
Understanding Test Evolution: from Highly‑Configurable Systems to Software Ecosystems
Jonatas Ferreira Bastos

Software evolution is inevitable if the systems are planned to survive in the long-term. Equally, well-understood  is  the necessity of having a good  test  suite available  to ensure  the quality of  the current  state of  the software system and to ease  future changes.  This  is especially  true  in  the context of  reusable  systems  since  they are planned to attend for a long time a specific market niche and need to support a large number of configuration options. However, developing and maintaining a test suite is time-intensive and costly. This situation is challenging for the projects: on the one hand, tests are essential for the success of software; on the other hand, tests become a severe burden during maintenance. Even though a substantial body of literature has studied testing in reusable environments, test evolution analysis has not been addressed. In general, researchers have looked into analyzing test strategies, dynamic  test  selection  techniques,  and  co-evolution  of  tests  along  with  other systems artifacts. This thesis intends to improve the test evolution body of knowledge in reusable systems, investigating characteristics that indicate the effort to develop and maintain the test suite and unveiling how the reusable aspects affect the tests. The set of evidence can help researchers and practitioners to better planning the test development and evolution. This way, we employed a multi-method approach to develop the understanding of test evolution in configurable systems and unveil evidence  on  the  topic  from  various  sources.  In  the  first  phase  of  the  research program, we provided an overview of the existing research related to this thesis’s subjects and presented related work to our  investigation. The second phase was composed of four empirical studies. First, we performed a case study to analyze the test evolution of a large configurable system. Next, we performed a comparative study to evaluate the test evolution in 18 open-source projects from various sizes and domains  in configurable systems and their similarities and differences to 18 Single Systems projects. Third, we conducted an extended study to analyze the test suite evolution  in  another  category  of  reusable  systems  to  verify  whether  some observations are recurring and gather new data that support the findings. Finally, we surveyed test contributors to  investigate the test evolution from the development point of view and improve the findings in previous stages. This work collected a set of findings of test evolution, and these findings were strengthened by using different research methods. Our work provided a better understanding of test evolution  in configurable systems by documenting evidence observed in open-source projects and test contributors. Moreover, in this Thesis, we synthesized the gathered evidence and identified open issues in this research topic. These findings are an important step to establish guidelines for addressing test evolution in configurable systems.

PGCOMP - Programa de Pós-Graduação em Ciência da ComputaçãoUniversidade Federal da Bahia (UFBA)Av. Milton Santos, s/n - OndinaSalvador, BA, Brasil, 40170-110https://pgcomp.ufba.brpgcomp@ufba.br

UFBA
Tese de Doutorado Universidade Federal da BahiaPrograma de Pós-Graduação emCiência da ComputaçãoMaio| 2021

DSC | 018 | 2021 Understanding Test Evolution: from Highly-Configurable Systems to Software 
Ecosystems

Jonatas Ferreira Bastos

Universidade Federal da Bahia
Instituto de Computação

Programa de Pós-Graduação em Ciência da Computação

UNDERSTANDING TEST EVOLUTION:
FROM HIGHLY-CONFIGURABLE SYSTEMS

TO SOFTWARE ECOSYSTEMS

Jonatas Ferreira Bastos

TESE DE DOUTORADO

Salvador, Bahia – Brasil
May, 2021

JONATAS FERREIRA BASTOS

UNDERSTANDING TEST EVOLUTION: FROM
HIGHLY-CONFIGURABLE SYSTEMS TO SOFTWARE

ECOSYSTEMS

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientador: Prof. Dr. Eduardo Santana de Almeida

Salvador, Bahia – Brasil
May, 2021

Ficha catalográfica elaborada pela Biblioteca Universitária de
Ciências e Tecnologias Prof. Omar Catunda, SIBI - UFBA.

B327 Bastos, Jonatas Ferreira.

Understanding Test Evolution: from Highly-Configurable
Systems to Software Ecosystems / Jonatas Ferreira Bastos –
Salvador, 2021.

141 f.

Orientador: Prof. Dr. Eduardo Santana de Almeida

Tese (Doutorado) – Universidade Federal da Bahia.

Instituto de Computação, 2021.

1. Software. 2. Software Engineering. 3. Ecosystem. I.
Almeida, Eduardo Santana de. II. Universidade Federal da
Bahia. III. Título.

CDU 004.8

ACKNOWLEDGEMENTS

Eu gostaria de agradecer ao meu orientador, o professor Eduardo Almeida. Esa obrigado
por todo suporte durante esses anos, pelas conversas e reuniões, por acreditar e confiar
em mim. Sua orientação é um dos maiores ensinamentos que levo desses anos, e espero
poder repassar teus ensinamentos a meus orientados na carreira acadêmica. Gostaria
de agradecer também ao professor Paulo Cesar Masieiro. Muito obrigado por todas as
nossas conversas, por ser sempre tão gentil e pela disponibilidade. Sempre após as nossas
reuniões, eu me sentia muito melhor. Obrigado de verdade. Eu também preciso falar do
melhor grupo de pesquisa e laboratório do mundo, RiSE Labs e Lab INES! A companhia
diária, o ambiente descontráıdo, as risadas e todos os momentos com vocês serviram
como combust́ıvel para que eu pudesse seguir em frente. Magno, Glaúcia, Leandro, Iuri,
Michele, Larissa, Paulo, Renata, Tassio, Alberto, Crescêncio, Jaziel, Tiago, Rose, Carla,
etc. Obrigado.

Durante o doutorado, eu tive a oportunidade de ser recebido pelo professor Ahmed
E. Hassan no SAIL Lab na Quenns University, Kingston, Canadá. Eu não tenho palavras
suficientes para agradecer todo o suporte e incŕıveis conversas que eu tive durante o ano
que passei em Kingston. SAIL foi um divisor de águas na minha vida. Não sou a mesma
pessoa de antes. Eu aprendi muito, amadureci mais ainda, tanto profissionalmente quanto
como pessoa. A maneira que faço pesquisa mudou. Minha forma de pensar também mudou
e sou muito grato por tudo isso.

Também gostaria de agradecer a Gustavo Ansaldi e Iftekhar Ahmed pela grande colab-
oração em minha pesquisa durante o ano no Canadá. Ainda assim, gostaria de agradecer
ao grupo de pesquisa SAIL, principalmente aquele que se tornou meu amigo, Filipe Cogô,
pelas infinitas conversas, apoio nos momentos dif́ıceis, riso e amizade. Por último, e não
menos importante, gostaria de agradecer a todos os meus amigos em Kingston, em es-
pecial a Pedro, Plinio, João, Bruna, Delano, Lilly e Lebron. Sem eles, minha vida teria
sido muito mais solitária e triste. Eles foram minha famı́lia por 1 ano e trouxeram com-
panheirismo e alegria para minha vida. Muitos dos momentos mais felizes que tive foram
por causa de vocês. Obrigado pessoal.

Um muito obrigado também a galera do ap. 203, eu não poderia ter tido melhor
ambiente em momentos tão dif́ıceis. Um muito obrigado também aos meus pais, por
estarem sempre ao meu lado e me darem todo o suporte necessário e todo o amor desse
mundo. Preciso também agradecer a Leninha por todo o suporte e por cuidar tão bem
durante a minha ausência daquela que é minha melhor parte, Ingrid Gabirele. Ingrid
minha filha, nada nesse mundo poderá devolver esse ano longe de você, e apesar de lhe
dizer pessoalmente sempre, quero deixar registrado aqui, o meu mais profundo amor e
admiração pelo ser humano que você tem se tornado, e por ser calmaria quando a vida
se fez turbulenta.

v

vi ACKNOWLEDGEMENTS

Finalmente, preciso agradecer a minha irmã, sobrinhos (Iago, Jair Jr. e Joaquim).
Obrigada por acreditarem em mim quando nem eu mesmo não mais acreditava. Amo
muito vocês.

RESUMO

A evolução do software é inevitável se os sistemas forem planejados para sobreviver a
longo prazo. Igualmente, é a necessidade de ter um bom conjunto de testes dispońıvel
para garantir a qualidade do estado atual do sistema de software e facilitar mudanças
futuras. Isso é especialmente verdade no contexto de sistemas reutilizáveis, uma vez que
são planejados para atender por muito tempo um nicho de mercado espećıfico e precisam
suportar um grande número de opções de configuração. No entanto, desenvolver e manter
um conjunto de testes é demorado e caro. Essa situação é desafiadora para os projetos:
por um lado, os testes são essenciais para o sucesso do software; por outro lado, os testes
tornam-se um fardo severo durante a manutenção.

Embora um corpo substancial de literatura tenha estudado testes em ambientes re-
utilizáveis, a análise da evolução do teste não foi abordada. Em geral, os pesquisadores
analisaram estratégias de teste, técnicas de seleção de teste dinâmico e co-evolução de
testes junto com outros artefatos de sistemas. Esta tese pretende aprimorar o conheci-
mento da evolução de testes em sistemas reutilizáveis, investigando caracteŕısticas que
indicam o esforço para desenvolver e manter a súıte de testes e desvendando como os as-
pectos reutilizáveis afetam os testes. O conjunto de evidências pode ajudar pesquisadores
e profissionais a planejar melhor o desenvolvimento e a evolução do teste.

Dessa forma, empregamos uma abordagem multi-métodos para desenvolver o entendi-
mento da evolução de testes em sistemas configuráveis e desvendar evidências sobre o
tema a partir de diversas fontes. Na primeira fase do programa de pesquisa, fornecemos
uma visão geral da pesquisa existente relacionada aos assuntos desta tese e apresentamos
trabalhos relacionados à nossa investigação. A segunda fase foi composta por quatro estu-
dos emṕıricos. Primeiramente, realizamos um estudo de caso para analisar a evolução do
teste de um grande sistema configurável. Em seguida, realizamos um estudo comparativo
para avaliar a evolução do teste em 18 sistemas configuráveis e open source, de vários
tamanhos e domı́nios, investigando assim as suas semelhanças e diferenças com 18 proje-
tos não configuráveis. Terceiro, realizamos um estudo estendido para analisar a evolução
do conjunto de testes em outra categoria de sistemas reutilizáveis verificando assim se
algumas observações são recorrentes ao mesmo tempo que coletamos novos dados que
suportam as descobertas. Por fim, pesquisamos os colaboradores do teste para investigar
a evolução do teste do ponto de vista do desenvolvimento e melhorar as descobertas nos
estágios anteriores.

Este trabalho coletou um conjunto de achados da evolução dos testes, e esses achados
foram fortalecidos por meio de diferentes métodos de pesquisa. Nosso trabalho forneceu
uma melhor compreensão da evolução do teste em sistemas configuráveis documentando
evidências observadas em projetos de código aberto e colaboradores de teste. Além disso,
nesta Tese, sintetizamos as evidências coletadas e identificamos questões em aberto neste

vii

viii RESUMO

tópico de pesquisa. Essas descobertas são um passo importante para estabelecer diretrizes
para abordar a evolução do teste em sistemas configuráveis.

Palavras-chave: Teste; Evolução; Sistemas altamente configuráveis; Variabilidade; Es-
tudo Emṕırico;

ABSTRACT

Software evolution is inevitable if the systems are planned to survive in the long-term.
Equally, well-understood is the necessity of having a good test suite available to ensure
the quality of the current state of the software system and to ease future changes. This
is especially true in the context of reusable systems since they are planned to attend for
a long time a specific market niche and need to support a large number of configuration
options. However, developing and maintaining a test suite is time-intensive and costly.
This situation is challenging for the projects: on the one hand, tests are essential for the
success of software; on the other hand, tests become a severe burden during maintenance.

Even though a substantial body of literature has studied testing in reusable environ-
ments, test evolution analysis has not been addressed. In general, researchers have looked
into analyzing test strategies, dynamic test selection techniques, and co-evolution of tests
along with other systems artifacts. This thesis intends to improve the test evolution body
of knowledge in reusable systems, investigating characteristics that indicate the effort to
develop and maintain the test suite and unveiling how the reusable aspects affect the
tests. The set of evidence can help researchers and practitioners to better planning the
test development and evolution.

This way, we employed a multi-method approach to develop the understanding of test
evolution in configurable systems and unveil evidence on the topic from various sources.
In the first phase of the research program, we provided an overview of the existing re-
search related to this thesis’s subjects and presented related work to our investigation.
The second phase was composed of four empirical studies. First, we performed a case
study to analyze the test evolution of a large configurable system. Next, we performed a
comparative study to evaluate the test evolution in 18 open-source projects from various
sizes and domains in configurable systems and their similarities and differences to 18
Single Systems (SS) projects. Third, we conducted an extended study to analyze the test
suite evolution in another category of reusable systems to verify whether some observa-
tions are recurring and gather new data that support the findings. Finally, we surveyed
test contributors to investigate the test evolution from the development point of view and
improve the findings in previous stages.

This work collected a set of findings of test evolution, and these findings were strength-
ened by using different research methods. Our work provided a better understanding of
test evolution in configurable systems by documenting evidence observed in open-source
projects and test contributors. Moreover, in this Thesis, we synthesized the gathered ev-
idence and identified open issues in this research topic. These findings are an important
step to establish guidelines for addressing test evolution in configurable systems.

Keywords: Test; Evolution; Highly-Configurable Systems; Software Ecosystem; Vari-

ix

x ABSTRACT

ability; Empirical Study.

CONTENTS

List of Figures xiv

List of Tables xvii

List of Acronyms xvii

I Overview

Chapter 1—Introduction 3

1.1 Motivation . 3
1.2 Objective . 4
1.3 Research Questions (RQs) . 4
1.4 Research Methodology . 5

1.4.1 Research Design . 5
1.5 Contributions . 6
1.6 Out of Scope . 8
1.7 Organization of the Thesis . 9

II Background

Chapter 2—Main Concepts and Foundations 13

2.1 Software Reuse . 13
2.2 Reusable Systems . 14

2.2.1 Highly-Configurable Systems (HCS) 14
2.2.1.1 Variability Implementation in HCS. 14

2.2.2 Ecosystems . 15
2.3 Software Testing . 15

2.3.1 Testing Levels . 16
2.4 Chapter Summary . 17

xi

xii CONTENTS

Chapter 3—An Overview of the State-of-the-art and Related Work 19

3.1 Connection between test, reusable systems, and evolution 19
3.2 Studies on test evolution . 20

3.2.1 Testing in Configurable Systems 21
3.2.2 Testing in Ecosystems . 22
3.2.3 Studies Comparison . 23

3.3 Chapter Summary . 23

III Empirical studies

Chapter 4—Test Suite Evolution in a Highly-Configurable System: A Case Study
on the Linux Test Project (LTP) 27

4.1 Background . 28
4.1.1 The Linux Test Project (LTP) . 28
4.1.2 LTP Structure . 28
4.1.3 Basic test structure . 29

4.2 Methodology . 30
4.2.1 GQM Model . 30
4.2.2 Research Questions . 31
4.2.3 Data Collection . 32

4.3 Results . 32
4.3.1 RQ1 - What is the effort to develop the test suite? 32

4.3.1.1 M1 - Test Cases: . 33
4.3.1.2 M2 - Unit Size: . 34
4.3.1.3 M3 - Contributors: . 36

4.3.2 RQ2 - What is the maintainability of the test suite? 38
4.3.2.1 M2 - Unit Size: . 38
4.3.2.2 M4 - Unit Complexity: 39
4.3.2.3 M5 - Duplication: . 41
4.3.2.4 M6 - Dependence: . 43

4.3.3 RQ3 - How does the test suite change? 44
4.3.3.1 M7 - Test Case Changes: 44
4.3.3.2 M8 - Test Program Changes: 46

4.3.4 RQ4 - How does variability affect the maintainability of the test
suite? . 48
4.3.4.1 M9 - Lines of Feature Code (LOF): 48
4.3.4.2 M10 - Number of Feature Constants (NOFC): 50
4.3.4.3 M11 - Scattering Degree (SD): 52
4.3.4.4 M12 - Tangling Degree (TD): 54

4.4 Discussion . 56
4.5 Threats to Validity . 58

4.5.1 External Validity . 58

CONTENTS xiii

4.5.2 Construct Validity . 59
4.6 Chapter Summary . 59

Chapter 5—Test Evolution in Configurable Systems and Single Systems: A com-
parative Study 61

5.1 Methodology . 61
5.1.1 Study Subjects . 62
5.1.2 Data Collection . 62
5.1.3 Data Preparation . 63
5.1.4 Tools Selection . 63

5.2 Results . 66
5.2.1 RQ1- How much effort is required to evolve test suite? 66

5.2.1.1 Number of Contributors: 66
5.2.1.2 Man-Month (M/M): . 67
5.2.1.3 Modified files: . 67
5.2.1.4 Assertions: . 68

5.2.2 RQ2 - How maintainable is the test suite and how that evolves? . 71
5.2.2.1 Unit Size: . 71
5.2.2.2 Unit Complexity: . 72
5.2.2.3 Unit Dependence: . 73
5.2.2.4 Duplication: . 74

5.3 Discussion . 76
5.4 Threats to Validity . 77
5.5 Chapter Summary . 78

Chapter 6—Test Evolution in a Software Ecosystem: The extended study on
npm packages 79

6.1 Data Collection . 80
6.2 Results . 81

6.2.1 RQ1: How often do packages perform testing? 81
6.2.2 RQ2: How does test code evolve? 84
6.2.3 RQ3: How is the ownership of test code? 88

6.3 Discussion . 92
6.4 Threats to Validity . 94
6.5 Chapter Summary . 95

Chapter 7—Survey with Test Contributors to Understand the Test Evolution 97

7.1 Related Work . 97
7.2 Methodology . 98
7.3 Results . 99

7.3.1 General Information . 100
7.3.2 Effort Characteristics . 100

xiv CONTENTS

7.3.3 Maintainability sub-characteristics 104
7.3.4 Main Challenges . 106

7.4 Discussion . 106
7.5 Threats to Validity . 107
7.6 Chapter Summary . 107

IV Conclusions

Chapter 8—Research Synthesis and Evaluation of the Multi-Method Approach 111

8.1 Justification for the Multi-Method Approach 112
8.2 Research Synthesis . 112
8.3 Summary of the Findings . 113
8.4 Findings of the Multi-Method Approach 119
8.5 Research Question Analysis . 120
8.6 Multi-Method Approach Evaluation . 121
8.7 Chapter Summary . 121

Chapter 9—Concluding Remarks and Future Work 123

9.1 Summary of Contributions . 124
9.2 Future Work . 125
9.3 Concluding Remarks . 125

LIST OF FIGURES

1.1 Research Design. 7
1.2 Schematic overview of the thesis structure. 10

4.1 LTP Organization. 29
4.2 GQM model of the study. 31
4.3 Data collection process. 32
4.4 Number of Test Cases per Release. 33
4.5 Test Programs evolution per subsystem. 34
4.6 Quantity of Test Suites and avg. of test cases in each one. 34
4.7 LOC per releases. 35
4.8 LOC in each subsystem per releases. 35
4.9 Number of Contributors per month. 36
4.10 LOC per man-month (log10). 37
4.11 The productivity per Man-Month. 37
4.12 Percentiles of Test Program (LOC). 38
4.13 Accumulated Cyclomatic Complexity per Releases. 40
4.14 Average of Cyclomatic Complexity per Function. 40
4.15 Average of Cyclomatic Complexity per Subsystem. 40
4.16 Percentiles of unit complexity per Function. 41
4.17 Percentage of Total Cloned Functions. 42
4.18 Percentage of File Associated with Clones. 42
4.19 Average of Unit Dependence per Release. 43
4.20 Percentiles of Unit Dependence. 44
4.21 LPT evolution from the test cases change point-of-view. 45
4.22 Changes in the number of Test Cases between releases. 45
4.23 Number of Releases that a Test Case Remains in LTP. 46
4.24 Number of changes in code files per releases. 47
4.25 Test programs changed per subsystem. 47
4.26 Test programs with more changes. 48
4.27 Lines of Feature Code evolution. 48
4.28 LOF in each subsystem. 49
4.29 Fraction of cpp-annotated code (LOF/LOC) per Release. 50
4.30 Number of Features Constants (NOFC). 50
4.31 NOFC in each subsystem. 51
4.32 Highest NOFC values per Release. 51
4.33 SD Evolution. 52
4.34 Percentiles of SD per Release. 53

xv

xvi LIST OF FIGURES

4.35 Evolution of the sparc feature constant. 53
4.36 Tangling Degree Evolution. 54
4.37 Percentiles of TD per Release. 55
4.38 Feature expressions with high TD evolution. 55

5.1 Overview of our subjects selection and data collection approach. 62
5.2 Contributors working in test files over time. 67
5.3 Man-Month productivity in test files per month. 68
5.4 Modified test files per Contributors. 69
5.5 Distribution of Modified Files. 69
5.6 Average of assertions in Test Files. 70
5.7 Assertions density in Test Files. 70
5.8 Unit size over time. 72
5.9 Average of Cyclomatic Complexity in test files. 73
5.10 Average of Unit Dependence of the test files. 74
5.11 Percentage of Total Cloned Functions. 75

6.1 Overview of our data collection approach. 80
6.2 Proportion of popular packages that perform or not tests. 82
6.3 The number of releases taken for a package to start having tests. 83
6.4 Test framework adoption distribution by popular packages. 83
6.5 Proportion of Downgrades and Updates for releases with and without test. 84
6.6 Example of the division of a packages’ time-frame. 85
6.7 Percentage of test files. 86
6.8 Percentage of tLOC. 86
6.9 Percentage of tLOC. 87
6.10 Proportion of modified test files during each time-frame. 87
6.11 Average of tLOC changed per test file. 88
6.12 Percentage of test contributors. 90
6.13 Average of modified tLOC by contributors. 90
6.14 Distribution of modified test files. 91
6.15 One-time contributor (OTC). 91
6.16 Percent of contributors that perform changes in the test files. 92

7.1 Survey Steps. 98
7.2 Contributors Information. 100
7.3 Educational Qualification. 100
7.4 Contributors Experience. 101
7.5 The necessity of more contributors at the beginning of a project. 101
7.6 The negative impact of high workload. 102
7.7 Contributors only involved in test activities. 103
7.8 Concentration of work. 103
7.9 Code Complexity. 104
7.10 Code Dependence. 105
7.11 Code Clone. 105

LIST OF TABLES

1.1 Publications during the Ph.D. research. 8

3.1 Comparison of the characteristics evaluated in our study and the related
works. 23

4.1 Summary of Findings. 56

5.1 HCS Projects Selected. 64
5.2 SS Projects Selected. 65
5.3 Wilcoxon Rank Sum test (p-value) and Cliff’s Delta (d) for SS vs. HCS

projects. 66
5.4 Thresholds and Values for Unit Level Metrics. 72
5.5 Percentage cloned LOC by level of Similarity. 75

6.1 File type classifications examples. 81

8.1 Summary of Findings. 114

xvii

LIST OF ACRONYMS

HCS Highly-Configurable Systems

SS Single Systems

SPL Software Product Lines

xix

PART I

OVERVIEW

Chapter

1
INTRODUCTION

Lehman was one of the pioneers to say that a software system must evolve, or it becomes
progressively less satisfactory [1, 2]. We also know that due to ever-changing surroundings,
new business needs, new regulations, and also due to the people working with the system,
the software is in a semi-permanent state of flux [3]. Additionally, the increasing lifespan of
most software systems [4] leads to a situation where an even higher fraction of the total
budget of a project is spent during the maintenance or evolution phase, considerably
outweighing the initial development costs of a system [5].

