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Resumo

Sabe-se que toda dinâmica uniformemente espansora ou hiperbólica transitiva não

possui transição de fase com respeito aos potenciais Hölder cont́ınuos. Em se tratando de

dinâmicas mais gerais, ainda é uma questão em aberto classificar todas as dinâmicas que

possuem transição com respeito a uma certa classe de potenciais regulares. Em dimensão

1, de acordo com Bomfim-Carneiro [BC21], todo C1+α-difeomorfismo local no ćırculo tran-

sitivo que não é expansor nem invert́ıvel tem uma única transição de fase temodinâmica

com respeito ao potencial geométrico, em outras palavras, a função pressão topológica

R ∋ t 7→ Ptop(f,−t log |Df |) é anaĺıtica exceto em um ponto t0 ∈ (0, 1]. Eles também

provaram transição de fase espectral, ou seja, o operador de transferência Lf,−t log |Df |
agindo no espaço das funções hölder cont́ınuas tem gap espectral para todo t < t0 e

não apresenta gap spectral para t ≥ t0. Nosso objetivo é provar resultados similares

para duas classes especiais de dinâmicas: endomorfismos de codimensão 1 parcialmente

hiperbólicos e dinâmicas monótonas por partes no ćırculo transitivas. Para endomorfis-

mos em dimensão alta provamos que os resultados de transição de fase termodinâmica e

espectral implicam em análise multifractal para o espectro de Lyapunov. Em particular

exibimos uma clase de endomorfismos parcialmente hiperbólicos que admitem transição

de fase termodinâmica e espectral com relação ao potencial geométrico na direção cen-

tral, e descrevemos análise multifractal dos expoente de Lyapunov central. Para dinâmicas

monótonas por partes no ćırculo, provamos que o conjunto de potenciais Hölder cont́ınuos

que não possuem transição de fase termodinâmica e espectral é denso na topologia uni-

forme e o conjunto de potenciais Hölder cont́ınuos que têm transição de fase não é denso

na topologia uniforme. Também obtemos uma caracterização de transição em termos do

operador de transferência e do tipo de convexidade da função pressão topológica. Em

particular, descrevemos o comportamento da função pressão topológica e do operador de

transferência associado.

Palavras-chave: Transição de fase; Formalismo Termodinâmico; Operador de Trans-

ferência; Prinćıpios de Grandes Desvios; Análise Multifractal.



Abstract

It is well known that all transitive uniformly expanding or hyperbolic dynamics

have no phase transition with respect to Hölder continuous potentials. For more general

dynamics, It is still an open question to classify all the dynamics having phase transition

with respect to a certain class of regular potential. In dimension one, due to the work of

Bomfim-Carneiro [BC21], it was proved that for all transitive C1+α−local diffeomorphism

f on the circle that is neither a uniformly expanding map nor invertible, has an unique

thermodynamic phase transition with respect to the geometric potential, in other words,

the topological pressure function R ∋ t 7→ Ptop(f,−t log |Df |) is analytic except in a

point t0 ∈ (0, 1]. Furthermore, they proved spectral phase transitions, more specific,

the transfer operator Lf,−t log |Df | acting on the space of Hölder continuous functions, has

the spectral gap property for all t < t0 and does not have the spectral gap property

for all t ≥ t0. We aim to prove similar results for two special cases of dynamics: a co-

dimension 1 partially hyperbolic endomorphisms and transitive piecewise monotone on

the circle. For the higher dimension we prove that thermodynamic and spectral phase

transition lead to multifractal analysis of the Lyapunov spectrum, in particular we exhibit

a class of partially hyperbolic endomorphism having phase transition with respect to the

geometric potential in the central direction and describe the multifractal analysis of the

central Lyapunov spectrum. For transitive piecewise monotone maps, we prove that the

set of Hölder continuous potentials which do not have spectral and thermodynamic phase

transition is dense in the uniform topology and the set of Hölder continuous potentials

that has phase transition are not dense. Furthermore, we provide a description of phase

transition based on the properties of the transfer operator and the type of convexity of the

topological pressure function. In particular, we describe the behavior of the topological

pressure function and the transfer operator associated.

Keywords: Phase Transition; Thermodynamic formalism; Transfer Operator; Large De-

viation Principles; Multifractal Analysis.
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Introduction

Thermodynamic and Spectral Phase Transition

In Physics, the term phase transition is mostly used to describe the different

states of matter: solid, liquid and gaseous. During a phase transition, we often have

a drastic change of properties, like a discontinuity, as a result of external changes such

as temperature, pressure or others phenomenons. It corresponds to a qualitative change

in the statistical properties of a dynamical system. In dynamical systems there is no

unanimity on the meaning of phase transition, it depends on which settings or properties

we are studying. For some authors in the literature, phase transition can be related, for

example, to the non-uniqueness of equilibrium states, or lack of Gateaux differentiability

of the pressure function. In this work, phase transition means that the topological pressure

function is not analytic:

Definition 0.0.1. We say that a map f : M → M has a (thermodynamic) phase

transition with respect to a potential ϕ :M → R, if

R ∋ t 7→ Ptop(f, tϕ)

is not analytic at some point t0. Additionally, if f is analytic for all t except t0, we say that

the phase transition is effective. In that case, we call this t0 the transition parameter.

0.1 Historical context of Phase Transition

Due to the works of Sinai, Bowen and Ruelle [S72, Bow75, BR75] transitive

hyperbolic or expanding dynamics do not admit phase transition with respect to Hölder

continuous potentials. From a more general point of view, there are many examples in the

literature of non-uniformly hyperbolic dynamics that admit phase transition with respect

to the geometric potential1 or regular potentials:

• Manneville-Pomeau maps and geometric potential [Lo93],

1ϕ := − log |Df | is refered as the ”geometric potential”.

1
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• a large class of interval maps with indifferent fixed point and geometric potential

[PS92],

• certain quadratic maps and geometric potential [CRL13, CRL15, CRL19],

• certain non-degenerate smooth interval map and geometric potential [CRL21],

• porcupine horseshoes and geometric-type potential [DGR14],

• geodesic flow on Riemannian non-compact manifolds with variable pinched negative

sectional curvature and suitable Hölder potential [IRV18],

• geodesic flow on certain M-puncture sphere and geometric-type potential [V17].

However, it is still an open question to decide exactly which dynamical systems admit

phase transitions. Recently, Bomfim and Carneiro [BC21] proposed the following prob-

lem:

Problem A. What is the mechanism responsible for the existence of phase transitions for

C1−local diffeomorphisms, with htop(f) > 0, with respect to Hölder continuous potentials

?

Remark 0.1.1. Walters [W92] proved that if f is expansive and has finite topological

entropy then the lack of differentiability of the topological pressure function is related to

non-uniqueness of equilibrium states associated to a potential ϕ.

Let’s recall a very important concept in dynamical system, the transfer operator,

for more details see e.g. [S12] or [PU10]. This operator is fundamental to studying

thermodynamic quantities and indeed obtaining equilibrium states and its properties. We

define the Ruelle-Perron-Frobenius operator or transfer operator, which acts on function

spaces, as the following:

Definition 0.1.2. Let f :M →M be a local homeomorphism on a compact and connected

manifold. Given a complex continuous function ϕ : M → C , define the Ruelle-Perron-

Frobenius operator or transfer operator Lf,ϕ acting on functions g :M → C as following:

Lf,ϕ(g)(x) :=
∑
f(y)=x

eϕ(y)g(y).

Generally, one studies this operator acting on a Banach space E which is dense in

C0(X,C). Classical thermodynamic results for sufficiently chaotic dynamics derive from

good spectral properties from this operator. The transfer operator for dynamics such as

expanding maps are shown to have spectral gap for a large set of potentials (e.g. all Hölder

functions), a concept which we recall now:
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Definition 0.1.3. Given E a complex Banach space and L : E → E a bounded linear

operator, we say that L has the (strong) spectral gap property if there exists a decompo-

sition of its spectrum sp(L) ⊂ C as follows: sp(L) = {λ1} ∪ Σ1 where λ1 > 0 is a leading

eigenvalue for L with one-dimensional associated eigenspace and there exists 0 < λ0 < λ1

such that Σ1 ⊂ {z ∈ C : |z| < λ0}.

λ0 λ1

Figure 1: The figure illustrate the spectrum of a linear operator satisfying spectral gap

property

From the spectral gap property, we obtain candidates for equilibrium states as follows: if

ϕ is a real continuous function, via Mazur’s Separation Theorem, every transfer oper-

ator has its spectral radius ρ(Lf,ϕ|C0) as an eigenvalue for its dual operator, that is, there

exists a probability νϕ with (Lf,ϕ|C0)∗νϕ = ρ(Lf,ϕ|C0)νϕ. If additionally E ⊂ C(M,C)
is a Banach space continuously immersed in C(M,C) and Lf,ϕ|E has the spectral gap

property, then ρ(Lf,ϕ|C0) = ρ(Lf,ϕ|E) and Lf,ϕ|E admits an eigenfunction hϕ ∈ E with

respect to ρ(Lf,ϕ|E) which is the leading eigenvalue. We can assume, up to rescaling, that∫
hϕdνϕ = 1, then the probability measure µϕ = hϕ · νϕ is proved to be f−invariant and

is a candidate to be the equilibrium state of f with respect to ϕ.

When f is a mixing expanding or hyperbolic dynamic and ϕ is a suitable potential,

the thermodynamic properties can be recovered through the transfer operator Lf,ϕ. That
is possible by the fact that the transfer operator Lϕ has the spectral gap property acting

on a suitable Banach space, and it can be shown that f does not have phase transition
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with respect to such suitable potentials (see e.g. [PU10]). It’s well known that from a

dynamical system having spectral gap property, we can deduce many important statistical

properties of thermodynamic quantities such as: equilibrium states, mixing properties,

large deviations and limit theorems, stability of the topological pressure and equilibrium

states, or even differentiability results for thermodynamic quantities. (see e.g. [Ba00,

GL06, BCV16, BC19]).

Bomfim and Carneiro [BC21] conjectured the following:

Conjecture A. Let f :M →M be a C2−local diffeomorphism on a compact Riemannian

manifold M . If f is not a uniformly expanding map or uniformly hyperbolic diffeomor-

phism, then there exists a suitable potential ϕ such that Lf,ϕ does not have the spectral gap

property acting on a suitable Banach space. (Hölder continuous or smooth functions).

Remark 0.1.4. Given r ≥ 1 and a integer α ∈ (0, 1] we denote by Cr(S1,C) and

Cα(S1,C) the Banach space of Cr functions and α-Hölder continuous complex functions

whose domain is S1, respectively.

As a first step in this direction, we have an answer from [BC21] for Problem A and

Conjecture A when M = S1. They proved the following:

Theorem 0.1.5 ([BC21]). Let E = Cα(S1,C) or Cr(S1,C) and let f : S1 → S1 be a

transitive not invertible C1-local Diffeomorphism with Df Hölder continuous (respectively

Cr). If f is not expanding, then there exist t0 ∈ (0, 1] such that the transfer operator

Lf,−t log |Df | has the spectral gap property on E for all t < t0 and doesn’t have spectral gap

property for t ≥ t0.

As a consequence of the previous theorem, one has effective thermodynamic phase tran-

sition:

Corollary 0.1.5.1 ([BC21]). Let f : S1 → S1 a transitive non-invertible C1-local diffeo-

morphism with Df Hölder continuous. If f is not a expanding map, then the topological

pressure function R ∋ t 7→ Ptop(f,−t log |Df |) is analytic, strictly decreasing and strictly

convex in (−∞, t0), and constant equal to zero in [t0,+∞). In particular, f has a unique

thermodynamic phase transition with respect to the geometric potential − log |Df |.

Our first two results are to obtain similar results as in Bomfim-Carneiro [BC21]

for a certain class of dynamical systems in higher dimension. The second part of our

results, in the one-dimensional case, are to study existence of phase transition and its

consequence for thermodynamic and spectral concepts.
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0.2 Context: definition of our classes of dynamics

Now, we present the two classes of dynamics that we study. Here we set up the

kind of maps we consider in our study.

0.2.1 Codimension one partially hyperbolic endomorphism

We now describe what we mean by saying that F : M → M is a codimension

one partially hyperbolic endomorphism on a manifold M . Later on, we will define the

class of skew-product that is a particular case and the object of our study satisfying such

properties.

Definition 0.2.1. F is a codimension one partially hyperbolic endomorphism if F is a

C1−local diffeomorphism and there is a continuous splitting of the tangent bundle TM =

Es ⊕ Ec ⊕ Eu and positive constants λ > 1, σ < 1 and c > 0 such that

• Es, Ec, Eu are DF -invariant and Dim(Ec) = 1;

• ||DF n|es|| ≤ e−σn+c, ||DF n|Eu|| ≥ eλn+c;

• ||DF n|Ec|| ≥ eσn−c||DF n|Es ||, ||DF n|Ec || ≤ e−λn+c||DF n|eu||

The subbundles Es, Ec and Eu are called stable, central and unstable, respectively. For

more details on partially hyperbolic endomorphism, the reader can check the work of

Varandas-Cruz [VC18] and Álvarez and Cantarino [AC22]. The partially hyperbolic en-

domorphism are a natural generalization of the partially hyperbolic diffeomorphism for

the non-invertible context. When M = T2 is the two-dimensional torus and Es = 0, we

know that there exists an open subset of robust transitivity partially hyperbolic endo-

morphism that are not expanding, see [LP13]; furthermore, a generic partially hyperbolic

endomorphism admits finitely many ergodic physical measures whose union of the basin

of attraction has total Lebesgue measure [T05]. Since that Ec is DF−invariant, then the

central Lyapunov exponent λc(x) = lim log 1
n
log ||DF |Ecx(x)|| is well defined on a total

probability subset (see e.g. the Oseledets Theorem in [V14]).

Remark 0.2.2. One cannot expect all local diffeomorphism in higher dimensions (not

uniformly expanding or hyperbolic) to have thermodynamic and spectral phase transition,

Bomfim and Carneiro [BC21] presented the following example:

Example 0.2.3 ([BC21]). Take the following maps on the circle

f : S1−−−→S1 Rα : S1−−−→S1

x 7→ 2x mod 1 y 7→ y + α
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which are an expanding map and an irrational rotation (α ∈ Q′), respectively. Now define

on the torus the direct product

F : S1 × S1 −−−−−→ S1 × S1

(x, y) 7→ (f(x), Rα(y)) .

Note that Rα is uniquely ergodic with m := Leb being its unique invariant probability.

Thus given any Hölder potential ϕ : S1 × S1 → R, we can define the Hölder potential

ϕ̃ : S1 −−−−−−−−−→ R

x 7→
∫
ϕ(x, y)dm(y)

And the variational principle for F becomes the variational principle for f :

Ptop(F, ϕ) = sup
µ∈M1(f)

{hµ(f) + hm(Rα) +

∫
ϕ(x, y)dm(y)dµ(x) } = Ptop(f, ϕ̃).

Since f is an expanding map then Cα(S1,R) ∋ g 7→ Ptop(f, g) is analytic. We conclude

that Cα(S1 × S1,R) ∋ ϕ 7→ Ptop(F, ϕ) is analytic, even though F is not an expanding nor

hyperbolic dynamics.

Motivating by the work of Bomfim and Carneiro [BC21] in one dimensional dy-

namics, we are concern to solve the following problem:

Problem B. What are the consequences of understanding the topological pressure function

and the associated transfer operator ?

Our response to problem B is to show consequences of phase transition for multi-

fractal analysis. More precisely, we exhibit a class of intermittent skew-product that

admit thermodynamical and spectral phase transitions with respect to the geometric-type

potential and describe the multifractal analysis of its central Lyapunov spectrum. In mul-

tifractal analysis, we study invariant sets and measures with a multifractal structure. We

are essentially measuring the size of those sets, in the sense of Hausdorff dimension or

topological entropy, for instance. Given ϕ :M → R a continuous functions and I ⊂ R an

interval, define

X(I) :=
{
x ∈M ; lim

n→∞

1

n

n−1∑
i=0

ϕ(F i(x)) ∈ I
}

The multifractal Analysis of that sequence is basically understanding those kinds of sets

metrically, geometrically (Hausdorff dimension), topologically (topological entropy, topo-

logical pressure), thermodynamically (variational principles), etc.
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In dynamical systems, given F : M → M a continuous transformation on a compact

metric space we are particularly interested in, for instance,

1. 1
n

n−1∑
i=0

ϕ ◦ F i (Birkhoff’s averages)

2. 1
n
log ||DF n|| and 1

n
log ||DF n||−1 (extreme Lyapunov exponents)

3. 1
n
log µ(B(., n, ϵ)), where B(x, n, ϵ) is the Bowen dynamical ball of radius ϵ and

length n. (local entropy)

We are interested in the multifractal analysis of central Lyapunov exponent λc(F ),

that is, of the sequence ϕn = log ||DF n|Ec ||. Since that Ec is one dimensional and DF -

invariant, then ϕn :=
n−1∑
i=0

ϕ ◦ F i, where ϕ = log ||DF |Ec||, what connects the central

Lyapunov exponent with the Birkhoff’s ergodic theorem. The study of the topological

pressure or Hausdorff dimension of the subsets where the Birkhoff average diverges or

converges to a fixed interval can be traced to Besicovitch and this topic has had contribu-

tions by many authors in recent years (see [DK01, C10, GR09, JR11, PW97, PW99, T08,

TV99, Th10, ZC13, BV17, IJT17, JR21]). In our settings, we study multifractal analysis

created by the central Lyapunov exponent: define the following sets

Lca,b = Xϕ([a, b]) = {x ∈ Td × S1;λc(x) ∈ [a, b]}

L̂c := {x ∈ Td × S1;∄ lim
1

n
log ||DF n|Ecx||}.

in particular, when a = b we denote L̂ca = L̂ca,a as the level set of points which central

Lyapunov exponent is a. We notice that the previous sets decompose the space of orbits.

From the ergodic point of view, given µ an ergodic F−invariant probability, we have that

µ(Lca,b) is 1 or 0 by the Birkhoff ergodic theorem, depending wether
∫
ϕdµ is in [a, b]

or not, respectively. Moreover µ(L̂c) = 0. So these sets may not be that interesting

from the measure theoretical point of view, but we have to be careful, these sets can be

topologically large! By Thompsom [T08] and Lima-Varandas [LV21], if F has topological

properties as the specification property or gluing orbit property and L̂c ̸= ∅, then L̂c is a
Baire residual subset, has full metric mean dimension (m.m.d) and PL̂c(F, ϕ) = Ptop(F, ϕ),

where PZ(F, ϕ) is the topological pressure for the continuous potential ϕ on the set Z (as

defined by Pesin [P98]). For that reason, we also consider the sets

Ec
a,b := L̂c ∩

{
x ∈ Td × S1; lim inf

n→∞

1

n
log ||DF n|Ecx|| ∈ [a, b] or

lim sup
n→∞

1

n
log ||DF n|Ecx|| ∈ [a, b]

}
.

Then we want to answer the following question:
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Question 1. Given N([a, b]) = Lca,b or E
c
a,b, describe the following functions:

[a, b] 7→ hN([a,b])(F )

[a, b] 7→ HD(N([a, b]))

where hZ(F ) denotes the topological entropy restricted to the set Z and HD(Z) denotes

the Hausdorff dimension of the set Z(see Pesin [P98] for both formal definition). Do these

functions vary continuously? Smoothly ? Analytically ?

