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RESUMO

O emprego da biomassa lignocelulosica para a producao de etanol de segunda geragdo, como
por exemplo, a casca do coco verde, implica no desenvolvimento e aperfeicoamento das
etapas de conversdo da biomassa em acgucares e estes em etanol via fermentagdo. Assim, a
execu¢do da etapa de pré-tratamento, responsavel por romper a matriz lignoceluldsica
deixando-a acessivel ao ataque enzimatico na etapa de hidrolise, ¢ necessaria. Com os
mondmeros disponiveis (principalmente xilose e glicose), a levedura os converte em etanol,
na etapa de fermentagdo. Dessa forma, esse trabalho visou o estudo das condi¢des de
sacarificacdo ¢ de fermentacao, utilizando os residuos do cultivo de coco como biomassa, com
o objetivo de avaliar as melhores condi¢des de sacarificacao e fermentacao para producao de
E2G. Inicialmente realizou-se o pré-tratamento hidrotérmico (PTH) em reator tipo PARR
utilizando-se 15% (m/v) de solidos, a 195°C, 10 min e 200 rpm. Em paralelo realizou-se um
planejamento experimental para o pré-tratamento acido (PTA) (fatores: concentragdo 1 e 2%
de H2SO4 e temperatura de 100 e 120°C) visando a otimizagao das condi¢des operacionais de
pré-tratamento. Em func¢do da concentragdo de glicose as condi¢des de 1% (v/v) H2SO4 a 100
°C para casca de coco verde (CCV), 2% (v/v) H2SO4 a 120 °C para os foliolos da folha de
coqueiro (FFC) e 2% (v/v) H2SO4 a 100°C para a raque da folha do coqueiro (RFC) seguiram
para a hidrdlise enzimatica, empregando-se 7,5% (m/v) de sélidos e 20 FPU/gpiomassa seca de
Cellic Ctec2 (58 FPU/mL), suplementada com 10 % de Cellic Htec (7326 IU/mL), em relacao
o volume de Cellic Ctec2. Apds 72h de reagdo, as concentragdes de glicose atingiram 31,85 e
19,07 g/L para a hidrdlise de CCV submetida para PTH e PTA, respectivamente. Com relagao
ao comportamento dos FFC na hidrélise, 21,31 e 13,65 g/LL de concentracao de glicose foram
alcangados quando esta biomassa foi submetida ao PTH e PTA, respectivamente. Para RFC,
obteve-se 45,39 e 21,01 g/L de glicose, apés PTH e PTA, respectivamente. Esses resultados
mostraram que a hidrolise enzimatica usando pré-tratamento hidrotérmico foi mais eficiente
do que os resultados obtidos para as biomassas acidas pré-tratadas. Logo, todas as amostras
seguiram para a fermentacdo com a levedura Kluyveromyces marxianus a 37°C/24 h. Nessa
etapa foi possivel verificar que praticamente toda glicose e xilose foram consumidas pela
levedura. No entanto, o rendimento em etanol atingiu valores entre 47 e 80%, indicando
possiveis problemas de natureza toxica, ou seja, a producao de compostos secundarios, como

o acido acético, furfural e 5-hidroximetilfurfural (HMF). Um estudo preliminar foi realizado
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para aumentar a eficiéncia de fermentagdo no hidrolisado de bagaco de cana, biomassa
bastante estudada para esse fim, e submetido aos pré-tratamentos hidrotérmico (195 °C,
usando 200 rpm por 10 min) e 4cido (0,5% (v/v) de acido sulfurico a 121°C por 15 min), e em
ambos, a carga de solidos de (10% m/v). A hidrélise enzimatica do material pré-tratado foi
realizada utilizado o complexo enzimatico CellicCtec® (60 FPU/gp;iomassa secas tampao citrato a
50 mM e pH 4,8) a 50°C usando 150 rpm por 72h. Antes do processo de detoxificagdo,
realizou-se um planejamento experimental com a levedura Saccharomyces cerevisiae para
verificar se os compostos furfural (1 e 4g.L-1), acido acético (1 e 5% v/v) e massa da levedura
(0,2 e 1% m/v) exerciam significativa inibicdo na espécie testada. A presenga de furfural e
acido acético exibiu forte influéncia na espécie considerada, chegando a prejudicar em mais
de 90% o consumo de aglicares no meio. O processo de detoxificacdo avaliou a concentragao
através de um planejamento experimental com carvao ativado (1, 3 e 5% m/v) e o tempo do
processo (30, 45 e 60 min) a 30 °C, 150 rpm. A detoxificacdo aumentou em 13% a eficiéncia
de fermentagao para o hidrolisado obtido hidrotermicamente, enquanto que para o acido nao
houve diferenga significativa. Dessa forma, foi possivel concluir que o estudo das condigdes
de processo possibilitou o aumento da produgdo de etanol comparado aos valores ja relatados
em estudos anteriores com a casca do coco verde. Identificou-se a potencialidade da folha do
coqueiro para producdo de etanol de segunda geracdo, e verificou-se que as condigdes de
detoxificagdo podem ser adaptadas as biomassas do cultivo de coco para aumentar a eficiéncia

e tornar os resultados factiveis a produ¢do industrial.

Palavras chaves: casca do coco verde; folha do coqueiro; hidrdlise enzimatica; fermentagao;

detoxifica¢do; biomassa; energia limpa.
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ABSTRACT

The use of lignocellulosic biomass for the production of second-generation ethanol, such as
green coconut husk, implies the development and improvement of biomass conversion steps
into sugars and these into ethanol via fermentation. Thus, the execution of the pretreatment
step, responsible for breaking the lignocellulosic matrix leaving it accessible to enzymatic
attack in the hydrolysis step, is necessary. With the available monomers (mainly xylose and
glucose), the yeast converts them into ethanol, in the fermentation step. Thus, this work aimed
to study the conditions of saccharification and fermentation, using residues from coconut
cultivation as biomass, with the objective of evaluating the best conditions of saccharification
and fermentation for the production of E2G. Initially, the hydrothermal pretreatment (HPT)
was carried out in a PARR type reactor using 15% (w/v) of solids, at 195°C, 10 min and 200
rpm. In parallel, an experimental design was carried out for the acid pretreatment (APT)
(factors: concentration 1 and 2% of H2SO4 and temperature of 100 and 120°C) aiming at
optimizing the pretreatment operating conditions. Depending on the glucose concentration,
the conditions of 1% (v/v) H2SO4 at 100°C for green coconut shell (GCS), 2% (v/v) H2SOg4 at
120°C for coconut-tree leaflet (CLL) and 2% (v/v) H2SO4 at 100°C for the coconut-tree leaf
stalk (CLS) followed by enzymatic hydrolysis, using 7.5% (w/v) of solids and 20
FPU/gbiomass dry Cellic Ctec2 (58 FPU/mL), supplemented with 10% Cellic Htec (7326
IU/mL), relative to the volume of Cellic Ctec2. After 72h of reaction, the glucose
concentrations reached 31.85 and 19.07 g/L for the hydrolysis of GCS subjected to HPT and
APT, respectively. Regarding the behavior of CLL in hydrolysis, 21.31 and 13.65 g/L of
glucose concentration were reached when this biomass was submitted to HPT and APT,
respectively. For CLS, 45.39 and 21.01 g/L of glucose were obtained after HPT and APT,
respectively. These results showed that enzymatic hydrolysis using hydrothermal pretreatment
was more efficient than the results obtained for pretreated acidic biomasses. Then, all samples
were sent to fermentation with Kluyveromyces marxianus yeast at 37°C/24 h. At this stage it
was possible to verify that practically all glucose and xylose were consumed by the yeast.
However, the ethanol yield reached values between 47 and 80%, indicating possible problems
of a toxic nature, that is, the production of secondary compounds, such as acetic acid, furfural
and 5-hydroxymethylfurfural (HMF). A preliminary study was carried out to increase the
fermentation efficiency in sugarcane bagasse hydrolyzate, biomass well studied for this
purpose, and submitted to hydrothermal (195°C, using 200 rpm for 10 min) and acid (0.5%
(v/v) of sulfuric acid at 121°C for 15 min) and in both, the solid load of (10% m/v). The
enzymatic hydrolysis of the pretreated material was carried out using the CellicCtec®
enzymatic complex (60 FPU/gdry biomass, S0mM citrate buffer and pH 4.8) at 50°C using 150
rpm for 72h. Before the detoxification process, an experimental design was carried out with
the yeast Saccharomyces cerevisiae to verify if the compounds furfural (1 and 4g/L) and
acetic acid (1 and 5% v/v) and yeast mass (0.2 and 1% m/v) exerted significant inhibition on
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the tested species. The presence of furfural and acetic acid had a strong influence on the
species considered, affecting the consumption of sugars in the environment by more than
90%. The detoxification process evaluated the concentration through an experimental design
with activated charcoal (1, 3 and 5% m/v) and the process time (30, 45 and 60 min) at 30 °C,
150 rpm. Detoxification increased the fermentation efficiency by 13% for the hydrolyzate
obtained hydrothermally, while for the acid there was no significant difference. Thus, it was
possible to conclude that the study of process conditions enabled the increase in ethanol
production compared to the values already reported in previous studies with green coconut
husk. The potentiality of the coconut leaf for the production of second-generation ethanol was
identified, and it was verified that the detoxification conditions can be adapted to the biomass
of coconut cultivation to increase efficiency and make the results feasible for industrial
production.

Keywords: green coconut shell; coconut leaf, enzymatic hydrolysis; fermentation;
detoxification; biomass; clean energy.
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CAPITULO 1 - INTRODUCAO

As alteragdes no prego do petrdleo e derivados, associados a busca por uma energia
limpa e renovavel e a preocupacdo com a dependéncia da matriz energética dos combustiveis
fosseis, sugere como uma das alternativas a produgdo de biocombustiveis. No entanto, a
producdo de etanol empregando cana-de-agucar, o milho e a beterraba competem com a
producdo de alimentos. Como alternativa, surge a utilizacdo das biomassas agroindustriais
para producdo de etanol. Contudo, o uso dessas matérias-primas trazem uma série de
dificuldades a serem superadas nas etapas de processamento, o que desperta a necessidade de
progressivos estudos e desenvolvimento para a produgdao de etanol de segunda geracao
(BARBOSA, 2017; GOMES, 2015; GONCALVES, 2014; RUIZ et al., 2023).

A biomassa ¢ matéria vegetal gerada pela fotossintese e seus diversos produtos e
subprodutos, tais como residuos agricolas, dejetos animais e matéria organica. Além disso,
podem ser encontrados nos rejeitos industriais e urbanos que descartados de forma
inadequada podem gerar: demanda por espago em aterros para descarte do residuo;
proliferacdo de vetores, decorrente da decomposicdo; emissdo do gds metano, também
decorrente da sua decomposi¢do; e impacto visual do descarte em aterros (JERONIMO;
SILVA, 2013; SANTOS-ROCHA, 2017).

Assim, a biomassa lignocelulosica pode ser reaproveitada energeticamente, pois
possui em sua composicdo quimica macromoléculas orginicas que constituem a parede
celular formada de celulose envolvida de hemicelulose, que por sua vez se encontram
envolvidas pela lignina. E os mondmeros de agticar que compdem a celulose e a hemicelulose
podem ser convertidos em etanol (LORA; GLASSER, 2002). No entanto, devido a estrutura
rigida da lignina se faz necessario a etapa de pré-tratamento capaz de desestruturd-la. As
tecnologias de pré-tratamento aplicadas aos substratos lignocelulosicos sao necessarias para
diminuir esta recalcitrancia. Nessa etapa, inibidores como: furfural, hidrometilfurfural, &cido
acético e compostos fenodlicos, podem ser formados e comprometer as etapas seguintes de
hidrélise enzimatica ¢ o metabolismo da levedura na fermentacdo (CHEN et al., 2020;
CORREA, 2016; REZENDE et al., 201 1). Estudos de detoxificacao utilizando carvao ativo e
polimeros sdo propostos para aumentar a vitalidade da levedura e permitir maior producao de

etanol na presenga de inibidores e ainda o aproveitamento integral da biomassa (FREITAS;
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NOGUEIRA; FARINAS, 2019; LI; QI; WAN, 2020). Dessa forma, esse tipo de substrato se
torna passivel a fermentagdo para produgao de etanol (GOMES et al., 2015).

O processo de fabricacao do E2G ¢ uma realidade na Raizen, industria sucroenergética
que produz agucar, alcool e energia. Na Raizen, as plantas de E2G foram projetadas para
processar bagago de cana-de-agicar como matéria-prima, utilizando pré-tratamento acido e
térmico aliado a uma hidroélise enzimatica. As etapas de fermentacdo e destilacdo sdo mais
parecidas com o processo produtivo do E1G. A diferenca ¢ que a fermentacdo do aglcar
xilose requer o uso de uma levedura geneticamente modificada. A planta de E2G pode
realizar outras etapas secundarios, como evapora¢do dos caldos, separacdo de solidos,
secagens, tratamento de efluentes e aguas (RAIZEN, 2023).

Nesse contexto, alguns estudos ja realizados apontam outras biomassas promissoras, a
casca do coco verde como uma potencial biomassa lignoceluldsica para producao de etanol
(CABRAL, 2014; FREITAS; PEREIRA et al.,, 2016; SILVA, 2016). De acordo com
Gongalves (2014) a casca do coco verde in natura possui 33,2% de celulose, 29,1% de
hemicelulose e 25,4% de lignina, tais percentuais induzem o potencial energético dessa
biomassa quando comparado a palha de cana de agucar com 34,8% de celulose, 24,3% de
hemicelulose e 20,2% de lignina, e esta ja se apresenta no cendrio industrial como biomassa
na producdo de etanol de segunda geragdao (PRATTO, 2015).

Considerando ainda que o coco, produto importante no Brasil, especificamente na regido
nordeste, constitui-se como biomassa promissora, uma vez que ¢ subproduto da
industrializagdo da &gua de coco assim como as demais partes do coqueiro que sao
depositadas em lixdes e aterros sanitarios, ¢ quando nao utilizados para fins mais nobres,
agrava a crescente preocupagao com o meio ambiente (CARDOSO; GONCALEZ, 2016).

A fim de aprimorar a utilizagdo da casca do coco verde e da folha do coqueiro na
producdo de E2G, este trabalho tem como objetivo estudar as condigdes necessarias as etapas
de sacarificacdo e fermentacdo. Avaliou-se também etapa de detoxificagdo do hidrolisado

lignoceluldsico.

1.1 Objetivo Geral

Avaliar configuracdes de sacarificacdo e de fermentagao utilizando a casca do coco
verde e a folha do coqueiro como fonte de carbono oriundo de diferentes pré-tratamentos,

para produgdo de etanol.
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1.2 Objetivos Especificos

e Realizar pré-tratamento acido e hidrotérmico da casca do coco verde e da folha
do coqueiro, caracterizando a biomassa in natura e apds cada pré-tratamento,
para avaliar sua eficiéncia em termos de material celuldsico e
hemicelulésico;

e Estabelecer a quantidade do extrato enzimatico responsavel por hidrolisar o
polimero de celulose e hemicelulose, assim como a carga microbiana a ser
utilizada para fermentacao;

e Estimar as condigdes de sacarificagdo e avaliar o regime e condigdes
operacionais; avaliar as condi¢des de fermentagdo e determinar a melhor
levedura a ser utilizada;

¢ Desenvolver ensaios de detoxificagdao para avaliar a possibilidade de aumentar

a eficiéncia de fermentacgao.

Para atingir os objetivos propostos, a tese foi estruturada em 6 capitulos, assim
divididos:

O Capitulo 1 apresenta uma introducdo ao tema abordado, destacando as principais
motivagdes do estudo.

O Capitulo 2 traz uma revisdo da literatura, apresentando com detalhes os temas
abordados no trabalho.

