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Big Data is a trending topic that has gained attention in the business and academic 

environments. The term refers to the huge amount of data being generated every day in a 

variety of sources and formats. An expressive part of Big Data is in the format of text that can 

be used to solve various real life problems, such as spam detection, author identification, web 

pages classification and sentiment analysis. Text datasets are specially complicated since its 

high dimensionality can extend from vertical high dimensionality (high number of instances) 

to horizontal high dimensionality (high number of attributes). In order to extract useful 

knowledge from such high dimensional datasets, data analysis techniques must be able to 

cope with its new challenges: volume, velocity variety and variability. Fuzzy Rule-Based 

Classification Systems (FRBCS) have shown to effectively deal with the uncertainty, 

vagueness, and noise inherent to data. However, the performance of FRBCSs is highly 

affected by the increasing number of instances and attributes present in Big Data. Previously 

proposed approaches try to adapt FRBCSs to Big Data by distributing data processing with 

the MapReduce paradigm, by which the data is processed in two stages: Map and Reduce. In 

the Map stage, the data is divided into multiple blocks and distributed among processing 

nodes that process each block of data independently. In the Reduce stage, the results coming 

from every node in the Map stage are aggregated and a final result is returned. This 

methodology tackles vertical high dimensionality, but it does not approach datasets with 

simultaneous vertical and horizontal high dimensionality, as it is the case of text datasets. 

Horizontal high dimensionality reduction could be done by using common feature selection 

techniques, such as MI and Chi-squared. However, using such feature selection techniques 

may not be the best alternative since model accuracy might be affected by the loss of 

information when keeping only a subset of attributes. In this work, we deal with the 

aforementioned drawbacks by proposing Summarizer, an approach for building reduced 

feature spaces for horizontally high dimensional data. To this end, we carry out an empirical 

study that compares a well-known classifier proposed for vertical high dimensionality 

datasets with and without the horizontal dimensionality reduction process proposed by 

Summarizer. Our findings show that existing classifiers that tackles vertical Big Data 

problems can be improved by adding the Summarizer approach to the learning process, 

which suggests that an unified learning algorithm for datasets with a high number of 

instances as well as a high number of attributes might be possible. 
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ABSTRACT

Big Data is a trending topic that has gained attention in the business and academic

environments. The term refers to the huge amount of data being generated every day

in a variety of sources and formats. An expressive part of Big Data is in the format

of text that can be used to solve various real life problems, such as spam detection,

author identification, web pages classification and sentiment analysis. Text datasets are

specially complicated since its high dimensionality can extend from vertical to horizontal

high dimensionality (high number of instances and attributes respectively). In order to

extract useful knowledge from such high dimensional datasets, data analysis techniques

must be able to cope with its new challenges: volume, velocity, variety and variability.

Fuzzy Rule-Based Classification Systems (FRBCS) have shown to effectively deal with the

uncertainty, vagueness, and noise inherent to data. However, the performance of FRBCSs

is highly affected by the increasing number of instances and attributes present in Big Data.

Previously proposed approaches try to adapt existing FRBCSs to deal with Big Data by

distributing data processing with the MapReduce paradigm. This methodology tackles

vertical high dimensionality, but it does not approach datasets with simultaneous vertical

and horizontal high dimensionality, as it is the case of text datasets. Horizontal high

dimensionality reduction could be done by using common feature selection techniques,

such as MI and Chi-squared. However, using such feature selection techniques may not

be the best alternative since model accuracy might be affected by the loss of information

when keeping only a subset of attributes. In this work, we deal with the aforementioned

drawbacks by proposing Summarizer, an approach for building reduced feature spaces for

horizontally high dimensional data. To this end, we carry out an empirical study that

compares a well-known classifier proposed for vertical high dimensionality datasets with

and without the horizontal dimensionality reduction process proposed by Summarizer.

Our findings show that existing classifiers that tackles vertical Big Data problems can be

improved by adding the Summarizer approach to the learning process, which suggests

that an unified learning algorithm for datasets with a high number of instances as well

as a high number of attributes might be possible.
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Chapter

1
INTRODUCTION

A trending topic that has gained attention in the business and scientific environments

is the phenomenon called “big data”. This term is used to refer to the huge amount

of data that is generated every day, which has promoted/forced changes in traditional

data mining and Machine Learning (ML) approaches. Big data includes structured and

unstructured data that can come from a variety of sources and formats. For example,

bank transactions, mobile activities, data in the format of video, text, image, and so on.

Among the wide range of challenges that arise with Big Data are classification tasks,

where knowledge is extracted from data to predict future patterns. An expressive part of

Big Data is in the format of text that can be used to solve various real life problems, such

as spam detection (CHEN et al., 2015), author identification (SILVA; SILVA, 2017), web

pages classification (SARAÇ; ÖZEL, 2014) and sentiment analysis (MEDHAT; HASSAN;

KORASHY, 2014). Besides the increasing number of instances and attributes present in

Big Data, uncertainty, vagueness, and noise inherent to such data can mask the valorous

information to be obtained from Big Data, making it more difficult to perform classifica-

tion tasks. The concept of uncertainty, for example, can be intuitively understood with

the sentence “It is supposed to snow today”. It is uncertain because it might not snow

all day. The phrase “This summer will be much hotter this year” exemplifies the concept

of vagueness, since the vague expression “much hotter” indicates the lack of precision.

Noise, on the other hand, is unwanted data examples or features that are not useful to

understand the pattern of the data. These three phenomenons complicate data mining

and ML processes.

1



2 INTRODUCTION

More data usually lead to more accurate and precise information. However, in the

big data scenario, information cannot be easily extracted by traditional data mining

techniques. That is, standard data mining techniques and ML algorithms, such as the Chi

et al.’s algorithm (CHI; YAN; PHAM, 1996), normally fail to scale up to huge amounts of

data. This way, when using such standard data mining techniques for high dimensional

datasets, analysis results are usually associated with poor performance of algorithms,

decreasing of accuracy and recall, high complexity of the target functions, and model

overfitting. Thus, to overcome the curse of dimensionality and big data, new techniques

must be developed and/or standard techniques must be redesigned and adapted to the

big data scenario.

On the other hand, Fuzzy Rule-Based classification Systems (FRBCS) are popu-

lar tools used to solve classification and pattern recognition problems (ISHIBUCHI;

NAKASHIMA; NII, 2006). These tools can, very effectively, deal with the uncertainty,

vagueness and noise inherent to data. For example, Chi et al.’s algorithm, that is a

traditional FRBCS (CHI; YAN; PHAM, 1996), is a very effective rule based algorithm

that works by turning data examples into rules where attributes of each data example

are components of those rules. However, traditional FRBCSs, such as the above men-

tioned Chi et al.’s algorithm, were not designed to deal with the new challenges that

come with big data problems, including scalability and noise accumulation. For instance,

an impractical amount of time might be needed for training a ML model, as the Chi

et al.’s algorithm, since much more data examples and attributes might be considered

in the process. Besides the increasing time needed for processing such high dimensional

datasets, complexity is also significantly increased. In the case of Chi et al.’s algorithm,

complexity grows because of the increased number of rules, as well as the increased size

of each rule. To address this difficulty, a lot of work have been done to adapt these

techniques to big data (LÓPEZ et al., 2015; ELKANO et al., 2017a; RIO et al., 2015).

One of the biggest advantage of the Chi et al.’s algorithm is that it can be easily

processed in parallel environments. That is, each data example can be turned into a rule

independently from the other data points. This characteristic of the model facilitates the

adaptation of the algorithm to the Big Data scenario. The adapted FRBCS techniques

attempt to deal with large amounts of data by making use of the most popular paradigm

for addressing big data: MapReduce (DEAN; GHEMAWAT, 2008). Shortly, MapReduce

is a distributed programming model that splits the data processing in two stages: Map

and Reduce. In the Map stage, the data is divided into multiple blocks and distributed

among processing nodes that process each block of data independently. In the Reduce
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stage, the results coming from every node in the Map stage is aggregated and a final

result is returned.

The first adaptation of the original Chi et al.’s algorithm using the MapReduce

paradigm was proposed by López et al. (2015). The basic idea of the proposed ap-

proach, the Chi-FRBCS-BigDataCs algorithm, is to split the data into multiple training

sets that will be processed independently by different nodes in the Map function. The

results are then aggregated in the Reduce stage forming the final set of rules.

Later on, two different approaches were proposed by Rio et al. (2015) in order to

generate better rules. The proposed algorithms, named Chi-FRBCS-BigData-Ave and

Chi-FRBCS-BigData-Max, have the same Map stage as the Chi-FRBCS-BigDataCs. The

algorithms differ in the Reduce stage, where Chi-FRBCS-BigData-Ave and Chi-FRBCS-

BigData-Max algorithms have more sophisticated methods for aggregating the rules and

generating the final result.

The latest adaptation of Chi et al.’s algorithm was proposed by Elkano et al. (2017a).

The proposed method, Chi-BD, is more robust and aims to eliminate the dependency of

the model on the distribution of the training data in each mapper. Chi-BD computes

the rule weights considering the whole dataset instead of dividing the data into multiple

training sets. This way, the authors defend that rules quality is not affected by the degree

of parallelism. The rule generation process is more complex for the Chi-BD algorithm

if compared to the algorithms mentioned above. However, Elkano et al. (2014a) show

that Chi-BD outperforms Chi-FRBCS-BigdataCS in terms of runtime and classification

performance when dealing with big data problems.

The existing adaptations of FRBCSs have shown that applications of fuzzy rule-based

systems are promising alternatives to deal with big data problems. However, the methods

presented above leave gaps that motivated the development of this work. Such gaps and

the motivation of this work are presented in Section 1.1.

1.1 MOTIVATION

The algorithms mentioned above are adaptations of the traditional Chi et al.’s algorithm

for fuzzy rule bases generation in the context of big data. The literature has shown that

the MapReduce paradigm enables the use of fuzzy rules to solve big data problems. The

existing methods were intensively studied in datasets with vertical high dimensionality

(high number of instances) and showed to be very effective. Nevertheless, the performance

of the algorithms in datasets with an increasing number of attributes (horizontal high

dimensionality) as well as an increasing number of instances was not explored.
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Moreover, the adapted methods presented above were tested and validated in datasets

with millions of instances, but the larger dataset had a maximum of 54 attributes. It is

well known that some classification tasks, such as text classification, may have datasets

with thousands or millions of attributes as well as thousands of instances. Text datasets

are examples of data that can have huge amounts of attributes since every unique word

across all text data points is a different attribute. In such cases, only distributing data

in multiple mappers may not overcome the high dimensionality problem since each map-

per will have a reduced number of instances but will still have a very high number of

attributes. In other words, vertical high dimensionality is addressed by distributing data

across multiple mappers, but horizontal high dimensionality will still be a problem in

each mapper.

One way to overcome the horizontal high dimensionality problem is to perform some

feature selection or dimensionality reduction techniques before running classification al-

gorithms (DENG et al., 2018; CHANDRASHEKAR; SAHIN, 2014). Feature selection

techniques select the “most important” subset of attributes following some specific criteria

(LI et al., 2017; LABANI et al., 2018). Despite these techniques be widely used for solving

classification problems, there are some concerns regarding to the loss of information when

discarding some attributes. Feature selection processes might not guarantee a fair repre-

sentation of all classes by the selected features, especially for imbalanced datasets. These

techniques evaluate each attribute individually, and dependencies between the attributes

might be ignored, resulting in the selection of redundant attributes and on the discard of

relevant ones (CHANDRASHEKAR; SAHIN, 2014; KUMBHAR; MALI, 2016).

Considering that FRBCSs were not still tested in datasets with both vertical and

horizontal high dimensionality, and considering that feature selection and dimensionality

reduction techniques may discard useful information, this work was developed concerning

to the following hypothesis and objectives.

1.2 HYPOTHESIS AND OBJECTIVES

In the Big Data scenario, there may be datasets with a high number of attributes and a

high number of instances, horizontal and vertical high dimensionality respectively. The

existing MapReduce approaches for FRBCSs are focused on datasets with vertical high

dimensionality, leaving a gap on problems with both horizontal and vertical high dimen-

sionality.

In this work, we deal with the aforementioned drawbacks by clustering the attributes

of such datasets to reduce horizontal high dimensionality. Consequently, classification
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performance may be improved by using such groups of attributes as the new feature space.

It is expected that the smaller feature space will represent the data properly and that the

classification algorithms will present good classification results in terms of accuracy. It

is also expected that a smaller number of rules will be generated since a smaller number

of features will be used, which will result in more interpretable systems. Therefore, with

our approach, a smaller feature space is built for each dataset using the well-known fuzzy

clustering algorithm, Fuzzy C-means (FCM) (BEZDEK, 1981). In addition to FCM,

two established dimensionality reduction techniques were applied: Principal Component

Analysis (PCA) and Latent Semantic Analysis (LSA). Both approaches use Singular

Value Decomposition (SVD) and leverage the idea that meaning can be extracted from

context. In LSA, the context is extracted using the term×document matrix, while in

PCA the context is provided through the term covariance matrix. In this sense, the

current work was performed under the following hypothesis:

It is possible to reduce dimensionality, without discarding information, and build better

models by using groups of attributes in the classification process in a fuzzy rule-based

classification system using the MapReduce paradigm.