The class of codimension 1 partially hyperbolic dynamics we focus on here are lo-

cal diffeomorphism, neither expanding nor invertible skew-product satisfying the following

properties:

Definition 0.2.4. Let Dr be the space of Cr-local diffeomorphism F : Td× S1 → Td× S1,

given by F (x, y) := (g(x), fx(y)),∀(x, y) ∈ Td × S1, where:

1. g is an expanding linear endomorphism;

2. deg(F ) > deg(g), where deg is the topological degree of a local homeomorphism;

3. There exist a measure η on S1 such that η ∈ M1(fx) for all x ∈ Td, with zero

Lyapunov exponent, that is,
∫
log |Dfx|dν = 0 for all x ∈ Td.

4. F is topologically conjugated to an expanding dynamical system.

x g(x)

y

fx(y)

fx

Figure 2: Points in Td determine which dynamic will be used to iterate the second coor-

dinate on the circle S1

Remark 0.2.5. Given F ∈ Dr, we fix the potential

ϕc(x, y) = − log ||DFy(x, y)|| = − log |Dfx(y)|.

We denote the central Lyapunov exponent by

λc(z) = − lim
1

n

n−1∑
i=0

ϕc(F i(z)).
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In the next remark we collect some immediate properties of our class of maps as

in definition 0.2.4.

Remark 0.2.6. The fourth item in definition 0.2.4 implies that F is expansive and sat-

isfies the periodic specification property, since that F is an open map and Td× S1 is

a connected manifold. Note that by item (2) in definition 0.2.4, the fact that F is a local

diffeomorphism and Td×S1 is connected, we have that deg(fx) = β constant. Despite our

toy model F being in a topological class of a expanding map, it admits zero Lyapunov expo-

nent. As F necessarily has an invariant measure with zero central Lyapunov exponent (by

definition), F is not an expanding map. Furthermore, by [MP77] htop(F ) = log deg(F ).

0.2.2 Transitive piecewise monotonous maps of the circle

Suppose that f : S1 → S1 is a transitive, non invertible neither expanding, C1-

local diffeomorphism withDf Holder continuous. Following Bomfim and Carneiro [BC21],

there exist a unique thermodinamical and spectral phase transition with respect to the

geometric potential− log |Df | and, as a consequence, a good understanding of multifractal

analysis. Motivated by that, we formulating a problem for classes of transitive piecewise

monotonous maps f : S1 → S1 with respect to a regular classes of potentials:

Problem C. For regular potentials, can we describe the topological pressure function

R ∋ t 7→ Ptop(f, tϕ) ? Does f has phase transition with respect to ϕ ? How much is

common to have phase transition ? How much is common Lf,ϕ|Cα to have the spectral gap

property ?

Let’s now define a special class of transitive piecewise monotonous maps of the

circle and the class of regular potentials we are going to consider:

Definition 0.2.7. f : S1 → S1 is a continuous transitive local-diffeomorphism with break

points, in other words, f is a continuous, transitive and there exist closed arcs I1, ..., Ik ⊂
S1 such that:

1. S1 =
k⋃
i=1

Ii and th arcs Ii have disjoint interiors;

2. f |Ii : Ii 7→ S1 is a C1 diffeomorphism, i = 1, ..., k;

3. the derivative of f is well defined at its fixed points.

Later on, studying the properties of the transfer operator associated to our dynamics, we

will consider the Banach space E = Cα(S1,R) of all Hölder continuous potentials, but

we will also denote E as the Banach space Cr(S1,R) of Cr potentials, in which case we

suppose additionally that f : S1 → S1 is a Cr local diffeomorphism.
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Remark. To avoid confusion, everytime we mension E, we are consider both the Hölder and

smooth case. When necessary, we will explicitly specify the regularity of our potentials.

We have an answer of Problem C for piecewise monotonous maps like in definition

0.2.7 with respect to the class of regular potential (Hölder continuous). In particular, we

show that the set of potentials not admitting phase transition is a dense subset in the

uniform topology.

The continuous potentials case

It is worth mentioning the situation when the potential is only continuous. In the

literature, we have some results related to thermodynamic phase transition for continuous

potentials. The following gives us an idea that if we consider only continuous potential,

then everything might be possible when we talk about phase transition.

Let d ∈ N and A = {0, 1, 2, ..., d−1} be a finite alphabet with d symbols. The (two sided)

shift space X on the alphabet A is the set of all bi-infinity sequences x = (xn)n∈Z with

xn ∈ A. Endow X with the Tychonoff’s product topology which makes X a compact

metric space with the distance d(x, y) = 2− inf{|n|;xn ̸=yn}.

The shift map T : X → X given by T (x)n = xn+1 is a homeomorphism. The

next results by Kucherenko, Quas and Wolf showed that, in the context of shifts, there is

always a continuous potential ϕ such that the topological pressure function associated to

T and ϕ has multiple phase transitions.

Theorem 0.2.8. [KQW21] Let T : X → X the two sided full shift, α > 0 and (βn) be a

strictly increasing (finite of infinite) sequence in [α,+∞). Then there exist a continuous

potential ϕ : X → R such that the following holds:

1. When β ≥ α the potential ϕ has a fase transition at β if and only if β = βn for

some n ∈ N;

2. If lim
n→∞

βn = β∞ < ∞, then the family of equilibrium states βϕ is constant for all

β ≥ β∞.

In Kucherenko and Quas [KQ22] the authors presented a method to explicitly

construct a continuous potential whose pressure function coincides with any prescribed

convex Lipschitz asymptotically linear function starting at a given positive value of the

parameter:

Theorem 0.2.9. [KQ22] Let α > 0 and F (t1, t2, ..., tm) be a convex Lipschitz function on

(α,∞)m such that all the supporting hyperplanes to the graph of F intersect the vertical
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axis in a closed interval [b, c] ⊂ [0,∞). Then there exists a full shift on a finite alphabet

and continuous potentials ϕ1, ..., ϕm such that Ptop(t1ϕ1 + ... + tmϕm) = F (t1, ..., tm) for

all (t1, ..., tm) ∈ (α,∞)m.

We show that the behaviour presented by the previous theorems cannot occur for

maps like in definition 0.2.7 and regular potential.

The Hölder-continuous potentials case

The next result by Kloeckner [Kl20] shows that for any map on the circle which

is expanding outside any arbitrary flat neutral fixed point, the set of Hölder potentials

exhibiting a spectral gap is dense in the uniform topology:

Theorem 0.2.10. (Density Of Spectral Gap Potential)[[Kl20]] Let T be a degree K self-

covering of the circle with a neutral fixed point 0, uniformly expanding outside each neigh-

bourhood of 0. For any α ∈ [0, 1), let V be the linear space of Cα potentials which are

constant near the neutral point. Then for all ϕ ∈ V the transfer operator LT ,ϕ acting

on Cα(T) has spectral gap. Furthermore, for all γ ∈ (0, α), V is dense in Cα(T) for the

γ-Hölder norm.

With the previous discussion in mind, we propose the following question:

Question 2. How to characterize, in terms of existence of phase transition, the pressure

function t → Ptop(f, tϕ) with respect to a regular potential ϕ? Is there a generic (dense)

set of potentials which admit phase transitions, or does not admit phase transitions and/or

Spectral gap?

0.3 Statement of the main results

Codimension one partially hyperbolic endomorphism

Our main objective with Theorem A below is to show the existence and uniqueness

of a phase transition and give a description of the behaviour of the topological pressure

function with respect to the ”geometric potential” in the central direction ϕc. More

specifically, we prove that for F ∈ Dr there exists a unique parameter t0 ∈ R where the

topological pressure function and the associated transfer operator have distinct behaviour

before and after that parameter.
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Theorem A. Let F ∈ Dr, with r ≥ 2. There exists a unique t0 ∈ (0, 1] such that:

1. The topological pressure function R ∋ t 7→ Ptop(f, tϕ
c) is analytic, strictly decreasing

and strictly convex in (−∞, t0) and constant equal to htop(g) in [t0,+∞);

2. The transfer operator Lf,tϕc, acting on the space Cr−1(Td × S1,C), has spectral gap
for all t < t0 and does not have spectral gap for all t ≥ t0.

t

Ptop(F, tϕ)

htop(F )

htop(g)

t0 1

Figure 3: R ∋ t 7→ Ptop(F, tϕ) as stated in theorem A.

Since each F ∈ Dr is conjugated to an expanding map, F satisfies the periodic

specification property. Then, following Thompson [Th09], given a continuous potential

ϕ : Td × S1 → R, its Birkhoff spectrum is given by

Sϕ(F ) :=
{
α ∈ R;∃x ∈ Td × S1 satisfying lim

n→∞

1

n

n−1∑
i=0

ϕ(F i(x)) = α
}
,

which is a non-empty bounded interval.

We are interested in studying the fractal sets created from the central Lyapunov

exponents, that is, taking the observable ϕ = log ||∂F
∂y
||. In that case, the Birkhoff spec-

trum of ϕ is the set of central Lyapunov exponents, the central Lyapunov spectrum

that we denote by Lc(F ). So it makes sense to consider only intervals contained within

the Birkhoff spectrum. Thus, we define the set:

∆ := {(a, b) ∈ R2; a ≤ b and a, b ∈ Lc(F )}
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Let t0 be the phase transition parameter provided by Theorem A. As for t < t0 the transfer

operator associated Lϕ has spectral gap property, by Theorem A, denote

λcmin := inf
t<t0

λcµt(F ) and λ
c
max := sup

t<t0

λcµt(F ).

t

Ptop(F, tϕ)

htop(F )

htop(g)

t0 1

Figure 4: The absolute value of the slopes of the tangent lines to the graph of R ∋ t 7→
Ptop(F, tϕ) give the central Lyapunov exponents.

as the infimum and supremum of the central Lyapunov exponents of the unique equilib-

rium states obtained from spectral gap property. We also denote λcµ0(F ) as the central

Lyapunov exponent of the measure of maximum entropy µ0 for F .

We prove that the existence of phase transition as stated in Theorem A implies

a good understanding of multifractal analysis of the central Lyapunov exponent:

Theorem B. Let F ∈ Dr, with r ≥ 2. The entropy function ∆ ∋ (a, b) 7→ htop(L
c
a,b) is a

concave C1 function satisfying:

• htop(L
c
a,b) = htop(E

c
a,b), for all (a, b) ∈ ∆;

• It is constant and equal to its maximum value htop(F ) for (a, b) in the rectangle

[0, λcµ0 ]× [λcµ0 , λ
c
max];

• It is strictly concave and analytic everywhere, except for b ≤ λcmin, in case of the

exponent λcmin > 0 when the function is linear.
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With Theorem B, the graph of the entropy function must be as described in the

following figure:

y

x

hLa,b(F )

λcmax

λcµ0

λcµ0

λcmax

htop(F )

Figure 5: Ilustration of (a, b) 7→ hLca,b(F )

Transitive Piecewise Monotone Maps on the Circle

For a transitive piecewise monotone map f as in definition 0.2.7, we give a de-

scription of the behaviour of the topological pressure function. In particular, we prove

that the set of regular potential that does not admit phase transition is dense in the uni-

form topology and the set of regular potential that admit it is not dense with respect to

the uniform topology. We want to understand the set of regular (Hölder continuous, Cr)

potentials ϕ for which the topological pressure function R ∋ t 7→ Ptop(f, tϕ) has or not

thermodynamic phase transition or the transfer operator has or not spectral gap property.

We make clear now that for our next main results the context is transitive piecewise maps

as in definition 0.2.7. Our first result in that direction are related to denseness. We prove

the following:
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Theorem C. Let f : S1 → S1 like in definition 0.2.7. There exists an open and dense

subset H ⊂ C0(S1,R) in the uniform topology, such that if ϕ ∈ H is Hölder continuous,

then ϕ has no thermodynamic phase transition and R ∋ t 7→ Ptop(f, ϕ) is strictly convex.

As a direct consequence of Theorem C we have:

Corollary C. 1. The set of smooth potentials such that t 7→ Ptop(f, tϕ) is strictly

convex and has no thermodynamic phase transition is dense, in the uniform topology;

2. The set of Hölder continuous potential having thermodynamic phase transition is

not dense, in the uniform topology.

For the next results we give a characterization of the topological pressure function with

respect to regular (at least Hölder continuous) potentials having or not thermodynamic

phase transition. In particular, we provide information on how the graph of the topological

pressure function should behave with respect to each phenomenon.

Remark 0.3.1. We say that a continuous potential ϕ : S1 → R is cohomologous to a

constant C, if there exists a continuous function u : S1 → R such that:

ϕ = C + u ◦ f − u

It follows from Thompson [Th09] that for maps as in definition 0.2.7, the family of po-

tentials cohomologous to a constant is a closed set with empty interior is C0(S1,R).

Theorem D. Let ϕ be a Hölder continuous potential. The following items are equivalent:

1. ϕ does not have thermodynamic phase transition;

2. ϕ does not have spectral phase transition, i.e., Lf,tϕ|E has spectral gap for all t ∈ R.

If, in addition, ϕ is not cohomologous to a constant, then the previous items are equivalent

to:

3. the topological pressure function t 7→ Ptop(tϕ) is strictly convex.

Furthermore, if any of the previous items holds, then tϕ has an unique equilibrium state,

for all t ∈ R.
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Remark. It follows from Theorems C and D that the set

{ϕ ∈ E : ϕ has an unique equilibrium state}

is dense, in the uniform topology. Furthermore,

{ϕ ∈ E : Lf,tϕ has spectral gap property}

is dense in the uniform topology. It extends an analogous result obtained in [Kl20],

when the map has a unique indifferent fixed point and the suitable Banach space is

E = Cα(S1,C).

Remark 0.3.2. By Leplaideur [L15], there is an example of a continuous potential defined

on a mixing subshift of finite type such that the pressure function is analytic, but the

uniqueness of the equilibrium state fails.

Now, in the next theorem we describe the behaviour of the topological pressure

function for potentials with thermodynamic phase transition. Furthermore, we prove that

there exists at most two phase transitions for Hölder continuous potentials.

Theorem E. Let ϕ ∈ E = Cα(S1,R) be a potential having phase transition. Then, there

exist t2 < 0 < t1, with at least t1 ∈ R or t2 ∈ R, such that:

1. for t ≥ t1 or t ≤ t2, then the topological pressure function is an affine map and for

t2 < t < t1 the topological pressure function t → Ptop(tϕ) is analytic and strictly

convex;

2. for t2 < t < t1 the associated transfer operator Lf,tϕ|E has the spectral gap property,

and for t ≥ t1 or t ≤ t2 the associated transfer operator Lf,tϕ|E does not have the

spectral gap property.

Remark 0.3.3. As a consequence of the previous theorem, there exist at most two ther-

modynamic phase transition for Hölder continuous potentials.

As a particular case of the previous theorem we show that for Maneville-Pomeau-like

maps there exist at most one phase transition.

Definition 0.3.4. We say that a C1-map f : S1 → S1 is a Maneville-Poumeau-like map

if f is expanding except at a unique fixed point. More formally, f(0) = 0, f ′(0) = 1 and

|f ′(x)| > 1 for all x ̸= 0 or 1, when the derivative is well defined.



17

t

Ptop(f, tϕ)

Ptop(f, tϕ) = t
∫
ϕdν1Ptop(f, tϕ) = t

∫
ϕdν2

htop(f)

t1t2

Figure 6: Illustration of a possible shape for the graph of the topological pressure function

R ∋ t 7→ P (t) as stated in Theorem E

Corollary E. If f is a Maneville-Pomeau-like map, then there exists at most one phase

transition for Hölder continuous potentials.



Organization of the thesis

Chapter 1 is mostly dedicated to the proof of the Theorem A, which will be divided in

three steps: the existence of phase transition, absence of spectral gap after the transition

and existence of spectral gap before the transition. We start the chapter by presenting

a brief comment about the proof of Theorem A, then we dedicate one section to present

a class of examples, another one for preliminaries and in the last one we will present the

actual proof of the main result.

Chapter 2 is mostly dedicated for proving some consequences of the results of thermody-

namic and spectral phase transition presented in A. In other words, we prove the Theorem

B. In the beginning of the chapter we present the concept of multifractal analysis and the

large deviations principle, the main concept of our study of the chapter. There are two

sections where the first one we present some preliminaries results, and we end the chapter

by presenting the proof of the Theorem B.

Chapter 3 is dedicated to study the existence (respectively absence) of phase transition

and the consequences for the behavior of the topological pressure function for transitive

piecewise monotone dynamics on the circle S1. We prove Theorem C, Theorem D and

Theorem E and their respectively corollaries. We divided the chapter into two sections:

the first one is preliminary results and the second one is dedicated to the proof of the

main results of the chapter.

Chapter 4 is dedicated to some comments and further questions.

18



Chapter 1

Effective Spectral and

Thermodynamic phase transition

As we mentioned in the introduction, thermodynamic phase transition happens

when the topological pressure function associated to a potential tϕ is not analytic at some

point t0 ∈ R. We are going to show that in the context of our model, maps F ∈ Dr,

the topological pressure function has a unique phase transition parameter and that the

topological pressure function has distinct behaviour before and after that parameter. We

recall that we fixed the potential

ϕc := − log
∣∣∣∣∣∣∂F
∂y

∣∣∣∣∣∣
the geometric-type potential in the central direction. In this chapter, we present the

proof of Theorem A, which guarantees the existence of thermodynamic phase transition

for maps F ∈ Dr.

Theorem A. Let F ∈ Dr, with r ≥ 2. There exist a unique t0 ∈ (0, 1] such that:

1. The topological pressure function R ∋ t 7→ Ptop(f, tϕ
c) is analytic, strictly decreasing

and strictly convex in (−∞, t0) and constant equal to htop(g) in [t0,+∞);

2. The transfer operator Lf,tϕc, acting on the space Cr−1(Td × S1,C), has spectral gap
for all t < t0 and does not have spectral gap for all t ≥ t0.

19
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t

Ptop(F, tϕ)

htop(F )

htop(g)

t0 1

Figure 1.1: Graphical illustration of topological pressure function R ∋ t 7→ Ptop(F, tϕ) as

stated in theorem A.

Before the proof, we present an overview on how we organized and how the

arguments work to prove theorem A.

Brief Comments About The Proof Of the Theorem A

In the proof of Theorem A we mostly follow closely the arguments in [BC21]. So,

we will concentrate here on the main differences of the proof in our context. Firstly, a no-

ticeable difference in Theorem A from the proof in [BC21] is that the topological pressure

function of F is at least htop(g) > 0, where g is the expanding linear endomorphism in

the definition of Dr. Using the fact that F ∈ Dr is conjugated to an expanding map and

Td × S1 is connected, which implies that F is expansive, the central Lyapunov exponent

with respect to any invariant measure cannot be negative. As a consequence of that, the

pressure function is non-increasing.

The proof of the Theorem A will be divided into three steps:

In the first step, following [BC21], using the fact that the topological pressure function

is non-increasing, we show that for all t ≥ 1 the pressure function is constant equal to

htop(g). On the other side, we show that the topological pressure function is not constant

for t ≤ 1, and conclude that there exists t0 ∈ (0, 1] such that the topological pressure

function is not analytic at t0. With respect to the phase transition parameter t0, we show

that the transfer operator LF,t0ϕc should not have the spectral gap property acting on

Cr−1(Td × S1,C), using the fact that the topological pressure function is not analytic in
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t0.

In the second step, for t > t0, we show that the transfer operator LF,tϕc does not have
the spectral gap property acting on Cr−1(Td× S1,C), as we establish relation between

the strictly convexity of the geometric pressure function and the existence

of spectral gap. For the convexity strict, we make use of Nagaev’s method and the

Central Limit Theorem. It associates the second derivative of the pressure function with

the variance of the C.L.T. which, in turn, has its sign related to the potential being or

not cohomologous to a constant. In particular, the constant behaviour of the geometric

pressure function after the transition parameter implies that spectral gap does not occur

for these parameters.

