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RESUMO

A inserção e retirada de véıculos autônomos submarinos (AUV) são operações de alto
custo, duração e risco para os operadores. Uma posśıvel solução para a redução desses
três fatores é a substituição destes operadores por véıculos de superf́ıcie não tripulados
(USV). Uma etapa fundamental para retirada do AUV de forma autônoma é a atracação,
que é o momento em que o AUV entra na estação de atracação (DS) móvel, que por sua
vez estaria sendo rebocada pelo USV. O algoritmo de controle do AUV deve garantir
que a DS está no campo de visão (FOV) dos sensores do AUV, assim como que o AUV
está no FOV dos sensores da DS. Ademais, o controlador deve controlar o AUV de forma
precisa para evitar a colisão indesejada entre o AUV e a DS.

Um controlador muito utilizado na literatura para resolver esses problemas é o contro-
lador preditivo baseado em modelo (MPC). Contudo, a maioria dos MPCs de atracação
não consideram a predição do movimento da DS em seu problema de otimização. Além
disso, diversos MPCs de atracação consideram que o objetivo do MPC é levar o AUV
para a mesma pose da DS. Porém, ao fim da manobra de atracação, o AUV deve estar
em uma pose e com uma velocidade relativa a DS, e não nas mesmas. Dessa forma,
para a atracação de um AUV, essa pose e velocidade relativas devem ser consideradas no
cálculo de referência do controlador. Portanto, a proposta deste trabalho é a de levar em
consideração essa pose relativa de atracação e a predição de sua movimentação no MPC.
Por fim, esse trabalho também se propõe a manter contribuições já realizadas por outros
trabalhos. Tais contribuições são as implementações no MPC dos limites dos propulsores,
garantia que o AUV está no FOV da DS e garantia que a DS está no FOV do AUV.

Para a validação da proposta deste trabalho, a solução foi testada em um ambiente de
simulação no Gazebo, no qual a dinâmica submarina foi computada pelo UUV Simulator
[1]. A framework robot operating system (ROS) [2] e a biblioteca de otimização Casadi
[3] foram usados para o desenvolvimento do controlador e para a sua conexão com o
simulador. Para os casos de teste, os parâmetros e o modelo 3D do véıculo submarino
comercial BlueROV2 Heavy foram utilizados para representar a DS e o AUV na simulação.

Dois casos de testes foram elaborados para demonstrar a eficiência da predição do
movimento da pose de atracação no MPC, um com uma oscilação vertical da DS e outro
com um movimento rotacional e horizontal. As restrições de FOV e a predição da pose de
atracação foram testadas simultaneamente com sucesso para caso de teste com oscilação
vertical, mas por ter sido computacionalmente muito custoso, a restrição do FOV do AUV
foi retirada para o outro teste. Para ambos os casos de teste concluiu-se que o tempo de
atracação é reduzido e que o erro entre a pose do AUV e sua pose de atracação é menor
quando é realizada a predição do movimento da DS.

Palavras-chave: AUV, Atracação, Controle, Otimização, MPC.
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ABSTRACT

The deployment and retrieval of Autonomous Underwater Vehicles (AUV) are operations
with high costs, duration and risks for the operators. A possible solution to reduce these
three factors is the autonomous deployment and retrieval of the AUV from Unmanned
Surface Vehicles (USV) instead of operators in a surface vessel. A fundamental step in
the full autonomous retrieval of the AUV is the docking stage, in which the AUV enters
inside a mobile docking station (DS) attached to the USV. The control algorithm for
docking has to ensure that the DS is in the AUV’s sensors field of view (FOV) and that
the AUV is in the DS’s sensors FOV. Moreover, the controller has to control the vehicle
precisely to avoid crashing the AUV with the DS or USV.

A controller that is vastly used in the literature to solve these problem is the model
predictive controller (MPC). Nonetheless, most of docking MPCs do not take into ac-
count the prediction of DS movement in the optimization problem. Additionally, various
docking MPC proposed in the literature considers, that the goal pose of docking MPC is
the pose of the DS. Although, in reality, by the end of docking maneuver, the AUV has
to be in a pose and with a velocity relative to the DS, but not in the same. Therefore,
for an AUV docking, the computation of pose and velocity setpoint for the docking con-
troller has to consider this relative pose. The proposal of this work is to take into account
this docked pose and its movement prediction in the MPC. Additionally, this work will
maintain some contributions that already have been developed for AUV MPC docking,
which are the implementation of thrusters limits and FOV constraints of DS and AUV
in the docking MPC controller.

For validation of the proposal, the solution was tested in a Gazebo simulated envi-
ronment, in which the underwater dynamics were computed by underwater unmanned
vehicles (UUV) simulator [1]. The robot operating system (ROS) [2] framework and
Casadi [3] optimization library were used to develop the controller and connect it with
the simulation. For the test cases, the parameters and 3D model of the commercial
BlueROV2 Heavy were used to represent the DS and the AUV in the simulation.

Two test cases were designed to demonstrate the efficiency of predicting docked pose
movement with the MPC, one with a vertical oscillation motion of the DS and the other
with a rotational and horizontal motion. The FOV constraints and the prediction of the
docked pose movement were successfully tested together for the vertical oscillation, but
it was computationally expensive, thus only the DS FOV constraint was used for the
other tests. For both test cases the conclusion was that the docking maneuver is faster
and that the error between the AUV and the goal pose is smaller when the goal of the
docking MPC uses the prediction of DS movement, instead of its current states.

Keywords: AUV, Docking, Control, Optimization, MPC.
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Chapter

1
INTRODUCTION

1.1 MOTIVATION

Unmanned underwater vehicles (UUV) are robots used for performing underwater tasks.
These robots can be used for a variety of tasks, such as military underwater mine coun-
termeasures, observing marine life and inspection of underwater infrastructures, which
sometimes are submerged at several kilometers under the surface of the ocean [4]. Gener-
ally, these vehicles are divided in two categories: remotely operated vehicles (ROV) and
autonomous underwater vehicles (AUV). Their main difference is that ROVs are actively
controlled by human operators via a communication tether, whereas AUVs are able to
execute tasks with very low human interaction, once the mission has started and the
AUV dives, the communication has very limited bandwidth.

POODLE, the first ROV, was developed in 1953 [5]. Still, it took almost thirty
years for ROVs to become widely present on offshore applications [5]. Their spreading
happened in 1980s due to oil and gas offshore extraction expansion, which created the
need to perform underwater tasks at depths that are too dangerous for human divers to
operate [5]. Most ROV’s tasks could be done by divers, but there are many disadvantages
on using humans divers to perform some of them. Diving in deep waters is a dangerous
activity: any equipment fault can be fatal and sea creatures could harm the diver [6].
Divers cannot work in environments with high water currents, require advanced training,
insurance and certifications due to the danger of their missions, and are slower than ROVs
in the execution of some tasks, such as ship hull inspection [7]. Therefore, switching from
divers to ROVs can reduce the risks, duration and costs of offshore underwater operation.

Even if the usage of ROVs instead of divers can improve the execution of underwater
tasks, the human factor is still present and can cause errors due to fatigue or trouble
interpreting data from robot sensors [8]. These errors can be mitigated by replacing
ROVs with AUVs, removing entirely the operator from the task pipeline beyond the
definition of the mission. Moreover, the tasks realized by ROVs can be more expensive
than the ones realized by AUVs [4] [9] due to the expenses of hiring trained operators,
and buying, renting or setting up a ship to enable the control of the robot. Therefore,
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2 INTRODUCTION

the replacement of ROVs by AUVs can improve the quality and reduce the costs of some
operations.

Even though the automation of underwater tasks with AUV has advantages, AUVs
still have a common problem with ROVs, which is its deployment and retrieval. Moreover,
AUVs usually do not have tether cables that connect them with power sources like ROVs.
Therefore, it may require a recharging mechanism for long missions. Some recharging
mechanisms that were already used in the literature were solar energy for the SAUV [10]
and wave motion for the self powered AUV [11]. However, these options depend on the
environment conditions to function properly, differently from the docking station (DS),
which is another recharging solution. It is a device that act as a garage for the vehicle.
An advantage of the DS usage in opposition to the others is because it can solve three
problems at once. DSs normally have three purposes: download of data collected by the
AUV during missions, AUV recharging and AUV retrieval [12].

In [12], a DS can be classified in three categories regarding where and how it is
deployed. The categories are fixed, floating and mobile. Fixed and floating are anchored,
but the first stays underwater and the second stays floating on the surface. Mobile DSs
are attached to surface vessels and stay hanging underwater. Independently of which DS
is used, their launch and retrieval procedures still rely on human manual tasks, which
again elevates risks and costs of AUV operations [12, 13]. In [13–16], the autonomous
launch and recovery problem was further investigated and solved by the usage of an
unmanned surface vehicle (USV) with a mobile DS to deploy and retrieve autonomously
the AUV from an USV, via acoustic or optical communication.

An USV is another type of a marine autonomous vehicle, but instead of being un-
derwater, it stays on the surface. USVs have a shape similar to ships and they can be
used for some tasks, such as seabed mapping and seabed mineral research [14]. Using a
USV alongside an AUV for launch and recovery have other advantages besides solving
the problems listed with AUV autonomy. One of the advantages of combining AUV and
USVs is the ability to perform longer tasks, since the USV can charge the AUV multi-
ple times. Another advantage is regarding AUV localization. Differently from an AUV,
the USV can use a global positioning system (GPS). By using GPS with an ultrashort
baseline (USBL) mounted on the USV, it is possible to measure the AUV position and
communicate it to the AUV.

