.0 9.0 13.0 3600.0 153.0 13.0 3600.0 153.0

4.4.5 BRKGA results

In this section, we discuss the results achieved using the BRKGA. The tables summarizing
the results for all the benchmark instances are available in Appendix A. The plots in Figures 4.4
and 4.5 show the percentage of the instances that BRKGA found a solution that at least matches
the one obtained using any of the formulations for each graph class, separated by the number of
vertices and the density of the graph, respectively. The plots show that the BRKGA has more
difficulty with the bipartite instances. The BRKGA at least matched all the best results for the
five DIMACS instances for which the solver was able to finish the execution (those appearing in
Table 4.7), finding strictly better results for two of them.

Figure 4.4 shows that, for almost all the graph classes, BRKGA achieved better performances
for the instances with 50 and 60 vertices. Figure 4.5 shows that changing the density of the graph
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Figure 4.4: Barplot with the percentage of the instances for which the BRKGA at least matched
the best solution obtained using any of the IP formulations, separated by |V |
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Figure 4.5: Barplot with the percentage of the instances for which the BRKGA at least matched
the best solution obtained using any of the IP formulations, separated by the value of η

does not significantly affect the BRKGA’s ability to find better solutions than the formulations
for the random and complement of bipartite groups. This is an interesting behavior, considering
the specificities of the proposed formulations that may perform better depending on the density
of the graph (as it was observed for the formulation by representatives).
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Figure 4.6: Boxplot summarizing the BRKGA deviations to the best solution considering all the
executions

The plot in Figure 4.6 shows the deviations of the solutions found in all the runs of the
BRKGA to the best-known solution for the corresponding instance. Figures 4.7 and 4.8 provide
similar information, but separated by |V | and η, respectively. It can be noticed that the mean
deviations are close to zero for the complement of bipartite, geometric, and DIMACS graphs.
For the random graphs, the mean deviation is slightly higher but still below 5%. This shows how
the BRKGA recurrently converges to the best solutions or close to them. This pattern is only
broken for bipartite instances where the standard formulation stands out probably by reducing
the number of possible solutions by including the limits ζ(G) and Ψ(G) in the formulation. It is
noteworthy that there are very few outliers for each graph class, reinforcing the convergence
consistency of the BRKGA.

It should be noticed that there is a subtle pattern. Namely, when the number of vertices
increases, there is an increase in the mean deviations for almost all cases, which can be seen
in Figure 4.7. The boxes in the graph also move upwards with the increase in the number
of vertices for the set of random, geometric, and bipartite graphs. That is, the concentration
of deviations increases with the increase in the size of the graph. There are few DIMACS
instances with less than 80 vertices, thus, it is reasonable to have a high amplitude. However,
it is interesting that small deviations and amplitudes are observed for the other instances with
different characteristics. However, in Figure 4.8, the opposite occurs when it comes to the
density of the graph. By increasing the density of the graph, the mean deviations decrease within
the same graph class in almost all cases. For random and geometric graphs, there is a pattern in
which when the density of the graphs increases, there is simultaneously a greater concentration
of deviation values (smaller boxes) and a decrease in deviation values.
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Chapter

5
CONNECTED GRUNDY COLORING PROBLEM

This chapter focuses on the connected variant of the problem in which we propose two
integer programming formulations in Section 5.1. The standard formulation incorporates the new
proposed limit (Section 4.1), the stair-factor limit and takes into account a temporal factor in
the coloring order aiming to reduce the total number of variables and constraints to be evaluated
in relation for a form that doesn’t take this into account. The application of the BRKGA for the
problem in Section 5.2. Computational experiments with analysis of the results and a comparison
between the BRKGA results of the Grundy coloring problem with its connected version in
Section 5.3.

5.1 INTEGER PROGRAMMING FORMULATIONS

In this section, we formulate the connected Grundy coloring problem as an integer programs.

5.1.1 Standard formulation

In what follows, denote the set of vertices by V = {1, . . . , n}. Furthermore, let T = {1, . . . , |V |}
denote periods, representing the order in which the vertices are colored. Besides, define the
sequence of available colors as K = {1, . . . ,Ψ(G)}, Kv = {k′ ∈ K | k′ ≤ ψ(v,∆(G) + 1)} the
sequences of possible colors to the vertex v, and Kvt = {k′ ∈ K | k′ ≤ min(t, ψ(v,∆(G) + 1))} the
sequence of possible colors for the vertex v in time t. Finally, define Vk = {v ∈ V | k ∈ Kv} as the
set of vertices that can receive the k-th color.

To formulate the connected Grundy coloring problem as an integer program, consider the
decision variables:

zvkt =

{
1, if vertex v ∈ V receives color k ∈ Kvt in time t ∈ T ,
0, otherwise.

wk =

{
1, if color k ∈ K is used,
0, otherwise.