O Capitulo 3 aborda uma avalia¢dao do potencial energético de residuos dos cultivos de
coco na produgdo de biocombustiveis, especificamente etanol.

O Capitulo 4 refere-se ao estudo da detoxificagdo com a finalidade de aumentar a
eficiéncia de fermentacdo no hidrolisado lignocelulosico.

As conclusoes obtidas no trabalho sdo apresentadas no capitulo 5.

Por fim, o capitulo 6 apresenta sugestoes para trabalhos futuros.
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CAPITULO 2 - REVISAO BIBLIOGRAFICA

2.1 A matriz energética

A preocupacdo com a matriz energética ocupa um lugar de destaque no contexto
internacional devido a dependéncia dos combustiveis fosseis, pois estes possuem uma
natureza finita, apresentam inconstancia politica e econdmica e ainda contribuem para
emissdo excessiva de gases de efeito estufa ocasionando o aquecimento global (AQUINO;
BIDO; OLIVEIRA, 2014; BARBOSA et al., 2015; KULOYO et al., 2014; (ZENG et al.,
2021).

Estudos relatam algumas alternativas vidveis como o investimento em energia
renovavel e, nesse quadro estdo inseridos os biocombustiveis, os quais estdo em ampliagao
para atingir padronizacdo e caracteristicas de tecnologia plenamente desenvolvida
(KOHLHEPP, 2010; ROSO et al., 2016).

No ambito nacional a preocupacao se repete, de acordo com o boletim do Ministério
de Minas e Energia de outubro de 2022, as fontes que constituem a matriz de energia elétrica
sdo: o petréleo, a biomassa da cana-de-acucar, o gas natural, a hidraulica, a lenha e carvao

vegetal, o carvdo mineral, o uranio, e outras, como mostra a Figura 2.1.

Figura 2.1: Matriz de energia elétrica do Brasil.

Urdnic  Qutras
Carvio mineral L3 % 859%

5,0%

Lenha e Carvio vegetal
8,7%

Fonte: Adaptado do Ministério de Minas e Energia (2022).
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A biomassa da cana-de-agucar ou produtos da cana constitui 16,8% da matriz
energética. Ainda de acordo com o boletim emitido pelo Ministério a categoria outras incluem
energia eolica, energia solar e energia proveniente de outras biomassas.

A energia proveniente de outras biomassas foi analisada por Rocha; Almeida; Da
Cruz, (2017), avaliando o potencial dos residuos na geracdo de energia e/ou também na
produgdo de bioetanol. Os residuos derivados dos cultivos de arroz, milho, soja, trigo, cana-
de-agucar e coco foram estudados mostrando que as biomassas provenientes da cana-de-
acucar e do milho apresentam elevado potencial energético. Em relacao ao bioetanol, o uso de
biomassas residuais (palha e bagaco de cana-de-acucar, palha de trigo e milho e casca de
coco) pode vir a contribuir com um acréscimo expressivo em litros de bioetanol por hectare,
sem a necessidade de aumentar a area plantada. O estudo ainda associa a localizagdo
geografica dos residuos e mostra o futuro promissor apesar dos entraves ainda associados a
tecnologia de conversdo da biomassa lignocelulosica.

O estudo feito por De Miranda, Martins; Lopes (2019), analisa o potencial energético
das biomassas agroindustriais, que engloba as culturas agroenergéticas e os residuos e
subprodutos das atividades agricolas, como da produgdo de soja, milho, cana-de-actcar e
arroz e comprova a potencialidade de utilizd-los como fonte de energia. O artigo mostra o
futuro prospero das biomassas agroindustriais, mas correlaciona que a falta de politicas
publicas de longo prazo retarda a ampliacdo da utilizacdo desta fonte renovével no setor
energético, causando uma dependéncia dos combustiveis fosseis.

No Brasil, a preocupagao com a dependéncia dos fosseis deu inicio a biocombustiveis
de primeira geragdo como o etanol, a partir do Programa Nacional do Alcool (Proalcool) em
1975, na época a preocupagdo ambiental ainda ndo era tratada de forma tao enfatica. Somente
na década de 80, os pesquisadores comecaram a alertar os governos sobre o aquecimento
global e em 1997, o Protocolo de Quioto foi assinado oficializando a preocupag¢ao com o meio
ambiente que estabelecia metas quantitativas para a redugdo da emissdo de gases de efeito
estufa. Sendo assim, em 2005, ocorreu a implantacdo do Programa Nacional de Produgado e
Uso do Biodiesel (PNPB) que pretendia promover o incentivo a produgdo de um combustivel
que gerasse menos gas carbonico e outros poluentes (ANDRADE; CARVALHO; SOUZA,
2009; DELGADO; EVANGELISTA; ROITMAN, 2017; LEITE; LEAL, 2007). O uso de
biocombustiveis representa uma das formas mais efetivas de contribuir com essa redugdo. No
entanto, os de primeira geracao enfrentam uma limitagdo na produgdo, pois competem com as

fontes alimentares (MURAKAMI; BOMBANA; AFFONSO, 2016).
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Esses biocombustiveis sdo produzidos a partir de material vegetal que dispde de
bioenergia para ser processada. O etanol de primeira geracdo (E1G) mais conhecido ¢
extraido do agucar de plantas cultivadas como cana-de-actcar e milho (RODRIGUES FILHO;
JULIANI, 2013; SILVA, B. et al., 2015; SILVA, 2016; THUME et al., 2013). Seguido pelo
biodiesel produzido a partir de plantas oleaginosas como soja, mamona, dendé e girassol
(FERRARI; OLIVEIRA; SCABIO, 2005; RIZZI; SILVA; MAIOR, 2010). O etanol de
segunda geragdo (E2G) mais conhecido ¢ produzido de residuos agricolas, industriais e
florestais como bagago e palha de cana-de-acucar, casca do coco verde, sabugo de milho,
pseudocaule da bananeira, entre outras (CABRAL et al., 2016; GOMES et al., 2015;
SANTOS-ROCHA et al., 2016; SILVA, 2016).

Nesse contexto, visto a concorréncia das matérias-primas com as fontes alimentares, o
bioetanol, ou etanol celuldsico ou ainda etanol de segunda geragdao apresenta-se como
alternativa que possibilita a utilizagdo das biomassas residuais. Sendo necessario o
conhecimento para desenvolver as rotas tecnologicas que permitam a utilizacdo de tais

biomassas e também uma fonte de energia que complemente a matriz energética.

2.2 Biomassa: Fonte de Bioenergia

A biomassa ¢ passivel de ser transformada em energia, classificada de acordo com a
origem, pode ser florestal como a madeira, agricola como a soja, o arroz e a cana-de-agucar,
entre outras. E ainda oriunda de rejeitos urbanos ou industriais, sélidos ou liquidos. Dela ¢
possivel obter energia elétrica e combustivel, como o biodiesel e o bioetanol, cujo consumo ¢
crescente em complementagdo aos derivados de petréleo como o 6leo diesel e a gasolina
(ANEEL, 2008).

A disponibilidade de palhas, folhas, residuo de exploracdo madeireira, rejeitos
agricolas e outros, tem despertado o interesse para seu uso como matéria-prima na producdo
de bioetanol (SOUZA et al., 2012). Assim como a abundancia dos residuos agroindustriais,
onde ¢ estimado que para cada tonelada de cana-de-actcar processada sejam gerados 140 kg
de bagaco e 140 kg de palha (em base seca). Em especial o bagaco, por se tratar de um
material volumoso, a simples deposi¢do ao ar livre, durante a estocagem, favorece a
fermentacdo e apodrecimento (BONASSA ef al., 2015). Estes podem ser reaproveitados para
gerar energia elétrica ou como biomassa na produ¢do de etanol 2G, agregando valor aos

residuos gerados (MARTINEZ.; ARMIN, 2017).
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No entanto, o aproveitamento de residuos da industria ¢ uma questdo que se encontra
diretamente associada a localizagdo geografica de suas culturas e suas respectivas capacidades
produtivas. O levantamento feito por Rocha; Almeida; Da Cruz, (2017) mostra que no Brasil,
a regido centro-oeste concentra as culturas de milho e soja gerando assim grandes quantidades
de sabugo e palha de milho e casca de soja. J& a regido sul detém a maior producdo das
culturas de arroz. Enquanto a regido sudeste ¢ a que apresenta maior producdo de cana-de-
agucar, consequentemente tem-se nessa regido as maiores usinas € também uma maior
producdo de bagaco e palha. E finalmente, na regido nordeste predomina a producao do coco,
o que indica que fabricas de beneficiamento de residuos do coco verde deveriam se instalar
nessa regido, visto que esses residuos sdo volumosos, inviabilizando assim os custos
associados ao transporte € ao armazenamento de tais residuos.

Essas biomassas apresentam uma estrutura fibrosa que contém materiais
lignoceluldsicos. Na conversdo dessa biomassa em aclcares fermentdveis ¢ necessario
compreender a estrutura e a composicdo do material lignocelulésico e assim entender a
tecnologia de produgdo do etanol de segunda geracdo. A Figura 2.2, mostra a estrutura da

biomassa lignoceluldsica e seus constituintes a celulose, a hemicelulose e a lignina.

Figura 2.2: Estrutura da biomassa lignocelulésica.

Célula vegetal Macrofibrilas

Fae e Celutar 1 _Micmfibrilas

' Microfibrilas de celulose .
Planta . Hemicelulose
_,;?f_— — (CsH13Os)n f+ Celulose
— '\db.-ufp— 1 > Ligni
Regido cristaling Regido amorfa : Ignina

Fonte: Adaptado de GUERI et al. (2021).

O termo “lignoceluldsico” corresponde a um conjunto de fibras, composto por
macromoléculas organicas que constitui a parede celular formada por fibras elementares de
celulose envolvidas em uma matriz amorfa, a hemicelulose. A hemicelulose ¢ envolvida pela
lignina que constitui uma barreira para o ataque de microrganismos € enzimas, tornando um

material pouco reativo e bastante rigido (LORA; GLASSER, 2002).
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As porgdes de celulose, hemicelulose e lignina da biomassa representam os
componentes majoritarios, porém ha a presenga de outros componentes que sdo chamados de
extrativos (compostos organicos) e as cinzas (compostos inorganicos) (LUCY; PETRI, 2010).
A Tabela 2.1 mostra a composicao quimica de algumas biomassas, pode-se observar que os
componentes sdo encontrados em quantidades diferentes em vegetais de diferentes origens. A
maioria das biomassas aponta a celulose como componente em maior quantidade, seguido
pela hemicelulose (excecdo para a casca de coco que possui maior teor de lignina do que de

hemicelulose), indicando alto potencial de conversao desses polissacarideos em etanol.

Tabela 2.1: Composicao Quimica da Biomassa Lignoceluldsica.

Residuo Composicio quimica (%) Referéncias
Celulose Hemicelulose Lignina
Bagago de cana-de-agucar 41 - 44 25-27 20 -22 LINO, 2015

Palha de cana-de-agticar 40 - 42 30-32 22-25 PRATTO, 2015
Sabugo de Milho 45 35 15 SANTOS et al., 2012

Casca de coco 35-47 15-28 30,6 - 45 PEREIRA, 2012
Sisal 43-56 21-24 7-9 DIRCEU et, al., 2006

Fibra de bananeira 52 10 11 SILVA, 2016

2.2.1 Celulose

A celulose ¢ o polissacarideo mais abundante presente na parede celular dos vegetais,
corresponde a cerca de 50% de todas as reservas de carbono disponivel na biosfera. Trata-se
de um homopolissacarideo linear de cadeia longa, constituido por unidades de D-glucose
unidos por ligagdes glicosidicas do tipo B-(1,4). Contudo, esses mondmeros se ligam por meio
de seu grupo hidroxila e, perdendo uma molécula de 4gua, ddo origem a unidade estrutural
basica da celulose, a celobiose, que ¢ um dimero de glicose (PITARELO, 2013), como mostra

a Figura 2.3.
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Figura 2.3: Estrutura da celulose.
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Fonte: Adaptado de SANTOS-ROCHA (2017).

Sua estrutura composta por hidroxilas permite a ocorréncia de ligacdes pontes de

hidrogénio intermoleculares e intramoleculares, além de interagdes de van der Walls entre as

unidades de glicose, contribuindo para a formacao de uma estrutura bifasica (SILVA, 2016).

Possui ainda uma estrutura cristalina que ¢ mais organizada, conferindo resisténcia e protecao

a célula contra agentes externos, € uma regido amorfa, onde hd menor organizagao e por isso €

mais suscetivel a degradagdo pelo reagente (CIOLACU; CIOLACU; POPA, 2011), como

mostra a Figura 2.4.

Figura 2.4: Estrutura da celulose destacando as regides cristalinas e amorfas.

Regido
cristalina

Regiio
amorfa

Fonte: Adaptado de SUN & CHENG (2002).

2.2.2 Hemicelulose

A hemicelulose ¢ definida como heteropolimero formada por monossacarideos em

cadeia ramificada compondo quatro grupos: as pentoses (xilose, arabinose), as hexoses
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(manose, glicose, galactose), os 4cidos hexouronicos (4cido galacturdnico, 4acido
metilgalacturdnico e acido glicurdnico) e as desoxi-hexoses (fucose e ramnose) (CHEMMES
et al.,2013; MAICHE; HUBER, 2010), como mostra a Figura 2.5.

De acordo com Corréa (2016) a hemicelulose atua fazendo ligagdes entre a lignina e as
fibras de celulose atribuindo rigidez e promovendo a integragdo dos trés polimeros, celulose-

hemicelulose-lignina.

Figura 2.5: Acicares que compéem as unidades de hemiceluloses.
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Fonte: Adaptado de MORAIS; NASCIMENTO; MELO (2005)

2.2.3 Lignina

A lignina ¢, depois da celulose, o segundo mais abundante biopolimero terrestre e ¢
responsavel por aproximadamente 30% do carbono orgéanico na biosfera (GOMES, 2015).
Sua estrutura quimica ¢ hidrofdbica e complexa. E formada por unidades de fenilpropano
derivadas da polimerizac¢ao oxidativa de trés precursores: os alcoois coniferilico, sinapilico e
p-cumarilico (GROSSI, 2015). A Figura 2.6 mostra a estrutura complexa e os tipos de

ligacdes entre as unidades basicas de lignina.
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Figura 2.6: Esquema da estrutura da lignina com suas principais ligacoes.
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Fonte: Adaptado de CARVALHO et al. (2009).

Do ponto de vista da caracteristica da fibra, a lignina representa um dos principais
entraves para o aproveitamento dos materiais lignoceluldsicos, pois ¢ responsavel pela
resisténcia mecanica dos vegetais, causando elevada rigidez. Sendo assim, ela precisa ser

retirada da biomassa lignoceluldsica, para facilitar o acesso a celulose.

2.2.4 Compostos Organicos e Inorganicos

Os compostos organicos e inorganicos ficam proximo a parede celular da biomassa
lignoceluldsica, pertencente a classe muito diferente em termos de composi¢do quimica
denominada: extrativos e cinzas. Os extrativos sdo constituintes organicos que ndo fazem
parte da estrutura da parede celular. Sdo soluveis em agua ou em solventes organicos neutros
e estdo presentes principalmente na casca. De baixa massa molecular ¢ somando pequenas
quantidades, eles englobam 6leos essenciais, resinas, taninos, graxas e pigmentos. As cinzas,
que compreendem os componentes inorganicos da matéria lignoceluldsica, sdo constituidas

principalmente por sulfatos, oxalatos, carbonatos e silicatos (MORAIS; NASCIMENTO;
MELO, 2005; PITARELO, 2013).
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2.3 O coqueiro e O coco

O coqueiro ¢ uma planta pertencente a familia Pal/mae, da classe Monocotyledoneae.
Sendo que todos os coqueiros cultivados pertencem a espécie Cocos nucifera L. que é uma
cultura tropical, largamente distribuida na Asia, Africa, América Latina e regido do Pacifico.
Esta cultura pode ser classificada como uma das frutiferas mais importantes mundialmente,
provocando ampla circulacdo econdmica. Isso se deve, a sua producdo de 6leo e também por
se apresentar como cultura de subsisténcia para pequenos produtores. Além disso, o coqueiro
tem um papel importante na contribuicdo para a sustentabilidade do meio ambiente, sendo
disseminado ao longo da faixa costeira (CABRAL, 2014; ESTEVES, 2014; SIQUEIRA;
ARAGAO; TUPINAMBA, 2002).