In the third step, we show that for t < t0 the transfer operator LF,tϕc has the spectral

gap property acting on Cr−1(Td × S1). Following similar arguments as in [BC21], for

F ∈ Dr, quasi-compactness is sufficient for the transfer operator to have spec-

tral gap. Using estimates from [CL97] to prove that the essential spectral radius

is bounded from above by a translation of the pressure function and that the

spectral radius is bounded by the pressure function, we prove the spectral gap property

for t = 0, and therefore to t sufficiently close to zero, by the openness of spectral gap

property. Finally, we extend this property to all t < t0, first for t < 0 and similarly for

0 < t < t0, using the monotonicity of the pressure function and the fact that it is related

to the spectral radius, not only when the gap holds but also on the boundary of that region.

We will show in the next section that an interesting variety of examples satisfy our as-

sumptions.

1.1 Examples of Skew-Product

The following example shows us that our context extend the one dimensional

case. We take a transitive local diffeomrphism on the circle S1 in the context of Bomfim-

Carneiro [BC21] as the only map in the fiber for our skew-product, and the result will

gives us the first example:
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Example 1.1.1. Let f : S1 → S1 be a transitive non-invertible Cr−local diffeomor-

phism. It follows from [CM86] that f is topologically conjugated to a uniformly expand-

ing dynamic. Suppose that f is not uniformly expanding, then it follows from The-

orem 2 of [CLR04] that f admits an f -invariant and ergodic probability ν such that

χ(f) =
∫
log |Df |dν = 0. Therefore, the skew-product F : S1 × S1 → S1 × S1 given

by

F (x, y) = (2x mod 1, f(y))

will belong to Dr.

The next class of examples will show that our class of skew-product contains an

interesting class of local diffeomorphims in higher dimension. Such examples can be seen

as differentiable versions of a random choice of intermittent dynamics.

Example 1.1.2. Let x1, x2, ..., xk = x1 be points in S1. Define V ({xj}kj=1) as the set of

functions f : S1 → S1 such that

• f is transitive Cr−local diffeomorphism;

• f |[xj ,xj+1] is one-to-one, f(xj) = x1 and f([xj, xj+1]) = S1;

• Df(xj) = 1 and |Df(x)| > 1, for all x ̸= xj, j = 1, ..., k.

Remark 1.1.3. Observe that if a local diffeomorphism F : Tn → Tn is (positively)

expansive, then there exists a metric on Tn compatible with the topology such that the

mapping F is uniformly expanding with respect to this metric. In particular F will be

topologically conjugated to a uniformly expanding dynamics (for more details, see [PU10]).

Proposition 1.1.4. Fix x1, x2, ..., xk points in the circle S1. Let F : Td × S1 → Td × S1,

be a Cr-local diffeomorphism given by F (x, y) = (g(x), fx(y)), where g is an expanding

linear endomorphism and fx ∈ V ({xj}kj=1). Then, F ∈ Dr.

Proof. If we take ν = δx1 , then ν satisfies item (3) of the definition of Dr, so it’s enough

for us to check item (4). If we know that F is (positively) expansive, we could use the

results in [PU10], and that will be enough for us, by the previous remark. By definition

of V ({xj}kj=1) and continuity x 7→ fx, there exists ϵ > 0 such that: given 0 < a < ϵ there

is λa > 1 with diam(fx(I)) ≥ λadiam(I), for all a ≤ diam(I) ≤ ϵ and x ∈ Td, where
diam means the diameter of a subsetin S1. Arguing by contradiction, suppose that F is

not expansive. As g is expansive, then there exists x ∈ Td and y1 ̸= y2 with

|fgn(x) ◦ · · · ◦ fx(y1)− fgn(x) ◦ · · · ◦ fx(y2)| < ϵ
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for all n ≥ 0, meanwhile:

diam(fgn(x) ◦ · · · ◦ fx([y1, y2]) ≥ λna |y1 − y2|,

for all n ≥ 0. This implies that exist n ≥ 0 such that

|fgn(x) ◦ · · · ◦ fx(y1)− fgn(x) ◦ · · · ◦ fx(y2)| > ϵ

That is a contradiction. We conclude that F is expansive.

Remark. Our results applied to the previous class of examples guarantee the existence

and uniqueness of phase transition (Theorem A) and a good understanding of multifractal

analysis of the spectrum of the central Lyapunov exponent (Theorem B)

As a byproduct of the previous example, we present a class of intermittent maps

of class C2:

Example 1.1.5. For each α ∈ [0, 1] define the constants

b = b(α) =
((1

2

)3+α
− 4 + α

4 + 2α

(1
2

)2+α)
and a = a(α) = −−b(4 + α)

4 + 2α

and the polynomial gα : [0, 1/2] → [0, 1], given by gα(y) = y + ay3+α + by4+α. Then we

define the family of intermittent maps on the circle

fα(y) =

gα(y), if 0 ≤ y ≤ 1/2

1− gα(1− y), if 1/2 ≤ y ≤ 1.

This family of dynamics can be seen as a C2 version of the Manneville-Pomeau maps.

Observe that y = 0 is an indifferent fixed point and Dfα(y) > 1 for all y ̸= 0. In fact, we

have:

Dfα(y) = 1 + (3 + α)αy2+α + (4 + α)by3+α,∀ 0 ≤ y ≤ 1/2

Dfα(y) = −1 + (3 + α)α(1− y)2+α + (4 + α)b(1− y)3+α,∀ 1/2 ≤ y ≤ 1

fα ∈ V (0, 1/2, 1) for all α ∈ [0, 1]. Therefore, as a byproduct of the previous construction

the skew-product, if g is an expanding linear endomorphism then

F : Td × S1 → Td × S1

given by

(x, y) 7→ (g(x), fx(y))

belongs to Dr.
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1

0.5 1

Figure 1.2: Intermittent map of class C2

1.2 Preliminaries

Before starting the proof of Theorem A we need some classical results like the

celebrated Birkhoff Ergodic Theorem which associates time and space averages of a

given potential ϕ : X → R. and Oseledets Multiplicative Ergodic Theorem on the

existence of Lyapunov exponents.

Theorem 1.2.1 (Birkhoff). Let f : X → X be a measurable transformation and µ be

an f -invariant probability. Given any integrable function ϕ : X → R, the limit:

ϕ̄(x) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))

exists for µ-almost every x ∈ X. Furthermore, the function ϕ̄ defined this way is integrable

and satisfies ∫
ϕ̄(x)dµ(x) =

∫
ϕ(x)dµ(x).

Additionally, if µ is ergodic, then ϕ̄ ≡
∫
ϕdµ for µ−a.e.

We recall a very important tool introduced by Bowen [Bow71]:

Definition 1.2.2. We say that F :M →M satisfies the specification property if given ϵ >

0, there exist N(ϵ) ≥ 1, depending only on ϵ, such that para for any points x1, x2, ..., xk ∈
M and shadowing times n1, n2, ..., nk−1 ≥ 0 and for all p1, p2, ..., pk−1 ≥ N(ϵ) there exist

a point x ∈M such that:
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d(F j(x), F j(x1)) ≤ ϵ, 0 ≤ j ≤ n1

d(F j+n1+p1+...+ni−1+pi−1(x), F j(xi)) ≤ ϵ, 2 ≤ i ≤ k − 1 e 0 ≤ j ≤ ni

If for all pk ≥ N(ϵ) we have x as describe above and F+n1+p1+...+nk−1+pk−1+pk(x) = x, we

say that F satisfies the periodic specification orbit property.

Lyapunov Exponents

Important quantities that sometimes can be linked with time averages are the

Lyapunov exponents. That is the case of the central Lyapunov exponent for maps in Dr

due to the codimension one of our toy model. These exponents exhibit the asymptotic

rates of expansion and contraction of a smooth dynamic system. In a broader context,

these are defined via the Oseledets Multiplicative Ergodic Theorem:

We say that λ is a Lyapunov exponent for a C1 map f , if there exists a point

x and a vector v ∈ TxM such that

λ = lim
n→∞

1

n
log ∥Dfnx (v)∥,

We let L(f) denote the set of all Lyapunov exponents for f . The Oseledets

Multiplicative Ergodic Theorem states that for each ergodic measure µ ∈ Merg(f)

there exists a number 0 < k ≤ d, constants λ1 > · · · > λk , and a filtration TxM =

E1
x ⊃ · · · ⊃ Ek+1

x = {0} of the tangent bundle over Λ, such that for all non-zero vector

v ∈ Ei
x\Ei+1

x , i = 1, ..., k

lim
n→∞

1

n
log ∥Dfnx (v)∥ = λi

for µ-almost every x. For non-ergodic measures the number k, the constants λj, and the

tangent bundle decomposition which depends on xmay depend on the ergodic component.

The constants λj are called the Lyapunov exponents associated to the measure µ.

Now for an ergodic measure µ, let mj := mj
x = dimEj

x − dimEj−1
x be the mul-

tiplicity for j = 1, . . . , k and µ almost every x. We define the sum of positive Lyapunov

exponents, with multiplicity by

λ+(µ) =
∑
λj>0

mjλj.

We will need the following well known relation between entropy and positive

Lyapunov exponents:

Theorem 1.2.3 (Margulis-Ruelle inequality, [Rue78]). Let f : M → M be a C1-local

diffeomorphism that preserves an f−invariant and ergodic probability µ. Then

hµ(f) ≤ λ+(µ)
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Translating the Margules-Ruelle inequality for the dynamics F ∈ Dr: given an

F−invariant and ergodic probability measure µ we denote its Lyapunov exponents as

λcµ, λ
1
µ, λ

2
µ, ..., λ

d
µ, where λi, i = 1, ..., d are the Lyapunov exponents of the expanding linear

endomorphism g in the definition of Dr and

λcµ(x, y) := lim
n→∞

1

n
log ||DF n

y (x, y)|| = lim
n→∞

1

n

n−1∑
i=0

ϕ(F i(x, y)).

for µ-a.e. (x, y) and ϕ = log ||DFy||. For an ergodic measure µ, we define its central

Lyapunov exponent as

λcµ(F ) :=

∫
log ||DFy||dµ

The Margules-Ruelle inequality can be rewritten as

hµ(F ) ≤
d∑
i=1

λi +max{0, λc} (1.1)

Recall that a partition is said to be generating if its pre-images generate the

Borelian σ-algebra. If its domain is a metric space, then a partition such that the diameter

of the elements of
∨+∞
i=m f

−i(P) gets arbitrarily small as m grows is a generating partition.

Next, we recall the definition of Jacobian, which together with generating parti-

tion gives the Rokhlin formula. Let f be a locally invertible map and a given probability

ν (not necessarily invariant), we define the Jacobian of f with respect to ν as the mea-

surable function Jν(f), which is essentially unique, satisfying:

ν(f(A)) =

∫
A

Jν(f)dν

for any invertibility domain A. Up to restricting f to a full measure subset, f always

admits a Jacobian with respect to an invariant probability, in that case, we call it weak

Jacobian.

The existence of generating partition gives a fundamental tool for calculating the

metric entropy:

Theorem 1.2.4 (Rokhlin formula). Let f :M →M be a locally invertible transforma-

tion and ν be an f -invariant probability measure. Assume that there is some generating

partition P up to measure zero such that every P ∈ P is an invertibility domain of f .

Then

hµ(f) =

∫
log Jµ(f)dµ.
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This equality will be fundamental later on to relate topological pressure function

and spectral radius. Another property regarding the metric entropy is the upper semi-

continuity of the function M1(f) ∋ µ 7→ hµ(f) ∈ R+ which guarantees the existence of

equilibrium states. We have that expansiveness of the system implies semi-continuity,

which is the case for our maps, by remark 0.2.6.

We want to obtain analyticity of thermodynamic quantities, such as the pressure

function. We derive it from the analyticity of spectral objects such as the spectral radius.

Let L : E → E be a bounded linear operator on a complex Banach space. We

denote the spectral radius of L by ρ(L).

Definition 1.2.5. A complex number λ is said to be in resolvent set of L if λI −L is

a bijection with bounded inverse. If λ is not in the resolvent set, then λ is said to be in

the spectrum of L, which we denote by sp(L).

Suppose that L has the spectral gap property as we defined in 0.1.3. By [R55]

this is an open property, that is, there exists δ > 0 such that if L̃ : E → E is a bounded

linear operator with ||L − L̃|| < δ then L̃ has the spectral gap property. Moreover,

B(L, δ) ∋ L̃ 7→
(
ρ(L̃), Pρ(L̃)

)
is analytic, where Pρ(L̃) is the spectral projection of L̃ with

respect to the leading eigenvalue ρ(L̃).
From there, following the same proof of [BCV16, Proposition 4.1] we have

Proposition 1.2.6. Let f : M → M be a local homeomorphism on a compact and

connected manifold and E be a Banach algebra of functions such that Lf,ϕ as defined in

0.1.2 is a bounded linear operator of E on E, for all ϕ ∈ E. Then

E ∋ ϕ→ Lf,ϕ

is analytic, where we endow on the codomain the topology generated by the operator norm.

In particular, R ∋ t 7→ Lf,tϕ is real analytic for all ϕ in E.

Note that if T = Lf,ϕ|E has the spectral gap property, we have the following equal-

ity for the projection Pρ(T̃ )(g) =
∫
gdνϕ ·hϕ, since the eigenspace associated to the leading

eigenvalue is unidimensional. Define SG(E) := {ϕ ∈ E : Lf,ϕ|E has the spectral gap property},
we then conclude:

Corollary 1.2.7. SG(E) ⊂ E is an open subset and the following map is analytic:

SG(E) ∋ ϕ 7→ (ρ(Lf,ϕ|E), hϕ, νϕ) .

Most of the time, it is hard to verify that a certain linear operator has the

spectral gap property. Sometimes it’s convenient to consider a weaker spectral property,

for instance, quasi-compactness:
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Definition 1.2.8. Given E a complex Banach space and L : E → E a bounded linear

operator, we say that L is quasi-compact if there exists 0 < σ < ρ(L) and a decomposition

of E = F ⊕H as follows: F and H are closed and L-invariant, dimF <∞, ρ(L|F ) > σ

and ρ(L|H) ≤ σ.

σ ρ(L|F )

Figure 1.3: The figure illustrate the spectrum of a linear operator satisfying quasi-

compactness

In general, spectral gap implies quasi-compactness. Later we will prove that, in the

context of Theorem A, quasi-compactness is a sufficient condition for spectral gap to

hold. In order to obtain quasi-compactness, we use an alternative equivalent definition

for it via the essential spectral radius:

Definition 1.2.9. Given E a complex Banach space and L : E → E a bounded linear

operator, define the essential spectral radius:

ρess(L) := inf{r > 0; sp(L) \B(0, r) contains only eigenvalues of finite multiplicity}

Thus quasi-compactness is equivalent to having ρess(L) < ρ(L), and so estimates on the

essential spectral radius and the spectral radius will be crucial.

The proof of the following two lemmas can be found in [BC21], where their proof

is in the context of local diffeomorphism on the circle, but their argument can be extended

for more general local diffeomorphism on a compact and connected manifold with dense

pre-images.

Lemma 1.2.10 (Lemma 5.5 of [BC21]). Let f : M → M be a Cr−local diffeomorphism

on a compact and connected manifold M , such that {f−n(x) : n ≥ 0} is dense in M for
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all x ∈ M , and let ϕ ∈ Cr(M,R). If Lf,ϕφ = λφ with |λ| = ρ(Lf,ϕ|Cr) and φ ∈ E \ {0},
then Lf,ϕ|φ| = ρ(Lf,ϕ|Cr)|φ|. Furthermore, ρ(Lf,ϕ|C0) = ρ(Lf,ϕ|Cr), φ is bounded away

from zero and dimker(Lf,ϕ|Cr − λI) = 1.

Basically, by the previous lemma, if the transfer operator has a peripheral eigen-

value associated to a non-zero potential φ, the spectral radius is an eigenvalue associated

to the absolute value of φ and it is a simple eigenvalue. As a corollary we have:

Corollary 1.2.10.1 (Corollary 5.6 in [BC21]). Let f :M →M be a Cr−local diffeomor-

phism on a compact and connected manifold M , such that {f−n(x) : n ≥ 0} is dense in

M for all x ∈ M , and let ϕ ∈ Cr(M,R). If Lf,ϕ|Cr has the spectral gap property then

there exists a unique probability νϕ onM such that (Lf,ϕ|Cr)∗νϕ = ρ(Lf,ϕ|Cr)νϕ. Moreover,

supp(νϕ) =M .

Remark 1.2.11. Given Lf,ϕ|Cr with the spectral gap property, by Lemma 1.2.10 there

exists a unique hϕ ∈ Cr(M,C) such that
∫
hϕdνϕ = 1. Moreover, denote the f−invariant

probability hϕdνϕ by µϕ. Note that supp(νϕ) = M and hϕ > 0, also by this lemma, thus

supp(µϕ) =M.

The next lemma establishes a connection between the pressure function and spec-

tral gap. Here, as in [BC21], we use the Rohklin’s formula for the metric entropy as F ∈ Dr

admits a generating partition such that each element is a domain of invertibility.

Lemma 1.2.12. Let f : M → M be a Cr−local diffeomorphism be on a compact and

connected manifold M , such that {f−n(x) : n ≥ 0} is dense in M for all x ∈ M and f

admits generating partition by domains of injectivity. Let ϕ ∈ Cr(M,R). If Lf,sϕ|Cr has

spectral gap for a given s ∈ R, then:

1. Ptop(f, sϕ) = log ρ(Lf,sϕ|Cr) and µsϕ is an equilibrium state of f with respect to sϕ;

2. R ∋ t 7→ P (f, tϕ) is analytic on s.

Proof. The proof follows closely the same proof as in [BC21].

1.3 Proof of Theorem A

The main goal in this section is to prove Theorem A. Roughly speaking, we want

to understand the regularity of the topological pressure function, which by the variational

principle is given by:

P (t) = Ptop(F, tϕ
c) = sup{hµ(F )− tλcµ(F ), µ ∈ M1(F )}, t ∈ R.
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where M1(F ) is the space of all invariant probability measure by F , hµ(F ) is the metric

entropy and λcµ(F ) is the central Lyapunov exponent associated to the invariant proba-

bility measure µ. It is known, via the Variational Principle (see e.g. [OV16]), that this

suprememum can be taken over the space of ergodic probabilities measures, Merg(F ).

1.3.1 Step 1: Existence of phase transition

We first show that, for F ∈ Dr, negative central Lyapunov exponent cannot occur

and, as a consequence, the topological pressure function is monotone non-increasing.

Lemma 1.3.1. Let F ∈ Dr. Then λcµ(F ) ≥ 0, for every µ ∈ M1(F ).

Proof. This lemma is a consequence of F being expansive and satisfying the periodic

specification property, by remark 0.2.6. Suppose λcµ(F ) < 0. As F satisfies the periodic

specification property, by Sigmund [S74] the periodic points are dense, then there exist

0 < λ < 1 and (x, y) ∈ Td×S1 such that F n(x, y) = (x, y) and ||Dfkn(x, y)|| < λk,∀k ≥ 1.

In particular f(y) := fgn−1(x) ◦ fgn−2(x) ◦ ... ◦ fx(y) satisfies f(y) = y and |Df(y)| ≤ λ.

By continuity, triangular inequality and mean value theorem there exist δ > 0 such that

|f(z1)− f(z2)| ≤ 2λ|z1 − z2|, for all z1, z2 ∈ B(y, δ). As F is uniformly continuous, given

ϵ > 0 we can find a δ̃ ≤ δ such that

|fgm−1(x) ◦ fgm−2(x) ◦ ... ◦ fx(z1)− fgm−1(x) ◦ fgm−2(x) ◦ ... ◦ fx(z2)| < ϵ

for all m ≥ 0 and z1, z2 ∈ B(y, δ̃). As ϵ is arbitrary this implies that F is not expansive,

which is a contradiction.