To test the hypothesis, the goal of this work was to use FCM, PCA, and LSA to reduce

the dimensionality of the feature space before applying a FRBCS under the MapReduce

paradigm. It is expected that a smaller number of rules be generated and that the models

present better accuracy.

1.3 WORKFLOW

To achieve these goals, this dissertation is organized as follows.

Chapter 2 - Fuzzy Systems. In this chapter, we present the main topics of fuzzy

systems including fuzzy sets, fuzzy rules, fuzzy rule-based classification systems and fuzzy

inference system.

Chapter 3 - Horizontal Dimensionality Reduction. In this chapter, we present the

basic concepts of the Fuzzy C-Means algorithm and two other well-known dimensional-

ity reduction techniques: Principal Component Analysis (PCA), and Latent Semantic

Analysis (LSA).

Chapter 4 - Big Data. In this chapter, it is given an introduction to the Big Data

concepts as well as a description of the main tools to deal with Big Data problems.

Chapter 5 - Related Work. In this chapter, it is given an overview on what has already

been done for fuzzy rule based classification systems on the context of Big Data.

Chapter 6 - Proposal. In this chapter, it is given a deeper evaluation of the existing
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adaptations of the Chi et al.’s algorithm to the Big Data scenario. The developed work

is also explained in details.



Chapter

2
FUZZY SYSTEMS

Fuzzy Systems (FS) are systems that make use of the fuzzy sets theory (ZADEH, 1965).

Fuzzy sets can handle uncertainty, ambiguity or vagueness inherent to data in a very

effective manner. Instead of dealing with crisp logic, fuzzy sets allow objects to belong

to many sets with different membership degrees.

In the next sections, the main concepts about fuzzy sets, operation on fuzzy sets,

fuzzy relations and membership functions will be discussed.

2.1 FUZZY SETS

Traditional set theory uses probability theory to deal with crisp events. In the crisp

scenario, an element can either belong to a set or not belong to it. For instance, con-

sidering an article as an element and two sets representing ‘politics’ and ‘sports’, in a

crisp approach, the article can either be about politics or sports. It is not considered

the possibility of the article being about politics and sports at the same time. On the

other hand, fuzzy sets theory can generalize the traditional set theory by providing a

mechanism that allow different membership degrees of an example to every set. In this

case, the article could belong to the politics set with a 0.6 membership degree, and it

could belong to the sports set with a 0.4 membership degree, for example.

The definition of a fuzzy set goes from a characteristic function {0,1}, where 1 and 0

indicates if the element belongs to the set or not, to a membership function [0,1], where

the membership degree is indicated instead. Details of membership functions are given

in the next section.

7
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2.1.1 Membership functions

The degree to which an event belong to a set can be established by using a membership

function. The notation of a membership function of a fuzzy set A for the set X of elements

is defined below.

A : X → [0, 1]

A(x) associates each element x ∈ X to a degree of membership in the interval [0, 1] to

the fuzzy set A (KLIR; YUAN, 1995). A given element may belong to different fuzzy sets

with different degrees. This way, membership functions can overlap with each others.

Piecewise linear are the most popular membership functions because of their sim-

plicity. One of the most popular, and the one that will be focused in this work, is the

triangular membership function, shown below.

A(x, a,m, b) =



0, for x ≤ a,

x−a
m−a , for x ∈ (a,m),

1, for x = m,

b−x
b−m , for x ∈ (m, b),

0, for x ≥ b.

for a ≤ m ≤ b. The graphical representation of the triangular membership function

is shown in Figure 2.1.

2.1.2 Operation on fuzzy sets

Operations over fuzzy sets are extensions of operations over crisp sets. The basic connec-

tive operators of the standard fuzzy set operations are intersection, union and comple-

ment. The fuzzy complement applied to the fuzzy set A with membership function A(x),

and the fuzzy intersection and union operators applied to the fuzzy sets A and B with

membership functions A(x) and B(y) can be defined as follows:

• Fuzzy complement

Ā(x) = 1− A(x), x ∈ X (.)

• Fuzzy intersection

A ∩B(x) = min(x∈X){A(x), B(x)}, x ∈ E (.)
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Figure 2.1 Triangular membership function for a fuzzy set.

• Fuzzy union

(A ∪B)(x) = max(x∈X){A(x), B(x)}, x ∈ E (.)

The generalized fuzzy intersection, also known as t-norms, are binary operations

t : [0, 1]× [0, 1]→ [0, 1] that follow the following properties.

Commutativity: atb = bta

Associativity: at(btc) = atb(tc)

Monotonicity: if b ≤ c, then atb ≤ atc

Absorption: at0 = 0

Neutrality: at1 = a

For a, b, c ∈ [0, 1]. Some examples of t-norms are:

Standard intersection:atb = min(a, b)

Algebraic product: atb = ab

Algebraic difference: atb = max(0, a+ b− 1)

Boundary conditions:

atb =


b, if a = 1

a, if b = 1

0, otherwise
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The same way, the generalized fuzzy union, also known as t-conorms or s-norms, are

binary operations t : [0, 1]× [0, 1]→ [0, 1] that follow the following properties.

Commutativity: asb = bsa

Associativity: as(bsc) = asb(sc)

Monotonicity: if b ≤ c, then asb ≤ asc

Absorption: as1 = 1

Neutrality: as0 = 0

For a, b, c ∈ [0, 1]. Some examples of s-norms are:

Standard union: xasb = max(a, b)

Limited sum: asb = min(1, a+ b)

Algebraic sum: asb = a+ b− a× b
Boundary conditions:

asb =


a, if b = 0

b, if a = 0

1, otherwise

2.1.3 Fuzzy Relations

Fuzzy relations can be generalized from the traditional set concepts. They represent

the degree of association between elements of two or more fuzzy sets (NICOLETTI;

CAMARGO, 2004). A binary fuzzy relation R(D,X) over two fuzzy sets, D and X, is

a fuzzy set defined by the membership function R(d, x). R(d, x) defines the degree of

association between d and x through the Cartesian product in ..

R : D,X → [0, 1] (.)

The matrix representation of the relation between the instances D = {d1, d2, ...dn}
and the attributes X = {x1, x2, x3, ...xm} is the following:
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R =


r11 r12 ... r1m

r21 r22 ... r2m
... . . . . . .

...

rn1 rn2 ... rnm


in which rij = R(di, xj) for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

The membership functions taken from the union and intersection of two binary fuzzy

relations, R1 and R2, are shown in . and in ., respectively.

R(d, x) = R1(d, x)sR2(d, x), ∀d, x ∈ D ×X (.)

R(d, x) = R1(d, x)tR2(d, x), ∀d, x ∈ D ×X (.)

Where t is a t-norm, s is a s-norm, and R1 and R2 are two fuzzy relations defined in the

same space D ×X.

Fuzzy relations can be combined through the fuzzy composition operation. The com-

position of two fuzzy relations R1(x, y) and R2(y, z) defined in the Cartesian products

X × Y and Y × Z, respectively is represented in . and ..

R(〈x, z〉) = (R1 ◦R2)(〈x, z〉) = maxy∈Y t[R1(〈x, y〉), R2(〈y, z〉)] (.)

R(〈x, z〉) = (R1 ◦R2)(〈x, z〉) = miny∈Y s[R1(〈x, y〉), R2(〈y, z〉)] (.)

where t is a t-norm and s is a s-norm.

The above mentioned definitions are important for the understanding of fuzzy rules.

In the next sections, it will be discussed the concepts of linguistic variables, fuzzy rules

and fuzzy inference.

2.2 COMPUTATION WITH FUZZY RULES

In fuzzy logic, fuzzy rules have been elected as key engines for expressing knowledge and

for understanding the vagueness and ambiguity inherent to data (DUBOIS; PRADE,

1996). All the computational steps involving rules apply mechanisms that use fuzzy rules

to make inference. Rules are often expressed as linguistic variables, explained in the next

section.
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2.2.1 Linguistic Variables

Linguistic variables make it possible for knowledge to be mathematically represented.

This representation enables ambiguous problems to be manipulated by computers. Lin-

guistic variables are variables expressed in a natural language, instead of numerical values.

For example, the temperature of a room is usually qualified as “hot” and “cold” in real

life. A linguistic variable “Temperature” can be decomposed, for example, with the lin-

guistic terms: too-cold, cold, warm, hot, too-hot, as a categorical variable. Values of a

linguistic variable are words or sentences. The representation of a fuzzy decomposition

of the fuzzy variable Temperature is shown in Figure 2.2.

Figure 2.2 Membership function for the linguistic variable “Temperature”.

Each term of this decomposition can cover an interval of the overall values of the

temperature. This way, a value of temperature can be represented by multiple terms at

the same time with different membership degrees. On the graph, x is representing the

temperature, and A(x) is the probability associated with it. A temperature of 10 degrees

Celsius, for example, can have a low membership degree for warm and hot, and a high

membership degree for cold.

In the next section, it will be presented a discussion over the main topics about fuzzy

rules and fuzzy inference.
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2.2.2 Fuzzy Rules

Using rules for knowledge representation is an old technique that is still widely used nowa-

days. Knowledge representation through the use of fuzzy rules is very popular due to the

simplicity of the linguistic representation. Fuzzy rules are IF-THEN rules expressed by

the linguistic terms of the Linguistic variables. For example, the Temperature variable

can build a conditioner system through the use of rules as follows:

IF (temperature is cold OR too-cold) THEN action IS turn heat on

IF (temperature is hot OR too-hot) THEN action IS turn heat off

IF (temperature is warm) THEN action is no-change

The rules described above are fuzzy conditional statements. They associate a con-

dition, described using linguistic terms and fuzzy sets, to an output or conclusion. The

collection of fuzzy conditional statements forms the rule-base or the rule set of a fuzzy

system.

The main concepts about fuzzy rules were presented above, and more detailed in-

formation can be found in (ZADEH, 1965). In order to draw conclusions from a set of

rules, fuzzy inference must be aplied. The main concepts about fuzzy inference will be

presented in the next section.

2.2.3 Fuzzy Inference

Fuzzy sets itself cannot lead to useful and practical decisions. Fuzzy inference processes

need to be applied in order to draw conclusions from a set of rules. In the fuzzy inference

process, membership functions are combined with the control rules and a fuzzy output

is derived. The most basic inference rule for fuzzy systems is the compositional rule of

inference. The basic case where there is one variable in the antecedent and one variable

in the consequent will be presented here.

Let A be a fuzzy set over X and B a fuzzy set over Y . The fuzzy relation R(x, y)

over X and Y is inducted from the rule IF X is A THEN Y is B. This relation can be

defined by the function:

R(x, y) = f(A(x), B(y))

f can be a fuzzy conjunction, disjunction or implication (detailed in (PEDRYCZ;

GOMIDE, 1998)).
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In order to use the fuzzy rule above to make an inference, it is necessary to know same

information about the antecedent variables. For example, lets say that X is A’, then it

can be concluded that Y is B’, in which B’ is defined by Equation ..

B′(y) = sup
x∈X

[A′(x)tR(x, y)] (.)

where sup is the supremum operator and t is a t-norm. The application of the com-

positional rule of inference can be easily extended to the case where there are multiple

variables. The general process of computation using fuzzy rules is based on the compo-

sitional rule of inference.

In the next section, the main concepts over FS will be presented.

2.3 FUZZY SYSTEMS

Among the different available Fuzzy Systems, the FRBCSs! (FRBCSs!) are the focus

of this work. The main characteristics of these systems will be described in the next

sections.

2.3.1 Fuzzy Rule-Based Classification Systems

The FRBCSs! are composed of two main components: Knowledge Base (KB) and Infer-

ence system. The method produces an interpretable model with human readable linguistic

labels. The KB is composed of the Data Base (DB) and the Rule Base (RB), as shown

in Figure 2.3. The DB contains the membership functions of the attributes, and the RB

contains the set of fuzzy rules that describe the problem. The inference system will later

derive conclusions from the rules.

To implement a FRBCS, the following steps are needed:

• Fuzzification: converts crisp sets into fuzzy sets by deriving the membership func-

tions.

• Fuzzy Inference Process : combines the membership functions with the control rules

to derive individual results for each rule.

• Defuzzification: converts the fuzzy output from the previous step back to a crisp

output. This step is not always necessary, depending on the goal of the FS.

The fuzzification step usually involves two process: deriving the membership functions

for the input and output variables and representing them with linguistic terms, as dis-
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Figure 2.3 Representation of a KB of a Fuzzy Rule-Based Classification System (FRBCS).

cussed earlier. In other words, these processes are equivalent to transforming a classical

set into a fuzzy set with varying degrees.

In the fuzzy inference step, conclusions are derived from the combination of the input,

output membership functions and the fuzzy rules. The way the fuzzy sets obtained in

the inference process are used depends on the type of the system and the problem being

solved. The output from the FS can be either turned into linguistic or numeric values

(defuzzification).

Shortly, a fuzzy process is a crisp-fuzzy-crisp process where the initial input and the

final output must be crisp values, but a fuzzy inference process must be performed in the

middle of the process.