Software, however, is multidimensional, and so is the development process behind
it. This multidimensionality lies in the fact that other artifacts are needed to develop
high-quality source code, and one of these artifacts is the tests [6]. According to Moonen
et al. [5], tests are crucial during evolution since they are responsible for quality assur-
ance, documentation, and confidence. However, developing and maintaining a test suite
is time-intensive [5, 7], and costly [8]. According to Brooks [9], the total time devoted to
testing is 50% of the total allocated time, while Kung et al. [8] suggest that 40 to 80%
of the development costs of software development is spent in the testing phase. These
percentages can increase even more in reusable systems since in these systems, the vari-
ability aspects, such as variation points (elements to manage variability and to facilitate
the derivation of different configurations) in Highly-Configurable Systems (HCS) and de-
pendence management in ecosystems, increase the challenges in the development of tests
[10]. All these challenges put projects in a difficult situation: on the one hand, tests are
essential for the success of software; on the other hand, tests become a severe burden
during maintenance [11].

1.1 MOTIVATION

Due to the critical role of tests in ensuring software quality, researchers have investigated
test evolution in different contexts [11, 12, 13, 14, 15]. They have looked into analyzing
test strategies [10], dynamic test selection techniques [16, 17, 18], and co-evolution of
tests along with other systems artifacts [19, 20]. The lack of a thorough understanding

3

4 INTRODUCTION

of how test evolves in reusable systems is directly reflected in the quality of existing
tools, and methodologies [5, 21, 10]. Nevertheless, no specific research has been carried
out in the context of reusable systems investigating the test suite evolution on two mains
aspects: (i) Development effort and (ii) Maintainability. These aspects are tremendously
impacted by the reusability since an artifact can be shared among several products in
this kind of environment, and any change in this asset may affect all related products,
making the test evolution more difficult [10].

Thus, the investigation of software test evolution is essential. A better understanding
of this evolution can allow us, in the medium-term, to come up with prediction models,
guidelines, and best practices that will enable the community to improve their current
practices, tools and to make the test process less expensive and time-consuming.

1.2 OBJECTIVE

In this work, the main goal is to advance the test evolution body of knowledge in reusable
systems, evaluating characteristics that indicate the effort to develop and maintain the
test suite, and identifying reusable aspects that can affect the tests.

This research has the following specific objectives:

Research Goal 1: Contribute to a better understanding test evolution focusing on
two main aspects: (i) Development effort, and (ii) Maintainability.

Research Goal 2: Provide empirical evidence about test evolution by analyzing
open-source projects from various domains and different sizes in reusable environments.

1.3 RESEARCH QUESTIONS (RQS)

On the basis of such defined goals, we established the following research questions that
drive this investigation:

RQ1 - What is the effort required to evolve the test suite? Projects evolve,
among other reasons, due to bug fixes, new features, and refactoring. These changes can
be followed by changes in the test code [22]. The evaluation of the performed changes
and the stability of such tests can reveal valuable information about the effort needed
to evolve the test suite. [5, 23]. Understanding how tests change over time is important
for development teams to allocate personnel and resources to test tasks effectively and
reduce the test overhead in regular development tasks, such as fixing defects and adding
new tests.

RQ2 - How maintainable is the test suite? Test code has similar requirements for
maintenance as production code [23], and it is essential to ensure that it is clear to read,
understand, and make changes. In the same way, integrating the execution of the tests
in the development process requires that the tests run efficiently. Thus, the monitoring
and detection of possible points of low quality in the test code are crucial. Additionally,
understanding how the test suites are maintained can form the base to investigate the
interactions between tests and the system under evolution [5].

1.4 RESEARCH METHODOLOGY 5

RQ3 - How is the ownership of test code? Ownership describes whether one
or more contributors have responsibility for a portion of the software system, being an
important aspect to the quality and maintenance of open-source software packages [24].
Additionally, the development of open-source software projects requires balancing the
workload between groups of participants [25]. As a project grows, it is unclear whether
the arrangements that previously made the project work will continue to be relevant or
whether new methods will be needed. The analysis of ownership concentration can provide
the community with an overview of the “sustainability” of the projects, and specifically,
how sustainable the tests are as the projects evolve.

RQ4 - Are there reusable aspects that affect the tests? Variability represents
an essential role in software development in reusable systems [10]. However, the variabil-
ity aspects have been investigated as they occur in the system code [19]. Since the test
code has a different purpose, it is not clear if the test code is also affected by the vari-
ability. Thus, evaluating the variability in the tests can contribute to the development or
adaptation of tools and guidelines for the test evolution in configurable systems.

1.4 RESEARCH METHODOLOGY

There has been a growing interest in empirical research in Software Engineering [26]. One
of the main reasons is that the analytical research paradigm is insufficient for investigating
complex real-life issues involving humans and their interactions with technology [27]. Test
evolution in reusable systems is not different. Some studies investigated the test evolution
of systems that adopt software reuse [19, 11, 12]. However, the reports represent single-
shot studies i.e. only one study in the topic of investigation. According to Wood et al. [27],
“one experimental study on a topic, no matter how good, cannot, in isolation, demonstrate
much of anything conclusively”. Replication helps to address some of the weaknesses of
single-shot studies. Still, replications typically involve repeated investigation using the
same research method and are therefore vulnerable to the inherent weaknesses of any
particular method [28].

Thus, we adopted a multi-method approach to have a deep understanding of test evo-
lution in reusable systems. A multi-method approach [29], or triangulation [30] combines
different, but complementary, studies. It is argued that a multi-method approach can help
to address the perceived weakness of single-shot studies by attacking research problems
“with an arsenal of methods that have non-overlapping weaknesses in addition to their
complementary strengths” [29].

1.4.1 Research Design

We have observed among other issues, the lack of research into test evolution in reusable
systems combining evidence from different sources. In addition, we have noticed that
research in test evolution were centered on technological solutions that supported or
partly automated the test evolution process [11, 14, 13, 31] and are based largely on
anecdotal rather than scientific evidence.

While such a large gap between research and practice presents many opportunities,

6 INTRODUCTION

it also brings many potential pitfalls. Without a mature body of theoretically founded
knowledge to use as a guiding light, systematic research becomes somewhat more com-
plicated. It is recommended that in instances where the study is broad, exploratory, and
where limited research currently exists, the researcher must analyze the research project
into a set of clearly defined steps [32]. On the other hand, to determine the research steps,
the research methods must be selected. However, no single research method is universally
applicable, and “all research approaches may have something to offer” [33]. There is a
considerable range of research methods available [34], all of which have distinct strengths
and weaknesses. To compensate for these weaknesses, Franz et al. [35] recommend a
multi-method research design. Multi-method design is “the conduct of two or more re-
search studies, each conducted rigorously and complete in itself, in one project” [36]. By
triangulating between studies and data, more plausible interpretations can emerge.

Thus, our multi-method research design was influenced by [37], which focuses on
combining research methods to both gain further understanding of the research problem,
and to enrich our conclusions, as shown in Figure 1.2:

Background. The first part presents an overview of the basic concepts that guide this
thesis, such as software reuse, HCS, ecosystems, and test evolution. Also, it encom-
passes an overview of the state-of-art of field and related work.

Empirical Studies. The second part represents the core of this investigation and com-
prises empirical studies to understand the test evolution in reusable systems. This
part is divided into four studies: (i) we performed a case study to analyze the test
evolution of a large configurable system; (ii) we conducted a comparative study to
evaluate the test evolution in 18 open-source projects from various size and domains
in configurable systems and its similarities and differences to 18 SS projects. The
comparison allows us to identify similarities that can help to adopt techniques from
SS to configurable systems and vice versa, and the differences can help us to design
new strategies addressing the discrepancies; (iii) we performed an extended study
to analyze the test suite evolution in another category of reusable systems to ver-
ify whether some observations are recurring and gather new data that support the
findings; (iv) we surveyed test contributors to investigate the test evolution from
the development point of view and improve the findings in previous stages.

Triangulation. The latter task was backed up by data obtained from the preceding task.
It is the primary goal of this investigation and mainly consists of summarizing, in-
tegrating, combining, and comparing the findings, providing empirical observations
and implications for the community.

1.5 CONTRIBUTIONS

Following our goals, the main contributions of this work are related to test evolution in
reuse environments, and they are listed as follows:

1. Test Evolution state-of-the-art since we contributed to update the body of knowl-
edge of test evolution in reusable systems;

1.5 CONTRIBUTIONS 7

Figure 1.1: Research Design.

8 INTRODUCTION

2. Empirical studies on Test Evolution, which were performed in different types of
systems from various sizes and domains;

3. Three large dataset on test evolution. The dataset can provide researchers with a
testbed that can be used for empirical research in software engineering;

4. A set of observations about test evolution providing static analysis of the tests
code. The reports include discussions, comments, and suggestions to guide future
investigations in different dimensions of test case evolution;

Based on the empirical studies defined in this thesis, we have three journal papers in
evaluation, as can be seen in Table 1.1. Additionally, we have two other publications.

Table 1.1: Publications during the Ph.D. research.

Paper Title Venue Year

Thesis related publications

1. Test Suite Evolution - A Study on the Linux TestProject (LTP) JSS [under evaluation] 2021
2.Understanding Test Evolution in Highly-Configurable Systemsand
Single Systems from Effort and Maintainability perspectives

IST [under evaluation] 2021

3. Testing evolution in the npm ecosystem EMSE[under evalua-
tion]

2021

Other publications

4. Software Product Lines Adoption: An Industrial Case Study [38] CESI 2015
5. Software product lines adoption in small organizations [39] JSS 2017

1.6 OUT OF SCOPE

It is essential to define the scope of this thesis. Thus, we consider as out of the scope the
following topics:

• Systematic Process. It is known that a well-defined test evolution process can
bring benefits for the organizations that adopt it. However, currently, several orga-
nizations have their software development processes and the context in which the
roles and the activities are defined and coordinated, at least, in theory. Thus, this
research provides a set of evidence and recommendations for organizations during
the test evolution but does not define steps systematically to be followed. We believe
that it is essential to understand it first, and the following describes new solution
proposals.

• Co-evolution of production and tests code. Software is multidimensional, and
so is the development process behind it. This multidimensionality lies in the fact
that to develop high-quality source code, other artifacts are needed, e.g. specifi-
cations, constraints, documentation, tests, and so on. Thus, ideally, test code and

1.7 ORGANIZATION OF THE THESIS 9

production code should be developed and maintained synchronously once newly
added functionality should be tested as soon as possible in the development pro-
cess. Although co-evolution is an important topic, in reusable systems, the test
evolution is very incipient. We believe that our study is the step before and will
provide the basis for future investigations in the co-evolution area.

1.7 ORGANIZATION OF THE THESIS

This thesis is structured in three parts. Figure 1.2 shows a schematic overview of the
thesis structure. Apart from the Introduction Part, the remainder can be outlined in the
following way:

Part II - Background. This part provides background concepts on the topics involved
in this investigation, as discussed in Section 1.4.

Chapter 2 (Concepts): Basic concepts regarding the topic of this thesis.

Chapter 3 (An overview of the state-of-the-art and related work): Additional
concepts regarding topics of this thesis proposal and related work.

Part III - Empirical Studies. This part represents the core of this investigation. It
comprises a set of empirical studies to understand test evolution and provides a
set of observations and implications that contribute to the advance of the research
concerning test evolution in reuse environments.

Chapter 4 (A case study on Test Evolution in an extensive configurable
system): We analyzed the test suite evolution of a large configurable system
and provided a set of thirteen observations that indicate the effort to develop
and maintain the test suite. Additionally, we unveiled how the variability af-
fects the tests.

Chapter 5 (A comparative study in Test Evolution in a set of config-
urable systems and Single Systems): We evaluated the test evolution in
18 open-source projects from various sizes and domains in configurable sys-
tems and their similarities and differences to 18 SS projects. The comparison
allows us to identify similarities that can help us adapt techniques from SS to
configurable systems and vice versa. The differences can help us design new
strategies addressing the discrepancies.

Chapter 6 (An extended study on Test Evolution in a Software Ecosys-
tem): We continued to analyze the test suite evolution in another category of
reusable systems (ecosystem) to verify whether some observations are recurring
and gather new data that support the findings.

Chapter 7 (Survey with test contributors): We surveyed test contributors to
investigate the test evolution from the development point of view and improve
the findings in previous stages.

Part IV - Conclusions. Finally, this part concludes the thesis document.

10 INTRODUCTION

Chapter 8 (Research Synthesis) This part presents the synthesis and evidence
extracted from applying the multi-method approach performed in this thesis.
Moreover, the strengths and weaknesses of the multi-method approach and
lessons learned are discussed.

Chapter 9 (Conclusions) This part concludes the thesis proposal, with a sum-
mary and outlook on further investigation.

Figure 1.2: Schematic overview of the thesis structure.

PART II

BACKGROUND

Chapter

2
MAIN CONCEPTS AND FOUNDATIONS

In reusable systems, software evolution is inevitable since the projects are planned to
survive in the long-term [10, 40]. Equally well understood is the necessity of having a
good test suite available to ensure the quality of the current state of the software system
and ease future changes [5, 41]. However, developing and maintaining a test suite is not
straightforward since, in these systems, the variability aspects, such as variation points
(elements to manage variability and to facilitate the derivation of different configurations)
in configurable systems [10] and dependence management in ecosystems [42], increase the
challenges in the development of tests. This way, test evolution has been a challenging
problem for decades in reusable environments.

The goal of this chapter is to present the basic concepts in the context of this thesis,
and it consists of four main sections: Section 2.1 introduces the software reuse. Section
2.2 presents the reusable systems evaluated in this study: Highly Configurable Systems
and Ecosystems. Section 2.3 introduces the software testing, and Section 2.4 concludes
this chapter.

2.1 SOFTWARE REUSE

The competitiveness of the market and diversification in software development has been
a critical issue for employing new engineering practices [43]. Systematic software reuse is
one of the most effective software engineering approaches for obtaining benefits related
to productivity, quality, and cost reduction [44]. However, many different viewpoints
exist about the definitions involving software reuse. Tracz [45] considers reuse as the use
of software that was designed for reuse. Basili et al. [46] define software reuse as the
use of everything associated with a software project, including knowledge. According to
Ezran et al. [47], software reuse is the systematic practice of developing software from a
stock of building blocks so that similarities in requirements and/or architecture between
applications can be exploited to achieve substantial benefits in productivity, quality, and
business performance.

13

14 MAIN CONCEPTS AND FOUNDATIONS

In this study, we adopt the general view of software reuse provided by Krueger [48]:
“software reuse is the process of creating software systems from existing software rather
than building them from scratch.” The concept of software reuse and its application
present a positive impact on software quality, as well as on cost and productivity [44, 49].
A productivity gain is achieved due to less code that has to be developed, resulting in
less testing efforts and saving analysis and design labor, yielding overall savings in cost.
The reliability increases since using well-tested components in several systems increase
the chance of errors being detected and strengthen confidence in that component. Some
reusable systems have proved to be an efficient and effective way to achieve software
reuse, such as configurable systems and software ecosystems.

2.2 REUSABLE SYSTEMS

2.2.1 Highly-Configurable Systems (HCS)

A feature describes a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option [50]. Products
of highly configurable systems (resp. Software Product Lines (SPL)) can be composed by
selecting a set of features. Then, HCS can be described as a family of systems created and
developed from features. The engineering explores the commonalities and manages vari-
abilities among related products, in which it is possible to establish a common platform
on top of software assets that can be systematically reused and assembled into different
products.

Based on the selection of features, software engineers can configure distinct products
satisfying a range of common and variable features, which comprise both functional and
non-functional properties [51]. Additionally, features are usually classified as [52]: (i)
mandatory, a feature that must be selected whenever its parent feature is selected; (ii)
optional feature, a feature that may or may not be selected; (iii) OR feature group, when
one or more features in the group must be selected; and (iv) XOR (alternative) feature
group, when one and only one of the features in the group must be chosen.

2.2.1.1 Variability Implementation in HCS. Variability in source code can be
implemented using different approaches, such as: Object Oriented Programming, Aspect
Oriented Pro-gramming, macro-directives, and so on [10]. Usually in the C language,
developers use preprocessor directives. Preprocessor is a language-independent tool for
lightweight meta-programming that provides no perceptible form of modularity [53]. De-
velopers use preprocessor directives expressed in terms of conditional compilation macro
directives #ifdefs1, whose conditions are essentially Boolean expressions over feature
names. These directives define whether certain source code fragments should be com-
piled. For instance, the test code related to i386 (lines 10 - 20) in the F00F test is
optional and is included only when configuration option i386 is enabled.

Listing 2.1: F00F Test Program.

1For simplicity, we refer to the various conditional inclusion macros, such as #ifdef, #ifndef, and
#if, summarily as #ifdef.

2.3 SOFTWARE TESTING 15

1 #include <signal.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "test.h"
5

6 char *TCID = "f00f";
7 int TST_TOTAL = 1;
8

9 #ifdef __i386__
10 void sigill(int sig){
11 tst_resm(TPASS , ‘‘SIGILL received from f00f instruction. Good.");
12 tst_exit ();
13 }
14

15 int main(){
16 signal(SIGILL , sigill);
17 tst_resm(TINFO , ‘‘Testing f00f instruction.’’);
18 asm volatile (‘‘.byte 0xf0 .byte 0x0f .byte 0xc7 ’’);
19 tst_brkm(TFAIL , NULL , ‘‘f00f did not properly cause SIGILL ’’);
20 }
21 #else /* __i386__ */
22 int main(){
23 tst_brkm(TCONF , NULL , ‘‘f00f bug test only i386 ’’);
24 }
25 #endif /* __i386__ */

2.2.2 Ecosystems

Software product lines companies increasingly expand their platform outside their organi-
zational boundaries. Once the company decides to make its platform available outside the
corporate boundary, the company transitions from a software product line to a software
ecosystem [54]. In the last decade, software ecosystems arose as an essential mechanism
to promote and support code reuse.

Although companies have different reasons for adopting a software ecosystem ap-
proach, one can identify some convincing arguments explaining the current trend: (i)
increase value of the core offering to existing users, (ii) increase attractiveness for new
users (iii) accelerate innovation through open innovation in the ecosystem, (iv) collabo-
rate with partners in the ecosystems to share the cost of innovation, and so on [54]. Some
ecosystems are set around packaging platforms for a programming language [42]. Such
platforms are built upon the notion of dependencies between packages. Dependence man-
agement enables a client package to reuse a particular provider package that implements
one desirable feature or a set of features.

2.3 SOFTWARE TESTING

Testing plays an essential role in the quality assurance process for reusable systems, and
there are many opportunities for economies of scope and scale in the testing activities
[10]. According to Software Engineering Institute (SEI)2 in its report on software testing
[55], testing is one approach to validating and verifying the artifacts produced in software
development. A more detailed definition can be stated as testing is designed to make

2SEI - Software Engineering Institute at Carnegie Melon University - www.sei.cmu.edu.

16 MAIN CONCEPTS AND FOUNDATIONS

sure computer code does what it was intended to do and that it does not do anything
unintended.

Testing activities support quality assurance by gathering information about the nature
of the software being studied. These activities consist of designing test cases, executing the
software with those test cases, and examining the results produced by those executions.
As a result, these activities can reduce the risk of failure in the real environment [55].

2.3.1 Testing Levels

In a quality-driven development process, testing activities should be performed along the
whole life cycle to find significant problems earlier in the development and thus to avoid
resource waste. Early identification of defects is by far the best means of reducing their
ultimate cost. The testing activities mentioned are then expressed as testing levels. A
different level of testing accompanies each distinct software development activity, and
the information for each test level is typically derived from the associated development
activity.

The idea behind splitting testing into levels is to build code and test it in pieces and
gradually put together into larger and larger portions, to avoid surprises when the entire
product is linked together [56]. The general testing levels are following described:

• Unit Testing: It is designed to assess the units produced by the implementation
phase and is the “lowest” level of testing. Unit testing has a goal of the capability
to ensure that each software unit is functioning according to its specification [57].
Also, each unit test must run independently of all other units as well as unit tests
must be able to run in any order.

• Module Testing: It is designed to assess individual modules in isolation, including
how the component units interact with each other and their associated data struc-
tures. As with unit testing, most software development organizations make module
testing the responsibility of the programmer [58]. It is possible to describe a process
merging module and unit testing objectives in a single level.

• Integration Testing: As the units and/or modules are tested, and the low-level
bugs are fixed, they are then integrated, and integration testing occurs. It is designed
to assess whether the interfaces between units (or modules) in a given subsystem
have consistent assumptions and communicate correctly. Integration testing must
assume that modules work correctly [58].

• System Testing: Its purpose is to compare the system to its original objectives. It
assumes that the pieces work individually, and asks if the system works as a whole
[59]. This level of testing usually looks for design and specification problems. It is a
costly place to find lower-level faults and is usually not done by the programmers,
but by a separate testing team [58].

• Acceptance Testing: It is designed to determine whether the completed software
meets customers’ requirements. Acceptance testing probes whether the software

2.4 CHAPTER SUMMARY 17

does what the users want. It must involve users or other individuals who have
strong domain knowledge [58].

In this work, we provide a static analysis [23] of the test suite evolution. This way, we
only analyzed test artifacts that contain code without the necessity of the system under
development. Although we do not make distinctions of the test artifacts based on the
testing levels, the analysis comprises test artifacts on the different levels.

2.4 CHAPTER SUMMARY

In this chapter, we presented an overview of the topic investigated in this thesis. We
started by introducing the software reuse concepts, its application, and its benefits. We
also presented the reusable systems evaluated in this study. Then, we introduced software
testing and showed the testing levels.

The next chapter presents additional concepts regarding the topics of this thesis and
related work.

Chapter

3
AN OVERVIEW OF THE STATE-OF-THE-ART AND

RELATED WORK

The goal of this chapter is to describe the basis for understanding the connection between
test and evolution fields. Additionally, we discussed the related works on test evolution in
reusable systems. The chapter consists of main sections as follows: Section 3.1 describes
the connection between test, reusable systems, and evolution; Section 3.2 presents the
studies on test evolution; Section 3.2.1 discusses the studies on testing in configurable
systems and the open issues in the topic; Section 3.2.2 presents the studies on test in
ecosystems; and, finally, Section 3.3 concludes this chapter.

3.1 CONNECTION BETWEEN TEST, REUSABLE SYSTEMS, AND EVOLU-
TION

Reusable systems aim to support the development of a whole family of software prod-
ucts through systematic reuse of shared assets [60]. Additionally, as they exhibit a long
life-span, evolution is an even more significant concern than for single-systems. For many
people, evolving a software system has become a synonym for adapting the source code
as this concept stands central when thinking of software. Software, however, is multidi-
mensional, and so is the development process behind it [5]. This multidimensionality lies
in the fact that to develop high-quality source code, other artifacts are needed. One of
these artifacts is the tests, which need to be set up and exercised to ensure quality [5].

