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increase of 7% in the malware size causes an accuracy drop between 25% and 40%
for malware family classification. They show that an automatic malware
classification system may not be as trustworthy as initially reported in the
literature. We also evaluate using modified malwares alongside the original ones
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RESUMO

Neste trabalho investigamos como modificar arquivos executaveis de software com o in-
tuito de enganar sistemas automatizados de classificacao de malwares. A principal con-
tribuicao deste trabalho consiste em uma metodologia para injetar bytes em um arquivo
aleatoriamente e utilizar isso como ataque para reduzir a acuracia da classificacao, mas
também como um método de defesa, aumentando a quantidade de dados disponiveis du-
rante o treino desses sistemas. A injecao mencionada respeita o formato de arquivos do
sistema operacional, de forma a garantir que o malware ainda sera executavel depois das
modificagoes e nao tera seu comportamento modificado. Nés reproduzimos cinco aborda-
gens diferentes do estado da arte para classificacao de malwares e avaliamos nosso esquema
de injecao de dados: um baseado em GIST+KNN, trés variacoes de CNN e uma Gated
CNN. Nossos experimentos foram feitos utilizando um dataset disponivel publicamente
com 9339 exemplares de malware de 25 familias diferentes. Nossos resultados mostram
que um simples aumento de 7% no tamanho do malware pode causar uma diminuicao
entre 25% e 40% na classificacao de familias. Eles mostram também que um sistema au-
tomatizado de classificacao pode nao ser tao confiavel quanto inicialmente reportado na
literatura. Noés avaliamos também a utilizagao de malwares modificados em conjunto aos
originais para aumentar a robustez da rede contra os ataques mencionados. Os resulta-
dos apontam que uma combinacao da reordenagao das se¢oes dos malwares com a injecao
de dados pode resultar em uma melhora no desempenho da classificacao. Os cddigos
utilizados estdo disponiveis em (https://github.com/adeilsonsilva/malware-injection).
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ABSTRACT

We investigate how to modify executable files to deceive malware classification systems.
This work’s main contribution is a methodology to inject bytes across a malware file
randomly and use it both as an attack to decrease classification accuracy but also as a
defensive method, augmenting the data available for training. It respects the operating
system file format to make sure the malware will still execute after our injection and
will not change its behavior. We reproduced five state-of-the-art malware classification
approaches to evaluate our injection scheme: one based on GIST+KNN, three CNN
variations and one Gated CNN. We performed our experiments on a public dataset with
9,339 malware samples from 25 different families. Our results show that a mere increase
of 7% in the malware size causes an accuracy drop between 25% and 40% for malware
family classification. They show that an automatic malware classification system may not
be as trustworthy as initially reported in the literature. We also evaluate using modified
malwares alongside the original ones to increase networks robustness against mentioned
attacks. Results show that a combination of reordering malware sections and injecting
random data can improve overall performance of the classification. Code available at
(https://github.com/adeilsonsilva/malware-injection).
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Chapter

INTRODUCTION

What is a Malware? Sikorski & Honig (2012) use this term to describe pieces of software
accordingly to their actions:

“Any software that does something that causes harm to
a user, computer, or network can be considered malware

[...]” (SIKORSKI; HONIG, 2012)

Mitnick & Simon’s (2003) definition is based on the software behavior during its
execution and also its interactions with the user:

“Another kind of malware - short for malicious software
- puts a program onto your computer that operates with-
out your knowledge or consent, or perform a task with-
out your awareness.” (MITNICK; SIMON, 2003)

These applications, purposedly built with intentions of reading, copying, or modify-
ing information from computer systems - often without user consent - pose a high threat
for modern information systems (LI et al., 2020; Microsoft Corporation, 2019; Symantec
Corporation, 2019). The early detection of such malware is vital to minimize their ef-
fects on an organization, or even among regular users, and it is critical to maintain the
confidentiality, integrity and availability of information.

Malware development can be seen as a large industry nowadays, due to its economical
impact as both a revenue source for its developers and a mandatory cost for enterprises
of different sizes willing to protect their data. This thriving business has a very flexible
infrastructure, providing malware as services for several intents (Microsoft Corporation,
2021). It means that the defense mechanisms need to be updated at the same rate, in
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a co-evolution process. Sophisticated attacks creates the demand for more sophisticated
defense which requires even more creativity by resilient attackers.

Given this rapidily evolving nature of malware campaigns globally, long-established
techniques for the assessment of samples can not always keep up with the amount of
changes found in the wild. This is when machine-learning based methods can be useful -
due to their power of generalization and scalability - to be integrated alongside existing
methods in the task of identifying and mitigating possible damages caused by malware
(SAXE; SANDERS, 2018).

In this work we discuss strategies related to the classification (i.e. which kind
of malware is it?) of malware samples using only their raw bytes as inputs to machine
learning algorithms. These strategies can be seen as part of the static analysis of samples,
an especially important stage in a malware detection pipeline, in which it is necessary to
provide the classification without executing the file being analyzed. It is important to
stress that these methodologies are not to be used as the sole strategy to detect malware
samples, but as the first one in a multi-step chain of procedures. Despite that, due to
their fast execution times and lack of human interaction, they are still an integral part
of such a pipeline (Microsoft 365 Defender Threat Intelligence Team, 2020; CHEN et al.,
2020).

We present here a straightforward way to modify a software file to deceive systems
built to classify malware examples into families. Our method builds upon the idea of
injecting bytes into the executable file (ANDERSON et al., 2017). We seek to insert
bytes in various parts of a malware. By doing so, we aim to deceive malware classifiers
and preserve the original functionality while hindering the detection of injected data. To
accomplish that, we create rules of injection that respect the file format of the operating
system the malware will infect. We can not only define how many bytes we inject but
also how they spread over the file. More importantly, we explore two approaches:

Random injection: inserting random bytes, so that we do not require any knowledge
about the systems to be deceived

Adversarial injection: inserting bytes taken from families different from the sample
being evaluated

The classification approaches evaluated in this work are based on methods that learn
straight from the raw bytes of the file, ranging from methodologies that reinterpret the
sample as a grayscale image up to preprocessing each sample as a 1D vector in their
execution (NATARAJ et al., 2011; GROSSE et al., 2016; ATHIWARATKUN; STOKES,
2017; YUE, 2017; CHEN, 2018; CHEN et al., 2020; RAFF et al., 2017; LE et al., 2018;
SU et al., 2018; KHORMALI et al., 2019; BENKRAOUDA et al., 2021). We want to
evaluate the vulnerability of these variants to the already known adversarial examples
(GOODFELLOW; SHLENS; SZEGEDY, 2015), an approach with increasing popularity
in the literature, especially in the context of malware(GROSSE et al., 2016; ANDERSON
et al., 2017; AL-DUJAILI et al., 2018; KHORMALI et al., 2019; DEMETRIO et al.,
2019, 2021; BENKRAOUDA et al., 2021; LUCAS et al., 2021). There are some limitations
that must be observed, though, since the perturbations added to malware samples must
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be drawn from a discrete domain. It differs from other types of data, such as images.
Also, executable files have strict standards, which means byte ordering is relevant in
some parts of the file. As mentioned earlier, we tried to conform our manipulations to
the expected standards in order to preserve the functionality of the malware samples.
The rest of this dissertation is presented as follows: in Chapter 2 we provide high
level definitions used throughout the text. In Chapter 3 we compare our methodologies
to other present in the literature. In Chapter 4 we present how we generate and add data
between sections of a Portable Executable (PE) file and also discuss the machine learning
algorithms evaluated in this paper for malware classification. In Chapter 5 we discuss
our evaluation strategies and their results, finishing with our conclusions in Chapter 6.
Our contributions can be summarized as follows:

1. We provide a framework to inject data into PE files that leverages all the alignments
required to preserve its functionality. It can inject any sort of data (either random or
from a different file) in multiple positions of the file, not only at the end (padding).