Overall, it is possible to conclude that whether it is a fixed or mobile DS, the usage of a
DS extends the autonomy of an AUV and reduces costs and risks of operation. Moreover,
the mobile DS used with an USV and its cooperation with an AUV can enhance the
performance of a task. However, to have these advantages that the DS can provide in
a fully autonomous task, the AUV needs to be capable of autonomously docking inside
the DS. The autonomous docking operation has several challenges. To overcome these
challenges, the main software components are the DS localization, and AUV guidance
and control [12].

Summarizing, increasing the automation of underwater tasks is key for their cost and
risk reduction. From divers to ROV, AUV, and AUV with mobile and fixed DS to extend
its autonomy, multiple researches have been conducted for the achievement of a fully
autonomous underwater task with minimal human intervention. One important step for
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this to be achieved is the autonomous docking task. The control of the vehicle for the
docking task is a key component for its success and it has been researched since 1992 [17].
Control for docking task of AUVs has evolved from fuzzy and PIDs to optimal control
[12], but it still has room for improvement.

1.2 PROBLEM STATEMENT

The AUV docking task in a mobile DS is a type of rendezvous problem, in which the
robot has to meet a moving DS at a specific place. The control of an AUV for the docking
task is the software component that decides in real time how to activate its thrusters to
make the robot reach the docked pose without colliding with the docking station. The
docked pose (DP) is a pose attached to the DS local frame, it is where a reference pose
in the AUV local frame shall be at to be considered as docked. For a good performance
of the controller, it is important that it acquires the correct pose of the DS, which can
change frequently for the mobile DS case, since the DS is subjected to water currents,
sea oscillation and to being pulled by the USV. This localization problem can be solved
with acoustic, visual and electromagnetic sensors. Each type of sensor has its advantages
and disadvantages.

Visual localization uses underwater cameras to localize features or markers in the DS.
Since these features and markers are in fixed poses in relation to the DS, it is possible
to calculate the DS pose from their pose estimation. The markers can either be passive,
such as Apriltags [18], or active lights to be visualized even in the dark. The issue with
visual localization is that it needs to have the DS feature or marker in the camera field
of view (FOV) and it can be affected by dark environments and turbid water. Other
than visual localization, it is possible to use acoustic and electromagnetic localization.
These types of localization entails the trilateration of acoustic or electromagnetic signals
broadcasted by beacons in the DS and obtained by a receiver in the AUV. It can also
be the other way around, with the beacons in the AUV and the receiver in the DS. For
this kind of method to work, the AUV must be close enough to the DS for the receivers
to pick up signals that the beacons are sending out. All of the aforementioned methods
involve estimating the DS pose, but there is also the option of just transmitting the AUV
and DS poses to one another. Both acoustic and optical modems are capable of achieving
it. For some optical modems, it’s also necessary for one to be in the other’s field of view
in order for them to be able to communicate.

All of these problems regarding localization have a direct impact on the control prob-
lem, consequently, the controller has to be able to overcome the possible delays or mea-
surements errors. All of the aforementioned localization and communications require a
certain geometrical limitation in order to function. Some specifications require for the
AUV to be nearby the DS, while others require for one to be in the FOV of the other.
There is no range constraint for acoustic or optical modems because the AUV and DS
will already be around 5 meters apart for the docking problem that we are contemplating
solving. Even so, they can still move outside of the other FOV for optical communication
and pose estimation. In order to prevent moving the AUV in a way that disrupts localiza-
tion, the controller handling the docking problem must be aware of these circumstances
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and how to avoid them.

Moreover, the controller also has to deal with the movement of the AUV and mobile
DS. Due to the increased number of potential sources of disturbance, docking in a mobile
DS in a USV is significantly more challenging. The DS movement motion will be impacted
by both surface disturbances like wind and waves, as well as underwater disturbances
like water currents and oscillation. Optimal control theory can handle these problems
by using the knowledge of the vehicle dynamics model to predict its future movement
and to optimize the error between the vehicle current pose and the future docked pose.
However, this approach leads to the problem of getting an accurate dynamics model of
the vehicle. For docking into a mobile DS, the problem is even harder, because not only
the vehicle is moving but also the DS. To have a better prediction of the relative position
of the vehicle in respect to the DS docked pose, the dynamics of the docked pose needs
also to be taken into account.

Other things that the controller has to consider are the docking problem constraints.
For an AUV to be able to dock, its sensors have to be capable of measuring the position of
the DS, so the controller can avoid collision of the AUV with the DS. Some sensors, such
as cameras and sonars, can only measure or capture data from objects that are in its FOV,
which has a certain area and shape. Not only sensors, but some communications devices,
such as optical modems, also need to have some alignment to transmit and receive data.
Moreover, most DSs also have sensors to measure the AUV relative pose and then send
it to the AUV. Therefore, another constraint of the docking controller is to ensure that
the movement of the AUV will not remove at anytime over the prediction horizon the
DS from the AUV’s sensors FOV. At the same time, the controller has to assure that
the AUV will not move out of the FOV of DS’s sensors. These two constraints to keep
the AUV and DS in each other sensors FOV are going to be referred in this work as
co-visibility constraints. Finally, the controller shall also know the force limits of AUV’s
thrusters, so it does not try to send an impossible control action to the actuators.

Even considering that all these problems are solved, that the model is estimated,
and that the localization and control software are developed, it is still a problem to test
the system. It is very expensive to get sensors for accurately track AUV and DS pose
and have a test site capable of generating wave and current disturbances in a controlled
manner to check if the vehicle is able to respond well to these disturbances. To test the
code directly on the vehicle is also a risk, because if some error occurs, it is possible to
have a crash between the vehicle and the garage, damaging both of them. Therefore,
another problem to be solved is the realistic test of the control software in simulated
environment.

1.3 OBJECTIVES

From all these problems regarding AUV docking, the main goal of this work is to develop
a controller capable of docking an AUV in a mobile DS. In order to accomplish that, a
new model predictive controller (MPC) for underwater docking is developed. This new
controller is inspired by the MPC approach developed for a spacecraft rendezvous with a
non cooperative target in [19], taking into account the pose and velocity error between the
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vehicle and the docked pose for every prediction. Moreover, the proposed MPC merges
some positive aspects of the current AUV docking MPCs in the literature [20–24]. The
details of the proposed MPC and its importance for docking are further explained in the
Chap. 3.

The problem regarding localization and model parameter estimation is not in the scope
of this work. The model parameters, localization and velocity of the AUV and DS in the
experiments are considered as known. There will be no simulation of localization, the
AUV will simply receive a very precise pose and velocity of the DS. Therefore, localization
filters, measurement problems and disturbance observers are not a scope of our work.

To overcome the problem of testing the vehicle in a controlled environment, a com-
puter simulation is developed. The simulation is done using UUV simulator [1], which
simulates underwater rigid body dynamics, and displays the AUV and DS movement.
Some sub-goals are necessary to complete all these steps, which are listed below:

� Model the dynamics of the AUV, DS and the docked pose.

� Include thrusters control in the model dynamics of the AUV.

� Develop a regular docking MPC with thrusters constraints.

� Include co-visibility constraints in the MPC.

� Include docked pose movement prediction in the MPC.

� Test the solution with software in the loop (SIL) simulation for different DS move-
ment cases.

� Simulate and compare MPC with and without docked pose movement prediction.

1.4 THESIS STRUCTURE

In this chapter we explained the importance of docking an AUV in a mobile DS, its asso-
ciated challenges and which of these problems we aim to address in this thesis. Chapter 2
explains the mathematical background necessary for understanding the thesis. Chapter
3 describes the state of the art for AUV docking with MPC, and elaborates our scientific
contributions. Chapter 4 details the implementation of the MPC. Chapter 5 presents
the system in which the solution is going to be tested and how it is implemented in the
simulation environment. Chapter 6 describes the tests that were executed to prove the
efficiency of the proposed solution and the comparison with current approaches. Chapter
7 concludes the thesis and suggests further future research.





Chapter

2
THEORETICAL FOUNDATION

2.1 OPTIMIZATION AND MODEL PREDICTIVE CONTROL

Model predictive control consists in converting a control problem to an optimization
problem, thus before explaining MPC, explaining optimization is necessary. Optimiza-
tion problem is the mathematical problem of finding values for variables of an objective
function that minimizes it, while respecting some equality and inequality constraints [25].
Eq. (2.1) shows a standard way to specify an optimization problem [25]. To minimize
the objective function f(x) is the optimization goal. The inequality constraints are gi(x)
and the equality constraints are hi(x). Then, an algorithm using an optimization method
can be used to solve the problem.

minimize f(x)

s. t. hi(x) = 0, i ∈ 1, ..., p

gi(x) ≤ 0, j ∈ 1, ...,m

(2.1)

The control problem consists in choosing the control action u that leads system states
x to a certain setpoint sp. MPC uses optimization to solve the control problem and find
the optimal control action based on a heuristic, which is defined by the optimization cost
function. Generally, this cost function involves the weighted sum of squares of system
states error e = sp−x, but can also include other term, such as the square sum of control
action variation ∆u = uk − uk−1, thus the MPC chose a smooth control action that
moves the system states to the setpoint [26]. It is also possible to add constraints such as
the upper and lower bounds of the control action (uub, ulb) and system states (xub, xlb).
Furthermore, it doesn’t just optimize the states error in the next control iteration, but
all states error in the prediction horizon ph, by selecting the optimal control actions in

7
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the control horizon ch [26]. This example can be visualized in the Eq. (2.2).

minimize

ph−1∑
i=0

||ei|| +
ch−1∑
j=0

||∆uj||

s. t. ulb ≤ uj ≤ uub, j ∈ {0, ..., ch− 1}
xlb ≤ xi ≤ xub, i ∈ {0, ..., ph− 1}
∆uk = 0, k ∈ {ch, ch+ 1, ..., ph− 1}

(2.2)

2.2 UNDERWATER VEHICLE DYNAMICS

One important step of model prediction control is to obtain a dynamic model, which is
a set of differential equations, that represents the system to be controlled. For docking
AUVs with MPC, it is necessary to have a dynamic model of how the vehicle move and
how the actuators influence its movement. This section goal is to explain the 6DOF
AUV dynamics and mathematical notation of it. The entire section is based on the
theory presented in [27, 28].