Additionally, we have learned that the interplay between software evolution and soft-
ware testing is often very complex [5, 61]. The interaction that we witnessed works in
two directions: software evolution is hindered by the fact that when evolving a system,
the tests often need to co-evolve, making the evolution more difficult and time-intensive.
On the other hand, many software evolution operations cannot safely take place without
adequate tests being present to enable a safety net. This leads to an almost paradoxical
situation where tests are essential for evolving software, yet at the same time, they are
obstructing that very evolution. Thus, test evolution is an essential topic of research, and
it is highlighted as a research idea in the area that is yet few unexplored [5].

19

20 AN OVERVIEW OF THE STATE-OF-THE-ART AND RELATED WORK

3.2 STUDIES ON TEST EVOLUTION

Due to the critical role of tests in ensuring software quality, researchers have investigated
test evolution in different contexts [11, 12, 13, 14, 15]. Moonen et al. [5] came across
some research ideas in the area of software testing and software evolution that need to be
explored. The topics are refinement to the issues that were addressed by Harrold in her
“Testing: A Roadmap” [62]. Moonen et al. [5] highlighted that the a posteriori analysis
of software evolution, through the mining of e.g., versioning systems, provides a view on
how the software has evolved and on how the software might evolve in the future. This
kind of analyses was applied in some steps of our work (Chapters 4, 5, and 6).

Studies focusing on co-evolution of production code e related artifacts have been pre-
sented in the past [11, 12, 31]. Zaidman et al. [11] investigated two open source projects
to understand whether the production code and the tests co-evolve. As a result, they
introduced three views: (i) the change history; (ii) the growth history; and (iii) the test
quality evolution view. Additionally, they demonstrated the use of these views and distin-
guished more synchronous co-evolution from a more phased testing approach. The work
was later extended [12] with a new industrial case study to contrast with the open-source
testing strategies previously investigated. Marinescu et al. [31] conducted an empirical
study examining how code and tests co-evolve in six popular open-source systems. It was
the first paper that investigated how well patches are covered over a large number of pro-
gram versions and some of their ideas were used in other studies, such as [63]. Although
our study does not analyze the co-evolution, the view of change history and the growth
history are quite explored.

Elbaum et al. [64] conducted a controlled experiment and a case study to investigate
code coverage and its stability in software evolution. Their results indicated that even
small changes during the evolution of a program can have a profound impact on coverage
information and that this impact increases very fast as the degree of change increases.
The basis of the case study in evolution was applied in one step (Chapter 4) of our work.

Pinto et al. [13] is the first large-scale study of test code evolution. They analyzed 88
program versions, 14,312 tests, and 17,427 test changes from six open source projects in
Java based on the proposed technique for studying test-suite evolution and a tool that
implements the technique (TestEvol [14]). The results showed that test repair is just
one possible reason for test-suite evolution, whereas many changes involve refactorings,
additions, and deletions of test cases. The results also indicated that test modifications
tend to include complex and hard-to-automate changes to test cases. Mirzaaghaei et al.
[65] focused on automating test plans updates. They identified eight scenarios that allow
either to repair tests or to use tests to generate new ones and defined test evolution
algorithms that automatically repair and generate tests by adapting existing ones. Their
results indicated that the approach could successfully repair 90% of the broken test cases
and create test cases that cover a large amount of code. The results of these studies
motivated us to adopt some metrics to evaluate the effort to develop and evolve the test
suite, considering the aspects of the changeability of the code.

To capture the effort necessary to maintain the tests, we need to track test code
sub-characteristics. Athanasiou et al. [23] introduces a model that assesses test code

3.2 STUDIES ON TEST EVOLUTION 21

quality by combining source code metrics that reflect three main aspects of test code
quality: completeness, effectiveness, and maintainability. In our study, we explored one
dimension (maintainability) and provided an evolutionary view of the sub-characteristic
of this dimension.

3.2.1 Testing in Configurable Systems

Different strategies for testing configurable systems were summarized in [66, 40, 10].
Runerson et al. [66] performed a systematic mapping study-related to HCS testing. The
research indicated that HCS testing is a rather immature area and seems to be a “discus-
sion” topic. Additionally, the study shows that there is a well-established understanding
of challenges that includes the analysis of evolution. The mapping shows that 64% of the
papers found include proposals, which contain ideas for solutions of the identified chal-
lenges, but only 17% of the research report actual use and evaluation of proposals. With
a clear picture of needs and challenges, the authors strongly recommend the research
community to launch empirical studies, to give a solid foundation for HCS testing in the
industry.

Neto et al. [40] presented a systematic mapping study to investigate state-of-the-
art testing practices, synthesize available evidence, and identify gaps between required
techniques and existing approaches available in the literature. As a result, the study
shows that although single-system development approaches have covered several aspects
regarding testing, many cannot be directly applied in the HCS context. Also, particular
aspects regarding HCS are not covered by the existing approaches, and when the aspects
are covered, the literature gives brief overviews. The study reinforces the necessity of
investigations that include the analysis of evolution, considering empirical and practical
aspects.

Machado et al. [10] performed a literature review of two hundred seventy-six studies.
They identified testing strategies that have the potential to achieve these economies,
and to provide a synthesis of available research on HCS testing strategies, to be applied
towards reaching higher defect detection rates and reduced quality assurance effort. The
analysis of the reported strategies comprised two fundamental aspects for HCS testing:
the selection of products for testing, and the actual test of products. The findings indicate
that the literature offers a large number of techniques to cope with such aspects. However,
there is a lack of reports on realistic industrial experiences, which limits the inferences
that can be drawn. This study showed a number of leveraged strategies that can support
both the selection of products and the actual testing of products.

Medeiros et al. [67] presented a comparative study of 10 state-of-the-art sampling
algorithms regarding their fault-detection capability and size of sample sets using a corpus
of known configuration-related faults from 24 open-source C systems. In a nutshell, they
found that sampling algorithms with larger sample sets are able to detect higher numbers
of faults, but simple algorithms with small sample sets, such as most-enabled-disabled,are
the most efficient in most contexts. Some ideas related to the construction of the dataset,
as well as the implications related to quality, served as the basis in our work. Additionally,
the list of open-source configurable systems that are used in our analysis in Chapter 5.

22 AN OVERVIEW OF THE STATE-OF-THE-ART AND RELATED WORK

Souto and d’Amorim [68] presented a regression testing technique for configurable
systems that explores all dynamically reachable configurations from a test. The results
of the evaluation indicated that the method reduced the time by approx. 22% and the
number of configurations tested by approx. 45%.

3.2.2 Testing in Ecosystems

Even though tests can mitigate part of the problems discussed in others studies, such
as trigger rework in many dependent packages [69], security vulnerabilities [70], and the
risk of use of trivial packages [42], the presence and evolution of test suite have not been
addressed. Next, we present the researches performed in ecosystems that considered test
activities and open issues in the topic.

Axelsson et al. [71] investigated the challenges related to quality assurance in software
ecosystems, and identified what approaches had been proposed in the literature. The
research method used was a systematic literature mapping, which, however, only resulted
in a small set of six papers. They included the “testing” word in the search terms since
the testing activity is often associated with quality assurance. The results showed that
testing activity is exciting and addresses some valid needs for quality assurance in software
ecosystems. As a result, they highlighted the importance of more studies on the topic.
Also, they proposed a research agenda in the testing activities that deserve more attention
by the community, such as test case selection, automatic test case generation, on-line
testing, test infrastructure, test evolution, and so on.

Greiler and van Deursen [72] discuss how to perform testing in plug-in based systems
like Eclipse effectively. They present data from interviews with 25 practitioners (from
both open source and closed source ecosystems) on their testing practices. The authors
then focus on the need for improved test suite understanding, both for individual test
cases and for the entire suites, as a consequence of the extensive use of automatic testing.
In particular, they address the understanding problem beyond the unit level, to capture
interactions between plug-ins and provide an understanding of which plug-ins are exer-
cised in test suites. For software ecosystems, this is a significant challenge since different
organizations will develop the various plug-ins and platforms, and there may be limited
access to the information needed to achieve understanding. To improve test suite under-
standing, they propose five architectural views that can be presented to developers. They
describe and evaluate an implementation of those views in an IDE.

Abdalkareem et al. [42] performed an empirical study involving more than 230,000
npm packages and 38,000 JavaScript applications to understand why developers use triv-
ial packages (i.e., packages with less than 35 lines of code and cyclomatic complexity of
10). The authors show that client package developers perceive trivial packages as well-
implemented and tested providers. However, the authors identified that, contrary to client
developers’ perception, only 45.2% of the trivial packages have any tests. Also, the au-
thors observed that testing in trivial packages is not different from testing in non-trivial
packages.

Kula et al. [73] investigated the relation between clients packages’ trust in provider
packages and the update rate of such providers. Trust involves the assumption of both

3.3 CHAPTER SUMMARY 23

Table 3.1: Comparison of the characteristics evaluated in our study and the related works.

Related Works
Characteristics

Tests Literature Review Evolution Effort Maintainability Variability Ownership Mining Systems
Moonen et al. [5] X X
Zaidman et al. [11] X X X X X
Marinescu et al. [31] X X X X X
Elbaum et al. [64] X X
Pinto et al. [13] X X X X
Mirzaaghaei et al. [65] X
Athanasiou et al. X X X X
Neto et al. X X X
Machado et al. X X X
Medeiros et al. X X
Souto and d’Amorim X X
Axelsson et al. X X
Abdalkareem et al X X X
Kula et al. X X
Claes et al X X

functional and non-functional correctness, e.g., client package maintainers need to trust
the reliability of non-functional attributes such as security and stability of an adopted
library. The authors identified that a client package maintainer might not believe the
test maturity of the latest provider version. Also, the authors highlighted that the client
package maintainers are suspicious about the rigor of internal testing. Client package
maintainers believe that some bugs cannot be uncovered during in-house testing, but
only as post-release defects. In this case, client package maintainers search for the most
stable version (in many instances deemed as the popular) release. These results motivated
us to investigate the presence of tests in popular packages and the evolution in them.
This analysis can confirm if the concern about the realization of the tests and quality of
providers packages hold.

Claes et al. [74] studied the errors in the context of the CRAN archive, a long-lived
software ecosystem consisting of over 5000 R packages being actively maintained by over
2500 maintainers. Based on an analysis of package dependencies and package status, they
presented preliminary results on the sources of errors and the time that is needed to fix
them. Despite this study checked the tests, they are not considered in the analysis.

3.2.3 Studies Comparison

Table 3.1 shows a comparison of the characteristics evaluated in our study and the related
works. This table shows how our work is different from other studies. In this context, as
far as we know, our research is the first attempt to analyze the test evolution in reusable
systems with special attention to the effort, maintainability, and ownership. Moreover,
our research methods combine findings from different studies, making them more reliable
and generalizable. The synthesis of empirical evidence in the test evolution process will
eventually lead to better tool support and evolution principles.

3.3 CHAPTER SUMMARY

This chapter presented the basis for understanding the connection between test, reusable
systems, and evolution, discussing these topics’ interplay. Moreover, it provides an overview

24 AN OVERVIEW OF THE STATE-OF-THE-ART AND RELATED WORK

of the existing research related to the subjects of this thesis. Finally, we also presented
related work similar to our investigation.

In the next chapters, we present a set of studies on test evolution in reusable systems
and provide empirical evidence by analyzing open-source projects from various domains
and sizes.

PART III

EMPIRICAL STUDIES

Chapter

4
TEST SUITE EVOLUTION IN A

HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY
ON THE LINUX TEST PROJECT (LTP)

In the previous chapter, we provided an overview of the existing research related to this
thesis’s subjects and presented related work to our investigation. The goal was to map
out the test evolution field in reusable systems, synthesize available evidence to suggest
important implications for practice, and identify research trends, open issues, and areas
for improvements. We identified that the existing research in reusable systems had focused
much of its efforts on variability evolution as it occurs in the variability model, but it
has ignored the evolution of other related artifacts [75, 76, 77, 78, 79, 80]. The existing
studies covering variability evolution across different artifacts focus mainly on production
code and build systems [19, 12]. The lack of a thorough understanding of how tests evolve
is directly reflected in the absence of existing tools to support the test evolution process
and methodologies that help the development teams in the maintenance of the test suite
[5, 21, 10].

Thus, additional systematic reports are necessary to provide more evidences about the
test evolution in reusable systems. In this context, this chapter presents a case study to
analyze the test evolution of a large configurable system. The objective of this chapter is to
gain a better understanding of the test evolution, evaluating characteristics that indicate
the effort to develop and maintain the test suite, and unveiling how the variability affects
the tests. To achieve this objective, we mined the versioned history of the Linux Test
Project (LTP)1, the functional and regression test suite for testing the Linux Kernel.
Over the years, LTP has become a focal point for Linux testing and Linux testing tools
[81]. The project encompasses a large number of test cases which cover multiple platforms
for validating the reliability, robustness, and stability of the Linux kernel [82].

In particular, we provide a static analysis [23] of the test suite, with special atten-
tion to the four main directories of the project that reflect the subsystems of the Linux

1https://linux-test-project.github.io

27

28TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Kernel. To keep the uniformity and facilitate the correlation with Linux Kernel, we refer
the directories of the project as subsystems. Software practitioners and researchers in-
creasingly recognize the importance of investigating the modularity and the changes that
occur over, to get insights regarding evolution in the different parts of a project [83, 25].
We used the GQM (Goal Question Metric) approach [84] to establish our goal, questions,
and metrics, assessing 16 years of development, 122 releases, more than 400,000 test cases
and 63 millions of lines of code.

The remainder of the chapter is organized as follows: Section 4.1 provides an overview
of LTP; Section 4.1.2 presents the methodology defined to gather data from LTP, empha-
sizing the data collection process; Section 4.3 describes the results of the study and shows
a set of 13 observations about the effort of development, maintainability, changes, and
variability in a test suite during its evolution; Section 4.4 presents the discussion of the
results and the summary of findings; Section 4.5 presents threats to validity, and finally
Section 4.6 presents a summary of the chapter;

4.1 BACKGROUND

4.1.1 The Linux Test Project (LTP)

The Linux Test Project (LTP) is a well established open source project that aims to
bring test automation to a large highly-configurable system: the Linux kernel [81, 82].
The LTP project delivers test suites to the open source community to validate the relia-
bility, robustness, and stability of the Linux kernel. Although functional and stress tests
have their importance in the LTP, this project focus on regression tests [85]. Regression
tests are responsible for testing the conformance after modifications [86]. The dominant
programming language in LTP is ANSI-C, but there is code written in Perl, and shell
scripting languages. Moreover, LTP is relatively large, and its content has historically
varied in quality and code coverage due to its size [87].

4.1.2 LTP Structure

The LTP test suite is designed to be easy to use, portable, and flexible [82]. To achieve
this goal, the LTP structure follows a well-defined organization, as can be seen in Figure
4.1. The test cases are organized in test suites, i.e., a text file containing one test case
per line. Test suites are usually stored under the runtest directory of LTP and they
are a convenient way of grouping test programs together to create custom test suites.
Test programs correspond to the source code of test cases. To make it easy to find test
programs (.c files), they have been organized under a folder structure represented by
testcases subsystem that partially reflects its architecture. In each release, the testcases
subsystem vary in the number of folders at the first level. In this study, we focused on
four folders: Kernel, Network, Misc, and Commands. These folders are available since the
initial releases, and they implement the main test programs.

• Kernel - Inside this subsystem, each kernel part is in its own folder. This subsystem
contains tests for the Kernel, such as: filesystems, io, ipc, and system calls;

4.1 BACKGROUND 29

Figure 4.1: LTP Organization.

• Commands - This subsystem contains tests for user-level commands. These tests
evaluate the commands commonly used in application development, such as: ar, ld,
ldd, nm, objdump, and size;

• Network - The network subsystem contains tests for ipv6, multicast, nfs, rpc, sctp,
and network related user commands; and

• Misc - The misc subsystem contains the tests that do not fit into one of the other
categories.

4.1.3 Basic test structure

A test case is a single action that generates a result usually restricted to PASS/FAIL.
Listing 4.1 shows a test program that executes a simple test case for handling the Pentium
F00F bug. This bug is a security flaw of this processor’s family that allows an unprivileged
user to lock the processor. It is an example of a catastrophic test case. If the system does
not correctly handle this test, it will likely lock up.

LTP was designed to be flexible enough to allow test programs to be added to it
without requiring the use of any cumbersome features that are specific to a certain test
driver [82]. Each test program includes the test.h header (line 4), that provides a small
set of functions used to help with the consistency of test programs and to act as a
convenience for the developer. Some of the functions in LTP make use of global variables
that define various aspects of the test case. The test program name is defined in the TCID
variable (line 6). This name is used as an identification for the tests results and, in many
cases, it is the same as the test case. The global variable TST TOTAL (line 7) is of type
int and should be used to specify the number of individual test cases within the test
program.

30TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Listing 4.1: F00F Test Program.
1 #include <signal.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "test.h"
5

6 char *TCID = "f00f";
7 int TST_TOTAL = 1;
8

9 #ifdef __i386__
10 void sigill(int sig){
11 tst_resm(TPASS , "SIGILL received from f00f instruction. Good.");
12 tst_exit ();
13 }
14

15 int main(){
16 signal(SIGILL , sigill);
17 tst_resm(TINFO , "Testing f00f instruction.");
18 asm volatile (".byte 0xf0 .byte 0x0f .byte 0xc7");
19 tst_brkm(TFAIL , NULL , "f00f did not properly cause SIGILL");
20 }
21 #else /* __i386__ */
22 int main(){
23 tst_brkm(TCONF , NULL , "f00f bug test only i386");
24 }
25 #endif /* __i386__ */

Variability in the test code is expressed in terms of conditional compilation macro
directives #ifdefs2 (line 9), whose conditions are essentially Boolean expressions over
feature names. These directives define whether certain source code fragments should be
compiled. For instance, the test code related to i386 (lines 10 - 20) in the F00F test is
optional and is included only when configuration option i386 is enabled.

4.2 METHODOLOGY

This section presents the research design and the data collection process to assess the LTP
data. We provide a static analysis of the tests during evolution. According to Athanasiou
et al. [23], a static analysis is preferable in open source projects for two main advantages.
First, this type of analysis does not require to compile the source code of open source
systems. It is an important advantage since compiling the source code of open source
systems can be very hard due to missing libraries or because a special version of a compiler
is necessary [12]. Second, the static analysis does not require the execution of the test
suite, a task that is time-consuming [23, 11].

4.2.1 GQM Model

In this study we employed ideas from goal-oriented measurement to help us to find metrics
for analyzing the test evolution in an HCS. We followed the GQM (Goal Question Metric)
approach to state the research goals and derive corresponding metrics from them [84].

2For simplicity, we refer to the various conditional inclusion macros, such as #ifdef, #ifndef, and
#if, summarily as #ifdef.

4.2 METHODOLOGY 31

Figure 4.2 shows the GQM model employed in this study. The main goal is to analyze
the test suite evolution in a large highly-configurable system (G1). To archive this goal
we focus on two main points: (i) Development effort, and (ii) and Maintainability (G3)
considering general ((G4) [23] and variability aspects (G5) [88, 89].

Figure 4.2: GQM model of the study.

4.2.2 Research Questions

To achieve the goal and derived sub-goals, we defined the following questions:

RQ1 - What is the effort to develop the test suite?
To answer RQ1, we used the measurements of maintainers’ effort suggested by Zhou

et al. [25]. This work observed that as more files a developer oversees, the more time and
effort he will need to devote. Moreover, the number of contributors implies effort and
productivity. Thus, we use the number of test cases maintained, the unit size (LOC),
and the number of authors in the commits during a period (month) to characterize the
amount of work and consequently the effort.

RQ2 - What is the maintainability of the test suite?
To answer RQ2, we adopted the maintainability sub-characteristics of the test code

quality model: unit size, unit complexity, unit dependence, and duplication [23]. The test
code quality model is based on the Software Improvement Group (SIG) quality model,
operational implementation of the maintainability characteristic of the software quality
model defined in the ISO/IEC 9126 [90].

RQ3 - How does the test suite change?
To answer RQ3, we analyzed the changes made in the LTP test cases. According

to Athanasiou et al. [23], changeability and stability are clearly aspects of test code
maintainability and provide valuable information about maintenance [91, 92].

RQ4 - How does variability affect the maintainability of the test suite?

32TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.3: Data collection process.

To answer RQ4, four well-known variability metrics were collected: Lines of Feature
Code (LOF), Number of Features Constants (NOFC), Scattering Degree (SD), and Tan-
gling Degree (TD) [93, 94, 88]. We analyzed if the test artifacts that contain variability are
growing, becoming overly complex, and impacting in the project maintainability during
the evolutionary history.

4.2.3 Data Collection

Figure 4.3 shows the data-collection process. The process comprises three steps: for step
1, LTP releases were collected in the repository. All the LTP releases (up to version
ltp-201504200) are publicly available at Sourceforge. Also, there is a Git repository
on GitHub that is frequently updated. Depending on how far it is from the previous
release, it contains a few tens of new test cases and hundreds of fixes. In step 2, we ran
a set of script on each release. A Python script generates information about the release,
such as: subsystems, number of test cases, the name of the test case, and test code
measurements. Finally, in step 3, the data collected was stored in a relational database.
The database provides a concrete testbed for future analyses. All steps in our process are
fully automated and supported by tools.

4.3 RESULTS

This section presents the results of the study after applying the methodology on the
available raw data. A total of 122 releases were analyzed involving sixteen years of devel-
opment.

4.3.1 RQ1 - What is the effort to develop the test suite?

A set of metrics was collected to analyze the relative and absolute growth of LTP, provid-
ing data history and the effort necessary to develop the project during evolution. Each
metric and the main findings are discussed next:

4.3 RESULTS 33

Figure 4.4: Number of Test Cases per Release.

4.3.1.1 M1 - Test Cases: We analyzed the test case history to verify how the LTP
evolved and evaluated the effort to develop the test suite. The number of test cases is an
essential metric in this direction since more test files a developer oversees, more time and
effort he will need to devote [25]. Moreover, each file under maintenance may need to be
considered when fixing a bug even if it is ultimately not changed.

Figure 4.4 shows the amount of test cases over the 122 releases. It is important to
highlight that the 122 releases are represented in the figure, but the name of releases
shown on the X-axis is a subset of the total. We can observe that the number of test cases
has grown in the last sixteen years. The first release (ltp-20010409) had a total of 176
test cases, while the last release analyzed (ltp-20160920) is composed of about 6000 test
cases. Even with the reduction in the number of test cases between the last two releases,
we can observe a tendency of growth over time.

Initially, LTP experienced fast growth in the number of test cases. Considering the
relative increase, it indicates that more effort is spent in the early stages of the project.
Figure 4.5 shows the evolution of test programs per subsystem. We used a logarithmic
(log) scale in the vertical axis. This way, we emphasized the curve growth, since the values
for some subsystems are discrepant during the evolution. We can observe that the test
programs are mainly concentrated in the Kernel subsystem. Likewise the Kernel, the
Network presents a consistent growth. Interestingly, after a sudden growth, in the begin-
ning, the Misc subsystem presents stable behavior. The Commands has the same number
of test programs from the first to last release, with slight variations during evolution.