No Brasil a cultura foi introduzida em 1553, no estado da Bahia (dai coco-da-
baia), originaria do sudeste Asiatico foi trazido pelos portugueses. O coqueiro se adaptou aos
solos arenosos, ao clima e vegetacao da faixa litoranea do nordeste brasileiro, como mostra a
Figura 2.7, permitindo assim o aparecimento de uma nova classe produtora. Em 1985, a area
colhida com coqueiro no Brasil situava-se em torno de 166 mil hectares, nesse periodo
verificou-se um deslocamento das areas tradicionais de producdo de coco em direcao as
demais regides do pais, principalmente para o norte e sudeste (FONTES; FERREIRA;
SIQUEIRA, 2002).

Figura 2.7: Fotografia ilustrando a vegetacio de coqueiros predominante da faixa do
litoral norte de Alagoas.

Fonte: Acervo do autor (2018).
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Quando comparado a area colhida dos frutos do ano de 1985 com os dados da Tabela
2.2 ¢ possivel observar o aumento, em torno 12,3%, até 2021. Ainda ¢ importante comparar
os anos de 2017 e 2021, a maior producao dos frutos e o crescente aumento ocorre nas regides
onde foi iniciado o plantio no pais: nordeste, sudeste e sul, respectivamente. O mesmo nao ¢
verificado nas regides norte e centro-oeste. Essa importancia acontece quando segundo
Rocha; Almeida; da Cruz, (2017) tal distribui¢do geografica interfere na distribui¢do dos

residuos agroindustriais.

Tabela 2.2: Area plantada, area colhida e producio por regiio no Brasil — 2017/2021.

Regiodes Area plantada (ha) Area Colhida (ha) Producao (mil frutos)

Ano da safra Ano da safra Ano da safra
2017 2021 2017 2021 2017 2021
Norte 20.528 18.863 20.569 18.833 186.528 176.892

Nordeste 173.217  152.800 172.547 151.904 1.067.193  1.235.042

Sudeste 14.996 14.628 14.625 14.443 200.684 212.580

Sul 239 218 235 218 1.493 1.591

Centro-Oeste 1.578 1.140 1.430 994 17.528 12.468

Brasil 210.558  187.649  209.406 186.392 1.473.426 1.638.573

*ha: hectares
Fonte: Adaptado do IBGE (2021).

Essa produgdo crescente ocupando um ecossistema com poucas possibilidades, como
semidrido nordestino, sem recursos de outras exploracdes comerciais estdo embasadas em
dois segmentos diferenciados: a producao de coqueiro destinada ao consumo de coco seco € a
produgdo de coco fresco destinado a 4gua de coco. A producdo estd dividida entre as
variedades de Typica (coqueiro gigante), Nana (coqueiro ando) e hibrido (CASTRO, 2007,
MARTINS; JESUS JUNIOR, 2011; SIQUEIRA; ARAGAO; TUPINAMBA, 2002).

Segundo Martins & Jesus Junior, (2011), as trés variedade apresentam finalidades
diferentes:

o Coqueiro ando: apresenta porte pequeno podendo atingir de 10 a 12 m de
altura. Inicia a produ¢ao mais precoce em média com 2 a 3 anos apds o plantio, tendo uma
vida util de 30 a 40 anos. Sua principal finalidade ¢ a producdo de agua de coco, com a
qualidade sensorial superior as demais e podendo armazenar em torno de 300 mL de agua. A

produtividade ¢ em média 150 a 200 frutos/planta/ano. O coqueiro ando apresenta as
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cultivares: ando verde, ando amarelo e ando vermelho. No Brasil a variedade mais utilizada
comercialmente ¢ a verde para o consumo de agua de coco, popularmente chamado coco
verde.

o Coqueiro gigante: apresenta porte grande podendo atingir até 35 m de altura na
maturidade produtiva. Inicia a producdo em condigdes ideais com 5 a 7 anos de vida podendo
atingir até 70 anos. Sua principal finalidade ¢ o fornecimento da polpa tanto para o uso in
natura quanto a industrializagdo, na obtencdo de produtos como coco ralado, leite de coco,
doce, oleo de coco, farinha, fibras, entre outros produtos e subprodutos. A produtividade ¢ em
média 60 a 80 frutos/planta/ano. E popularmente conhecido como coco maduro ou seco.

J Coqueiro hibrido: resultado do cruzamento das variedades Ana e Gigante
apresenta porte intermediario podendo atingir 20 m de altura. Inicia a produ¢do com 3 a 4
anos apo6s o plantio, tendo vida ttil de 50 a 60 anos. Apresenta dupla finalidade, devido ao seu
potencial de utilizagdo tanto de forma in natura como no processamento industrial. A
produtividade ¢ em média 130 a 150 frutos/planta/ano.

A estrutura morfolégica do coqueiro consiste em cinco partes: raiz, caule, folha,
inflorescéncia e fruto. A raiz possui sistema radicular com grande nimero de raizes grossas,
dentre elas as primarias de 8 mm a 10 mm de diametro, dessas partem as secundarias e
sucessivamente as terciarias que produzem as radicelas com 1 mm a 3 mm de didmetro. As
raizes primarias t€ém como funcdo principal a fixacdo do coqueiro ao solo. Enquanto as
radicelas sdo responséaveis pela absor¢do de agua e nutrientes. O caule ou troncos ¢ do tipo
estipe, cilindrico, ndo ramificado, exibindo regides lisas e asperas, que sdo as cicatrizes que as
folhas deixaram ao cairem. Seu desenvolvimento ¢ ereto, porém o vento e¢ a luz podem
deforma-lo com curvas (CINTRA; RESENDE; LEAL, 2008).

A folha ¢ do tipo pinada, ou seja, estrutura em forma de pena que apresenta formas
multi-divididas insertas num eixo comum e possui bainha seguida do peciolo, que continua
pela raque ou raquis, onde se prendem numerosos foliolos, como mostra a Figura 2.8. Uma
folha madura de coqueiro gigante tem aproximadamente 6 m de comprimento, com média de
200 a 300 foliolos de 90 a 130 cm de comprimento, dando 12 a 14 folhas por ano. Enquanto
as folhas do coqueiro ando tém em torno de 4 a 5 m de comprimento, contendo cerca de 200
foliolos que podem atingir entre 120 e 130 cm, apresentando de 16 a 24 folhas por ano

(FONTES; FERREIRA, 2006).
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Figura 2.8: Desenho esquematico das partes que compdem a folha pinada.

Fina ou foliolo

Limbe

Peclale

Folha pinada

Fonte: Adaptado do SODRE (2005).

Em condi¢des climaticas adversas como o solo pouco umido, a desnutri¢cdo da planta,
e até mesmo o ataque de pragas e/ou doengas, o numero de folhas vivas é reduzido. Sendo
assim, o aspecto geral das folhas mostra uma clorose generalizada exibindo um
amarelecimento das folhas que adquirem o aspecto de folhas secas que devem ser cortadas,

como mostra a Figura 2.9 (FONTES; FERREIRA; SIQUEIRA, 2002).

Figura 2.9: Fotografia ilustrando folhas secas de coqueiro em processo de clorose.

Fonte: Acervo do autor (2018).
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A inflorescéncia ¢ um dos principais 6rgaos do coqueiro, pois nela sdo produzidos os
frutos que geram os produtos. O coqueiro ¢ uma planta monoica, ou seja, apresenta flores dos
dois sexos masculinas e femininas reunidas numa mesma inflorescéncia, essa se forma entre a
base da folha e o caule envolvida pelas espatas (estrutura que protege o desenvolvimento das
flores). Ao completar o desenvolvimento se abre liberando a inflorescéncia, onde ocorre a
fecundacdo e a posterior formacdo do fruto (PEDROSO; SANTOS; ARAGAO, 2007). O
desenvolvimento da inflorescéncia ¢ ilustrado na Figura 2.10, na fase (A) inflorescéncia do
coqueiro-ando-verde alojada no interior das espatas, na fase (B) inflorescéncia do coqueiro-
ando-verde recém aberta com suas flores masculinas e femininas e na fase (C) a inflorescéncia

com os frutos em inicio de crescimento.

Figura 2.10: Fotografia ilustrando o desenvolvimento da inflorescéncia.

*Inflorescéncia do coqueiro-ando-verde alojada no interior das espatas (A) e (B).

Inflorescéncia recém aberta (C).

Fonte: Adaptado do BENASSI (2013).

O fruto do coqueiro ¢ botanicamente uma drupa, ou seja, fruto carnoso com apenas
uma semente, sendo esta aderida ao endocarpo de maneira que s6 pode ser separada
mecanicamente. Com relacdo a estrutura do coco, como mostra a Figura 2.11, Benassi (2013)

descreve as principais partes do coco observando de fora para dentro, da seguinte forma:

. Epicarpo — pelicula fina, com diferentes coloragdes, que envolve externamente
o fruto.

. Mesocarpo — camada espessa e fibrosa.

. Endocarpo — camada muito dura, de coloragdo escura no fruto maduro.
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J Tegumento — camada fina de coloracdo marrom, localizada entre o endocarpo e

o albumen solido.

o Endosperma ou Albumen sélido — polpa do fruto, camada branca e muito
oleosa.

o Endosperma ou Albiimen liquido — dgua de coco.

J Embrido — estrutura localizada préoximo a um dos trés orificios do endocarpo.

Figura 2.11: Representacio esquematica do coco.

Endocarpo

Mesocarpo
P (casca dura)

(retém ar)

Eplc?{?ﬂ Endosperma

sdlido
Endosperma
Fruto do coco-da-baia " liguido

(Cocus nucitera)

Tegumento

Fonte: Adaptado do site EducaBras

Segundo CARVALHO et al. (2006) todas as suas partes, como raiz, caule, folha,
inflorescéncia e fruto sdo empregados para fins artesanais, alimenticios, nutricionais,
agroindustriais, medicinais e biotecnologicos, entre outros. E ainda analisando a demanda de
preocupacao quanto ao meio ambiente que tem impulsionado o uso de recursos nao agressivos
ao planeta, o uso das fibras vegetais ¢ uma perspectiva promissora, por ser um material

biodegradavel (CARDOSO; GONCALEZ, 2016).

2.3.1. Geragao de Residuos Provenientes do Coqueiro

O coco ¢ conhecido como uma oleaginosa, sendo convertido quando maturado a 6leo
de coco e outros produtos. Segundo Dauber (2015), em especial o 6leo de coco vem se
destacando no combate a obesidade devido ao seu efeito termogénico atuando como
coadjuvante para perda de gordura corporal. Além das propriedades antibacteriana, antiviral e

antifingica que acentuam o consumo. No Brasil, 0 coco imaturo ¢ consumido em larga escala
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na forma da dgua de coco. Anualmente, a cocoicultura gera um residuo, em que 1,5 bilhdo sdo
cascas, mais de 300 milhdes de folhas que caem naturalmente e mais de 300 milhdes de
cachos com ramos florais e bracteas, o que representa mais de 2 milhdes de toneladas de
residuos, acarretando sérios problemas ambientais, como mostra a Figura 2.12 (CABRAL et

al., 2016; CARVALHO et al., 2006; FONTES et al., 2021).

Figura 2.12: Fotografia mostrando os residuos do coqueiro e do coco no calcadao da
Praia de Ponta Verde em Maceid-AL.

*Casca de coco verde em diferentes pontos de descarte (A), (B) e (C).

Fonte: Acervo do autor (2018).

Segundo o IBGE (2022) o mercado brasileiro do coco imaturo ou verde produziu em
torno de 1.638.573 milhdes de frutos, em 2021. De acordo com ROSA (2002) a casca do coco
verde representa 80% a 85% do peso bruto do fruto e cerca de 70% de todo lixo gerado nas
praias brasileiras representa cascas de coco verde. Esse volume substancial das cascas do
fruto gera um problema nos grandes centros urbanos, onde o material ¢ de dificil descarte,
sendo distribuidos nos aterros sanitarios e vazadouros. Como se trata de matéria organica
contribui na formacdo de gases do efeito estufa, no aumento de vetores, no mau cheiro, na
poluicdo visual e ainda demora mais de oito anos para se decompor completamente
(CABRAL, 2014; CARRIJO; LIZ; MAKISHIMA, 2002).

Na industria do coco maduro, as cascas sdo utilizadas como combustivel de caldeiras
ou destinadas ao beneficiamento de fibras. Nesse caso “coir” ¢ o nome atribuido ao
mesocarpo ou casca do coco, o processamento ¢ feito em po, ou seja, “coir pith” ou “coir
dust” (ROSA et al., 2002). Ja nas propriedades rurais produtoras de coco, nos grandes centros

urbanos e nas praias os residuos da casca de coco, as folhas e os cachos do coqueiro sao
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denominados lixo verde, esses sdo descartados em lixdes e as margens de estradas de forma
inadequada contribuindo para procriagdo de insetos vetores de doencas e animais
peconhentos, como mostra a Figura 2.13 (CARRIJO; L1Z; MAKISHIMA, 2002). Ou ainda

quando queimados, produzem substancias poluidoras ao meio ambiente.

Figura 2.13: Fotografia ilustrando o lixo verde composto por casca, folha e cachos de
coqueiro.

*Folha do coqueiro e casca de coco seco em diferentes pontos de descarte (A), (B) e (C).

Fonte: Acervo do autor (2018).

Diante dessa realidade, estdo sendo descartadas matérias-primas, infinitas e
renovaveis, de alto valor para a agricultura sendo necessario o desenvolvimento de
alternativas para o aproveitamento dos residuos do coqueiro. A composicdo quimica dessas
fibras vegetais constituidas a base de Hidrogénio (H) e Carbono (C), sendo os principais
componentes a celulose, a hemicelulose e a lignina direcionam seu potencial para producao de

etanol de segunda geragao.

2.4 Etapas da producao de etanol de segunda geragao

A tecnologia de conversao da biomassa lignoceluldsica em agucares fermentaveis para
producdo de bioetanol enfrenta alguns desafios, dentre estes a estrutura da biomassa
(LENNARTSSON; ERLANDSSON; TAHERZADEH, 2014). A celulose apresenta estrutura
bastante recalcitrante, dificil de ser desestruturada e convertida em mondmeros de glicose
devido a alta complexidade das interacdes entre os componentes da biomassa (SILVA, 2016).

A principal diferenga na producdo de E1G e E2G ¢ adicionar duas etapas, sdo elas, o pré-
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tratamento e a hidrélise, quando se trata de E2G, além das etapas de fermentacdo e destilacao

ja existentes, quando se trata de E1G, conforme a Figura 2.14 (SANTOS-ROCHA, 2017).

Figura 2.14: Representacio das etapas de conversiao da biomassa em etanol 2G.

Fonte: Acervo do autor (2017).