2. We evaluate how different deep neural networks architectures proposed for malware
classification behave in multiclass classification scenarios. We want to assess the
difficulties behind separating a given sample from other samples of the same kind.

3. We evaluate how the aforementioned networks behave when dealing with injected
samples. Our goal here is to assess how our attacks impact the classification of these
networks, in regards both of the location and also the amount of injected data.






Chapter

BACKGROUND

In this work we focus on the automatic detection and classification of malware samples
with machine learning, and how data injection affects the performance of these algorithms.
We are interested in identifying which family a given sample belongs to and if it is a
derivative of other existing samples.

The accuracy of those machine learning algorithms has a strong correlation with the
structure of the input data and the feature variation among different examples (GOOD-
FELLOW; BENGIO; COURVILLE, 2016). It is important to understand the complexity
of the used features since they are learned by the chosen algorithms.

Some important concepts are defined in this chapter before we dive into the method-
ologies explored in this work.

2.1 MALWARE ANALYSIS

Analyzing a given piece of software to determine its behavior on a computer system is
a particularly challenging task. The analyst observes the sample, before, during and
even after its execution to register its actions (SIKORSKI; HONIG, 2012). The entire
process is divided into specific sets of procedures with different goals, that can be executed
independently and in different orders.

Usually, the first step to be considered is the static analysis, the process of obtaining
information about the sample without executing it. During this step, the goal is to obtain
an identifier through hashing (useful for reverse searching in existing malware databases),
analyze its set of instructions by disassembling it, checking its resources to be shown to
the user (such as images or strings of messages), its imported libraries and dependencies.

Malware authors look for ways of hardening this process mainly through packing and
obfuscation, techniques in which the original malware static data is hidden inside another
layer which gets uncovered during its execution. This way the original behavior is kept
intact while the appearance of the static file might look different.

Another step to be considered for the analysis is by actually executing the file, the
dynamic analysis. This is usually performed in controlled environments, with the
usage of sandboxes - virtual or physical machines, isolated in a dedicated network - to
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analyze the entire lifecycle of the analyzed file. During this step some more information is
collected, such as the endpoints the malware might try to connect through the network,
the files it accesses, the configurations it applies to the operating system, the order
and amount of system calls it performs. Just like in the static analysis, there are many
countermeasures used by malware authors to make it harder to understand a given family
of malwares. Some samples might stay dormant for several hours after initial infection
to avoid being detected right away, activating after a certain amount of time or after
a command comes through the network. It might also try to check information about
the operating system to make sure it is a real system and not a sandbox (e.g. a virtual
machine without internet connection or with a disabled antivirus software). Many of
these countermeasures increases greatly the amount of effort required to fully understand
the real behavior of the malware.

2.2 FILE FORMAT

Modern operating systems, such as Linux and Microsoft Windows, use the concept of
sections to read an executable file, load it to the memory, and run its instructions. It is
necessary to know and follow the file format specifications to be able to insert data in
distinct parts of an executable and preserve its functionality. Since there are differences
between the files accepted by each operating system, designing a system-agnostic injection
scheme is impracticable. For this reason, we focus on the Microsoft Windows’ PE32
format, as it is the only one included in publicly available malware datasets (NATARAJ
et al., 2011; RONEN et al., 2018).

As shown in Figure 2.1, PE32 sections provide information about the executable, such
as its instructions (“.text”), its variables(“.data”), and resources it uses (“.rsrc”). Fol-
lowing this layout, our strategy consists of injecting non-executable sections like “.data”
to the file. This way, the set of instructions does not change, and the only way to decide
whether an injected section is in use or not is through execution.

text

Figure 2.1: Illustration of the sections of a PE32 executable file.
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2.3 MALWARE FEATURE EXTRACTION

As mentioned earlier, several types of information can be extracted from malware samples
during static and dynamic analysis. If we are looking for automating this process, we need
to somehow categorize this data in a way our machine learning algorithms can process
and learn upon. Several characteristics have been used in the literature:

e N-grams: by analyzing an input file as a sequence of words, a N-gram can be seen
as a sequence of N adjacent words, N being an integer number. For example, we
can split a phrase such as ”Blue sky with no clouds.” in N-grams with N=2 we have
the following groups: ”Blue sky”, "sky with”, ”with no”, and "no clouds”. This
technique can be used to extract N-grams from the set of instructions of a sample
(RAFF et al., 2018). This kind of feature can point to the frequency and the order
that certain instructions appear in a sample’s machine code.

e Raw bytes: the sequential bytes of the analyzed sample can be passed as a single
array of features to a neural network (RAFF et al., 2017).

e System calls: The actions taken by a file during its execution can be stored and
used as features for machine learning algorithms (KOLOSNJAJI et al., 2016).

e Histogram of byte’s entropy: The entropy - a measure of how much variation
exists among bytes values - can be computed and used as a discriminative feature
for malware samples (SAXE; BERLIN, 2015).

e Imported libraries: Libraries and functions used by a given sample are considered

relevant to identify the semantics of the system calls performed by a malware family
(SAXE; BERLIN, 2015).

¢ File metadata: static information such as compilation date, target architecture
(i.e 32-bit or 64-bit) and number of sections can be used as characteristics of ana-
lyzed files (SAXE; BERLIN, 2015).

Those extracted features can then be used to group similar samples into malware
families, given that they share similar traits up to a certain threshold. Despite not
having the exact same sequence of bytes, there might be similarities among samples both
in the aforementioned features and in their behavior. We are interested in exploring
machine learning techniques to automatically perform this grouping.

In this work we have the intention of applying representational learning, i.e algo-
rithms that can learn which characteristics are discriminative enough to classify a sample,
and also understanding how these algorithms can be compared to feature-engineered ones.
The techniques explored here can be thought of as part of the static analysis of a software
sample, where we perform the classification without executing it.
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RELATED WORKS

We start by presenting previous works which performed malware classification. We also
discuss other methodologies for malware perturbation and what authors have done to
minify these effects.

3.1 MALWARE CLASSIFICATION

Nataraj et al. (2011) presented a method to transform software into images and classify
them according to their malware family. In this context, a family is a set of software
files with high similarity of instructions and behavior. Follow up works explored this idea
using different feature extraction (e.g., GIST, Local Binary Patterns, Scale-Invariant Fea-
ture Transform) and classification (e.g., Support Vector Machines, K-Nearest Neighbours
(KNN)) methods (AGARAP; PEPITO, 2018; LIU et al., 2019).

The growth in Deep Learning research led to the exploration of neural networks for
malware classification. Recent works applied different architectures for this task, either
by extracting features from the file (e.g., system calls, imported libraries, functions in
use) (PASCANU et al., 2015; SAXE; BERLIN, 2015; ATHIWARATKUN; STOKES,
2017; ANDERSON; ROTH, 2018) or by using the raw bytes from the data as in-
put (RAFF et al., 2017, 2018; HADDADPAJOUH et al., 2018). Some of them achieve
high classification accuracy by training CNN from scratch (SU et al., 2018; LIU et al.,
2019), or by using prior knowledge from a CNN pre-trained on a large dataset (YUE,
2017; CHEN, 2018; CHEN et al., 2020) like ImageNet (DENG et al., 2009). Malware
detection was also exploited in the form of a binary classification by considering all mal-
ware files as one class and samples of benign software as the other one (CHEN, 2018;
RAFF et al., 2017). These networks, however, are vulnerable to adversarial attacks. In
this work we explore various architectures - KNN+GIST as proposed by Nataraj et al.
(2011), CNN, CNN-LSTM and CNN-BiLSTM as proposed by Le et al. (2018) and Mal-
Conv as proposed by Raff (2017) (RAFF et al., 2017) - and how they behave against
crafted adversarial samples.