Analyzing the LTP evolution for test suites, we can highlight some information. Figure
4.6 shows that the number of test suites has increased over the years. However, the average
number of test cases per test suite presented a mix of sub-linear and super-linear growth.
Interestingly, the effort to develop the project is mainly concentrated in a few test suites.
For example, in version ltp-20160510, the six major test suites have 61% of all test
cases: syscalls (18%), ltplite (13%), stress.part3 (11%), network stress.whole
(7%), network stress.tcp (5%), and controllers (5%). This can be explained, since
the syscalls test suite is related to the Kernel subsystem and the network test suites
are related to Network subsystem, that are large and important modules of the Linux
Kernel resulting in more test cases for these parts.

34TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.5: Test Programs evolution per subsystem.

Figure 4.6: Quantity of Test Suites and avg. of test cases in each one.

Observation 1. LTP presents continuous growth of the number of test cases, resulting
in more effort to develop the test suites during evolution. However, the effort to develop
the project is mainly concentrated in a few test suites, such as: syscalls, stress, and
network. Also, we observed that the test programs are mainly concentrated in the Kernel
subsystem.

4.3.1.2 M2 - Unit Size: Unit size is measured as the number of lines of code (LOC)
in a unit (test program) [23]. LOC is typically used to predict the amount of effort that
will be required to develop a project [95] as well as to estimate programming productivity
or maintainability in test code once the code is produced [23].

Figure 4.7 shows the number of LOC of each LTP release over the years. Our study
analyzed more than 63 millions of lines of code. We can observe that LOC increased
significantly from the initial to the current release. This growth indicates a constant
effort of development. Interestingly, the growth curves sometimes exhibit discrete jumps,
e.g. from ltp-20010801 to ltp-20010925. It can be traced to the inclusion of 11 new
test suites, such as the syscalls that added 523 new test cases in version ltp-20010925,
and the tcp cmds test suite that added 16 new test cases. Such additions may be taken

4.3 RESULTS 35

Figure 4.7: LOC per releases.

Figure 4.8: LOC in each subsystem per releases.

as an example of punctuated evolution [96], as opposed to progressive evolution.
Comparing the growth behavior of LOC with other studies, Capiluppi et al. [97]

analyzed several open-source projects and identified that code growth is generally linear.
Smith et al. [98] reported that some projects also exhibited periods of stability or even
declining size, but still growing in general. Israeli et al. [99] analyzed the Linux kernel
growth using LOC, and found a mix of sub-linear and super-linear growth. In spite of we
had examined test code, a different set of code from all the ones cited here, our results
also support a mix of code growth.

Additionally, we explored the LOC growth in four subsystems of the LTP architecture.
Figure 4.8 shows the number of LOC over time for different subsystems. Similarly to the
overall LTP project, the subsystem presented a mix of super-linear and sub-linear growth.
While the Network and Misc subsystems appear to have a decreasing trend in the last
few years, the Kernel subsystem presented consistent growth for the entire period.

Observation 2. LTP presented a mix of sub-linear and super-linear code growth. In
general, the size of LOC has increased significantly from the initial to the current re-
lease, resulting in more effort to develop and evolve the project. Moreover, the Kernel
subsystem presented consistent growth and concentrate the major effort of project de-

36TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.9: Number of Contributors per month.

velopment for the whole period.

4.3.1.3 M3 - Contributors: We analyzed the number of contributors involved in
test activities in each month during the project evolution, as can be seen in Figure 4.9.
The X-axis presents the years without the months, once the figure does not has sufficient
space for all months in each year. We observed that the average of contributors in each
month is 2.9, but in some months e.g., 2007-01-01, there was just one contributor. Also,
we analyzed the contributors per subsystems. In general, the number of contributors
remained stable in all analyzed subsystems except in the Kernel. As we expected this
subsystem presents the highest mean 2.6 of contributors per month (more about these
data can be seen in Table 4.1) since it is the biggest subsystem considering number of
the test case and LOC.

Additionally, we analyzed the workload of the contributors involved with test ac-
tivities over time. We used Man-Month (M/M) to measure workload [100]. Thus, we
extracted the number of test lines of code (LOC) modified in a month and divide by
unique contributors to measure Man-Month. We observed high jumps that happened in
the years 2001, 2004, 2005, 2007, 2011, and 2013. Looking at these years more closely
(Figure 4.10), we can observe that some months present outliers. Investigating these par-
ticular months, we noted that the outliers are related to integration in the master branch
of the project and repository migration, making the values surprisingly high. Therefore,
we decided to exclude the outliers by applying the Univariate approach. The outliers are
those observations that lie outside 1.5˚IQR, where IQR, the ‘Inter Quartile Range’ is the
difference between 75th and 25th quartiles. Figure 4.11 shows the Man-Month evolution
without the outliers. A logarithmic (log) scale was used in the vertical axis to emphasize
the curve growth, since the average values of Man-Month present significant variations
during the evolution. In spite of we get more realistic values after to exclude the outliers,
in general, the mean of Man-Month in LTP is 17039 LOC per contributor, and it can be
considered high [100]. High values of Man-Month throws an alert since a high workload
can contribute to a low quality of code.

Observation 3. The number of contributors is very irregular during evolution. Con-
cerning subsystems, only the Kernel presents the growth in the number of contributors,

4.3 RESULTS 37

Figure 4.10: LOC per man-month (log10).

10

100

1000

10000

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Dates

M
an

 /
M

on
th

Figure 4.11: The productivity per Man-Month.

38TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.12: Percentiles of Test Program (LOC).

and all other subsystems exhibit stable values. Additionally, the LTP contributors pre-
sented a high workload during evolution, that deserves special attention by the develop-
ment team since this situation can result in a low quality of code.

4.3.2 RQ2 - What is the maintainability of the test suite?

As a measurement of the maintainability we used existing maintainability measuring met-
rics proposed by Athanasiou et al [23]. These metrics are based on Software Improvement
Group (SIG) quality model which is an operational implementation of the maintainability
characteristic of the software quality model defined in the ISO/IEC 9126 [23].

4.3.2.1 M2 - Unit Size: The relation between unit size (LOC) and maintainability
is recognized both in the context of production code and test code [23]. According to
Athanasiou et al. [23], as the LOC increases, it becomes harder to analyze. Figure 4.7
shows the growth curves of unit size in LTP. We can observe some impressive jumps
in the growth curves. Analyzing these jumps more closely, we can observe that they
are related to maintenance activities. For example, the most notable jump was observed
from release ltp-20101031 to ltp-20110228, and it is related to activities of source
code clean-up/maintainability. These activities perform modifications or exclusions to
improve usability and maintenance. For example, the exclusion of 1.199 code files in
release ltp-20110228 resulted in a significant decrease of 152K lines of code.

Figure 4.12 shows the distributions of unit size using an empirical distribution function
(ECDF). The value in this distribution at any specified point of the measured variable
(LOC of test programs) is the fraction of observations of the measured variable that are
less than or equal to the specified value. This way, using the thresholds suggested by
Athanasiou et al. [23], we can observe that 21.6% of LTP test programs present a unit
with a size of less than 24 (lines of code), i.e. easy to maintain. Moreover, 5.4% of the
tests programs are classified having a moderate values (24 ă unitsize ď 31) and 14.5%
classified as high values (unit size between 31 and 48). However, 58% of the test programs
are classified as being very high values (unit size greater than 48), indicating that the
maintenance of tests can become difficult.

4.3 RESULTS 39

The high percentage of test programs with high values of unit size (LOC) could be
a warning for the Obscure Test, and the Eager Test code smells [101] in the project.
An obscure test is a test that has a lot of noise in it, noise that’s making it hard to
understand, and the consequences are that such test is harder to maintain and it does
not serve as documentation. An eager test attempts to test too much functionality.

Observation 4. The unit size growth curves seem to be slowing down since 2011, due
to activities of source code clean-up/maintainability. However, a high percentage of the
test programs are classified as being very high values of unit size indicating that the
maintenance of tests can become difficult.

4.3.2.2 M4 - Unit Complexity: The complexity is something that should be kept
as low as possible to avoid writing tests for test code [23]. This is also underlined in
the description of the Conditional Test Logic code smell [101], which advocates keeping
the number of possible paths as low as possible to keep tests simple and correct. High
unit complexity is, therefore, affecting both the analysability and the changeability of the
test code. To measure LTP unit complexity, we used McCabe’s Cyclomatic Complexity
(vpGq) [102, 103], as proposed in the test quality model in [23]. Complexity is a single
quantity that estimates the control flow of the code [102]. For a single function, the unit
complexity is equivalent to the number of conditional branches in the program [102].
In the C language, the control flows include if-then-else, for, while, do, and case
statements.

The results for complexity applied to the full code base of all LTP releases can be
seen in Figure 4.13. The complexity values presented a mix of sub-linear and super-linear
growth. As may be expected, when the size of the code grows, so does the total complexity
[99, 104]. Moreover, we analyzed the unit complexity metric for normalized values, such
as the average of the unit complexity per function, as shown in Figure 4.14. In general,
using the threshold for test code originally suggested by Athanasiou et al. [23], in the
average, the LTP functions test cases present a very high values (unit complexity ą 4)
of complexity. However, since 2007, the values of unit complexity indicates a declining
trend. Thus, a total of unit complexity is, in general, growing slower than the number of
functions, and the average complexity is decreasing.

Moreover, we explored the Cyclomatic Complexity results by subsystems, as shown
in Figure 4.15. While Network, Misc, and Kernel subsystems presented a mix of super-
linear and sub-linear growth, the Commands subsystem, which contains test cases in order
to check if required command of Linux Kernel exist, has slightly increased in the entire
period. The significant growth in the complexity values from release ltp-20040405 to
ltp-20040506 can be attributed to Kernel. Moreover, the improvements in the last years
are linked with the Kernel and Network subsystems. Other interesting aspect is that
the Commands subsystem presents better unit complexity values than Network, Misc, and
Kernel subsystems. It can be related to the subsystem presents fewer test cases and
LOC that the other ones, facilitating the quality aspects of test code. In addition, we
can highlight that the Network subsystem presented the highest average values during
evolution. In the same way that other studies [99, 104], the unit complexity behavior for

40TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.13: Accumulated Cyclomatic Complexity per Releases.

Figure 4.14: Average of Cyclomatic Complexity per Function.

Figure 4.15: Average of Cyclomatic Complexity per Subsystem.

4.3 RESULTS 41

Figure 4.16: Percentiles of unit complexity per Function.

each subsystem follows those shown in LOC (Figure 4.15).
Figure 4.16 shows the distributions of unit complexity and their evolution of per-

centiles. Using the thresholds suggested by Athanasiou et al. [23], we can observe that
29% of the LTP functions presented low values (unit complexity ă 1) during the evolu-
tion, and 15% of the test functions presented moderate values (1 ă unit complexity ď 2).
However, the most part of functions present high values (21%, 2 ă unit complexity ď 4)
or very high values (35%, unit complexity ą 4). Also, we found there is no improvement
of the functions with high unit complexity from the first to the last releases. Initially in
the ltp-20010409 release, 46% of the functions had high values, but in ltp-20160920 it
is about 54%.

Observation 5. The Unit Complexity metric has indicated that the majority of func-
tions (56%) in LTP present a very high values (unit complexity ą 4), i.e, they are not
easy to maintain. Regarding subsystems, the Commands subsystem has slightly increased
the unit complexity average in the entire period. In addition, the improvement of the
unit complexity values in the last years are linked with Kernel and Network subsystems.

4.3.2.3 M5 - Duplication: is measured as the percentage of all code that occurs
more than once in at least 70% identical code blocks with more than six lines (ignoring
white lines) [105]. Test code duplication occurs when copy-paste is used as a way to reuse
test logic. This results in many copies of the same code, a fact that may significantly
increase the test maintenance cost and make the evolution significantly more difficult
[23, 105]. Additionally, test code duplication is a code smell [23], and affects changeability
since it increases the effort that is required when changes need to be applied to all code
clones. It also affects stability, since the existence of unmanaged code clones can lead to
partially applying a change to the clones, thus introducing logical errors in the test code.

In this study, we focus on function clones. This way, we extracted the total, and the
percentage of cloned functions in each release, as can be seen in Figure 4.17. The LTP
presents high percents (at least 40%) of cloned functions per release. Some releases present
values higher then 50%, and we can say that these releases have more cloned functions
than non-cloned functions. Such releases have a high update anomaly risk; every update

42TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.17: Percentage of Total Cloned Functions.

Figure 4.18: Percentage of File Associated with Clones.

to the project has a higher chance of involving a clone than not. However, in the last
years, LTP presented a decreasing trend of cloned functions, this can be attributed as a
result of clean-up/maintainability on the source code, that was described in M2 - Unit
Size.

While the number of cloned functions give the overall cloning statistics for a subject
release, it cannot provide any clue as to whether the clones are from some specific files or
scattered all over the release among many files. This way, we also analyzed the number
of files associated with clones in each release [105]. We consider that a file is related to
clones if it has at least one function that forms a clone pair with another method in
the same file or a different file. Figure 4.18 shows the percentage of files associated with
clones of a release. In general, LTP presents the lowest values of files related to clones in
the first three releases (between 27% and 40%) reaching almost 80% in the next releases.
However, since 2003 the values are stable at around 40%. From a software maintenance
point of view, a lower value of files associated with clone percentage is desirable, as in this
case, clones are concentrated in certain specific files and thus may be easier to maintain
[105].

4.3 RESULTS 43

Figure 4.19: Average of Unit Dependence per Release.

Observation 6. LTP has presented high values of cloned methods in the releases, and
some of these releases present values higher then 50%. Additionally, the percentage of
files associated with clones presented high values. These are good indicators that the
maintenance and evolution of the project are not easy. Thus the detection, monitoring,
and removal of code clones is an essential task in the future.

4.3.2.4 M6 - Dependence: is measured as the number of unique outgoing calls
(fan-out) from a test code unit to production code units [23]. In the context of test
code, the modules’ coupling is minimal [23], and high values indicate that the test can
be divided into more units. Unit dependency affects the changeability and the stability
of the test code. Changeability is affected because changes in a highly coupled test are
harder to apply since all the dependencies to the production code have to be considered
[101]. At the same time, stability is affected because changes in the production code can
propagate more easily to the test code and cause tests to brake, increasing the test code’s
maintenance effort [23, 101].

Figure 4.19 shows the average of unit dependency metric per release. The unit de-
pendency values presented a mix of sub-linear and super-linear growth with trending
of growth. However, in the average, the LTP unit dependence presented low values (less
than 3) considering the thresholds suggested by Athanasiou et al. [23] for test code. More-
over, we explored the unit dependence per subsystem, and Network presented the highest
growth values. The Kernel has been growing slightly, while the Commands and Misc have
stable average values during the evolution.

We also analyzed the distributions of unit dependency using an empirical distribution
function (ECDF), as shown in Figure 4.20. Using this distribution, we can observe that
3.1% of the test programs are classified as having moderate values (3 ă unitdependency
ď 4) and 4.5% are classified as having high values (unit dependency between 4 and 6).
Moreover, 3% of the test programs presented very high values (unit dependency greater
than 6). While the results for test programs with low unit dependency values are en-
couraging, one should also consider the high values of unit dependence in the tail of the
distribution. According to our results, 4-7% of the test programs have a unit dependency

44TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.20: Percentiles of Unit Dependence.

above 4, classified by Athanasiou et al. [23, 101] as ’complex to maintain’. The top values
observed are extremely high: for example, in the release ltp-20130904 we have a test
program (prot hsymlinks.c) with unit dependence of 396; in the release ltp-20021210
there is a test program (sysconf01.c) with 57. Such values are totally out of the scale.

Observation 7. In general, LTP presented low values of unit dependence, but some
test programs present values extremely high (unit dependency ą 6) and deserve special
attention. At the level of subsystems, the Network presents the highest growth values,
while the Commands and Misc have stable average values during the evolution.

4.3.3 RQ3 - How does the test suite change?

The evolution of HCS is the rule and not the exception due to ever-changing requirements
and the long-term use of many systems [5]. In the same way, tests need to change to fit
the new requirements [40]. To evaluate the maintainability related to changes in the
project, we extracted values for two metrics. These metrics analyzed the basic operations
(addition and exclusion) performed in the test cases and code changes performed in the
test suites. In the sequence, we present a descriptive statistical view of these metrics
during the evolution process.

4.3.3.1 M7 - Test Case Changes: LTP presented changes as a result of evolution.
We identified that new test cases are introduced, removed, split, merged and renamed.
These evolution changes are expressed by two basic operations: test cases added and
removed. By processing the LTP test cases history, we extracted a dataset of changes
linking them to their specific release, as can be seen in Figure 4.21. As could be expected,
the absolute numbers tend to grow with time. The number of test cases removed presented
a stable behavior with modest growth at the end of the series. However, the number of test
cases added seems to be relatively unstable. Additionally, we can observe that, despite
the size and complexity of LTP, adding and removing test cases are performed with a
regular frequency.

4.3 RESULTS 45

Figure 4.21: LPT evolution from the test cases change point-of-view.

Figure 4.22: Changes in the number of Test Cases between releases.

Figure 4.22 shows the difference in the number of test cases among two releases i.e,
considering the total of test cases (tc) in a release (n), the difference (d) is: d = tc(n) -
tc(n-1). We can observe that the growth rate is very irregular. Moreover, every relatively
large growth is always followed by a drop, resulting in an alternation between growth and
stabilization. Also, we explored in depth the data in some hills show in Figure 4.22. For
example, in release ltp-20030306, we observed that more than 800 test cases were added
as a result of the introduction of stress tests to LTP. On the other hand, we can highlight
a significant decrease in the two last releases. This can be traced to the exclusion of test
cases in some test suites and the exclusion of 5 test suites, resulting in a total of 532
test cases excluded. These exclusions were performed mainly in test suites related to the
network subsystem, such as: network.stress, network.commands, and ipv6.

Additionally, we analyzed how long a distinct test case is kept in LTP, as can be
seen in Figure 4.23. In general, 23% of the test cases remain in a few releases (1-10),
and 4.1% of the test cases stay on all or almost all releases (121-122). Examining the
first set of test cases that stay between 1 and 11 releases, we can highlight that these
test cases are mainly present in two test suites: syscalls and containers. This can be
explained, since syscalls is a large and important module of the Linux Kernel resulting

46TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.23: Number of Releases that a Test Case Remains in LTP.

in more exposure to changes. The containers test suite supports testing of the container
functionality. This test suite contains test cases related to new functionalities: utsname,
PID Namespace, and user process ID that remained through just 5 releases in LTP.
Investigating test cases that are present in all or almost all releases, i.e, 120-122, we
found that these test cases are related to fundamental parts of the Linux Kernel. A
significant portion (70%) of them is concentrated in the quickhit test suite. This suite
is a small subset of syscalls, which performs tasks such as: create and move files to a
temporary directory, handles some common command line parameters, clean up, and so
on.

Observation 8. The addition and exclusion of test cases in LTP are performed with
regular frequency. Moreover, every relatively large growth is always followed by a drop,
resulting in an alternation between growth and stabilization. In general, 23% of the test
cases remain in a few releases (1-10), and 4.1% of the test cases stay on all or almost
all releases (121-122).

4.3.3.2 M8 - Test Program Changes: To evaluate code changes, we observed the
difference among test programs (test code files) in the releases. This way, we have a
detailed examination of the code changes from one release to the next, e.g., if the code
of one file in a release X changed to next release X+1. Figure 4.24 shows the number of
test programs that had code changes in each release. In the same way that the metric
M8, we can observe that the change rate is very irregular. Additionally, Figure 4.24 also
shows jumps, such as: ltp-20110228 and ltp-20130109. These hills can be explained
by activities of clean-up/maintainability on the source code. For example, in release
ltp-20110228 not only big changes in program code were made, but also 1.199 code files
and 152K lines were excluded.

Figure 4.25 shows the number of test program changes per subsystem. In this figure,
we show the top subsystems in changes, not only the four subsystems presented from
the initial releases. As we expected, the kernel subsystem concentrates significant code
file changes, since this subsystem has more LOC and test cases. Besides, the vast ma-
jority of subsystems do not present changes among two consecutive releases. Figure 4.26

4.3 RESULTS 47

Figure 4.24: Number of changes in code files per releases.

Figure 4.25: Test programs changed per subsystem.

shows the top eleven code files with more changes. Interestingly, many of these code files
(1-1.c, 5-1.c, 2-1.c, 4-1.c, 9-1.c, 6-1.c and 8-1.c) belong to the OPEN POSIX
subsystem. This subsystem contains test programs with the goal of performing confor-
mance, functional, and stress testing in conforming the IEEE 1003.1-2001 System In-
terfaces specification. Other files, such as swapon02.c and sendmsg01.c, are from the
kernel subsystem.

Observation 9. Changes in code files are performed regularly, and the rate is very
irregular. We note that some releases, such as ltp-20110228 and ltp-20130109,
present changes much higher than average, as a result of activities of integration or
clean-up/maintainability on the source code. Moreover, code changes are mainly per-
formed in the kernel subsystem, it can be related to the factor that this subsystem has
more LOC and program files. Also, we observed that many of the top code files with
more changes are in the OPEN POSIX Test Suite subsystem. It can be explained by
the volatile nature of the files in this subsystem since they attended to international
specifications that are updated with frequency.

48TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.26: Test programs with more changes.

Figure 4.27: Lines of Feature Code evolution.

4.3.4 RQ4 - How does variability affect the maintainability of the test suite?

We used a set of variability metrics to evaluate LTP variability, and how the variability
affect the maintainability of the test suite. These metrics have been discussed [89] and
used [77, 91, 106, 107] for implemented artefacts in HCS. The findings related to each
metric are discussed next:

4.3.4.1 M9 - Lines of Feature Code (LOF): This metric is an adaptation of the
classic lines of code metrics [89]. This metric counts the number of lines that are linked to
feature expressions, e.g., surrounded by #ifdefs-blocks [93, 88]. This way this metric
indicates whether a small or a significant fraction of the code base is variable.

Figure 4.27 shows the number of LOF in the test programs summed up per release.
We can observe that the LOF size has increased from 2 KLOC at the beginning to
about 50 KLOC during LTP evolution. Discrete jumps in the growth curves e.g., from
ltp-20091130 to ltp-20091231 can be traced to the inclusion of a few test code files
with high LOF values, such as the linux syscall numbers.h and the commands.c that
respectively added 4404 and 932 new lines of features code in version ltp-20091231. The
linux syscall numbers.h file contains all of the logic for Linux system call numbers.
The commands.c file contains several commands necessary to perform memory opera-

4.3 RESULTS 49

Figure 4.28: LOF in each subsystem.

tions, such as: mapping, protection, and faulting. This way, the implementation of these
files are usually based on multiple #ifdef statements, resulting in the high LOF val-
ues observed. These high values of LOF could be a warning for tests that are difficult
to understand, making them hard to maintain. Figure 4.28 shows the number of LOF
over time per subsystems. The evolution behavior of LOF in some subsystems is similar
to LOC evolution. For example, the Network and Misc subsystems presented expressive
jumps and irregular behavior during evolution. Similarly to LOC, the Kernel subsystem
presented consistent growth of LOF for the entire period and consequently demanding
more effort for maintenance. Interestingly, the command subsystem did not have LOF in
any releases.