2.3.2 Fuzzy Inference System

There are two types of fuzzy inference that are widely used in many different fields:

Mamdani fuzzy inference, (MAMDANI, 1976), and Sugeno fuzzy inference, (TAKAGI;

SUGENO, 1985). The difference between the fuzzy models lie in the consequent of the

rules.
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The Mamdani systems have fuzzy propositions in the antecedent and consequent of

the rules. On the other hand, Sugeno systems have propositions in the antecedent of the

rules, but the consequent of the rules is a function of the antecedent part. A representation

of both fuzzy models is shown below.

Mamdani:

IF X1 is Ai1 AND ... Xn is Ain THEN Y IS B

Sugeno:

IF X1 is Ai1 AND ... Xn is Ain THEN f(x1, . . . , xn)

where X1, . . . , Xn are the input linguistic variables, Y is an output linguistic variable,

Ai1, . . . , Ain and B are linguistic terms, and f is a function applied over the input values

x1, . . . , xn.

The Mamdani system outputs a fuzzy set that is then defuzzified in order to obtain

a precise numerical value as a result. The Sugeno system already outputs a precise

numerical value. This way, the defuzzification step it is not necessary.

Since the goal of this work is to use fuzzy rules to classificate documents, a classifica-

tion step is necessary after the rules generation process is finished. The fuzzy rule-based

classification process is explained in the next section.

2.3.3 Fuzzy Classification

In a fuzzy rule-based classification system, the goal is to classify instances, represented

by m attributes, into a set of predefined classes. Rules in a FRBCS follow the general

pattern of the rules presented in Section 2.2.2 and can be represented as follows:

IF X1 is Ai1 AND ... Xm is Aim THEN Class = Cc

where X1, . . . , Xm are attributes represented by linguistic variables, Ai1, . . . , Aim are

the linguistic terms representing each attribute, and Cc is the class that the specific

instance belongs to.

Fuzzy methods for classification are inference procedures that take if...then rules and

instances with attribute values in order to determine the class of such instances. The

most used methods for fuzzy classification are the Classical Fuzzy Reasoning and the

General Fuzzy Reasoning.

The Classical Fuzzy Reasoning method seeks to classify instances according to the
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rules with the higher compatibility degrees. Consider d = {a1, s2, . . . , dm} an instance to

be classified, and R1, R2, . . . , RS a set of S rules from the classification system, each of

them with m antecedents. Consider Ai(ai), i = 1, . . . ,m, the membership degree of the

attribute ai to the i-th fuzzy set of the rule Rk. The Classical Fuzzy Reasoning method

classifies the instance d according to the following steps.

• Calculating the compatibility degree between the instance d and each rule Rk,

k = 1, . . . , S.

Compat(Rk, d) = t(A1(a1), A2(a2), . . . , Am(am)), where t is a t-norm.

• Finding the rule with the higher compatibility degree with the instance d.

maxCompat(Rk, d), k = 1, 2, . . . , S

• Defining the class Cj to the instance d, where Cj is the consequent of the rule Rk

that has the higher compatibility degree with instance d.

The General Fuzzy Reasoning method combines information from all rules regarding

to a specific class in order to classify an instance d. The steps are described as follows.

• Calculating the compatibility degree between the instance d and each rule Rk,

k = 1, . . . , S.

Compat(Rk, d) = t(A1(a1), A2(a2), . . . , Am(am)), where t is a t-norm.

• Calculating, the classification degree, Classc, of d for each class C. This is possible

by aggregating the compatibility degrees of all rules whose predict class is C.

ClassC = f{Compat(Rk, d)}|{CistheclassofRk}, where f is an aggregating oper-

ator such that min ≤ f ≤ max.

• d will be classified into class C, where C is the class corresponding the the maximum

value of Classc from the previous step.

Both techniques uses the KB built previously to identify the class that most associates

to the new instance. The difference between the techniques is in the way the calculation

of the association degree between the instance and each rule/class is performed.

2.4 FINAL CONSIDERATIONS

In this chapter, the main concepts of a FRBCS were described with great attention given

to the approaches that were used in this work. The next chapter is devoted to explain
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the main concepts related to Big Data and, main tools used nowadays to deal with it, as

well as the most recent adaptations of traditional Machine Learning (ML) algorithms to

the Big Data scenario.



Chapter

3
VERTICAL DIMENSIONALITY REDUCTION

As discussed earlier, vertical high dimensionality refers to the huge amount of instances,

while horizontal high dimensionality refers to the huge amount of attributes. Although

Big Data can be related to both horizontal and vertical high dimensionalities, Big Data

is usually approached as vertical high dimensional datasets. CHI-BD and most of the

cited adaptations discussed here make use of MapReduce and Hadoop for dealing with

vertical high dimensionality.

In this chapter, it is given a general description of Big Data and the challenges that

arises with it for traditional ML techniques to extract useful knowledge from such big

amounts of data. The MapReduce paradigm and the Hadoop framework are usually used

to tackle high dimensionality problems and are also briefly discussed here. In addition to

those concepts, it is also given a general idea of existing adaptations of traditional ML

algorithms to the Big Data scenario.

Finally, it is also given a report on the existing FRBCSs adapted to the Big Data

scenario. All the existing adaptations are based on Chi et al.’s algorithm, so the mentioned

algorithm is also briefly discussed. CHI-BD, that is the latest adaptation of the Chi et

al.’s algorithm to Big Data, is discussed in more detail since it will be used for evaluating

the feasibility of this work.

3.1 BIG DATA

Despite its first use happened years before, the “Big Data” term was officialized in 2013

when Oxford English Dictionary introduced it for the first time in its dictionary. Accord-

ing to the dictionary, the definition of the term “Big Data” is:

19
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“Extreme large datasets that may be analyzed computationally to reveal patterns, trends,

and associations...”

As the definition presented above says, the high dimensionality inherent to Big Data

has brought much interest because of the possibility to improve data analysis and knowl-

edge extraction. Nevertheless, Big Data has also raised many concerns regarding to the

difficulty to deal with the large amount of data related to it. Big Data can be so large and

complex that traditional software tools or data processing applications are not capable

of processing or analyzing (FERNÁNDEZ et al., 2014).

In order to describe the challenges associated with Big Data, six defining properties

are commonly used: volume, velocity, variety, variability, veracity, and value. Each of

them is shortly described below:

• Volume: refers to the huge amount of data that need to be processed in order to

get useful information.

• Velocity: refers to the speed of data processing that has to be done in a reasonable

period of time.

• Variety: refers to the number of types of data that can be structured or unstruc-

tured, such as pictures, audios, text among others.

• Variability: refers to the inconsistency that can be associated to data. It defines

the need to get useful data even in conditions of high unpredictability.

• Veracity: refers to the reliability of the captured data. Biases, noises and abnor-

malities are present in Big Data, and a good data cleansing has to be assured in

order to only store valuable data.

• Value: refers to the value of such data to the purpose of the analysis.

These Big Data problems/characteristics are present in a vast number of fields. For

example, Instagram generates 95 million photos and videos each day, 45,788 trips are

taken by Uber riders every minute, 156 million emails are sent every minute, and so

on. To address these problems and extract useful knowledge from data, several solutions

have been proposed recently. Most of the proposed solutions regarding to classification

problems combines the MapReduce model with the Apache Hadoop computing framework

(LOPEZ et al., 2014; FERNÁNDEZ et al., 2017; MAILLO; TRIGUERO; HERRERA,

2015a; PRIYADARSHINI et al., 2015a; RÍO et al., 2014).
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It is worth mentioning that the works cited above use MapReduce and Hadoop to

tackle vertical high dimensionality, which is generally refered to as Big Data. The MapRe-

duce model and the Appache Hadoop computing framework are described in the next

sections.

3.2 MAPREDUCE

MapReduce is a distributed programming model proposed by Google in 2004 (DEAN;

GHEMAWAT, 2008) with the goal of simplifying the distributing process. Distributed

programming is a strategy that distributes the computation flow along large-scale clus-

ters of machines. Here, clusters of machines refers to a set of connected computers that

work together to achieve results faster. The term should not be confused to clusters of

data generated by the clustering algorithms, also referred to as groups. The MapReduce

model divides the computational flow in two main stages: Map and Reduce. Each stage

is organized around key-value pairs. The Map and Reduce functions are described below.

Map function: in this stage, the data is automatically divided into independent

data blocks and distributed along storage nodes. Nodes are computing units that can be

used for storage or processing. The data is analyzed independently by each node, and,

for each input, intermediate results are returned by each node.

Reduce function: the Reduce function collects and aggregates the results returned

by each node in the Map function and produces a final result.

The two biggest advantages of MapReduce are: parallel processing and data locality.

When using a MapReduce approach, one is dividing the job among multiple nodes (slave

nodes), and each slave node executes part of the job simultaneously. This way, MapRe-

duce is a Divide and Conquer approach where the big problem is divided into smaller

sub-problems and each sub-problem is solved independently. The solutions of the sub-

problems are finally merged and the final solution of the original problem is gotten. This

approach helps to get the final solution much faster since multiple resources are working

on solving the problem at the same time. A graphic representation of how the work can

be divided into multiple computing units is shown in Figure 3.1.

Figure 3.1 illustrates a distributed computing approach where 4 slave nodes are avail-

able for working in parallel. A master node is responsible for distributing the work

between the slave nodes. The second advantage of MapReduce, data locality, refers to

the fact that the processing unit is moved to the data, instead of data being moved to

the processing unit. As shown in Figure 3.1, data is distributed among multiple nodes
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Figure 3.1 MapReduce work split between computing nodes.

where each node stores and processes only the part of the data residing on it. The most

relevant open source implementation for the MapReduce programming model is Appache

Hadoop, described in the next section.

3.3 APACHE HADOOP

Apache Hadoop (Hadoop) is an open source framework for Big Data processing and

storage in a distributed environment across clusters of computers (WHITE, 2012). The

Hadoop framework implements the MapReduce model over a distributed file system called

Hadoop Distributed File System (HDFS). HDFS replicates the data files in many storage

nodes, which facilitates data transfer among nodes and allows the system to keep working

even when one or several nodes fail. The MapReduce scheme allows the processing of the

data in each node.

Hadoop has a high capability for data storage, data management, and data processing

on a petabyte scale. It will be considered in this work due to its open source nature and
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facilities regarding to its installation and use.

In order to better understand the process, a Hadoop MapReduce processing Model is

presented in Figure 3.2.

Figure 3.2 Representation of a Hadoop MapReduce processing Model.

Figure 3.2 pictures the general process of a Hadoop MapReduce Model. The process

can be adapted to the user MapReduce scheme.

In the next sections, we present a discussion about the existing ML models adapted

for Big Data problems. Most of articles discussed in the next sections make use of the

MapReduce paradigm and the Hadoop framework for dealing with vertical high dimen-

sionality. Great attention was given to the works about FRBCSs, since it is the focus of

this work.

3.4 ADAPTATIONS OF TRADITIONAL MACHINE LEARNING ALGORITHMS

FOR BIG DATA

Big Data has promoted/forced changes in traditional ML methods and tools in order

to address exponentially growing processing times as the number of examples increases.
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In the last few years, researchers have studied the implementation of those traditional

ML algorithms in a MapReduce framework (CHU et al., 2007). It has been found that

MapReduce programming models allow the user to speed up the training process of a

variety of ML algorithms. Algorithms for learning fuzzy rules, for example, are very well

suited for parallel environments since rules creation can be adapted to a map and reduce

stage. Examples of ML algorithms already implemented in a MapReduce framework in-

clude: Random Forests (LI et al., 2012; WAKAYAMA et al., 2015; HAN; LIU; SUN,

2013), Distributed Decision Trees (DAI; JI, 2014), Fuzzy Decision Trees (SEGATORI;

MARCELLONI; PEDRYCZ, 2018), K-Nearest Neighbors (MAILLO; TRIGUERO; HER-

RERA, 2015b; ANCHALIA; ROY, 2014; ZHANG; LI; JESTES, 2012), Support Vector

Machine (SUN; FOX, 2012; KHAIRNAR; KINIKAR, 2015), Fuzzy rules (LOPEZ et al.,

2014; ELKANO et al., 2017b, 2017a; RIO et al., 2015; FERNÁNDEZ et al., 2017), among

many others.

Most of the algorithms cited above were adapted to parallel environments for dealing

with vertical high dimensionality. Cases where both vertical and horizontal high dimen-

sionality are present on the data, as it can be the case of text datasets, were not explored

by these algorithms. A brief discussion about some of the distributed implementations

cited above will be held here in order to emphasize the lack of approaches to deal with

horizontal high dimensionality co-occurring with vertical high dimensionality. It will be

given great attention to FRBCSs since it is the main focus of this work.

Decision tree learning algorithms have been proposed for managing Big Data by adopt-

ing the MapReduce paradigm (WANG et al., 2015; DAI; JI, 2014). Parallel implemen-

tations of Random Forests have also been proposed, and it was reported great improve-

ments in terms of computational costs (LI et al., 2012; WAKAYAMA et al., 2015; HAN;

LIU; SUN, 2013). In (RÍO et al., 2014), combinations of different techniques do deal

with imbalanced Big Data, such as ROS (Random Oversampling), RUS (Random Un-

dersampling), the SMOTE (Synthetic Minority Oversampling Technique) algorithm and

cost-sensitive learning were adapted to the MapReduce scheme and combined with the

Random Forest (RF) algorithm. Although it was shown gain in processing time, parallel

implementation of random forests requires great care since each tree of the forest is built

based on only a small subset of the data. This way, each tree may not represent the

whole dataset, and the final model can easily over-fit the training data. In this study,

the main concern was vertical high dimensionality where tests were made with up to 11

million examples but only with a maximum of 41 features.