It is worth mentioning that there are few relevant public datasets for training malware
classifiers, which makes comparing different works a more subtle task. Malimg(NATARAJ

9
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RELATED WORKS

et al., 2011), BIG 2015 (RONEN et al., 2018) and EMBER (ANDERSON; ROTH, 2018)
are the most notable ones. Since our injection method requires reading the file header,
BIG 2015 (RONEN et al., 2018) dataset is not possible because the samples have their
headers stripped. EMBER (ANDERSON; ROTH, 2018), on the other hand, does not
provide raw byte values straight away. Since they provide SHA-256 values taken from file
contents, a reverse search in malware indexing services is needed in order to retrieve their
raw bytes. In Table 3.1 we aggregate state of the art methods for malware detection and
classification by their technique and the dataset it used.

Table 3.1: Summary of different malware classification techniques.

AUTHOR

TECHNIQUE

DATASET

Nataraj et al. (2011)

GIST + KNN

malimg(NATARAJ et al.,
2011)

Pascanu et al. (2015) ESN + Logistic Regression | Private

Athiwaratkun e Stokes | LSTM + MLP Private

(2017)

Yue (2017) CNN malimg(NATARAJ et al,
2011)

Raff et al. (2017) Embedding + CNN Private

Anderson e Roth (2018) Embedding + CNN Ember (ANDERSON;
ROTH, 2018)

Su et al. (2018) CNN Private

HaddadPajouh et al. | LSTM Private

(2018)

Liu et al. (2019)

Multilayer SIFT

malimg(NATARAJ et al,
2011), BIG 2015(RONEN
et al., 2018)

Agarap e Pepito (2018) GRU + SVM malimg(NATARAJ et al.,
2011)
Le et al. (2018) CNN-BiIiLSTM BIG 2015(RONEN et al.,

2018)

Chen (2018) Inception-V1 (SZEGEDY | malimg(NATARAJ et al.,
et al., 2016) 2011), BIG 2015(RONEN
et al., 2018)
Chen et al. (2020) Inception-V1 (SZEGEDY | Private

et al., 2016)
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[Input malware]

[Sectin Injection] [File Padding] [Content Manipulation] [Header Manipulation]

Figure 3.1: Illustration of the differences among attacks to image-based malware clas-
sifiers. The leftmost (red) square display our approach. Blue squares displays previous
attacks.

3.2 MALWARE INJECTION

Adversarial attacks consist of adding tiny changes to the input data to alter its classifi-
cation result and are usually not easily perceived by humans. But arbitrarily modifying
software files without changing its behavior is impossible. Even verifying if a modifica-
tion does not affect a software’s response is an undecidable problem. Thus, if someone
arbitrarily alters a malware to change its classification results, there is a chance it will
no longer pose a threat to the system. Despite that fact, there exists in literature some
possible attacks that retain their functionalities. They are illustrated in Figure 3.1.

Different works exploited adversarial attacks in the malware domain. Grosse et al.
(2016) and Al-Dujaili et al. (2018) extracted static features from malware files and used
the Fast Gradient Sign Method (FGSM) (GOODFELLOW; SHLENS; SZEGEDY, 2015)
to modify these feature vectors and form adversarial samples. Notwithstanding, these
approaches do not guarantee that it is possible to alter the malware file to produce the
adversarial feature vector while maintaining the original functionality. Therefore, they
may not have a practical use.

Anderson et al. (2017) explore a black box attack against a reinforcement learning
model, where the agent actions are taken from a list of modifications that includes ma-
nipulating existing bytes but also adding ones between sections or even creating new sec-
tions. No further information is provided regarding the constraints on these injections. It
fits “Section Injection” and “Content Manipulation” categories illustrated in Figure 3.1.
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It achieves evasion rates up to 16% against a Gradient Boost Decision Tree (GBDT)
model (ANDERSON; ROTH, 2018).

Khormali et al. (2019) focused on injecting bytes to the executable files” end, an un-
reachable area during execution. It fits “File Padding” category illustrated in Figure 3.1.
As the operating system will not execute it, not even read it in some cases, it does not
affect the malware behavior. These bytes can either be generated by FGSM or be parts
of other malware. Nevertheless, extra bytes at the end of the file may be easy to detect
and discard before the classification. Besides, this approach requires access to the model
or training data used by the classification system, which may not be available in a real
attacking scenario.

Demetrio et al. (2019) propose a black-box attack called Genetic Adversarial Machine
learning Malware Attack (GAMMA), a method that queries a given malware classifier
and based on the output, draws from a set of functionality-preserving manipulations that
changes malware samples iteratively. GAMMA is evaluated against two malware classi-
fiers, Malconv(RAFF et al., 2017) - a shallow neural network - and GBDT (ANDERSON;
ROTH, 2018). Its proposed methods fit all categories illustrated in Figure3.1, despite
not detailing how some of those are achieved.

Lucas et al. (2021) also employs functionality preserving techniques. They extend
binary rewriting techniques such as In-place Randomization (IPR) (PAPPAS; POLY-
CHRONAKIS; KEROMYTIS, 2012) - where the binary is disassembled and some of its
instructions are rewritten - and code displacement (Disp) (KOO; POLYCHRONAKIS,
2016) - where the disassembled version is also used, but with the intent of moving in-
structions between sections, fitting into “Content Manipulation” category illustrated in
Figure 3.1. They apply these attacks in an interactive manner and evaluate them against
three neural networks, achieving a misclassification rate of over 80% in some scenarios.

Benkraouda et al. (2021) propose a framework that mixes a mask generator to high-
light the bytes that are possible to manipulate while retaining executability, adversarial
example generation using Carlini-Wagner (CW) attack (CARLINI; WAGNER, 2017) and
an optimization step that iteratively modifies the masked bytes by comparing the gener-
ated adversarial data to a set of known instructions. It fits the “Content Manipulation”
category illustrated in Figure3.1. The attack is evaluated against a three-layer CNN,
achieving an attack success rate of up to 81.8%. A shortcoming of this method is the
time it takes to generate its samples, reaching over six hours for a single sample in some
cases.

Demetrio et al. (2021) introduce the RAMEN framework, an extensive library with
multiple attacks for malware classification. They present three novel attacks - Full DOS,
Extend and Shift - all of them capable of modifying the binary sample while keeping
its functionality. The novel attacks are evaluated against MalConv (RAFF et al., 2017),
DNN with Linear (DNN-Lin) and ReLU (DNN-ReLU) (COULL; GARDNER, 2019) and
GBDT (ANDERSON; ROTH, 2018), being misclassified by the neural networks, but not
being able to evade the decision tree since it does not rely only on static data.

Our attack scheme - Section Injection - is also explored by Anderson et al. (2017)
and Demetrio et al. (2019), as one possible method in their pipelines, but no further
information is provided regarding the constraints for this injection. It can also be seen
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as an ensemble of Fztend and Shift methods proposed by Demetrio et al. (2021) and the
padding methods discussed by Khormali et al. (2019). The byte modifications presented
by Lucas et al. (2021) can also be integrated in our method, leading to the injection of
perturbed sections instead of random ones.

Regarding the data used to evaluate the attacks, most works listed here used some
sort of private dataset, either by collecting samples from malware hosting services or
expanding public ones - Benkraouda et al. (2021) merged malimg(NATARAJ et al., 2011)
and benign samples from Architecture Object Code Dataset (AOCD) (CLEMENS, 2015),
Khormali et al. (2019) used BIG 2015(RONEN et al., 2018) and also formed a private
IoT dataset. A summary of the functionality preserving attacks can be found in Table
3.2.