Thus, the connected Grundy coloring problem can be cast as:

30



5.1 INTEGER PROGRAMMING FORMULATIONS 31

max
∑
k∈K

wk (5.1)

∑
t∈T,
t≥k

zukt +
∑
t∈T,
t≥k

zvkt ≤ wk, ∀ k ∈ Kv ∩ Ku, uv ∈ E, (5.2)

∑
t∈T

∑
k∈Kvt

zvkt = 1, ∀ v ∈ V, (5.3)

wk ≤
∑
v∈V

∑
t∈T,
t≥k

zvkt, ∀ k ∈ K, (5.4)

∑
t′∈{k′,...,t}

zvk′t′ ≤
∑

u∈N(v),
u∈Vk

∑
t′∈{k,...,t−1}

zukt′ , ∀ v ∈ V, k, k′ ∈ Kv, t ∈ T \ {1}, with k < k′, (5.5)

∑
v∈V

∑
k∈Kvt

zvkt = 1, ∀ t ∈ T, (5.6)

∑
k∈Kvt

zvkt ≤
∑

u∈N(v)

t−1∑
t′=1

∑
k∈Kut′

zukt′ , ∀ v ∈ V, t ∈ T \ {1}, (5.7)

wk ∈ {0, 1}, ∀ k ∈ K. (5.8)
zvkt ∈ {0, 1}, ∀ v ∈ V, t ∈ T, k ∈ Kvt. (5.9)

Constraints (5.2) ensure that adjacent vertices do not receive the same color. Constraints (5.3)
guarantee that each vertex receives exactly one color in a single period. Constraints (5.4)
determine that wk is only set to one if color k is used. Constraints (5.5) guarantee the Grundy
property. Notice that they imply that if a vertex v ∈ V receives a color in periods one up to t, all
the colors with lower index need to be used in the neighborhood of v in periods one up to t − 1.
Constraints (5.6) establish that a single vertex receives a color in each period. Constraints (5.7)
ensure that the coloring is connected. Constraints (5.9) define integrality requirements on the
variables.

5.1.2 Formulation by representatives

In the following, we describe the formulation by representatives for the connected Grundy
coloring problem. Consider the following decision variables:

Zvut =

{
1, if vertex u ∈ V is represented by vertex v ∈ N̄[u] in time t ∈ T , for v ≤ u,
0, otherwise;

yvu =

{
1, if vertices v, u ∈ V are representatives and the color of v precedes that of u, for v , u,
0, otherwise.
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An IP formulation by representatives for the connected Grundy coloring problem can be defined
as:

max
∑
v∈V

∑
t∈T

Zvvt (5.10)∑
t∈T

Zuvt +
∑
t∈T

Zuwt ≤
∑
t∈T

Zuut, ∀ u ∈ V, v,w ∈ N̄[u], s.t. vw ∈ E and u ≤ v < w, (5.11)∑
t∈T

Zuvt ≤
∑
t∈T

Zuut, ∀ u ∈ V, v ∈ N̄(u), s.t. N(v) ∩ N̄(u) = ∅ and u < v, (5.12)∑
v∈N̄[u],

v≤u

∑
t∈T

Zvut = 1, ∀ u ∈ V, (5.13)

∑
t′∈{1,...,t}

Zuvt′ ≤
∑

w∈N(v)∩N̄[p],
p≤w

∑
t′∈{1,...,t−1}

Zpwt′ + 1 − ypu, ∀ u, p ∈ V, v ∈ N̄[u],

t ∈ T \ {1}, s.t. p , u and u ≤ v, (5.14)∑
u∈N̄[v],

u≤v

Zuvt ≤
∑

v′∈N(v)

∑
u∈N̄[v′],

u≤v′

t−1∑
t=1

Zuv′t, ∀ v ∈ V, t ∈ T \ {1}, (5.15)

yvu + yuv ≥
∑
t∈T

Zuut +
∑
t∈T

Zvvt − 1, ∀ u, v ∈ V, s.t. u < v, (5.16)

yuv + yvu ≤
∑
t∈T

Zuut, ∀ u, v ∈ V, s.t. u , v, (5.17)

Zuvt ∈ {0, 1}, ∀ u ∈ V, v ∈ N̄[u], t ∈ T, s.t. u ≤ v, (5.18)
yuv ∈ {0, 1}, ∀ u, v ∈ V, s.t. u , v. (5.19)

The objective function (5.10) maximizes the number of representative vertices. Constraints
(5.11) ensure that adjacent vertices do not receive the same color. Constraints (5.12) indicate
that a vertex can only represent another one if the former is a representative. Constraints (5.13)
guarantee that every vertex receives a color in a single period. Constraints (5.14) imply the
Grundy property. They establish that if p, u ∈ V are representatives, p precedes u, and u
represents v ∈ V , then p has to represent one of the neighbors of v before u can represent v.
Constraints (5.15) ensure that the coloring is connected. Constraints (5.16)-(5.17) ensure an
order between two vertices if and only if they are both representatives. Constraints (5.18)-(5.19)
determine the integrality of the variables.

5.2 BIASED RANDOM-KEY GENETIC ALGORITHM

This section presents the encoding and decoder used in BRKGA for the connected Grundy
coloring problem.

5.2.1 Solution encoding

The solution is encoded in the same way as presented in section 4.3.1, a vector x of random
keys with length Υ = |V |, with the i-th key representing the i-th vertex in V .
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5.2.2 Decoder

The decoder defines the vertex coloring order considering the i-th key as the priority of the i-
th vertex to be selected while respecting the connectivity constraint of the problem. Algorithm 2
describes the decoder, which receives a graph G and a vector of random keys c as parameters.
The algorithm utilizes a priority queue Q based on the random keys cv. The auxiliary procedure
Enqueue(Q, v) inserts the vertex v into the priority queue Q according to its key cv. The
Dequeue(Q) method removes and returns the element with the highest key from Q.

In Algorithm 2, the line 1 initializes the color of all vertices to -1. The vertex with the highest
key is added to the priority queue Q (lines 2-3). The loop from lines 4-10 repeats the process of
selecting the vertex with the highest key from the priority queue (line 5) and coloring it with the
lowest possible color following the first-fit algorithm with the auxiliary procedure Color-Vertex
(line 6). Color-Vertex sets the color of a vertex as the lowest-index color that has not yet been
used for any of its neighbors. Subsequently, its neighbors that have not yet been added to the
priority queue are inserted into Q (lines 7-10). Line 11 returns the vector of colors and the total
number of used colors (fitness).