Other than decision trees and random forest algorithms, the K-Nearest Neighbor (k-
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NN) algorithm is also well known in data mining because of its simplicity and effective-

ness. Parallel implementations of the method have already been proposed in (MAILLO;

TRIGUERO; HERRERA, 2015b) and in (MAILLO et al., 2017). In (MAILLO; TRIGUERO;

HERRERA, 2015b) a Hadoop implementation of MapReduce for K-NN (MR-KNN) was

proposed, and the results showed a great improvement in the processing time while main-

taining the classification rate as the original k-NN model. The algorithm was tested in

a dataset with a high number of examples but only 10 features. This leads to a lack

of comprehension about the behavior of the algorithm under high dimensionality both

ways: examples and features. This scenario may lead to other problems since the KNN

is a memory intensive algorithm.

MR-KNN inspired the implementation of the algorithm under Apache Spark, leading

the authors to propose an iterative MapReduce-based approach for k-NN algorithm im-

plemented under Apache Spark (kNN-IS) in (MAILLO et al., 2017). The results showed

improvements since kNN-IS allowed the reduction of the runtime by almost 10 times in

comparison to MR-KNN while maintaining the classification rate. The memory consump-

tion issue was addressed by the authors that defend that kNN-IS calculates the solution

with more than one iteration by splitting the test set when the memory capacity of the

cluster exceeds. Tests were made with horizontally larger datasets (up to 631 features),

but the classification rate was only discussed for the smaller ones (up to 18 features).

Support vector machine methods have also been intensively studied in the MapReduce

scenario. It was shown that an iterative MapReduce implementation of SVM is efficient

for solving Big Data problems (SUN; FOX, 2012). Some initial directions can be found

in the following references (KIRAN et al., 2013; KHAIRNAR; KINIKAR, 2015; SUN;

FOX, 2012; PRIYADARSHINI et al., 2015b).

The above mentioned algorithms are just some of the broad amount of methods im-

plemented in the MapReduce scenario. The discussion held above shows how MapReduce

approaches have been extensively used for adapting ML algorithms to Big Data analy-

sis. It can also be observed that vertical high dimensionality is the main focus of the

approaches. Datasets with both vertical and horizontal high dimensionality are not ap-

proached by the adaptations shown above. Implementation of many other algorithms

can be found in the literature and will not be discussed here since the main focus of this

work is FRBCSs. These types of systems were considered in this work since they are well

know for dealing with the uncertainty, vagueness and noise inherent to data.
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3.5 FUZZY RULE BASED CLASSIFICATION SYSTEMS FOR BIG DATA

FRBCSs are popular tools to solve classification problems that have been explored in

many different fields (SANZ et al., 2014, 2015; NAKASHIMA et al., 2007). These tools

are well known for obtaining satisfactory accuracy results and for being able to produce

interpretable models through the usage of linguistic labels. However, standard FRBCSs

were not primarily designed to process large datasets and its performance is affected by

the high number of instances and/or attributes associated with Big Data.

In order to overcome this issue, (LÓPEZ et al., 2015) proposed the first adaptation

of the original Chi algorithm (CHI; YAN; PHAM, 1996) to Big Data scenarios: Chi-

FRBCS-BigDataCS. The basic idea of the algorithm is to use Map and Reduce techniques

to process data in separate groups and create sets of rules that are then aggregated.

The algorithm splits the training data into multiple training sets distributed among the

mappers. Each mapper builds its rule base using the Chi et al.’s algorithm with the

associated training set. All rule bases are then aggregated and a final model is generated.

If there are duplicated rules, the one with the highest weight is kept.

Although this approach overcomes the Big Data problem in the sense of decreasing

the processing time, the results are sensitive to the degree of parallelism. That is, the

more mappers are added to the process, the poorer rule weights may be obtained since

they depend on the quality of the sample in each mapper.

Different alternatives have been proposed to obtain better rule weights or to better

aggregate the rules in the reduce stage (ELKANO et al., 2017a; RIO et al., 2015). In (RIO

et al., 2015), the Chi-FRBCS-BigData algorithm was proposed with two variations: Chi-

FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. Both variations share the same

initial procedure and the Map function. The algorithms differ on the Reduce stage,

where each algorithm has a different approach for choosing the rules that have the same

antecedents and different consequents. Chi-FRBCS-BigData-Max deals with these cases

by choosing the rules with the higher rule weight. Chi-FRBCS-BigData-Ave, on the

other hand, calculates the average rule weight for each case, and chooses the rule with

the higher average rule weight.

The average alternative is more computational intensive since it calculates the average

of each set of rules. Although Chi-FRBCS-BigData-Ave algorithm may take longer to

run, it is less sensitive to the distribution of the samples in each mapper. This results

in better classification rates compared to the Chi-FRBCS-BigData-Max algorithm. Both

alternatives were tested and presented good results in datasets with vertical high dimen-

sionality with millions of examples. However, the number of attributes of the tested
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databases were up to 54. This way, the behavior of the algorithm with vertical and

horizontal high dimensionality is still unknown.

Even though Chi-FRBCS-BigData-Ave is less sensitive to samples distribution in each

mapper, the resulting models will still be different if the configuration of the clusters

changes. This causes the model to be less accurate as more mappers are added. With

the goal of eliminating the dependency of the model on the distribution of the training

data in the mappers, (ELKANO et al., 2017a) proposed a new approach to calculate rule

weights: the CHI-BD model. This proposed technique computes rule weights considering

the whole dataset instead of dividing the data into multiple training sets. This way, rules

quality is not affected by the degree of parallelism. That is, the CHI-BD model is able

to provide exactly the same model regardless of the number of mappers.

The workflow of the CHI-BD algorithm differs from the previous ones in the rule

weights generation process. In the Map stage, the rules are generated by each mapper

and the list of possible consequents for each antecedent is returned. No weights are taken

into account in this stage. In the Reduce Stage, the whole rule base is loaded into each

mapper and the matching degrees in all mappers are summed and used to compute the

rule weights. Since the rule weights are calculated based on the whole Rule Base, the

degree of parallelism does not affect the resulting model. (ELKANO et al., 2017a) show

that the CHI-BD algorithm outperforms the Chi-FRBCS-BigdataCS in terms of runtime

and classification performance when dealing with Big Data problems. The algorithm

behaves well when dealing with datasets of millions of examples. However, the algorithm

was only tested in datasets with up to 54 attributes.

CHI-BD is the most recent adaptation of Chi et al.’s algorithm to the Big Data

scenario. Because of that, it was used in this work for assessing the feasibility of our

approach. CHI-BD shows that FRBCSs can be easily implemented in parallel processing

environments and are very effective for dealing with Big Data classification problems.

Greater details about CHI-BD will be given in the next section.

3.5.1 CHI-BD

All the existing FRBCSs adapted to deal with Big Data following a MapReduce paradigm

are based on Chi et al.’s algorithm, a traditional FRBCS learning method (CHI; YAN;

PHAM, 1996). The flow of the traditional Chi et al.’s algorithm is presented below and

its latest adaptation to Big Data, CHI-BD, is presented later.

Suppose we have n instances with m attributes classified into c classes. The Chi et

al.’s rule generation process is the following:
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1. A membership function is built for each of the m attributes.

2. Linguistic labels are built for each attribute through membership functions. The

linguistic labels can be, for example, Low/Medium/High, Bad/Medium/Good, etc.

3. A fuzzy rule is generated for each example, being each rule based on the linguistic

labels.

4. The membership degree of each instance to every fuzzy set is computed using the

formulas presented in Chapter 2.

5. For every instance and for each attribute, the linguistic label with the greatest

membership degree is selected.

6. The antecedent part of each instance is the intersection of the selected linguistic

labels, and the consequent part is the instance class.

7. The rule weight is computed using some existing method.

At the end of the process, there will be n rules, one for each instance. To finalize the

process, a cleaning step is performed where duplicated and meaningful rules are deleted.

That is, rules with negative values are deleted, and rules that share the same antecedent

part but have different consequent parts will be filtered, and the rule with the greatest

weight will be kept.

The latest adaptation of the Chi et al.’s algorithm to the scenario of Big Data was

proposed by (ELKANO et al., 2017b). The proposed algorithm, Chi-BD, is a more

robust version of Chi et al.’s over the MapReduce scenario. The method is divided into

two stages, where each stage is composed of a MapReduce process. The flow of the

algorithm is presented below.

1. Rules generation process

1.1. Map stage

1.1.1. Data is split into different mappers

1.1.2. In each mapper, one rule is created for each example

1.2. Reduce stage

1.2.1. Rules with the same antecedent are grouped and the list of all possible

consequents is returned.
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1.2.2. A new rule base is created with antecedents and the list of consequents.

2. Computation of rule weights

2.1. Map stage

2.1.1. Each mapper loads the rule base previously obtained.

2.1.2. In each mapper, one rule is created for each example

2.1.2.1. For each rule, the matching degrees of all examples related to each

possible class of the rule is computed.

2.2. Reduce stage

2.2.1. The matching degrees in all mappers are summed and used to compute

the rule weights.

As the flow above shows, the rule base generation process is very sophisticated and

more complex than Chi et al.’s algorithms. The authors show that CHI-BD outperforms

the previous adaptations of Chi et al.’s algorithm in terms of runtime and classification

performance when dealing with Big Data problems.

Chi-BD is the most recent adaptation of Chi et al.’s algorithm to the Big Data sce-

nario. The authors have shown that CHI-BD is very effective for processing datasets with

vertical high dimensionality. Also, it is shown that fuzzy rule-based systems can be easily

implemented in a parallel processing environment.

3.6 FINAL CONSIDERATIONS

In this chapter, the main concepts related to Big Data were presented. The MapReduce

paradigm was described, and Hadoop, the main tool to deal with Big Data problems was

briefly discussed.

In addition to Hadoop and MapReduce, it was given a brief presentation of the works

that have been done for dealing with Big Datasets. The existing works show that the

MapReduce scheme makes it possible to adapt traditional algorithms to the Big Data

scenario. There are many other works that aim to adapt traditional techniques to Big

Datasets, but they were not presented here since the main focus of this work is in the

FRBCS.

Details about Chi et al.’s algorithm and its latest adaptation to the Big Data scenario

were also given.

Since the technique developed in this work makes use of the Fuzzy C-Means algorithm,

it is important to understand the main concepts related to clustering algorithms. On that
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behalf, the basic concepts of clustering algorithms will be presented in the next chapter.

Great attention will be given to the Fuzzy C-Means algorithms.

Dimensionality Reduction

The proposed approach aims to reduce horizontal high dimensionality by creating

groups of attributes as a new feature space of the dataset to be classified. Groups of

attributes can be created by means of clustering algorithms. There are many different

clustering techniques available in the literature (SAXENA et al., 2017). There are crisp

and fuzzy techniques, and each technique suits specific situations and specific structures

of data. Crisp techniques are those in which every instance belongs to only one group,

such as the K-Means and K-Nearest Neighbors algorithms. On the other hand, fuzzy

clustering algorithms allow each instance to belong to every group with different mem-

bership degrees. Fuzzy C-means (FCM) is the most popular fuzzy clustering algorithm

and will be considered in this work due to its simplicity and effectiveness.

In addition to the FCM clustering technique, two established dimensionality reduction

techniques were applied for reducing horizontal high dimensionality: Principal Compo-

nent Analysis (PCA) and Latent Semantic Analysis (LSA). Both approaches use Singular

Value Decomposition (SVD) in the process of reducing dimensionality and leverage the

idea that meaning can be extracted from context. In LSA, context is extracted by means

of the term×document matrix, while in PCA context is provided through the term co-

variance matrix. Similar to the FCM clustering approach mentioned above, applying

PCA or LSA to a horizontal high dimensional dataset will reduce the feature space with-

out discarding attributes individually. These approaches reduce the risk of discarding

important attributes and allow for considering a significantly smaller feature space.

The definition of clustering and the basic elements involved in the clustering process

will be discussed in the next sections. Details about PCA and LSA are also given in the

next sections.

3.7 CLUSTERING ALGORITHMS

Clustering algorithms are unsupervised techniques that aim to identify clusters/groups

of similar instances (FAHAD et al., 2014). The instances to be grouped can be anything

of interest: cars, neighborhoods, people, text, or even abstract concepts. The similarity

between instances is taken from the attributes that characterize them. For example, the

attribute “Model year” characterizes the object “car”. This way, older cars and newer

cars tend to be in different groups, for example. In the clustering process, the goal is to

group similar instances in the same group. Instances in different groups must be as much
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different as possible.

In a crisp approach, each instance belongs to only one specific group of similar in-

stances, while in a fuzzy approach each instance belongs to every group with different

membership degrees. In order to quantify the similarity between instances and define the

most suitable groups for each instance, clear measurement of similarity and dissimilarity

must be defined.