According to Liebig et al. [93], the fraction of cpp-annotated code (LOF/LOC) in
some mid-size software systems exceeds 50% of the code base. However, large software
systems (Freebsd, GCC, Linux, and Opensolaris) contain a small percentage of variable
source code compared to the average. Hunsen et al. [88] analyzed the variability in 20
open-source systems, and reported that these systems have an average of 22% of cpp-
annotated lines of code. However, in big systems, the percentage of all lines of code
annotated vary from 9% to 14%. In spite of we had analyzed test code, a different set
of code from all the ones cited here, our results also support this. We observed that the
amount of LOF represents high values (more than 20%) of the code base, in releases with
small LOC size (1st, 2nd, and 3rd releases), as can be seen in Figure 4.29. However, there
is a lower percentage of variable source code in large releases (range 1-8%). Although
large releases present a small portion of variable source code, we cannot affirm that these
releases are more comfortable to maintain since the absolute values of LOF are big, and
it can result in more feature interactions [108].

Observation 10. The LOF metric shows an increase in absolute values during evolu-
tion. We observed that some test cases present high values of LOF, and they are difficult
to understand. At the level of subsystems, the Kernel shows the consistent growth of
LOF for the entire period. Interestingly, the command subsystem did not have LOF in
any release.

50TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.29: Fraction of cpp-annotated code (LOF/LOC) per Release.

Figure 4.30: Number of Features Constants (NOFC).

4.3.4.2 M10 - Number of Feature Constants (NOFC): This metric counts the
number of feature constants used inside of code artifacts, e.g., distinct feature constants
in #ifdef -blocks [89]. The NOFC metric reflects directly the configuration dimension
and provides important insights regarding to variability and complexity [93].

The NOFC metric value is increasing over time as can be seen in Figure 4.30. Likewise,
the results obtained by Liebig et al. [93], the variability of the project increased with its
size, i.e., the NOFC and LOF metrics increased as a result of LOC growth. Additionally,
we can observe that the NOFC growth rates can be seen to be super-linear up to version
ltp-20100131, but it exhibits a significant decrease in the last year. Analyzing the data
more closely, this behavior is associated with LOC. If we compare the same period of
Figure 4.7, we can observe that a lot of lines of code were removed, as a result of test
cases reduction (Figure 4.21), reflecting directly in the configuration dimension. Figure
4.31 shows the number of NOFC over time per subsystems. The Kernel and Network
present consistent growth of NOFC for the entire period and consequently demanding
more effort for maintenance while the Misc subtly increased. Command subsystem did not
have NOFC values since the specific nature of this subsystem make the variability does
not seem necessary.

Figure 4.32 shows that the NOFC metric presents the higher values from the ltp-20091231
release to ltp-20101031. In the same period, few test cases were added, as can be seen

4.3 RESULTS 51

Figure 4.31: NOFC in each subsystem.

Figure 4.32: Highest NOFC values per Release.

in Figure 4.22. The high values of NOFC in this period can be traced to the addition
of new test cases with more feature constants than the average. In fact, as can be seen
in Figure 4.32, the hill from ltp-20091231 release to ltp-20150903 is mainly the result
of adding just one new file (linux syscall numbers.h). This file added 412 new feature
constants, and its value is above the average of 0.5 per file. The extremely high NOFC
value observed in the linux syscall numbers.h file raises the question about what is
this file? The file, from kernel subsystem, contains all logic for Linux system calls and the
implementation is usually based on multiple #ifdef statements with a #define directive
in each one leading to the extreme NOFC values observed.

Observation 11. The data revealed that the variability (feature constants) increases
with the size of the project, resulting in more complexity as the project growths and con-
sequently making it harder to maintain. Additionally, few test cases had contributed to
increasing variability, and deserve special attention. We note that Kernel and Network
present consistent growth of NOFC for the entire period, while the command subsystem
did not have NOFC values since the specific nature of this subsystem make the vari-
ability does not seem necessary.

52TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.33: SD Evolution.

4.3.4.3 M11 - Scattering Degree (SD): The SD metric indicates the number of
feature constants occurrences in different feature expressions [93], e.g., in how many files a
feature constant is used in [89]. According to Queiroz et al. [106], SD is long said to be an
undesirable characteristic of source code. The relation between SD and maintainability
is intrinsic since it introduces extensions across the code base and their maintenance
requires to analyze and change different code locations, that may cause a ripple effect.

Figure 4.33 shows the SD average in an interval with a safety margin (95%). It presents
a mix of sub-linear and super-linear growth with lower values at the initial series. The
SD average increased over time with a substantial decrease in the end. Additionally, we
checked the the distributions of SD and their evolution of percentiles, as can be seen
in Figure 4.34. Using a threshold suggested by Zhang et al. [107] we can observe that
50% of the test programs present SD values less than 2, i.e, easy to maintain. We iden-
tified that the SD metric has the highest values between the versions ltp-20091231 and
ltp-20150903. Notably, the standard deviation is quite high in these releases. Thus, a
significant number of feature constants results in a high SD and the respective implemen-
tation scatters possibly across the entire release.

To study the feature constants with high-SD, we focused on the tail of the distribution.
The fraction of feature constants with high SD is small and even decreasing. We observed
that in most parts of releases less than 25% have an SD over 2, and less than 10% have an
SD over 6. The data shows that the LTP allows most features to be incorporated without
causing any scattering. However, some features do not fit well into the architectural model
and are scattered across the source code. Moreover, the proportion of scattered features is
nearly constant, which may indicate that it is an evolution parameter actively controlled
throughout the LTP evolution. We identified that the highest SD feature constant in the
whole dataset is sparc in release ltp-20150119. As shown in Figure 4.35, the feature
constant was introduced to the LTP only in release ltp-20061007. It has grown since then
reaching an SD value of almost 652 at the end of 2014. However, in release ltp-20160126
the SD of this feature constant dropped drastically to the SD value of 7.

4.3 RESULTS 53

Figure 4.34: Percentiles of SD per Release.

Figure 4.35: Evolution of the sparc feature constant.

54TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Figure 4.36: Tangling Degree Evolution.

Observation 12. Many feature constants in LTP presented a low scattering level. How-
ever, there are a few feature constants with a high scattering degree that deserve special
attention by the development team since they could require a considerable maintenance
effort after changes.

4.3.4.4 M12 - Tangling Degree (TD): The TD metric serves as a counterpart to
the scattering degree metric [89]. Instead of measuring how many elements are associated
with a specific feature constant, it indicates the number of different feature constants that
occur in a feature expression. It should indicate the complexity in terms of variability
realization by measuring the number of involved feature constants in an expression [89].

The TD metric presents a mix of sub-linear and super-linear growth, as can be seen in
Figure 4.36. We observed that the LTP feature expressions presents low complexity, e.g.,
TD = 1 on average [93, 88]. Low complexity is preferable because feature expressions that
consist of a high number of feature constants impair program comprehension and difficult
the maintenance. Additionally, we analyzed the distribution of TD and their evolution
of percentiles (Figure 4.37). We observed that there are few feature expressions with a
high tangling degree. In general, 25% of features expressions have TD up to 2. Figure
4.38 shows feature expressions with high TD. In this case, we focus on expressions with
TD higher than 5, which was suggested by Zhang et al. [107] as indicating expressions
complicated to understand. The fraction of feature expressions with high TD is small,
and the absolute number of such feature expressions did not grow representatively with
time.

Observation 13. The TD metric presents low values during the LTP evolution, re-
sulting in a low complexity of feature expressions. However, there are a few feature
expressions with a high tangling degree, that could impact negatively in the program
comprehension and maintainability.

4.4 DISCUSSION 55

Figure 4.37: Percentiles of TD per Release.

Figure 4.38: Feature expressions with high TD evolution.

56TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

Table 4.1: Summary of Findings.

Research
Question

Metrics Behavior and Mean Values

General Kernel Network Misc Commands

RQ1
M1-Test Cases Ú 366.5 Ú 702.2 Ú 111.0 Ú 28.8 Ù

12.6
M3-Contributors Ú 2.9 Ú 2.5 Ù 1.4 Ù 1.1 Ù 1.2

RQ1 and
RQ2

M2-Unit Size Ú 185.8 Ú 290.9 Ú 172.1 Ú 210.0 Ù
11.6

RQ2

M4 - Complexity Ú 5.3 Ú 5.5 Ø 5.5 Ù 4.6 Ù 1.3
M5-Duplication Ú 20% - - - - - - - -
M6-Dependence Ú 1.9 Ú 1.6 Ú 6.8 Ù 0.9 Ù 0.5

RQ3 M7-Test Case Chg.
Ø 225.7 - - - - - - - -

M8-Test Prog.
Chg.

Ú 204 Ú 124 Ú 12 Ú 7.2 Ú 6.4

RQ4

M9 - LOF Ú 7.1 Ú 13.8 Ú 7.9 Ú 2.4 Ù 0
M10 - NOFC Ú 0.46 Ú 0.72 Ú 0.62 Ú 0.42 Ù 0
M11 - SD Ú 4.9 - - - - - - - -
M12 - TD Ú 1.7 - - - - - - - -

4.4 DISCUSSION

In this section, we examine the collected data providing answers for each of our RQs.
Table 4.1 shows a summary of the results. The findings were classified based on different
categories. Firstly, they were classified according to the research question and subdivided
in each metric. Then, we have the behavior of evolution for LTP (General) and the
main subsystems analyzed (Kernel, Network, Misc, and Commands), which exposes: if
the evolution behavior of the metrics is increasing (Ú), decreasing (Ø), or stable (Ù).
Additionally, the mean values are presented next to the evolution behavior. The mean
values highlighted in red represent metrics that present values higher than the thresholds
suggested in the literature for accepted values. Note that some values in the table are
filled with (-), and we have two main reasons for it: (i) the values are not applicable to
the metric, and (ii) the values are not available per subsystem. The second reason occurs
since we used a set of scripts and third-party tools3 to extract the information, and some
of them just provide the results by releases.

In summary, the effort to develop the test suite is high. By analyzing the metrics
related to RQ1 and tabulating their trends over time, we observed that LTP presents
continuous growth in unit size (LOC), functional content (Test Cases), and contributors.
As a result there is no indication that its adoption rate is decreasing, and probably more
effort will be necessary to evolve the project in the future. We notice that the unit size

3NiCad [105] - https://www.txl.ca/txl-nicaddownload.html, Testwell CMT++ -
http://www.testwell.fi/cmtdesc.html, and cppstats [93] - http://fosd.de/cppstats/

4.4 DISCUSSION 57

has increased significantly from the initial to the current release. Although the number of
contributors had increased too, when we consider the ratio between LOC and number of
unique contributors per month, the LTP exhibits values incredibly high, indicating that
the project contributors had a great deal of effort to develop and to evolve the test suite.
Additionally, we observed that considerable effort was spent in the early releases when the
project increased fast as a result of the initial implementation. This way, the development
teams that intend to start developing tests have to consider allocating more contributors
at the beginning of the project. At the level of subsystems, the Kernel presents the most
consistent LOC growth and contains considerable part of the test programs. This way,
this subsystem has deserved special attention (number of unique contributors), and it
concentrates great part of the effort of development for the whole period.

Although not all metrics selected to evaluate the maintainability present unsatisfac-
tory indicators, the overall assessment of test code maintainability is low. We observed
that the LTP’s maintenance is not easy and could become more difficult as the project
evolves. Even though the unit size growth curves seem to be slowing down since 2011, a
significant percentage (58%) of the test programs presented very high values (unit size
greater than 48), and they are susceptible to the occurrence of test smells [101]. Addition-
ally, the project presents high values of cloned methods (56%), and some of the releases
show values higher than 50% of the duplicated code. Thus, the detection, monitoring,
and removal of code clones is essential in the future. Another factor contributing to the
poor indicator of maintenance involves a large number of functions (56%) that present
very high unit complexity values. Additionally, we found no improvement of the functions
with top values of unit complexity from the first to the last release. Regarding subsys-
tems, the Commands subsystem has slightly increased the unit complexity average in the
entire period. The improvements of the unit complexity values in the last years are linked
with Kernel and Network subsystems. On the other hand, LTP presents low values for
unit dependence, which is a good indicator of test code stability regarding changes in the
production code.

We identified that new test cases are introduced, removed, split, merged and renamed.
Two primary operations express these evolution changes: test case addition (introduction,
division, and the junction of test cases), and exclusion (removal of test cases). We observed
that despite the size and complexity of the LTP, the addition and exclusion of test
cases are frequent. A high changeability is a fact that may significantly increase the test
maintenance cost. It also affects stability, since the changes can introduce logical errors
in the test code. After we analyze the difference in the number of test cases among two
releases, we observed that the growth rate is very irregular. Every relatively large growth
is always followed by a drop, resulting in an alternation between growth and stabilization.
Additionally, we noticed that the test case life cycle is short, and it is not a good indicator
of low maintainability [23]. At the level of test programs (code files), we note that test
programs with variability remain less time than test programs without variability. This
can be an indicator that the variability influence negatively in the maintainability since
it introduces more changes.

According to Lehman [109], it is not simple to distinguish the changes between adap-
tation to the environment and general growth. However, some LTP changes are easily

58TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

identifiable, since the test cases are grouped in test suites. For example, the addition of
506 new test cases in the release ltp-200501003 is related to changes in the hardware
environment in the network category. Also, we observed that code changes are mainly
performed in the kernel subsystem, it can be related to this subsystem has more LOC
and program files, consequently, more actions are presented in the artifacts inside this
subsystem.

We observed that variability impacts mainly in the complexity and quality of the
test maintainability. Additionally, we identified that LOF and NOFC metrics deserve
special attention by the development team since they provide good indicators about
the maintainability in the test suite. These metrics have a direct correlation with LOC,
i.e., as the LOC increases, they also increase, and as a consequence, the maintainability
decreases. Moreover, we identified that some test cases present high values of LOF, and
they are difficult to understand. Interestingly, one file (linux syscall numbers.h) had
contributed to increase in a considerable way the NOFC values, and the LTP contributors
need to be watchful to this file. We noticed that Kernel and Network presented consistent
growth of LOF and NOFC for the entire period. Interestingly, the command subsystem
does not present values for variability metrics since the specific nature of this subsystem
seems to make unnecessary the variabiality. On the other hand, many feature constants in
LTP presented a low scattering level. Low feature scattering is a preferable situation [106],
and it is a good indicator for maintainability of the project. Additionally, the tangling
degree metric presented low values. This factor contributes to the low complexity of
feature expressions, and helps the maintainability.

4.5 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our study. To improve the validity
of this work, each step was carefully performed; however, there are threats to the validity
of the study, which are briefly discussed.

4.5.1 External Validity

• Study object: Our study is based on a single project (LTP). However, the nature
and size of LTP (122 releases, 400,000 test cases, 16 years of development, and
63 million lines of code) make it a complex, representative case of software test
evolution with variability.

• Feature detection: Our analysis is limited to the test code and #ifdefs. Never-
theless, representation and implementation of features are not limited to #ifdefs
[106]. Additional configuration layers, such as configuration scripts or tools could
be used. A comprehensive analysis of these configuration layers was out of the scope
of the study.

4.6 CHAPTER SUMMARY 59

4.5.2 Construct Validity

• Selected metrics: Metrics of size, complexity, and variability were extracted in
this study, and inappropriate metrics might have been chosen. This threat was
mitigated by choosing the most used metrics, such as Lines of Code (LOC), McCabe
Cyclomatic Complexity [102], and variability metrics [93, 94, 88]. Moreover, they
are widely known and have been used in other studies analyzing HCS [99, 93, 88].

4.6 CHAPTER SUMMARY

The benefits of having a good test suite are extensively studied in the literature [5, 110,
41]. In the context of configurable systems, prior studies have discussed the importance
of tests during the development process [16, 111, 11, 10, 40]. However, only a few studies
examine aspects related to test evolution in configurable systems [112]. Therefore, we
mined the versioned history of the Linux Test Project, a functional and regression test
suite for testing the Linux Kernel. In particular, we studied the test suite evolution with
special focus on the effort, maintainability, changes, and variability aspects. A set of
thirteen observations was extracted providing answers for the research questions. Based
on these observations, we can conclude that the effort to develop a test suite for a large
configurable system is high. We identified that the LTP presents continuous growth in
number of test cases, resulting in more effort as the project evolve. We note that special
attention needs to be reserved at the beginning of the projects since at this time they
have not many contributors and tend to grow fast increasing the workload of development
team. Additionally, we identified that the test code maintainability is low, and as the
project evolves the unit size, complexity, and duplication increase, contributing for a
hard maintenance.

We identified that the addition and exclusion of test cases are performed at a regular
frequency. As a result, it could increase significantly the effort to maintain the test suite.
Additionally, test programs with variability remain less time than test programs without
variability. It can be an indicator that the variability influence negatively in the main-
tainability since it introduces more changes. We identified that LOF and NOFC metrics
have a direct correlation with LOC, and their growth decrease the maintainability of
the test suite. Also, we identified the development teams need to be watchful to some
feature constants with a high scattering degree since they would require a considerable
maintenance effort in case of changes.

This research is the first attempt to analyze test evolution evaluating characteristics
that indicate the effort to develop and maintain the test suite, and considering variabil-
ity aspects. Moreover, we provide static analysis of the test suite and make available
a dataset that allows other researchers to investigate test evolution, co-evolution, and
dynamic analysis in future studies. We believe that our results and empirical observa-
tions contribute to the advance of the research concerning test evolution in configurable
systems.

The next chapter presents our study of test evolution in 36 open-source projects from
various domains. We aim to get more evidence to understand test evolution in configurable

60TEST SUITE EVOLUTION IN A HIGHLY-CONFIGURABLE SYSTEM: A CASE STUDY ON THE LINUX TEST PROJECT (LTP)

systems and its similarities and differences to Single Systems (SS). The similarities will
help to adopt techniques from SS to configurable systems and vice versa. Additionally,
the differences will help us to design new techniques addressing the difference.

Chapter

5
TEST EVOLUTION IN CONFIGURABLE SYSTEMS

AND SINGLE SYSTEMS: A COMPARATIVE STUDY

In the previous chapter, we realized a case study in a large configurable system (Chap-
ter 4). We presented a set of observations and implications for open-source teams and
practitioners. However, we have observed, among other issues (Chapter 3), the lack of re-
search into test evolution in reusable systems combining evidence from different sources.
Thus, additional systematic reports are necessary to provide more evidence about the
test evolution in reusable systems. In this context, this chapter presents a comparative
study to evaluate the test evolution in 18 open-source projects from various sizes and do-
mains in configurable systems and its similarities and differences to 18 SS projects. The
comparison allows us to identify similarities that can help us adapt techniques from SS
to configurable systems and vice versa. The differences can help us design new strategies
addressing the discrepancies.

A better understanding of this evolution can allow us, in the medium-term, to come
up with prediction models, guidelines, and best practices that will enable the community
to improve their current practices, tools and to make the software tests less expensive
and time-consuming. Thus, we evaluate the test evolution in 36 open-source projects of
different sizes and from various domains. Additionally, we analyze more than 7 millions
of lines of code and 1.3 millions lines of test code in total.

The remainder of the chapter is organized as follows: Section 5.1 presents the method-
ology and data collection process; Section 5.2 describes the results of the study and
presents a set of observations about the effort of development, maintainability, and dif-
ferences in the test evolution between SS and HCS; Section 5.3 presents the discussion
and implications of our results; and Section 5.4 presents threats to validity.

5.1 METHODOLOGY

This section explains our methodology and data process.

61

62TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

Figure 5.1: Overview of our subjects selection and data collection approach.

5.1.1 Study Subjects

In order to investigate test evolution, we selected a representative set of projects. We
used two different approaches to select the projects, as can be seen in the first part of the
Figure 6.1. We choose the HCS projects from the list of 63 C/C++ consolidated HCS
projects used by Medeiros et al. [53]. We identified 18 HCS projects that had a test folder
in its structure with at least ten test cases by manually identifying the test directory. A
different approach was used to choose SS projects. Using GHTorrent 1, we selected the
18 top C public projects with highest number of stars on GitHub2. According to Borges
et al. [113], number of stars in a project are viewed by practitioners as the most useful
measure of popularity at GitHub. Our final list contains projects of different sizes and
from various domains, such as games, operating systems, Web servers, database systems,
and so on. Summary of the selected HCS and SS projects can be seen in the Tables 5.1
and 5.2 respectively.

5.1.2 Data Collection

Two main steps were performed for the data collection process (second and third part in
Figure 6.1):

• Repository Mining: We downloaded the git repositories for these projects from
1http://ghtorrent.org
2https://github.com - the world’s most extensive collection of open source software, with more than

28 million users and 79 million repositories [113].

5.1 METHODOLOGY 63

Github to collect various information such as: who authored the code, when the
code was committed, the name of the file involved, and so on. In total, we collected
585, 632 commits from all the projects, for the project start date until January 31st,
2019.

• File type classification: Since our goal was to analyze test evolution, we classified
each unique file in the analyzed projects as either System Under Test (SUT) file
(i.e., files that contain code related to system functionality), or test file (i.e., files
that contain code related to tests). Those files that do not fit in any category are
marked as “other”, such as release notes, manuals, etc.

5.1.3 Data Preparation

As we aim to investigate how the test suite evolves, we could use different ways of par-
titioning time. Some researchers [114, 115] have used releases as the unit of time, other
individual commits, or discrete-time units (years, months, weeks, days) [116, 19]. The
same way that [25, 19], we selected the month as our unit of measure because, while
subject to some variation from project to project, it gives us enough details into the
evolution of projects. Additionally, by checking the distribution of commits across the
analyzed projects history, we found that these projects had an active history of 102
months (median) after they started to have tests. This way, we cut off analysis at 102
months to not skew our findings.

5.1.4 Tools Selection

We evaluated some aspects and metrics to answer each research question. So different
tools were adopted to extract the information needed. In RQ1, three aspects were eval-
uated: contributors, modified files, and assertions. For measurement the number of con-
tributors and modified files, we used the commits obtained by mining the repository. For
assertions, we ran a custom script on each snapshot (last commit in each month) of the
projects. The output of this process included information, such as number of assertions,
and assertion density. In RQ2, four metrics were analyzed: unit size, unit complexity, unit
dependence, and duplication. To measure the unit size and dependence, we used scitools
Understand3. This tool offers metrics reports, and its reverse engineering feature provides
a complete structure of the code dependence. Although the scitools Understand provides
measurement for unit complexity, it does not consider the variability aspects on code in
the computation of complexity. Thus, we used MetricHaven5 4 [117] for complexity. This
tool supports McCabe’s cyclomatic complexity as well as the variability aspects on the
code [89]. Finally, in the duplication analysis, we used NiCad5 clone detector [105]. This
tool enabled us to find exact and near-miss clones.

3https://scitools.com/
4https://github.com/KernelHaven/MetricHaven
5NiCad - https://www.txl.ca/txl-nicaddownload.html

64TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

Table 5.1: HCS Projects Selected.