Table 3.2: Summary of functionality preserving attacks against PE32 malware classifica-

tion.
AUTHOR METHODS TARGETS DATASET
Anderson et al. | Set of Manipula- | GBDT(ANDERSON;Private
(2017) tions ROTH, 2018)
Khormali et al. | Padding 3-layer CNN BIG 2015(RONEN
(2019) et al., 2018) + Pri-
vate IoT dataset
Demetrio et al. | Set of Manipula- | MalConv(RAFF Private
(2019) tions et al, 2017),
GBDT(ANDERSON;
ROTH, 2018)
Demetrio et al. | Partial DOS, Full | MalConv(RAFF Private
(2021) DOS, Extend, | et al,  2017),
Shift, FGSM, | DNN(COULL;
Padding GARDNER, 2019),
GBDT(ANDERSON;
ROTH, 2018)
Lucas et al. (2021) | IPR, Disp AvastNet(KRCAL | Private
et al,  2018),
MalConv(RAFF
et al, 2017),
GBDT(ANDERSON;
ROTH, 2018)
Benkraouda et al. | Adversarial Gener- | CNN(KHORMALI | Private (combi-
(2021) ation + Optimiza- | et al., 2019; | nation  of  mal-
tion KOLOSNJAJI img(NATARAJ
et al., 2016) et al., 2011) and
AOCD(CLEMENS,

2015))
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METHODOLOGY

Figure 4.1 illustrates the core principle of this work: tampering with input malware’s
original bytes before feeding them into the classifier. As previously discussed in Chapter 3,
our tampering is done by editing the malware’s header and adding data between already
existing sections. This positional tampering is important due to the different nature of
evaluated classifiers. Some of them might truncate the data to a specific input length,
while others decide to reinterpret raw bytes as a grayscale image, as depicted by the
second step in Figure 4.1. Our goal is to have a simple attack that works against a broad
range of machine learning models. We explain how the proposed injection process works
in Section 4.1, and we show how we built the malware classifiers used in our experiments
o

in Section 4.2.
—_
EXI @
Input malware Image genera‘mon]

LJ .

o—b

[ ol

Scctlon IDJCCtIOIl [Malware Family]

Figure 4.1: Flowchart of an image-based malware classification system (blue lines). Red
lines replace the dashed blue line in our data injection scheme.
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4.1 DATA INJECTION

To comply with a realistic usage scenario, we inject one or more sections filled with
arbitrary bytes before any processing is done for classification purposes. This injection is
performed sequentially, 7. e. when multiple sections are to be included the result of an
injection is used as input for the next one.

On a first look, the semantics of the injected bytes are not of particular interest. We
rather focus on understanding how much structural change the classifiers can handle.
Despite that, we also explore injecting adversarial bytes using the same routine. Those
results are discussed further in Sections 5.3 and 5.4 respectively.

4.1.1 File header

The first step in our injection scheme is to obtain information about the input file by
reading its header. Table 4.1 lists the flags that are relevant to us. After inserting a
new section, we need to increment the flag NumberO fSections and update the flag
SizeO fImage accordingly to preserve the malware functionality. We pick the injected
section’s index k by drawing a number in the interval [0, NumberO fSections]. Sections
0 to £ — 1 remain in place, and sections k to NumberO fSections — 1 are shifted one
position forward so that we can insert the new section in k-th place.

Table 4.1: Flags in the header of PE32 files.

FLAG NAME DESCRIPTION

NumberO fSections | Number of sections in the file

FileAlignment Section size in bytes is a multiple of this flag

SectionAlignment | Memory address of a section is a multiple of this flag

SizeO fImage Memory size of all sections in bytes

ImageBase Address of the first byte when the file is loaded to memory
(default value is 0x00400000)

4.1.2 Section header

A section header is composed of 40 contiguous bytes. These bytes specify what the loader
needs to handle this section. Table 4.2 shows the bytes that we fill when creating a new
section. We refer to a flag of the i-th section as Flag;.

First, we generate eight random printable characters (ASCII table values between 33
and 126) as Namey. After that, we set SizeO f Raw Datay, using Equation 4.1:

N

SizeOf fawData, = [FileAlignment

| x FileAlignment (4.1)

with N being the number of bytes we want to add. We always set N as a multiple of
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Table 4.2: Flags in section headers of PE32 files.

FLAG NAME SIZE | DESCRIPTION

Name 8 bytes | Section name
VirtualSize 4 bytes | Section size in bytes on memory
Virtual Address 4 bytes | Section offset on memory relative to ImageBase

SizeO f RawData | 4 bytes | Section size in bytes on disk

PointerToRawData | 4 bytes | Section offset on disk relative to the beginning of the
file

Characteristics 4 bytes | Section characteristics like usage and permissions

FileAlignment so that null padding is unnecessary. File Alignment is usually 512 bytes,
but it varies according to compilation options.

PointerToRawDatay, is set as in Equation 4.2, if the k-th section is the last one. Or
else as in Equation 4.3, and we add SizeO f RawDatay, to PointerToRawData;, Vi > k.

PointerToRawData;, = PointerToRawDatay,_1 + SizeO f RawDatay_ (4.2)

PointerToRawDatay, = PointerToRawDatay 1 (4.3)

On memory, we inject sections after every other section to avoid having to up-
date instructions that use memory offsets and preserve the execution path. We set
Virtual Address;, using Equation 4.4:

Virtual Addressy, + Virtual Sizey,
SectionAlignment

Virtual Addressy = | | x SectionAlignment  (4.4)

where L is the index of the last section on memory. This way, we correctly align the
injected section according to SectionAlingment.

VirtualSizey, is set to 0, as we do not want to take memory space. Thus, multiple
runs of this injection process produce sections pointing to the same address. In our tests,
this does not affect execution. We finish our header by setting Characteristicsy as a
read-only section with initialized data.

4.1.3 Injected data

In our work, injected data is a sequence of random bytes. As we have control of the section
structure, we could insert pieces from other executables or adversarial examples created
using FGSM as other works in the literature (KHORMALI et al., 2019). However, we do
not do that because we assume we have no access to models and training data used by
malware classifiers. Besides, our results show that our simple strategy is enough to affect
the performance of a state-of-the-art malware classification approach substantially.



18 METHODOLOGY

4.1.4 Workarounds

We found some challenges when applying this method to an arbitrary PE32 file. Instead
of constraining the input files, we dealt with the problems as they appeared. Some
malware instances, usually packed or obfuscated, have multiple contiguous virtual sections
that do not exist on disk, only on memory. For those cases, we had to adjust the
PointerToRawData in injected data to make sure it points to a valid physical section.
Furthermore, malware sections are not always correctly aligned with the File Alignment
flag. To avoid fixing existing sections, we only inject data before correctly aligned ones.

4.2 MALWARE CLASSIFICATION

As can be seen in Figure 4.1, this process is divided into two parts: image generation
and classification. The former is described in Section 4.2.1. The latter is carried out with
various approaches:

1. GISTH+KNN (NATARAJ et al., 2011), which holds state-of-the-art performance for
handcrafted methods. In this work we reproduced Nataraj et al.’s approach (NATARAJ
et al., 2011) to the best of our abilities. To do so, we resize our images to 64 x 64
pixels, extract 320-dimensional GIST descriptors, and then classify it using KNN
with K = 3.

2. Le et al. (2018) presents three models:

(a) A simple model with three 1D-CNN layers before a fully connected layer,
referred to as Le-CNN.

(b) A second model with a LSTM layer before the fully connected one, referred to
as Le-CNN-LSTM.