2.2.1 Notation and conventions

The SNAME notation [29] was defined in 1950 and included most of the nomenclature
for marine craft dynamics modeling, which has also been vastly adopted for underwater
robotics. SNAME notation will be utilized by this thesis as well, which will be introduced
in this section, alongside other common robotics notation. First, for describing motion of
the vehicle, it is necessary to define names and symbols for the 6DOF pose and velocities.
The 6DOF pose is represented by the vertical 6x1 vector η, which is a concatenation of
the 3x1 position vector p and the 3x1 euler angles Θ. The 6DOF velocity is represented
by the vertical 6x1 vector ν, which is a concatenation of the 3x1 linear velocity vector v
and the 3x1 angular velocity vector ω.

2.2.1.1 Frames Conventions The vehicle motion has to be defined in relation to an
inertial frame of reference. It will be used a North West Up (NWU) frame convention on
the water surface instead of a North East Down (NED) frame, which is used more often
for underwater robotics. That decision was taken to approximate more the description
of underwater robotics problem with aerial, spacecraft and ground vehicles, since most
of them use NWU as well. Not only the inertial frame will be NWU, but all robots and
objects used in this research are considered NWU. This means that for any robot the x
direction it is from its center to its front, the y from its center to its left and the z from
its center to its top side.

2.2.1.2 Relative Pose and Motion Notation All the velocities, forces and accel-
erations are describing the motion of a frame over time, expressed in its perspective.
Independently of what the physical quantity being described by a symbol, its subscript
represents the frame that has the physical quantity. For example, the linear velocity
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of frame a would be represented as va, the angular acceleration of frame b would be
represented as ω̇b.

Even though this notation is enough for most cases, position and rotation cannot be
represented only by it. Since rotation and position describes one frame in relation to
another, a superscript will be added to represent the base frame. Therefore, the position
and rotation will be represented from the superscript to the subscript from the perspective
of the superscript. For example, the position of frame a with respect to the frame b is
represented by pba. In case the base frame is the inertial frame of the environment, the
superscript can be omitted.

2.2.1.3 Rotation Conventions Rotation can be represented by using quaternions,
axis angle or euler angles. From these three, the easiest one for a human to visualize are
euler angles. Moreover, euler angles are the convention in underwater vehicle dynamics.
Therefore, euler angles will be our choice for representing orientation. From all the 24
euler angles possibilities, the XYZ extrinsic rotation will be utilized, in which the rotation
are in first executed around x, then y and then z fixed axis. The name of the rotation
around XYZ axis are respectively roll ϕ, pitch θ and yaw ψ. Therefore, the Eq. (2.3)
represents rotation matrix from frame a to frame b, represented by R(Θa

b ), generated by
the euler angles Θa

b . In the Eq. (2.3), cos(x) and sin(x) were abbreviated to c(x) and
s(x) respectively. Moreover, the operation defined by Θ(Ra

b ) represents the conversion of
the rotation matrix in roll, pitch and yaw angles Θa

b .

R(Θa
b ) =

 c(ψ)c(θ) s(ψ)c(θ) −s(θ)
−s(ψ)c(ϕ) + c(ψ)s(θ)s(ϕ) c(ψ)c(ϕ) + s(ψ)s(θ)s(ϕ) s(ϕ)c(θ)
s(ψ)s(ϕ) + c(ψ)s(θ)c(ϕ) −c(ψ)s(ϕ) + s(ψ)s(θ)c(ϕ) c(ϕ)c(θ)

 (2.3)

With the position and rotation convention established, it is still necessary to define
how to use them for pose transformations. Thus, the operator ⊗ will be used in our work
to represent a position and rotation transformation, which is defined in Eq. (2.4).

ηab ⊗ ηbc = ηac =

[
pac
Θa

c

]
=

[
pab +R(Θb

c) × pbc
Θ(R(Θa

b ) ×R(Θb
c))

]
(2.4)

2.2.2 12 DOF model

To understand the AUV motion in 6DOF simply from its current state and actuators
commands, two steps are necessary. First, we must understand the dynamic model,
which is how all the forces contribute for generating the 6DOF velocity of the vehicle.
Afterwards, it is required to understand how the 6DOF velocity calculated in the dynamic
model will impact on the change of pose of the vehicle, which is the kinematics model.
Combining these two models is essential to fully comprehend vehicle motion, which is a
fundamental part of the AUV docking MPC.
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2.2.3 Dynamics

Newton’s second law of motion stated that the sum of forces had to be equal to the mass
times acceleration. Eq. 2.5 is also Newton’s second law, but it is also detailing forces that
act on a immersed rigid body. The mass of 6DOF submersed rigid body is the 6x6 regular
mass of the rigid body MRB plus added mass MA. The added mass is a 6x6 matrix that
represents the inertia of a moving fluid around the immersed rigid body. In ground and
aerial robotics, this added mass is normally discarded because of the air density being
much lower than water density. The added mass matrix is mainly dependent on water
density and geometry of the immersed rigid body.

(MA +MRB)ν̇ + C(ν)ν +D(ν)ν + g(Θ) = τ (2.5)

The coriolis and centripetal forces are caused by earth rotation and are represented
by 6x6 C(ν) matrix multiplied by velocity. These forces actually can be neglected since
they are very small for small velocities, which is the case of the docking maneuver.

The damping forces are a dissipative drag force in the vehicle due to the viscosity
of the fluid, which is represented as D(ν). It can be divided into linear and quadratic
terms as it is in Eq. (2.6), in which the linear damping DL is a 6x6 constant matrix and
the quadratic damping DQ is a 6x6 matrix that is proportional to the modulus of the
velocity. The constants of the damping matrix are related to the geometry of the vehicle.
For vehicles with XY, ZY and ZX planes symmetry, the damping matrix is a diagonal.

D(ν) = DL +DQ(ν) (2.6)

Thus far, all the forces explained depend on vehicle movement. In addition, the
weight and buoyancy forces g(Θ) always keep being applied in an immersed rigid body.
They act similar to a pendulum, with the weight pulling the center of gravity (COG)
down, and buoyancy pushing the center of buoyancy (COB), as it is illustrated in the
Fig. 2.1. The COG is a point of the rigid body where the mass distribution is the same
for all directions. The COB is similar, but instead of being the mass distribution of the
rigid body is the mass distribution of the fluid that would occupy the space that is now
occupied by that rigid body. The farther away these centers are in an AUV, the stronger
is the force putting the vehicle back in its default orientation. Without any external
forces, the default orientation of a submersed body is when the COB on top of the COG,
vertically aligned with it. Therefore, for a more stable AUV, the farther away the centers
are the better, but for an AUV to be more maneuverable, the closer they are, the better.

In a fully submersed rigid body in a constant density fluid, the COB can be considered
a point where the distribution of volume is the same in all directions. How weight and
buoyancy force act on the 6DOF of the vehicle is expressed in Eq. (2.7). In this equation,
W represent the magnitude of the weight force, B the magnitude of buoyancy force, xyzG



2.2 UNDERWATER VEHICLE DYNAMICS 11

Figure 2.1 Illustration of buoancy and weight forces in a submersed body.

COG relative coordinates and xyzB COB relative coordinates.

g(Θ) =


(W −B)sin(θ)

−(W −B)cos(θ)sin(ϕ)
−(W −B)cos(θ)cos(ϕ)

−(yGW − yBB)cos(θ)cos(ϕ) + (zGW − zBB)cos(θ)sin(ϕ)
(zGW − zBB)sin(θ) + (xGW − xBB)cos(θ)cos(ϕ)
−(xGW − xBB)cos(θ)sin(ϕ) − (yGW − yBB)sin(θ)

 (2.7)

Finally, the last force τ in the Eq. (2.5) is the one produced by AUV thrusters. Each
thruster of the AUV has an specific position and is pointed at one specific direction, this
need to be mapped in the 6DOF, as it is in Eq. (2.8). This mapping is done by the
Thruster Control Matrix (TCM) T , which is a 6xn matrix that convert the n thrusters
forces in vertical vector fn into a 6DOF vector force aligned with the robot frame.