Algorithm 2: Decoder-connected-Grundy (G, c)
1 colors← {−1, . . . ,−1};
2 v← vertex with highest key value cv;
3 Enqueue(Q, v);
4 while Q , ∅ do
5 v← Dequeue(Q);
6 colors[v]← Color-Vertex(G, v, colors);
7 foreach u in N(v) do
8 if colors[u] = −1 then
9 colors[u] = 0;

10 Enqueue(Q, v);

11 return colors, maxv∈Vcolors[v];

Proposition 3. Algorithm 2 can be implemented to run in O(|V | log |V | + |E|).

Proof. First, note that each vertex v ∈ V enters and exits the priority queue Q exactly once.
Therefore, all operations related to Q are performed in O(|V | log |V |). The loop from lines 4-10
involves traversing the graph’s adjacency list to determine the color and enqueue the neighbors
of each vertex. Thus, excluding the operations related to the priority queue, which have already
been accounted for in the computational cost, the remaining operations can be performed in
O(|V | + |E|). Consequently, Algorithm 2 can be implemented to run in O(|V | log |V | + |E|).

5.3 COMPUTATIONAL EXPERIMENTS

All the experiments were executed on a machine running Ubuntu x86-64 GNU/Linux, with
an Intel Core i7-10700 Octa-Core 2.90 Ghz processor and 16Gb of RAM. The formulations
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were implemented in Julia and solved with Gurobi 10.0.1. The BRKGA was developed in C++
using the BRKGA API (Toso & Resende, 2015; Toso, 2018).

5.3.1 Benchmark instances

The tests were carried out with the same set of instances used in 4.4.1, except for bipartite
graphs, since the connected problem is trivial in the case of bipartite graphs. It is necessary to
point out that not all instances of this set are connected. Then these instances were connected
using an algorithm that tries not to change the connected Grundy number of the original instance.
The vertex with the highest degree with the lowest index of each connected component is
selected and a path is created between these vertices from the lowest index to the one with the
highest index between them, making the instance connected.

5.3.2 Tested approaches and parameter settings

The following approaches were considered in the computational experiments:

• the standard formulation described in Section 5.1.1 (std);

• the formulation by representatives detailed in Section 5.1.2 (rep);

• the BRKGA explained in Section 5.2 (BRKGA);

• the greedy criterion connected minimum-degree first (CMinDF), that defines a connected
coloring sequence (v1, . . . , vn) prioritizing the vertices with lower degree as described in
4.4.2, but using a adaptative BFS-based approach.

Additionally, connected versions of some widely-used and well-established greedy criteria
for the coloring problem (that aims to minimize the number of colors) were used as baselines:

• connected maximum-degree first (CMDF, 2.2)

• DSatur (section 2.2).

The solver was set with the default configurations and a single thread. A time limit of 3600
seconds (1 hour) was given for each formulation to solve each of the instances. A warm start (i.e.,
initial feasible solution) was given to the formulations, provided by the best solution achieved
using any of the greedy heuristics (CMinDF, CMDF, DSatur).

The settings for the BRKGA were defined as follows. All executions were performed using
a single thread. A time limit of 300 seconds (five minutes) was defined as the stopping criterion
instead of the number of generations. This choice makes it easier to control the total runtime and
benefits efficient decoders. The parameters were defined based on preliminary tests considering
a subset of 28 instances and the following possible settings: p = {1 × |V |, 2 × |V |, 3 × |V |}, pe =

{5%, 15%, 30%}, pm = {5%, 10%, 30%} e ρe = {60%, 70%, 90%}. In total, 81 configurations
were tested for which the BRKGA was run with five different seeds. The considered values
were based on how the metaheuristic converges over the generations by varying each of the
parameters (Gonçalves & Resende, 2011). Finally, the configuration selected for the overall
experiments was (p, pe, pm, ρe) = (3 × |V |, 15%, 10%, 60%).
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5.3.3 IP formulations results

The connected Grundy coloring problem proved challenging for both models. The first
tests with the model using the default configurations and single thread did not generate good
results, only in 12% of the instances it managed to find a solution, in the remaining cases the
process was killed due to memory overflow. The 12% were in general the smallest instances
of 50 vertices and the instances johnson8-2-4 and mann_a9, in addition to few vertices these
instances are also either extremely dense or extremely sparse. Only 5 geometric and 5 random
instances with 60 vertices and 1 geometric instance with 70 vertices managed to resolve the first
node, with a density of less than 0.2. In other words, only in scenarios where each formulation
has an advantage (graph density at the extremes) was it possible to obtain any results, even then
only for the smallest instances overall.

Other attempts were made using multiple threads and changing the initial root relaxation
method, but not showing any significant signs of improvement. Within these 12% of instances
that had an initial solution found, only a quarter of them did the solver manage to solve more
than one node, and within this subset it was tested increasing the timeout to 10.800 seconds (3h),
but this led to a few more processes be killed by memory overflow.