Highly-Configurable Systems

Project Stars
Contribu-
tors

LOC tLOC Start Date Start Test Domain

Angband 613 48 114203 4768 2007-03-23 2007-08-09 game
Clamav 784 24 1277880 4856 2003-07-28 2008-03-13 antivirus

Curl 12734 497 192088 49625 2000-01-10 2000-11-10
data transferring

tool
Gcc 2598 610 8365418 1717860 1988-11-23 1997-08-19 compiler
Irssi 1954 85 67624 665 1999-09-03 2017-12-07 chat client

Kerberos 233 66 380797 26432 1987-10-23 1990-02-03
network

authentication
protocol

Libsoup 35 193 60230 18280 2000-12-07 2002-11-11 SOUP library
Libssh 107 8 30575 2606 2005-07-05 2008-03-17 SSH library

MPSolve 13 3 34352 3085 2001-12-31 2001-12-31
mathematical

software
Opensc 1089 120 173774 5069 2001-10-19 2001-10-19 smart card tools
OpenSSL 9998 392 570966 84352 1998-12-21 1998-12-21 Internet Protocol

Opentx 919 78 600524 2834 2011-09-13 2014-06-30
radio transmitter

firmware

Openvpn 3579 101 88809 1386 2005-09-26 2012-03-22
virtual network

tool

Ossec-hids 2578 124 136329 2082 2005-09-23 2014-03-10
intrusion detection

system
Sleuthkit 1334 66 377321 1584 2008-09-29 2009-05-08 command line tools
Syslog-ng 1067 92 146648 9021 2007-04-13 2007-04-13 log management

Wiredtiger 1336 27 170515 55598 2008-11-20 2009-05-27
data management

platform
xorg-
server

3 339 420576 7237 1999-12-30 2009-04-28 x server

Total 40974 2873 13208629 1997340

5.1 METHODOLOGY 65

Table 5.2: SS Projects Selected.

Single Systems

Project Stars
Contribu-
tors

LOC Start Date Start Test Domain

Arduino 3381 320 129045 2014-11-15 2015-07-23 core for Arduino

Ccv 4363 9 238157 2010-02-06 2010-02-09
Computer Vision

Lib.
Cinder 2921 102 810687 2010-04-21 2010-04-22 lib. for C++
Grpc 6869 447 635798 2014-11-27 2014-11-27 RPC framework
Em-
scripten

7312 395 1374396 2010-08-26 2010-08-26
compiler

infrastructure

FFmpeg 4603 1018 1179882 2000-12-20 2002-05-18
Multimedia

Libraries

Godot 2843 837 1842512 2013-04-10 2017-01-11
Multi-platform

game engine
H2o 5986 94 305545 2014-09-04 2014-09-04 HTTP server
Libgit2 3459 360 187720 2008-10-31 2008-11-02 cross-platform
Libsodium 6784 81 55782 2013-01-20 2013-01-20 crypto library
Libui 3808 30 43667 2015-04-06 2015-04-22 GUI library

Libuv 4547 321 65685 2011-03-23 2011-03-28
multi-platform
support library

Mpv 3937 261 145141 2001-02-24 2001-02-24 Video player

Netdata 13845 251 170152 2013-06-17 2015-03-16
performance
monitoring

Obs-studio 3828 247 340616 2013-10-01 2013-10-02
live streaming and
screen recording

Stb 4112 131 69661 2014-05-25 2014-05-25
public domain

libraries

Toxcore 8542 160 33823 2013-06-24 2013-06-24
communication

platform

Yoga 11639 147 92803 2014-03-31 2014-10-07
cross-platform
layout engine

Total 102779 5211 7721072

66TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

Table 5.3: Wilcoxon Rank Sum test (p-value) and Cliff’s Delta (d) for SS vs. HCS projects.

Metrics p-value d
Contributors 3.7e-13 -0.173 (small)
Man-Month (M/M) 3.7e-13 -0.163 (small)
Modified Files 6.4e-14 -0.181 (small)
Number of Assertions 2.2e-16 0.015 (negligible)
Assertion Density 2.2e-16 -0.242 (small)

Unit Size 2.2e-16 -0.598 (large)
Unit Complexity 2.2e-16 -0.358 (medium)
Unit Dependence 2.2e-16 -0.414 (medium)
Duplication 2.2e-16 0.078 (negligible)

5.2 RESULTS

For each RQ, we discuss the metrics we used to address the RQ and our findings.

5.2.1 RQ1- How much effort is required to evolve test suite?

Our goal is to investigate the effort required to evolve tests in HCS. For this, we used
maintainers’ effort metric suggested by Zhou et al. [25]. Zhou et al. identified that the
number of contributors and number of modified files indicate the required effort. We also
use the average number of assertions in test files as another metric as other researchers
have used this as a measurement of effort [118, 23]. Detailed results regarding each of
these metrics are provided in the following sections.

5.2.1.1 Number of Contributors: We analyzed the number of contributors in-
volved in test activities during the evolution of the projects. Since different projects may
vary in size, number of files and number of contributors, normalization is required for fair
comparison across projects. We normalized by dividing the number of unique contributors
in test files with the total number of unique contributors in each month.

Additionally, we tested if the number of unique contributors in test files is different
between HCS and SS using the Wilcoxon Rank Sum test (α “ 0.05) [119]. Our results
show that the difference is statistically significant between HCS and SS in terms of number
of unique contributors contributing in test files. We also assessed the magnitude of the
difference with the Cliff’s Delta pdq estimator [120]. To classify the effect size, we used
the following thresholds [121]: negligible for |d| ď 0.147, small for 0.147 ă |d| ď 0.33,
medium for 0.33 ă |d| ď 0.474, and large otherwise. Our results show that the difference
in effect size between HCS and SS is small (|d| “ ´0.173). Table 5.3 shows the result.

We observed that the evolution behavior of contributors is irregular for both types
of projects, as can be seen in Figure 5.2. Also, the percentage of contributors involved
in test activities at the beginning of the projects is the similar (32%) for SS and HCS.
However, this value increases over time in HCS, reaching 57% at the end of the series.
On the other hand, SS present almost the same amount 33%.

5.2 RESULTS 67

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

P
er

ce
nt

ag
e

of
 te

st
 C

on
tr

ib
ut

or
s

Project type hcs ss

Figure 5.2: Contributors working in test files over time.

HCS and SS start with similar number of contributors but overtime more contributors
start contributing to test activities in HCS.

5.2.1.2 Man-Month (M/M): We also investigated the workload of the contributors
involved with test activities over time. We used Man-Month (M/M) to measure work-
load [100]. We extracted the number of test lines of code (tLOC) modified in a month
and divide by unique contributors to measure Man-Month. Figure 5.3 shows the result.
Please note that a logarithmic (log) scale was used in the vertical axis. This helps to show
the growth curve clearly since the average values of man-month productivity present sig-
nificant variations during the evolution. Man-Month productivity behavior is irregular
for both types of projects. On average SS projects have higher workload compared to
HCS. SS contributors write 1,509 tLOC per month on average, which is higher than HCS
contributors writing 443 tLOC. SS contributors produce almost 400% more tLOC in a
month than HCS contributors. Additionally, we tested if the Man-Month (M/M) in test
files is different between HCS and SS using the Wilcoxon Rank Sum test (α “ 0.05) [119].
Our results show that the difference is statistically significant between HCS and SS in
terms of Man-Month (M/M), but the effect size is small (|d| “ 0.163q.

SS contributors are almost four times more productive than HCS contributors.

5.2.1.3 Modified files: Zhou et al. [25] showed that more files a contributor oversees,
more time and effort he will need to devote [25]. Moreover, tests can become invalid even
when the changes preserve the behavior of production code [5] requiring more effort from
the contributor side. Hence, we used number of test files changed in each month per
developer as measurement of effort. Figure 5.4 shows the result. We ran Wilcoxon Rank
Sum test (α “ 0.05) [119] and found a statistically significant difference between HCS

68TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

75
100

200

500

1000

3000

5000

7000
9000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

A
ve

re
ge

 o
f M

od
ifi

ed
 L

O
C

 b
y

M
an

−
m

on
th

 (
Lo

g)

Project type hcs ss

Figure 5.3: Man-Month productivity in test files per month.

and SS in terms of average number of modified files. However, our results show that the
difference in effect size between HCS and SS is ´0.181 (small), as can be seen in Table
5.3. We also observed that an SS contributor modify almost three times more test files
(54) compared to a contributor in HCS (16).

We also investigated the workload distribution using an empirical distribution function
(ECDF), as can be seen in Figure 5.5. Our results show a high concentration of workload
since 20% of contributors are responsible for 91% and 97% of the work performed in HCS
and SS, respectively.

20% of the contributors modify more than 90% of testing related files.

5.2.1.4 Assertions: Since assertions encapsulate testable logic of SUT and they are
the focus of any test case, changes in assertions provide valuable information about the
effort in developing and maintaining a test suite [118, 23]. We investigated the average
number of assertions in the test files shown in Figure 5.6. The different types of project
present an opposite behavior during evolution. While the proportion of assertions de-
creases in HCS, it increases in SS. The results show that the difference between the
distributions is statistically significant in terms of number of assertions and the effect
size is negligible (|d| “ 0.015). Table 5.3 shows the result.

Additionally, we analyzed the density of assertions i.e., the number of assertion state-
ments by the number of lines of test code. This measurement has been used to evaluate
the actual testing value that is delivered given a certain testing effort [22, 23]. Figure
5.7 shows the assertion density evolution, and we can observe that the density in HCS
decrease over time. On the other hand, it increases in SS. Also, our results show that the
distributions are statistically different in terms of assertions density, but the effect size is
small (|d| “ 0.242) as can be seen in Table 5.3.

5.2 RESULTS 69

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Months

(m
ea

n)
 #

M
ai

nt
ai

ne
d

F
ile

s
Project type hcs ss

Figure 5.4: Modified test files per Contributors.

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%
Proportion of Contributors.

P
ro

po
rt

io
n

of
 F

ile
 C

ha
ng

es

Project type hcs ss

Figure 5.5: Distribution of Modified Files.

70TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

10

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

A
ve

re
ge

 o
f A

ss
er

tio
ns

Project type hcs ss

Figure 5.6: Average of assertions in Test Files.

2.00%

4.00%

6.00%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

A
ss

er
tio

n
D

en
si

ty
.

Project type hcs ss

Figure 5.7: Assertions density in Test Files.

5.2 RESULTS 71

Over time, the average of number of assertions and density decreases in HCS and
increases in SS.

5.2.2 RQ2 - How maintainable is the test suite and how that evolves?

Test code needs maintenance similar to production code [23]. Since our goal is to investi-
gate how maintainable the tests in HCS are, we used existing maintainability measuring
metrics proposed by Athanasiou et al. [23]. These include unit size, complexity, depen-
dence, and duplication. These metrics are based on Software Improvement Group (SIG)
quality model which is an operational implementation of the maintainability character-
istic of the software quality model defined in the ISO/IEC 9126 [90].

5.2.2.1 Unit Size: Unit size is measured using the number of lines of code (LOC)
in a unit [23]. The relation between LOC and maintainability is recognized both in the
context of production code and test code [23]. According to Athanasiou et al. [23], as the
lines of test code (tLOC) increases, the tests become harder to analyze.

Figure 5.8 shows the average unit size over time. We can observe that HCS present
smooth growth with a small variation of unit size over time. On the other hand, SS
presents severe fluctuations and downward spirals. Additionally, we analyzed the distri-
butions of unit size in the test cases by system type, as shown in Table 5.4. Using the
thresholds suggested by Athanasiou et al. [23], we can observe that 63% of HCS tests
present a unit size less than 24 (lines of code), i.e. easy to maintain. In SS, only 19%
of the tests low levels of unit size. On the other hand, 67% of SS presented very high
values of unit size (unit size greater than 48), while 13% in HCS. This indicates that the
maintenance of tests can become very difficult as the projects evolve, mainly in SS.

Some HCS tests have preprocessor directives, such as #ifdefs inside its structure,
here called HCS-V. Whether we consider only these tests (HCS-V row in Table 5.4),
the unit size values are similar to SS. For example, only 33% of the test files in HCS-V
present low values, while 60% of test files present high or very high values. It indicates
that variability inside the test code increases the unit size of tests. Therefore, tests with
variability deserve special attention since the high percentage of tests with high and very
high values of unit size can be a warning for the Obscure Test, and the Eager Test smells
[101]. An obscure test is a test that has a lot of noise in it, noise that makes it hard to
understand, and the consequences are that such test is harder to maintain and it does
not serve as documentation [101]. An eager test attempts to test too much functionality.
Additionally, our results show that the difference between the distributions is statistically
significant in terms of unit size, and the effect size is large |d| “ 0.598), as can be seen in
Table 5.3.

SS tests presented weaker test health than HCS tests when considered the unit size
values of the tests.

72TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

200

300

400

500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

tL
O

C

Project type hcs ss

Figure 5.8: Unit size over time.

Table 5.4: Thresholds and Values for Unit Level Metrics.

Unit Size Unit Complexity Unit Dependence

Low

24

Moderate

31

High

48

Very High

>48

Low

1

Moderate

2

High

4

Very High

>4

Low

3

Moderate

4

High

6

Very High

>6

SS 19% 4% 10% 67% 44% 15% 17% 24% 57% 7% 8% 28%

HCS 63% 12% 12% 13% 0% 53% 26% 21% 79% 7% 4% 10%

HCS-V 33% 7% 12% 48% 0% 52% 23% 25% 31% 14% 23% 32%

5.2.2.2 Unit Complexity: The test quality model [23] proposes to use the McCabe’s
cyclomatic complexity [102] as measurement of unit complexity. However, for HCS, the
variability implementation needs to be considered in the complexity measurement [89].
Thus, our results of unit complexity for HCS support the computation of McCabe’s
cyclomatic complexity metric, and the variability aspects on the code [89].

Figure 5.9 shows the average of the unit complexity of the tests in the different types
of projects. Considering the threshold for test code originally suggested by Athanasiou et
al. [23] (shown in Table 5.4), we observe that at the beginning of the tests lifetime, the
test functions in HCS present very high values (unit complexity ą 4), while SS present
high values (2 ă unit complexity ă“ 4). However, as projects evolve, an opposite trend
can be observed for the different types of projects. While HCS decreases the average
unit complexity, SS increases the values. Nevertheless, HCS presents a high average unit
complexity (HCS = 4.9). Since HCS presents a decreasing trend, we verified whether this
reduction results from decreasing in the proportion of top functions, i.e., functions with
high or very high unit complexity. However, we did not find significant improvement in
top functions from the first (21%) to the last month (19%). One must remember that
the number of functions also increases with time. Thus, the reduced average value is just
a result of having more functions with relatively lower complexity.

5.2 RESULTS 73

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Project type hcs ss

Figure 5.9: Average of Cyclomatic Complexity in test files.

We also analyzed the distributions in terms of unit complexity, as shown in Table 5.4.
The results show that the difference between the distributions is statistically significant,
and the effect size is medium (|d| “ 0.358). Interestingly, HCS does not have low com-
plexity values in the tests, but a substantial part (53%) presents moderate values. On
the other hand, 44% of the tests in SS present low values and 15% moderate values. We
can observe similar values for high and very high values for different types of projects.
The high values for these categories raise an alert for the development teams since the
complexity should be kept as low as possible to avoid writing tests for test code [23].
This is also underlined in the description of the Conditional Test Logic smell [101], which
advocates keeping the number of possible paths as low as possible to keep tests correct
and straightforward. The moderate unit complexity values are not so different for HCS
when considering only test files with variability (HCS-V row). However, very high values
increase in HCS-V. It indicates that the variability increases the complexity of the tests.
The difference between the distributions is statistically significant (Table 5.3).

In general, the average unit complexity starts high in HCS and decreases as the projects
evolve. An opposite trend was observed for SS.

Test cases with variability are more complex than HCS test without variability.

5.2.2.3 Unit Dependence: Module coupling measures the coupling between mod-
ules in the production code. In the context of test code, the modules’ coupling is minimal
[23]. Since dependency affects the changeability and the stability of the tests [23], it is a
good indicator of required maintenance effort. We count the number of calls from a test
code unit to production code units as a measurement of dependency [23].

Figure 5.10 shows the average of unit dependence per type of project during the
evolution. In general, HCS increase slightly during evolution. Nevertheless, almost all

74TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

2.5

5.0

7.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

U
ni

t D
ep

en
de

nc
e

Project type hcs ss

Figure 5.10: Average of Unit Dependence of the test files.

the time the average values are low (unit dependence ă 3), considering the thresholds
suggested by Athanasiou et al. [23] for test code. In SS, the evolution behavior of unit
dependence is irregular but presents a decrease over time.

Additionally, we analyzed the distributions of unit dependency by system type, as
shown in Table 5.4. Using this distribution, we can observe that 79% of the tests are
classified as having low values of unit dependence (unit dependency ă 3), and just 10%
are presented very high values (unit dependency ą 6) in HCS. On the other hand, SS
present almost the triple of tests with very high values compared to HCS. However,
if we consider only HCS tests with variability (HCS-V), the percent of test files that
present high or very high values is the majority (55%). It indicates that variability in
test files increases unit dependency. The high values of unit dependence in HCS-V can
be explained since these files test different features and combinations, resulting in calls
to other parts of the production code. The results give us a good indication that HCS-V
tests are “complex to maintain”, i.e, changes in the production code can propagate easily
to the test code and cause tests to break (fragile test code smell [101]), increasing the test
code maintenance effort. We also tested if the unit dependence in test files is statistically
different between HCS and SS. Our results are positive, and the effect size is medium
(|d| “ 0.414).

Average unit dependence of HCS starts low and increases as the system evolves. The
opposite is observed for SS.

The majority (79%) of HCS tests present low values of unit dependence. However, HCS
tests with variability (HCS-V) show high values.

5.2.2.4 Duplication: Test code duplication occurs when copy-paste is used as a way
to reuse test logic. It results in many copies of the same code, a fact that may significantly

5.2 RESULTS 75

5.0%

10.0%

15.0%

20.0%

25.0%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Months

P
er

ce
nt

ag
e

of
 C

lo
ne

d
F

un
ct

io
ns

Project type hcs ss

Figure 5.11: Percentage of Total Cloned Functions.

Table 5.5: Percentage cloned LOC by level of Similarity.

% of Cloned LOC
S = 70% S = 80% S = 90% S = 100% Total

SS 4.8% 2.4% 0.9% 1.4% 9.5%
HCS 11.5% 2.8% 1.2% 1.3% 16.8%

increase the test maintenance cost [23]. This way, software clones can be considered
harmful in software maintenance and evolution [122]. Moreover, test code duplication is
identified as a test smell [101]. Duplication affects changeability, since it increases the
effort that is required when changes need to be applied to all code clones. It also affects
stability, since the existence of unmanaged code clones can lead to partially applying a
change to the clones, thus introducing logical errors in the test code [23].

In this study, we identify a clone based on the percentage of all code that occurs more
than once in at least 70% identical code blocks (functions/methods), ignoring white lines
[105]. Figure 5.11 shows the percentage of cloned functions per type of project during
evolution. We can observe that as the HCS evolve, the percentage of cloned test functions
increases.

Also, we analyzed the distributions of duplication during evolution by different levels
of Similarity (S), as can be seen in Table 5.5. For example, if the S = 100%, it indicates
the percent of only exact clones; if the S = 90%, it indicates that two functions have
at least 90% of the lines equal. The HCS present almost the double of functions cloned
(16.8%) compared to single systems (9.8%). However, the numbers of functions cloned
are very similarly for S different of 70%, in both types of systems. Additionally, we tested
if duplication in test files is different between HCS and SS. Our results show that the
difference is statistically significant, but the effect size is negligible (|d| “ 0.078) Table
5.3.

76TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

We can observe that as the HCS evolve, the percentage of cloned test functions increases.
An opposite trend can be observed for SS.

HCS has almost twice functions cloned (16.8%) compared to SS (9.8%).

5.3 DISCUSSION

In summary, the effort to evolve the test suite is high for both types of applications and
becomes even more elevated for HCS over time. We identified that HCS has more con-
tributors as it becomes mature. Thus, for better evolution planning, development teams
have to be mindful of this need. Due to the high values of the test contributors’ workload,
development teams have to be watchful to this indicator, and whether necessary, should
consider having more contributors only involved with test activities. This action can
guarantee a better distribution of the tasks, and consequently, the workload reduction.

We observed that 96% of the contributors in both types of projects perform test and
coding activities. Our results indicate that developers are writing the test cases them-
selves, and only a small portion of contributors (4%) are solely focusing on writing test
cases. In general, this 4% of contributors have, on average less than five contributions.
We posit that this small group comprises newcomers who are using this as a way of
onboarding in the projects. However, further investigation is required to make any con-
clusive remarks and is an exciting research direction. Additionally, we observed a high
concentration of work since 20% of contributors are responsible for 92% and 85% of the
work performed in HCS and SS, respectively. Recent studies [123, 124] have shown that a
high concentration of activities does not necessarily cause bottlenecks in development and
communication or imply in the quality. However, test activities have different dynamics
[23], and the research community needs to investigate whether the same occurs for tests.

We identified that HCS test contributors are less productive than SS. It can be ex-
plained by the presence of variability in code expressed in C-preprocessor directives or
other aspects, such as feature interaction [108]. Our results have shown that these aspects
could make the test activity in HCS more time-consuming. This way, in the analysis of
HCS projects, researchers should focus on LOC and consider variability aspects in the
evaluation. Moreover, our results show that variability increases the challenges in test
development and maintenance, and contributors generally do not recognize (potentially
harmful) test smells [125]. We believed that the creation of tools considering these specifics
points in HCS could help the development teams control and improve upon their cur-
rent work processes and productivity. Also, studies like [126, 127] to better understand
productivity and work habits in HCS can be very useful.

The overall assessment of test code maintainability during the evolution is low for
both types of projects. However, our results indicate that the variability in HCS tests
makes maintainability still more difficult for these projects. For example, we observed
that HCS tests with variability could increase the unit size considerably as the project
evolves. Consequently, this kind of test is more prone to the occurrence of Obscure and
Eager Test smells [101]. These smells can quickly increase the effort to maintain the test

5.4 THREATS TO VALIDITY 77

suite. Some possible solutions for these smells in the context of SS are proposed in [101].
However, we identified that the opposite evolution behavior for unit size could complex
the adoption of similar solutions for SS and HCS. This way, more investigation about the
nature of high unit size in HCS needs to be performed to define suitable solutions.

We identified that the incidence of tests with high or very high unit complexity is con-
siderable in SS (41%) and HCS (47%). These results show that as the projects evolve, the
tests become susceptible to Conditional Test Logic smell [23, 101]. Moreover, we observed
that the variability in tests increases the values of unit dependence in HCS. High unit
dependence makes the tests more likely to occur fragile test smell [101] and generally, the
presence of this smell increases the test code maintenance effort [101]. However, this smell
detection process is not too straightforward for HCS written in C. In this sense, existing
tools [128] should be extended to support the language and preprocessor directives used
in HCS. In addition, new studies should be considered to investigate test smells and its
impacts in the presence of variability. Other directions could be related to automated test
cases refactoring. Some ideas in this direction are starting to be explored [129], however,
we need more robust evaluations and tool support. Not enough, development teams need
to deserve special attention to clones, mainly in the context of HCS since the tests present
almost twice functions cloned (16.8%) compared to SS (9.8%). Code clone and detection
tools are widely explored in singly system [130, 131, 132, 133]. However, even with some
preliminary results [134], the HCS area lacks studies considering production and test code
perspectives.

5.4 THREATS TO VALIDITY

We have taken care to ensure that our results are unbiased, and have tried to eliminate
the effects of random noise, but it is possible that our mitigation strategies may not have
been effective. In this section, we discuss the threats to validity for our study.