(¢) A third model with a bidirectional LSTM before the fully connected layer,
referred to as Le-CNN-BiLSTM.

For all of them we employ the same input size of 10k bytes, a batch size of 512,
and train the model for at most 60 epochs (early stopping if the accuracy does not
improve for 10 epochs).

3. Raff et al. (2017) presents the model referred to as MalConv. This model employs
a gated convolution network, i.e., an embedding layer followed by two separate
1D-CNN layers that are multiplied and passed on for two fully connected layers.
For this model we use training protocol similar to Lucas et al (DEMETRIO et al.,
2019); input size of 1MB, training for a total of 10 epochs without early stopping,
with a batch size of 16 due to memory constraints.

These approaches were chosen because, among those discussed earlier in Chapter 3,
they provide reasonable performance x resource usage tradeoffs. Besides that, the code
used to construct the architecture is available publicly, which improves substantially the
reproducibility of the results.
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Different types of neural networks were explored to classify malware files (PASCANU
et al., 2015; SAXE; BERLIN, 2015; ATHIWARATKUN; STOKES, 2017; RAFF et al.,
2017, 2018; HADDADPAJOUH et al., 2018; SU et al., 2018; YUE, 2017; CHEN, 2018; LE
et al., 2018). But to the best of our knowledge, those based on CNNs are the ones with
the highest accuracy. Comparing them to the baseline method of GIST+KNN provides
an insight into how discriminative the malware raw data can really be and how hard it
is to learn these features automatically.

The core ideas behind the trained models are discussed more thoroughly in Sec-
tions 4.2.2, 4.2.3 and 4.2.4, respectively.

4.2.1 Image generation

We transform an executable into an image following Chen’s adaptation (CHEN, 2018) of
Nataraj et al.’s specifications (NATARAJ et al., 2011). We treat every byte as a grayscale
pixel, and we break the file into image rows by using a fixed width, which is set according
to the file size (see Table 4.3). We discard the last row if it is incomplete. The result is
illustrated in Figure 2.1.

Table 4.3: Image width based on the executable size (NATARAJ et al., 2011).

NUMBER OF BYTES (kB) | IMAGE WIDTH (pixels)

< 10 32
10-30 64

30-60 128
60-100 256
100-200 384

200-500 512

500-1000 768

1000-200 1024
> 2000 2048

4.2.2 GIST+KNN

As mentioned earlier, reinterpreting the malware bytes as a grayscale image is a relevant
strategy for data preprocessing. In order to classify the image, we need to somehow
describe its content in a way that the classification algorithm can use. This is exactly
the attribution of the GIST descriptor.

Figure 4.2 illustrates how feature extraction is achieved using GIST. We start by
resizing input images to 64x64 pixels. Gabor filters are then applied to the resized
images. Those filters are manipulated through their scale (A parameter, “width” of
the filter’s ellipsoids) and their orientation (f parameter, rotation angle of the filter’s
ellipsoids). Three different scales are applied: eight orientations on the first and second
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scales, four on the third one, for a total of 20 different filters. After that, resulting images
are subdivided into 4x4 grids and the average value of each subregion becomes a value
for the final descriptor. Therefore, the resulting descriptor for this operation has 320
values (20 filters x 16 image subregions). For colored images, commonly structured with
three-channels (RGB), these operations are done separately in each channel, producing

a descriptor with 960 values (OLIVA; TORRALBA, 2001).

and

Figure 4.2: Image description using GIST feature extractor.

After obtaining these 1D vectors of features, we process them through K-Nearest
Neighbors (KNN) algorithm to obtain the image classification. This is a lazy technique,
which means that there is no fixed model being built and there are no internal parameter
updates during training. KNN works simply by computing the distance between the
input sample and the already known ones, with K being the number of nearest neighbors
picked to choose the class of the analyzed sample. This process is illustrated by Figure
4.3.

A simple distance metric such as Euclidean distance, displayed by equation 4.5, can
be used to compute the similarity between the vectors. In this context, N is the length
of the feature vector, e.g. the number of features, that represent p and ¢ observations.

4.2.3 CNN and LSTM

All three models introduced by Le et al (LE et al., 2018) have a fixed input size to
be processed by three 1D-CNN layers right at the start. They are used with a similar
intent as mentioned earlier in Section 4.2.2: extracting relevant features to describe the
contents of the input, using a fixed number of filters. The difference here is that these
filters have their values updated during the training of the network, allowing for a deeper
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######

Figure 4.3: Classifying samples using K-Nearest Neighbors algorithm.

understanding of the extracted features. Figure 4.4 illustrates how the malware data is
acquired and processed by these initial layers.

n
O
s
. :
= — g
] [ | ]
= O 5&@“% i

[ ]
u ) [ . ) « /' 3
[ Interpolation |gg | 1D Convolution 1D Max Pooling =
a — 5 — —
u C WD
5 = Y Wm
| — 0@0‘. mmC
0 S WEHD
= Cm

Figure 4.4: Illustration of the data flow in Le et al (LE et al., 2018) architectures.
Transforming malware data to a fixed length. Feature extraction and dimensionality
reduction through 1D CNN and 1D pooling layers. Since the input is scaled to a fixed
size of 10K bytes, after these operations we have a matrix of size 78 x 90. We can either
unroll to a 1D feature vector and classify it using fully connected layers or consider it as
smaller subsequences and use recurrent layers.

First the input data is scaled to a vector with a fixed size of 10K bytes using bilinear
interpolation. Since the average sample size on this dataset is 150kbytes, it means that
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for Le2018 models we are downscaling the input size by resampling the data. No filter
is applied before this transformation, which means aliasing might happen during this
process. After that, the features are extracted through the 1D-CNN layers using 30,
50 and 90 filters respectively, and kernels of size 7. After each Convolutional layer a
Max Pooling layer is used, to both reduce the dimensionality and also introduce some
translation invariance to the model - i.e. being able to detect a feature even if it appears
in a different position on the data (GOODFELLOW; BENGIO; COURVILLE, 2016).
After the last pooling layer, we have a (78 x 90) matrix. This is the point where the
models take different approaches:

1. reinterpreting this matrix as a vector of size 7020 and proceeding with two fully
connected layers to obtain the final classification;

2. passing the data through a recurrent layer to extract positional features and then
a fully connected layer to obtain the final classification.

Repeating a process many times using the outcome of one entry as information source
to the next, i.e. recurrence, is the core idea for LSTMs, particularly useful when dealing
with large data sequences (GOODFELLOW; BENGIO; COURVILLE, 2016). It happens
due to their internal structures for state and memory control, as displayed by Figure 4.5.
It requires splitting a long sequence into smaller subsequences of known size. In this case,
given the output from the previous layer, we have 90 subsequences of size 78.
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Figure 4.5: An example of a singe a Long Short-Term Memory cell.

As seen in Figure 4.5, the cell receives input z;, current processed sequence, together
with state ¢;_; and output h;_; both resulting from processing the previous sequence.
Operating over x; produces state ¢; and output h;, both used to process the next subse-
quence. These operations are shown at Equations 4.6 through 4.11.
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F, = o(W; @ [he1, ] + by) (4.6)
I, = o(W; ® [hy_y1, ] + b;) (4.7)
Cy = tanh(We © [hy_1, 7] + by) (4-8)
Oy = o(W, ® [hy_y, 2] + b,) (4.9)
Ct :Ft@ct—1+[t@ét (4.10)
hy = O; @ tanh(c;) (4.11)

In a LSTM cell, the data is handled through “gates”, substructures responsible for
managing the input and updating the cell state. The first one of these is the “forget
gate”. It decides what should be kept from previous output (h;_1) for the next steps.