τ = Tfn (2.8)

2.2.4 Kinematics

AUV dynamic model Eq. (2.5) enables the acceleration estimation with the AUV orienta-
tion, velocity and control output. By integrating the acceleration is possible to estimate
and predict the AUV velocity, which is going to be used for the docking MPC. Although,
for docking an AUV it is also important to predict its movement, how its pose will change
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in time. In order to do that, the velocity obtained using the dynamic model is converted
from the frame of the robot to the inertial frame on the water surface by Eq. (2.5). In
this equation, O3x3 represents a 3x3 matrix containing only zeroes.

η̇ =

[
R(Θ) O3x3

O3x3 J(Θ)

]
ν (2.9)

Two operations are needed for converting the AUV velocity from one frame to another:
the conversion of linear and angular velocities. For the linear velocity conversion, the AUV
linear velocity has to be rotated by the AUV orientation in relation to the inertial frame,
as it is in Eq. (2.10). For the angular velocity conversion, the euler angle rate matrix J
in Eq. (2.11) will be used.

ṗ = R(Θ)v (2.10)

Θ̇ = J(Θ)ω =

cos(θ) sin(ϕ)sin(θ) cos(ϕ)sin(θ)
0 cos(ϕ)cos(θ) −sin(ϕ)cos(θ)
0 sin(ϕ) cos(ϕ)

 1

cos(θ)
ω (2.11)

2.3 HYPERPLANES AND HALFSPACES INTERSECTION

A last important topic for understanding the MPC controller designed in this thesis is
halfspace. It is important because it can be used as an MPC constraint to restrict the
movement of the vehicle, so that it does not go into a place that is not supposed to.
Particularly, it can be used to guarantee the co-visibility constraints.

A halfspace is one of two parts of the affine space divided by a hyperplane [30]. A
hyperplane is an affine subspace with one less dimension than the affine space being used
[30]. Since this work is being done in three dimensional space, the hyperplane is simply a
plane and the halfspace is part of the space divided by a plane, which can be represented
by the Eq. (2.12). For example, if we consider the XY plane passing through the origin,
we would have two halfspaces, which would be above and below the z axis.

ax+ by + cz ≤ d (2.12)

One way of finding the parameters a, b, c and d of the Eq. (2.12) is by selecting a
point that belongs to a certain plane and a vector normal to the plane. If a point with
coordinates (px, py, pz) is selected and a vector normal to the plane (nx, ny, nz) is selected,
the halfspace, which is represented in Fig. 2.3, equation parameters can be found by Eq.
(2.13). In that equation, any point xyz that makes the equation valid is a point that
belongs to the halfspace.

nxx+ nyy + nzz ≤ nxpx + nypy + nzpz (2.13)
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3
RESEARCH IMPACT

The objective subsection listed six features of AUV docking MPC. The goal of this chap-
ter is to show how these features are a scientific contribution to docking MPC research,
how they can be implemented and how these features will contribute to the AUV docking
task. First, in the literature review section, some research papers will be discussed to
demonstrate what is the state of the art of AUV MPC docking and to highlight how
researches have and have not implemented some of the objectives of this thesis. After-
wards, each proposed contribution of this thesis has a specific section presenting further
details.

3.1 LITERATURE REVIEW OF AUTONOMOUS UNDERWATER VEHICLE DOCK-
ING

More than 60 years have passed since the invention of the first AUV, the SPURV [31].
Nonetheless, it took until 1992 for the first research concerning docking an AUV au-
tonomously to be published [17]. This first attempt of docking consisted in using a fuzzy
controller to dock one AUV into a submarine with a mobile DS on simulation. Following
that, the REMUS 100 was the first AUV designed with autonomous docking goal. Its
docking strategy, docking station and localization features are detailed in [32]. The first
successful autonomous docking was also made with the REMUS 100 [33], but with a
success rate of approximately 58.6%, which is not a very reliable rate.

Afterwards, multiple methods regarding docking guidance and control have been de-
veloped [12]. These methods were mostly non optimal control solutions [12], attempting
to solve the problem using different guidance and control strategies to compensate for
water currents [34], but not considering the dynamical model of the vehicle. Even though
is possible to tune PIDs and to use guidance methods to dock an AUV, the control ac-
tion is not optimal and it may not respect FOV, LOS and thrusters limits constraints
that a docking problem has. Comparing underwater docking control to aerial and space
vehicles, marine research is not taking much advantage of the vehicle dynamical model
to control the vehicle in the docking/rendezvous problem [12].

13
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Nevertheless, that is not the case for every AUV docking research. In the last decade,
some papers implemented MPC for AUV docking [20–24]. In [20], a stochastic MPC was
used to dock a AUV with 5 degrees of freedom (DOF). A model with AUV pose and
velocity, excluding roll motion, was used for the AUV dynamics. The control actions
were the force and torque in each DOF. For the experiment in the paper, it seems that
the AUV was able to follow the DS along a circular path successfully, but the lack of a
graph showing the position and velocity over time makes it hard to evaluate how was the
pose and velocity error. Additionally, the docked pose was exactly the pose of the DS,
the dynamics of the DS was not modeled nor its movement predicted. The actuators of
the vehicle were not present in the model and there were no FOV and LOS constraints. It
achieved the proposed stochastic MPC, but these missing features could have represented
better the docking problem, and achieved better results.

In [23], it was used the same AUV that our research intends to use. A 6DOF MPC
was developed as high level controller, to define the trajectory of the vehicle, which is the
velocity of the vehicle at each moment for docking. Its cost function goals were to move
the vehicle to DS location, reduce energy consumption and generate a smooth control
action. The MPC was tested for the nominal case where the pose of the DS and the AUV
were known during the docking. Also, even though the model is 6DOF, the control action
and error were just evaluated in two degrees of freedom. A contribution of this paper
was to use the DS movement prediction as the goal of the MPC. On the other hand, it
considers that the docked pose is the same as the DS center, it does not considers the
FOV nor the actuators constraints, and the MPC was controlling only the x and z DOF.

In [24], an NMPC for xyz and yaw docking control was developed, it acts as a high
and low level, taking DS pose as input and effort as output. The cost function is designed
to: reduce the error between the pose of the AUV and docked pose in the DS entrance,
reduce the distance between them and have a smooth control action. The constraints
of the MPC problem are set to avoid crashing into the seabed or the DS. The MPC
also considers the FOV constraint. This research brought some important aspects of the
docking problem with the docked pose being different than the DS pose and the FOV
constraints. Although, a static DS was used, so even if the paper considers the docked
pose, it does not make sense to predict its nonexistent motion.

In [22], a robust 6DOF MPC was developed to dock the AUV in a moving mothership.
The goal of the MPC was to make the vehicle achieve the same velocity of the DS and
a specific pose in relation the the DS. Besides the constraint used for the robust MPC
problem, it was utilized the co-visibility and control effort limit. Although, it does not
consider the docked pose in the model and does not predict the movement of the DS.
Moreover, the controller outputs are the effort and torque in each DOF of the AUV
instead of thrusters effort.

Even though all these papers mentioned in this chapter brought some contribution to
AUV docking/rendezvous MPC, the work done by [19], for spacecraft rendezvous is the
most important one for the scientific contribution of our thesis. This work describes the
MPC of a spacecraft with a gripper that has to catch a rock on a moving asteroid. The
predicted error of the spacecraft MPC is calculated by the iterating system of ODEs that
describe the relative pose and velocity of the rock in respect to the gripper. That is the
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reason why [19] is so important, because it solves the problem that no other AUV docking
in mobile DS MPC has ever solved. It considers the relative motion between a point in
the target and a point in the robot. Doing an analogy of the spacecraft rendezvous with
AUV docking, the spacecraft and its gripper could be the AUV’s center and the rock on
the asteroid could be the docked pose in the DS. In that manner, using the same logic
in the MPC of the spacecraft rendezvous, it will be possible to model and predict the
error between the AUV and docked pose states. Furthermore, the paper also includes
thruster allocation in the model, thrusters limits constraint and LOS constraint. The only
thing missing regarding the problems that this work intends to solve is the co-visibility
constraints and the underwater dynamics.

As demonstrated by the analysis of these researches regarding AUV MPC docking, it
is possible to conclude that some strategies have been proposed and successfully imple-
mented on simulation. The application of robust MPC, stochastic MPC, the inclusion of
the integral of the error in the model have been able to overcome current disturbances,
noisy measurement from sensors and modeling errors. Some papers even consider and
detail the thrusters limits, LOS and FOV constraints, but none of them considers the
three constraints together.

At the time that this work has been released, there is no docking in a mobile DS MPC
that considers the docked pose being different from the DS pose. As for the prediction
of DS movement, only [21, 23] are using it to generate the goal of the MPC, but only
for 3DOF [21] and 2DOF [23] case. These two important aspects of the MPC docking
problem have been dealt by [19], but targeting the rendezvous problem of a spacecraft
robot instead of an underwater robot, which has different dynamics. Therefore, there is
a research gap that can be closed for AUV docking in mobile a DS. Firstly, to consider
the prediction of the docked pose movement introduced by [19]. Secondly, to implement
of all the three docking constraints in the MPC. The implementation of these constraints
and docked pose dynamics can improve AUV docking MPC already in the nominal case,
which considers perfect model and perfect sensors measurements.