Distance and similarity are key concepts for constructing clustering algorithms, since

groups are built based on similarity and distance measurements. A similarity function

Sim() computes similarity degrees between instances, whose values are in the range [0,1].

Consider a set of n examples D = {d1, d2, . . . , dn}, where dk, k = 1, . . . , n, is a m-

dimensional point. Usually, if Sim(di, dj) > Sim(di, dl), where i, j, l ∈ k, we can say

that instance dj is more similar to instance di if compared to instance dl. The Cosine

similarity measure is commonly used in the context of text processing due to the high

dimensionality of the instances to be compared (STREHL; GHOSH; MOONEY, 2000).

The Cosine similarity between two instances is defined as follows.

Sim(di, dj) = cos(θ) =
~di · ~dj

||~di|| · ||~dj||
(.)

where ~di and ~dj are instances in the vector form and θ is the angle between the two

vectors.

Other than defining similarity between the instances, a number of steps are needed

to perform a clustering process. In a standard process of clustering, the following steps

are needed:

• Data pre-processing: In this step, data is prepared to start the clustering process.

The most representative features are selected, the attributes are transformed and

normalized if necessary, and outliers are identified and treated.

• Similarity measure selection: In this step, the most appropriate similarity measure

must be selected.

• Clustering algorithm execution: In this step, the chosen clustering algorithm is

executed.

• Results evaluation: In this step, the quality of the results is evaluated. The pa-

rameters of the algorithm are tunned and the best number of groups is identified.

There are statistical techniques that help in this process.
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• Results interpretation: In this step, the conceptual meaning of each group is iden-

tified.

The steps listed above might be followed for general applications of clustering al-

gorithms. Further details about the specific FCM algorithm, chosen for this work, are

presented below.

3.7.1 Fuzzy C-Means

Fuzzy C-Means (FCM)(BEZDEK, 1981) is the most popular fuzzy clustering algorithm

and was considered in this work due to its simplicity and effectiveness. As mentioned

earlier, for FCM, an example can belong to all groups with different membership degrees.

Membership degrees are associated with the distance of the examples to the centroids of

the groups. The more distant is the example to the centroid of some group, the smaller

is its membership degree concerning to that group.

A fuzzy clustering is composed by a set of c groups, denoted by P = {A1, A2, . . . , Ac},
and a partition matrix W = wk,p ∈ [0, 1], for p = 1, . . . , c, where each element wk,p

represents the membership degree of the example k in the group Ap (KLIR; YUAN,

1995).

The sum of all membership degrees for a given example dk must be equal to 1, as

shown in Equation ..

c∑
p=1

wk,p = 1 (.)

Each group Ap must contain at least one example with non-zero membership degree

and must not contain all the points with membership degrees equal to 1, as shown in

Equation ..

0 <
n∑

k=1

wk,p < n (.)

A brief description of the FCM algorithm is given below.

1. An initial partition matrix W must be selected.

2. The centroids of each group must be computed considering the fuzzy partition.

3. The fuzzy partition must be updated until the stopping criteria is achieved.
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The stopping criteria can be: a specific number of iterations has been executed, the

change in the fuzzy partition is below some threshold.

The goal of the FCM algorithm is to minimize the sum of the squared error (SSE),

as shown in Equation .. That is, the goal is to minimize the distances between the

examples and the centroids cp of the groups.

SSE =
n∑

k=1

c∑
p=1

wf
k,pdist(dk, cp)

2 (.)

where f > 1 is the fuzzifier parameter that can influence the performance of the FCM

algorithm.

In this work, FCM is being used to create groups of similar words, since the work

focus on text datasets. To give an idea on how to create groups of words using FCM,

four simple phrases were created with two clear definitions of groups: food and sports.

FCM will be implemented with c = 2 groups and the membership degrees of each word

to each group will be presented. The phrases are described below:

Table 3.1 Simple texts example
ID Document
doc1 ‘I like eating delicious food and eating sweet candy’
doc2 ‘I just ate a delicious sweet banana’
doc3 ‘My team loves playing footbal’
doc4 ‘I love to play the footbal game’

The first column of Table 3.1 represents the id given to each document (phrase). We

can note the phrases are very simple with the goal of facilitating the understanding and

interpretation of the FCM results. The documents are represented in terms of words count

in Table 3.2. Observe that the representation is already considering text pre-processing,

that includes stemming and stop words removal.

Table 3.2 Words count representation
banana candy delicious eat food football game love play sweet team

doc1 0 1 1 2 1 0 0 0 0 1 0

doc2 1 0 1 0 0 0 0 0 0 1 0

doc3 0 0 0 0 0 1 0 1 1 0 1

doc4 0 0 0 0 0 1 1 1 1 0 0

Since the goal is to create groups of words and not groups of documents, the matrix

input for FCM is the transpose of 3.2, where rows are words and columns are documents.
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A weighting criteria for each word should also be considered for better data representa-

tion. The transposed matrix with the TF-IDF weighting criteria is shown in Table 3.3.

Table 3.3 Transposed matrix with TF-IDF representation.
doc1 doc2 doc3 doc4

banana 0 2 0 0

candy 2 0 0 0

delicious 1 1 0 0

eat 4 0 0 0

food 2 0 0 0

football 0 0 1 1

game 0 0 0 2

love 0 0 1 1

play 0 0 1 1

sweet 1 1 0 0

team 0 0 2 0

Table 3.3 has words as rows and documents as columns and is in the right format input

for FCM. Note that, usually, matrix input for clustering algorithms is in the format of

documents as rows and words as columns, since the goal is to put similar documents in

the same groups. Here, the goal is to create groups of similar words instead of groups

of similar documents. This way, words are put in rows and documents in columns. The

membership degrees of each word to each group returned by FCM is shown in Table 3.4.

Table 3.4 Membership degrees generated by FCM.

Group 1 Group 2
banana 0.4404 0.5596
candy 0.9731 0.0269
delicious 0.7204 0.2796
eat 0.7905 0.2095
food 0.9731 0.0269
sweet 0.7204 0.2796
footbal 0.0099 0.9901
game 0.2111 0.7889
love 0.0099 0.9901
play 0.0099 0.9901
team 0.2111 0.7889

As it can be seen in Table 3.4, two groups of words were created since the c parameter

in FCM was set to 2. Words related to food are marked in bold along with its higher
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membership degrees. If a crisp approach were to be considered, a threshold (say 0.5)

would be defined, and words with membership degrees above the threshold would be

assigned to one specific group. However, since we are using a fuzzy approach, each word

belongs to both groups with different membership degrees. For the word ‘candy’, for

example, the membership degree to Group 1 was equal to 0.9731, while the membership

degree to Group 2 was equal to 0.0269. That means that the word ‘candy’ is closer to

words in Group 1 than to words in Group 2, but the word is still similar to words in

Group 2 with a lower intensity.

Observing the words in general, it can be noted that most of the words related to

food had a higher membership degree to Group 1. In the same way, all words related to

sports had a higher membership degree to Group 2. From that, one can infer that Group

2 is represented by documents about sports while Group 1 is represented by documents

about food.

The example presented above is a simplified explanation of how FCM algorithm would

be applied to extract groups of words from text datasets. After generating groups of

words, text documents would then be represented in terms of groups instead of being

represented in terms of words directly. This allows for reducing feature space, which

helps to solve the horizontal high dimensionality problem with Big Datasets. Details

about how to proceed after generating groups of attributes will be presented in the next

chapters.

Other than creating groups of attributes, in this work, horizontal high dimensionality

reduction was also considered using PCA and LSA. Details about both approaches are

given in the next sections.

3.8 PRINCIPAL COMPONENTS ANALYSIS (PCA)

PCA is a mathematical matrix decomposition technique for dimensionality reduction. It

reduces dimensionality by finding linearly uncorrelated vectors, called Principal Compo-

nent (PC), that minimize information loss and maximize the explained variance of the

data. In other words, PCA is made through an orthogonal linear transformation that

finds new coordinate systems in which the first coordinate carries the greatest variance,

the second coordinate carries the second greatest variance, and so on. Each new coordi-

nate is a PC. The goal of each PC is to carry as much variability as possible, so only a few

PCs are capable of representing most of the variability of the data. It was first proposed

by Karl Pearson (PEARSON, 1901) and has been widely used since then (JOLLIFFE;

CADIMA, 2016).
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In our example of food and sports documents, a total of 11 words are used to describe

the data. By applying PCA to the raw data, a smaller subset of PCs would be enough

to explain the data in exchange of the 11 words. As for the number of groups in FCM,

the number of PCs to be considered on the data analysis is also defined by the user. The

choice of the number of PCs can be made with the help of the percentage of variability

explained by each PC.

The steps for performing PCA on a n ×m dimensional dataset are: data standard-

ization, covariance matrix computation, eigenvectors and eigenvalues computation, and

feature vector construction. Descriptions of each step mentioned above will be given in

the next sections.

3.8.1 Data Standardization

The absolute values of the attributes are taken into account when creating Principal

Components. This way, variables that have higher absolute values will have more im-

portance in each PC. For example, if one has attributes ‘height’ (in centimeters) and

‘weight’ (in kilograms) of a person and wants to build Principal Components, the at-

tribute ‘height’ will have more importance to the PCs than the attribute ‘weight’ since,

usually, the absolute values of heights are higher than the absolute values of weights.

That is not a desirable behavior since one expects that PCs carry information about all

the attributes, not only specific ones. That is, every attribute must contribute equally to

the PCs definitions.

In order to prevent specific attributes to be more important than others only due to

scale, data standardization prior to the PCs construction must be performed. That is, all

m attributes must be transformed to the same scale before creating PCs. A simple data

standardization technique would be to set every attribute to have mean 0 and standard

deviation of σ2 = 1, the often called z-score normalization. For a specific attribute M

with data examples dockm, with k = 1, 2, ..., n, this transformation can be done with the

following formula (GARCÍA; LUENGO; HERRERA, 2015).

dockm =
dock − M̄
sd(M)

(.)

where M̄ is the mean of M and sd(M) is the standard deviation of M . After applying

the standardization to all attributes of the data set, data is prepared to the next steps.
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3.8.2 Covariance Matrix Computation

The m × m covariance matrix is built to represent the relationship between all the at-

tributes. Considering a set of attributes X, Y and Z, the covariance matrix would be

represented as follows (GARCÍA; LUENGO; HERRERA, 2015).

Cov(X, Y, Z) = Σ =

Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) cov(y, z)

Cov(z, x) Cov(z, y) Cov(z, z)


The covariance matrix has the variances of each attribute on its diagonal. The co-

variances between the attributes represent the relationship between them. A positive

covariance between X and Y indicates that the two variables increase or decrease to-

gether, that is, X and Y are correlated. On the other hand, a negative covariance

between X and Y indicates that one increases when the other decreases, that is X and Y

are inversely correlated. The covariance matrix, Σ, representing the relationship between

the attributes can be calculated by a matrix multiplication, as shown below.

Σ =
W TW

n− 1

where W is the n×m data matrix representign the n attributes and the m examples.

Principal Components are calculated through the covariance matrix of the attributes.

This is done through eigenvectors and eigenvalues computation of the covariance matrix.

The eigenvectors and eigenvalues calculation is discussed below.

3.8.3 Eigenvectors and Eigenvalues Computation

The m eigenvectors of the Covariance matrix are the directions of the axes where there is

the most variance (most information), and those axes are called Principal Components.

On the other hand, the eigenvalues of the covariance matrix are the coefficients attached to

the eigenvectors, which give the amount of variance carried in each Principal Component.

The eigenvalues can sort the eigenvectors in descending order to provide a ranking

of the most important Principal Components. The percentage of contribution of each

PC to explaining the variability of the data is the ratio between the variance of that PC

(associated eigenvalue) and the total variance, as shown below (PEARSON, 1901):

λj∑m
j=1 λj
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Where λj is the eigenvalue associated to the j-th PC. The eighen values are in such a

way that λ1 > λ2 > ... > λm, which reflects the fact that the first PCs carries the most

variability of the data. The typical goal of PCA is to keep only the first most important

PCs. That characterizes the last step of PCA, described in the next section.

3.8.4 Feature Vector Construction

After computing the PCs and its eigenvalues, one should define the appropriate number

of Principal Components to keep for further analysis. The c� m Principal Components

are selected, and the n × c final data set is represented by the PCs. In order to choose

the appropriate amount of PCs, one can make use of the plot of the eigenvalues of each

PC. One example of such plot is given in Figure 3.3.

Figure 3.3 Percentage of explained variance by each Principal Component.

As it can be seen in Figure 3.3, the first Pirncipal Component carries most of the

variability of the data. On the other hand, the last PC explains very little variance. There

is no such perfect number of PCs appropriate for representing the original data set. This

way, one should consider the trade-off between explained variability and dimensionality

of the data set. In Figure 3.3, for example, the last few components carry less than 5%

of variability of the data and may be excluded from the analysis with no much loss of

information.
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3.9 LATENT SEMANTIC ANALYSIS (LSA)

LSA is a technique usually used for natural language processing to analyze relationships

between terms and documents (LANDAUER; FOLTZ; LAHAM, 1998). Its main idea

is to filter noise and reduce dimensionality by finding the smallest set of concepts that

explain all the documents, where concepts are patterns of words that usually appear

together in documents.