The number of units is used to set the size of state vector (¢;). Figure 4.6 illustrates
the output h;_; being concatenated to z; and the resulting vector is multiplied by the
weights Wy, added to bias by and handled by a sigmoid function (Equation 4.12), resulting
in vector F;. This function transforms its input values to [0, 1] range. This multiplication
can be seen as deciding which values from previous output will be kept (multiplied by
values close to 1) or forgot (multiplied by values close to 0).

1

m (4.12)
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Figure 4.6: Operations performed at the “forget gate”.

The number of units chosen for these models was 128. It means that concatenating
x; and hy_; results on a vector of size 206. Weights matrix Wy on this gate has 206 x
128 values and 128 values for bias (bf). This gate is the application of Equation 4.6 and
the first part of Equation 4.10, where F} is multiplied by ¢;_;.

At the “input gate” what will be kept from current input for the next iterations, by
using Equations 4.7 and 4.8. As shown by Figures 4.7, the concatenation of x; and h;_; is
multiplied by W; and the result is added to b;. This result is then passed to the sigmoid
function, resulting in I,. C, is defined by multiplying [z; , f,_y] by the weights We, and
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adding the bias b, . The result of these operations is then processed by the hyperbolical
tangent function (Equation 4.13). It transforms input values to [-1, 1] range. The main
attribution of this function within the cell is to control the weights values, by avoiding
their rapid growth or allowing it to decrease if necessary.

e —e*

P (4-13)

tanh(z) =

Input Gate
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Figure 4.7: Operations performed at the “input gate”.

Matrices W; and We, have 206 x 128 as dimensions, and biases b; and bC} are of size

128. The second part of Equation 4.10 is executed here, multiplying C, by I, and adding
the result to the new value of ¢;;1 (updated at the forget gate).

The “output gate” decides what will be sent as state (¢;) and as output (h;). As
shown by Figure 4.8, the concatenation of x; and h;_; is once again passed through
the sigmoid function (after being multiplied by W, and added to b,), producing O;. ¢
(already updated at forget and input gates) is processed by the hyperbolical tangent
function and then multiplied by Oy, resulting in h; (Equation 4.11).

CER®

Output Gate}
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Ce1Neq O; _’l Cee1Negr| —

Figure 4.8: Operations performed at the “output gate”.

After passing through all steps in the LSTM cell, we have our output vector of size
128. In the case of the bidirectional LSTM, the data is also analyzed in its reversed form,
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(a) Embedding vector transformation. Each input byte from the malware
data becomes a vector with a fixed size.
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(b) Gating mechanism using embedding data. Same data goes through sep-
arate computations to produce the final feature vector.

Figure 4.9: Tllustration of the embedding vector learning 4.9a and the transformation it
goes through in the gating phase 4.9b.

resulting in a vector of size 256. We can then feed into the fully connected layer to obtain
the classification.

4.2.4 Gated CNN

The gating idea introduced with the LSTM cell above can be extended to be used without
necessarily using a recurrent model. That is the core idea behind Gated Convolution
Networks; controlling which kind of information is allowed to flow through the layers and
the associated cost with each information unit.

The gating mechanism in this context was first introduced by Dauphin et al (DAUPHIN
et al., 2016), providing a non-recurrent model with a generalization power similar to recur-
rent architectures in language classification tasks. The idea was then extended by Raff et
al (RAFF et al., 2017) using MalConv model to classify malware samples, reinterpreting
malware raw data as a language.

The first step in this architecture, as shown by Figure 4.9, is to transform the data
through and Embedding layer - i.e using a lookup table to convert malware instructions
into a set of integer values within a known range. In our context, it means mapping each
input byte into an integer in the range [0, 257] (256 possible bytes plus an extra value for
padding). The Embedding layer then learns during network training how to transform
each value in this range into a vector of size 8 (the embedding vector). This mechanism
is useful to learn the representation of all possible instructions using low dimensionality
vectors.

Once acquired, the embedding vector then goes through two separate 1D-CNN layers.
The output of one of these layers goes through the sigmoid function (Equation 4.12) and
it is multiplied by the output of the other CNN layer. It produces a gating mechanism
just like the one in the LSTM architecture mentioned earlier.

This architecture benefits from the control of the information, as in LSTM, but also
from the location invariance brought by the convolutional layers. It is important in the
malware domain because even though the language can be considered small (bytes 0-255),
the context variance is remarkably high, and a given byte can appear in many locations
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with different meanings.



Chapter

RESULTS

In this chapter we display our experimental results for different attack and defense sce-
narios. In Section 5.1 we provide an overview of the chosen dataset and its structure.
In Section 5.2 we discuss the reasons for using metrics such as precision-recall over other
metrics currently used in other malware injection/classification works, such as accuracy
and ROC. Sections 5.3 and 5.4 are the first evaluations on attacking classification models
with modified malware samples and they provide the first insight on how impactful data
injection in the performance of our trained models is. In Section 5.5 we try to assess the
real importance of the file header as a feature for the classification models; if we strip
the header from input files, can they still be correctly classified? In Section 5.6 we try to
provide defense mechanisms against the attacks discussed previously, in three different
fronts: using injected data in the training set in Section 5.6.1, creating a binary dataset by
inflating the dataset with benign data in Section 5.6.2 and also finetuning larger models
in Section 5.6.3.

5.1 DATASET

The forth coming experiments were made upon malimg (NATARAJ et al., 2011) dataset,
to evaluate malware classification before and after code injection. Table 5.1 displays the
distribution of samples across all classes. It has 9,339 malware samples from 25 families
and the average size of a sample is approximately 176 kB. In this dataset, most of the
samples - 7475 of them to be precise - have a FileAlignment flag of 512 bytes. The second
most common value for this flag is 4096 bytes, with 1674 samples, and in third place 1024
bytes with 190 samples. No other values were found for the FileAlignment flag in this
dataset.

In Figure 5.1 we display some visual contrast among classes with the most and the
least number of samples - Allaple.A and Skintrim.N, respectively - and also with the
higher and the smallest average size - VB.AT and Agent.FYI, respectively. The same
aspect ratio is kept for all images to highlight the resolution differences created during
image generation, as explained in Section 4.2.1. We can see that the class dissimilarities
are mostly represented by lower density sections, i.e. image areas with higher number of

27
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Table 5.1: Samples distribution and average size in malimg dataset.

# FAMILY # SAMPLES | AVERAGE
SIZE (kB)

1 Adialer.C 122 209.82

2 Agent.FYI 116 16.07

3 Allaple. A 2949 72.64

4 Allaple.L 1591 57.75

5 Alueron.gen!J 198 101.27

6 Autorun.K 106 524.54

7 C2LOP.P 146 386.92

8 C2LOP.genlg 200 524.04

9 Dialplatform.B 177 13.98

10 Dontovo.A 162 34.50

11 Fakerean 381 110.62

12 Instantaccess 431 173.07

13 Lolyda.AA1 213 27.43

14 Lolyda.AA2 184 35.13

15 Lolyda.AA3 123 244.80

16 Lolyda.AT 159 24.66

17 Malex.gen!J 136 82.96

18 Obfuscator.AD 142 162.82

19 Rbot!gen 158 241.04

20 Skintrim.N 80 192.98

21 Swizzor.gen!E 128 336.74

22 Swizzor.gen!l 132 320.77

23 VB.AT 408 666.80

24 Wintrim.BX 97 408.74

25 Yuner.A 800 524.54

TOTAL | 25 families 9339 samples | 176.29kB size

black pixels. Texture can be seen in some samples, such as at the bottom of Figure 5.1c,
usually caused by resource sections.