5.3.4 BRKGA results

In this section, we discuss the results achieved using the BRKGA. Tables 5.1-5.4 summarize
the results of the experiments with the BRKGA. In Tables 5.1-5.3, the first column represents an
instance group, so all the values in each row correspond to the average over five instances. The
next three columns provide the average mean, maximum, and time to best (ttb) considering the
50 independent runs for each of the instances. The fifth and sixth columns provide the average
best result found by CMinDF and its average deviation from the best solution achieved by the
BRKGA. The last two columns show the average best result achieved with any of the other
greedy criteria (column best) and its average deviation from the best solution achieved by the

BRKGA. The columns diff are defined as di f f =
100 ∗ (BRKGAmax − best)

BRKGAmax
. Table 5.4 follows

the same structure, but each row represents a single instance, implying that the values are not
averaged over five instances.

The results for the random instances (table 5.1) show that BRKGA achieved a diff of at least
23% for all groups compared to CMinDF, and even better compared to other heuristics with a
diff of at least 35%, taking less than 100 seconds to converge in all cases and less than a minute
in 37.5% of the groups.

Table 5.2 shows that BRKGA had a different performance in geometric instances. In two
groups it took less than 0.1 to converge, which may indicate that it was stucked in a local
optimum. The same can be said for groups geo50_0.8 and geo70_0.2, which converged in less
than 7 seconds and with a standard deviation equal to 0. At best, it may have converged to the
global optimum, but there is no way to confirm this at the moment. Even so, it was possible to
achieve a percentage difference of at least ±15% in 75% of the groups compared to CMinDF. A
diff of at least 17% for all cases compared to other heuristics, with a di f f > 30% in 43.75% of
the groups.

Table 5.3 shows the results for the complements of the bipartite graph, which is a set of



5.3 COMPUTATIONAL EXPERIMENTS 36

BRKGA CMinDF heuristic
group max mean ttb best diff(%) best diff(%)
rand_50_0.2 11.4 11.1 47.3 7.8 31.6 6.2 45.6
rand_50_0.4 17.0 16.1 53.9 11.6 31.8 9.8 42.4
rand_50_0.6 23.4 22.4 77.8 16.4 29.9 14.2 39.3
rand_50_0.8 31.0 30.6 74.6 23.8 23.2 20.0 35.5
rand_60_0.2 12.4 12.0 51.6 8.4 32.3 7.2 41.9
rand_60_0.4 19.6 18.6 57.8 13.2 32.7 11.2 42.9
rand_60_0.6 26.4 25.4 80.8 18.8 28.8 16.6 37.1
rand_60_0.8 36.0 35.3 74.1 27.6 23.3 23.2 35.6
rand_70_0.2 13.6 13.1 35.7 10.0 26.5 7.8 42.6
rand_70_0.4 21.6 20.5 72.4 15.2 29.6 13.0 39.8
rand_70_0.6 29.0 27.7 84.9 21.2 26.9 17.6 39.3
rand_70_0.8 40.2 39.0 84.0 30.8 23.4 25.6 36.3
rand_80_0.2 14.8 14.1 39.8 10.0 32.4 8.4 43.2
rand_80_0.4 23.2 22.0 74.8 16.6 28.4 13.4 42.2
rand_80_0.6 32.4 30.9 86.0 23.4 27.8 20.2 37.7
rand_80_0.8 44.0 42.7 93.8 32.0 27.3 28.2 35.9

Table 5.1: BRKGA results for the random graphs for the connected Grundy coloring problem

very dense graphs. The first thing to point out is that in all cases it took less than 21 seconds
on average, which may indicate difficulty in finding the global optimum, having a worse result
than the heuristics in the group cbip70_0.8. However, if you compare it with the table A.4 of the
results of the formulations for the less restricted version of the problem, you can note that in
most cases it reaches the same value including the optimal ones, which shows that in general
BRKGA performs very well for this type of instance.

Table 5.4 shows the results for the set of DIMACS instances, which, as already mentioned,
is a very heterogeneous set. 15 of 42 instances converged in less than 20 seconds, which may
indicate a difficulty in finding a local optimum, however, if we look at mann_a9 and johnson8-2-
4 as examples, we see that the value found was the same as the optimum proven by the models
for the Grundy number. There is no very significant difference in the other 13 cases compared to
the model or BRKGA for the unconnected version, which indicates that they are good quality
solutions that converged quickly to solutions close to the global optimum. Furthermore, it
managed to establish a percentage difference of at least 15% in 76.1% of instances compared to
CMinDF and in 83.3% compared to other heuristics, although in one case (mann_a9) there was
no difference and in another 9 the difference was less than 10%.



5.3 COMPUTATIONAL EXPERIMENTS 37

BRKGA CMinDF heuristic
group max mean ttb best diff(%) best diff(%)
geo_50_0.2 8.2 8.2 0.0 7.0 14.6 6.8 17.1
geo_50_0.4 22.2 22.0 39.9 17.8 19.8 15.4 30.6
geo_50_0.6 31.2 30.8 35.6 26.0 16.7 23.6 24.4
geo_50_0.8 37.8 37.8 6.8 35.0 7.4 30.4 19.6
geo_60_0.2 9.8 9.7 17.6 7.4 24.5 6.8 30.6
geo_60_0.4 26.6 26.0 51.3 18.6 30.1 16.4 38.3
geo_60_0.6 38.0 37.3 42.6 32.8 13.7 27.6 27.4
geo_60_0.8 47.4 47.3 17.4 44.4 6.3 37.8 20.3
geo_70_0.2 12.0 11.9 5.7 9.4 21.7 8.2 31.7
geo_70_0.4 27.6 26.7 47.0 21.4 22.5 18.0 34.8
geo_70_0.6 42.0 41.0 62.9 35.6 15.2 29.2 30.5
geo_70_0.8 54.2 53.6 30.8 49.2 9.2 44.6 17.7
geo_80_0.2 12.4 12.4 0.1 9.2 25.4 8.8 29.4
geo_80_0.4 32.2 31.1 62.7 23.6 26.7 20.6 36.0
geo_80_0.6 47.8 47.2 50.5 39.6 17.2 33.8 29.3
geo_80_0.8 62.4 62.3 20.0 57.6 7.7 50.6 18.9