Similar to PCA, LSA decomposes the data matrix into singularvectors and singular-

values and defines a smaller feature space to explain the variability of the data. The

main difference between the techniques is that LSA decomposes the original data matrix

instead of the covariance matrix. LSA is commonly used for understanding concepts

hidden in text datasets, as well as for reducing dimensionality when the original data set

is presumed too large. Another common use of LSA is for reducing sparsity, which is a

characteristic of matrices in which most of the elements are zero. That is a very common

characteristic of text datasets where there are as many columns as unique words, and

every word column is filled with zero when the word is not present in the text document.

In the example presented for explaining FCM, the input for LSA would be the matrix

shown in Table 3.3. LSA takes the term×document matrix and applies the Singular Value

Decomposition (SVD) technique to obtain the reduced data space (GOLUB; REINSCH,

1971). SVD is a factorization of a n×m matrix, D, into three components USV T . Where

U is an n× c orthogonal matrix, whose columns are defined by the left-singular vectors

of D. S is a c× c diagonal matrix, V is a n× c matrix, with V T being the transpose of

V . The columns of V are defined by the right singular vectors of D. The value c� m is

called the rank and defines the number of singular values that are to be kept.

Similar to PCA, the number of singular values in the diagonal matrix S defines the

amount of variance explained by each of the singular vectors, and it is used to define

the new reduced dimension of the transformed data matrix. As in PCA, after applying

LSA to the original data matrix, the appropriate number of dimensions should be chosen

to represent the original data set. Once the reduced feature space is selected, further

analysis can be performed.

3.10 FINAL CONSIDERATIONS

In this chapter, the basic concepts of clustering algorithms were presented, as well as

the basic concepts of the dimensionality reduction techniques PCA and LSA. Among the

existing clustering techniques, the FCM algorithm was studied more deeply since it was
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chosen for implementing the proposed approach in this work.

As it has already been mentioned, this work aims to deal with big datasets and aims

to use the MapReduce scheme to solve problems related to it. The MapReduce paradigm

will be used after the horizontal dimensionality reduction techniques be performed on the

datasets (FCM, PCA, and LSA). In the next chapter, the development of Summarizer,

our proposed approach to reduce horizontal dimensionality by using groups of attributes

is presented.
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4
SUMMARIZER

In the Big Data scenario, there may be datasets with vertical and horizontal high dimen-

sionality (high number of attributes and high number of instances, consecutively). Ex-

isting MapReduce approaches are focused on datasets with vertical high dimensionality,

leaving a gap on problems with co-occurring vertical and horizontal high dimensionality.

Although adaptations of the Chi et al.’s algorithm were proposed for a Big Data sce-

nario, the MapReduce approach presented by recent algorithms deals only with datasets

with vertical high dimensionality. However, in text datasets for example, the number of

attributes is usually very high as well. In such cases, horizontal high dimensions of the

datasets are not dealt with by the MapReduce approach proposed by the models.

To deal with the above drawbacks, the approach of this work consists in adding a

grouping step to the FRBCS execution. In the new grouping step, a clustering algo-

rithm is applied to the attributes before creating membership functions. This way, the

new attributes of the proposed approach are groups of attributes, and the instances are

represented by linguistic labels regarding those groups. Consequently, classification per-

formance may be improved by using such groups of attributes as the new feature space.

It is expected that the smaller feature space represents the data properly and that

the classification algorithms present good classification results in terms of accuracy. It

is also expected that a smaller number of rules be generated since a smaller number

of features is used, which results in more interpretable systems. Therefore, with our

approach, a smaller feature space is built for each dataset using the well-known fuzzy

clustering algorithm, Fuzzy C-Means (FCM)(BEZDEK, 1981).

41
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In summary, the goal of the proposed approach is to reduce horizontal dimensionality

by using groups of attributes to build membership functions in a FRBCS under the

MapReduce paradigm. CHi-BD, the latest adaptation of FRBCS , which makes use

of the MapReduce paradigm, was tested and compared with and without adding the

grouping step.

The general idea of our work includes adding a clustering step before the classification

process, by which the attributes of a dataset are groups of attributes obtained through

the FCM algorithm and two other well-known dimensionality reduction techniques: PCA

and LSA.

By reducing the high number of attributes to a much smaller number of groups, the

problem of horizontal high dimensionality will no longer exist. This way, existing ML

techniques, as CHI-BD for example, will then be suitable to solve classification problems.

By considering this approach, the number of membership functions in the FRBCS will

be much smaller since each membership function will represent a group of attributes

instead of representing each attribute itself. By consequence, the number of rules of the

classification system will also smaller and the rules will be much simpler.

For better understanding the Summarizer approach, consider a dataset with n in-

stances and m attributes. In the case of text datasets, instances are documents and

attributes are unique words present in the documents. The data matrix would be built

as in Table 4.1.

Table 4.1 Data matrix of Instances and Attributes (I ×A).

Instance Attribute 1 Attribute 2 . . . Attribute m

Instance 1 d11 d12 . . . d1m
Instance 2 d21 d22 . . . d2m

...
...

...
. . .

...
Instance n dn1 dn2 . . . dnm

where dij is the value of the i-th instance and the j-th attribute, with i = 1, . . . , n

and j = 1, . . . ,m. The first step for creating groups of attributes is to transpose the data

matrix, so an attribute × instance (A × I) matrix is obtained. Here, we expect that a

data preprocessing has already been applied. Since we are dealing with text datasets in

this work, here we expect that common text pre-processing techniques has already been

done, as for example words stemming, tokenization, and stop-words removal. For PCA,

there is no need to perform a further transformation on the data. Table 4.1 is already

in the appropriate input format for the PCA model. For FCM and LSA, further data
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transformation is necessary. The format of the transposed matrix, a necessary step for

FCM and LSA, is presented in Table 4.2.

Table 4.2 Transposed data matrix (A× I).

Attribute Instance 1 Instance 2 . . . Instance n

Attribute 1 d11 d21 . . . d1n
Attribute 2 d12 d22 . . . d2n

...
...

...
. . .

...
Attribute m dm1 dm2 . . . dmn

Note that Table 4.2 has attributes as rows and instances as columns. In the case of

text datasets, words would be in rows and documents in columns. The next step of the

process is to apply FCM or LSA on the attributes with varying quantity of groups. The

output in this step will be an attribute × group (A × G) matrix, represented in Table

4.3. Note that the term ‘Group’ is being used through all the process, but it refers to

semantic concepts when LSA is being used instead of FCM.

Table 4.3 Attribute × group matrix (A×G).

Attribute Group 1 Group 2 . . . Group c

Attribute 1 w11 w12 . . . w1c

Attribute 2 w21 w22 . . . w2c

...
...

...
. . .

...
Attribute m wm1 wm2 . . . wmc

In the case of FCM, wjl represents the degree of membership of the attribute j to the

group l, with j = 1, . . . ,m and l = 1, . . . , c, where c� m. Since the goal is to associate

instances to groups or semantic concepts, matrix A×G will be converted to an instance

× group matrix (I × G). In order to quantify the relationship between instances and

groups and build the I×G matrix, relationships between attributes and instances should

be taken into account.

In the case of LCA, instead of the membership degrees, one would have values of the

documents in respect to each LSA semantic concept. Since the output of LSA already

gives a relationship between documents and semantic concepts, a conversion step is not

necessary. In the same way, for PCA, a relationship between instances and Principal

Components is already given as output of the technique. This way, a conversion step is

not necessary.

There could be many ways of reflecting on the instances the relationship between

attributes and groups created by FCM. This association is straight forward since every
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instance is associated to all attributes and every attribute is associated to all groups.

Summarizer proposes a simple and effective way of taking these associations into account:

a weighted average where weights are values of the attributes to each group. This way,

the I×G matrix is created by calculating the weighted average between the values of the

attributes in every instance and the membership degree of the attributes in the groups.

The xil component of the I ×G matrix can be calculated as in Equation ..

xil =

∑m
j=1 dij × wjl∑m

j=1wjl

(.)

where i = 1, . . . , n, l = 1, . . . , c, and j = 1, . . . ,m. By calculating the weighted

average of words in a document in respect to the value of that word in each group, we

assure that the strength of each group in the specific document will be well represented.

This way, documents whose words are closer to Group 1, for example, will have higher

xil values for Group 1. Matrix I ×G is represented in Table 4.4.

Table 4.4 Instance × group matrix (I ×G).

Instance Group 1 Group 2 . . . Group c

Instance 1 x11 x12 . . . x1c
Instance 2 x21 x22 . . . x2c

...
...

...
. . .

...
Instance n xn1 xn2 . . . xnc

Table 4.4 is the data in the final format to be used for classification tasks with the

appropriate algorithms. As in any clustering approach, the number m of groups or

semantic concepts should be chosen by the user. The final number of groups can be much

smaller than the original number of attributes, making the horizontal high dimensionality

a solved problem. The effectiveness of the approach was tested with CHI-BD, which

deal with the vertical high dimensionality now that Summarizer has already tackled the

horizontal high dimensionality problem.

In order to clarify the whole process that composes Summarizer, the above mentioned

steps and matrices transformation involving FCM are summarized below. For PCA, it

is not necessary to perform any transformation on the data format before or after the

application of the technique. For LSA, only step 1 is necessary, since the input for the

algorithm should be a A × G matrix and the output is already a I × G matrix (or

Instance × semantic concept matrix, in this case).

Steps for performing Summarizer with the FCM approach
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1. Transposing the original data matrix (instance × attribute) in order to get an

attribute × instance matrix. This step is only necessary to FCM and LSA, since

PCA takes as input the original I × A matrix.

I × A→ A× I

2. Cluster the attributes with different number of groups. For FCM, the output in

this step will be an attribute × group matrix. For LSA, the output is already the

final format with associations between instances and semantic concepts. This way,

when using the LSA approach, one can skip to step 4.

A× I → A×G

3. Calculating the weighted averages for each instance in each group to get the instance

× group matrix. This step is only necessary for FCM since PCA and LSA already

returns a instance × groups association.

A×G→ I ×G

4. Perform classification task using groups (FCM), PCs (PCA) or semantic concepts

(LSA) as attributes.

To better explain how the whole process of Summarizer is done, consider the food

and sports example introduced in Chapter 4. Table 3.2 is equivalent to the Instance ×
Attributes (I × A) data matrix of Summarizer, shown in Table 4.1. On the other hand,

Table 3.3 is the transposed data matrix (A × I) equivalent to Table 4.2 of Summarizer.

In the same way, Table 3.4 represents the Attribute × Group (A × G) matrix of the

Summarizer approach. To obtain the Instance × Group (I × G) matrix, that is the

output of Summarizer, Equation . should be applied using the data from I × A and A

× G, on Tables 3.3 and 3.4 respectively. The calculation process for some of the values

and the results after the calculations are shown below.

x11 = 0∗0.44+2∗0.97+1∗0.72+4∗0.79+2∗0.97+0∗0.72+0∗0.01+0∗0.21+0∗0.01+1∗0.01+0∗0.21
0.44+0.97+0.72+0.79+0.97+0.72+0.01+0.21+0.01+0.01+0.21

= 1.6757

x12 = 0∗0.56+2∗0.03+1∗0.28+4∗0.21+2∗0.03+0∗0.99+0∗0.79+0∗0.99+0∗0.99+1∗0.28+0∗0.79
0.56+0.03+0.28+0.21+0.03+0.99+0.79+0.99+0.99+0.28+0.79

= 0.2537
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x21 = 2∗0.44+0∗0.97+1∗0.72+0∗0.79+0∗0.97+0∗0.01+0∗0.21+0∗0.01+0∗0.01+1∗0.72+0∗0.21
0.44+0.97+0.72+0.79+0.97+0.72+0.01+0.21+0.01+0.01+0.21

= 0.4573

x22 = 2∗0.56+0∗0.03+1∗0.28+0∗0.21+0∗0.03+0∗0.99+0∗0.79+0∗0.99+0∗0.99+1∗0.28+0∗0.79
0.56+0.03+0.28+0.21+0.03+0.99+0.79+0.99+0.99+0.28+0.79

= 0.2830

x31 = 0∗0.44+0∗0.97+0∗0.72+0∗0.79+0∗0.97+1∗0.01+0∗0.21+1∗0.01+1∗0.01+0∗0.72+2∗0.21
0.44+0.97+0.72+0.79+0.97+0.72+0.01+0.21+0.01+0.01+0.21

= 0.0891

x32 = 0∗0.56+0∗0.03+0∗0.28+0∗0.21+0∗0.03+1∗0.99+0∗0.79+1∗0.99+1∗0.99+0∗0.28+2∗0.79
0.56+0.03+0.28+0.21+0.03+0.99+0.79+0.99+0.99+0.28+0.79

= 0.7669

x41 = 0∗0.44+0∗0.97+0∗0.72+0∗0.79+0∗0.97+1∗0.01+2∗0.21+1∗0.01+1∗0.01+0∗0.72+0∗0.21
0.44+0.97+0.72+0.79+0.97+0.72+0.01+0.21+0.01+0.01+0.21

= 0.0891

x42 = 0∗0.44+0∗0.97+0∗0.72+0∗0.79+0∗0.97+1∗0.01+2∗0.21+1∗0.01+1∗0.01+0∗0.72+0∗0.21
0.56+0.03+0.28+0.21+0.03+0.99+0.79+0.99+0.99+0.28+0.79

= 0.7669

Refreshing from Chapter 4, Group 1 is represented by words about food (doc1 and

doc2), while Group 2 is represented by words about sports (doc3 and doc4). The supposed

meaning of each group could be inferred by the membership degrees of the words to

each group. Most of the words about food had higher membership degrees to Group 1,

indicating that words about food are closer together in Group 1. In the same way, all

of the words about sports had higher membership degrees to Group 2, indicating that

words about sports are closer together in Group 2.