3.2 DOCKED POSE CONSIDERATION

Almost every AUV docking in a mobile DS paper does not consider the relative docked
pose with respect to the DS that the AUV shall be in the end of the docking maneuver
[20–23, 34]. Normally, it is assumed that the AUV has to be in the same pose of the DS.
Considering that the docked pose is different than the pose of the DS has consequences,
not only in the pose goal, but also in the velocity goal. The conversion from the DS
dynamics to docked pose dynamics are represented in equation 3.1.

Rdp = Rds ×Rds
dp

pdp = pds +Rds
dp × pdsdp

ωdp = Rds
dp × ωds

vdp = Rds
dp × (vds + pdsdp × ωds)

(3.1)

Figure 3.1 illustrates in 2D the difference between using a docked pose and a DS
pose. For this case there is a blue triangle representing the AUV and a purple one
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representing the DS. The rectangles represent the electrical connector of the AUV and
DS, that have to be in the same position at the end of the docking. The docked pose is
fixed relative to the DS and it is defined in a way that both connectors are in the same
place. For the position, rotation and angular velocity, the change from DS to the docked
pose represented in equation 3.1 means a geometrical conversion of reference frames.
Although, it is different for the linear velocity, since the velocity in the docked pose is the
linear velocity of the DS plus the tangential velocity of its position due to the angular
velocity of the DS.

Figure 3.1 Illustration of AUV in docked pose and its linear velocity.

3.3 PREDICTION OF GARAGE MOVEMENT

As stated in Chapter two, the goal of an MPC is to minimize a cost function. For the
case of AUV docking in a mobile garage, one important aspect of the cost function is the
sum of the error between the AUV states, which are pose and velocity, and the docked
pose states. The regular approach is to measure docked pose states, and use it as a
setpoint for the whole prediction horizon, but this is not valid, since the garage can be
moving and the docked pose states can be changing. It is possible to fix this issue by
using the garage model to predict the docked pose future states for the whole prediction
horizon, then using the predicted states as the setpoint in the cost function cf . To use the
prediction of the DS movement in the cost function, the part representing states errors
has to change from 3.2 to 3.3. The only difference is the usage of docked pose prediction



3.4 SOFTWARE IN THE LOOP 17

xdp(n) instead of its current measurements xdp(0).

cf(xauv, xdp, ph) =

ph∑
n=0

∥xauv(n) − xdp(0)∥ (3.2)

cf(xauv, xdp, ph) =

ph∑
n=0

∥xauv(n) − xdp(n)∥ (3.3)

After changes, this can have a great impact. This impact is illustrated in the Figure
3.2, in which the DS is moving laterally to its right. In case the MPC does not considers
the movement of the DS, the optimal trajectory found by the MPC shall be similar to
the red one. Otherwise, it would predict a trajectory leading the AUV to the predicted
position of the DS, represented by the green curved line.

Figure 3.2 Illustration of optimization difference with and without DS movement prediction.

3.4 SOFTWARE IN THE LOOP

SIL test consists in running the code with a simulation to evaluate its performance on
a software level. Particularly for MPC in robotics, SIL involves running a simulation of
the robot that outputs sensor measurements, receives control input and moves the robot
according to its dynamics and environment disturbances. That differs from running
a single piece of code with the robot simulation and controller, because in that case
the controller can take as much time it needs to output the control action. SIL of an
AUV docking MPC forces the controller to solve the optimization problem with a time
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constraint. Therefore, with SIL, it is possible to reduce the gap between simulation and
implementation in a real robot, by assuring that the MPC solves the problem on time,
without compromising its performance.

For SIL implementation of AUV docking MPC, it would require an underwater robot
simulator to be connected with the MPC software. Gazebo [35] would be a viable op-
tion for simulating the robot, but it lacks underwater actuators, dynamics and sensors
simulation. Therefore, UUV simulator [36] will be used in conjunction in Gazebo for the
simulation of the robot. Finally, to communicate the MPC software with the simulation,
ROS will be used [2]. By combining these three tools, ROS, Gazebo and UUV simulation,
it is possible to implement the MPC with SIL to validate the solution.

3.5 CO-VISIBILITY CONSTRAINTS

These constraints are basically geometry boundaries for the docking problem. As it
was stated in Chap. 1, the co-visibility constraints are the restrictions for the MPC to
maintain the DS in the FOV of AUV’s sensors and the AUV in DS’s sensors FOV. Both
of them basically limits the pose where the AUV have to be in relation to the DS. One
way of defining both restrictions is by selecting a polyhedral cone to represent AUV’s
sensor FOV and DS’s sensor FOV.

It is possible to guarantee that the AUV will be inside the DS FOV polyhedral cone
or the DS inside AUV FOV polyhedral cone by the usage of halfspaces intersection. For
this work, it will be used polyhedral cones with the shape of right rectangular pyramids
without their base for these FOVs constraints. Therefore, considering the AUV as a
point in space pauv and H1, H2, H3 and H4 the four internal halfspaces formed by the
DS’s sensor FOV, if Eq. (3.4) is true, then the point is inside the pyramid [19, 22].

pauv ⊂ H1 ∩H2 ∩H3 ∩H4 (3.4)

The pyramid can be defined by choosing its five vertices, v1, v2, v3 and v4 being vertices
from the base and v0 the vertex of the top. Considering v⃗ab the vector pointing from vertex
va to vb, the pyramid’s lateral planes norm vectors can be defined as n⃗1 = v⃗01× v⃗02. With
the norm vectors and the vertices it is possible to define the internal halfspaces of the
pyramid by Eq. (2.13) if the vertices are positioned in a manner that the norm points
to the outside of the pyramid. Fig. 3.3 illustrates this definition of the pyramid vertices
and norm vectors for better visualization of the problem.

After choosing the vertices of the DS FOV pyramid, if the Eq. (2.13) is true for
p = pauv and for all the four pyramids halfspaces, then Eq. (3.4) is true and the DS FOV
constraints are obeyed. For the AUV FOV is similar, but the pyramid is with respect
to AUV’s sensor FOV and p = pds. Therefore, to include the co-visibility constraints
in the AUV docking MPC problem, it is just to include the 8 inequality halfspaces as
constraints in the MPC.

3.6 THRUSTER CONTROL AND CONSTRAINT

AUV control can be done in multiple ways. A single controller can be used to send
commands to the thrusters with the goal of reaching a specific position, or a chain of
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Figure 3.3 Illustration of FOV constraint elements.

different controllers can be used to achieve the same goal. For example, there could be
a pose controller that outputs the velocity needed to reach a certain pose. This velocity
can be passed to another controller that outputs the effort necessary to reach the desired
velocity. Finally, the 6DOF effort would be passed to a controller that send commands to
the thrusters to apply the desired 6DOF effort in the robot. At the end of this chain, the
single component that is interacting with the robot and that has physical limitations is
the thruster. Including the thruster control in the MPC has the benefit of calculating an
optimal force for each thruster that it is feasible to apply. To add the thruster control in
the MPC it is necessary to replace in (2.5) the 6DOF controlled effort τ for the equation
in (2.8). Then it is possible to add the upper and lower boundaries constraints for each
control output of the MPC.





Chapter

4
DOCKING MODEL PREDICTIVE CONTROLLER

Although the most important contributions of this thesis MPC were explained in Chap.
3, it was not explained how they all fit together in the MPC and the MPC itself, which
is what this chapter intends to do.

4.1 UNDERWATER DYNAMICS IN ORDINARY DIFFERENTIAL EQUATIONS
SYSTEM

Through Chap. 2 and 3 the math details for AUV dynamics modeling have been de-
scribed, but the exact model that the MPC will use for prediction of vehicle movement
has not been explained yet. The model will differ from the previous one described in
Chap. 2 to facilitate the initial-value problem solution required to predict the behavior
of the system in the MPC. Basically, a vector with the derivatives are going to be isolated
on the left side, as in Eq. (4.1). Therefore, the acceleration for the dynamic model in Eq.
(2.5) has to be left alone in the left side of the equation. Additionally, the replacement
of 6DOF control action by the thruster control matrix and thrusters has to be done in
dynamic model as well.

ẋ = f(x, u) (4.1)

[
η̇
ν̇

]
=


ṗ

Θ̇
v̇
ω̇

 =

 O3x1

O3x1

(MA +MRB)−1 × (T × fn − g(Θ))

 +

 R(Θ) O3x3

O3x3 J(Θ)
(MA +MRB)−1 × (−DL)

×
[
ν
ν

]
(4.2)

Almost the same ODEs will be used for prediction of DS movement, the only change
is that the control action part which will be eliminated, because the DS is considered as
not actuated. The ODEs from Eq. (4.2) are represented as a non linear state space form,
so the variables which have derivatives in the left side will still be referred to as states
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22 DOCKING MODEL PREDICTIVE CONTROLLER

and the thrusters effort vector as input vector. The state vector has 12 elements, x0:5 = η
and x6:11 = ν0:5. The details of how this ODEs model will be used are in Sec. 4.3 of this
chapter.

4.2 COST FUNCTION

The cost function for the MPC is the Eq. (4.3). In this Eq., the operator v◦2 represents
a bitwise operation for raising the vector or matrix elements to the power of two. It is
the weighted sum over the prediction horizon of the element-wise square sum of input
variation u and the error between AUV states x and docked pose states r. The diagonal
matrices Qt, Q and S are respectively the weight for terminal error, for the regular error
and for input variation.