Table 5.2: BRKGA results for the geometric graphs for the connected Grundy coloring problem

5.3.5 Comparison between BRKGA solutions to the problems

In this section, we will report the deviations between the solutions obtained by BRKGA
for the two variants of the problem: the Grundy coloring problem and the connected Grundy
coloring problem. For this, the best values found by BRKGA in the 50 executions for each of the
instances are considered. Denote by maxPCG and maxPCGC the largest values found by BRKGA
for a given instance of the Grundy coloring problem and the connected Grundy coloring problem,
respectively. The deviation for an instance is given by 100 − 100 ∗

maxPCGC

maxPCG
.

(a) Geometric (b) Random (c) DIMACS

Figure 5.1: Comparative boxplots of the deviation between BRKGA for Grundy coloring
problem and connected Grundy coloring problem

Figure 5.1 shows the boxplots with the deviations for each of the sets of instances. It can be
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BRKGA CMinDF heuristic
group max mean ttb best diff(%) best diff(%)
cbip_50_0.2 34.6 34.5 13.7 29.6 14.5 27.0 22.0
cbip_50_0.4 31.2 31.1 5.5 27.2 13.0 26.4 15.5
cbip_50_0.6 29.0 29.0 1.8 26.6 8.3 26.2 9.7
cbip_50_0.8 30.4 30.4 4.3 29.6 2.6 29.6 2.6
cbip_60_0.2 41.0 40.6 9.8 35.0 14.6 32.0 22.0
cbip_60_0.4 38.0 37.7 4.0 34.4 9.5 33.8 11.1
cbip_60_0.6 36.0 35.8 2.2 33.0 8.3 32.4 10.0
cbip_60_0.8 35.0 35.0 13.1 33.0 5.7 32.8 6.3
cbip_70_0.2 47.2 46.8 11.4 40.4 14.4 38.6 18.2
cbip_70_0.4 44.0 43.4 5.7 41.4 5.9 41.4 5.9
cbip_70_0.6 41.8 41.7 16.9 39.8 4.8 39.8 4.8
cbip_70_0.8 39.0 38.8 2.4 40.4 -3.6 40.4 -3.6
cbip_80_0.2 51.6 51.1 7.3 44.8 13.2 40.2 22.1
cbip_80_0.4 47.5 47.1 13.5 42.4 10.7 41.2 13.3
cbip_80_0.6 46.7 46.7 0.3 43.8 6.1 43.8 6.1
cbip_80_0.8 44.8 44.7 20.9 43.6 2.7 43.6 2.7

Table 5.3: BRKGA results for the complements of bipartite graphs for the connected Grundy
coloring problem

noted that the deviations for the 3 groups of instances are small, mostly close to 1%. The boxplot
5.1(a) shows that for these instances you get almost the same result when trying to solve both
problems using this approach. 5.1(b) shows that the additional restrictiveness already makes it a
little more difficult for instances of random graphs, which is why it presents larger deviations
than in geometric ones in most cases. And finally, 5.1(c) is the one that presented the most
irregular results, having a large number of outliers and with a small interquartile range close to
the 0.0%, indicating that in most cases the two reached the same maximum. The subfigure 5.1(c)
also indicates that BRKGA certainly did not find the optimal solutions for some instances, given
that in certain cases solutions for the related variant (which is more restricted) had larger values
than those for the problem of the original Grundy coloring.