Construct Validity: The set of metrics used to evaluate test evolution was selected
from the literature. However, we could have used other metrics. Thus, our evaluation is
not complete, but we believe that the metrics that were used provide a fair assessment
of test evolution. Although HCS and SS have different purposes, and we used the same
metric to evaluate the test evolution in both domains, we mitigate this threat by taking
into account specific characteristics of HCS in the evaluation.

External Validity: Although we have studied a limited number of projects, they
represent a wide variety of different sizes and domains which provide sufficient data to
address this topic.

Internal Validity: We used a set of scripts to crawler and extract information on
the project’s repositories. Nevertheless, these scripts can contain implementation faults.
We control this threat by applying pair programming and extensively testing our imple-
mentations.

Reliability Validity: A simple heuristic was used to identify files with test code.
Distinguishing test files from files of the system under test based upon naming conventions
and folder localization might not be reliable. However, we performed a manual analysis
on a sample of files that served as (i) a validation of the heuristic, and (ii) a sanity-check

78TEST EVOLUTION IN CONFIGURABLE SYSTEMS AND SINGLE SYSTEMS: A COMPARATIVE STUDY

for the reliability of our identification.

5.5 CHAPTER SUMMARY

The benefits of having a well-updated test suite are known [5, 12]. However, test evolution
in configurable is still little explored. Using historical data from 36 open source projects,
we empirically investigated test evolution in HCS and compare it with the test evolution
in SS. In particular, we focus on two main aspects: effort and maintainability.

We conclude that the effort to develop the test suite is high and increases for both
types of projects as they evolve. However, the variability present in HCS increases the
challenges in the development of tests for these systems. We identified that the nature
of the contributors’ effort needs to be more explored. Additionally, we observed that the
creation of specific recommendations and automated tools for testing activities in HCS
are essential for effort reduction. Concerning maintainability, the overall assessment is
low for both types of projects. However, the variability present in HCS tests makes the
maintainability still more difficult for these systems. We identified that some differences
between HCS and SS make it challenging to adopt a unique solution for both. Addition-
ally, the development teams in HCS have to be watchful to tests with variability, since
they are more prone to the occurrence of some test smells, such as: obscure test, eager
test, fragile test, and test duplication smells.

We believe that our results and empirical observations contribute to the advance
of the research concerning test evolution in HCS. Based on the identified causes that
increase the effort and maintainability of the test suites, we provided some implications for
development teams and researchers. Such implications can improve the current practices,
tools, and make the software tests less expensive and time-consuming. Future research
includes the investigation of the nature of the effort and maintenance of the test suite.
We are planning to conduct an in-depth analysis of the contributors’ work, including a
survey and semi-structured interviews, to confirm or refute the findings identified.

The next chapter present an extended study to analyze the test suite evolution in an-
other category of reusable systems. The main goal is to verify whether some observations
are recurring and gather new data that support the findings.

Chapter

6
TEST EVOLUTION IN A SOFTWARE ECOSYSTEM:

THE EXTENDED STUDY ON NPM PACKAGES

In the previous Chapters 4 and 5, we provided systematic reports to get evidences about
the test evolution in reusable systems. Also, we presented a set of empirical observations
and implications for development teams and researchers. However, these observations
maybe not sufficient to contemplate another category of reusable systems, such as ecosys-
tems. This way, we performed an extended study to analyze the test suite evolution in an
ecosystem to verify whether some observations are recurring and gather new data that
support the findings. Although we are analyzing projects written in a different program-
ming language and utilizing another implementation method to achieve the reusability,
software development’s social aspects are kept [135, 123]. Additionally, we enlarge the
empirical studies performed in previous chapters by looking beyond the test evolution
and exploring social software engineering.

Thus, we investigated the development and evolution of tests in popular provider
packages in the npm ecosystem. We tried to provide empirical evidence about the ex-
istence of tests in such packages and to understand how tests change as the packages
evolve. Additionally, provide a overview about the effort and maintainability of the test
suite by analyze the contributors’ workload to understand how the packages sustain its
test development evolution. To conduct our study, we collected data from 1,691 popular
packages in npm, the largest ecosystem supporting the Javascript programming language.
JavaScript was the most commonly used programming language in 20181.

From the analysis, we identified and discussed ten observations, including the impli-
cations for community, practitioners, and tools developers. The remainder of the chapter
is organized as follows: Section 6.1 explains the data collection procedures that we em-
ployed to process the studied npm data; Section 6.2 presents the results of our research
questions. Section 6.3 discusses the implications of the observations; Section 6.4 discusses
the threats to the validity of our study; and Section 6.5 concludes the chapter.

1https://insights.stackoverflow.com/survey/2018

79

80TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

6.1 DATA COLLECTION

This section explains how we collected and processed the studied npm data. Three main
steps were performed: package selection, repository mining, and file type classification.
Figure 6.1 depicts an overview of our data collection approach.

Figure 6.1: Overview of our data collection approach.

Package Selection: We crawled the registry of npm and filtered by packages that contain
at least 100 clients (popular packages) and at least 10 releases. As a result we obtained the
package.json metadata file of 2,560 popular packages. The metadata file of each package
lists, among other pieces of information, all the published releases by a client package, the
name of the used providers in each release, the associated versioning statements with the
providers in each client release, and the timestamp of each release. Our data collection
encompassed the period of December 20, 2010 to July 27, 2019.

Repository Mining: For each package we obtained its source code from GitHub. In
some cases, the package publisher did not provide a GitHub link, in which case we could
not obtained the source code with the commit history. In total, we mined 1,691 packages.
The output of this process is thus the releases of each a list of commits and a list of
associated files for each release (Release Snapshot).

File Type Classification: npm requires that developers provide a test script name
with the submission of their packages (listed in the package.json file) [42]. However,
developers can provide any script name under this field, and they do not need to specify
a folder for this script. These situations make difficult to know if a package is tested and
identify the associated test files. This way, we adopted two main steps in the file type
classification: (i) to determine if a package has any associated test, we used a similar
approach of other works [42, 136, 137] by looking for the term “test” (and its variants) in
the file names and file paths; (ii) packages are formed by different types of files, such as
production code, test code, notes, manuals, etc. Thus, we identified the most used script
languages in npm popular packages, and only files of these types were considered as test

6.2 RESULTS 81

Table 6.1: File type classifications examples.

Production Code Test code
any

JavaScript (.js), TypeScript (.ts),
and CoffeeScript (.coffee)

any
JavaScript (.js), TypeScript (.ts),

and CoffeeScript (.coffee)

All the files except test files
file that has “test” (and its variants)

in the file names and file paths

or production code files: JavaScript (.js), TypeScript (.ts), and CoffeeScript (.coffee).
Table 6.1 provides example classifications for some types of files.

Tools Selection: In the sections 6.2.2 and 6.2.3, we evaluated some aspects of evolution
related to Lines of Code (LOC) (i.e, lines of code related to files that contain system
functionality) and test Lines of Code (tLOC) (i.e, lines of code related to files that code
related to tests). To measure the LOC and tLOC we used scitools Understand2. This
tool offers metrics reports, and its reverse engineering feature provides a complete struc-
ture of the code dependence. In addition, this tool provided other information, such as
complexity, duplication, and etc. These information can be used in future investigations.

6.2 RESULTS

6.2.1 RQ1: How often do packages perform testing?

Motivation: Popular provider packages are used by a large number of clients. Therefore,
a defect in these providers can cause a failure in a large number of client packages.
Moreover, prior studies show that one of the clients motivation to use a popular provider
is the perception of quality [73, 42]. Since testing plays an important role in the quality
assurance process, in this RQ we study the extent to which tests are performed by popular
provider packages.

Approach:

• We calculate the proportion of popular provider packages that have at least one
release containing a test file. In this evaluation we use the file type classification
described in section 6.1. Also, we determine whether popular provider packages with
tests have more clients than the ones without test. To compare the distributions,
we test the null hypothesis that both distributions do not differ from each other
using the Wilcoxon Rank Sum test (α “ 0.05) [119], and assess the magnitude
of the difference with the Cliff’s Delta pdq estimator [120]. To classify the effect
size, we used the following thresholds [121]: negligible for |d| ď 0.147, small for
0.147 ă |d| ď 0.33, medium for 0.33 ă |d| ď 0.474, and large otherwise.

• We calculate the number of releases taken to a package start to have test.

2https://scitools.com/

82TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

• To evaluate the most used test frameworks by the popular provider packages, we
adopted some steps: 1) fetch the list of frameworks from grey literature3, 2) search
the used dependencies by popular provider packages to verify whether they use any
of the listed frameworks, 3) calculate the proportion of framework usage. In the last
step, we take into account that one provider package can use more than one test
framework at once. This way, the sum of percentages related to used frameworks
can be higher than 100%.

• Additionally, we compare the difference in the number of updates and downgrades
of popular provider packages that have and do not have tests. To account for the
discrepancy in number of client package of each provider package, we measure the
downgrades and updates using normalized values. First, we count the number of
client package of each provider package. Then, we divide the number of down-
grades/updates by the total number of client packages. We used Wilcoxon Rank
Sum test, and Cliff’s Delta to compare the distributions.

Findings: Observation 1) We observed that 14.5% of the packages do not
have any test script. This observation is showed in the Figure 6.2. We identified
that from all different clients packages, 32.5% use providers packages that do not have
test. Additionally, we identified that the median number of client packages for provider
packages that have test is higher (272) than the provider packages that not perform tests
(210). However, the difference between the distributions is not statistically significant and
the effect size negligible (|d| “ 0.101).

85.5%

14.5%

Packages

No Test

Test

Figure 6.2: Proportion of popular packages that perform or not tests.

Observation 2) Half of the packages introduce test in the first or second
release. This observation is depicted in Figure 6.3. Interestingly, 14.5% packages take
more than 10 releases to introduce tests.
3https://medium.com/welldone-software/an-overview-of-javascript-testing-in-2018-f68950900bc3

6.2 RESULTS 83

●● ● ● ●● ●●● ●● ●

1 2 3 5 10 25 50 100 300
Number of Releases

P
ac

ka
ge

 s
ta

rt
s

to
 h

av
e

te
st

.

Figure 6.3: The number of releases taken for a package to start having tests.

Observation 3) 29.1% of the packages that perform test use some test frame-
works being mocha the most commonly used. Figure 6.4 shows the distribution of
test frameworks adopted by popular provider packages. We identified that the Mocha is
the leading test framework used in about 89% of the popular packages that contains test
files.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mocha chai istanbul sinon should jest Others
Test Frameworks

P
er

ce
nt

 o
f u

se
 b

y
P

op
ul

ar
 P

ac
ka

ge
s.

Figure 6.4: Test framework adoption distribution by popular packages.

Observation 4) Our results suggest that there is no difference of downgrades
by client packages between releases of providers packages that have or not
tests. Figure 6.5 shows that client packages perform less downgrades in releases of
provider packages that have test. However, the difference between the distributions is

84TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

not statistically significant and the effect size negligible (|d| “ 0.040). Additionally, we
identified that upgrades of provider packages by client packages are not associated with
the presence of tests in providers packages. In the same way of downgrades, the differ-
ence between the distributions is not statistically significant and the effect size negligible
(|d| “ 0.034).

D
ow

ng
ra

de
s

U
pd

at
es

0.1% 1.0% 10.0% 100.0%
Proportion of clients

Has test?

Yes

No

Figure 6.5: Proportion of Downgrades and Updates for releases with and without test.

Summary of RQ1. We identified that 14.5% of the popular packages do not have any
test script after ten releases. In particular:

• In general packages introduces tests in the first or second release.

• The adoption of test frameworks is low (29.1%) by the packages that perform
test activities.

• There is no statistical difference of downgrades by client packages between releases
of providers packages that have or not tests.

6.2.2 RQ2: How does test code evolve?

Motivation: Packages evolve, among other reasons, due to bug fixes, new features, and
refactoring. These changes can be followed by changes in the test code [138]. The eval-
uation of the performed changes, as well as the stability of such tests, can reveal valu-
able information about the test evolution [5, 23]. In particular, understanding how test
changes over time is import for development teams to allocate personnel and resources to
test tasks effectively and to reduce the test overhead in regular development tasks, such
as fixing defects and adding new tests. Therefore, in this RQ we study the test evolution
of popular provider packages.

6.2 RESULTS 85

Approach: We aim to verify how the test suite size evolves. Therefore, we only considered
in our analysis packages that have tests. Typically, studies about software evolution re-
quire a time-frame to be adopted in the comparison. Researchers have previously chosen
to use releases within a given unit of time [114, 115], individual commits, or discrete-
time units (such as years, months, weeks, or days) [116, 19]. Since the release schedules
of the packages are different, a time-based slicing wouldn’t work. This way, we divide
the lifetime of each project in five different time-frames, namely: “Beginning-release”,
“One-quarter-release”, “Middle-release”, “Three-quarter-release”, and “Latest-release”.
For example, as can be seen in Figure 6.6, in a package with 11 releases, the first release
is the Begin, the fourth release is the One-quarter, the sixth release is the Middle-release,
and etc. Each time-frame of a package is compared with the same time-frame of the other
packages. To evaluate the test suite size distributions in each package release time-frame,
we used the Scott-Knott Effect Size Difference (ESD) [139] to cluster such distributions
into statistically distinct groups with a non-negligible difference.

Figure 6.6: Example of the division of a packages’ time-frame.

Findings: Observation 5) After tests being introduced, the number of test
files and tLOC do not present any significant evolution. As shown in Figure
6.7, the test suite increase from 33% in the Beginning-release to 42% in the Latest-release.
The same behavior is observed for the tLOC, as can be seen in Figure 6.8. The tLOC
goes from 24% in the Beginning-release to 48% in the Latest-release. However, applying
the EDS over the distributions shown in Figures 6.7 and 6.8 show two distinct groups.
Only the Beginning-release present a statistically significant difference compared with the
other releases, both for the number of test files and tLOC.

Since the statistical difference between the releases time-frame is not significant (ex-
cept for the Beginning-release), we verified what is the size of changes after a package
introducing tests. To verify the difference, we plot the standard deviation of the differ-
ence, as can be seen in Figure 6.9. The results indicate that, in general, after a package
introducing tests there is no significant change in terms of the number of test files and
their size.
Observation 6) A median of 80% of the test files are modified in each time-
frame of the evolution, and each one of these changes modified 27 lines
on average per test file. This observation is depicted in Figure 6.10 and 6.11. As
we expected the high value of changes occurs mainly in packages that contain few test
files. We do not find distinct groups by applying the ESD in the distributions of packages

86TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

0%

25%

50%

75%

100%

Beginning−release One−quarter−release Middle−release Three−quarter−release Latest−release
Packages time−frames

P
er

ce
nt

ag
e

of
 T

es
t F

ile
s

Figure 6.7: Percentage of test files.

0%

25%

50%

75%

100%

Beginning−release One−quarter−release Middle−release Three−quarter−release Latest−release
Packages time−frames

P
er

ce
nt

ag
e

of
 tL

O
C

.

Figure 6.8: Percentage of tLOC.

6.2 RESULTS 87

●

●● ● ●●● ●●●● ●●●● ●●

tLOC

Test File

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%
Satandart Deviation of the difference between the packages stages lifetime.

Figure 6.9: Percentage of tLOC.

time-frames.

Three−quarter−release Latest−release

Beginning−release One−quarter−release Middle−release

1 10 10
0

1,
00

0 1 10 10
0

1,
00

0

1 10 10
0

1,
00

0 1 10 10
0

1,
00

0 1 10 10
0

1,
00

0

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Number of test files

P
ro

po
rt

io
n

of
 m

od
ifi

ed
 te

st
 fi

le
s

100

200

300

Number of
changes

Figure 6.10: Proportion of modified test files during each time-frame.

88TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●
●
●

●

●●
●

●

●

●●●●●●

●●

●●

●

●

●●●

●●

●●●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●● ●

●
●

●

●

●●

●●●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●
●

●●●●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●
● ● ● ●

1e+01

1e+03

1e+05

Beginning−release One−quarter−release Middle−release Three−quarter−release Latest−release
Packages time...frames.

tL
O

C
 c

ha
ng

ed
.

Figure 6.11: Average of tLOC changed per test file.

Summary of RQ2. Although the packages show an increase in the median values
of test files changes, we do not identify any significant evolution of the tests after the
One-Quarter of the package timeline. In particular:

• The test files accounts for up to 33% of all project files in the begin, and 42% in
the end.

• The percentage of tLOC increases two times in the mediam from begin (24%) to
the end (48%) of the packages time-life.

• 80% of the test files are changed in each stage of the evolution.

6.2.3 RQ3: How is the ownership of test code?

Motivation: The development of open source software ecosystems requires forms of
balancing the workload between groups of participants [25]. Typically, the groups are
divided into a small core group that does most of the work and coordinates a much
larger group of peripheral participants. As an ecosystem grows, it is not clear whether
the arrangements that previously made the ecosystem work will continue to be relevant or
whether new arrangements will be needed. The analysis of ownership concentration can
provide the community with an overview of the “sustainability” of popular packages, and
specifically, how sustainable are the tests in these packages. This analysis is important
since failure in a popular package can cause a massive instability on the ecosystem. An
anecdotal example is the incident with a package called left-pad, which was removed from
the ecosystem and caused failure to some of the largest Internet sites, e.g., Facebook,
Netflix, and Airbnb [42]. The massive failure occurred because the left-pad packages was
used by a popular package called Babel. While the real reason for the left-pad incident

6.2 RESULTS 89

was that npm allowed authors to unpublish packages, it could be avoided by the presence
of tests in the popular package by checking the presence of the dependence. This way, the
analysis of ownership in the test activities can help to understand how popular packages
sustain its test development evolution and the ecosystems as a whole.
Approach:

• To study the number of test contributors in the packages during the evolution, we
compare it against that of the source code. The comparison is necessary since the
test suite is a much smaller component than the source code (6.2.1). This way, we
normalize the values by measuring the proportion of contributors in the test and
source files during the evolution. First, we count the number of contributors in test
and source files in each package time-frame. Then, we divide each count by the total
number of contributors in test files or the total number of contributors in source
files that existed in the time-frame. We repeat this process for each time period.

• To investigate the workload of the contributors involved with test activities over
time, we adopted two steps. First, we count the number of test lines of code (tLOC)
created and modified in each time-frame. Second, we divide each count by the total
number of unique contributors in test files in the time-frame.

• To evaluate the percentage of One-time Contributors (OTC) i.e., contributors that
contributed only one time, we count the number of contributors with just one
commit in the package and divided by the total number of contributors in the
package.

Findings: Observation 7) The proportion of contributors involved in test
activities is stable during the evolution. However, the contributors’ workload
is increasing. Figure 6.12 shows the proportion of test contributors evolution. We
can observe that the median proportion of contributors in test files is very regular, and
our results do not show a statistical difference between the distinct groups by applying
the ESD in the distributions of packages time-frames. One must remember that the
percentage of test files and tLOC are increasing (section 6.2.2). Since we do not identify a
relevant increase in the percent of test contributors, we check the contributors’ workload
during the evolution, as can be seen in Figure 6.13. The median of tLOC by unique
contributors is increasing. However, in the same way as contributors, our results do not
show a statistical difference between the distinct groups by applying the ESD in the
distributions of packages lifetime.
Observation 8) 20% of the test contributors (core group) are responsible for
97% of work. This observation is depicted in Figure 6.14. Our results indicate a high
concentration of test activities in the popular packages. Part of this high concentration
can be attributed to 7.8% of the packages that have only one contributor.
Observation 9) In the median 52% of the contributors are One-time Contrib-
utors. This observation is depicted in Figure 6.15. Interestingly, in 2% of the packages,
all the contributors are OTC. Investigating this scenario, we identified that, for such
packages, tests were introduced in a late version, in the median at eighth release. This

90TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

0.0%

20.0%

40.0%

60.0%

80.0%

Beginning−release One−quarter−release Middle−release Three−quarter−release Latest−release
Packages time−frames.

P
er

ce
nt

ag
e

of
 T

es
t C

on
tr

ib
ut

or
s.

Figure 6.12: Percentage of test contributors.

●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●
●
●● ●●●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

1e+01

1e+03

1e+05

Beginning−release One−quarter−release Middle−release Three−quarter−release Latest−release
Packages time−frames.

A
ve

ra
ge

 o
f t

LO
C

 m
od

ifi
ed

 b
y

co
nt

rib
ut

or
s.

Figure 6.13: Average of modified tLOC by contributors.

6.2 RESULTS 91

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%
Proportion of Contributors.

P
ro

po
rt

io
n

of
 T

es
t F

ile
 C

ha
ng

es

Figure 6.14: Distribution of modified test files.

media is higher than for all packages that were 2 (section 6.2.1). Additionally, we iden-
tified that test contributors in packages that have only OTC are composed of less than
five developers.

●●●

0% 25% 50% 75% 100%
Percentage of one−time contributor by package

Figure 6.15: One-time contributor (OTC).

Observation 10) 37% of the test files do not have changes after its creation.
Figure 6.16 shows the percentage of test contributors that perform changes in a test file.
Interestingly, 28% of the test files have a single contributor, i.e., only one contributor
changes this file along the evolution.

92TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

0%

25%

50%

75%

100%

1 10 100 1000
Number of changes

P
er

ce
nt

ag
e

of
 C

on
tr

ib
ut

or
s

2500

5000

7500

10000

12500

15000

Number of
changes

Figure 6.16: Percent of contributors that perform changes in the test files.

Summary of RQ3. The ownership of test code is highly concentrated in small group
of contributors, and a considerable amount of the test files have ”owners”. In particular:

• The proportion of contributors involved in test activities is stable during the
evolution.

• The high concentration of the test activities has been contributed to increases
the workload in the core group.

• One-time Contributors are the majority in the packages, and this factor con-
tributes to the concentration of work.

• 28% of the test files have a single contributor along the evolution.

6.3 DISCUSSION

In this section we present the implications to the observations in the results.

Implication 1) Popular provider packages developer should increase their
testing code (section 6.2.1). One of the most cited reasons for using these packages
is that they provide a well-implemented code with a credible assurance of quality. This
way, the client packages’ assumption (perceived quality) is wrong (at least from the point
of view of testing), and the association between popularity and perceived quality doesn’t
hold. We conjecture that clients are either unaware of this fact or they simply do not
care. This situation is concerning since the lack of tests becomes the packages more error-
prone, and a failure in a popular package can cause massive instability in the ecosystem
Abdalkareem:2017. However, more investigations are necessary to evaluate how much the
lack of tests affects the quality of the packages.

6.3 DISCUSSION 93

Implication 2) Package developers should plan for the introduction of tests
since the start of a project. Once the quality of popular provider packages is an
important factor for the stability of the software ecosystem, the presence of test, in the
beginning, can avoid that a defective popular provider propagates errors to a large number
of client packages. Additionally, client packages need to avoid the adoption of a provider
package just based on the number of users of this package. A good strategy for client
packages is to analyze if the provider package performs tests and check the history of
reported problems and downgrades. In short and medium-term, the adoption of these
steps can avoid unexpected issues and downgrades.