A = Qt × (x[ph] − r[ph])
◦2

B =

ph∑
i=1

(Q× (x[i] − r[i])
◦2)

C =

ph−1∑
i=1

(S × (u[i+1] − u[i])
◦2)

cf =
∑
i,j

Ai,j +
∑
i,j

Bi,j +
∑
i,j

Ci,j

(4.3)

The goal of the AUV docking MPC is to match the pose and velocity of the AUV
with the docked pose, therefore, both pose and velocity error are in the cost function. It
is important to have separated the weight from terminal and regular error, because the
velocity of the AUV only needs to match the velocity of the docked pose in the end of
the predicted trajectory. The matching of velocities in the middle of the docking is not
ideal since the AUV has to be able to go faster than the docked pose to reach it. That
same strategy was adopted by [19].

The variation of control action is also in the cost function to avoid a noisy response.
With a real thruster, it could not be able to respond in time to a noisy signal due to its
own dynamics that are not considered in the problem. The energy spent is not in the
formula thus the MPC do not have a trade off between performance and energy saving.
Since docking is a relative short task that requires high precision, there is no need to
sacrifice performance in favor of energy saving.

4.3 CONSTRAINTS

Before going into the constraints that are important contributions of this thesis explained
in Chap. 3, there are some constraints necessary for the MPC to work that must be de-
tailed. First, it is required to use the ODEs to predict the movement of the vehicle, which
is going to be made using multiple shooting method [37]. Multiple shooting enables the
computation of future states in parallel instead of sequentially to speed up the controller,
but the number of variables in the optimization problem increases. During the experi-



4.3 CONSTRAINTS 23

ments in this work, it was observed that multiple shooting was able to reduce in half the
time that it takes for the MPC to converge into a solution.

The multiple shooting is done by enforcing the discrete integration of the ODEs to
calculate x[i+i]. The euler method is going to be used for this initial-value problem solution
in the discretization. Therefore, for i from one to ph, for every possible integer value of
i, the constraint from Eq. (4.4) [38] will be applied. The prediction of DS movement is
described in Sec. 4.4 and it is going to be estimated outside the MPC, because it is not
influenced by the AUV movement.

xi+1 = xi + ẋidt (4.4)

The second constraint for the MPC is for the implementation of a control horizon.
Since the MPC optimization have the goal of finding only the best control action up to
the control horizon step, from the control horizon to the prediction horizon, the MPC
shall maintain the same control action. This will be done by enforcing the constraint in
Eq. (4.5) for i being an integer starting in ch+ 1 up to ph.

ui+1 = ui (4.5)

Other than these required constraints for the MPC problem to be solved, there are
the constraints of the docking problem. For the FOV constraint, in each prediction step
of the MPC there shall be four inequalities constraints to assure that the DS will be in
the intersection of its pyramid half spaces, as described in Chap. 3 by Eq. (3.4). In the
AUV FOV case, the center vertex of the pyramid is its camera c, and the vertices of the
base can be defined by the camera horizontal α and vertical β half aperture angles, by
the following Eq. (4.6).

v0 = pcauv
v1 = v0 + [1, tan(−α), tan(β)]

v2 = v0 + [1, tan(α), tan(β)]

v3 = v0 + [1, tan(α), tan(−β)]

v4 = v0 + [1, tan(−α), tan(−β)]

(4.6)

After obtaining the vertices of the pyramid, each normal can be calculated simply by
the cross product between each pair of basis vertex and central vertex in the pyramid, as
it is shown in Eq. (4.7). Although, before generating the normals, the vertices have to
be converted from the local frame of the robot to the world frame by the following Eq.
(4.8). With the pyramid normals and central vertex in the global frame, it is possible to
create the constraint for halfspace intersection with the Eq. (4.9). In other words, the
MPC has to find the pose of the vehicle in which the normals and central vertex of the
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FOV pyramid in the global frame obeys the constraint of halfspaces intersection.

n1 = (v1 − v0) × (v2 − v0)

n2 = (v2 − v0) × (v3 − v0)

n3 = (v3 − v0) × (v4 − v0)

n4 = (v4 − v0) × (v1 − v0)

(4.7)

vn = pauv +R(Θauv) × vn (4.8)

n1 × pds ≤ n1 × v0

n2 × pds ≤ n2 × v0

n3 × pds ≤ n3 × v0

n4 × pds ≤ n4 × v0

(4.9)

For the DS FOV constraint the same process has to be applied. The only difference are
that in the Eqs. (4.6), (4.8) and (4.9) the pauv and pds have to switch places. Although,
even if this process is the same and that the halfspaces intersection constraints equations
are applied in the same way, for the DS FOV constraint, the normals and pyramid center
vertex are fixed known values for every prediction. Therefore, the MPC optimization has
to find an AUV position that respect the Eq. (4.9). Since for this case the states variables
are directly in the constraint and there is no need for computing normals and vertex
transformation at every optimization iteration, this constraint is less computationally
expensive than the AUV FOV constraint.

Finally, there are the thrusters constraints, which are simply lower and upper bounds
for setting minimum and maximum effort of each thruster. Considering i as an integer
from one to the number of thrusters, the Eq. (4.10) shall be added as a constraint to the
MPC problem, in which lbi and ubi are respectively the minimum and maximum force
that each thruster can apply.

lbi ≤ ui ≤ ubi (4.10)

4.4 FIXED AND DYNAMIC GOAL MPC PIPELINE

Two MPCs will be developed in this work, the fixed goal and dynamic goal MPC. The
fixed goal is how the most papers on the literature have applied docking MPC, without
considering that the garage move and thus the setpoint (reference) r is the same value
through all prediction horizon. The dynamic goal is the MPC considering the model and
the prediction of DS movement to define the value of r for each step of the prediction
horizon. The main difference between both approaches does not happen inside the opti-
mization problem, it happens in the definition of the docked pose reference that will be
set for the optimization to solve. Both cases are represented in the diagram from Fig.
4.1, which shows that the difference between these MPCs is just prediction of the DS
movement stage.
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Figure 4.1 Sequence diagram of fixed and dynamic goal MPC.

At the first iteration of the MPC software, the parameters shall be parsed. These
parameters are everything that the MPC needs, such as the parameters for DS and AUV
models, docked pose coordinates, constraints parameters, gain matrices of the MPC and
MPC mode. These parameters were partially specified in this section and will be fully
presented in the results section. Afterwards, the MPC initial guess for the first iteration
is set as zero. Then, the main loop of the MPC starts by measuring DS and AUV
states. After that, if the dynamic mode is activated, the DS movement will be predicted,
otherwise, the current DS measurement will be repeated for all ph steps. Then, the DS
pose and velocity are converted to the actual goal of the AUV states, which is the docked
pose. Finally, the MPC initial states are set as the measurements, and the setpoint as the
DP current or predicted states, then the MPC optimization is executed. The optimized
control action values of the first iteration is sent to the thrusters and their values for the
whole prediction are set as a initial solution for the next loop. This loop keeps happening
until the software stops by user termination. It does not stop when the vehicle reaches
the DS because the DS can still be in movement and there is no locking mechanism in
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the simulation.



Chapter

5
SYSTEM DESCRIPTION

All mathematics aspects and contributions of this thesis explained so far need to be tested
and implemented in a robot simulation to prove its effectiveness. This will be done by
using SIL which was introduced in Chapter 3. The implementation of SIL will be further
detailed in this chapter.

5.1 SIMULATION AND SOFTWARE

As stated in Chapter 3, Gazebo simulation Software in conjunction with the UUV sim-
ulator plugins will be used for simulating the robot with its sensors and thrusters. To
simulate the docking of the AUV into a DS, two robots are going to be used inside Gazebo,
one representing the AUV and the other the DS. As it is in the software component di-
agram in Fig. 5.1, each robot publishes its odometry information, which has its 6DOF
pose and velocity. Each robot can also receive the force command for every thruster it
has.

The MPC software will be running in ROS exchanging information with the simulation
to control the robot and measure its current states. In the Fig. 5.1, it is possible to
visualize that there are three nodes running, each node is a program running in a loop,
receiving and publishing information. The MPC node, is computing all the logic detailed
in Chapter 4, using the odometry of the DS and the AUV to get their model states and
to output the optimal force to be applied by each thruster of the AUV for docking. The
disturbance simulation node is responsible for calculating the 6DOF forces to be applied
in the DS to create some DS motion profiles for the MPC validation. Finally, the DS
thruster manager node is a standard node already available inside UUV Simulator. This
node just receives the 6DOF force command from the disturbance simulation node and
does the matrix multiplication of Eq. (2.8) to output the 1D force in each thruster inside
the simulation.

5.2 AUV AND DS DESCRIPTION

Both DS and AUV simulated robots in Gazebo will be the same for simplicity of the
problem. The MPC developed by this work is designed for a 6DOF AUV model that
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Figure 5.1 Software component diagram.

Table 5.1 BlueROV parameters table
Parameter Description Values Unit

MA Added Mass Matrix Diagonal 5.5, 12.7, 14.6, 0.12, 0.12, 0.12 kg
MRB Rigid Body Mass Matrix 11.5, 11.5, 11.5, 0.16, 0.16, 0.16 kg

D Linear Damping Matrix -4.03, -6.22, -5.18, -0.07, -0.07, -0.07 kgm

only have thrusters as actuators. Since BlueROV2 Heavy robot is an AUV of this format,
its model will be used for the validation of the proposed MPC. Additionally, the BlueROV
is an open source project, and it had its 3D model, thrusters and sensors specs available
online. By using the specs of a real robot in the simulation, the tests become more
realistic, proving that if the MPC software succeeds in simulation, it would be able to
succeed in a real robot.