BRKGA CMinDF heuristic
instance max mean ttb best diff(%) best diff(%)
brock200_2 46.0 44.2 168.9 37.0 19.6 33.0 28.3
c-fat200-1 18.0 18.0 0.2 16.0 11.1 14.0 22.2
c-fat200-2 34.0 34.0 1.1 24.0 29.4 24.0 29.4
c-fat200-5 87.0 86.6 3.3 85.0 2.3 72.0 17.2
c-fat500-1 20.0 20.0 0.8 14.0 30.0 17.0 15.0
c-fat500-2 38.0 38.0 17.7 26.0 31.6 32.0 15.8
c125.9 77.0 76.0 73.4 62.0 19.5 54.0 29.9
dsjc125.1 13.0 12.4 13.9 8.0 38.5 7.0 46.2
dsjc125.5 36.0 35.4 61.1 28.0 22.2 23.0 36.1
dsjc125.9 77.0 75.6 48.1 62.0 19.5 57.0 26.0
dsjc250.1 18.0 18.0 71.6 14.0 22.2 11.0 38.9
dsjr500.1 20.0 20.0 9.9 16.0 20.0 14.0 30.0
fpsol2.i.2 40.0 39.9 35.6 34.0 15.0 30.0 25.0
fpsol2.i.3 40.0 39.8 33.7 34.0 15.0 30.0 25.0
hamming6-2 40.0 40.0 0.2 37.0 7.5 32.0 20.0
hamming6-4 15.0 13.7 58.4 9.0 40.0 8.0 46.7
hamming8-2 160.0 160.0 172.1 135.0 15.6 128.0 20.0
hamming8-4 39.0 38.2 52.6 27.0 30.8 33.0 15.4
johnson8-2-4 12.0 12.0 4.6 6.0 50.0 8.0 33.3
johnson8-4-4 30.0 28.9 120.3 19.0 36.7 21.0 30.0
keller4 48.0 44.4 125.5 28.0 41.7 39.0 18.8
le450_15a 32.0 31.2 168.6 26.0 18.8 19.0 40.6
le450_15b 33.0 31.5 155.6 25.0 24.2 19.0 42.4
le450_25a 44.0 43.2 106.0 35.0 20.5 25.0 43.2
le450_25b 44.0 42.4 128.7 33.0 25.0 25.0 43.2
le450_5a 18.0 18.0 91.6 14.0 22.2 11.0 38.9
le450_5b 18.0 18.0 113.4 14.0 22.2 11.0 38.9
le450_5c 23.0 22.0 134.8 18.0 21.7 9.0 60.9
le450_5d 22.0 21.8 154.0 17.0 22.7 12.0 45.5
mann_a9 21.0 21.0 0.0 20.0 4.8 21.0 0.0
mulsol.i.1 52.0 52.0 5.5 50.0 3.8 49.0 5.8
mulsol.i.2 34.0 33.4 34.2 32.0 5.9 31.0 8.8
mulsol.i.3 34.0 33.4 47.0 32.0 5.9 31.0 8.8
mulsol.i.4 34.0 33.4 39.6 32.0 5.9 31.0 8.8
mulsol.i.5 34.0 34.0 0.4 31.0 8.8 31.0 8.8
r125.1 7.0 7.0 0.0 5.0 28.5 5.0 28.5
r125.1c 62.0 62.0 0.9 51.0 17.7 47.0 24.2
r125.5 65.0 63.7 41.1 52.0 20.0 40.0 38.5
r250.1 12.0 11.1 10.5 10.0 16.7 8.0 33.3
zeroin.i.1 53.0 52.8 89.3 50.0 5.7 49.0 7.5
zeroin.i.2 36.0 34.9 69.6 31.0 13.9 30.0 16.7
zeroin.i.3 37.0 35.1 63.6 31.0 16.2 30.0 18.9

Table 5.4: BRKGA results for the DIMACS instances for the connected Grundy coloring problem



Chapter

6
CONCLUSION

This chapter summarizes the main contributions of this master thesis considering the Grundy
coloring problem and its connected version, whose optimal solution provides the Grundy
chromatic number and the connected Grundy chromatic number, respectively. We proposed a
new combinatorial upper bound that is valid for both problems, and two integer programming
formulations, and a biased random-key genetic algorithm (BRKGA) for each problem. To
our knowledge, the integer programming formulations and the BRKGA stand out as the first
optimization methods to tackle the problems for general graphs.

The computational experiments showed that the new combinatorial upper bound improves
over a well-established bound available in the literature for 19.0% of the tested instances. The
experiments also indicated that the formulation by representatives achieved an overall better
performance than the standard formulation. The formulation by representatives achieved better
results for the denser instances, while the standard formulation performed slightly better for the
sparser ones. The Grundy coloring problem proved to be challenging for the formulations, even
for the instances with 50 vertices. The formulations, despite being able to improve the results
from the initial solution provided, failed to prove optimality for most of the instances within the
time limit of 3600 seconds. Furthermore, they ended up with an optimality gap greater than 50%
in 35% of the instances for the standard formulation and in 44% of the cases for the formulation
by representatives.

On the other hand, it was observed that the formulations proposed for the connected problem
represent a computationally impractical approach in their current state. This observation further
underscores how the mere addition of a connectivity constraint significantly increases the
complexity of the problem.

The experiments performed with the BRKGA indicate that this metaheuristic can find good-
quality solutions within short computational times, achieving robustness regarding the variations
between the qualities of the solutions obtained in multiple executions. Furthermore, the BRKGA
found systematically better solutions than a proposed greedy algorithm to maximize the number
of colors in a first-fit coloring, and in the great majority of the cases, solutions that at least match
those obtained by the formulations. The same happened with applying the BRKGA to obtain
Γc(G), emphasizing that there was almost no significant difference between the values obtained
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for both problems, indicating that it is possible for these cases to use even the results of the
formulations or BRKGA for the Grundy number problem as a reference for a tight upper bound
for the optimum over the connected problem.

Preliminary results of this master’s thesis were presented at the the Brazilian Operations
Research Symposium in 2023 (Carvalho, Melo, Santos, Toso, & Resende, 2023a, 2023b).

6.1 FUTURE WORKS

Ideas for future work on the Grundy coloring problem and its connected version include
exploring the application of other metaheuristics, which can be used in conjunction with tabu
search to aid in the search and try to avoid the search having problems with many visits to
symmetric solutions.

Another possibility is the study of valid inequalities to check whether their incorporation
would allow improving the bounds in the Grundy coloring problem. The computational experi-
ments so far indicate that it would be better to carry out the work in the connected version with
metaheuristics. Something that still needs to be analyzed, but that could be a way of simplifying
in some cases, are the implications of cutting edges in a graph as a possibility of decomposing
the graph to solve each component separately and have an approximate value to the connected
Grundy number.
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Appendix

A
BRKGA RESULTS FOR THE GRUNDY COLORING

PROBLEM

Tables A.1-A.5 summarize the results of the experiments with the BRKGA. In Tables A.1-
A.4, the first column represents an instance group, so all the values in each row correspond to the
average over five instances. The next three columns provide the average mean, maximum, and
time to best (ttb) considering the 50 independent runs for each of the instances. The fifth and sixth
columns provide the average best result found by MinDF and its average deviation from the best
solution achieved by the BRKGA. The last two columns show the average best result achieved
with any of the formulations (column best) and its average deviation from the best solution

achieved by the BRKGA. The columns diff are defined as di f f =
100 ∗ (BRKGAmax − best)

BRKGAmax
.