The fact that F does not have negative Lyapunov exponent is very useful espe-

cially for properties related to the transfer operator. With the previous lemma, the main

properties of our toy model and the Margules-Ruelle’s inequality, 1.1, we are going to show

that should exist a point t0 where the topological pressure function changes behaviour,

and so it cannot be analytic at t0.

Lemma 1.3.2. Let F ∈ Dr. Then, there exist t0 ∈ (0, 1] such that the pressure function

R ∋ t 7→ Ptop(F, tϕ
c) is not analytic in t0.

Proof. By Lemma 1.3.1, F cannot have negative central Lyapunov exponent. So, if we de-

note P (t) := Ptop(F, tϕ
c), the pressure function R ∋ t 7→ P (t) is monotone non-increasing.

As a consequence of that fact and the definition of F ∈ Dr,

• P (0) = htop(F ) > htop(g) > 0
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• If η ∈ M1(fx) for all x ∈ Td is the measure in item (3) in the definition of F ∈ Dr

together with item (1) in definition of Dr, then Leb× η ∈ M1(F ) and for all t ∈ R:

hLeb×η(F )− tλcLeb×η(F ) = hLeb×η(F ) = htop(g)

Then we have P (t) ≥ hLeb×η(F ) ≥ hLeb(g) = htop(g). We remind now that by the

Margules-Ruelle inequality 1.1, we have that for all F−invariant and ergodic µ,

hµ(F )− λcµ(F ) ≤
∑

λj(F )>0

mjλj(F ) ≤
d∑
i=1

λi(g, Leb).

This implies that

P (1) ≤
d∑
i=1

λi(g, Leb) = hLeb(g) = htop(g) ≤ P (t)

and so, by the fact that the P (t) ≥ htop(g),

P (t) = htop(g),∀t ≥ 1

As F is differentiable and by remark 0.2.6 together with item (2) in the definition of

Dr 0.2.4, htop(F ) = log(deg(F )) > log(deg(g)) = htop(g). We conclude that there exists

t0 ∈ (0, 1] such that the function R ∋ t 7→ P (t) has phase transition in t0, with t0 =

inf{t ∈ (0, 1];P (t) = htop(g)}.

From the previous lemma, the topological pressure function is constant and equal

to htop(g) for all t ≥ t0, and it is convex for all t < t0. Further ahead, we will show that

P (t) is actually strictly convex, using the properties of the transfer operator associated

to F and ϕc.

1.3.2 Step 2: Absence of spectral gap after transition

Now we can show the absence of spectral gap on the parameter t0. We already

know, by Lemma 1.3.2, that the topological pressure function t 7→ P (t) is convex mono-

tone non-increasing. We will show now that for each parameter s where the transfer

operator has spectral gap, the topological pressure function is actually strictly convex

in a neighbourhood of s. As a consequence of that, we establish a relation between the

spectral gap property and strict convexity of the pressure function (and its consequence

on the phase transition).

Another way to define the transfer operator is through duality. In [S12] it is

defined in the following way:



32

Definition 1.3.3. The transfer operator of a non-singular map (M,B, µ, T ) is the oper-

ator T̂ : L1(µ) → L1(µ) such that T̂ (f) is the unique element of L1(µ) such that for all

test functions φ ∈ L∞, ∫
φ(T̂ (f))dµ =

∫
(φ ◦ T ).fdµ

For the next theorem, we assume the following assumptions: let (M,B, T, µ) be
a mixing, probability preserving map. Suppose that T̂ has the spectral gap property in

some Banack space (E , ||.||) of functions, subset of L1(µ), which contains the constants,

is closed under multiplication and which satisfies the inequalities:

||fg|| ≤ ||f ||||g||, ||.|| ≥ ||.||1

With the previous assumptions in mind, Recall the following central limit theorem (C.L.T.):

Theorem 1.3.4. (Central Limit Theorem [S12]) Let φ ∈ E be bounded with µ-integral

zero. If there does not exist v ∈ E such that φ = v − v ◦ T µ-a.e., then there exist σ > 0

such that

1√
n

n−1∑
k=0

φ ◦ T n dist−−−→
n→∞

N (0, σ2)

i.e.

µ
(
x;

1√
n

n−1∑
k=0

φ ◦ T n(x) ∈ [a, b]
)
−→ 1√

2πσ2

∫ b

a

e
−t2
2σ2 dt

for all intervals [a.b] and N (0, σ) denotes the Gaussian distribution with mean zero and

standard deviation σ.

The proof of the C.L.T. follows closely the well-known Nagaev’s method, which we

briefly recall (for more details, we refer to [S12]). The method consist on doing perturba-

tions of the operator T̂ = T0: define a new operator

T̂t(f) := T̂ (eitφf)

Defined that way, T̂t are bounded linear operators acting on E . In our context, we have

T̂ := LF,sϕc , E = E and µ = µsϕc , so we can translate the perturbations as

t 7→ Lsϕc+itφ/λcϕ

If we denote λt as the spectral radius for this perturbed operator T̂ , Sarig [S12], proved

the following expansion of λt near zero: λt = 1− 1
2
σ2t2 +O(t3) as t→ 0, where

σ :=

 
lim
n→∞

1

n

∫
(φn)2dµϕ ≥ 0
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and φn := φ+ φ(F ) + ...+ φ(F n−1). The first two derivatives of λt at zero are

λ′0 =

∫
φdµ = 0 and λ′′0 = −σ2.

Furthermore, supposing σ = 0, we can construct a solution u to the equation

φ = c + u − u ◦ F for µ-a.e., which means that φ cohomologous to a constant. In our

context, again taking µ = µϕ, we have

λ′′0 =
d2 (λϕc+itφ/λϕc)

dt2
= σ2

F,ϕc(φ) (1.2)

By differentiating, we have

d λϕc+itφ
dt

= i
d λf
d f

∣∣∣
f=ϕc+itφ

· φ

and differentiating one more time,

d2 λϕc+itφ
dt2

∣∣∣
t=0

= −d
2 λf
d f 2

∣∣∣
f=ϕc

· (φ, φ) = −d
2 λϕc+tφ
d t2

∣∣∣
t=0

Now for sϕc with spectral gap property, we have

σ2
F,sϕc(φ) = Υ′′(0),

where Υ(t) =
λ−sϕc+tφ
λ−sϕc

.

For the next lemma we will use Nagaev’s Method and the fact that in the set

of parameters where the topological pressure function is analytic, the second derivative is

the variance of the central limit theorem.

Proposition 1.3.5. Let F ∈ Dr, r ≥ 2. If LF,sϕc has the spectral gap property on Cr−1,

for some s ∈ R, then the topological pressure function t 7→ P (t) is strictly convex in a

neighbourhood of s. In particular, LF,tϕc |Cr−1 does not have spectral gap property for all

t ≥ t0.

Proof. By the corollary of Proposition 1.2.6 , spectral gap still holds for small pertur-

bations of the transfer operator. We denote by λϕc the spectral radius ρ(LF,ϕc) and fix

φ ∈ Cr−1. Then, the function Υ defined by

t 7→ Υ(t) =
λsϕc+itφ
λsϕc

is well defined and analytic in a small neighbourhood of zero. In particular, we take

φ = ϕc +
∫
φdµsϕc , where µsϕc is the equilibrium state provided by the spectral gap

property. Define

G(t) := Ptop(F, sϕ
c + tφ) = log ρ(Lsϕc+tφ).
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We can see now that G(t) = Ptop(t + s) + t
∫
φdµsϕc . Then, P is strictly convex around

s if, and only if G is strictly convex around zero. Furthermore, for small values of t

close to zero LF,sϕc+tφ has spectral gap, which means that G(t) = log(λsϕc+tφ). Note that

G′(0) =
∫
φdµsϕc = 0 and P ′′(s) = G′′(0). By Nagaev’s method,

σ2 := σ2
F,sϕc = −d

2Υ(t)

dt2
|t=0

where σ2
F,sϕc is the variance provided by the Central Limit theorem with respect to

F, µsϕc and φ. Moreover, σ = 0 if, and only if, there is a constant c ∈ R and u ∈ Cr−1

such that for µ−sϕc − a.e x ∈ Td × S1

φ(x) = C + u(x) + u(F (x)).

By the Chain rule,

dλsϕc+itφ
dt

= i
∂λϕ
dϕ

|ϕ=sϕc+itφ.φ

Which means that

d2T (t)

dt2
= −

d2λϕ
dϕ2

|ϕ=sϕc(φ, φ)
λsϕc

= −
d2λsϕc+tφ

dt2

λsϕc
|t=0

By differentiating G(t) = log(λ−s log |DFy |+tφ) two times, we get the following:

d2λsϕc+tφ
dt2

= eG(t)((G′(t))2 +G′′(t))

Now, we have that

σ2 := σ2
sϕc(φ) =

∂2λsϕc+tφ
∂t2

|t=0

λsϕc
= ((G′(0))2 +G′′(0))

In conclusion, σ2 = G′′(0).

Arguing by contradiction, suppose that G′′(0) = 0. By Nagaev’s method, there exist

a ∈ R and u ∈ E such that

−ϕc(x, y) = log |∂F
∂y

(x, y)| = a+ u(F (x, y)) + u(x, y), µϕ − a.e.(x, y)

As supp(µϕ) = Td × S1, we get −ϕc = log |∂F
∂y
| = a + u ◦ F − u. As a consequence,

the Birkhoff average 1
n
log |∂F

∂y
| converge uniformly to a, and so a is the unique central

Lyapunov exponent of F . Then, a must be zero, by the definition of F ∈ Dr, and then

log |Dfx(y)| = u(F (x, y)) + u(x, y).

In particular for all x ∈ Td we have that the unique Lyapunov exponent of fx : S1 →
S1 is zero, which means that fx is invertible. That contradicts the fact that, in the
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definition of our model 0.2.4, deg(F ) > deg(g), which means that for all x ∈ Td the local

diffeomorphism on the circle fx is a non-invertible function. As a conclusion P ′′(s) =

G(0) > 0. Therefore, because P is analytic, P ′′ > 0 in a small neighbourhood of the

parameter s. So P is strictly convex in a neighbourhood of s.

As a consequence, we have that spectral gap property cannot occur for t ≥ t0, otherwise,

the topological pressure function would be strictly convex, contradicting the fact that

P (t) = htop(g) for all t ≥ t0 by definition of t0.

1.3.3 Step 3: Existence of spectral gap before transition

There is a sufficient criterion for quasi-compactness, the Lasota-yorke inequal-

ity, which is in general hard to verify. We will use an alternative condition estimating the

essential radius via an inequality with origins in the work of Ruelle [Rue89, Rue90] and

show that our toy model satisfies quasi-compactness. We start by showing that for the

class of dynamics F ∈ Dr, quasi-compactness is equivalent to spectral gap. The proof can

be found in [BC21] in the context of local diffeomorphism in the circle, but with similar

arguments, we can prove it in more general settings. For completeness, we present the

proof here:

Lemma 1.3.6. Let f :M →M be a Cr-local diffeomorphism on a compact and connected

manifoldM , such that {f−n(x);n ≥ 0} is dense inM for all x ∈M , and let ϕ ∈ Cr(M,R)
be a continuous real function. If Lf,ϕ|Cr−1 is quasi−compact, then it has the spectral gap

property.

Proof. As Lf,ϕ|Cr−1 is quasi-compact, it admits a peripheral eigenvalue, lets say the com-

plex number γ = ξ · ρ(Lf,ϕ|Cr−1), with |ξ| = 1, that is, there exist an eigenfunction

φ ∈ Cr−1 − {0} with Lf,ϕ|Cr−1φ = γφ. By lemma 1.2.10 λ = ρ(Lf,ϕ|Cr−1) is a simple

eigenvalue associated to the eigenfunction |φ|. we are going to show that it is the only

peripheral eigenvalue. Define

s(x) :=

φ(x)/|φ(x)|, if φ(x) ̸= 0

1, otherwise,

Claim. For all n ∈ Z, Lf,ϕ|Cr−1(sn|φ|) = ρ(Lf,ϕ|Cr−1)ξnsn|φ|

Proof. Note that s|φ| = φ, thus

Lf,ϕ|Cr−1(s|φ|) = Lf,ϕ|Cr−1(φ) = γφ = γs|φ|.

This implies that
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Lf,ϕ|Cr−1

Å
s

γ(s ◦ f)
· |φ|
ã
(x) =

∑
f(y)=x

eϕ(y)
s(y)

γs(x)
|φ|(y)

=
1

γs(x)
Lf,ϕ|Cr−1(s|φ|)(x) = 1

γs(x)
γs(x)|φ|(x)

Thus

Lf,ϕ|Cr−1

Å
s

γ(s ◦ f)
|φ|
ã
= |φ|.

By corollary 1.2.10.1 there exists a unique eigenmeasure ν such that (Lf,ϕ|Cr−1)∗ν =

ρ(Lf,ϕ|Cr−1)ν with supp(ν) =M , integrate both sides and using duality:∫
s

ρ(Lϕ|Cr−1)ξ · s ◦ f
|φ|dν · ρ(Lϕ|C0) =

∫
|φ|dν.

Hence

ρ(Lf,ϕ|C0)

ρ(Lf,ϕ|Cr−1)

∫
s

ξ · s ◦ f
|φ|dν =

∫
|φ|dν.

Since |s/ξ·s◦f | ≡ 1 and |φ| ≥ 0, we must have ρ(Lϕ|C0) = ρ(Lϕ|Cr−1) and s(x) = ξ·s◦f(x),
for |φ|dν-a.e. s(x) = ξ · s ◦ f(x), for |φ|dν-ae. By taking exponents on both sides, we

have sn = ξn · sn ◦ f , φdν-a.e. which means sn|φ| = ξn · sn ◦ f |φ|, ν-ae. Furthermore, as

supp ν =M , the functions coincide a.e. Now applying the transfer operator we have:

Lf,ϕ(sn|φ|) = L(sn−1s|φ|) = Lf,ϕ(ξn−1sn−1 ◦ f · s|φ|) = ξn−1sn−1Lf,ϕ(s|φ|)

= ξn−1sn−1ρ(Lf,ϕ)ξ · s|φ| = ξnρ(Lf,ϕ)sn|φ|.

By Lemma 1.2.10, φ is bounded away from zero, thus s and |φ| ∈ Cr−1. Thereby

sn|φ| ∈ Cr−1, and, by previous claim, ξn·r(Lf,ϕ|Cr−1) ∈ sp(Lf,ϕ) for all n ∈ Z. Then the set

{ξn : n ∈ Z} forms a subgroup of the circle, which is either dense or periodic. However by

quasi-compactness all eigenvalues are isolated and it can’t be a dense subgroup, so there

is a k > 0 such that ξk = 1 and

ξkr(Lf,ϕ|Cr−1) = r(Lf,ϕ|Cr−1).

We already know |φ| is an eigenvector for the spectral radius by Lemma 1.2.10, thus we

have both

Lkf,ϕ(|φ|) = ρ(Lf,ϕ)k|φ|

Lkf,ϕ(φ) = ρ(Lf,ϕ)kφ
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and then

Lkf,ϕ(|φ| − φ) = ρ(Lf,ϕ)k(|φ| − φ).

Take x0 such that φ(x0) > 0, since φ is bounded away from zero, one can always replace

it by φ/φ(x0) to that end. This means that (|φ| −φ)(x0) = 0, and also ||φ| −φ|(x0) = 0.

On the other hand, rewrite Lkf,ϕ = Lfk,Skϕ where Skϕ = ϕ ◦ fn−1 + · · ·+ ϕ ◦ f + ϕ ∈ Cr−1,

and thus arguing by denseness of pre-orbits and continuity, it follows that |φ| − φ ≡ 0.

Now applying the transfer operator:

ξλφ = Lf,ϕ|Cr−1φ = Lf,ϕ|Cr−1|φ| = λφ.

Finally ξ = 1 and λ = r(Lf,ϕ) is the unique peripheral eigenvector.

According to the previous lemma, it is enough for us to prove quasi-compactness

to conclude that the spectral gap holds for the transfer operator associated to F ∈ Dr

and ϕ ∈ Cr(Td × S1,R) because of the property of dense pre-images holds for F . We

already know that the topological pressure function is non-increasing, but the next result

tells us something more: before the phase transition t0 the pressure function is strictly

decreasing.

Lemma 1.3.7. Let F ∈ Dr be given. Then, the topological pressure function R ∋ t 7→
P (t) := Ptop(F, tϕ

c) is strictly decreasing in (−∞, t0).

Proof. Suppose that there is an interval (a, b) ⊂ (−∞, t0) such that P (t) = C, for all

t ∈ (a, b). Fix t ∈ (a, b) and take w < 0 small such that t+ w ∈ (a, b). As F is expansive

there exists at least an invariant measure µtϕc which is an equilibrium state with respect

to F and tϕc. Then:

hµtϕc (F )− (t+ w)λcµtϕ(F ) ≤ Ptop(t+ w) = P (t) = hµtϕ(F )− tλcµtϕ(F )

which means that wλcµtϕ(F ) ≥ 0. As λcµtϕc (F ) ≥ 0 thus λcµtϕ(F ) = 0, and so

P (t) = C = hν(F )

for all t ∈ (a, b), where ν is an invariant measure satisfying hν(F ) = max{hµ(F );λcµ(F ) =
0}, and so λcν(F ) = 0. In conclusion, using Margulis-Ruelle’s inequality, we have:

htop(g) =
d∑
i=1

λi(g, Leb) ≥ hν(F ) ≥ hLeb×η(F ) ≥ htop(g),

The first inequality is due to the fact that by Margulis-Ruelle inequality 1.2.3:

hν(F ) ≤
d∑
i=1

λi(g, ν) ≤
d∑
i=1

λi(g, Leb) = htop(g)
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the second inequality holds by definition of ν, and η is the invariant measure in the

definition of Dr with zero Lyapunov exponent. In that way, we have a ≥ t0, by definition

of t0.

The previous lemma gives us an important information about the topological

pressure function for t < t0, it means that we are in the right direction to prove theorem

A. Our next goal is to show that before the phase transition, t < t0, the transfer operator

LF,tϕc is quasi-compact, and then conclude that it satisfies the spectral gap property, by

Lemma 1.3.6, as F has dense pre-images. In order to do that, we need to estimate the

essential radius ρess(LF,tϕ) using the following theorem proved by Campbell and Latushkin

[CL97].

Definition 1.3.8. Suppose X and Y are connected smooth manifolds. A map f : X → Y

is a smooth covering map if

1. X is path-connected and locally path-connected;

2. f is surjective and continuous;

3. each point p ∈ Y has a neighbourhood U that is evenly cover by f , meaning that U

is connected and each component of f−1(U) is mapping diffeomorphically onto U by

f .

Remark 1.3.9. If F ∈ Dr, then clearly F is a smooth covering map.

Theorem 1.3.10 ([CL97]). Assume that f : M → M is any smooth covering map and

ϕ ∈ Cr(M,R). Then

ρess(Lf,ϕ|Ck) ≤ exp
[

sup
µ∈Me(f)

{hµ(f) +
∫
ϕdµ− kλmin(f, µ)}

]
and

ρ(Lf,ϕ|Ck) ≤ exp
[

sup
µ∈M1(f)

{hµ(f) +
∫
ϕdµ}

]
,

for k = 0, 1, . . . , r., where λmin(f, µ) denotes the smallest Lyapunov-Oseledec exponent of

µ.

Now we have all the ingredients to show that before the transition the transfer

operator is quasi-compact. With the previous theorem and using Lemma 1.3.7 we can

estimate both essential and spectral radius.
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Proposition 1.3.11 (Fundamental Lemma). Let F ∈ Dr be given, with r > 1. Then,

ρess(LF,tϕc) < eP (t), for all t < t0.