Efetivamente os agucares nao se encontram diretamente disponiveis, como no caso das
matérias-primas sacarideas, sendo o pré-tratamento responsdvel por tornar as cadeias
poliméricas de celulose acessiveis para posterior etapa de hidrolise, na qual acontecerd a
obten¢do dos mondmeros de glicose fermentesciveis (SANTOS et al., 2014). Como mostra a
Figura 2.14, o processo de produgdo utilizado pelo etanol de segunda geragao (E2G) envolve
quatro etapas:

(1) Pré-tratamento, para aumentar a acessibilidade aos carboidratos (celulose e
hemicelulose);

(2) Hidrdlise enzimatica, para hidrolisar os polissacarideos em aguicares monoméricos;

(3) Fermentagao, para converter os agticares em etanol;

(4) Destilagdo, que visa a separagdo do etanol, de acordo com a volatilidade relativa
dos componentes.

Conforme visto pela descri¢cao das etapas de processo, numerosas opinides podem ser
encontradas sobre o assunto, a respeito dos obsticulos tecnologicos enfrentados para
conversao da biomassa, o primeiro deles ¢ mensurar uma etapa de pré-tratamento eficiente

que nao comprometa as etapas posteriores, levando em consideracdo a diversidade de
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biomassas, inclusive aquelas relacionadas aos residuos de processamento de alimentos
(SILVA et al., 2015). E a segunda ¢ a producdo de enzimas eficientes para hidrolisar a
celulose, a um custo competitivo ao etanol de primeira geracdo E1G (BARBOSA, 2017).
Sendo assim, explicita-se a necessidade na continuidade dos estudos voltados ao processo de
E2G. Inicia-se pela etapa crucial que influencia diretamente na sequéncia do processo, o pré-

tratamento.

2.4.1. Pré-Tratamento

O pré-tratamento € o estagio mais importante, uma vez que tem impacto em todas as
demais etapas do processo. Sua fun¢do ¢ diminuir a recalcitrancia da biomassa e aumentar o
rendimento das etapas posteriores de hidrélise enzimatica e fermentagdo, em termos de
digestibilidade da celulose e toxicidade da fermentagao (LORENCINI, 2013).

Essa etapa ¢ necessaria para separar a lignina e solubilizar hemicelulose, reduzindo a
cristalinidade da celulose e aumentando a fracdo amorfa da mesma. Isso acontece
promovendo solubilizagdes que aumentam a porosidade da biomassa e facilita o ataque

enzimatico (MIGUEL, 2013), como mostra a Figura 2.15.

Figura 2.15: Representacio esquematica da ac¢do do pré-tratamento sobre o material
lignocelulésico.

Lignina Celulose

Prelratamento é
—_——

Wil -

Regido Amorfa {

Regiio Cristalina{

Hemicelulose

Fonte: Adaptado do MOSIER et al. (2005)

No entanto, a etapa de pré-tratamento deve desempenhar as seguintes condigdes: ser
eficiente em termos de rendimento; ser seletiva; produzir poucos residuos toxicos ou
contaminantes; ter um consumo reduzido de insumos quimicos e resultar na recuperagdo da

maioria dos componentes lignocelulosicos (SILVA, 2016).
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Segundo Murakami; Bombana; Affonso, (2016) os diferentes métodos de pré-
tratamento possuem diferentes agdes sobre o material lignocelulésico. O pré-tratamento pode
ser fisico (reducdo mecanica e irradiacao), quimico (utilizando acidos, bases ou solventes
organicos) e biologico (fungos e bactérias que produzem enzimas capazes de degradar a
lignina), e ainda associado.

Os pré-tratamentos fisicos sdo baseados no uso de irradiacdo (GROSSI, 2015) e na
separacao ou na redu¢do do tamanho das particulas, através do moinho de bola ou martelo e
do peneiramento, para obter uma maior superficie de contato. As condi¢des de energia para
trituragdo mecanica da biomassa dependem do tamanho das particulas podendo assim tornar o
tratamento caro (CHEMMES et al., 2013).

O método quimico se difere na utilizagdo de compostos inorganicos ou organicos que
podem ser acidos, bases e solventes organicos e podem ser diluidos ou concentrados. O
processo que utiliza acido, solubiliza a hemicelulose e aumenta a digestibilidade da celulose
(RABELO, 2010). J4 as bases utilizadas como hidroxidos de sodio, perdxido de hidrogénio,
potassio, calcio e hidroxido de amonio modifica a estrutura da lignina descristalizando a
celulose (MACEDO, 2016). Enquanto que com solventes organicos como etanol, propanol,
metanol e acetona ocorre a deslignificacio (NOVO, 2012). Uma das preocupacdes na
utilizagdo do método quimico € o controle de temperatura e da concentracdo do solvente
utilizado, pois temperaturas e concentragdes altas podem degradar os agucares e formar
produtos contaminantes a levedura na etapa posterior de fermentacao (GOMES et al., 2015).

Segundo Ogeda & Petri (2010) os pré-tratamentos bioldgicos normalmente utilizam
fungos e algumas bactérias (actinomicetes). Durante o processo, estes microrganismos
secretam enzimas extracelulares como lignina peroxidases e lacases que ajudam a remover
uma quantidade consideravel de lignina da biomassa. No entanto um dos fatores que
desfavorecem esse método € o tempo dispendioso.

De acordo com Lorencini (2013) e Singh et al., (2015) o tratamento mecanico por
moagem também ¢ bastante utilizado em combinagdo com o pré-tratamento quimico, ou ainda
a combinacdo do tratamento quimico com o enzimdtico. Os tratamentos fisico-quimicos
incluem explosao a vapor e hidrotérmico. No pré-tratamento de explosdo a vapor com e sem
adicdo de catalisadores, a biomassa ¢ submetida, por segundos a minutos, a uma atmosfera de
vapor saturado de alta pressdo em temperaturas entre 160°-240°C e seguida de uma
descompressao subita que provoca a solubilizacao da fracao hemiceluldsica e modificagdes na

lignina. O processo ocorre em duas etapas, autohidrolise e descompressao (SILVA, 2017). Ja
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o hidrotérmico através do uso de agua a temperatura e pressao elevadas provoca a hidrélise e
degradacdo das hemiceluloses seguido por re-condensacdo da lignina (SANTOS-ROCHA et
al., 2016).

Vérios métodos de pré-tratamentos tém sido propostos e desenvolvidos. O pré-
tratamento acido atinge altos rendimentos de agucares a partir do material lignoceluldsico, em
contrapartida aumenta a quantidade de compostos toxicos do meio (CORREA, 2016).
Enquanto o hidrotérmico chama atencdo, por ndo fazer uso de reagentes quimicos, que €
interessante do ponto de vista ambiental e econdmico (SANTOS et al., 2014). No entanto,
estudos apontam que a fonte lignocelulodsica e a intensidade do pré-tratamento interferem na
geracdo dos compostos toxicos (FUIITOMI et al., 2012; KUDAHETTIGE NILSSON et al.,
2016).

2.4.1.1Pré-Tratamento acido

O pré -tratamento com acido diluido ¢ um dos mais antigos e amplamente estudados,
sendo conhecido desde 1819 (GALBE & ZACCHI, 2002). Essa etapa faz uso de baixas
concentragdes de acido sulfurico - tipicamente, 0,5% a 5,0% (v/v) - sob temperaturas
moderadas (120 °C a 160 °C) e tempos de reagdo que variam de 15 a 40 minutos, quando o
intuito ¢ solubilizar as hemiceluloses e deixar a celulose mais acessivel para a etapa de
sacarificacdo enzimatica (GRASEL, 2017).

Na literatura € possivel encontrar o tratamento com acido sulfurico numa variedade de
biomassas, dentre elas: bagaco de cana-de-acucar, palha de cana-de-agucar, residuos
alimentares, sabugo e palha de milho e casca do coco verde.

Schultz et al. (2010) testaram no bagago de cana-de-acucar diferentes condigdes de
pré-tratamento acido, variando-se o tempo em minutos de reacdo (14; 20; 35; 50 ¢ 56) ¢ a
concentragdo em porcentagem de acido sulftrico (0,1; 0,5; 1,5; 2,5 e 2,9), visando obter o
maior rendimento na obtencdo de glicose. O melhor resultado, em termos de glicose, foi
alcancado com 1,5% de 4cido e 56 min: 29,0 g/L.

Vieira et al. (2014) testaram aproximadamente 1,0g de palha de cana-de-agucar que
foram tratados com 10mL da solucao contendo acido sulfurico 0,5%, a 150°C/ 15 min
obtendo 1,03g ART/100g de fibra.

Enquanto Silva et al. (2015) testaram em residuos alimentares citricos o acido
sulfurico em diferentes concentracdes (1-9%), e constatou o aumento de 25 a 65% em ART

na concentracdo de 1% (m/v) a 120°C/120 min em autoclave.
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J& Santos-Rocha et al. (2016) testaram o sabugo e a palha do milho e obtiveram a
eficiéncia fermentativa 70,8% para o sabugo e 92,9% para a palha de milho, em autoclave a
120°C/15 min e 0,5% de H2SO4 (m/v).

Em se tratando do comportamento da casca do coco verde em meio acido, Cabral
(2014) observou que a maior quantidade de agucar liberado no pré-tratamento com acido
sulfurico foi na condigdo de 5% (m/v) a 121°C/40 min em autoclave, apresentando valores
médios de 34,67g ART/100g de fibra, quando in natura apresentava 14,2g ART/100g. Ainda
conforme esse estudo, constatou-se que o pré-tratamento acido em condi¢des severas de
concentracdo e temperatura provoca a producdo de inibidores. Em altas temperaturas e
pressdes, glicose e xilose podem ser degradadas em hidroximetilfurfural e furfural,
respectivamente. Quando esses inibidores sdo degradados, ocorre formagdao de acido
levulinico.

Ja Nascimento (2016) analisou a casca do coco verde comparando o acido sulfurico
2% (v/v) a 121°C/30 min com o &cido fosférico 0,2% (m/v) a 186°C/10 min em reator
autoclave e observou uma redugdo significativa do teor de hemicelulose. Inicialmente a fibra
in natura apresentava 8,28% de hemicelulose e ao final do pré-tratamento continha 2,81% e
2,45%, respectivamente.

O principal viés do pré -tratamento com acido diluido ¢ a dificuldade de controle das
condi¢des de processo, em decorréncia, principalmente, de uma estreita janela de operacao, o
que pode favorecer a degradagao dos agucares solubilizados, gerando, assim, produtos como
furfural, hidroximetilfurfural (HMF), 4cidos carboxilicos, dentre outros. (REZENDE et al.,
2011). Geralmente os acidos utilizados sdo o sulfurico, cloridrico ¢ o fosforico (CHEMMES

etal.,2013).

2.4.1.2Pré-Tratamento hidrotérmico

O pré-tratamento hidrotérmico (PTH) € um pré-tratamento termoquimico promissor
aplicado utilizando a agua como solvente para converter a biomassa em produtos valiosos ou
biocombustiveis. O PTH ¢ classificado em diferentes categorias que variam de acordo com a
temperatura, pressao e os produtos desejados (RUIZ et al., 2021). O processo que ¢ conhecido
como extracdo de fracionamento atua em temperaturas de 150°C a 220°C. O processo
conhecido como carbonizagdo hidrotérmica as temperaturas variam entre 180°C e 250°C. O

principal produto ¢ um combustivel solido limpo denominado hidrocarvao e biocarvdo. Em
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temperaturas entre 250 e 375°C, o processo ¢ conhecido como liquefagdo hidrotérmica
produzem principalmente um liquido organico insoluvel em 4gua chamado de bio-6leo, como
subprodutos um residuo s6lido, uma fase aquosa (alto teor de carbono orgéanico) e um géas leve
(CO2 com menores teores de CH4, CO e H»). Finalmente, em temperaturas e pressdes acima
ponto critico, as reagdes de radicais livres sdo governadas, e o processo ¢ denominado de
gaseificacdo hidrotérmica produzindo géas de sintese rico em Hz, ou CH4 e menores teores de
COz e CO (RUIZ et al., 2023).

O PTH utiliza pressao para manter a 4gua no estado liquido a elevadas temperaturas e
apresenta a vantagem de nao utilizar reagentes quimicos poluentes (BRODEUR et al., 2011;
CHEMMES et al., 2013; CORREA, 2016; NASCIMENTO, 2016). Isso reduz os impactos
ambientais e os custos além de resultar em um produto com alta digestibilidade enzimatica,
que sdo os principais beneficios para uma operacdo bem-sucedida em escala industrial
(SILVA, 2016).

O mecanismo de acdo ¢ parecido ao pré-tratamento acido gerando fibras reativas a
partir da solubilizacdao das pentosanas presentes na estrutura da hemicelulose liberando acido
acético e outros acidos organicos (MOSIER et al., 2005). O aparecimento desses acidos
potencializa a hidrolise da hemicelulose, em pentoses e hexoses, que submetidos a alta
pressdo e temperatura podem ser degradadas em aldeidos. Os principais aldeidos formados a
partir da degradacdo dos aglicares monoméricos ¢ o furfural proveniente da degradagdo das
pentoses e o 5-hidroximetilfurfural (HMF) proveniente a partir das hexoses (GOMES, 2015;
PALMQVIST; HAHN-HAGERDAL, 2000). Esses dois tltimos apresentam carater inibitdrio
a etapa subsequente de fermentagdo. No caso do pré-tratamento hidrotérmico ocorre uma
menor formacdo desses inibidores, pois a reacdo ndo ¢ catalisada por nenhuma substancia
quimica ¢ a maioria dos agucares removidos estd na forma de oligossacarideos (SILVA,
2016). Santos-Rocha et al. (2016) relataram através da velocidade da reacdo que a
temperatura utilizada influencia na conversdo dos oligossacarideos, visto que para celulose e
hemicelulose as temperaturas de 180 e 195°C favorecem a formacdo de oligdmeros e
mondmeros, respectivamente, e a temperatura de 210°C favorece a formagao de produtos de
degradacao como HMF e furfural. Ao término desse processo temos o solubilizado
constituido de oligossacarideos de hemicelulose (remogao total) e lignina (35- 60%) e uma
pequena quantidade de celulose (4 - 15%) e a fra¢do solida composta majoritariamente de

celulose (CHEMMES et al., 2013).
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Diversos estudos foram realizados utilizando este método de pré-tratamento em
diferentes biomassas. Com o bagago de cana-de-agucar, Silva (2015) realizou o pré-
tratamento hidrotérmico na propor¢do de 1:10 (m/v) nas condi¢des de 170°C/15min,
195°C/10min e 195°C/60min com agitacdo de 200rpm. O pré-tratamento a 195°C/10min
apresentou a melhor condi¢do para acucares fermentesciveis para producdo de E2G. Os
resultados mostraram o teor de 55,7% de celulose e remogao de 83,7% de hemicelulose.

No caso da palha da cana-de-agucar, Pratto (2015) testou o pré-tratamento
hidrotérmico (195°C/10 min e 200 rpm) e pré-tratamento hidrotérmico seguido de um pré-
tratamento alcalino (PA) (NaOH/30min 4% m/v,121°C). Obtendo, po6s tratamento, 58,04% e
82,78%., em celulose e 8,23% e 0,46%, em hemicelulose, respectivamente.

Para a casca do coco, Gongalves (2014) realizou o pré-tratamento hidrotérmico
catalisado com hidréxido de sodio (PHCHS) apresentou rendimentos de solidos entre 21,64 e
60,52%, com aumento de celulose entre 28,40 ¢ 131,20%, redugdo de hemicelulose entre
43,22 e 69,04%, redugdo de lignina entre 8,27 e 89,13%.

Ja para a casca do coco verde, Nascimento (2016) realizou o pré-tratamento
hidrotérmico a 186°C/10min com carga de 5%(m/m) de biomassa. Apresentando uma
composi¢ao quimica 38,95% de celulose, 2,4% de hemicelulose e 42,15% de lignina, que
comparado aos pré-tratamentos acido e alcalino foi o mais eficiente na remocdo de
hemicelulose.