Table A.5 follows the same structure, but each row represents a single instance, implying that
the values are not averaged over five instances.

46



BRKGA RESULTS FOR THE GRUNDY COLORING PROBLEM 47

BRKGA MinDF IP
group mean max ttb best diff(%) best diff(%)
rand_50_0.2 11.2 11.6 35.8 7.6 34.5 10.8 6.9
rand_50_0.4 16.3 17.0 51.7 11.8 30.6 15.8 7.1
rand_50_0.6 22.6 23.4 81.1 16.6 29.1 22.6 3.4
rand_50_0.8 30.8 31.4 77.9 23.8 24.2 31.6 -0.6
rand_60_0.2 12.1 12.6 46.3 8.6 31.7 12.0 4.8
rand_60_0.4 18.8 19.8 65.2 12.8 35.4 18.8 5.1
rand_60_0.6 25.7 26.4 95.3 19.0 28.0 26.2 0.8
rand_60_0.8 35.9 36.8 78.9 27.6 25.0 36.8 0.0
rand_70_0.2 13.2 14.0 31.5 9.2 34.3 12.6 10.0
rand_70_0.4 20.8 21.8 79.1 15.8 27.5 20.2 7.3
rand_70_0.6 28.1 29.2 83.9 21.0 28.1 28.6 2.1
rand_70_0.8 39.5 40.6 93.9 30.8 24.1 40.0 1.5
rand_80_0.2 14.3 15.0 49.2 11.2 25.3 13.6 9.3
rand_80_0.4 22.3 23.4 66.8 16.0 31.6 21.0 10.3
rand_80_0.6 31.4 32.6 94.2 23.8 27.0 30.6 6.1
rand_80_0.8 43.1 44.6 82.1 32.6 26.9 44.8 -0.4
Mean 24.1 25.0 69.5 19.8 28.9 24.1 4.6

Table A.1: BRKGA results for the random graphs for the Grundy coloring problem

BRKGA MinDF IP
group mean max ttb best diff(%) best diff(%)
geo_50_0.2 8.9 9.0 20.0 7.0 22.2 9.0 0.0
geo_50_0.4 22.1 22.2 26.0 18.0 18.9 22.2 0.0
geo_50_0.6 31.0 31.4 31.3 26.6 15.3 31.2 0.6
geo_50_0.8 37.8 38.0 3.9 34.8 8.4 38.2 -0.5
geo_60_0.2 10.0 10.0 5.2 7.8 22.0 10.2 -2.0
geo_60_0.4 26.3 26.6 41.7 19.4 27.1 26.6 0.0
geo_60_0.6 37.5 38.0 39.0 32.6 14.2 37.8 0.5
geo_60_0.8 47.5 47.6 19.8 44.6 6.3 47.6 0.0
geo_70_0.2 12.2 12.4 5.3 9.6 22.6 12.6 -1.6
geo_70_0.4 27.4 28.4 55.9 21.0 26.1 28.4 0.0
geo_70_0.6 41.7 42.4 42.1 36.4 14.2 42.0 0.9
geo_70_0.8 54.0 54.2 36.3 48.6 10.3 54.4 -0.4
geo_80_0.2 12.4 12.4 0.1 10.4 16.1 12.8 -3.2
geo_80_0.4 31.5 32.2 61.0 24.4 24.2 32.2 0.0
geo_80_0.6 47.7 48.4 52.1 40.6 16.1 48.2 0.4
geo_80_0.8 62.7 63.0 24.7 58.2 7.6 63.2 -0.3
Mean 31.9 32.2 29.0 27.5 16.9 32.2 -0.4

Table A.2: BRKGA results for the geometric graphs for the Grundy coloring problem
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BRKGA MinDF IP
group mean max ttb best diff(%) best diff(%)
bip_50_0.2 7.6 8.0 31.2 4.8 40.0 8.2 -2.5
bip_50_0.4 10.1 11.0 19.6 3.2 70.9 10.8 1.8
bip_50_0.6 12.8 13.4 65.1 2.8 79.1 13.8 -3.0
bip_50_0.8 14.9 16.0 59.4 2.0 87.5 17.0 -6.2
bip_60_0.2 8.2 8.6 19.4 4.2 51.2 9.2 -7.0
bip_60_0.4 10.9 11.6 53.3 2.2 81.0 11.6 0.0
bip_60_0.6 13.9 15.0 82.5 3.4 77.3 14.8 1.3
bip_60_0.8 17.2 18.8 92.7 2.0 89.4 19.8 -5.3
bip_70_0.2 8.6 9.2 27.7 5.0 45.7 9.4 -2.2
bip_70_0.4 11.7 12.4 62.4 2.4 80.6 12.6 -1.6
bip_70_0.6 14.6 15.8 81.9 2.8 82.3 16.4 -3.8
bip_70_0.8 18.4 20.2 110.7 2.0 90.1 21.2 -5.0
bip_80_0.2 9.4 9.8 49.1 5.2 46.9 10.0 -2.0
bip_80_0.4 12.8 13.8 76.3 3.6 73.9 13.6 1.4
bip_80_0.6 16.0 17.0 108.6 2.0 88.2 18.4 -8.2
bip_80_0.8 19.4 21.2 115.7 2.4 88.7 22.8 -7.5
Mean 12.9 13.8 65.9 3.1 73.3 14.3 -3.1