Table 4.5 makes the link from words × groups to documents × groups. The calculated

values shown in Table 4.5 reflects the distributions of the words in the groups, identified in

Table 3.4. Two examples on how Equation . would be applied for obtaining the values

on Table 4.5 were also show above (calculation steps for x11 and x12). The relationship

between words and groups are not enough for the data analysis since classification is

performed over documents. This way, a relation between documents and groups should

be defined. That is what Equation . of Summarizer does. It translates the relationships

between words and groups to relationships between documents and groups.

Table 4.5 Instance × Group matrix (I ×G) for the example introduced in Chapter 4.

Group 1 Group 2
doc1 x11 = 1.6757 x12 = 0.2537
doc2 x21 = 0.4579 x22 = 0.2830
doc3 x31 = 0.0891 x31 = 0.7669
doc4 x41 = 0.0891 x41 = 0.7669

Because doc1 and doc2 are the documents related to food, and words about food

had higher membership degrees to Group 1, values for doc1 and doc2 on Group 1 are
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higher than values for doc1 and doc2 on Group 2. The same happens for doc3 and doc4.

Since doc3 and doc4 are documents related to sports, and words about sports had higher

membership degrees to Group 2, values for doc3 and doc4 on Group 2 are higher than

values for doc3 and doc4 Group 1. These comparisons between groups meaning and

documents classes (food and sports) show that a coherent association between groups of

words and documents is made.

FCM was taken to present an example of Summarizer calculations, and membership

degrees were used during the whole process. However, output values from PCA and

LSA could be used the same way. The only difference is that PCA and LSA already

returns the relationship between Principal Components and semantic concepts, for PCA

and LSA respectivelly. This way, the whole conversion steps applied to FCM would not

be necessary.

Summarizer can be used in any classification system for any type of data, since its

main idea is to reduce the feature space of a dataset without loss of information. To check

its feasibility when Big Data is considered, in this work, the experiments were performed

for text classification tasks using the CHI-BD algorithm. Therefore, the experiments were

performed as shown in the workflow in Figure 4.1: in Step 1, by means of FCM, PCA,

and LSA, an horizontal dimensionality reduction is performed; and in Step 2, by means

of CHI-BD, a vertical dimensionality reduction is performed for a classification task.

...

Horizontal 
Dimensionality

Vertical 
Dimensionality

FCM, 
PCA or 
LSA

CHI-BD
Step 2Step 1

Figure 4.1 Workflow of Summarizer

The results obtained from our experiments are presented in the next chapter.
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This study is aimed at assessing the performance of our approach (Summarizer) by

analyzing the results obtained in terms of classification accuracy and number of rules.

We compare the results obtained through FCM, PCA and LSA algorithms to the results

of CHI-BD with no clustering step. Section 6.1 describes the datasets, the parameters,

and the statistical tests considered for the study. In sections 6.2 and 6.3 we analyze the

results in terms of number of rules and classification performance.

5.1 EXPERIMENTAL FRAMEWORK

To conduct the experiments, five high dimensional datasets were selected from the LABIC

website1. In order to increase the search space of our analyzes, we have obtained 9 binary

classification problems by turning the original multi-class into multiple binary One-vs-All

datasets. To do so, we selected a positive class and considered the rest of the classes as

the negative class. Descriptions of the datasets are shown in Table 5.1 with the number

of examples (#Examples), the number of examples of majority and minority classes

(#maj;#min), and the number of attributes (#Attributes).

The experiments were conducted applying a 5-fold cross validation. Therefore, the

result of each dataset with each technique was computed as the average of the accuracies

in each fold.

The parameters considered for executing CHI-BD were the default parameters avail-

able in the original implementation of the algorithm2. It was considered three linguistic

1http : //sites.labic.icmc.usp.br/text collections/
2https://github.com/melkano/CHI-BD
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Table 5.1 Summary of the datasets.
Dataset #Examples (#maj;#min) #Features

20ng 0 1000 (500;500) 8526
20ng 1 2000 (1500;500) 11027
20ng 2 2000 (1500;500) 11027
20ng 3 2000 (1500;500) 11027
20ng 4 2000 (1500;500) 11027
Ohscal 2881 (1621;1260) 8214

Re8 6215 (3923;2292) 7846
Multidomain sentiment 8000 (4000;4000) 13360

labels per attribute, and it was applied the winning rule fuzzy reasoning method for clas-

sifying examples. Rule weights have been computed using the Penalized Cost-Sensitive

Certainty Factor (PCF-CS) (LÓPEZ et al., 2015), which is an adaptation of the Pe-

nalized Certainty Factor (PFC) (ISHIBUCHI; YAMAMOTO, 2005). To conduct the

experiments it was used an Ubuntu virtual machine Version 16.04.1 with 256 GB of

RAM memory and 32 cores, operating on a VirtualBox 5.2.1 platform under a machine

equipped with an Intel(R) Xeon(R) CPU E7-2890 v2 processor at 2.80GHz.

The performance of the Summarizer technique will be assessed by means of geometric

means (Gmeans) (GALAR et al., 2011), a well known metric for imbalanced datasets,

and also by means of the number of rules.

FCM was used in the horizontal dimensionality reduction step to create groups of

attributes varying from 2 and 10 groups to proportions of 1%, 5% and 10% of the number

of attributes. The groups of attributes were then used as new attributes for the CHI-

BD algorithm, which configures the Summarizer approach. The performance of CHI-

BD with the reuced datasets with different number of groups was then compared to

the traditional approach (CHI-BD with no horizontal dimensionality reduction). The

horizontal dimensionality reduction step was also performed using PCA and LSA under

the same conditions.

Comparisons in terms of number of rules generated by CHI-BD for each dataset and

for each method are discussed in the next section.

5.2 NUMBER OF RULES

Figure 5.1 shows the number of rules generated by CHI-BD without Summarizer for each

of the 9 datasets considered in this work, as well as the number of rules generated by

CHI-BD for different variations of Summarizer (2 and 10 groups, generated by FCM,
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PCA and LSA, to proportions of 1%, 5% and 10% of the number of attributes).

Figure 5.1 Number of rules generated by the CHI-BD algorithm.

According to the results in Figure 5.1, the number of rules generated by CHI-BD

with no grouping step (without Summarizer) was higher for all datasets when compared

to Summarizer with FCM, PCA and LSA. The number of rules for CHI-BD with no

grouping step for the Multidomain Sentiment dataset could not be counted because the

number of rules was to high to be written in the Rule Base file. Among the Summarizer

approaches used with CHI-BD, FCM returned the smaller number of rules when compared

to PCA and LSA for all datasets.

It can be observed that, for same datasets, the number of rules generated by CHI-

BD decreases for Summarizer with 10% of the number of attributes. That can be an

indication that redundancy starts being added to the model when a high number of

groups of terms is considered. This way, a smaller number of groups may carry all the

information about the data and adding more groups only increases dimensionality with

no extra information gain.

The average number of rules for every number of groups generated by Summarizer is
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presented in Table 5.2. The average number of rules generated by CHI-BD without Sum-

marizer was equal to 1813. The percentage of decrease in the number of rules obtained

by CHI-BD with Summarizer compared to CHI-BD without Summarizer (1813) is also

presented in table 5.2 (percentages in parenthesis). In order to find statistical differences

between the number of rules, the Wilcoxon test(WILCOXON, 1992) was applied. The

p-values are also presented in Table 5.2.

As can be seen in Table 5.2, among FCM, PCA and LSA, Summarizer with FCM

presented the smaller average number of rules. For Summarizer with 10% of the number

of terms, for example, the average number of rules for FCM was equal to 147 rules, while

the average number of rules was equal to 722 and 888 for Summarizer with PCA and

LSA, respectively. That is, with the same amount of attributes (groups), CHI-BD with

Summarizer considering FCM was capable of designing a classification system with a

much smaller number of rules. The actual number of rules for every tested approach is

presented in Table 7.1 in the Appendix.

Table 5.2 P-values, average number of rules for CHI-BD with Summarizer and its percentage
of decrease when compared to CHI-BD without Summarizer

Summarizer Average Number of Rules
Number of groups p-value FCM PCA LSA

Summarizer 2 < 0.0001 3 (99.8%) 4 (99.8%) 5 (99.7%)
Summarizer 10 < 0.0001 10 (99.4%) 15 (99.2%) 28 (98.4%)
Summarizer 1% < 0.0001 48 (97.4%) 192 (89.4%) 349 (80.8%)
Summarizer 5% < 0.0001 108 (94.0%) 636 (64.9%) 804 (55.6%)
Summarizer 10% < 0.0001 147 (92.0%) 722 (60.2%) 888(51.0%)

Comparisons of the methods in terms of Gmeans (GALAR et al., 2011) will be pre-

sented in next section, and one should keep in mind that there should be a balance

between classification accuracy and rule base size, since the number of rules in a classifi-

cation system play an important role in the interpretability of the results.

The number of rules for CHI-BD with FCM, PCA and LSA drops at a high rate for

all approaches of Summarizer when compared to CHI-BD without Summarizer. The

percentage of decrease on the number of rules of Summarizer with FCM was above 90%

for all number of groups of terms. Based on the results, it can be observed a significant

reduction on the number of rules of CHI-BD with Summarizer when compared to CHI-

BD without Summarizer with a significance level of 99% (p-value < 0.0001) in all cases.

That is an expected behavior since a smaller number of attributes are being used for

constructing the Rule Base.
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Despite the significant decrease on the number of rules for CHI-BD with Summarizer,

there was not a negative impact on the performance of the algorithm, as discussed in the

next section.

5.3 CLASSIFICATION PERFORMANCE

Table 5.3 shows the Gmeans values obtained by CHI-BD with and without Summarizer

for each of the 9 datasets considered in this work. The best overall result for each dataset

is shown underlined, while the best one for each dataset and for each number of groups

on Summarizer among FCM, PCA and LSA is shown in bold-face.

As shown in Table 5.3, for 8 out of the 9 studied datasets, the performance of CHI-BD

with Summarizer was better than the performance of CHI-BD without Summarizer in

terms of Gmeans for at least one of the horizontal dimensionality reduction approaches

(FCM, PCA or LSA). For most of the cases, CHI-BD with Summarizer with only 2 groups

of attributes already results in better Gmeans than CHI-BD without Summarizer.

For most of the datasets, it can be found a percentage of reduction on the number of

terms that results in an increase on the Gmeans metric for some of the FCM, PCA and

LSA method in comparison to CHI-BD without Summarizer. It should be noted that

there was a significant reduction in the number of rules for CHI-BD with Summarizer in

addition to the increase of Gmeans. The best possible method would be the one with the

higher Gmeans and the smaller number of rules.

For the dataset Ohscal, for example, CHI-BD with no horizontal reduction resulted

in a Gmeans value of 0.7501 with a Rule Base composed of 2305 rules. Each rule for

CHI-BD with no horizontal reduction applied to the Ohscal dataset was composed of

8214 linguistic variables (one for each feature of the dataset). On the other hand, for the

same dataset, CHI-BD with LSA with only 10 groups (semantic concepts) resulted in a

Gmeans value of 0.8147. That is a Gmeans value 8.6% higher for a much smaller number

of linguistic variables for each rule (10 linguistic variables for each rule, in this case). The

number of rules in the reduced scenario was also very smaller, as expected (84 rules). In

summary, applying Summarizer with LSA and 10 groups resulted in an increase of 8.6%

on the Gmeans and a decrease of 96.3% on the number of rules when comparing CHI-BD

with no horizontal dimensionality reduction.