Another feature of this dataset is that most samples present a similar structure to the
one illustrated in Figure 2.1, having .tezt, .data and .rsrc sections as the most prevalent
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(a) Allaple.A (b) Skintrim.N

(c) VB.AT (d) Agent.FYI

Figure 5.1: Illustration of samples from the class with most (5.1a) and the least (5.1b)
number of samples. Also, class with higher (5.1¢) and with smaller (5.1d) average size.
Images were rescaled to use the same aspect ratio.

ones. A few classes, namely Alueron.gen!J, Lolyda.AA1 and Lolyda.AT, present rather
uncommon sections either obfuscated or generated with non UTF-8 characters.

5.2 METRICS

There are many different metrics and visualization techniques in the literature being used
to evaluate machine learning algorithm’s performance on adversarial examples, each of
them with a better use case or a more singular depiction of specific methods. In this
work we decided to use the following approaches:

e Accuracy curves: where each data point represents the accuracy (e.g. percentage
of correctly classified samples over total number of samples) of the network in a
given scenario - as described by Equation 5.1, where True Positive (TP), True
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Negative (TN), False Positive (FP) and False Negative (FN) are used.

TP+TN
TP+TN+ FP+ FN

(5-1)

Accuracy =

e Confusion Matrices: used to understand how similar the classes are before and
after the injection of data, which might give a clue on the weights given to each
class by the evaluated algorithms.

e Precision Recall curves: as mentioned in Section 5.1, we are dealing with a highly
imbalanced dataset, with some classes having an order of magnitude more examples
than others. In those scenarios precision-recall curves offer a better visualization on
the true performance of the models, since it computes the capacity of the model in
correctly classifying the target class when it has way less samples than the negative
class. It is possible for a classifier to achieve high accuracies by learning to categorize
based only on the major class if the positive to negative ratio is too low (DAVIS;
GOADRICH, 2006; SAITO; REHMSMEIER, 2015). We also compute the Average
Precision (AP) as described by Equation 5.2. It can be understood as the area
under the precision-recall curve. These values are obtained by computing precision
(P) and recall (R) over a range of thresholds (n), using the algorithm’s output
probabilities.

AP => (R, - R,1)P, (5.2)

Another relevant factor that might impact overall results is the data distribution.
We randomly split the dataset into three parts: training (80%), validation (10%), and
test (10%). We use the training and validation sets to perform the CNN training and
combine them as a single gallery for the KNN search. This is important to evaluate the
true generalization power of the classifier and reduce its chance of overfitting the data by
simply replicating what it sees during the training phase (GOODFELLOW; BENGIO;
COURVILLE, 2016).

5.3 INJECTION ATTACKS WITH RANDOM DATA

In this round of experiments we insert m new sections with n x FileAlignment bytes
at random parts of each test malware, with m and n varying from 1 to 5, totaling 25
different injection scenarios. We repeat training/testing experiments three times for each
model and show average results in Figure 5.2.

We can see that the way we inject multiple sections affects the results. For instance,
despite the amount of data being the same, four sections with FileAlignment bytes
impact more the performance than two sections with 2 x File Alignment or one section
with 4 x FileAlignment bytes. Thus, dividing a portion of data into more parts and
spreading them over the file is more effective in deceiving the classifier than having a few
large sections.

The biggest drop occurred when we injected five sections with 5 x FileAlignment
bytes. As most samples have FileAlignment = 512 and the average malware size is
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Figure 5.2: Average accuracy of malware classification under different injection scenarios.
Distinct colors represent the amount of injected sections.
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176kB, our injection approach accounts for an approximate 7% increase in file size and
misclassification rates ranging between 25% and 40%. Figure 5.3 illustrates the misclas-
sification differences between the test set with original samples and a set with injected
samples.

It is worth noting that some of these families share similar traits. For instance, fam-
ilies Autorun.K, Malex.gen!J, Rbot!gen, VB.AT and Yuner.A are all packed using UPX
packer. Some families are variants of the same kind of malware, such as C2LOP.P and
C2LOP.gen!g, Swizzor.gen!l and Swizzor.gen!E. It is expected that confusion concentrates
around those variants (NATARAJ et al., 2011).

We can see that all models suffer to correctly classify these variants, even before data
injection. Le-CNN-BiLSTM model, as seen in Figures 5.3c and 5.3d does not learn how to
correctly identify samples from a packed family, e.g. “Autorun.K”. One behavior is clear
in KNN and MalConv models: their tendencies to misclassify samples as “Autorun.K”,
“C2LOP.P” and “C2LOP.gen!g”. Those families share samples with high average sizes,
at 524.54kB, 386.92kB and 524.04kB, respectively. Since Le-CNN-BiLSTM resizes ev-
erything to 10k bytes, this error is less prevalent with this model. In the same manner,
MalConv has these classes as the ones with less misclassifications in the injected set.
Considering its 1MB input, those are the samples where padding is used the least.

In Figure 5.4 we can see how the trained models lose precision after section injection.
Due to the imbalanced nature of the dataset, this is illustrated by Precision-Recall curves.

We can see that the handcrafted method is the least precise in this scenario, being
followed by Le-CNN, MalConv, Le-CNN-LSTM and Le-CNN-BiLSTM respectively.

5.4 INJECTION ATTACKS WITH ADVERSARIAL DATA

What if instead of adding random data we use bytes that appear in samples from other
classes? We evaluate this kind of attack in this section, this time focusing on the most
impactful injection scenario, i.e., 5 sections with 5 x File Alignment. Figure 5.4c displays
the difference that injecting with adversarial data imposes.

Comparing with random injection results seen in Figure 5.4b, we can see that all
models had its average precision decreased - KNN+GIST by 25.44%, Le-CNN by 15.75%,
Le-CNN-LSTM by 15.91%, Le-CNN-BIiLSTM by 11.56% and MalConv by 5.62%. That
might be an indication that MalConv is learning more discriminative features from the
samples, and it is deceived for reasons other than the kind of data being injected, since

it becomes the model with highest average precision despite losing more accuracy than
Le-CNN-BiLSTM (Figure 5.2).

5.5 EVALUATING SAMPLES WITHOUT HEADER

Here we evaluate the possibility of training our models stripping the header of the samples,
similarly to what is employed in BIG 2015 (RONEN et al., 2018). Figure 5.5 illustrates
the results for samples without the header.

All models rely heavily on the samples header in order to perform classification, losing
precision even before data injection as seen in 5.5a. Only Le-CNN-BiLSTM increased its
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Figure 5.3: Confusion matrices for malware classification using KNN+GIST, Le-CNN-
BiLSTM and MalConv in the original test set 5.3a,5.3¢,5.3e and 5.3b,5.3d,5.3f when 5

sections of 5 x FileAlignment bytes are injected.
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precision by 0.0026 in this scenario. All models became less robust to data injection,
losing precision significantly when compared to complete executables in 5.4b. Despite
that, MalConv is the only model with similar average precision to previous scenarios.

5.6 DEFENDING AGAINST DATA INJECTION

Multiple strategies were evaluated in order to make these models more robust against
data injection, by focusing on the kind of data available during training.

5.6.1 Augmentation

A solution proposed in the literature (CATAK et al., 2021; PEREZ; WANG, 2017; TAY-
LOR; NITSCHKE, 2018) is to augment the data used for training. Three strategies were
initially evaluated:

1. Section reordering: since our injection scheme adds new sections in a random
position among the existing ones, the first augmentation idea was to reorder the
sections on the training section. By doing this we wanted to check if the model could
be more robust against data injection without seeing them during training. As
shown by Figures 5.6a, 5.6b and 5.6¢, this strategy increased a bit the performance
of all models when compared to the vanilla results shown by Figure 5.4.