2.4.2 Hidrdlise

ApOs o pré-tratamento, a celulose e a hemicelulose ficam mais acessiveis a etapa
subsequente chamada de hidrolise ou sacarificagdo. Essa ¢ responsavel por quebrar os
polissacarideos em aglicares menores (glicose e xilose). Dois processos sdo frequentemente
empregados, a hidrolise acida e a hidrdlise enzimatica (PRATTO, 2015). Independente de
qual rota escolhida, ambas realizam a conversao de celulose a glicose, conforme a equagdo

2.1:

n C¢H1005 + n H2O — n C¢H1206 (2.1)

(celulose) (agua) (glicose)

As reagdes catalisadas por 4cidos diluidos ou concentrados ocorrem mais rapidamente
comparado as reagdes enzimaticas. Porém a hidrolise 4cida apresenta alguns inconvenientes

como a geracao de produtos téxicos ao microrganismo utilizado na etapa de fermentagdo
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(HMF e furfural) e também a preocupacdo com a utilizagdo de reatores resistentes a corrosao
(KIIPER, 2009).

Ja na hidrdlise enzimatica sdo utilizadas enzimas especificas, somente uma vez, pois
sdo soluveis em agua e acabam sendo descartadas no fim do processo. Essas enzimas sdo as
celuloliticas e as hemiceluloliticas caracterizadas por um complexo enzimatico que possuem a
capacidade de atuar eficientemente sobre os mondmeros de glicose e xilose, respectivamente
(SARROUH; SILVERIO, 2008)

Segundo, Silva (2017) a hidrélise da celulose ocorre pela acdo de celulases que sdao
classificadas em: endoglucanases que clivam as liga¢des glicosidicas B (1-4) da cadeia de
celulose originando novas extremidades redutoras e ndo redutoras; exoglucanases ou
celobiohidrolase que atuam na extremidade ndo redutora da celulose formando unidades de
celobiose e as B-glicosidases ou celobiases, que clivam a celobiose formando monomeros de
glicose, conforme a Figura 2.16. J4 a hemicelulose requer uma série de enzimas uma vez que
estas apresentam uma estrutura complexa e heterogénea, as principais enzimas envolvidas sao
as B-xilanases que quebram as ligacoes glicosidicas internas da cadeia de xilana reduzindo o
grau de polimerizagdo do substrato e as [-xilosidase que hidrolisam pequenos

xilooligossacarideos e xilobiose a partir da extremidade ndo redutora, liberando xilose.

Figura 2.16: Acao de celulases na cadeia polimérica de celulose.
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2.4.3 Fermentag¢ao Alcoodlica

A etapa de fermentacdo visa a conversdo dos monossacarideos oriundos da hidrolise

da fracdo celuldsica e hemiceluldsica (glicose e xilose, respectivamente) em etanol. Na
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conversao da glicose ¢ comumente empregada a levedura Saccharomyces cerevisiae,
conhecida e utilizada pela sua elevada eficiéncia na fermentacdo dos aclcares com seis
unidades de carbono. No caso da fermentacao dos aglicares com cinco unidades de carbono
tem sido empregada a levedura Kluyveromyces marxianus (BARBOSA et al., 2015;
KULOYO et al., 2014). A bioconversao dos agucares monoméricos a etanol ¢ representada

nas equacdes 2.2 e 2.3, para glicose e xilose, respectivamente:

Ce¢H1206 — 2 CoH50H + 2 CO» (2.2)
(glicose) (etanol) (gas carbdnico)
3 CsH1005 — 5 CoHsOH + 5 CO2 (2.3)
(xilose) (etanol) (géas carbonico)

Segundo, Carmo (2013) dentre as leveduras termotolerantes, as pertencentes a espécie
Kluyveromyces marxianus tém apresentado relatos de uma boa producdo de etanol, atuando
em temperaturas de 40°C e crescimento até 47°C, enquanto que a Sacharomyces cerevisiae
atua numa temperatura 6tima de 32,3°C. Por outro lado, sabe-se que a levedura S. cerevisiae ¢
naturalmente mais tolerante a altas concentragdes de etanol do que a K. marxianus
(PALMQVIST; HAHN-HAGERDAL, 2000).

Diante dos dados apresentados na revisdo de literatura, cabe destacar que as principais
contribui¢des do presente estudo para o estado da arte na produgdao de E2G, concernem em
utilizar como biomassa a casca do coco e folha do coqueiro pré-tratado hidrotermicamente e
acidamente para estimar as variaveis de tempo, temperatura e rotacao das etapas sacarificagao

e fermentagao.

2.4.4 Inibidores e Métodos de Detoxificagao

A sacarificagdo e a fermentacdo podem ser afetadas por inibidores gerados durante o
pré-tratamento (CHEN et al., 2020; OLIVA et al., 2006). A formagao de inibidores depende
da fonte lignocelulésica, do tipo e da intensidade do pré-tratamento (PRASAD et al., 2018).

Os compostos toxicos oriundos dos pré-tratamentos podem ser divididos em quatro grupos:
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produtos de degradacdo de agticares, produtos de degradacdo da lignina, compostos derivados
da estrutura lignoceluldsica e ions de metais pesados (JONSSON, L. J. ; ALRIKSSON, B. A. ;
NILVEBRANT, N., 2013; OLSSON; HAHN-HAGERDAL, 1996).

Os principais produtos e subprodutos sdo obtidos da desorganizagdo da matriz
celulésica (PRASAD et al., 2018). Com a quebra da celulose tem-se glicose, bem como a
quebra da hemicelulose tem-se os mondmeros de xilose, arabinose, manose, galactose e acido
acético. A depender do pré-tratamento utilizado quando o complexo celulosico ¢ submetido a
alta pressdo e temperatura os agucares como glicose e xilose sdo degradados a 5-
hidroximetilfurfural (HMF) e furfural, respectivamente (FREITAS; NOGUEIRA; FARINAS,
2019; TIAN et al., 2009). Acido levulinico e acido formico sdo gerados pela degradagdo de
HMF e compostos fendlicos sdo gerados a partir da degradacdo parcial de lignina, como
siringaldeido, dacido p-hidroxibenzoico, acido vanilinico, vanilina e acido fertlico
(PALMQVIST & HAHN-HAGERDAL, 2000). A Figura 2.17 mostra a procedéncia de cada

um dos inibidores provenientes dos diferentes constituintes da biomassa.

Figura 2.17: Formacao dos compostos inibitorios.
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Uma outra forma de inibicdo ¢ através do proprio etanol produzido durante a
fermentacdo que pode resultar em perda da viabilidade celular, redu¢do do crescimento e
transporte de glicose (NOGUEIRA et al., 2019). Os efeitos sinergéticos também fazem a
diferenca, como o efeito combinado do acido acético e furfural que afeta a taxa de
crescimento celular. As cepas da levedura S. cerevisiae apresenta maior sensibilidade ao
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etanol em relagdo a K. marxianus, visto que a inibicao de enzimas metabolicamente a inibi¢ao
de enzimas metabolicamente (LI; QI; WAN, 2020; VITORINO et al., 2021).

A etapa de detoxificacdo propde transformar inibidores em compostos inativos ou
reduzir suas concentragdes (FREITAS; NOGUEIRA; FARINAS, 2019). Segundo Taherzadeh
et al., (2000), existem quatro abordagens diferentes para minimizar a presenca de inibidores
de hidrolisados lignocelul6sicos:

(1) evitar formagao de inibidores durante a hidrdlise;

(2) desintoxicar hidrolisado antes da fermentacgao;

(3) desenvolver espécies de MO’s capazes de resistir a inibidores;

(4) converter compostos toxicos em produtos que ndo interfiram no metabolismo
microbiano.

Os métodos de destoxificacdo se dividem em trés classes: fisicos (evaporacao,
separagdo por membranas), quimicos (ajuste de pH, overliming, tratamento com carvao
ativado e com resinas de troca i6nica) e bioldgicos (uso de enzimas) (MOUTTA, 2009).
Dentre os mais utilizados esta o ajuste de pH que é geralmente associado a outros métodos, e
consiste na correcdo do pH do hidrolisado para um valor adequado ao crescimento
microbiano.

O carvao ativo vem sendo utilizado para tratamentos como, purificagdo, detoxificacao,
desodorizagdo, filtracdo, descoloragdo, declorificacdo, remoc¢do ou modificagdo de sabor e
concentracdo de uma infinidade de materiais e substancias liquidos e gasosos. Recortes da
literatura mostram que a descontaminagcdo com carvao ativo tem se mostrado altamente
eficiente na remog¢do de compostos que transmitem cor e odor, € na remoc¢ao de metais e
compostos organicos de baixa massa molar (PAN et al, 2019; VILLARREAL, M. L. M,;
ALMEIDA E SILVA, J. B.; CANETTIERI, E. V.; IZARIO FILHO, 2004).
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CAPITULO 3 - RESIDUOS AGRICOLAS DO CULTIVO DO COCO COMO
MATERIA-PRIMA PARA PRODUCAO DE ETANOL LIGNOCELULOSICO PELA
KLUYVEROMYCES MARXIANUS

Este capitulo foi publicado na revista Waste Biomass Valor 12, 4943-4951 (2021), e
esta disponivel na forma de short communication. O capitulo apresenta parte do trabalho de
doutoramento utilizando os residuos do coco como fonte de carbono para producdo de etanol
lignoceluldsico. As biomassas como casca de coco verde (CCV), foliolo da folha do coqueiro
(FFC) e raque da folha do coqueiro (RFC) foram submetidas a pré-tratamento hidrotérmico
(PTH) e éacido (PTA). A hidrélise enzimdtica foi realizada utilizando Cellic® Ctec2
suplementado com 10% de Cellic® Htec, baseada principalmente na identificacdo de glicose
e xilose. Verificou-se que a hidrdlise enzimatica apés PTH promoveu melhores resultados
quando comparada ao PTA. As concentracdes de glicose obtidas para as biomassas
submetidas ao PTH foram: 31,85 g/L para o CCV, 21,31 g/L para o FFC e 45,39 g/L para o
RFC. Para a xilose, a maior concentragao obtida foi de 7,93 g/L para RFC. Durante a etapa de
fermentagdo utilizando a levedura Kluyveromyces marxianus, as concentragdes de etanol
(g/L) dos licores hidrolisados e pré-tratados por PTH e PTA foram: 8,83 ¢ 9,71 g/L para
CCV, 10,26 ¢ 7,01 g/L para FFC e 12,99 e 7,44 g/L para RFC, respectivamente. Este estudo
identificou o potencial energético dos residuos do coco na producdo de biocombustiveis,
especificamente etanol, a partir de K. marxianus, espécie pouco explorada comercialmente e

capaz de fermentar glicose e xilose.
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AGRICULTURAL COCONUT CULTIVATION WASTES AS FEEDSTOCK FOR
LIGNOCELLULOSIC ETHANOL PRODUCTION BY KLUYVEROMYCES
MARXIANUS

3.1 Introduction

The use of lignocellulosic wastes as a renewable source of fermentable sugars presents
a promising way to increase biofuel production, since these materials do not contribute to
food competition and there is no need for cultivated areas (PARISUTHAM; KIM; LEE, 2014;
PEREIRA et al., 2015; ROCHA; ALMEIDA; DA CRUZ, 2017; ZHUANG et al., 2009).
Additionally, this type of biomass reduces the petroleum dependency and environmental
pollution due the ethanol production be from agricultural wastes.

Coconut-tree is a crop distributed in over 200 countries. Associated with the large-
scale coconut production, and consequently, a high amount of not used agroindustrial residues
are generated. Therefore, these wastes are a potential feedstock to convert lignocellulosic
materials into liquid fuels such as ethanol (DA COSTA NOGUEIRA et al., 2019;
GONCALVES et al., 2014; HARMAN-WARE et al., 2015).

Green coconut shell represents 80-85 % of the total fruit weight and is the residue
from coconut-tree more widely produced (CABRAL et al., 2016; CARRIJO; LIZ;
MAKISHIMA, 2002; GONCALVES et al., 2014). This material has already been applied for
industrial activated carbon production, in cementitious matrix, agriculture and for bioethanol
production (CABRAL et al., 2016; TSAl et al., 2001; VAITHANOMSAT et al., 2011).

Coconut-tree leafs have a feather-shaped structure, with a common axis, called stalk,
where many leaflets are attached. In adverse climatic conditions such as low soilmoisture,
plant malnutrition, and even pest and/or disease attack, the number of live leaves is reduced
exhibiting a generalized chlorosis and must be cut (FONTES & FERREIRA, 2006;
SIQUEIRA, 2002).

When employed for lignocellulosic ethanol production, such as green coconut shell,
coconut-tree leaflet and coconut-tree leaf stalk, some steps are necessary: the pretreatment and
saccharification that configurates the main bottleneck of this process (CARDONA et al.,
2015; YAN et al., 2017). Several works presented in the literature have studied the
hydrothermal and dilute acid pretreatments, however using other types of biomass such as

sugarcane bagasse, wood and fruit peel (ABDULLAH; UEDA; SAKA, 2014; BALAT, 2011;
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BOUSSARSAR; ROGE; MATHLOUTHI, 2009; DA CRUZ et al., 2012; KULOYO et al.,
2014; PEREIRA et al., 2015; SILVA et al., 2011; XIAO et al., 2013).

The saccharification generally uses cellulases and hemicellulases to disrupt pretreated
lignocellulosic biomass (BEHERA et al., 2014; ROCHA et al., 2014). The fermentation step
is widely conducted by Saccharomyces cerevisiae, however; this strain cannot metabolize for
example, pentoses; as xylose and arabinose. On the other hand, Kluyveromyces marxianus
can use these sugars and produce ethanol (BEHERA et al., 2014; KULOYO et al., 2014;
ROCHA et al., 2014).

Regarding coconut-tree biomasses application, some studies are proposed in the
literature for green coconut shell, using only cellulases and S. cerevisiae for hydrolysis and
fermentation steps, respectively (CABRAL et al., 2017; DA COSTA NOGUEIRA et al.,
2018; INAWALI et al., 2018; ROCHA et al., 2014; SANTOS-ROCHA et al., 2016;
VAITHANOMSAT et al., 2011). However, for coconut leaves, specially leaflet and leaf stalk,
literature was not found.

The aim of the present study was to evaluate lignocellulosic ethanol production from
coconut cultivation wastes (coconut shell, leaflet and leaf stalk) applying hydrothermal and
acidic pretreatment, cellulases and hemicellulases in hydrolysis step and the yeast

Kluyveromyces marxianus to produce bioethanol relating the efficiency of each step.

32 Materials and Methods

3.2.1 Raw Material

The green coconut shell used to carry out the experiments was collected at the disposal
of coconut water sellers at the Federal University of Alagoas (Maceio-Alagoas-Brazil). The
dwarf coconut-tree leaves were collected at the Marrud site, located in S3o José da Tapera
(Alagoas-Brazil), removed in the natural state of aging (senescence), result of the chlorosis
process. The leaves were then sectioned according to their structure, obtaining two more parts
from the coconut-tree employed in this study: coconut-tree leaflets and coconut-tree leaf stalk.
The raw materials were washed with distilled water at room temperature for removal of
residual compounds (PEREIRA et al., 2015; SANTOS-ROCHA et al., 2016). Then, the

coconut-tree biomasses were dried in an oven at 45 °C until constant weight containing about
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10 % of moisture. After, they were milled in a Willey type mill to a particle size of 30 mesh

(0.6 mm), put into plastic bags, and kept in a freezer (— 8°C) to prevent contamination.

3.2.2 Lignocellulosic Characterization

Raw and pretreated materials were characterized with regard to their chemical
composition, according to analytical procedures described by Sluiter et al., (2008), modified

from the study of Rocha et al., (1997) and validated by Gouveia et al., (2009).