In some other cases, however, reducing horizontal high dimensionality did not result

in better Gmeans. Taking the same dataset, Ohscal, for example, CHI-BD with LSA and

5% of groups resulted in a Gmeans value of 0.7317, while CHI-BD with no horizontal

reduction resulted in a Gmeans value of 0.7501. That represents a reduction of 2.4% on
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Table 5.3 Gmeans for CHI-BD with and without Summarizer.
Gmeans

Dataset Method FCM PCA LSA
20ng0 No horizontal reduction .7071

Summarizer 2 .7051 .7195 .7232
Summarizer 10 .7121 .7029 .7089
Summarizer 1% .6071 .7367 .7361
Summarizer 5% .5689 .6570 .7293
Summarizer 10% .5881 .7060 .7071

20ng1 No horizontal reduction .7500
Summarizer 2 .4755 .4917 .4654
Summarizer 10 .5006 .5005 .5005
Summarizer 1% .3567 .3198 .5466
Summarizer 5% .4779 .1885 .4018
Summarizer 10% .4890 .1000 -

20ng2 No horizontal reduction -
Summarizer 2 .5004 .4620 .5064
Summarizer 10 .5018 .5015 .5015
Summarizer 1% .3007 .5312 .5336
Summarizer 5% .2718 .2946 .2604
Summarizer 10% .2575 - -

20ng3 No horizontal reduction 0.1000
Summarizer 2 .1684 .3484 .1912
Summarizer 10 .1013 .2940 .1000
Summarizer 1% .2901 .5071 .5203
Summarizer 5% .2961 .3028 .3229
Summarizer 10% .3612 - .0000

20ng4 No horizontal reduction .1540
Summarizer 2 .1142 .2925 .4106
Summarizer 10 .4778 - .1278
Summarizer 1% .4916 .3324 .3342
Summarizer 5% .5082 .3590 .3924
Summarizer 10% .4926 .1414 -

Classic0 No horizontal reduction .7147
Summarizer 2 .6802 .9751 .8888
Summarizer 10 .7073 .9670 .9173
Summarizer 1% .7080 .8278 .8076
Summarizer 5% .7343 .2528 .7300
Summarizer 10% .7277 .4726 .7163

Ohscal No horizontal reduction .7501
Summarizer 2 .5549 .6560 .8124
Summarizer 10 .6707 .3621 .8147
Summarizer 1% .7712 .3703 .7934
Summarizer 5% .6795 .6787 .7317
Summarizer 10% .7246 .7497 .7488

Re8 No horizontal reduction .8034
Summarizer 2 .3696 .7945 .7979
Summarizer 10 .2774 .8296 .8013
Summarizer 1% .2726 .7910 .8077
Summarizer 5% .4337 .7989 .8022
Summarizer 10% .7199 .7942 .7949

Multi- No grouping .7071
domain Summarizer 2 .6825 .7072 .3850

sentiment Summarizer 10 .3136 .7072 .6968
Summarizer 1% .0641 .7060 .7035
Summarizer 5% .2620 .2437 .3502
Summarizer 10% .5792 .7071 .7075

the Gmeans value when using CHI-BD with Summarizer. However, not only the Gmeans

value should be taken into account when deciding wich approach to choose. In this case,

despite the decrease of the Gmeans value, there was a gain with the smaller Rule Base
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and smaller size of each rule. For this example, there was a reduction of 40.95% on

the number of rules for CHI-BD without Summarizer (2305 rules) versus CHI-BD with

Sumarizer (1361 rules).

Table 5.4 presents a comparison between the number of times CHI-BD with Summa-

rizer had a better Gmeans performance than CHI-BD without Summarizer. The results

are presented in terms of wins (W), which is the number of times the use of some reduction

approach obtained a classification result superior to the CHI-BD without Summarizer ;

ties (T), which is the number of times the use of some reduction approach obtained a

classification result similar to the CHI-BD without Summarizer ; and loses (L), which is

the number of times the use of some reduction approach obtained a classification result

inferior to the CHI-BD without Summarizer. Finally, the Total row indicates the total

number of wins, ties and loses considering all possible number of groups for Summarizer.

A total column was added to Table 5.4 in order to consider the number of wins, ties

and loses when at least of the three approaches presents a better Gmeans than CHI-BD

without Summarizer. For example, a win is considered in the Total column when FCM

or PCA or LSA presented a better Gmeans than CHI-BD without Summarizer.

Table 5.4 Gmeans for CHI-BD with and without Summarizer
Summarizer Gmeans W/T/L

Number of groups Total FCM PCA LSA

Summarizer 2 7/0/2 3/0/6 7/0/2 7/0/2
Summarizer 10 8/0/1 4/0/5 5/0/4 4/1/4
Summarizer 1% 7/0/2 4/0/5 5/0/4 7/0/2
Summarizer 5% 5/0/4 4/0/5 3/0/6 5/0/4
Summarizer 10% 5/1/3 4/0/5 1/1/7 3/1/5

TOTAL 32/1/12 19/0/26 23/1/21 26/2/17

As shown in Table 5.4, despite the much smaller number of rules obtained by CHI-

BD with Summarizer, it still gives a higher Gmeans value in 32 out of 45 cases (71.1%

of wins). LSA presented the higher number of wins (26 wins). For the Total column,

Summarizer with 10 groups presented the higher number of wins (8 out of 9 datasets),

followed by Summarizer 2 and 1% with 7 wins. As shown in Table 5.4, it was possible

to obtain a higher Gmeans value when using Summarizer for most of the cases when

considering at least one of the approaches. One should keep in mind that there should

be a balance between model performance and model complexity. This way, choosing the

model with the higher Gmeans value is not always the best choice.

To summarize, in this Chapter we compared the results of the classification pro-
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cess with and without horizontal reduction (with and without Summarizer) in terms of

number of rules and classification performance. Summarizer was proven to significantly

reduce the number of rules generated by CHI-BD, since a much smaller feature space

is considered instead of the original set of attributes. Despite the significant reduction

on the number of features, and consequently, on the number of rules generated by the

model, there was not a negative impact on the performance of the algorithm in terms of

Gmeans.

In the next Chapter, it will be presented the conclusions of this work.



Chapter

6
CONCLUSIONS

A huge amount of data is being generated everyday with the advent of technology. These

data, often called Big Data, come in a variety of formats and sizes and are usually

not easy for dealing with. One of the challenges that arises with Big Data is its high

dimensionality. The vertical and horizontal high dimensionality that can come with Big

Data prevent traditional ML algorithms to be able to extract useful information from

such data. Two of the reasons that makes it harder for traditional ML to be able to deal

with Big Data are processing time and memory consumption. Such algorithms, as Chi

et al.’s algorithm, were not designed to process huge amounts of data in a reasonable

amount of time and with reasonable memory consumption.

For having the benefits of using fuzzy rule based classifiers on Big Data as well,

researchers have tried to design fuzzy classifiers that reduce memory and computational

requirements on Big Data classification tasks, as exposed by Elkano et al. (2019) (Elkano;

Bustince; Galar, 2019). Most of the classifiers designed for Big Data make use of the

MapReduce paradigm and the Hadoop computing framework. MapReduce model works

by dividing data into blocks and processing each block of data independently and at

the same time, while Hadoop implements the MapReduce model over a distributed file

system. This approach makes it possible to process huge amounts of data in a reasonable

period of time. However, recent proposed algorithms often consider Big Data as datasets

with large number of instances, with no concern about the high number of attributes as

well.

Text datasets, for example, can have vertical and horizontal high dimensionality at the

same time. This way, recent adaptations of fuzzy rule based systems are not appropriate

57
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for dealing with such datasets, since only vertical high dimensionality is tackled by these

recent proposals. All adapted algorihtms for Big Data classification problems discussed in

this work were only tested on datasets with a relatively small feature space. The largest

number of attributes tested by these recent adaptations had only 54 attributes. For text

datasets, since every possible word in all documents may became an attribute, the feature

space can get much higher than 54 attributes. One way to reduce horizontal high dimen-

sionality is by using feature selection techniques to choose a reduced number of attributes

to compose the feature space. However, the existing feature selection processes might not

guarantee a fair representation of all classes by the selected features, specially for imbal-

anced datasets. These techniques evaluate each attribute individually, and dependencies

between attributes might be ignored, resulting in the selection of redundant attributes

and on the discard of relevant ones (CHANDRASHEKAR; SAHIN, 2014; KUMBHAR;

MALI, 2016). In addition to that, even if a smaller number of attributes is selected, it

might not be small enough for such algorithms.

With the above mentioned points, it is clear that there is a lack of approaches for

dealing with both horizontal and vertical high dimensional datasets. In this sense, the

following hypothesis guided the developement of this work:

It is possible to reduce dimensionality, without discarding information, and build better

models by using groups of attributes in the classification process in a fuzzy rule based

classification system using the MapReduce paradigm

Therefore, we have developed a new approach for building reduced feature spaces of

vertical and horizontal high dimensional datasets. We named our approach as Summa-

rizer, and we have presented details of its procedure in Chapter 5.

To assess the feasibility of the hypothesis of this work, we tested our approach with

CHI-BD, that already deals with vertical high dimensionality by making use of the

MapReduce paradigm. Three different approaches of Summarizer (FCM, PCA and LSA)

were tested in different datasets of different sources. The results were compared to the

classification process with no horizontal reduction (without Summarizer) in terms of

number of rules and classification performance.

As a result, our method was proven to significantly reduce the number of rules gener-

ated by CHI-BD, since a much smaller feature space is considered instead of the original

set of attributes. Despite the significant reduction on the number of features, and conse-

quently, on the number of rules generated by the model, there was not a negative impact

on the performance of the algorithm in terms of Gmeans. Therefore, it is considered that

the hypothesis of this work was confirmed.
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This chapter presents the final considerations of this work. Therefore, the scientific

contributions, limitations and further research will be discussed in the next sections.

6.1 CONTRIBUTIONS

The contribution of this work to the state of the art classification algorithms for Big Data

includes a new approach for reducing horizontal high dimensionality.

The main scientific contribution of this work consists of the idealization, development,

and assessment of Summarizer, an approach for reducing horizontal dimensionality by

defining groups of attributes as the new feature space. Summarizer was built with the

goal of enabling the use of existing ML algorithms that already deal with the vertical

high dimensionality of Big Data sets. The results show that the proposed approach is

effective for reducing horizontal high dimensionality without discarding information, as

well as for creating smaller rule-based models without impacting on the performance of

the algorithms.

Also, the manuscript of this work has been submitted to FUZZ-IEEE and is at the

revision stage.

6.2 LIMITATIONS AND FURTHER RESEARCH

The first limitation of this work is the process of choosing the appropriate number of

groups for representing the new feature space. The definition of the appropriate param-

eters in a non supervised approach is usually done empirically. However, when dealing

with Big Data, empirically defining the proper number of groups may be very computa-

tional costly. This way, a suggestion for future work is to design a better approach for

defining the parameters of the model.

Another limitation of this work is in the process of building groups of attributes. It was

proposed the use of the FCM algorithm which is very computational costly. Therefore,

another direction for future work is considering a MapReduce approach when building

the reduced feature space.

Another suggestion for future work is to test the Summarizer approach with algo-

rithms other than CHI-BD. FRBCSs were the focus of this work, however, other classifi-

cation algorithms that deal only with vertical high dimensionality might take advantage

of Summarizer when dealing with horizontal and vertical high dimensional datasets. In

addition to that, Summarizer should also be considered for reducing horizontal high di-

mensionality before applying traditional algorithms that does not deal with Big Data,
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since Summarizer is an approach for reducing horizontal high dimensionality and can be

applied to any classification algorithm.
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CHAPTER 7

APPENDIX

Table 7.1 shows the number of rules generated by CHI-BD for each dataset with all the

different approaches of Summarizer as well as with CHI-BD with no horizontal dimen-

sionality reduction.

Table 7.1 Number of rules generated by CHI-BD for each of the tested approaches and for
each dataset.

Dataset Method # Rules FCM # Rules PCA # Rules LSA
20ng0 No horizontal reduction 795

Summarizer 2 3 5 4
Summarizer 10 3 11 10
Summarizer 1% 60 276 152
Summarizer 5% 176 621 566
Summarizer 10% 201 367 362

20ng1 No horizontal reduction 1584
Summarizer 2 3 4 3
Summarizer 10 3 13 10
Summarizer 1% 30 247 226
Summarizer 5% 114 852 670
Summarizer 10% 178 685 759

20ng2 No horizontal reduction 1584
Summarizer 2 3 4 4
Summarizer 10 4 13 9
Summarizer 1% 24 209 208
Summarizer 5% 120 714 782
Summarizer 10% 204 681 758

20ng3 No horizontal reduction 1584
Summarizer 2 3 3 3
Summarizer 10 3 15 11
Summarizer 1% 27 202 241
Summarizer 5% 118 853 808
Summarizer 10% 204 682 758

20ng4 No horizontal reduction 1584
Summarizer 2 3 4 4
Summarizer 10 4 15 13
Summarizer 1% 29 247 244
Summarizer 5% 111 684 611
Summarizer 10% 187 683 758

Classic No horizontal reduction 2283
Summarizer 2 3 4 7
Summarizer 10 31 17 68
Summarizer 1% 60 144 486
Summarizer 5% 55 404 945
Summarizer 10% 67 715 1323

Ohscal No horizontal reduction 2305
Summarizer 2 3 4 7
Summarizer 10 26 18 84
Summarizer 1% 131 120 1037
Summarizer 5% 152 567 1361
Summarizer 10% 158 1043 1235

Re8 No horizontal reduction 4594
Summarizer 2 3 4 6
Summarizer 10 10 18 32
Summarizer 1% 33 105 322
Summarizer 5% 69 495 621
Summarizer 10% 63 846 838

Multi- No horizontal reduction -
domain Summarizer 2 3 3 3
Sentiment Summarizer 10 3 16 18

Summarizer 1% 35 175 222
Summarizer 5% 59 533 869
Summarizer 10% 59 793 1200
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