2. Training with injected data: since data is injected in the test set, a possibility
was to include injected samples with random data in the training set as well. By
comparing Figures 5.6d, 5.6e, 5.6f against Figure 5.4 we can see that all models
became less vulnerable against random data injection, but still struggle against
adversarial data. MalConv benefitted the most in this scheme.

3. Reorder+Injection: augmenting the training set with both injected and re-
ordered samples, shown in Figures 5.6g, 5.6h, 5.61, was also evaluated. Comparing
with the original results in Figure 5.4 we can see that this may be a good defense
strategy as well.

As shown by Figure 5.6, some models were improved by these augmentation strategies,
even though they are still vulnerable.

5.6.2 Binary Data

All experiments mentioned here were also performed in a binary dataset. We use Nataraj et al.’s
entire dataset as a single malware class. We then collected 8,496 executables from a fresh
Microsoft Windows 10 development environment (Microsoft Corporation, 2020) to form
the benign class. We searched for all valid PE32 files and selected those with less than
5.5MB to approximate the malware class file characteristics. Benign files are used for
training only, as our purpose is to investigate if an attacker can deceive a malware detec-
tor through data injection.

In this dataset the models were barely affected by data injection. We believe some-
thing similar to the mentioned by Raff et al (RAFF et al., 2017) also happened in our
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Figure 5.6: Precision Recall curves for tests with augmentation. 5.6a, 5.6d and 5.6g
displays results on test sets with original samples. 5.6b, 5.6e and 5.6h displays results for
datasets injected with random data. 5.6¢, 5.6f and 5.6i display results for injection with
adversarial data. 5 sections of 5 x FileAlignment bytes are injected in all cases. FEach
color represents a different model.
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Figure 5.7: Precision Recall curves when 5 sections of 5 x FlileAlignment bytes are
injected in a binary dataset, 5.7b with random bytes and adversarial bytes in 5.7c. Each
color represents a different model.

dataset: models were learning “Microsoft vs non-Microsoft” instead of “Benign vs Ma-
lign”, as shown by Figure 5.7. For these tests we evaluated the model’s performance on
the original test set and against malware-only versions of the dataset injected with both
random and adversarial data.

5.6.3 Scaling models

Some of the challenges involved in building more robust models are closely related to the
available data - highly imbalanced number of samples, sample size variation intra and
extra families, packing and obfuscation of samples - but those are not the only concerns.
Increasing architecture size does not necessarily lead to more robust models.

To verify that we follow Chen’s approach (CHEN, 2018; CHEN et al., 2020), which
consists of fine-tuning a pre-trained CNN to classify malware families. We use the
Inception-V3 architecture (SZEGEDY et al., 2016) pre-trained on the ImageNet dataset (DENG
et al., 2009). For that, we resize our images to 299 x 299 pixels and transform it into a
3-channel (RGB) image by replicating the grayscale channel. Then, we split our training
into two phases. First, we recreate the last layer with the correct number of classes and
optimize it while keeping the rest of the network frozen. We stop this training phase when
the validation accuracy does not improve for ten epochs (patience). Then, we resume
training for all layers with a 30-epoch patience. In both phases, we split training data into
mini-batches of 64 images and use Adam optimizer for backpropagation with a learning
rate of 107%. We can see that such a model is also vulnerable to section injection, as seen
in a preliminary comparison against KNN+4GIST, illustrated in Figure 5.8.

A straightforward observation in Figure 5.8a is that this model presents the same
behavior as the previous one in Section 5.3: classification error increases with the amount
of injected bytes and spreading the injected data is more effective in deceiving the classifier
than larger sections. For instance, despite the amount of data being the same, four
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Figure 5.8: Average accuracy of 5.8a malware classification and 5.8b malware detection
under different injection scenarios. Solid lines show results for Inception architecture, and
dashed lines for GIST-+KNN. Distinct colors represent the number of injected sections.

sections with Flile Alignment bytes impact more the performance than two sections with
2 x FileAlignment or one section with 4 x FileAlignment bytes (see the circles in
Figure 5.8a). The location does not seem to matter when adding a single section, though,
as the results for random place injection are equivalent to always inserting the section at
the end of the file.

In Figure 5.8b, we can also observe the same behavior described for the other malware
detectors in Section 5.6.2. Neither the volume of injected data nor its dispersion through
files considerably affects the CNN performance, which is more robust than GIST+KNN
in this experiment. Nonetheless, both CNN and GIST+KNN lost at least 10% accuracy
in the worst case, which is not an acceptable margin for a protection measure. Our ex-
periments highlight how risky it is to rely on image-based methods for malware detection
and classification by showing how easily one can trick them.
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Current results point in the direction of combining text processing techniques with
convolutional layers, as made by MalConv (RAFF et al., 2017) with its Embedding
layer and Le-CNN-BIiLSTM (LE et al., 2018) with the recurrent layer after convolu-
tional ones. An open challenge regarding these approaches is related to their input sizes:
MalConv truncates data larger than a given size, which requires choosing between dis-
carding relevant data and using more computational resources to process larger samples;
CNN-BILSTM interpolates its input to a fixed size, possibly removing relevant byte re-
lationships in some regions of the file.






Chapter

CONCLUSIONS AND FUTURE WORK

In this work we proposed a new method to inject data into malware files in order to
change its classification when analyzed by an automatic malware classification system.
With a mere 7% file size increase, we dropped the accuracy of five classifiers on par with
the state-of-the-art - namely GIST+KNN (NATARAJ et al., 2011), MalConv (RAFF et
al., 2017) and Le-CNN (LE et al., 2018) and two other variations - between 25% and
40%. The obtained results seem promising, and we think this method can be improved
to be robust enough for a larger scale of scenarios. There are some points researchers
using this method need to be aware of:

e The usage of CNNs is gaining momentum in this research field literature (YUE,
2017; CHEN, 2018; SU et al., 2018; KHORMALI et al., 2019; CHEN et al., 2020;
LE et al., 2018). This work shows a simple technique that is able to make the
accuracy in such CNNs drop in almost 50% by adding small perturbations to a
malware file. We could observe that methods such as Gated CNN (RAFF et al.,
2017) or combining CNN with LSTM (LE et al., 2018) can be more robust against
the data injection presented here.

e A deeper understanding of how the operating system loads executable files to mem-
ory usually helps malware creators. During preliminary tests we were able to see
that some file format rules are flexible and malware authors do not follow all of
them. It includes files with section headers missing or some sections not aligned to
the required flags. We tried our best to keep our generated examples in accordance
with the format specified. Malware creators might not have this mentality, so that
should be considered when building neural networks with the purpose of detecting
malware files that rely on static features from the file.

e Our results show that data dispersion might be just as important as the amount
of data being injected. We can use this idea to conduct a more directed attack
using our method together with the method proposed by Khormali et al. (2019)
(KHORMALI et al., 2019), injecting FSGM generated sections in any position of
the file.
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e The classifiers in our experiments were heavily skewed towards using the header
bytes as a feature. This area shares many relevant bytes across samples because of
the PE file structure, making them a relevant and discriminative feature.

e Our attempt at crafting a reliable binary dataset was trickier than initially thought
of. Despite still being affected by the injection mechanism, the classifiers lost way
less performance than in the multiclass dataset. Further exploration using multiple
sources for benign files is required to have better insights on which features are
more discriminant for this scenario.

As mentioned in Section 5.6, augmenting the training set with injected samples might
not be enough to prevent section injection attacks, nor only increasing architecture size.
Further investigation is required on how to transform the input for the models in such a
way that only relevant data for the classification is kept. Current experiments point in
the direction that instead of relying on a fixed preprocessing method - like truncating or
interpolating - more dynamic approaches should be investigated, such as Attention based
methods.
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