3.2.3 Hydrothermal Pretreatment (HPT)

The hydrothermal pretreatment of the coconut-tree biomasses was carried out in a 5.5-
L stainless steel reactor (model 4584, Parr Instrument Company, Moline, IL, USA) equipped
with propeller agitator, heater and temperature controller. According to Santos-Rocha et al.
(2016), samples of coconut-tree biomasses were mixed with distillate water in a solid/liquid
ratio of 1:15 (w/v) inside the reactor. The reactions were performed under 195 °C for 10 min
and the system was agitated at 200 rpm. When the process finished, the reactor was cooled
down to 40 °C. The solid was then separated from the liquid fraction by filtration. Solid

fraction was washed with distilled water to remove the solubilized contents, until neutral pH.

3.2.4 Acid Pretreatment (APT)

The acid pretreatment of the coconut-tree biomasses was carried out by a chemical
pretreatment method using dilute acid. This process employed a sulfuric acid solution and a
solid loading of 10 % (w/v) for 60 min in an autoclave. In this case, each biomass was
submitted to different conditions of acid concentration and temperature (chosen by
experimental design, data not shown): 1 % (v/v) H2SO4 at 100 °C for green coconut shell, 2 %
(v/v) H2SO4 at 120 °C for coconut-tree leaflets and 2 % (v/v) HoSO4 at 100 °C for coconut-
tree leaf stalk. After the pretreatment, the liquid and solid fractions were separated by
filtration. The pretreated solid materials were thoroughly washed with distilled water to
remove the soluble components and used directly for the hydrolysis step. This procedure was

based on Pereira et al., (2015).
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3.2.5 Enzymatic Hydrolysis Using Cellulases and Hemicellulases

The enzymatic hydrolysis was performed with the biomass solid fraction submitted to
HPT and APT. The assays were carried out in 100 mL Erlenmeyer flasks, incubated for 72 h
at 50 °C and 125 rpm using 50 mM sodium citrate buffer (pH 4.8). All experiments were
conducted at solid loading of 7.5 % (w/v), and Cellic® Ctec2 (58 FPU/mL) loading of 20
FPU/gdry pretreated biomass, supplemented with 10 % of Cellic® Htec (7326 IU/mL) (in
relation to the Cellic® Ctec2 employed volume) (cellulases and hemicellulases enzymatic
complexes). Liquor samples were obtained at 1, 2, 4, 6, 12, 24, 48, 72 h of hydrolysis, and the
content of glucose, xylose and ethanol was determined by high-performance liquid
chromatography (HPLC) as made for lignocellulosic characterization of the biomasses
(“Lignocellulosic Characterization” section and described in fermentation substrates and
products quantification later). The enzymatic complexes used in the assays was donated by
Novozymes Latin America (Araucaria, Parana, Brazil). The enzymatic activity of the
commercial extract, in terms of filter paper units (FPU), was determined according to Ghose

(1987). All hydrolysis experiments were carried out in independent duplicates.

3.2.6 Fermentation Step by Kluyveromyces marxianus

The microorganism used for the ethanolic fermentation was the yeast Kluyveromices
marxianus MM 1II-41, obtained from the microbiological collection of University of Sao
Paulo. The strain was cultivated in YEPD containing 20 g/L. of glucose, 10 g/L. of yeast
extract and 20 g/L of peptone. After cultivation, the medium was centrifugated (10,000 rpm,
10 min, 4°C) and cells (approx. 5 g/L dry cell weight) were resuspended in the hydrolyzed.
The fermentation was conducted for 24 h incubated at 37°C and 75 rpm using 100 mL of
reactional medium. Samples were collected at 2, 4, 6, 8 and 24 h of fermentation and
carbohydrate and ethanol concentrations were determined by HPLC. All the fermentation

experiments were performed in independent duplicates.

3.2.7 Glucose, Xylose, Ethanol, Acetic Acid and Glycerol Quantification

Samples were analyzed by high-performance liquid chromatography (SCL-10 A
chromatograph, Shimadzu) with refractive index detection (RID-10 A, Shimadzu) for
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determination of glucose, xylose, ethanol, acetic acid and glycerol. The column used was
Aminex HPX-87H (300 x 7.8 mm; Bio-Rad) and the mobile phase was sulfuric acid solution
(5.0 mM) at a flow rate of 0.6 mL/min at 45°C.

The cellulose-to-glucose conversion and hemicelluloseto-xylose conversion were

calculated using Equations. (3.1) and (3.2), as described by Pereira et al., (2015).

£

cellulose — to — glucose conversion (W) = il 100 (0.1)
i -_— -_— i = C_X !
hemicellulose — to — xylose conversion (%) E— 100 (0.2)

where Cg and Cx (g/L) is the glucose and xylose concentrations, respectively, released at a
given time during the enzymatic hydrolysis; Cs (g/L) is the dry biomass concentration; fc and
fu 1s the cellulose and hemicellulose content, respectively, of the in natura biomass; and 1.11
and 1.14 is the stoichiometric factor for conversion of cellulose-to-glucose and hemicellulose-
to-xylose, respectively.

The ethanol yield was calculated using Equation (3.3), as described by Pereira et al.

(2015).

g
Cg-0.511

Ethanol yield (%) = -+ 100 (0.3)

where Cr (g/L) is the ethanol concentration (g/L); Cs is the sugars (glucose + xylose)
concentration (consumed) (g/L); 0.511 is the stoichiometric factor for conversion of glucose

or xylose to ethanol.
3.3 Results and Discussion

In this paper a systematic study regarding the use of coconut cultivation wastes to
produce lignocellulosic ethanol was carried out. Sequentially, it will be presented the

characterization of the biomass, the effects of hydrothermal and acidic pretreatments,

hydrolysis and fermentation steps and their respective efficiencies.
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3.3.1 Characterization of the Raw and Pretreated Coconut - Tree Biomasses

The chemical composition of the raw and pretreated materials is presented in Table
3.1. In relation to the GCS in natura, the results are in good agreement with those reported by
Santos-Rocha et al., (2016), that presented 24.70 % of cellulose, 12.26 % of hemicellulose,
40.10 % of lignin and 2.56 % of ashes when characterized raw coconut husk fibers.

Considering the raw coconut-tree leaf, the results obtained are difficult to compare,
since studies with this coconut-tree part have not been founded in the literature. Comparing
with GCS, a coconut part exploited in some works present in literature (CABRAL et al.,
2017; CARRIJO; LIZ; MAKISHIMA, 2002; SANTOS-ROCHA et al., 2016), it is possible to
conclude that CLL presents slightly lower cellulose, hemicellulose and lignin contents while

CLS, higher cellulose, hemicellulose and lignin contents, as showed in Table 3.1.

Tabela 3.1: Chemical composition of the raw and pretreated coconut-tree biomasses

Constituent ~ GCS* (In GCS GCS CLL* (In CLL CLL CLS* (In CLS CLS
(APT)*
(%) natura) (HPT)* (APT)* natura) (HPT)* (APT)* natura) (HPT)*

Cellulose 23344230 37.13+£230 19.66+1.30 19.44+052 14.4+1.70 20.89+1.98 25.84+120 39.03+0.96 30.02+1.45
Hemicellu- 12.23+1.10 6.14+0.57 7.01+0.10 8.18+1.23 3.52+£0.55 2.70+1.16 1437+024 8.16+1.54 9.13+1.17

lose

Lignin 40.01+1.20 4897+1.60 32.87+1.7 36.21+0.15 57.12+£0.82 34.03+£0.39 56.96+0.07 41.89+12 46.39+1.89
Ashes 1.89+£0.20 0.55£0.90 0.6+04 10.11+0.85 6.91+0.01 12.90+030 3.66+0.66 1.44+0.22 0.37+0.01
Massyield - 57.51 98.31 - 58.07 89.69 - 55.92 70.67

*GCS green coconut shell, CLL coconut-tree leaflet, CLS coconut-tree leaf stalk, HPT hydrothermal

pretreatment, APT acid pretreatment

It is also observed that the GCS submitted to HPT presented 37.13 % (+ 2.30) of
cellulose. Gongalves et al., (2014), studied the autohydrolysis of green coconut shell
(pretreatment at 200 °C for 50 min) and 41.96% of cellulose content was reached. Similar
result was obtained for HPT CLS which showed 39.03% of cellulose content.

A similar behavior is observed between GCS and CLS, even when HPT and APT are
considered: low degradation of the cellulosic fraction and high solubilization of the
hemicellulose and lignin fractions. HPT presented higher effect than APT, in accordance with

the literature which affirms that hydrothermal pretreatment has little effect on cellulose
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hydrolysis and promotes a significant hemicellulose removal (ROCHA; ALMEIDA; DA
CRUZ, 2017; SANTUCCI et al., 2015). Regarding CLL biomass, pronounced hemicellulose
removal is also verified in the pretreatments (to GCS and CLS) and similar effect on cellulose
and lignin removal.

On the other hand, an unusual result was observed for CLL treated hydrothermally
(HPT) in relation to cellulosic fraction. It was seen that a severe cellulose removal was
promoted, indicating that this coconut-tree biomass could present more content of amorphous
cellulose than the other coconut-tree wastes, since it is more sensitive to thermal removing

(PARDO; MENDOZA; GALAN, 2019), as showed in Table 3.1.

3.3.2 Enzymatic Hydrolysis

Regarding monosaccharides releasing in the hydrolysis liquor from the pretreated
biomass, Figure 3.1, shows the profiles of glucose and xylose concentrations at each
hydrolysis time. After 72 h of reaction, the glucose concentrations reached 31.85 and 19.07
g/L for the hydrolysis of GCS submitted to HPT and APT, respectively (Fig. 3.1a).
Concerning CLL hydrolysis, 21.31 and 13.65 g/L of glucose concentrations were achieved
when this biomass was submitted to HPT and APT, respectively (Fig. 3.1b). For CLS, it was
obtained 45.39 and 21.01 g/L of glucose, after HPT and APT, respectively (Fig. 3.1c). These
results showed that the enzymatic hydrolysis using hydrothermal pretreatment was more
efficient than those results obtained for the acidic pretreated biomasses. It is known that
hydrothermal pretreatment has high potential to improve cellulose digestibility and,
consequently, to extract more glucose from cellulose. Also, pentose recovery is improved, and
reduced fermentation inhibition compounds are generated (LIMAYEM & RICKE, 2012;
PEREZ, J.A., GONZALEZ, A., OLIVA, M.J., BALLESTEROS, 1.; P., 2008).
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Figura 3.1: Glucose and xylose concentrations during the enzymatic hydrolyses of GCS
(A), CLL (B) and CLS (C). Squares and circles represent glucose and xylose

concentration, respectively. White and Black symbols represent hydrothermal and

acidic pretreatments, respectively.
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Fonte: Acervo do autor (2020)

The maximum xylose concentration obtained was 7.93 g/L. (CLS submitted to HPT,
after 48 h of reaction) (Fig. 3.1¢). For a more precise analysis of the enzymatic hydrolysis step
of the coconut-tree biomasses pretreated with dilute acid and hot-compressed water, the data
in terms of enzymatic conversion of cellulose-to-glucose and hemicellulose-to-xylose are
presented in Table 3.2.

Analyzing the results, it is possible to verify that CLL showed the best results in terms
of higher monosaccharides obtained in the hydrolysis step (88.88 and 77.32% of cellulose-
glucose conversion and hemicellulose-xylose conversion, respectively) (Table 3.2).

Santos-Rocha et al., (2018), achieved 80.51% of cellulose-to-glucose conversion after
72 h of hydrothermally pretreated sugarcane straw enzymatic hydrolysis. In addition, Pereira
et al., (2015), reached 52.53% of cellulose-to-glucose conversion after 24 h of enzymatic
hydrolysis using sugarcane straw submitted to acid pretreatment. Sassner, Martensson and
Zacchi (2008) achieved 56 % of cellulose-to-glucose conversion after 24 h of enzymatic

hydrolysis of Salix plant hydrothermally pretreated.
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Tabela 3.2: Enzymatic conversion of cellulose-to-glucose and hemicellulose-to-xylose

after 72 h of hydrolysis

Pretreatment % GCS* CLL* CLS*

APT* Cellulose-glucose conversion 58.26 £1.74 39.24+1.61 42.03 +1.66
Hemicellulose-xylose conversion 39.62 +1.21 77.32 £2.06 29.91 +1.02

HPT* Cellulose-glucose conversion 51.52+1.07 88.88 +1.85 69.85 +2.17
Hemicellulose-xylose conversion 48.57 +1.32 47.02+1.35 40.63 +1.74

*GCS green coconut shell, CLL coconut-tree leaflet, CLS coconut-tree leaf stalk, HPT hydrothermal pre-

treatment, APT acid pretreatmen

3.3.3 Fermentation Step

In the fermentation step is possible to verify that practically all glucose and xylose
contents were consumed by K. marxianus and ethanol was produced showing its advantage in
relation to S. cerevisiae in metabolize both hexoses and pentoses from lignocellulosic liquors,

specially, coconut cultivation wastes which were focused in this research, as showed in Figure
3.2.

Figura 3.2: Glucose (m), xylose (O0), ethanol (e), glycerol (o) and acetic acid (A)
concentrations during the fermentation step of GCS, CLL and CLS submitted to HPT
(a, c and e) and APT (b,d and f), respectively
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Fonte: Acervo do autor (2020)
However, ethanol yield reached values between 47 and 80% (Table 3.3), showing
three possible problems: The consumption of part of the sugars to metabolic requirements

such as maintenance and reproduction (SASSNER et al., 2008), the production of secondary
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compounds such as glycerol which is visualized in Figure 3.2, or some inhibitory compound

such as furfural and 5-hydroxymethylfurfural (HMF).

Tabela 3.3: Kinetic parameters obtained when the time of maximum ethanol

concentration is considered

Biomass Pretreatment Time Ethanol yield (%) Ethanol Ethanol
(h) concentration productivity

(g/L) (g/Lh)
GCS* APT* 4 79.75+1.03 9.71+0.13 2.43+0.15
CLL* 24 79.66 + 1.67 7.01+0.13 0.29+0.03
CLS* 24 56.70 +1.03 7.44+0.26 0.31+0.01
GCS* HPT* 4 46.76 +1.72 8.83+0.19 2.21+0.14
CLL* 6 74.16 +1.33 10.26+0.11 1.71+0.10
CLS* 8 49.79+ 1.64 12.99+0.32 1.62+0.08

Reactions of fuel-ethanol production by Kluyveromyces marxianus using coconut-tree biomasses pretreated by
dilute acid and hot-compressed water

*GCS green coconut shell, CLL coconut-tree leaflet, CLS coconut-tree leaf stalk, HPT hydrothermal pre-
treatment, APT acid pretreatment

Acetic acid is considered a degradation product from hemicellulosic fraction
(ROCHA; ALMEIDA; DA CRUZ, 2017). The literature, generally, indicates that the
presence of organic acids at concentrations larger than 6 g/L can affect the ethanol production
(CABRAL et al, 2016). The maximum concentration of acetic acid visualized in the
experiments was 1.64 g/L. According to Freitas (2011) who studied the effect of acetic acid
addition in ethanolic fermentation using Saccharomyces carlsbergensis noted that up to 2.2
g/L of acetic acid, inhibition of the ethanol production did not occur.

Oliva et al., (2006) used 4 % (v/v) of the yeast Kluyveromyces marxianus obtaining 43
% of ethanol yield when 2 g/L of acetic acid and 0.4 g/L of furfural were present. For
Sarawan et al., (2019) who used Saccharomyces cerevisiae verified that higher values than
1.5 g/LL exhibited inhibitory effect. Based on these works, it is possible to conclude that the
effect of acetic acid depends on its concentration and the strain used.