Proof. Firstly, consider the case where µ is an F -invariant probability such that λmin(F, µ) =

λcµ(F ). Then, using that the pressure function is strictly decreasing for t < t0, by Lemma

1.3.7, we have

hµ(F )− tλcµ − kλmin(F, µ) = hµ(F )− (t+ k)λcµ(F ) ≤ P (t+ k) < P (t)

for k = 1, ..., r like in Campbell-Latushkin’s Theorem 1.3.10.

Secondly, suppose that λmin(F, µ) = λ1µ(F ) ̸= λcµ(F ). In that case we must have λ1µ(F ) >

0, by defnition of F ∈ Dr. Then:

hµ(F )− tλcµ(F )− kλmin(F, µ) = hµ(F )− tλcµ(F )− kλ1µ(F ) ≤ P (t)− kλ1µ(F ) < P (t).

The result now follows from Campbell-Latushkin’s Theorem.

Until now, almost all the results that we proved in the previous subsections has

the spectral gap property as one of their assumptions. In order to show that the previous

results hold, we now show that the transfer operator has spectral gap property before the

transition, and we can apply the results of this chapter to our toy model.

Lemma 1.3.12. Let F ∈ Dr be given, with r > 1. Then, for t ≤ 0, LF,tϕ|Cr−1 has the

spectral gap property.

Proof. We first show the spectral gap property for t = 0. By the fundamental lemma,

Lemma 1.3.11 in [0, t0) and Remark 0.2.6,

ρess(LF,0|cr−1) < ePtop(0) = ehtop(F ) = deg(F ).

Since LF,0(1) = deg(F )1, then ρ(LF,0) ≥ deg(F ). By Campbell and Latushkin’s Theorem

1.3.10

ρ(LF,0) ≤ ehtop(F ) = deg(F ),

which means that deg(F ) = ρ(LF,0|Cr−1). Hence, ρess(LF,0) < ρ(LF,0) and LF,0|Cr−1 is

quasi compact. By Lemma 1.3.6, LF,0|Cr−1 has the spectral gap property. Next, take

t1 := inf{t < 0;LF,tϕ has spectral gap property}

Arguing by contradiction, suppose that t1 > −∞. By the fact that spectral gap is an

open property, see corollary 1.2.7, LF,t1ϕc |Cr−1 cannot have spectral gap property.
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Claim 1. ρ(LF,t1ϕc|Cr−1) = eP (t1)

Proof. In fact, suppose t1 > ∞. Due to the spectral gap property of LF,tϕc and Lemma

1.2.12, for t ∈ (t1, 0] we have that ρ(LF,tϕc) = eP (t). By Lemma 1.3.7, (t1, 0] ∋ t 7→
ρ(LF,tϕc |Cr−1) is strictly decreasing. On one hand, take tn ↘ t1 and ρ(LF,t1ϕc) < ρ(LF,tnϕc).
By the semi-continuity of the spectral components (see e.g. [K95]):

ρ(LF,t1ϕ|Cr−1) ≥ lim sup
n→∞

ρ(LF,tnϕc) = lim sup
n→∞

eP (tn) = eP (t1).

On the other hand, ρ(LF,t1ϕc) ≤ eP (t1), by theorem 1.3.10, and we have proved Claim

2.

As a consequence, ρ(LF,t1ϕc |Cr−1) = eP (t1) > ρess(LF,t1ϕc|Cr−1) and it means that LF,t1ϕc |Cr−1

is quasi-compact, and so it satisfies the spectral gap property, contradicting the definition

of t1. Hence, t1 = −∞.

Given F ∈ Dr, with r ≥ 2, define analogously:

τ2 := sup{t > 0;LF,tϕc |Cr−1has the spectral gap property}

Note that τ2 exists and is at most t0 by the definition of t0. Analogously to Lemma 1.3.12,

it holds ρ(LF,τ2ϕc |Cr−1) = eP (τ2). Since the spectral gap property is open, LF,τ2ϕc |Cr−1 has

not the spectral gap property and thus ρ(LF,τ2ϕc|Cr−1) = ρess(LF,τ2ϕc|Cr−1) by Lemma

1.2.12.

Claim 2. τ2 = t0

Proof. Arguing by contradiction, suppose that τ2 < t0. By Lemma 1.3.11, we get:

eP (τ2) = ρ(Lτ2ϕc |Cr−1) = ρess(Lτ2ϕc|Cr−1) < eP (τ2).

Which is absurd. Therefore, τ2 ≥ t0. Since τ2 ≤ t0, we get the equality.

From definition of τ2 we get: If F ∈ Dr, with r ≥ 2, then LF,tϕc |Cr−1 has spectral

gap for all t < t0. With the previous lemma, together with the Proposition 1.3.2, Lemma

1.2.12 and Proposition 1.3.5, we have completed the proof of the Theorem A. □



Chapter 2

Multifractal Analysis for

Skew-Product

In this chapter, we apply our results about the spectral gap in the proof of

Theorem A to obtain consequences for multifractal analysis. Generally, in multifractal

analysis, we want to understand the behaviour and differentiability of functions like I 7→
htop(LI) and I 7→ dimH(LI) where LI is the set of points which have Lyapunov exponents

lying on the given interval I. Our main objective is to prove Theorem B. One of the tools

we’ll use in this chapter is the theory of Large Deviations Principle that basically

provides exponential bounds of rare events, i.e., we characterize ”rare” events in terms of

a rate function. Here we first give the classical definition of large deviations principle:

Definition 2.0.1. (Rate function) Let M be a compact metric space. A rate function

I :M → [0,∞] is a lower semi-continuous map (such that for all α ∈ [0,∞), the level set

ΨI(α) := {x; I(x) ≤ α} is a closed subset of M). A good rate function is a rate function

for which all the level sets ΨI(α) are compact subsets of M . Then, given a observable

ψ : M → R, a probability µ ∈ M1(M) satisfies the Large deviations principle with

rate function I if:

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1

n
log µ(An,ψ) ≤ lim sup

n→∞

1

n
log µ(An,ψ) ≤ − inf

x∈A
I(x)

for any measurable set A, where

An,ψ :=
{
x ∈M ;

1

n

n−1∑
i=0

F i(ψ(x)) ∈ int(A)
}

and

An,ψ :=
{
x ∈M ;

1

n

n−1∑
i=0

F i(ψ(x)) ∈ A
}

For more details on large deviations, see [DZ98, RY08] and [You90].
41
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Given F ∈ Dr, as F is topologically conjugated to an transitive uniformly ex-

panding dynamics, then F has the periodic specification property, see definition 1.2.2. In

particular, given a continuous observable ψ : Td × S1 → R the Birkhoff’s spectrum

Sψ := {α ∈ R : ∃x ∈ Td × S1 with lim
n→∞

1

n

n−1∑
i=0

ψ(F i(x)) = α}

is a non-empty bounded interval; furthermore

Sψ =
{∫

ψdµ : µ is a F − invariant probability
}

(for more details and proof, see e.g. [Th09]).

Here, for F ∈ Dr, we study multifractal analysis of the central Lyapunov exponent for

maps F ∈ Dr: let [a, b] a closed interval, we define

Lca,b = Xϕ([a, b]) = {x ∈ Td × S1;λc(x) ∈ [a, b]}

L̂c := {x ∈ Td × S1;∄ lim
1

n
log ||DF n|Ecx||}.

We also consider the sets

Ec
a,b := L̂c ∩

{
x ∈ Td × S1; lim inf

n→∞

1

n
log ||DF n|Ecx|| ∈ [a, b] or

lim sup
n→∞

1

n
log ||DF n|Ecx|| ∈ [a, b]

}
We recall a result by Bomfim and Varandas [BV17], in which we have an upper bound

for the topological pressure of these fractal sets. We define for any interval I:

XI := {x ∈M ; lim inf
n→∞

1

n
Sn(ψ(x)) ∈ I} and XI := {x ∈M ; lim sup

n→∞

1

n
Sn(ψ(x)) ∈ I}

If Iδ is δ-neighbourhood of the interval I, we define:

LIδ,ν := − lim sup
n→∞

1

n
log ν

{
x ∈ Td × S1;

1

n
Sn(ψ(x)) ∈ Iδ

}
Theorem 2.0.2. Let M be a compact metric space, F : M → M a continuous map,

ϕ : M → R a continuous potential and ν (a not necessarily invariant) Gibbs measure on

M and µϕ ≪ ν be the unique equilibrium state of F with respect to ϕ. For any continuous

observable ψ :M → R, any closed interval I ⊂ R and any small δ > 0,

PXI
(F, ϕ) ≤ PXI

(F, ϕ) ≤ Ptop(F, ϕ)− LIδ,ν ≤ Ptop(F, ϕ)

Proof. See [BV17].
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In our context, lim 1
n
log |∂Fn

∂y
(w)| = λcµ0(w) for µ0−almost every w, where µ0 is the mea-

sure of maximum entropy of F . Thus, we are interested in understanding asymptotically

1

n
log µ0

(
{w ∈ Td × S1 :

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ ∈ [a, b]}

)
,

with [a, b] intersecting the central Lyapunov spectra

Lc(F ) :=
{
α ∈ R : ∃w ∈ S1 × T d with

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ = α

}
Note that since F has specification property and

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ = 1

n

n−1∑
j=1

log
∣∣∣∂F
∂y

(F j(w))
∣∣∣

then the central Lyapunov spectra satisfies

Lc(F ) =
{∫

log
∣∣∣∂F
∂y

∣∣∣dµ : µ ∈ M1(F )
}
=
{∫

log
∣∣∣∂F
∂y

∣∣∣dν; ν ∈ Merg(F )
}

and it is a non-empty compact interval (see [Th09]). In fact, Lc(F ) will have non-empty

interior and by Lemma 1.3.1 and the definition of F ∈ Dr, we have inf Lc(F ) = 0.

Definition 2.0.3. We set λcmin := inft<t0 λ
c
µtϕc

and λcmax := supt<t0 λ
c
µtϕc

. where µtϕc is

the equilibrium state of F with respect to tϕc obtained in Lemma 1.2.12.

Moreover, denote

∆ := {(a, b) ∈ Lc(F )× Lc(F ) : a ≤ b}

and write λcµ0 the central Lyapunov exponent of the measure of maximum entropy of F .

Recalling what we want to prove:

Theorem B. The entropy function ∆ ∋ (a, b) 7→ htop(L
c
a,b) is a concave C1 function

satisfying:

• htop(L
c
a,b) = htop(E

c
a,b), for all (a, b) ∈ ∆;

• It is constant and equal to its maximum value htop(F ) for (a, b) in the rectangle

[0, λcµ0 ]× [λcµ0 , λ
c
max];

• It is strictly concave and analytic everywhere, except for b ≤ λcmin, in the case of the

exponent λmin > 0 where the function is linear.
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Theorem B is a consequence of the spectral phase transition proved in Theorem

A. We will use the fact that in the context of spectral gap, the free energy converges to

a ”pressure’s variation”. Then we will show that the Legendre transform of the free

energy can be seen both as an analytic and thermodynamic rate function as well, in that

part of Birkhoff’s spectrum where the spectral gap property holds. Combining with the

result by Thompson [Th09], the variational principle for level sets of Birkhoff average,

and Theorem 2.0.2 by [BV17], we show that the entropy of the sets Lca,b can be written

as a variational principle.

2.1 Preliminaries

As in the previous chapter, we consider F ∈ Dr, r > 1 as in definition 0.2.4, and

the potential

ϕc : Td × S1 → R given by (x, y) 7→ − log
∣∣∣∂F
∂y

(x, y)
∣∣∣

and consider the associate transfer operator LF,tϕc|cr−1 , which has spectral gap property

for all t < t0, by Theorem A. We will describe Lc(F ) in terms of multifractal analysis

using the equilibrium states µtϕc . It is important for us to specify the interval of definition

of Lc(F ).

Lemma 2.1.1. Lc(F ) = [0, λcmax] and λ
c
min ∈ Lc(F ).

Proof. Since F has the specification property, applying [Th09], we have that Lc(F ) =

{
∫
log
∣∣∣∂F∂y ∣∣∣dη : η ∈ M1(F )}. In particular, λcµtϕc ∈ Lc(F ) for all t < t0 and λcmax, λ

c
min ∈

Lc(F ). We will show that supLc(F ) = λcmax. Take a probability η ∈ M1(F ) and t < 0.

Then:

hη(F )− t

∫
log
∣∣∣∂F
∂y

∣∣∣dη ≤ hµtϕc − t

∫
log
∣∣∣∂F
∂y

∣∣∣dµtϕc implies

hη(F )

t
−
∫

log
∣∣∣∂F
∂y

∣∣∣dη ≥
hµtϕc (F )

t
−
∫

log
∣∣∣∂F
∂y

∣∣∣dµtϕc .
Letting t 7→ −∞, we have that∫

log
∣∣∣∂F
∂y

∣∣∣dη ≤ lim
t→−∞

∫
log
∣∣∣∂F
∂y

∣∣∣dµtϕc ≤ sup
t<t0

∫
log
∣∣∣∂F
∂y

∣∣∣dµtϕc .
Thus, supLc(F ) = λcmax and conclude that Lc(F ) = [0, λcmax].

Following the same idea as in [DZ98], we are going to define the free energy and

show a connection with an important thermodynamical quantity. Then, the Legendre

transform of the free energy can often be proved to be a rate function of a large deviations

principle. That is the content of Gärtner Ellis’s theorem.
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Definition 2.1.2. We define the free energy as

E(t) = EF,ϕc(t) = lim sup
n→∞

1

n
log

∫
etSn(ϕ

c)dµ0

where µ0 is the measure of maximum entropy for F .

In our setting, due to the fact that for t < t0, where t0 is the transition parameter

provided by Theorem A, the transfer operator with respect to F and tϕc has spectral gap,

we will prove that the limit above does exist for t < t0 and its limit is related with the

pressure function.

Lemma 2.1.3. Let F ∈ Dr be fixed, with r > 1. Then, for all t < t0 the following limit

exists

E(t) = lim
n→∞

1

n
log

∫
etSnϕ

c

dµ0 = P (t)− log deg(F )

Moreover, E : (−∞, t0) → R is real analytic and strictly convex.

Proof. The proof that

E(t) = lim
n→∞

1

n
log

∫
etSnϕ

c

dµ0 = log ρ(LF,tϕc)− log ρ(LF,0)

is analogous to [BCV16, Proposition 5.2], we present it here for completeness. For all

n ∈ N,

∫
etSn(ϕ

c)dµ0 =

∫
λ−nF,0L

n
F,0(hF,0e

tSnϕc)dνF,0 =
(λF,tϕc
λF,0

)n ∫
(λF,tϕc)

−nLnF,tϕc(hF,0)dνF,0.

On the one hand, as hF,0 is bounded away from zero and infinity, we have that:

(λF,tϕc)
−nLnF,tϕc(hF,0)

unif.−−−→ hF,tϕc

∫
hF,0dνF,tϕc

using that LF,tϕc has the spectral gap property for t < t0 (see Theorem A). Observe

that the limit above is again bounded away from zero and infinity. Using the dominated

convergence theorem, we get

lim
n→∞

1

n
log

∫
etSnϕ

c

dµ0 = log(λF,tϕc)− log(λF,0) = P (t)− log(deg(F ))

On the other hand, log ρ(LF,tϕc) = P (t) because LF,tϕc has the spectral gap property, so

we can apply Lemma 1.2.12. Finally, since P (t) is analytic and strictly convex in (−∞, t0)

(by Theorem A) we have finished the proof of the lemma.

Definition 2.1.4. Since the function (−∞, t0) ∋ t 7→ E(t) is strictly convex, the local

Legendre’s transform of the free energy is well defined as follows:

I(s) = sup
t<t0

{ts− E(t)}.
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As the function E is strictly convex and differentiable, its domain is given by

Dom(I) = {E ′(t); t < t0}. In fact, we have

d

dt
(st− E(t)) = s− E ′(t) = 0 ⇔ s = E ′(t)

Hence, I(E ′(t)) = tE ′(t)− E(t), for all t < t0.

Remark 2.1.5. Given s < t0, by Theorem A and openness of the spectral gap property,

LF,sϕc+ψ has the spectral gap property on Cr−1 for ψ ∈ Cr−1 and ||ψ||r−1 < ϵ. Applying

Lemma 1.2.12 we have that {Ψ ∈ Cr−1(Td × S1,R); ||ψ||r−1 < ϵ} ∋ ψ 7→ Ptop(F, sϕ
c + ψ)

is analytic. By [W92], P ′(t) =
∫
ϕcdµtϕc.

The previous remark insures that the domain of I is equal to {−
∫
ϕcdµtϕc : t <

t0} = (λcmin, λ
c
max). Furthermore, by the expression of the free energy:

I(E ′(t)) = tE ′(t)− E(t) = t

∫
ϕcdµtϕc −

(
hµtϕc (F ) + t

∫
ϕcdµtϕc − hµ0(F )

)
= −hµtϕc (F ) + hµ0(F ),

then I ≥ 0 and, I(s) = 0 if, and only if s = λµ0 . We summarize the property of the

Legendre transform with the following lemma.

Lemma 2.1.6. The Legendre transform of the free energy has the following properties:

i) The domain of I is (λcmin, λ
c
max);

ii) I is a positive, strictly convex function and I(s) = 0 if and only s = λc(µ0);

iii) I is a real analytic function.

The following results hold from Gartner-Ellis theorem (see e.g. [DZ98, RY08]) as

a consequence of the differentiability of the free energy function.

Proposition 2.1.7. Given any interval [a, b] ⊂ (λcmin, λ
c
max) it holds that

lim
n→∞

1

n
log µ0

Å
w ∈ S1 × Td :

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ ∈ [a, b]

ã
= − inf

s∈[a,b]
I(s).

Since F is expansive and has the specification property, applying [Bo74] we have

that µ0 is a Gibbs probability with respect to the dynamics of F and null potential. Thus,

applying [You90], the measure of maximum entropy µ0 satisfies a large deviations principle

for all continuous observables, with rate function obtained through thermodynamical

quantities. More formally:
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Proposition 2.1.8. Given any interval [a, b] ⊂ Lc(F ) it holds that

lim sup
n→∞

1

n
log µ0

Å
w ∈ S1 × Td :

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ ∈ [a, b]

ã
≤ −htop(F ) + sup{hη(F ) : λc(η) ∈ [a, b]}

and

lim inf
n→∞

1

n
log µ0

Å
w ∈ S1 × Td :

1

n
log
∣∣∣∂F n

∂y
(w)
∣∣∣ ∈ (a, b)

ã
≥ −htop(F ) + sup{hη(F ) : λc(η) ∈ [a, b]}

Remark 2.1.9. Since F is expansive, then η 7→ hη(F ) is upper semicontinuous (see e.g.

[OV16]). By the contraction’s principle, we know that there is uniqueness of the large

deviation rate function (see e.g. [DZ98]). It follows from the two previous propositions

that

I(s) = −htop(F ) + sup{hη(F ) : λcη(F ) = s},

for all s ∈ (λcmin, λ
c
max).

2.2 Proof Of Theorem B

We know that the Legendre transform has some distinct behaviour whether it is

positive or zero. The next lemma gives us a way to compute the topological entropy of

the sets Lca,b and E
c
a,b.

Lemma 2.2.1. Given [a, b] ⊂ Lc(F ) we have that hLca,b(F ) = sup{hν(F ) : λc(ν) ∈ [a, b]}.
Moreover, if a < b then hLca,b(F ) = hEa,b(F ).

Proof. We start the proof by defining the large deviations rate:

LDc,d := lim sup
n→∞

1

n
log µ0

Å
w ∈ S1 × Td :

1

n
log |∂F

n

∂y
(w)| ∈ [c, d]

ã
.