Table A.3: BRKGA results for the bipartite graphs for the Grundy coloring problem

BRKGA MinDF IP
group mean max ttb best diff(%) best diff(%)
cbip_50_0.2 34.5 34.6 16.6 30.0 13.3 34.6 0.0
cbip_50_0.4 31.0 31.2 4.8 26.6 14.7 31.2 0.0
cbip_50_0.6 29.2 29.2 3.9 26.4 9.6 29.2 0.0
cbip_50_0.8 30.4 30.4 1.4 29.6 2.6 30.4 0.0
cbip_60_0.2 41.3 41.4 9.2 35.6 14.0 41.4 0.0
cbip_60_0.4 37.8 38.2 11.4 34.2 10.5 37.8 1.0
cbip_60_0.6 35.3 35.8 6.3 32.6 8.9 35.2 1.7
cbip_60_0.8 34.5 34.6 19.3 33.0 4.6 34.4 0.6
cbip_70_0.2 46.8 47.2 9.6 40.8 13.6 47.2 0.0
cbip_70_0.4 44.5 44.8 8.6 41.4 7.6 44.4 0.9
cbip_70_0.6 41.7 41.8 16.6 39.8 4.8 42.0 -0.5
cbip_70_0.8 41.1 41.2 1.4 40.4 1.9 41.0 0.5
cbip_80_0.2 51.1 51.6 3.5 44.0 14.7 51.4 0.4
cbip_80_0.4 47.1 47.4 7.9 42.2 11.0 47.2 0.4
cbip_80_0.6 46.2 46.4 1.1 43.8 5.6 46.0 0.9
cbip_80_0.8 44.7 44.8 19.8 43.6 2.7 44.6 0.4
Mean 39.8 40.0 8.8 36.5 8.7 39.8 0.4

Table A.4: BRKGA results for the complements of bipartite graphs for the Grundy coloring problem
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BRKGA MinDF IP
instance mean max ttb best diff(%) best diff(%)
johnson8-2-4 12.0 12.0 6.0 7.0 41.6 12.0 0.0
johnson8-4-4 29.2 31.0 116.6 14.0 54.4 29.0 0.6
mann_a9 21.0 21.0 0.0 20.0 4.7 21.0 0.0
hamming6-2 40.0 40.0 0.1 32.0 20.0 40.0 0.0
hamming6-4 13.9 15.0 57.4 8.0 38.4 13.0 13.3
c125.9 76.8 78.0 70.5 61.0 21.7 x x
dsjc125.1 12.6 13.0 29.3 9.0 30.7 x x
dsjc125.5 35.9 38.0 47.2 28.0 26.3 x x
dsjc125.9 76.5 78.0 58.4 61.0 21.7 x x
r125.1 7.0 7.0 0.0 6.0 14.2 x x
r125.1c 62.0 62.0 0.7 51.0 17.7 x x
r125.5 63.8 65.0 41.6 52.0 20.0 x x
keller4 45.5 48.0 140.3 26.0 45.8 x x
mulsol.i.1 52.0 52.0 4.3 51.0 1.9 x x
mulsol.i.2 33.5 34.0 69.0 33.0 2.9 x x
mulsol.i.3 33.5 34.0 41.5 33.0 2.9 x x
mulsol.i.4 33.5 34.0 65.4 33.0 2.9 x x
mulsol.i.5 34.0 34.0 0.3 33.0 2.9 x x
brock200_2 44.2 45.0 154.4 38.0 15.5 x x
c-fat200-1 18.0 18.0 0.0 17.0 5.5 x x
c-fat200-2 35.0 35.0 1.4 24.0 31.4 x x
c-fat200-5 86.8 87.0 2.0 86.0 1.1 x x
zeroin.i.1 52.8 53.0 87.9 50.0 5.6 x x
zeroin.i.2 35.0 37.0 55.0 31.0 16.2 x x
zeroin.i.3 35.0 37.0 45.7 31.0 16.2 x x
dsjc250.1 18.0 18.0 53.5 13.0 27.7 x x
r250.1 12.0 12.0 16.5 10.0 16.6 x x
hamming8-2 159.6 161.0 199.8 128.0 20.4 x x
hamming8-4 38.2 39.0 80.4 32.0 17.9 x x
fpsol2.i.2 39.9 40.0 36.7 34.0 15.0 x x
fpsol2.i.3 40.0 40.0 48.6 34.0 15.0 x x
le450_5a 18.0 19.0 119.3 14.0 26.3 x x
le450_5b 17.9 18.0 112.1 15.0 16.6 x x
le450_5c 22.0 23.0 158.1 17.0 26.0 x x
le450_5d 21.9 22.0 171.9 17.0 22.7 x x
le450_15a 31.2 32.0 157.5 26.0 18.7 x x
le450_15b 31.8 32.0 167.8 26.0 18.7 x x
le450_25a 43.3 44.0 135.8 34.0 20.9 x x
le450_25b 42.1 43.0 124.0 34.0 20.9 x x
dsjr500.1 19.9 20.0 7.0 16.0 20.0 x x
c-fat500-1 21.0 21.0 4.1 14.0 33.3 x x
c-fat500-2 39.0 39.0 39.7 26.0 33.3 x x
Mean 38.2 38.8 64.9 31.5 19.8 * *

Table A.5: BRKGA results for the DIMACS instances for the Grundy coloring problem
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