Glycerol is considered as a secondary metabolite of alcoholic fermentation. The

maximum value obtained was 1.67 g/L. Cabral et al., (2016) obtained 2.13 g/L of glycerol
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during the fermentation of coconut husk fiber, similar to this work and that affects the ethanol
yield of the process.

It was verified that the ethanol concentration decreased in higher fermentation time
(Fig. 3.2). Kuloyo et al., (2014), presented this same behavior when a fermentation of
Opuntia ficus-indica cladodes liquor with K. marxianus was applied. Silva et al., (2017),
verified that ethanol concentration decreased after 5 h of fermentation. For this reason, in
Table 3.3, the maximum ethanol yield, concentration and productivity are shown.

The fermentation yield changes between 0 and 100 % because takes account the
biochemical yield. When soluble substrates such as sucrose is used, high fermentation yields
are obtained, and inhibitory effects are minimized. Examples are 92.2% of biochemical yield
during sugarcane broth fermentation (RIVERA et al., 2017), as well as 77.31% for palm juice
(RUIZ et al., 2013). As aforementioned, values between 47 and 80% of ethanol yield were
achieved, and even the presence of acetic acid and glycerol interfering in this parameter,
decreasing it, they cannot explain lonely the significant reduction observed. One reasonable
explanation is that other inhibitory compounds were generated (CABRAL et al., 2017,
LIMAYEM & RICKE, 2012; SCHMIDELL, FACCIOTTI, 2001). Sarawan et al., (2019)
perceived that only the presence of furfural (mainly) and HMF in the broth significantly
affected the ethanol yield obtained with S. cerevisiae. Phenolic compounds can be also
formed during pretreatment as a result of partial degradation of lignin (CHIARAMONTI et al.,
2012; RUIZ et al., 2013).

Maximum ethanol productivities during the fermentations changed between 0.29 and
2.43 g/(L h). Silva et al., (2015), (SILVA, G. M. et al., 2015)using K. marxianus in the
fermentation step of sugarcane bagasse liquor found ethanol productivity between 0.20 and
0.48 g/(L h). Hydrothermally pretreated CLS achieved the maximum concentration of ethanol
(12.99 g/L) and high ethanol productivity (1.62 g/(L-h)), when compared to the other
fermentations (Table 3.3).

3.3.4 Potential of Coconut-Tree Residues for Ethanol Production

Based on the yield obtained (hydrothermal pretreatment, enzymatic hydrolysis and
ethanol fermentation) and in the coconut production from Brazilian market in 2017 (according

to IBGE (http://www.ibge.gov.br), the Brazilian market produced about 1.8 million tons of
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fruits (241,386 ha) in 2017), the potential of coconut-tree residues for ethanol production was
determined.

A value of 617.76 L of ethanol/ha was estimated from coconut-tree biomasses (GCS,
CLL and CLS), considering cellulosic and hemicellulosic fractions in the hydrolysis liquor.
Santos-Rocha et al., (2017), studied the use of several biomasses for ethanol production
considering theoretical values in each step (pretreatment, hydrolysis and fermentation). As a
comparison, corn stover presented 770.26 L of ethanol/ha and a value of 3148.93 L of
ethanol/ha for the green coconut shell. However, it is concluded that this value probably was

overestimated showing the importance of this work for this type of biomass.

34 Conclusions

Hydrothermal and acidic pretreatments were applied in the coconut cultivation wastes
and showed reactivity to destructure the biomass. The combination between cellulases and
hemicellulases was positive to saccharify the pretreated biomass reaching between 30-77 %
and 40-88 % for xylose and glucose, respectively (depending of the pretreatment type and the
biomass used). K. marxianus showed ability to metabolize both hexose (glucose) and pentose
(xylose) reaching ethanol fermentation yield up to 80 %. On the other hand, some
fermentations reached low fermentation yield that was not justified with the acetic acid and
glycerol concentrations and can be associated to another inhibitory compounds (furfural,

HMF and phenolic compounds) and can be an important perspective to investigate.
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CAPITULO 4 — A EFICIENCIA DA FERMENTACAO EXIBIDA PELA
SACCHAROMYCES CEREVISIAE NO HIDROLISADO DO BAGACO DE CANA-DE-
ACUCAR, ATRAVES DA ANALISE DOS EFEITOS DO PRE-TRATAMENTO E
DETOXIFICACAO

Este capitulo foi publicado na revista SEMINA: Ciéncias Agrarias 43, 2155 — 2170
(2022), o estudo apresenta parte do trabalho de doutoramento que avaliou a possibilidade de
aumentar a eficiéncia de fermentacdo. Inicialmente, os ensaios foram feitos com bagaco de
cana-de-aglicar pois era uma biomassa ja conhecida, e também estudada pelo grupo de
pesquisa da Universidade Federal de Alagoas no laboratorio de Tecnologia de Bebidas e
Alimentos LTBA ((GOMES, 2015); ANTUNES et al., 2017).

Os hidrolisados de bagaco de cana foram submetidos aos pré-tratamentos hidrotérmico
(195 °C, usando 200 rpm por 10 min) e acido (0,5% (v/v) de é4cido sulfurico a 121°C por 15
min) (carga de solidos de 10% m/v). A hidrolise enzimatica do material pré-tratado foi
realizada utilizando o complexo enzimatico CellicCtec® (60 FPU/gpiomassa secas tampao citrato
a 50 mM e pH 4,8) a 50°C usando 150 rpm por 72h. Antes do processo de detoxificacdo,
realizou-se um teste com a espécie de Saccharomyces cerevisiae para verificar se 0s
compostos furfural (1 e 4g.L-1) e 4cido acético (1 e 5% v/v) exerciam significativa inibi¢do
na espécie testada. O processo de detoxificagdao avaliou a concentragdo de carvao ativado (1, 3
e 5% m/v) e o tempo do processo (30, 45 e 60 min) a 30 °C, 150 rpm por 24 h. Na biomassa
in natura, a composicao quimica foi (36,7, 22,2 e 21,2%) celulose, hemicelulose e lignina,
respectivamente. Enquanto que as amostras apos o pré-tratamento hidrotérmico e acido
apresentaram (60,0, 4,4 e 27,7%) e (63,7, 12,0 e 28,7%), respectivamente, € com rendimento
massico em torno de 60%, para ambos pré-tratados. A presenca de furfural e acido acético
exibiu forte influéncia na espécie considerada, chegando a prejudicar em mais de 90% o
consumo de agucares no meio. O processo de destoxificagdo aumentou 13% a eficiéncia de
fermentagdo para o hidrolisado obtido hidrotermicamente, enquanto que para o acido nao
houve diferenca significativa. Obtendo assim uma fermentacdo com maior eficiéncia,
tecnicamente viavel e menos poluente.

Por falta de tempo devido a atividade paralela de docéncia no Instituto Federal de
Alagoas, em parte, devido ao contexto pandémico de COVID-19 nao foi possivel aplicar a
técnica de detoxificacdo aos residuos do cultivo de coco. No entanto, os resultados obtidos
nesse capitulo podem subsidiar, em estudos futuros, a realizagdo da etapa de detoxificagdo em

outras biomassas, inclusive nos residuos do coco.
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THE FERMENTATION EFFICIENCY EXHIBITED BY SACCHAROMYCES
CEREVISIAE ON SUGARCANE BAGASSE HYDROLYSATE, BY ANALYZING THE
EFFECTS OF PRETREATMENT AND DETOXIFICATION

4.1 Introduction

Several studies have been conducted on the production of biofuels from renewable
sources. In this context, lignocellulosic wastes composed of cellulose, hemicellulose and
lignin are an important alternative (SHEN & AGBLEVOR, 2011; SANTOS-ROCHA et al.,
2016b; OGANDO et al., 2016; SANTOS-ROCHA et al., 2016a).

Sugarcane bagasse, an important residue from sugarcane processing, has been used
for production of liquid biofuel in the past (YU et al., 2013; DRIEMEIER et al., 2015).
However, sugars in this lignocellulosic waste are not readily available for fermentation
because of the recalcitrance of this biomass. Therefore, to obtain biofuels from lignocellulosic
materials additional steps such as pretreatment and enzymatic hydrolysis (SANTOS-ROCHA
et al., 2017) are necessary. When a pretreatment is applied (for example, steam explosion,
liquid hot water or dilute acid), compounds that cause difficulties in later steps (hydrolysis
and/or fermentation) are generated. These compounds are called inhibitors. These inhibitors
interfere with fermentation efficiency because they are toxic to ethanol-producing
microorganisms (ZENG et al., 2021).

Inhibitors can include lignin degradation products (a wide range of aromatic
compounds), organic acids (acetic and formic), and furan derivatives (hydroxymethylfurfural
and furfural) (DENG & AITA, 2018; GURRAM & MENKHAUS, 2014; CARDONA et al.,
2015). For example, the degradation of furfural is an aldehyde-alcohol transformation
reaction, which includes furfuralcohol and furoic acid (SUN et al., 2020). To reduce the
inhibitory effect of these compounds, the procedure of washing the biomass after pretreatment
1s most commonly used, thus using a reasonable amount of water, causing the production of
another effluent and the probable loss of sugars found in the biomass (PAN et al., 2019;
FERNANDEZ-DELGADO et al., 2019).

Several detoxification methods, such as the removal of inhibitors from
lignocellulosic liquors, have been used to increase their fermentability. The adsorption
process using charcoal treatment can achieve a high fermentation efficiency of the
saccharified liquor by yeasts (KIM et al., 2011; BEHERA et al., 2014; LIU et al., 2015).

This study aimed to produce cellulosic ethanol by fermentation with S. cerevisiae
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from sugarcane bagasse hydrolysate, which was obtained after hydrothermal and acid
pretreatment and sequentially subjected to enzymatic hydrolysis and detoxification before the

fermentation process, in order to remove inhibitors and obtain greater fermentation efficiency.

4.2 Materials and Methods

4.2.1 Raw material

Sugarcane bagasse was provided by the Coruripe Mill (Coruripe, Alagoas, Brazil).
This feedstock was dried at room temperature until 10% of its moisture content in biomass
was obtained. Then, it was milled in a Willey type mill to a particle size of 30 mesh, placed in

plastic bags, and stored in a freezer ( —8 °C) to prevent contamination.

4.2.2 Hydrothermal pretreatment

Hydrothermal pretreatment was carried out in a 5.5L stainless steel reactor (model
4584, Parr Instrument Company, Moline, IL, USA). Sugarcane bagasse was mixed with
distilled water at a solid/liquid ratio of 1:10 (w/v) (10% of solid loading) inside the reactor.
The reaction occurred under 195 °C for 10 min at 200 rpm. When the reaction was complete,
the reactor was cooled to 40 °C and the solids were filtered from the liquids. through the solid

was then washed with water to remove dissolved contents until a neutral pH was reached.

4.2.3 Dilute sulfuric acid pretreatment

Acidic pretreatment with sulfuric acid solution (0.5%, v/v), at a solid to liquid ratio
of 1:10 (w/w) (10% of solid loading), was carried out in an autoclave at 121 °C for 15 min.
After returning to room temperature, the solids were filtered from the liquids. The solids were

washed with water to remove dissolved content.

4.2.4 Chemical characterization of the biomass

Raw and pretreated (hydrothermal and acidic pretreatments) sugarcane bagasse were
characterized with respect to their chemical composition, according to analytical procedures
described by Sluiter et al., (2008), modified by Rocha et al., (1997) and validated by Gouveia
et al., (2009).
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4.2.5 Enzymatic hydrolysis of raw and pretreated biomass

The enzymatic complex used was Cellic®CTec2, donated by Novozymes, Latin
America (Araucéria, Parand, Brazil). This complex presented 245 FPU.mL™! (filter paper
units) enzymatic activity (GHOSE, 1987). Enzymatic hydrolysis was conducted with reaction
volumes of 50 mL, 150 rpm, 72 h, at 50 °C in batches. Each batch was placed in sodium
citrate buffer (50 mM, pH 4.8) using a solid loading of 10% (w/v) and an enzyme dosage of
60 FPU.g \4ry matter. The hydrolysis efficiency was assessed by the release of Total Reducing
Sugars (TRS), determined using the DNS method (MILLER, 1959).

4.2.6 Testing the inhibitory effect of acetic acid and furfural on ethanol fermentation by S.
cerevisiae

A 23 experimental design was used to evaluate the effect of acetic acid (1 (—1) and
5% (v/v) (+1)) and furfural (1 (1) and 4 g.L"! (+1)) on ethanol fermentation at different yeast
concentrations (0.2 (—1) and 1% (w/v) (+1)). A total of eight experiments were carried out in
triplicate, as displayed in Table 4.1. Experiments were performed using a formulated synthetic
hydrolysate and Saccharomyces cerevisiae yeast (Fermix®). Erlenmeyer flasks containing
YPD medium (10 g.L! yeast extract, 20 g.L"! peptone and 40 g.L"! glucose) were stirred in a
shaker incubator at 30 °C, 150 rpm for 24 h. Sugar consumption was the response evaluated
from the experiments. Sugar concentration before and after fermentation were measured using
total reducing sugars (TRS), which were determined using the DNS method (MILLER, 1959).
Statistical analyses were performed using the STATISTICA® software (7.0 version).

Tabela 4.1: Sugar consumption during fermentation by S. cerevisiae

Assay Yeast mass (%) Acetic acid content Furfural Sugar
. (%) concentration consumption
(Dry weight) (%)
X2 (gL
X1
X3
1 0.2 1 1 30.0
2 1 1 1 42.5
3 0.2 5 1 16.3
4 1 5 1 12.5
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5 0.2 1 4 22.5

6 1 1 4 30.0
7 0.2 5 4 11.3
8 1 5 4 5.0

Note. *Experimental result deviations were lower than 3%, and for this reason were not represented in the Table.

4.2.7 Fermentation of bagasse liquor obtained by hydrothermal and acidic pretreatment and
enzymatic hydrolysis and the effect of detoxification step

After the previous study and confirmation of the inhibitory effect of acetic acid and
furfural on the strain used in this study (S. cerevisiae), another experimental design was set up
to evaluate a suitable detoxification condition that could improve ethanol yield. This
experimental design involved the 2? experimental designs with three replications in the central
point. A total of seven experiments were carried out in triplicate. Statistical analysis was
performed using the STATISTICA® software (7.0 version). Hydrolysate samples from both
hydrothermally pretreated and dilute acid pretreated sugarcane bagasse were subjected to
detoxification using milled activated charcoal with a particle size of 2 mm. The variables of
the detoxification process were the adsorbent (charcoal) concentration (1, 3, and 5% (w/v),
-1, 0, and +1 conditions, respectively) and the time (30, 45, and 60 min, —1, 0, and +1
conditions, respectively). Fermentation was performed as described by Wolf (2011) in a
shaker incubator at 30 °C and 150 rpm for 24 h. The TRS were measured using the DNS
method (MILLER, 1959). Ethanol concentration was determined using the dichromatic
method (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS [AOAC], 2005;
SANTOS-ROCHA et al., 2016b). The efficiency of the process (based on the response
variable) was evaluated based on sugar consumption (%) in the medium (reducing sugars).
Fermentation efficiency was calculated as follows, as the Equation 4.1:

Ethanol lr%}
F P Q"
(TRSimitial — TRSfinal)(;):0.511

100 @.1)

Fermentation ef ficiency (%) =

where TRS is the total reducing sugar and 0.511 is the stoichiometric factor for the conversion

of monosaccharides in ethanol.
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4.3 Results and Discussion

4.3.1 Chemical characterization of the raw and pretreated biomass

Raw and pretreated lignocellulosic biomass were chemically characterized in terms
of cellulose, hemicellulose, lignin, and ash contents, as shown in Table 4.2. Cellulose was
found to be the main component. Significant removal of hemicellulosic fraction was reached
after the hydrothermal (88.9%) and acidic (65.9%) pretreatments. This behavior corroborates
with that in previous studies, in which hydrothermal pretreatment caused the auto-ionization
of water, which acted as a catalyst, decreasing the pH of the medium and stimulating the
depolymerization of hemicellulose (RUIZ et al., 2020). Studies in which time, temperature,
and pH were varied, carried out by Chotirotsukon ef al. (2021) demonstrated the removal of
around 52.0% of hemicellulose (170 °C, 40 min, pH = 7.0) from sugarcane bagasse. Santos-
Rocha et al. (2017) indicated that an increase in the reaction temperature contributed to a
higher percentage of 86.9% hemicellulose (195 °C, 10 min, pH = 7.0) being removed.
Similarly, the dissolution of hemicellulose is also characteristic of acidic pretreatments.
During thermochemical reactions, sulfuric acid acts as a catalyst, cleaving the glycosidic
bonds and releasing hemicellulose monomers (KULOYO et al., 2014; PEREIRA et al., 2016;
SANTOS-ROCHA et al., 2017). With respect to lignin content, a lower but important
percentage was removed (26.9 for hydrothermal and 14.5% for acidic pretreatments). It has
been pointed out that in both pretreatments, there is also a modest removal of the lignin
fraction (CHOTIROTSUKON et al., 2021).