We already know that the measure of maximum entropy µ0 satisfies the Gibbs property

with respect to the dynamic F and null potential. Applying Theorem 2.0.2 we have that

hLca,b(F ) ≤ htop(F ) + LDa−δ,b+δ, for all δ > 0. By Proposition 2.1.8

LDa−δ,b+δ ≤ −htop(F ) + sup{hν(F ) : λc(ν) ∈ [a− δ, b+ δ]}.

By the upper semi-continuity of the function ν 7→ hν(F ) we can let δ go to zero, resulting

in

hLca,b(F ) ≤ sup{hν(F ) : λc(ν) ∈ [a, b]}.
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Similarly, if a < b then:

hEa,b(F ) ≤ sup{hν(F ) : λc(ν) ∈ [a, b]}.

On the other hand, following Thompson [Th09] we know that

hLcd,d(F ) = sup{hν(F ) : λc(ν) = d}.

The upper semi-continuity of ν 7→ hν(F ) also guarantees that there exists d ∈ [a, b] with

sup{hν(F ) : λc(ν) ∈ [a, b]} = sup{hν(F ) : λc(ν) = d}. Hence:

sup{hν(F ) : λc(ν) ∈ [a, b]} = sup{hν(F ) : λc(ν) = d} = hLcd,d(F ) ≤ hLca,b(F )

≤ sup{hν(F ) : λc(ν) ∈ [a, b]}.

We conclude that hLca,b(F ) = sup{hν(F ) : λc(ν) ∈ [a, b]}, finishing the first claim of the

lemma.

To show the inverse inequality of the second claim, suppose that a < b. We can take a

measure ν̃1 ∈ M1(F ) satisfying

hν̃1(F ) = sup{hν(F ) : λc(ν) ∈ [a, b]} and λc(ν̃1) ∈ [a, b].

Fix now a measure µ ∈ M1(F ) such that λc(µ) ∈ (a, b) and λc(µ) ̸= λc(ν̃1). Next, we

take the convex combination µt := (1 − t)ν̃1 + tµ. We can see that if we take t small

enough, we can find ν̃2 ∈ M1(F ) such that |hν̃1(F ) − hν̃2(F )| < γ, λc(ν̃2) ∈ [a, b] and

λc(ν̃2) ̸= λc(ν̃1).

Since F has the specification property, then F is entropy dense by [EKW94], that

is, for any F -invariant probability measure µ, there exists a sequence of F -invariant ergodic

probability measures µn so that µn → µ in the weak∗ topology and hµn(f) → hµ(f) as

n → ∞. Without loss of generality we may suppose that the measures are ergodic (c.f.

[EKW94, Theorem B]). Therefore, we can find F−invariant and ergodic probabilities ν1

and ν2 such that:

i) λc(νi) ∈ [a, b], for i = 1, 2;

ii) λc(ν1) ̸= λc(ν2);

iii) |hν̃1(F )− sup{hν(F ) : λc(ν) ∈ [a, b]}| < 2γ.

Now the proof is inspired by the proof of Theorem 2.6 in [Th09]. Define ψ :=

log
∣∣∣∂Fn∂y ∣∣∣. Consider a strictly decreasing sequence (δk)k≥1 of positive numbers converging

to zero, a strictly increasing sequence of positive integers (ℓk)k≥1, so that the sets

Yk =
{
w ∈ T d × S1 : | 1

n
Snψ(w)−

∫
ψ dνρ(k)| < δk for every n ≥ ℓk

}
,
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where ρ : N → {1, 2} is given by ρ(k) = 1+ kmod(1), satisfy νρ(k)(Yk) > 1− γ for every k

(that last assumption is possible due to the Birkhoff ergodic theorem). We will construct

a fractal F̃ inspired ipsis literis by the construction of Subsection 3.1 in [Th09] with νi

replacing µi, sup{hν(F ) : λc(ν) ∈ [a, b]} = C and F̃ ⊂ Ea,b. Our starting point is the

following lemma proved by Thompson:

Lemma 2.2.2 ([Th09]). For any sufficiently small ϵ > 0, we can find a sequence nk → ∞
and a countable collection of finite sets Sk such that each Sk is (nk, 4ϵ) separated set for Yk

and Mk :=
∑

x∈Sk exp{
∑nk−1

j=0 ψ(F j(x))} satisfies Mk ≥ exp{nk(C − 4γ)}. Furthermore,

the sequence nk can be chosen so that nk > lk and nk ≥ 2mk , where mk = m(ϵ/2k) is as

in the definition 1.2.2 of the specification property.

With regard to the construction of the fractal F , we will give a brief discussion on

how to construct it, for the details the reader can check out section 3.1 in [Th09]. We first

enumerate the sets Sk := {xki ; i = 1, ...,#Sk}. We choose k and consider the set of words

i := (i1, ..., iNk) of length Nk with entries on points of Sk, that is, each word represents a

point in SNkk .Using the Specification Property 1.2.2, we can construct a point y(i) which

satisfies

dnk(x
k
ij
, F aj(y(i))) <

ϵ

2k
, ∀j = 1, ..., k.

where aj = (j − 1)(nk + mk). Then, Ck := {y(i), i ∈ SNkk }. Hence, we consider the

family {Ck}k∈N. By Thompson [Th09], each Ck is a (ck, 3ϵ)−separated set, where ck =

Nknk + (Nk − 1)mk. Once again, we use the specification property to construct a second

family of separated sets {Tk}k∈N inductively in the following way: define T1 := C1, and

if x ∈ Tk and y ∈ C(k+1), set t1 = c1 and tk+1 = tk +mk+1 + ck+1. By the specification

property, there exists a point z = z(x, y) satisfying:

dtk(x, z) < ϵ/2k+1 and dck+1
(y, F tk+mk+1) < ϵ/2k+1.

Then, we define Tk+1 := {z(x, y);x ∈ Tk, y ∈ Ck+1}. Again, as we can take the time

skip in the specification property, the sets Tk are (tk, 2ϵ)-separated and #Tk =
k∏
j=1

#Cj.

Finally, to construct the fractal F , define Fk :=
⋃
x∈Tk

B(x, ϵ/2k−1). It’s not hard to check

that Fk+1 ⊂ Fk, Then define F :=
⋂
k

Fk which is a nested sequence of non-empty compact

sets, therefore F ̸= ∅. The following can be found in [Th10]:

Lemma 2.2.3 ([Th10], Lemma 3.8). If p ∈ F , then 1
tk

∑tk−1
i=0 ψ(F i(p)) diverges.

Therefore, there exist sub-sequences (nki)k≥1, i = 1, 2 so that

lim
k→∞

| 1

nki
Snkiψ(w)−

∫
ψ dνi| = 0 for every w ∈ F
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and again by Thompson [Th09], hF(F ) ≥ sup{hν(F ) : λc(ν) ∈ [a, b]} − 8γ. In particular

F is contained in the irregular set L̃cψ. Furthermore, since that λc(νi) ∈ (a, b), for i = 1, 2,

we have that F ⊂ Ea,b. Thus

sup{hν(F ) : λc(ν) ∈ [a, b]} − 8γ ≤ hF(F ) ≤ hEa,b(F ) ≤ sup{hν(F ) : λc(ν) ∈ [a, b]}

and so hEa,b(F ) = sup{hν(F ) : λc(ν) ∈ [a, b]}.

Our next step is to use the previous results to give a precise description of the

topological entropy of the sets Lca,b in terms of the deviations rate function I.

Proposition 2.2.4. Let F ∈ Dr be given, with r > 1. Let [a, b] ⊂ Lc(F ), λcmin and λcmax

as in Definition 2.0.3. We have:

(i) If [a, b] ⊂ [0, λcmin], then: hLca,b(F ) = bt0 + htop(g);

(ii) If [a, b] ⊂ [λcmin, λ
c
max], then: hLca,b(F ) = htop(F ) − infs∈[a,b] I(s) = htop(F ) − I(d).

where d = λc(µ0) when λc(µ0) ∈ [a, b]; d = b when b ≤ λc(µ0) and d = a when

λc(µ0) ≤ a.

Proof. (i) Take d ∈ [0, λcmin] and let ν an F−invariant probability such that λc(ν) = d.

Then hν(F ) − t0λ
c(ν) ≤ P (t0) = htop(g) implies hν(F ) ≤ htop(g) + dt0. On other hand,

let η the probability that appears in item (3) of the definition of F ∈ Dr 0.2.4. Then

λc(Leb×η) = 0 and hLeb×η(F ) = htop(g). Define µd :=
d

λcmin
µt0 +

(
1− d

λcmin

)
Leb×η. Then,

λc(µd) = d and using the equalities hµt0 (F ) + t0λµct0 = htop(g) and λµct0 = λcmin we have:

hµd(F ) =
d

λcmin

(
htop(g) + t0λµt0

)
+
(
1− d

λcmin

)
htop(g) = htop(g) + dt0.

Therefore, applying the Lemma 2.2.1, we conclude that hLca,b(F ) = bt0 + htop(g) for all

[a, b] ⊂ [0, λcmin].

(ii) Suppose that [a, b] ⊂ [λcmin, λ
c
max]. Applying Lemma 2.2.1 and Remark 2.1.9

we conclude that

hLca,b(F ) = htop(F )− inf
s∈[a,b]

I(s)

Thus, follows from Lemma 2.1.6, by the properties of the function I

inf
s∈[a,b]

I(s) = I(d),

where d = λc(µ0) when λc(µ0) ∈ [a, b]; d = b when b ≤ λc(µ0); and d = a when

λc(µ0) ≤ a.

It follows from the previous result that hLc
a,λc

min

(F ) = λcmint0 + htop(g). On the

other hand, lims 7→λcmin
I(s) = limt7→t0(tE ′(t)−E(t)) = −λcmint0−htop(g)+htop(F ). Thus, if

[a, b]∩ [λcmin, λ
c
max], then hLca,b(F ) = hLc

λc
min

,b
(F ). Therefore, using the previous proposition

and the properties of the function I, we complete the proof of the Theorem B.
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The graphics below illustrate the behaviour of the function I:

s

I(s)

λcmax

htop(F )

λcµ0

Figure 2.1: Graph of s 7→ I(s) for the case λcmin = 0

and

s

I(s)

λcmin λcmax

htop(F )

λcµ0

Figure 2.2: Graph of s 7→ I(s) for the case λcmin > 0 .



Chapter 3

Phase transitions for transitive

piecewise monotonous maps of the

circle

We start this chapter by recalling the class of dynamics we are considering from

now on. It is a class of continuous transitive piecewise monotonous dynamics on the circle

S1 as stated in definition 0.2.7, more precisely:

Definition 3.0.1. f : S1 → S1 is a continuous transitive local-diffeomorphism with break

points, in other words, f is a continuous, transitive and there exist closed arcs I1, ..., Ik ⊂
S1 such that:

1. S1 =
k⋃
i=1

Ii and the arcs Ii have disjoint interiors;

2. f |Ii : Ii 7→ S1 is a C1 diffeomorphism;

3. the derivative of f is well defined at its fixed points.

Remark 3.0.2. We also recall that we denote E as the class of potentials Cα(S1,R) of

Hölder continuous potentials or Cr(S1,R) of r-times continuous differentiable potentials,

and in the last case we suppose f a Cr−local diffeomorphism.

As a simple example, we mention the intermittent maps or Maneville-Pomeau-like

maps [MP80]:

52
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1

0.5 1

Figure 3.1: Intermittent maps are a very well-known example of transitive piecewise

monotone dynamics.

A very important fact about the class of maps as in definition 0.2.7 is that they

are topologically conjugated to an expanding map [CM86]:

Theorem 3.0.3 (Coven-Mulvey, 86). Every transitive, piecewise monotone map f of

the interval is topologically conjugate to a piecewise linear map whose linear pieces have

slopes ±β (where log β is the topological entropy of f).

Follows of the previous theorem that if f is a map like in definition 0.2.7 then f

is expansive, has the periodic specification property and admits generating partition by

domains of injectivity. In particular, we can apply Rokhlin’s formula. Moreover, we have

that every set of pre-orbits
⋃
n≥0 f

−n{x} is uniformly dense on S1 for every x ∈ S1.

As a first results, we show that the Lyapunov exponent varies continuously in the

space of invariant probability measures. As we are reduced to the one-dimensional case,

we denote the Lyapunov exponent of a invariant probability µ as λ(µ).

Lemma 3.0.4. The function M1(f) ∋ µ 7→
∫
log |Df |dµ is continuous.

Proof. By assumption, f does not have critical points and Df has at most a finite number

of discontinuity points, let’s say D := {x1, ..., xk}, we must show that for any invariant

probability µ ∈ M1(f) we have µ({xi}) = 0 for each discontinuity point xi. Suppose

µ(xi) > 0. We claim that for any m > n ∈ N, f−n(xi) ∩ f−m(xi) = ∅. Otherwise, let

x ∈ f−n(xi) ∩ f−m(xi) be fixed, then we would have fm−n(xi) = xi which means that xi
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would be a periodic point. This contradicts the fact that xi cannot be a periodic point,

by definition of f . From that, we conclude by the invariance of µ that

µ(
⋃
n∈N

f−n(xi)) =
∞∑
i=0

µ(f−i(xi)) =
∞∑
i=0

µ(xi) = ∞

which is a contradiction. So, µ(xi) = 0 for every invariant probability measure µ. Given

δ > 0, take the closed subspace Aδ = [0, 1] −
⋃
xi
B(xi, δ). By Tietze’s extension

theorem let ϕδ : [0, 1] → R be a continuous extension of log |Df ||Aδ . Take any sequence

M1(f) ∋ µn
weak∗−−−→ µ, then by construction we have:∫

ϕδdµn →
∫
ϕδdµ.

Now, for ϵ > 0 let n0 ∈ N and δ > 0 be sufficiently small such that:

|
∫
ϕδdµn −

∫
ϕδdµ| < ϵ/3, ∀n ≥ n0

and

sup
x∈[0,1]\D

|ϕδ(x)− log |Df(x)|| < ϵ/3

which implies that (taking the integrals in [0, 1]\D)∣∣∣ ∫ ϕδdµ−
∫

log |Df |dµ
∣∣∣ < ϵ/3 and

∣∣∣ ∫ ϕδdµn −
∫

log |Df |dµn
∣∣∣ < ϵ/3.

Thus, ∣∣∣ ∫ log |Df |dµn −
∫

log |Df |dµ
∣∣∣ ≤ ∣∣∣ ∫ log |Df |dµn −

∫
ϕδdµn

∣∣∣+
∣∣∣ ∫ ϕδdµn −

∫
ϕδdµ

∣∣∣+ ∣∣∣ ∫ ϕδdµ−
∫

log |Df |dµ
∣∣∣ < ϵ

As ϵ is arbitrary, we have the result.

As a consequence of the previous lemma, we show that f does not admit negative

Lyapunov exponent.

Definition 3.0.5. Let p ∈ S1 be a periodic point for f with period n ∈ N. We define a

empirical measure µ(p, n) associated to p and n as

µ(p, n) :=
1

n

n−1∑
i=0

δf i(p).
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Lemma 3.0.6. Let µ ∈ M1(f). Then λ(µ) ≥ 0.

Proof. By Sigmund [S74], as f satisfies the Periodic Specification Property 1.2.2, the set

of empirical measure is dense in the weak∗ topology. Arguing by contradiction, suppose

ν ∈ M1(f) is an invariant probability with λ(ν) < 0. By the previous lemma, there exist

an open set ν ∋ U ⊂ M1(f) such that for any η ∈ U we have λ(η) < 0. In particular,

there exist a periodic point p and a natural number n such that µ(p, n) ∈ U , which means

that p is a periodic attracting point. Since f is transitive, we have a contradiction.

We saw in the previous chapter that knowing that the spectral gap property

of the transfer operator holds with respect to a dynamic f and a potential ϕ is a very

important tool and has many applications in the world of dynamical systems. For the

dynamics that we study here and a given regular potential, we want to understand the

obstacles for the spectral gap to occur. The spectral gap property implies exponential

decay of correlations. Therefore, if ϕ ∈ L1 and ψ ∈ L∞ and Cov(ϕ, ψ ◦ fn) → 0

sub-exponentially, then there is no Banach space which contains ϕ such that Lf,ϕ has the

spectral gap property. Others obstructions are a breakdown of the central limit theorem,

non-integrable invariant density and spectral phase transition that we studied in the

previous chapters.

3.1 Preliminaries

Let T :M →M be a continuous transformation of a compact metric space. For

each continuous function ϕ :M → R we define the maximum ergodic average

β(ϕ) := sup
µ∈M1(T )

∫
ϕdµ = sup

x∈M
lim sup
n→∞

1

n

n−1∑
k=0

ϕ(T k(x))

and the set of all maximizing measures of ϕ:

Mmax(ϕ) :=
{
µ ∈ M1(T );

∫
ϕdµ = β(ϕ)

}
Theorem 3.1.1. (Morris) [M10] Suppose that U is a dense open subset of Merg(T ).

Then the set

U :=
{
ϕ ∈ C(M);Merg(T ) ∩Mmax(ϕ) ⊂ U

}
is open and dense in C(M). Conversely, if U ⊂ C(X) is open and dense, then the set

U :=
{
Merg(T ) ∩

⋃
ϕ∈U

Mmax(ϕ)
}

is open and dense in Merg(T )
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As we alrady saw, in [BC21], for local diffeomorphism on the circle, spectral gap

is equivalent to quasi-compactness as we saw in Lemma 1.3.6, and using estimates of

the essential radius it can be shown that ,in our context, the essential radius is strictly

less than the spectral radius. In the context of local diffeomorphism on the circle, the

Campbell-Latushkin’s Theorem 1.3.10, reduces to:

Theorem 3.1.2. (Campbell, Latushkin) Let f : S1 → S1 be a Cr−local diffeomor-

phism and let ϕ ∈ Cr(S1,R) be given. Then

ρess(Lf,ϕ|Ck) ≤ exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ− kλ(µ)}

ô
and

ρ(Lf,ϕ|Ck) ≤ exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ}

ô
,

for k = 0, 1, . . . , r and λ(µ) is the Lyapunov exponent of the measure µ.

For the next result, we need to point out some notations and results from [BJL96].

Let I be a compact interval. For 0 < α < 1, let Λα the space of α-Hölder functions, i.e.

functions φ : I → C satisfying

|φ|α = sup
x ̸=y∈I

|φ(x)− φ(y)|
|x− y|α

<∞.

Then, Λα is a Banach space for the norm ∥φ∥α = max(supI |φ|, |φ|α). Take I as a finite

or countable set and 0 ≤ δ < 1. In [BJL96], a dynamical system is a family of C1+δ

diffeomorphisms, fi : I → Ji, for i ∈ I, where the intervals Ji ⊂ I have disjoint interiors.

They assume further that supi ∥f ′
i∥δ <∞, in particular λ := 1/ supi,x |f ′

i(x)| > 0. Another

concept introduced was the weight. The weight is a family of functions gi : I → C, i ∈ I.
Such a family gi is called summably bounded if supΣ |g| =

∑
i sup |gi| <∞. A summably

bounded family is called summably Λα if |g|Σα =
∑

i |gi|α <∞ for some 0 < α ≤ 1; Then,

the transfer operator L acting on functions φ : I → C, is defined by

Lφ(x) =
∑
i∈I

gi(x)φ (fi(x))

For each n ≥ 1 and il ∈ I, 1 ≤ l ≤ n, introduce the maps f
(n)

i⃗
= fin ◦ · · · ◦ fi1

and the weights g
(n)

i⃗
(x) = gin(fin−1 · · · fi1) · · · gi2(fi1(x)) · gi1(x). Note that for all n ≥ 1

Lnφ(x) =
∑
i⃗∈In

g
(n)

i⃗
(x)φ

Ä
f
(n)

i⃗
(x)
ä

(3.1)

With the discussion above, the following results was proved:
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Theorem 3.1.3. (Baladi, Jiang, Lanford) If the family gi is summably Λα for some

0 < α ≤ 1, the essential spectral radius ρess (L) of the operator L acting on Λα is equal to

ρess(L) = lim
n→∞

sup
x∈I

∑
i⃗∈In

∣∣∣g(n)ı⃗ (x)
∣∣∣ ∣∣∣f (n)′

ı⃗ (x)
∣∣∣α
1/n

.