Gazebo and UUV simulator require some parameters for the simulation of the robot.
These parameters are the ones in the kinematics and dynamic model of an AUV, which
was explained in Chap. 2. The description and values for the BlueROV parameters
are listed in Tab. 5.1. Most of the parameters, like the diagonal damping and added
mass matrices were obtained from [23], a paper that not only applied MPC for BlueROV
docking, but also estimated the parameters of the real vehicle.

For simplification, the vehicle was considered with neutral buoyancy, therefore, it
has the weight equal to the buoyancy. Moreover, the COB and the COG of the vehicle
were consider to be in the same position, in that way, there are no hydro-statics forces
present. After inserting all these parameters in Gazebo and UUV simulator, loading the
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3D model of the BlueROV and specifying the pose of every thruster, it is possible to start
the simulation. Fig. 5.2A shows a photo of the real BlueROV2 and, Fig. 5.2B and 5.2C
shoes how it is its representation inside the Gazebo and a simulated environment.

Figure 5.2 BlueROV2 Heavy real picture (A) and screenshot from simulation (B and C).

The thrusters poses were measured from its 3D model. The robot has eight thrusters,
four in the horizontal plane tilted 30 degrees from the x axis and four on the vertical
plane aligned with the z axis. The configuration of the thrusters is illustrated in Fig. 5.3.
The matrix T in Eq. (2.8) was calculated using an UUV simulator plugin, that output
this matrix using the thrusters pose in relation to the center of the vehicle. The TCM of
BlueROV is a 6x8 matrix, because it is converting each one the eight thrusters force to
the 6DOF force in the frame of the vehicle. This matrix can be visualized in Eq. (5.1).

Figure 5.3 Illustration of thrusters placement inside BlueROV Heavy 2.
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τ =


0.866 0.866 −0.866 −0.866 0.000 0.000 0.000 0.000
−0.500 0.500 0.499 −0.499 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000

−0.0145 0.0145 0.0145 −0.0145 −0.213 0.223 −0.213 0.223
−0.025 −0.025 0.025 0.025 −0.124 −0.124 0.116 0.116
−0.162 0.153 −0.157 0.166 0.000 0.000 0.000 0.000

× fn

(5.1)

All these parameters and dynamic model described for Gazebo were also used in the
DAE for the MPC. The parameters and the model from Gazebo and MPC might not
be exactly the same because Gazebo has its own way of iterating the model, parsing
parameters and even a different programming library to model DAEs.

The last parameter for the AUV and DS are their connectors pose. AUV and DS
connectors are the gray cylinders in Fig. 5.2. They are simply a marker for the viewer to
clearly see when the AUV has docked. The AUV is going to be considered as docked when
the AUV and DS connectors are closer than a specified tolerance, which will be defined
in Chap. 6. AUV connector ac has ηacauv = [0.5, 0.2, 0, 0, 0, π] and the DS connector dc
has the ηdcds = [0.5,−0.2, 0, 0, 0, π].
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6
RESULTS

6.1 TESTS AND MPC DEFINITIONS

The MPC problem was defined in Chap. 4, and the model used for prediction of AUV
and DS motion was detailed in Chap. 5. However, there are still some MPC parameters
that need to be set. One of them is the docked pose of the AUV in relation to the DS.
It has to be defined so that the DS connector (DC) and the AUV connector (AC) are in
the same position, and rotated 180 degrees in yaw, when the AUV docks. This can be
achieved by the Eq. (6.1), which gives a result of ηdsdp = (1, 0, 0, 0, 0, π) for the connectors
defined in Chap. 5.

ηdcac = (0, 0, 0, 0, 0, π)

ηdsdp = ηdsdc ⊗ ηdcac ⊗ (ηauvac )−1
(6.1)

Other MPC parameters that have to be defined are regarding the constraints. DS’s
and AUV’s sensors FOV and AUV’s thrusters were decided based on the real parameters
of the BlueROV. All eight thrusters are the same T200 model with the maximum thrust
being close to 40 N at 16 V [39], thus the MPC maximum and minimum value for thrust
will be −40 N and 40 N respectively. The sensor in the AUV and DS will be a Sony
IMX322 camera, which has a horizontal FOV angle of 80 degrees and vertical FOV angle
of 64 degrees [40]. The cameras where placed in the front of the AUV and the DS at the
same position pauvc = (0.25, 0, 0) and pdsc = (0.25, 0, 0).

The MPC weights, which are defined by the matrices Q, Qt and S in Eq. (4.3), are
not normalized. Their values have to be selected considering the magnitude of the error.
The weights associated with pose error are set as zero in terminal states Qt, because the
MPC has the goal to get the AUV closer to the docked pose in every movement, not only
on the last step. A important reminder is that the Q matrix is also a weight for the last
step, therefore the AUV tries to match the final pose as well when we assign this weight
for pose error, but it is does not focus on the terminal error.

The velocities error weights only received non-zero values for the terminal states Qt.
That was done because the AUV needs to be able to speed up or slow down to reach the
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docked pose and only has to match the docked pose velocity in the end of the docking
maneuver. Q highest value is the weight associated with the pitch angle, because it was
observed during experiments, that the AUV has the tendency of inclining in pitch to
reach the docked pose faster. This happens because the AUV has four thrusters in the
top and it is faster to move vertically than horizontally. The roll and yaw angles error also
have higher weights than position error because their error values are smaller. According
to these definitions made through a series of tests, the weights for the MPC were defined
as Eq. (6.2).

Q = diag(0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 8, 4)

Qt = diag(1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 0, 0, 0, 0, 0, 0)

S = diag(1, 1, 1, 1, 1, 1, 1, 1)

(6.2)

The prediction and control horizon as well as the time-step for MPC prediction was
different for each case and it will be discussed in the next sections of this chapter. The
simulation software Gazebo enables the user to select a real time factor to slow down
the simulation, it is a value from zero to 1 that defines if the percentage of real time
simulation. For example, if the simulation real time factor is 0.5, it takes 2 seconds to
pass one second on the simulation. The simulation real time factor was set to 0.1 to avoid
breaking the MPC software.

Regarding docking evaluation, for the vehicle to be considered docked, we defined
that it needs to be less than 4 cm in XYZ from the DS. We chose this metric based on
the results obtained by [23], which used the same AUV for docking as we are using. In
contrast to a real AUV docking, our simulation lacks a locking mechanism. Therefore, the
AUV will be considered as docked as soon as it meets all docking criteria at once, even if
the vehicle later slightly drifts away from the DS. That is because in a real environment,
there would be a lock to fix the AUV inside the DS as soon as it reached the threshold.

6.2 GRAPHICAL DEBUG TOOLS AND CONSTRAINTS VALIDATION

The co-visibility constraints are spatial constraints, which makes them easier to be eval-
uated with graphical tools. ROS framework has the Rviz software [41] that can be used
to create visualization tools within the framework. For checking that the FOV pyramids
vertices and normals where correctly calculated, a plugin for drawing the co-visibility
constraints was developed in this work. The validation of these FOV pyramids can be
observed in the Fig. 6.1. In this Figure, there are two BlueROVs. The pink pyramid
BlueROV is representing the AUV and its FOV. The blue pyramid BlueROV is repre-
senting the DS and its FOV. It is possible to see that the pyramids and normals were
correctly plotted in Fig. 6.1 A and B images, since they are in front of the vehicles in the
correct position and orientation with all normals pointing to the outside of the pyramid.
In Fig. 6.1 C and D images, it is possible to see that that the normals forms a ninety
degrees angle with the pyramid’s planes, which it is also correct.

In the MPC software, it is possible to know when an optimal value was found or not.
To ensure that the co-visibility constraints were working, the MPC was turned on and
then pose disturbances were applied to the vehicles. It was observed that whenever the
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Figure 6.1 FOV pyramid and normals in global frame.

AUV was outside of the blue pyramid or when the DS was outside of the pink pyramid,
the MPC could not find an optimal solution. Therefore, the co-visibility constraint was
successfully implemented.

Unfortunately, the visualization of 3D models, as in Fig. 6.1, is computationally
expensive and does not affect MPC performance. Therefore, for MPC simulation visu-
alization, two rectangle prisms are going to be used instead of vehicles 3D models. A
purple prism representing the AUV and a blue prism representing the DS, as in Fig.
6.2.A. DS and AUV connectors are going to be represented as cylinders of the same
color as the its vehicle prism. The propellers 3D models do not reduce computer per-
formance, thus they are displayed as they are in red for both vehicles. Moreover, the
normals are not going to be displayed to avoid confusion, as it can be seen in Fig. 6.2.B.
Still in the same image, it is shown two green curves with their origin in AUV and DS
center. The curve starting in AUV center represents the optimal path calculated by
the MPC, and the curve starting in DS center represents the prediction of its move-
ment. For all the test cases the visual debug can be seen in the video in this link:
https://www.youtube.com/playlist?list=PL-mEqQgXoq_QGB126zWjCqyrweL2i9Soi.

For the validation thrusters effort it was simply observed that for all the test cases
there was no violation of maximum and minimum thrusters limit, which will be shown
in the next section.
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Figure 6.2 Visualization example in runtime.