Tabela 4.2: Chemical characterization of the raw sugarcane bagasse and in pretreated
biomass (in dry matter)

Components (%) Raw material Hydrothermal pretreatment Acidic pretreatment
Cellulose 36.7+0.2 60.0 +0.1 63.7+0.1
Hemicellulose 222+0.1 4.4+0.1 12.0+£0.2
Total Lignin 21.2+0.1 27.7+2.1 28.7+0.7
Ashes 13.8+0.1 6.3+0.3 23+0.2
Mass Yield 55.96 63.13
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4.3.2 Effect of inhibitor presence on S. cerevisiae fermentation activity

Table 4.1 shows the results for each condition as indicated by the experimental
design. Sugar consumption was achieved between the values 5.0-42.5%, showing clearly that
the presence of these inhibitors affects the fermentation process by S. cerevisiae. Jonsson &
Martin (2016), observed that these compounds (inhibitors) hinder growth and metabolism of
the cell complex during fermentation. In assay 8, it was identified that the severity of their
effect increases with their concentrations, by applying 1% yeast, 5% acetic acid and 4 g.L!
furfural. Wikandari et al. (2010), observed that during fermentation with 1.5 g. L™ of acetic
acid, the activity of S. cerevisiae was completely inhibited. The same effect was observed
when furfural concentration was above 1 g.L"! (RICHARDSON et al., 2011). The effects of
these parameters, acetic acid and furfural, were better visualized when there was a higher
consumption of sugars, in Experiment 2, where the fermentation conditions had the lowest
concentrations of inhibitors, in which 1% of yeast, 1% of acetic acid and 1 g.L"! of furfural
were used.

To confirm the results obtained, a verification of the model was carried out. To do
this, it was necessary to adapt our model to a linear, quadratic or even cubic model. A linear
model was initially tested for simplicity (Equation 4.2), using analysis of variance, which was
verified through ANOVA (Table 4.3) showing good results with R’ = 0.9993 and Y being
related with sugar consumption (%) and X7, X2 and X3 for yeast concentration (%), acetic

acid concentration (%) and furfural (g/L), respectively:

Y (X1,X2,X3)(%) = 32.69+21.10.X1—-2.95.X2 - 2,70.X3 — 4.70.X1.X2 4.2)

The F test was performed according to Box and Wetz (1973), taking into account the
appropriate degrees of freedom. The ratio between the mean square of the regression (MSR)
and that of the residue (MSr) must be greater than the distribution point F in order to have a
greater degree of reliability, if possible, ten times greater. Thus, MSR/MSr = 122.43 > (10 x
Fa,11); Fa,11 = 3.36 (for 90% confidence), showed that we have a highly significant fit and that

it fits the linear model well.

67



Tabela 4.3: ANOVA for the linear model of sugar consumption

Factor < Sum of Degrees of Mean of F value p-level
quare (SS) freedom Square (p=0.01)
R?=0.9993
1 12.251 1 12.251 15.682 0.15747
2 798.001 1 798.001 1021.442 0.01991
3 132.031 1 132.031 169.000 0.04888
1by2 113.251 1 113.251 144.962 0.05275
1by3 7.031 1 7.031 9.000 0.20483
2by3 7.031 1 7.031 9.000 0.20483
Error 0.781 1 0.781
Total SS 1070.379 7

Figure 4.1A presents a Pareto chart, which graphically summarizes and displays the
relative importance of a group of data. Effects which the rectangle are located on the right of
the red line (p = 0.1), are statistically significant (BARROS et al., 2001). We observed that
the main effects are acetic acid content and furfural and the interaction between acetic acid
and S. cerevisiae concentration. In Figure 4.1B-C, the interaction between furfural and acetic
acid, as well as acetic acid and yeast concentration, are shown (based on the relevance
demonstrated in Figure 4.1A - Pareto chart). These indicated that better results were obtained
when lower concentrations of acetic acid and furfural were used. In addition, lower yeast
concentration was affected more by the presence and concentration of acetic acid, showing

that higher yeast concentration can aid in minimizing the impact of acetic acid in the medium.
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Figura 4.1: Figure showing the significance of the variables. The response variable is
sugar consumption (%) in the medium represented by the numbers on the right of the
graphs.
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Previous studies have shown that the presence of acetic acid and furfural affects the
metabolization of sugars and, consequently the fermentation yield. Tian et al., (2009) utilizing
2 gL' of S. cerevisiae obtained better fermentation efficiency when furfural was present up
to 2 gL\, The present study shows similarity with these prior studies with respect to the
behaviour of S. cerevisiae, indicating a better performance in the presence of a greater amount
of yeast. Also, Sarawan et al., (2019) verified that better fermentation results were obtained at
lower concentration of acetic acid and furfural, 0.82 and 0.17 g. L', respectively
(fermentation with 1.2 g. L'! of S. cerevisiae). Bezerra et al., (2020) cite that acetic acid and
furfural concentrations of 3 and 0.25 g. L', generally have a toxic effect on ethanol
fermentation. The verified citations present a margin of conditions close to those of our study.
This can be observed in test 8, where the combination of maximum conditions of acetic acid
and furfural has a negative effect on the number of sugars consumed. This makes it possible
to analyze interference in the microbial growth rate and consequently the product

metabolization (OLIVA et al., 2006).
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4.3.3 Detoxification and fermentation of sugarcane bagasse broth

The previous step showed that acetic acid and furfural were inhibitors of S.
cerevisiae’s fermentation of the lignocellulosic broth. Next, a detoxification step (adsorption
on activated carbon) was applied to verify if the fermentation efficiency could be improved.
However, it is important to mention that the TRS content could not be significantly reduced
during this process.

Table 4.4 shows the results for each condition as indicated by the experimental
design for the hydrothermal and acidic pretreatments. The maximum recovery of sugars after
detoxification was approximately 80% in both pretreatments and for assay 1, which used 1%
of adsorbent for 30 min. In other words, only about 20% of the sugars in the broth were lost
during this process. This behavior can be attributed to adsorption by activated charcoal, which
can remove both inhibitors and sugars. Contact time is a crucial variable that affects
adsorption during detoxification processes, and there is a reaction time in which an
equilibrium between the adsorbent (active carbon) and adsorbate (inhibitor compounds or
sugars) is reached (MUSSATTO & ROBERTO, 2004). Villarreal et al., (2006) showed that
an optimal pH (5.5) and contact time (60 min), were required for maximum removal of
furfural (100%) from liquor from acid pretreatment of eucalyptus biomass. For sugarcane
bagasse, in the Pareto chat (graph not shown), the variable that showed significant influence
was time (confidence level of 95%), i.e., higher the reaction time, 60 min, higher the sugar
loss. Figure 4.2 shows the effect of reaction time and adsorbent percentage on TRS recovery
(g/L).

Detoxification conditions used were based on literature. For example, Freitas et al.,
(2019) used 2% activated charcoal for the broth obtained from coconut husk pretreated by
acid and after 24 h, only 2% of the sugars were lost. Li et al., (2020) applied a detoxification
process in a broth obtained from rice straw pretreated with acid using 1% activated charcoal
for 5 h, and a loss of 5% sugars was observed by them. Prasad et al., (2018), used a broth
form corn straw treated by acid and conducted detoxification using 5% of activated charcoal

for 30 min, to obtain a sugar loss of 15%, which is similar to our work.
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Tabela 4.4: Total reducing sugars (TRS) for hydrothermal and acid pretreatment after
detoxification process

Assay  Adsorbent Time TRS (g.Lh TRS (g.Lh
(%) (min)
hydrothermal acidic
1 1 30 11.4+0.3 343+0.1
2 5 30 10.5+0.4 30.9+0.3
3 1 60 9.9+0.3 29.9+0.3
4 5 60 10.1 £0.1 24.6 +0.4
5 3 45 6.5+0.3 329+0.3
6 3 45 6.4+03 325+0.2
7 3 45 6.7+0.2 31.2+0.2

Nota. The initial concentration of sugars after enzymatic
hydrolysis were 13.8 £ 0.2 and 41.8 £0.2 g. L'\,

Figura 4.2: Relation between time and adsorbent dose to the total reducing sugars (TRS)
(g/L) recovered from sugarcane hydrolysate A) for hydrothermal and B) for acidic
pretreatment.
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4.3.4 Fermentation of non-detoxified and detoxified sugarcane bagasse broth

Finally, fermentation assays were carried out for sugarcane bagasse hydrolysates

obtained after hydrothermal and acidic pretreatments and enzymatic hydrolysis. Table 4.5
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shows the results for the raw and detoxified hydrolysates using 1% of adsorbent and 30 min

of process time.

Tabela 4.5: Ethanol concentration and fermentation efficiency obtained after the
fermentation step

Bioethanol Fermentation efficiency
Assay 1 (%)
(gL
NHH" 7.17 7533 +£2.35°
DHH" 7.41 87.94 +1.56°
NHA® 4.92 70.41 £ 2.892
DHA® 5.11 75.50 £ 2.392

Nota. "NHA, non-detoxified hydrolysate from acid
pretreatment; DHA, detoxified hydrolysate from acid
pretreatment; NHH, non-detoxified hydrolysate from
hydrothermal pretreatment; DHH, detoxified hydrolysate
from hydrothermal pretreatment. Same letters represent no
statistical difference with 90% confidence level (p < 0.10).

It is possible to verify an increase of 12.6% in fermentation efficiency for sugarcane
bagasse hydrolysate obtained after hydrothermal pretreatments and detoxification process.
There was no significant difference between the detoxified and non-detoxified acidic
hydrolysate.

Rasika et al., (2016) carried out fermentations using MDMC medium (with glucose
and mannose), at 0.4 g. L' of acetic acid and 0.6 g. L' of furfural and obtained 94.7%
(detoxified) and 56.13% (non-detoxified) of fermentation efficiency, showing the importance
of detoxification in increasing ethanol yield. According to Freitas et al., (2019), detoxified
liquor obtained from coconut husk after acidic pretreatment increased fermentation efficiency
from 60 to 84%.

A study carried out by Mussatto and Roberto (2004) indicated that the pH of the
system influences the adsorption process of the inhibitor as a change in pH induces
precipitation and causes instability of the toxic inhibitor compounds (Martinez et al., 2001).
pH has an influence on furfural by altering the structural stability (Sahu et al., 2008). These
studies suggest that, the low fermentative yield obtained from acid hydrolysate, before and
after detoxification is due to the acid residues, that might have been retained from the acid
pretreatment. On the other hand, for hydrothermal hydrolysate, a simple process of

detoxification with activated charcoal was shown to be significant.
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The pretreatment using sulfuric acid has been extensively studied because it de-
structures lignocellulosic biomass (BEHERA et al., 2014). In addition, applying acidic
solutions can generate more by-products, which could reduce the efficiency of consequent
steps for obtaining biofuel. Hydrothermal pretreatment is particularly significant in this

context as it just makes use of hot-compressed water (SANTOS-ROCHA et al., 2017).

4.4 Conclusions

These results emphasize that sugarcane bagasse is a potential lignocellulosic biomass
for ethanol production. Acetic acid and furfural were toxic to the S. cerevisiae strain. A better
performance was obtained for the liquor obtained from hydrothermally pretreated biomass
after detoxification with activated carbon. This study, shows that detoxification of compounds
produced during pretreatment and enzymatic hydrolysis of lignocellulosic biomass, which are
inhibitors to fermentation by S. cerevisiae, improves the fermentation yield. It also showed
that using hydrothermal pretreatment, eliminates the washing step of pretreated biomass, and

eliminated the generation of new effluents.
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CAPITULO 5 - CONCLUSOES

Diante do que foi exposto no conteido dessa tese, apresentam-se as seguintes

conclusodes:

e Este trabalho constatou a possibilidade de utilizar os residuos do cultivo de coco
(residuos do fruto e do coqueiro), ainda ndo explorados na literatura, como biomassa

lignoceluldsica promissora na geracdo de energia, especificamente, obtengdo de E2G;

e O pré-tratamento hidrotérmico (PTH) apresentou efeito superior ao pré-tratamento
acido, em relacdo, a todas as partes do cultivo de coco: casca do coco verde (CCV);
foliolos da folha do coqueiro (FFC) e raque da folha do coqueiro (RFC). Além de
promover uma remoc¢do significativa da hemicelulose, em concordancia com a

literatura;

e A hidrdlise enzimatica utilizando o pré-tratamento hidrotérmico foi mais eficiente do

que os resultados obtidos para as biomassas acidas pré-tratadas;

e Os ensaios de fermentacdo enzimatica realizados com a K. marxianus mostrou-se
capaz de metabolizar tanto a hexose (glicose) quanto a pentose (xilose) atingindo

rendimento de fermentagao etandlica de até 80 %.

e Por outro lado, algumas fermentagdes atingiram baixo rendimento fermentativo e
podem estar associadas a outros compostos inibitérios (furfural, HMF e compostos

fenolicos).

e A associacdo de baixo rendimento fermentativo aos compostos toxicos tornou-se
dificil devido a escassez de trabalhos cientificos que utilizassem os residuos do cultivo

de coco;

e O estudo dos compostos toxicos foi realizado com bagaco de cana-de-agucar,
biomassa lignoceluldsica conhecida e consolidada. E o 4cido acético e o furfural foram

toxicos para a cepa de S. cerevisiae;
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e Uma melhor eficiéncia de fermentagdo foi obtida no licor a partir de biomassa pré-

tratada hidrotermicamente apos destoxificagao com carvao ativado;
e Este estudo mostra que a detoxificagdo de compostos produzidos durante o pré-

tratamento e hidrolise enzimatica da biomassa lignoceluldsica, que sdo inibidores da

fermentacdo por S. cerevisiae, melhora o rendimento da fermentagao.
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CAPITULO 6 — SUGESTOES PARA TRABALHOS FUTUROS

Realizar estudo dos compostos inibitorios nos residuos do cultivo de coco abrangendo

todas as biomassas utilizadas neste trabalho;

Aplicar a metodologia de detoxificagdo com carvao ativo, desenvolvida neste trabalho,
aos residuos do cultivo de coco. Visto que, a viabilidade técnica e econdmica da
producdo de E2G estd associada a obtencdo de condi¢des que permitam atingir

elevado teor de agucar.

Realizar estudos fermentativos que utilizem a S. cerevisiae associada a K. marxianus,
na tentativa de elevar o teor alcoolico. E assim conseguir fermentar uma maior

quantidade de hexoses e pentoses presentes no hidrolisado.

Realizar estudos para avaliar a viabilidade técnica, geografica e econdmica dos

residuos do cultivo do coco na produgao de etanol lignocelulodsico.
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