Now we have to estimate the spectral radius. We denote the Banach space B

of bounded functions on I endowed with the supremum norm. The next theorem was

credited by the authors to Ruelle.

Theorem 3.1.4. (Baladi, Jiang, Lanford) If the family gi is summably bounded, then

the spectral radius of L|g| acting on B is equal to

eP := lim
n→∞

(
sup
x∈I

∑
ı⃗∈In

∣∣∣g(n)ı⃗ (x)
∣∣∣)1/n

and the spectral radius of Lg on B is bounded above by eP .

If the gi are summably Λα and δ ≥ 0, the spectral radius of L|g| acting on Λα is equal

to max
(
eP , ρess

(
L|g|
))
, and the spectral radius of Lg acting on Λα, is bounded above by

max
(
eP , ρess

(
L|g|
))
.

We now interpret in our setting the estimates in Theorems 3.1.3 and 3.1.4. In our

context, f : S1 → S1 is full branch transitive piecewise monotone map and ϕ ∈ Cα(S1,R)
is a Hölder continuous potential. Since, by definition

f |Ii : Ii → [0, 1]

where Ii = [ai, ai+1] is diffeomorphism, then we set

fi := (f |Ii)−1 : [0, 1] → Ii,

the finite inverse branches and g = |g| = eϕ, which has the summability hypothesis. Thus

rewriting as (3.1), we get

Lnf,ϕφ(x) =
∑

y∈f−n(x)

eSnϕ(y)φ(y).

Furthermore, from the estimates for the essential and spectral radius, we have:

ρess(Lf,ϕ|Cα) = lim
n→∞

∥Lnf,ϕ−α log |Df |1∥1/n∞ and

ρ(Lf,ϕ|Cα) = max{ lim
n→∞

∥Lnf,ϕ1∥1/n∞ , ρess(Lf,ϕ|Cα)},
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and, by the spectral radius formula, limn→∞ ∥Lnf,ϕ1∥
1/n
∞ = ρ(Lf,ϕ|C0). So the estimate on

the essential radius is:

ρess(Lf,tϕ|Cα) = ρ(Lf,tϕ−α log |Df ||C0) ≤ exp

ñ
sup

µ∈M1(f)

{
hµ(f) + t

∫
ϕdµ− αλ(µ)

}ô
. (3.2)

To estimate the spectral radius, similarly:

ρ(Ltϕ|Cα) = max{ρ(Ltϕ|C0), ρess(Ltϕ|Cα)} = exp

ñ
sup

µ∈M1(f)

{
hµ(f) +

∫
ϕdµ

}ô
(3.3)

By the fact that there exists a conformal measure νϕ such that ρ(Lf,ϕ|C0) ≤
ρ(Lf,ϕ|C0), we have ρ(Lf,ϕ)|Cr = ρ(Lf,ϕ|C0) and

ρ(Lf,ϕ|Cr) = lim
n→∞

∥∥Lnf,ϕ1∥∥1/n∞ = ePtop(f,ϕ). (3.4)

Our main objective in this section is to study the behaviour of the topological pressure

function t 7→ Ptop(f, ϕ) for Hölder continuous potentials, equivalent properties and its

relation with spectral concepts.

Remark 3.1.5. A simple case to consider is when ψ is cohomologous to a constant k,

in this case Ptop(tφ) := kt + htop(f). By Thompson [Th09], potentials cohomologous to

a constant form a first category set. So the topological pressure function does not have

thermodynamic phase transition. Hence, when the potential is cohomologous to a constant,

it is easy to understand the behaviour of the topological pressure function.

Before proving the theorems, we need some additional concepts. The first one is

notion of hyperbolic potential, following [ReR12], which basically says that no equi-

librium state has no chaos. The second one is the notion of expanding potentials from

the work of Pinheiro and Varandas [PV22].

3.1.1 Hyperbolic Potentials

Definition 3.1.6 (Hyperbolic Potential). A potential ϕ : S1 → R is said to be hy-

perbolic if

sup
µ∈M1(f)

∫
ϕdµ < Ptop(f, ϕ).
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Proposition 3.1.7. If htop(f) > 0 and ϕ is not hyperbolic, then:

1. ϕ admits maximizing measure ν with zero metric entropy;

2. there exists t0 ∈ [0, 1] such that Ptop(f, tϕ) = t
∫
ϕdν, where ν is an equilibrium

state with zero metric entropy, for all t ≥ t0. In particular, a thermodynamical

phase transition accour at t0.

Proof. To prove item 1, by the fact that ϕ is not hyperbolic, let ν an invariant probability

measure satisfying ∫
ϕdν = Ptop(f, ϕ) ≥ hµ(f) +

∫
ϕdµ ≥

∫
ϕdµ

for all µ ∈ M1(f). In particular, hν(f) = 0 and ν is a maximizing measure, ν ∈ Mmax(ϕ),

in the sense of Theorem 3.1.1. Furthermore, for all t ≥ 1 and any µ ∈ M1(f)

hµ(f) + t

∫
ϕdµ = hµ(f) +

∫
ϕdµ+ (t− 1)

∫
ϕdµ

≤ Ptop(f, ϕ) + (t− 1)

∫
ϕdν

=

∫
ϕdν + (t− 1)

∫
ϕdν = t

∫
ϕdν

showing that Ptop(f, tϕ) = t
∫
ϕdν, for all t ≥ 1. We define now

t0 := inf{t ∈ (0, 1]; tϕ is not hyperbolic}.

Then, Ptop(f, tϕ) = t
∫
ϕdν for all t ≥ t0, where ν is the maximizing measure for ϕ. By

definition, t0 is a thermodynamical phase transition for ϕ. Indeed, if R ∋ t 7→ Ptop(f, tϕ)

was analytic, the we would have Ptop(f, tϕ) = t
∫
ϕdν, in particular

htop(f) = Ptop(f, 0ϕ) = 0

which contradict the fact that htop(f) > 0.

3.1.2 Expanding Potentials

Following Pinheiro and Varandas, [PV22], we define another class of potentials

satisfying a stronger property than being hyperbolic. We prove that in our context it will

be equivalent to hyperbolicity.
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Definition 3.1.8 (Expanding Potential). We say that a continuous potential ϕ : S1 →
R is an expanding potential if

sup
λ(µ)=0

{hµ(f) +
∫
ϕdµ} < sup

λ(µ)>0

{hµ(f) +
∫
ϕdµ}

This is equivalent to say that there are no equilibrium states with respect to ϕ with zero

Lyapunov exponent.

Remark 3.1.9. If a potential ϕ is hyperbolic, then it is expanding due to the Margulis-

Ruelle inequality 1.2.3.

We note that, in our context, f is strongly transitive [CM86]. Thus, if the transfer

operator is quasi-compact, then it has the spectral gap property. The proof is analogous

to Lemma 1.3.6, which original proof can be found in [BC21]:

Lemma 3.1.10. Let ϕ be a continuous potential. If Lf,ϕ|E is quasi-compact, then it has

the spectral gap property.

We have all the ingredients to prove a result that connects expanding potential

with spectral gap property. Later on this fact will be very important in characterizing

the topological pressure function.

Proposition 3.1.11. If a Hölder continuous or Cr potential ϕ : S1 → R is expanding,

then the transfer operator Lf,ϕ|E associated to f and ϕ has spectral gap property.

Proof. We estimate the essential and spectral radius and show that if the transfer operator

Lf,ϕ|E does not have the spectral gap property, then ϕ is not expanding. Suppose that

Lf,ϕ|E does not have the spectral gap property. This means that the spectral radius

and the essential radius are equal as, in our context, spectral gap is equivalent to quasi-

compactness by Lemma 3.1.10. Furthermore, by the estimates of the essential radius

and spectral radius (holds for Cr potential by Campbell Laturskin’s Theorem 3.1.2 and

estimate (3.4), and holds also for Hölder continuous potentials by estimates (3.2), (3.3)

and (3.4), we have that there exists k > 0, such that:

ρess(Lf,ϕ|E) ≤ exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ− kλ(µ)}

ô
and

ρ(Lf,ϕ|E) = exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ}

ô
.

As Lf,ϕ|E does not have spectral gap property, we get

exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ− kλ(µ)}

ô
= exp

ñ
sup

µ∈M1(f)

{hµ(f) +
∫
ϕdµ}

ô
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which means that

sup
µ∈M1(f)

{hµ(f) +
∫
ϕdµ− kλ(µ)} = Ptop(f, ϕ)

Since f is expansive, the entropy is upper semi-continuous and the Lyapunov exponent

is upper semi-continuous as well. Hence, there exist a measure ν ∈ M1(f) that realizes

the supremum, so the last expression is equivalent to say that:

hν(f) +

∫
ϕdν − kλ(ν) = Ptop(f, ϕ) ≥ hµ(f) +

∫
ϕdµ, ∀µ ∈ M1(f).

In particular this estimate is true when µ = ν and that happens if, and only if, kλ(ν) ≤ 0.

As f is transitive, λ(ν) < 0 can not occur by Lemma 3.0.6. Therefore, since k > 0, we

get λ(ν) = 0. Our conclusion is that, if the transfer operator does not have the spectral

gap property, then there exists an equilibrium state ν with respect to f and ϕ with zero

Lyapunov exponent. Furthermore, by the Margullis-Ruelle inequality, Theorem 1.2.3,

hν(f) ≤ max{0, λ(ν)} = 0.

From this we have: ∫
ϕdν ≥ hµ(f) +

∫
ϕdµ ≥

∫
ϕdµ,∀µ ∈ M1(S1).

So ν ∈ Mmax(ϕ), where Mmax(ϕ) is given in the statement of Theorem 3.1.1. Our

conclusion is that

sup
µ;λ(µ)=0

∫
ϕdµ ≥ sup

ν;λ(ν)>0

∫
ϕdν,

implying that ϕ is not expanding.

Next, we will show that, among others properties, having spectral gap property

implies the uniqueness of equilibrium states. We will use the following results whose proof

follows closely the proof of similar result in [BC21].

Lemma 3.1.12. Let ϕ ∈ E be given. If Lf,ϕ|E has the spectral gap property, then there

exists a unique probability νϕ and hϕ ∈ Cα(S1) such that (Lf,ϕ|Cα)∗νϕ = ρ(Lf,ϕ|Cα)νϕ,
Lf,ϕhϕ = ρ(Lf,ϕ|Cα)hϕ, hϕ > 0 and

∫
hϕdνϕ = 1. Furthermore, supp(νϕ) = S1.

Remark 3.1.13. We denote the f -invariant probability hϕνϕ by µϕ. We still have supp(µϕ) =

S1.
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Proposition 3.1.14. Let ϕ : S1 → R be a continuous potential such that the transfer

operator Lf,ϕ|E has the spectral gap property. Then

1. Ptop(f, ϕ) = log(ρ(Lf,ϕ)) and µϕ is the unique equilibrium state associated to ϕ.

2. The topological pressure function t 7→ Ptop(f, tϕ) is analytic in a neighbourhood of

1;

Suppose additionally that ϕ is not cohomologous to a constant. Then, t 7→ Ptop(f, tϕ) is

strictly convex in a neighbourhood of 1.

Proof. As, by Remark 3.0.2 f has dense pre-images and admit partition by domains of

invertibility, the proof of item 1 is similar to Theorem 1.2.12 and the fact that spectral

gap property is open by Corollary 1.2.6. To show the uniqueness of the equilibrium state,

fix a Hölder potential ψ. As Lf,ϕ has the spectral gap property, by Corollary 1.2.6, for

sufficiently small values of t close to zero, we still have that Lf,ϕ+tψ has the spectral gap

property. Suppose that µ is an equilibrium state with respect to ϕ. Then

hµ(f) +

∫
(ϕ+ tψ)dµ ≤ hµϕ+tψ +

∫
ϕdµϕ+tψ + t

∫
ψdµϕ+tψ

≤ hµ(f) +

∫
ϕdµ+ t

∫
ψdµϕ+tψ

implying that t

∫
ϕdµ ≤ t

∫
ϕdµϕ+tψ.

Taking subsequences tk ↘ 0, sk ↗ 0 such that ν1 := lim
tk↘0

µϕ+tkψ and ν2 := lim
sk↗0

µϕ+tkψ

and, by the previous inequality, we have that∫
ψdν2 ≤

∫
ψdµ ≤

∫
ψdν1.

As f is expansive, the function µ 7→ hµ(f) is upper semi-continuous, which implies that

ν1, ν2 are equilibrium states for f with respect to ϕ. In particular, as ψ is arbitrary and∫
ψdµϕ =

∫
ψdµ, which implies µ = µϕ. The additional part follows like in Proposition

1.3.5.

Corollary 3.1.14.1. Let ϕ : S1 → R be a Hölder continuous potential. Then ϕ is

hyperbolic if, and only if ϕ is expanding.

Proof. If ϕ is hyperbolic, then it is expanding by definition. Suppose that ϕ is expanding.

Then there are two possibilities: either there exists u ∈ C0 and a constant k such that

ϕ = k + u ◦ f − u, i which case

Ptop(f, ϕ) = k + htop(f) =

∫
ϕdµ+ htop(f) ∀ µ ∈ M1(f).
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Since htop(f) > 0, ϕ is hyperbolic. Otherwise, by Proposition 3.1.11, the transfer operator

has the spectral gap and, by Proposition 3.1.14, the topological pressure function is strictly

convex in a neighbourhood of 1(supposing ϕ is not cohomologous to a constant). If ϕ was

not hyperbolic, by Proposition 3.1.7, there exists t0 ∈ (0, 1] such that the topological

pressure function is affine for all t ≥ t0, and it could not be strictly convex in any

neighbourhood of 1. Therefore, ϕ is hyperbolic.

3.2 Proof of Theorems C, D, E and Corollaries C, E

We now define the following set:

R :=
{
ϕ : S1 → R ∈ C0; sup

µ;λ(µ)=0

∫
ϕdµ < sup

ν;λ(ν)>0

∫
ϕdν

}
.

Remark 3.2.1. R is a set of continuous and expanding potentials ϕ : S1 → R such that

the transfer operator associated to f and ϕ has the spectral gap property, by Proposition

3.1.11. Furthermore, if ϕ ∈ R, then tϕ ∈ R for all t > 0, which means that tϕ has spectral

gap for all t > 0.

Lemma 3.2.2. R is open and dense in C0(S1).

Proof. Firstly, we define U :=
{
µ ∈ Merg(f);λµ(f) > 0

}
. We already know that

Merg(f) = M1(f) by [S74], since f satisfies the periodic specification property. We

first show that U is an open and dense subset in the closure of family of ergodic proba-

bility measures and then, using Morris’s Theorem 3.1.1, we are going to conclude that R
is open and dense in the space of all continuous potentials.

Openness: It is a consequence of µ 7→ λ(µ) being a continuous function. So if λ(ν) > 0

for some measure ν, then there exist a neighbourhood V of ν such that for each µ ∈ V ,

we have λ(µ) > 0.

Density: Take any measure ν ∈ M1(f) with λ(ν) > 0. Then, for each µ ∈ M1(f)

with λ(µ) = 0, define νn(f) := 1
n
ν +

(
1 − 1

n

)
µ. For any continuous potential, we have

φ : S1 → R: ∫
φdνn =

1

n

∫
φdν +

(
1− 1

n

)∫
φdµ

n→∞−−−→
∫
φdµ

Hence, νn
weak∗−−−→
n→∞

µ. Furthermore,

λ(νn) =
1

n
λ(ν) +

(
1− 1

n

)
λ(µ) =

1

n
λ(ν) > 0.

By Morris’s Theorem 3.1.1, the set:
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U :=
{
ϕ ∈ C0(S1);Merg(f) ∩Mmax(ϕ) ⊂ U

}
.

is open and dense in C0(S1). We have U = R, which means that R is open and dense.

We define now

R− :=
{
ϕ : S1 → R; inf

µ;λ(µ)=0

∫
ϕdµ > inf

ν;λ(ν)>0

∫
ϕdν

}
Remark 3.2.3. Note that if ϕ ∈ R−, we have:

inf
µ;λ(µ)=0

∫
ϕdµ > inf

ν;λ(ν)>0

∫
ϕdν = − sup

µ;λ(µ)=0

∫
(−ϕ)dµ > − sup

ν;λ(ν)>0

∫
(−ϕ)dν

and consequently sup
µ;λ(µ)=0

∫
(−ϕ)dµ < sup

ν;λ(ν)>0

∫
(−ϕ)dν.

Hence, R− is a set of continuous potentials ϕ such that −ϕ ∈ R, which means that −ϕ
is expanding and so it has the spectral gap property, by Proposition 3.1.11. Furthermore,

for all t < 0 we have tϕ ∈ R as well. As a consequence, the transfer operator Lf,tϕ has

spectral gap for all t < 0.

Lemma 3.2.4. R− is open and dense in C0(S1,R).

Proof. Take the set U as in Lemma 3.2.2. Then, with the same argument, U is open and

dense in Merg(f). Again, by Morris’s Theorem 3.1.1 the set

U ′ :=
{
ϕ ∈ C0;Merg(f) ∩Mmax(−ϕ) ⊂ U

}
is open and dense in C0(S1,R).

From Lemma 3.2.2 and Lemma 3.2.4, we conclude that

H := R∩R− (3.5)

is an open and dense subset of C0(S1,R). If E is given as in Remark 3.0.2, then E is a

dense subset of C0(S1,R), and so

H ∩ E

is a dense subset of C0(S1,R). By definition, if ϕ ∈ H the associated transfer operator

Lf,tϕ has the spectral gap property for all t ∈ R.
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3.2.1 Proof of Theorem C and Corollary C

We recall that we want to prove the following:

Theorem C. There exist an open and dense subset H ⊂ C0(S1,R) in the uniform topol-

ogy, such that if ϕ ∈ H is Hölder continuous, then ϕ has no thermodynamic phase tran-

sition and R ∋ t 7→ Ptop(f, ϕ) is strictly convex.

Proof. Take the open and dense subset H as in (3.5). Note that, by construction, if

ϕ ∈ H is Hölder continuous, then Lf,tϕ|E has the spectral gap property for all t ∈ R.
Applying Proposition 3.1.14, we have that t 7→ Ptop(f, tϕ) is analytic and, since ϕ is not

cohomologous to a constant, it is strictly convex. With that we complete the proof of

Theorem C.

Next we prove that a consequence of the previous theorem is the prevalence of no phase

transitions, as follows.

Corollary C. 1. The set of smooth potential such that t 7→ Ptop(f, tϕ) is strictly convex

and has no thermodynamic phase transition is dense, in the uniform topology;

2. The set of Hölder continuous potential having thermodynamic phase transition is

not dense, in the uniform topology.

Proof. (1) follows immediately from the fact that H∩E is dense in the uniform topology.

To prove (2), let ϕ ∈ H and ϕn → ϕ be a sequence of Cr(Hölder continuous) potentials

converging uniformly. As H is open, there exists n0 ∈ N such that ϕn has no phase

transition for all n ≥ n0, which means that the set of potentials with phase transition is

not dense in the uniform topology.