6.3 STATIC DOCKING

This case is simply to check the functionality of the code and the implementation of
constraints. For this case, the timestep was set to 0.1 s, and the prediction horizon was
set as five. The short prediction horizon was used because the computer could not find the
optimal control action on time if the prediction horizon was greater. Since the prediction
horizon was already small, the control horizon was set to be equal to the prediction
horizon. The results for this case can be seen in the graphs from Fig. 6.3. For this and
all the other results graphs, the MPC goal was represented as dashed curves for each one
of the twelve states, while the robot states were displayed as regular lines.

It is possible to conclude that even with a small prediction horizon, the MPC was able
to successfully dock the AUV in 2.29 s, respecting the thrusters limits and the co-visibility
constraints. Just for this static case the thrusters information is displayed in Fig. 6.4.
This information is not very useful for understanding the control problem, because the
thrusters are not aligned with the 6DOF of the robot. Although, one thing that can be
observed in the plot is that the forty newtons limits defined in Sec. 6.1 were respected.
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Figure 6.3 Static case docking results.

6.4 VERTICAL OSCILLATORY DS MOVEMENT DOCKING

For this case, the disturbance simulation node was used to move the DS up and down,
simulating an oscillatory disturbance. The node was programmed to apply 5 N of force
downwards, until the DS had descended two meters, then to apply 5 N upwards, until the
DS ascended two meters. That behavior was kept in loop until the end of the simulation.
The first test with this disturbance was also made using the same parameters as last
tests, with prediction and control horizon as five and timestep set to 0.1 s, but this time
the DS movement prediction was enabled. The results of this experiment are displayed
in the Fig. 6.5.
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Figure 6.4 Static case docking thruster effort.

Even with a small prediction horizon, the controller was able to dock in 1.63 s. It was
also able to follow the movement of the garage, but without respecting the 4cm threshold
for docking. An interesting aspect of this test was the ability of the controller to keep the
co-visibility constraints. In the Fig. 6.6, it is possible to notice that the MPC is tilting
the AUV and moving it upwards in order to respect the AUV FOV constraint. Another
important aspect of this test was to validate the work initial proposal of combining
the docking constraints and DS movement prediction into a single MPC. Although, the
most important contribution of this work is the prediction of the relative docked pose,
which could not be evaluated properly without a bigger prediction horizon. Therefore,
to increase the prediction horizon, the FOV constraint for the AUV will be disabled for
the next tests. The FOV constraint for the DS is still going to be active, as well as the
thrusters limits.

After disabling the AUV FOV constraint, it was possible to increase the prediction
horizon to 25 steps. The timestep of the MPC prediction was reduced to 0.02 s, in order
to reduce integration errors. The control horizon was set to 15, which was decided by
trial and error. It was observed that with this control horizon the AUV movement was
smoother and that the optimizer could always find a solution to the problem. Two tests
for the same vertical oscillation were made, one with the DS motion prediction disabled
and another with the prediction enabled. The first test has the results plotted in Fig. 6.7
and the second in Fig. 6.8.
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Figure 6.5 Vertical oscillation test with co-visibility constraint results.

With these two tests, enabling and disabling the DS motion prediction, it is possible
to see the impact of it in the docking MPC. The MPC with the prediction enabled is
able to better track the velocity and position of the goal, which is clear by comparing
the position and velocity in axis z from both plots. The euler angles and angular velocity
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Figure 6.6 MPC forcing the vehicle to obey the co-visibility constraints.

errors were also smaller for the case with target prediction enabled. Furthermore, the
motion of the vehicle was smoother for the case with prediction enabled, as can be
observed by comparing in both plots the euler angles, angular velocities and the x and y
position. Moreover, it took 7.50 s for reaching the docked state without the prediction
and 4.25 s with the prediction enabled, thus the prediction of DS movement reduced the
docking time by 43.3%. All these advantages with the DS motion prediction did not
add computation time for the MPC. The average solving time of the optimization for
the MPC with DS motion prediction was 0.04 s and without was 0.07 s. An important
reminder is that the prediction of DS movements occurs before the MPC iteration, it just
change the setpoints given to the MPC. For this case specifically the prediction of DS
movement seems to have facilitated the optimization problem. Regarding the time that
it takes to reach the goal, there is no apparent difference. It is possible to observe in the
plots that all the states take approximately the same amount of time to reach their goals.

6.5 ROTATION AND TRANSLATION DS MOVEMENT DOCKING

After testing the static and vertical DS movement case, the case missing is the DS move-
ment in the XY plane while also a rotating. To simulate this behavior, the disturbance
simulation node was used again. For this case, during the first 1.5 s, a force of −1 N was
applied in the x direction, a force of 4 N was applied in the y direction and a torque of 1
Nm was applied around the z axis. In a real DS towed to an USV, this disturbance in the
DS can be caused by the USV pulling it. The same prediction horizon, control horizon
and timestep of last vertical oscillation test cases were used. It was also tested the case
with the DS motion prediction disabled and enabled. The result of the first case can be
seen in Fig. 6.9 and the result of the second case in 6.10.

The difference between predicting and not predicting DS motion was very similar to
the vertical oscillation case. There are still no difference related to how fast the AUV
reaches its goals. Although, it is clear from the position and yaw errors in the plots that
the error is again smaller in the case that the DS motion is being predicted. Regarding
computational time, the results were different from the vertical oscillation case. For
this case, it took an average of 0.1 s to solve the optimization for with the DS motion
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Figure 6.7 Vertical oscillation test without AUV FOV constraint and without DS motion
prediction.

prediction and 0.07 s for the case without the prediction. For this case, it is also faster
to dock with the prediction of the DS enable. It took 1.60 s to dock without DS motion
prediction and 1.11 s to dock with the DS motion prediction, which corresponds to a
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Figure 6.8 Vertical oscillation test without AUV FOV constraint and with DS motion predic-
tion.

reduction of 30.6 % in the docking maneuver duration.
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Figure 6.9 Lateral rotation test without AUV FOV constraint and without DS motion pre-
diction.
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Figure 6.10 Lateral rotation test without AUV FOV constraint and with DS motion predic-
tion.



Chapter

7
CONCLUSION

The goal of this research was to develop an MPC that would act directly on the thrusters
of a 6DOF AUV to dock it in a mobile DS, while using the DS movement prediction
for a more precise docking. The MPC developed in [19] for the spacecraft rendezvous
problem was successfully adapted to the underwater docking problem. The proposed
solution increases the accuracy of the MPC, since the prediction of DS motion actually
reduces the pose and velocity error for AUV docking. Moreover, the time that it takes
for the vehicle to dock it is also reduced when using DS motion prediction.

Not only this main goal was achieved, but also other problems related to the docking
maneuver were also solved. The co-visibility problem was solved by adding the half-spaces
intersection inequalities as MPC constraints functions. It was clear from the predicted
path plotted in the video in this playlist https://www.youtube.com/playlist?list=

PL-mEqQgXoq_QGB126zWjCqyrweL2i9Soi, that the MPC ensures the co-visibility con-
straint and manages to keep the AUV inside the DS FOV constraint in all test cases.
The thrusters limits were also added as inequality constraints and they were respected
by the controller. Therefore, the DS motion prediction MPC for AUV docking is still
compatible with the previous already implemented solutions. However, all constraints
implemented together were computationally expensive and could only be applied for a
small prediction horizon, thus our work still needs to find solutions for speeding up the
MPC solving for real time implementation.

In addition to the basic MPC docking results, it was noted that we could cut the
MPC computation time in half by using multiple shooting rather than single shooting
for MPC discretization. Another finding is that the MPC computation time does not
appear to be impacted by the DS pose prediction, as it did for one test case and not for
the other test case.

Even though all problems for an fully autonomous docking of a 6DOF AUV in a
mobile DS are not solved, this work was another step towards this direction. It was a
step towards full autonomous marine robotics operation and towards the reduction of the
duration, costs as risks in marine robotics operations.
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7.1 FUTURE WORK

The proposed MPC was successfully implemented, but there are many aspects that can
be improved. One of them is the time for MPC optimization solution, it took more
than 0.1 s to solve the problem with all the proposed constraints enable and with DS
motion prediction. To speed up the solution of the MPC problem, some strategies can be
adopted. The kinematics model can use quaternions instead of euler angles, that would
not only avoid the gimbal lock problem, but also increase the speed of the dynamics model
simulation, because with quaternions there is no need for computing sines and cosines at
every iteration. Moreover, the optimization library utilized can be changed from casadi
[3] to ACADOS [42], which uses C code generation and a different optimization solver
for better performance. Apart from speeding up the MPC, there are some enhancements
that can be done to have a better MPC software. One of them is the normalization of
weights in the MPC, thus instead of choosing them considering the magnitude of the
states and control variables, it would be possible to define them based on the states and
control variables importance. Another enhancement would be the addition of constraints
for co-visibility as slack variables to avoid breaking the MPC execution, when they cannot
be respected.

Overall, this work was developed to show the importance of docked pose motion
prediction and to create an MPC capable of ensuring the main constraints of the docking
problem. Henceforth, it is possible to use this MPC with the speed up suggestions to
enable docking of a 6DOF AUV in a mobile DS based on camera detection, since now it
is possible to guarantee that the DS or the AUV will stay in each other FOV. To enable
docking of an real AUV with noisy signals and delays, it is possible to use this work
alongside with other MPC strategies, such as the addition of error integral in the model
and the implementation of robust or stochastic MPC.
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