3.2.2 Proof of Theorem D

We recall that we want to characterize phase transitions:
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Theorem D. Let ϕ be a Hölder continuous potential. The following items are equivalent:

1. ϕ does not have thermodynamic phase transition;

2. ϕ does not have spectral phase transition, i.e., Lf,tϕ|E has spectral gap for all t ∈ R;

If in addition ϕ is not cohomologous to a constant, then the previous items are equivalent

to:

3. the topological pressure function t 7→ Ptop(tϕ) is strictly convex.

Furthermore, if any of the previous items holds, then tϕ has an unique equilibrium state,

for all t ∈ R.

Proof. We show (i)1 =⇒ 2, (ii)2 =⇒ 1 and finally (iii)3 ⇔ 1.

(i) Suppose that ϕ does not have thermodynamic phase transition. Then ϕ must be

expanding. Indeed, if ϕ was not expanding it could not be hyperbolic and, applying

Proposition 3.1.7, there would exist a thermodynamical phase transition t0 ∈ (0, 1],

which contradicts the assumption. Furthermore, tϕ is expanding for all t ∈ R,
otherwise there would exist t0 ∈ R with t0ϕ not hyperbolic and, again by Proposition

3.1.7, we would have a thermodynamical phase transition. Applying Proposition

3.1.11, Lf,tϕ|E has the spectral gap property for all t ∈ R;

(ii) Is a direct consequence of Proposition 3.1.14;

(iii) Suppose that ϕ is not cohomologous to a constant. On the one hand, by Lemma

3.1.7, if ϕ has no phase transition, then it is hyperbolic and thus expanding. Fur-

thermore, tϕ is hyperbolic and expanding as well, for all t ∈ R. On the other hand,

if tϕ is hyperbolic and expanding, by Proposition 3.1.11, tϕ has the spectral gap

property for all t ∈ R and, by the fact that 1 ⇔ 2, ϕ does not have thermodynamic

phase transition. Then, (1 =⇒ 3) due the fact that tϕ is hyperbolic and expanding

for all t ∈ R, and this implies that tϕ has the spectral gap property. By Proposition

3.1.14, R ∋ t 7→ Ptop(f, tϕ) is strictly convex. To show that (3 =⇒ 1), suppose that

R ∋ t 7→ Ptop(f, tϕ) is strictly convex and, arguing by contradiction, suppose that

ϕ has a thermodynamical phase transition in t0. Then, by Proposition 3.1.14, t0ϕ

cannot have spectral gap, which implies that t0ϕ is not expanding and so not hyper-

bolic. It follows from the Proposition 3.1.7 that there exists a maximizing invariant

probability measure ν1 such that Ptop(f, tϕ) = t
∫
ϕdν1 for all t ≥ t0, contradicting

the assumption.
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3.2.3 Proof of Theorem E

We recall that we want to describe the topological pressure function and the transfer

operator for potentials with phase transition:

Theorem E. Let ϕ ∈ E be a potential having phase transition. Then, there exist t2 <

0 < t1, with at least t1 ∈ R or t2 ∈ R, such that:

1. for t ≥ t1 or t ≤ t2, then the topological pressure function is an affine map and for

t2 < t < t1 the topological pressure function t → Ptop(tϕ) is analytic and strictly

convex;

2. for t2 < t < t1 the associated transfer operator Lf,tϕ|Cα has spectral gap property,

and for t ≥ t1 or t ≤ t2 the associated transfer operator Lf,tϕ|Cα does not have

spectral gap property.

Proof. By assumption, ϕ has thermodynamical phase transitions, which means that the

topological pressure function t 7→ Ptop(f, tϕ) is not analytic. Following the proof of

Theorem D, there should exist parameters t1 > 0, t2 < 0, with at least t1 < ∞ or

t2 > −∞, such that t1ϕ is not hyperbolic and t2ϕ is not hyperbolic as well. We define

0 < t̂1 := inf{t > 0; tϕ is not hyperbolic}

and

0 > t̂2 := sup{t < 0; tϕ is not hyperbolic}.

Then, following the proof of Lemma 3.1.7, the topological pressure function t 7→ Ptop(f, tϕ)

is affine for all t ≤ t̂1 and t ≥ t̂2. Furthermore, for t ∈ (t̂1, t̂2) we have that tϕ is hyperbolic

and so tϕ is expanding. By Lemma 3.1.11, Lf,tϕ|E has spectral gap for all t ∈ (t̂1, t̂2) and,

by Lemma 3.1.14, the topological pressure function is analytic in (t̂1, t̂2) and strictly

convex. Finally, for t ≥ t1 or t ≤ t2 the transfer operator Lf,tϕ|E does not have the

spectral gap property, by Lemma 3.1.14, because the topological pressure is not strictly

convex.

The consequence for Maneville-Pomeau-like maps is the following:
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Corollary E. If f is a Maneville-Pomeau like map, then there exists at most one ther-

modynamical phase transition for Hölder continuous potentials.

Proof. Let f be a Maneville-Pomeau-like map and ϕ a Hölder continuous potential. Ar-

guing by contradiction, suppose that ϕ has two phase transitions. By item (1) of Theorem

E, there are t1 < 0 and t2 > 0 such that the topological pressure function t 7→ Ptop(f, tϕ) is

not analytic in t1 and t2. This implies that t1ϕ and t2ϕ are not hyperbolic. Otherwise, they

would be expanding and so the transfer operator would have the spectral gap property

in those parameters. In particular, by Proposition 3.1.7, there are ν1 and ν2 maximizing

probabilities in M1(f) associated to −ϕ and ϕ, respectively, with λ(ν1) = λ(ν2) = 0.

We show that there is only one measure for Maneville-Pomeau-like maps with zero Lya-

punov exponent. In fact, suppose that ν ∈Merg(f) and λ(ν) = 0. By Birkhoff’s Ergodic

Theorem, there exists x ∈ S1 such that

ν = lim
n→∞

1

n

n−1∑
i=0

δf i(x).

By the non-uniform expansion property of f , given ϵ > 0, let δ > 0 be such that

d(y, 0) ≥ ϵ =⇒ |Df(f(y))| ≥ δ.

For each n, define An := {0 ≤ i ≤ n− 1; d(f i(x), 0) ≥ δ}. Since λ(ν) = 0, then:

1

n
log |Dfn(x)| = 1

n

[∑
i∈An

log |Df(f i(x))|+
∑

i/∈An,i≤n−1

log |Df(f i(x))|
]
≥ 1

n
δ#An

which implies 0 = λν(f) = lim
n→∞

1

n
log |Dfn(x)| ≥ δ lim

n→∞

#An
n

and so lim
n→∞

#An
n

= 0.

Thus, taking any continuous potential φ : S1 → R, we have:

0 = lim
n→inf

#An
n

sup
x∈S1

{φ(x)} ≥ lim
n→∞

1

n

∑
i∈An

φ(f i(x))| ≥ lim
n→∞

#An
n

inf
x∈S1

{φ(x)} = 0

In conclusion, by the Birkhoff’s Ergodic Theorem:∣∣∣ ∫ φdν −
∫
φdδ0

∣∣∣ = ∣∣∣ lim
n→∞

1

n

n−1∑
i=0

φ(f i(x))− φ(0)
∣∣∣

=
∣∣∣ lim 1

n

∑
i/∈An;i≤n−1

φ(f i(x))− φ(0)
∣∣∣

≤ sup
d(y,0)<ϵ

|φ(y)− φ(0)|.
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As ϵ is arbitrary, letting ϵ → 0, we get
∫
φdν =

∫
φdδ0. By definition of convergence in

the weak∗ topology, ν = δ0. From that, we must have ν1 = ν2 = δ0. So, we must have

µ 7→
∫
ϕdµ

is constant, and by Thompson [Th10] ϕ is cohomologous to a constant, which contradicts

the fact that we assumed ϕ having phase transitions.



Chapter 4

Further comments and more

questions

4.1 Differentiability of the topological pressure func-

tion

An interesting question is the existence of examples where the topological pressure

function is not analytic but it is differentiable at the transition parameter. Suppose that

f : S1 → S1 is a C2-local diffeomorphism Maneville-Pomeau-like map. According to

Pianigiani [Pi80], f does not admit a finite a.c.i.p.. In his proof, Pianigiani studied non-

uniformly expanding maps T : [0, 1] → [0, 1] and consider the first return map RT,A on a

set A in which T is uniformly expanding, so RT,A is uniformly expanding as well. Then,

he shows that the existence of an a.c.i.p. µA for RT,A induces an a.c.i.p. µ for T . For

example, consider

T : [0, 1] → [0, 1]

given by

T (x) =

 x
x−1

, if x ∈ [0, 1
2
]

2x− 1, if x > 1
2

Then, |T ′(x)| > 1 on (0, 1] and T ′(0) = 1. Pianigiani showed that the a.c.i.p. µT

is not finite. Following Bomfim and Carneiro [BC21], for those classes of dynamics,

non differentiability of the pressure function is equivalent to have a finite a.c.i.p.. More

specific, taking the geometric potential, − log |DT |, the topological pressure function is

differentiable at the phase transition. It tells us that the lack of analiticity of the pressure

function does not imply lack of differentiability, even if the potential is regular. On other

hand, if f is a C1+α-local diffeomorphism and in a neighbourhood of the indifferent fixed
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point f is not C2, then f admits a unique finite a.c.i.p (see [Pi80]). It follows from [BC21]

that

t 7→ Ptop(f,− log |Df |)

is not differentiable in t = 1. We propose the following question:

Question 3. If f : S1 → S1 is a C1+α local-diffeomorphism, then f is expanding or there

is a Hölder continuous potential ϕ : S1 → R such that the topological pressure function

t 7→ Ptop(f, tϕ) is not differentiable?

4.2 Uniqueness of equilibrium states

We proved in Theorem D that the lack of phase transition for a potential ϕ implies

uniqueness of equilibrium states for tϕ, for all t ∈ R. The inverse implication is not true.

For each α ∈ [0, 1] define the constants:

b(α) =
((1

2

)3+α
− 4 + α

4 + 2α

(1
2

)2+α)
and a(α) = −−b(4 + α)

4 + 2α

and the polynomial gα : [0, 1/2] → [0, 1], given by gα(y) = y + ay3+α + by4+α. Then we

define the family of intermittent maps on the circle

fα(y) =

gα(y), if 0 ≤ y ≤ 1/2

1− gα(1− y), if 1/2 ≤ y ≤ 1.

Each member of the family will be a C2-local diffeomorphism. It follows from [Pi80] that

the geometric potential ϕ = − log |Dfα| has an unique equilibrium state. On the other

hand, it follows from Bomfim-Carneiro [BC21], that fα has phase transition with respect

to the ϕ.

Suppose now that f : S1 → S1 is a transitive C1+α-local diffeomorphism. By Bomfim

and Carneiro [BC21], we know that f is expanding if, and only if, f does not have phase

transition with respect to geometric potential ϕ = − log |Df |. With a view to the previous

discussion, we propose the following question:

Question 4. If f : S1 → S1 is a C1+α local-diffeomorphism, then f is expanding or there

is a Hölder continuous potential ϕ : S1 → R such that ϕ has at least two equilibrium

states?

4.3 More than one phase transition

As we saw in Theorem E, if f is a piecewise monotone interval map like in

Definition 0.2.7, each regular potential ϕ can have at most two phase transition. We
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may ask ourselves if there exists a regular potential having exactly two phase transitions,

t2, t1 > 0. As we saw in the proof of Theorem E, then it should exist two maximizing

measures µ1, µ2 associated to t1ϕ and −t2ϕ, respectively. However, every known example

of phase transitions for regular potentials occurs with respect to geometric potential ϕ =

− log |Df |, in fact exhibits a unique phase transition (see e.g. [Lo93, PS92, BC21] ).

Thus, we propose the following question:

Question 5. Is there a Holder continuous potential ϕ : S1 → R such that the topological

pressure function t 7→ Ptop(f, tϕ) has two phase transitions?

4.4 Higher Dimensional Case

In the first two Chapters of this preset work we proved existence of phase tran-

sition for skew-product F ∈ Dr with respect to the geometric potential in the central

direction, and the consequences for multifractal analysis. Taking in account our results

for transitive piecewise monotone dynamics in Chapter 3, we present the following ques-

tion:

Question 6. Let F ∈ Dr be fixed. Is there a dense subset of regular potentials ϕ :

Td × S1 → R in the uniform topology, such that t 7→ Ptop(F, tϕ) has no phase transition

and it is strictly convex? Is there a characterization of potentials without phase transition,

as in Theorem D or with transition, as in Theorem E?
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mensional manifold of Hölder equilibrium prababilities. Arxiv, 2020.

[Li95] C. Liverani. Decay of correlations, Annals of Math., 142, 239–301, 1995.

[LSV98] C. Liverani, B. Saussol and S. Vaienti. Conformal measure and decay of cor-

relation for covering weighted systems. Ergod. Th. Dynam. Sys., 18:6, 1399-1420,

1998.

[LV21] H. Lima and P. Varandas On the rotation sets of generic homeomorphisms on the

torus mathbbT d. Ergodic Theory and Dynamical Systems, 41(10), 2983-3022. 2021.

[MP77] M. Misiurewicz and F. Przytycki. Topological entropy and degree of smooth map-

pings. Bull. Pol. Acad. Sci. Math., 25:573-574, 1977.

[M10] Morris, Ian D.. Ergodic Optimization For Generic Continuous Functions, Mathe-

matics Institute, University of Warwick, Coventry, CV4 7AL, 2010.

[MP80] P. Manneville, Y. Pomeau. Intermittent transition to turbulence in dissipative

dynamical systems , Communications in Mathematical Phisics,74,189-197(1980).

[OV16] Krerley Oliveira and Marcelo Viana. Foundations of Ergodic Theory. Cambridge

Studies in Advanced Mathematics, 2016.



77

[P98] Y. Pesin. Dimension Theory in Dynamical Systems: Contemporary Views and Ap-

plications. University of Chicago Press, 1998.

[P77] Y. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian

Math. Surveys, 32, 55-114, 1977.

[Pi80] G. Pianigiani, First return map and invariant measures. Israel J. Math. 35, 32–48

1980.

[PS92] T. Prellberg and J. Slawny. Maps of intervals with indifferent fixed points: Ther-

modynamic formalism and phase transitions. J Stat Phys, 66, 503-514, 1992.

[PU10] F. Przytycki and M. Urbanski. Conformal fractals: ergodic theory methods. Lon-

don Mathematical Society lecture note series, 371, New York: Cambridge University

Press, 354 p, 2010.

[PV22] V. Pinheiro and P. Varandas. Thermodynamic formalism for expanding measures.

Preprint arXiv:2202.05019v1, 2022.

[PW97] Y. Pesin and H. Weiss. The multifractal analysis of Gibbs measures: Motivation,

mathematical foundation, and examples. Chaos, 7(1):89–106, 1997.

[PW99] M. Pollicott and H. Weiss. Multifractal Analysis of Lyapunov Exponent for Con-

tinued Fraction and Manneville-Pomeau Transformations and Applications to Dio-

phantine Approximation. Commun. Math. Phys., 207, 145 –171, 1999.

[ReR12] I. Inoquio-Renteria and J. Rivera-Letelier. A characterization of hyperbolic po-

tentials of rational maps.Bull Braz Math Soc, New Series 43, 99–127, 2012.

[RY08] Ray-Bellet,L. and Young, L.S.. Large Deviation in Non-uniformly Hiperbolic Dy-

namical Systems, Ergod. Th. Dynam. Sys., 28:587-612, 2008.

[Rok67] V. A. Rokhlin. Lectures on the entropy theory of measure-preserving transfor-

mations. Russ. Math. Surveys, 22 -5:1-52, 1967. Transl. from Uspekhi Mat. Nauk. 22

- 5, 3-56, 1967.

[R55] Paul Rosenbloom. Perturbation of linear operators in Banach spaces. Arch. Math.

(Basel), 6, 89-101, 1955.

[Rue78] D. Ruelle. An inequality for the entropy of differential maps. Bol. Soc. Bras.

Mat., 9, 83-87, 1978.

[Rue89] D. Ruelle. The Thermodynamic Formalism for Expanding Maps. Commun. Math.

Phys., 125, 239-262, 1989.



78

[Rue90] D. Ruelle. An extension of the theory of Fredholm determinants, Inst. Hautes

Etudes Sci. Publ. Math. 72, 175-193. MR 92b:58187, 1990.

[Rue97] D. Ruelle. Differentiation of SRB states. Comm. Math. Phys., 187, 227–241, 1997.

[Rue03] D. Ruelle. Correction and complements. Commun. Math. Phys., 234, 185-90,

2003.

[Rue04] D. Ruelle. Thermodynamic formalism: The mathematical structures of equilib-

rium statistical mechanics, Second edition. Cambridge Mathematical Library. Cam-

bridge University Press, Cambridge, 2004.

[Rue05] D. Ruelle. Differentiating the absolutely continuous invariant measure of an in-

terval map f with respect to f. Commun. Math. Phys. , 258, 445–453 2005.

[Rue09] D. Ruelle. A review of linear response theory for general differentiable dynamical

systems. Nonlinearity, 22, 855–870, 2009.

[S01] Omri M. Sarig. Phase Transitions for Countable Markov Shifts. Commun. Math.

Phys., 267, 631–667, 2006.

[S06] Omri Sarig. Continuous Phase Transitions for Dynamical Systems. Commun. Math.

Phys., 217, 555 -577, 2001.

[S12] Omri Sarig. Introduction to the transfer operator method. Second Brazilian School

on Dynamical Systems, Lecture Notes, 2012.

[S72] Ya. Sinai. Gibbs measures in ergodic theory. Russian Math. Surveys, 27, 21?69,

1972.

[S74] K. Sigmund. On Dynamical Systems With the Specification Property. Transactions

of the American Mathematical Society, vol. 190, pp. 285–99, 1974.

[Sm67] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817,

1967.

[TV99] F. Takens and E. Verbitski. Multifractal analysis of local entropies for expansive

homeomorphisms with specification. Comm. Math. Phys., 203:593–612, 1999.

[Th10] D. Thompson. The irregular set for maps with the specification property has full

topological pressure. Dyn. Syst., v. 25, no. 1, p. 25–51, 2010.

[Th09] Thompson D.. A Variational Principle For Topological Pressure For Certain Non-

Compact Sets, University of Warwick, 2009.



79

[T08] M. Todd. Multifractal analysis for multimodal maps. Preprint Arxiv, 2008.

[TV03] F. Takens and E. Verbitskiy. On the variational principle for the topological en-

tropy of certain non-compact sets. Ergodic Theory Dynam. Systems, 23, no. 1, 317-

348, 2003.

[T05] M. Tsuji. Physical measures for partially hyperbolic surface endomorphisms. Acta

Math., 194, 37-132, 2005.

[V14] M. Viana. Lectures on Lyapunov Exponents. Cambridge Studies in Advanced Math-

ematics, 2014.

[VC18] P. Varandas and A. Cruz. SRB measures for partially hyperbolic attractors of

local diffeomorphism, arXiv:1810.02743v1, 2018.

[V17] A. Veloso. Phase transitions for geodesic flows and the geometric potential. preprint

arxiv, 2017.

[W82] Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982.

[W92] Peter Walters. Differentiability Properties of the Pressure of a Continuous Trans-

formation on a Compact Metric Space. Journal of the London Mathematical Society,

s2-46: 471-481, 1992.

[You90] Young,L. S., Some Large Deviations for Dynamical Systems, Trans. Amer. Math.

Soc., 318:525-543, 1990.

[ZC13] X. Zhou and E. Chen. Multifractal analysis for the historic set in topological

dynamical systems. Nonlinearity, 26, no. 7, 1975–1997, 2013.



Universidade Federal da Bahia - UFBA
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