Implication 3) Provider packages should consider the usage of test frame-
works. Test frameworks are an essential part of any successful automated testing process
and can improve the test quality. One concerning situation is that a significant part (89%)
of the packages that use the test framework adopted the mocha. So one failure or breaking
change in this framework can result in a catastrophic situation that can invalidate the
test suite of the packages. This way, the adoption of more than one test framework at
the same time can mitigate this problem.

Implication 4) In spite of client packages perform less downgrades in re-
leases of provider packages that have test, our results suggest that there
is no statistical difference (section 6.2.1). Even so, development teams of client
packages need to be watchful to the use of providers packages that do not perform test,
and the teams have to avoid the adoption of ”fresh releases” of these providers pack-
ages. Additionally, almost all packages that have tests were downgraded, indicating that
in-house tests are as good as no-test-at-all to capture in-field failures. However, more
investigations are necessary for this direction, since some downgrades can be preventive.

Implication 5) We identified a slight growth of the test suite with stable
periods over time (section 6.2.2). This indicates good testing health of the packages
and suggests that the testing-process is under control Zaidman:2008. However, further
investigation is required to evaluate if the coverage offer by the test suite is sufficient and
to make any conclusive remarks about the quality of the tests.

Implication 6) Development teams must be very diligent to ensure that the
test suite does not become defect-prone as a result of high values of changes
in the test files. (section 6.2.2). The high value of changes suggests that test files are
continually evolving Nagappan:2005, McIntosh:2011. However, the high value is concern-
ing since prior research on source code has shown that frequently changing in modules
make these modules contain more defects than slowly changing ones Nagappan:2005. This
way, the monitoring of changes by the development teams is essential since a defect-ridden
test suite can no guarantee the quality of the software.

Implication 7) The proportion of contributors involved in test activities is
stable during the evolution (section 6.2.3). As a result, we observed that the
contributors’ workload is increasing. It is a concerning situation since defects in popu-
lar packages generally need a quick fix, and this scenario can make a quick fix harder.
Development teams have to be watchful to this situation, and whether necessary, should
consider having more contributors only involved with test activities. This action can

94TEST EVOLUTION IN A SOFTWARE ECOSYSTEM: THE EXTENDED STUDY ON NPM PACKAGES

guarantee a better distribution of the tasks, and consequently, the workload reduction.

Implication 8) Packages contributors should constantly evaluate the balance
of workload between them. The high concentration of work (section 6.2.3) can be
an alert related to the quality of code. Although the development of open source soft-
ware ecosystems requires forms of balancing the workload between groups of participants
Zhou:2017. Typically, the groups are divided into a small core group that does most of
the work and coordinates a much larger group of peripheral participants. As an ecosystem
grows, it is not clear whether the arrangements that previously made the ecosystem work
will continue to be relevant or whether new arrangements will be needed. Recent studies
Amritanshu:2017, Majumder2019 have shown that a high concentration of activities not
necessarily cause bottlenecks in development and communication or imply in the qual-
ity. However, test activities have different dynamic Athanasiou:2014, and the research
community needs to investigate whether the same occurs for tests. Additionally,

Implication 9) Package contributors need to be watchful to the alterations
made by One-time Contributors. The high value of One-time Contributors indicates
that a great part of the test contributors is not familiar with the test code. According to
[140] contributors often struggle with code that they are not familiar with. However, test
and source code tend to co-evolve Zaidman:2008, Athanasiou:2014, i.e., changes to the
source code often require changes to the test files, and vice versa, a novice developer may
easily introduce a source code change, unaware that a test change may be necessary. If the
test is not changed when a change is required, it can cause tests to break (fragile test code
smell Meszaros:2006), and increases the test code maintenance effort Athanasiou:2014.
For this reason, it is essential the support of tool that maps the dependence between the
production code and test code to assist new test contributors in the identification of code
changes that require changes in the test suite.

6.4 THREATS TO VALIDITY

Internal Validity: We used a set of scripts to crawler and extract information on the
project’s repositories. Nevertheless, these scripts can contain implementation faults. We
control this threat by extensively testing our implementations and each script was re-
viewed by at least two authors.

External Validity: We have collected data exclusively from npm. Although npm is
representative in size, and we had analyzed a wide variety of packages with different sizes
and domains, our results may not generalize to other ecosystems. However, our approach
can be replicated in other ecosystems.

Reliability Validity: We use a simple heuristic to identify files with test code. Dis-
tinguishing test files from production files based upon naming conventions and folder
localization might not be reliable. Even though this technique is widely accepted in the
literature [42, 136, 137], to confirm whether our technique is correct, we performed a
manual analysis on a sample of files that served as (i) a validation of the heuristic, and
(ii) a sanity-check for the reliability of our identification.

6.5 CHAPTER SUMMARY 95

6.5 CHAPTER SUMMARY

Although we had analyzed the test suite evolution in another category of reusable sys-
tems(ecosystem), we observed that some evolution pattern are recurring, such as: a slight
growth of the test suite with stable periods over time, a high concentration of work, the
proportion of contributors involved in test activities. Additionally, we gathered new data
that support the findings in previous steps. In summary, our empirical results led us to
conclude that: Not all popular packages perform test activities, and the client packages’
“belief” (perceived quality) is wrong (at least from the point of view of testing), and the
association between popularity and perceived quality doesn’t hold at all.

The next chapter presents a survey with test contributors to investigate the test
evolution from the development point of view concerning the results obtained in this
chapter and the previous ones.

Chapter

7
SURVEY WITH TEST CONTRIBUTORS TO

UNDERSTAND THE TEST EVOLUTION

In previous studies (Chapters 4, 5, and 6) presented in this thesis we have investigated
the test evolution in reusable systems. However, our preliminary results reinforce the
need of additional systematic reports to provide more evidence to understand the test
evolution considering the software reuse. Thus, this chapter presents a survey with the
test contributors, to investigate the test evolution from the point of view of development.
The survey combines ideas from [141] with good practices from [142], providing an expert
perspective in relation to results obtained by previous studies (Chapters 4, 5, and 6).

The remainder of the chapter is organized as follows: Section 7.1 describes the related
work in the area. The methodology used is described in Section 7.2. Section 7.3 describes
the results of the study and shows the contributors’ perception. Section 7.4 presents the
discussion of the results and the summary of findings; Section 7.5 presents threats to
validity, and finally Section 7.6 presents a summary of the chapter.

7.1 RELATED WORK

In Chapter 3, we identified that the test evolution issues and concerns in configurable
systems context have not been surveyed, compared, or documented in a systematic way.
This way, we performed a set of empirical studies in reusable systems to obtain a better
understanding regarding to the test evolution and providing new findings for further
research (Chapters 4, 5, and 6).

Studies focusing on surveys in software reuse context artifacts have been presented in
the past ([143, 144, 145]). Jha et al. [143] surveyed how software reuse is adopted in the
HCS context to provide the necessary support for engineering applications. Additionally,
they identified some issues related to the implementation of HCS. However, the study
does not present any rigorous survey elicitation process. In [144], the author designed a
survey to provide information regarding the vital process business area and specific HCS
aspects. Although these studies are surveys in HCS, they do not consider the test aspects
in their evaluation.

97

98 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

Daka et al. [145] surveyed 225 developers to understand unit testing practices such as
motivation of developers, their usage of automation tools, and their challenges. Kochhar
et al. [146] performed surveys on open-source and industrial practitioners to understand
the test automation culture of mobile app developers.

In this context, our research is the first to analyze the test evolution aspects in reusable
systems. Moreover, it was performed to explore findings from previous studies (Chapters
4, 5, and 6), achieving more reliable and generalized results. The study definition and
reporting were also structured based on [141] according to well-defined guidelines.

7.2 METHODOLOGY

The method used in this research encompasses a survey with some aspects of expert opin-
ion. According to [141], surveys are probably the most commonly used research method.
Although surveys are a popular method of data collection, they must be used under the
appropriate conditions [147]. In [147], the author states that a survey is not just the
instrument (questionnaire or checklist) for gathering information. It is a comprehensive
research method for collecting information to describe, compare or explain knowledge,
attitudes, and behaviors.

This way, we systematically structured the survey using the five steps proposed by
[141], as can be seen in Figure 7.1, and that are described as follow:

Figure 7.1: Survey Steps.

Objective: This survey aims to understand the test evolution and the developers’ thoughts
to improve and advise researchers and practitioners. The survey considers the perspec-
tives in relation to the results of our preliminary studies (Chapters 4, 5, and 6) for this
propose, we surveyed test developers who contributed to the projects analyzed in these
studies.

Design: According to Fink [147], different surveys design serves different objectives, and
two purposes can be distinguished: experimental and descriptive. The experimental design
is characterized by arranging to compare two or more groups, at least one experimental.
Descriptive designs produce information on groups and phenomena that already exist.
Regarding how the survey can be applied, it can be classified [141] as: self-administered

7.3 RESULTS 99

questionnaires, telephone surveys, and one-to-one interviews. In this study, we adopted
a descriptive self-administered questionnaire since the subjects were not co-located.

Survey instrument and evaluation: The survey was developed following the steps
designed by [141, 147] that includes: search the relevant literature, construct, evaluate,
and document the instrument. To achieve the survey goal, questions involve issues related
to: contributors’ role in the projects, effort to develop the test suite, maintainability
aspects, and ownership.

According to [147], a question can take two primary forms. When they require respon-
dents to use their own words, they are called open. When the answers or responses are
pre-selected for the respondent, the question is termed closed. Both types of questions
have advantages and limitations. In [141], the authors advise that in self-administered
questionnaires, questions are mainly closed, and open questions could be included to com-
plement the answers. Our survey questionnaire contains 15 mixed questions i.e., open and
closed questions, to be concluded in less than 10 minutes1. To mitigate the possibility of
introducing misunderstood or misleading questions, we performed a pilot with three test
developers and incorporated their minor suggestions to improve the survey.

Subjects: We selected all the test contributors of the projects analyzed in the Chapters
4 and 5. The survey was emailed to the 879 selected developers. However, some of the
emails were returned for various reasons (e.g., the email account does not exist anymore,
etc.), we could only reach 254 developers. We received 31 responses to our survey, which
translates to a response rate of 12.2%. Our survey response rate is in line with, and
even higher, than the typical 5% response rate reported in questionnaire-based software
engineering surveys [148].

Analysis: According to [142], when aggregation methods are being used, they range
from easy-to-use methods, such as simple averaging of several inputs, to more complex
techniques, such as, the classical method [149] and Bayesian aggregation [150]. Studies in
forecasting demonstrate that aggregation of opinions is necessary since they indicate that
aggregated opinions, even if only a simple average, is consistently better than individual
opinions. Arithmetic and geometric averages, for instance, are two aggregation methods
used in practice. Although these methods presuppose that all participants are equally
weighted, which is a strong assumption, it does not limit the use of the aggregation
method by the researchers [142].

We adopted the arithmetic average aggregation method based on the judgment jus-
tified by our analysis of contributors’ responses, in which no significant biases were in-
troduced in the study. Moreover, all contributors were equally weighted during the ag-
gregation since no significant difference was observed in contributors’ credibility and
importance.

7.3 RESULTS

In this section, the collected data analysis is presented, discussing each issue in detail
besides some correlation.
1Survey questionnaire: http://doi.org/10.5281/zenodo.4157137

100 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

7.3.1 General Information

Initially, we asked for general information about the contributors surveyed in the study.
We identified that of the 31 respondents, 84% are professional software engineers paid
by companies (Figure 7.2). Interestingly, 52% of the test contributors have an advanced
educational qualification(Master’s, Ph.D., M.D.), and only 4% have less than high school,
as shown in Figure 7.3. Regarding development experience, 42.3% of the respondents have
more than ten years of experience, 24.6% have between 6-10 years, and 19.2% have 1-5
years of experience (Figure 7.4). The fact that most of the respondents are experienced
developers gives us confidence in our survey responses.

Figure 7.2: Contributors Information.

Figure 7.3: Educational Qualification.

7.3.2 Effort Characteristics

Test Contributors at the beginning of a project. In the previous studies (Chapters
4, 5, and 6) we identified that considerable effort on tests is spend in the early stages of

7.3 RESULTS 101

Figure 7.4: Contributors Experience.

project due to initial implementation. This observation is reinforced by the contributors
since 50% of them agree or strongly agree (Figure 7.5) with the necessity of more test
contributors at the beginning of a project. Additionally, they were asked about the ne-
cessity of three times more test contributors at the beginning of a SS project than HCS
(Chapter 5). According to them, this vast difference does not make sense since the tests
are essential in both systems. However, one contributor reported (C52): “This difference
can be explained since tests are more straightforward in SS, and this way, more people
are doing the test in this kind of project.”

Figure 7.5: The necessity of more contributors at the beginning of a project.

Contributors’ workload. High workload was a concerning situation identified in the
previous studies (Chapters 4, 5, and 6). This way, we asked the test contributors if they
agree that the workload is high in HCS. 77% of the test contributors agree that the
number of lines changed in HCS is high. One survey contributor highlight that (C9):
“while HCS can reduce some code duplication, the code in theses systems also adds more
code/build system and run-time parameterization. As a result, one change in the code
could result in more alterations for different parts of the code”. Additionally, we asked

2Here we are referring to the contributors of the survey as C5 for contributor number five.

102 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

if the test contributors believe that the high workload negatively impacts the quality of
tests (Figure 7.6). 37.5% of the test contributors strongly agree, and 31.3% agree that the
high workload negatively impacts the quality of the tests. The contributor C19 highlights
that “defects in HCS generally need a quick fix, and high workload can make a quick fix
harder and contributes to the introduction of more errors ”.

Figure 7.6: The negative impact of high workload.

Contributors’ for only test activities. The test contributors were also asked about
the necessity of more contributors only involved with test activities since we had identi-
fied high values of workload in test activities (Chapters 4, 5, and 6). 31.3% of the test
contributors agree, and 43.5% strongly agree with this statement, as shown in Figure 7.7.
On the one hand, the contributors argue that as HCS are more complex, changes gen-
erally result in more alterations in other parts. This way, if the project has contributors
only involved with the test activities, they could contribute to more precise tests. On the
other hand, the Contributor C8 argued that “restricting interested contributors to only
working on tests could be a detriment since they are not familiar with the production code.
As a result, the tests can become more error-prone”.

The concentration of test work. In Chapter 5, we identified a high concentration of
work since 20% of contributors are responsible for 92% in HCS. Recent studies [123, 124]
have shown that a high concentration of activities does not necessarily cause bottlenecks
in development and communication or imply in the quality. However, test activities have
different dynamics [23], and more investigation is necessary. This way, we asked the test
contributors if the high concentration of activities impacts development and communi-
cation. 43.8% of the contributors surveyed strongly agree, and 37.5% agree that a high
concentration of test activities negatively impacts development and communication. One
contributor (C13) highlighted that: “the high workload values are a consequence of just
a few test contributors have a great understanding of the project required to contribute
effectively to the tests”. Additionally, the contributor (C21) highlighted that:“High con-
centration is bad any development activity in the long term, and It can be an alert related
to the quality of code.”

7.3 RESULTS 103

Figure 7.7: Contributors only involved in test activities.

Figure 7.8: Concentration of work.

104 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

7.3.3 Maintainability sub-characteristics

Code Complexity. In Chapter 4, we identified that the test code presents very high
values of unit complexity, and they are not easy to maintain. Additionally, we observed
in Chapter 5 that test cases with variability are more complex than the HCS test without
variability. Therefore, to obtain the test contributors’ perception, we asked them if they
agree that the HCS test’s code complexity is higher than SS. 76% of the test contributors
agree (24%) or strongly agree (52%) with this statement (Figure 7.9). They argue that
HCS implementation (like #ifdef annotations) generally introduces more instructions
making the code more complex. Additionally, the Contributor C29 highlights that “the
code complexity (the control flow of the code) is not the main problem related to complexity.
He stated that the code relationship (the feature scattering) is much more problematic. As
a result, it increases the test code complexity considerably.”

Figure 7.9: Code Complexity.

Code Dependence. In Chapter 4, the average of the unit dependence presented low val-
ues, and the results were encouraging. However, some test programs showed values totally
out of the scale. This way, we also investigated the values of dependence in a set of HCS
and compared it to SS (Chapter 5). We observed that the variability in tests increases the
values of unit dependence in HCS. Therefore, we asked if the dependence of tests in HCS
is higher than SS due to variability. The test contributors (72%) strong/strongly agree
that the variability raises dependence (Figure 7.10). One contributor (C11) reported
that the high values of unit dependence in HCS could be explained since “these files test
different features and combinations of them, resulting in calls to different parts of the
production code”. The perception of test contributors indicates that variability present in
HCS tests and the dependence makes them “complex to maintain” i.e., changes in the
production code can propagate quickly to the test code and cause tests to break. This
increases the chances of test smells [101] and raises the test code maintenance effort.

Code Clones. We identified a high percent of cloned functions (Chapter 4) in config-
urable systems. Since the clones are a great indicator of test smell [101], we extended the

7.3 RESULTS 105

Figure 7.10: Code Dependence.

investigations in a set of configurable systems and compared them to SS. We observed
that SS has the triple of functions cloned compared to configurable systems. When asked
the test contributors about the perception of clones in configurable systems and SS, 65%
of the test contributors responded that this difference was already expected. They argued
that configurable systems code is structured in a reusable way, reducing code clones, while
SS generally does not apply any systematic reuse. On the other hand, the Contributor
(C29) highlights that ”although the presence of clones in test code in configurable systems
is less than SS, the complexity present in configurable systems make the clones present in
these systems more dangerous.” We also highlight that the tool support for clone detec-
tion in single systems is widely explored [130, 131, 132, 133], while configurable systems
presenting only some preliminary results [134, 151, 152].

Figure 7.11: Code Clone.

106 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

7.3.4 Main Challenges

We also asked the test contributors about the main challenges of testing configurable
systems based on their experience. This way, we obtained important aspects of the test
development that the questionnaire does not cover. The main concern highlighted by the
contributors is the variability inside the tests. 57% of the contributors cited the variability
as the main problem in the test development in configurable systems, and the most cited
reason among the variability aspects is the feature interaction. The contributor (C22)
states that “the greatest difficulty is featuring interactions, as there is a disparity between
them, and among other interaction problems.” Additionally, the contributor (C04) high-
lights that the code complexity is improved as a result of the interaction of features. In
fact, determining the influence of feature interactions on a system’s behavior has been a
challenging subject for decades [108]. Although tool support has been presented [108], it
does not cover the test code.

Another aspect highlighted by the test contributors was the lack of existence of smell
detection tools. The contributor (C09) states that “based on your experience some errors
in the tests are recurrent, and the use of tools can avoid them”. In fact, as we had identified
in Chapters, 4 and 5, some test smells are more prone to occurrence in reusable systems,
and the test smell detection is not straightforward in these systems.

Test coverage was also cited as a current problem. The contributor (C18) explains
that code coverage and fault detection effectiveness are not direct in configurable systems
due to the variability inside the test artifacts i.e. the coverage of a test suite is not cor-
related with its size since the tests may not identify the variability aspects. Additionally,
the contributor (C25) highlights that it is challenging “identify whether the tests are cov-
ering the correct code interaction.” Although different coverage tool has been proposed
[5, 63], these tools do not consider the interaction among features in the analysis.

7.4 DISCUSSION

The study results reinforced the previous results (Chapters 4, 5, and 6). Some discrepancy
exists which can be explained by analyzing some particularities. Concerning the aspects
of the test evolution survey, we do not have much to compare since this is the first one
with such a strong focus on test evolution in reusable systems.

As a result of the initial effort of implementation in configurable systems, the test
contributors reinforced the necessity of more test contributors at this time of a project.
Open-source teams need to be aware of this demand and be prepared to avoid high work-
loads since it is a concerning situation identified in the previous studies. According to
the test contributors, the high workload is recurring in the test development of reusable
systems, impacting the test quality negatively. The test contributors agreed that the
adoption of contributors only involved with the test activities could contribute to the
workload reduction and more precise tests. However, restricting the interest of contribu-
tors to only working on tests could be detrimental since they are not familiar with the
production code. Although the high concentration of activities does not necessarily cause
bottlenecks in development and communication or implied in the quality of developing

7.5 THREATS TO VALIDITY 107

production code, it does not hold for the test contributors’ perception.
According to the contributors, the complexity in configurable systems is high, and it

is increased by the implementation that generally introduces more instructions making
the code more complex. Moreover, the code relationships (the feature scattering) and
feature interactions introduce more complexity to the code beyond structural complexity.
Concerning test code dependence, the contributors believed that the joint between depen-
dence and variability increases maintainability considerably. As a result, the contributors
highlight the increases in the chances of test smells occurrences and the maintenance
effort. Although clones in configurable systems are not higher than SS, the lack of tool
support for clone detection in configurable systems and the variability in the code make
the clones more dangerous in these systems.

Interestingly, the test development’s main challenge based on the contributors’ per-
ception is the variability of the test code. They highlight the feature interaction, and the
lack of a tool that could help them deal with it makes test evolution more time-consuming
and increases the cost. Additionally, the lack of tool support for test smell detection and
code coverage, considering the variability aspects, is also highlighted by the test contribu-
tors as a problem. In fact, tool support is essential in any development activities to avoid
the introduction of errors, reduce costs, and improve quality.

7.5 THREATS TO VALIDITY

There are some threats to the validity of our study, which are briefly described and
discussed:

Internal Validity: The most obvious threat to internal validity is the sample size, which
is small when applying statistical inference-based analysis methods. The small sample size
is a consequence of our labor-intensive data collection method based on expert opinion
and the belief that it was more important to get high-quality, in-depth information rather
than lower quality. Additionally, most of the respondents are experienced developers,
giving us confidence in our survey responses.

Construct Validity: This question addresses whether the measures had some stability
across methodologies, i.e., that the data reflect accurate scores of artifacts chosen. We
sought to improve the construct validity with some steps. Thus, we conducted pilot
tests, which led to the questionnaire’s modifications to improve both the content and
construct validity. Moreover, during the pilot, we asked the respondents to improve the
questionnaire, e.g., removing some items and adding new ones.

External Validity: As in any empirical study, our study also has threats to external
validity. Our results may not hold for all test developers. An additional sample of test
developers may result in some different results. To mitigate the risk due to this sampling,
we surveyed HCS test contributors in various projects and domains.

7.6 CHAPTER SUMMARY

In this study, we investigated the contributors’ opinions to provide the required informa-
tion to understand the test evolution from different perspectives, such as effort, main-

108 SURVEY WITH TEST CONTRIBUTORS TO UNDERSTAND THE TEST EVOLUTION

tainability, variability, and general aspects.
The arithmetic average aggregation method was used to gather the results obtained

from the judgment justified by our analysis of test contributors’ responses. The findings
found in this study show to be consistent when comparing with previous ones.

Finally, this study also contributed by defining and improving the way to perform
and report surveys. A guideline for experimental studies was also used during the study
definition, which was very important to conduct and report the results, enabling further
extensions and the study replication.

The next chapter presents the research synthesis and evaluation of the Multi-method
approach performed in this thesis. Moreover, the strengths and weaknesses of the multi-
method approach and lessons learned are discussed.

PART IV

CONCLUSIONS

Chapter

8
RESEARCH SYNTHESIS AND EVALUATION OF THE

MULTI-METHOD APPROACH

In Section 1.4, we introduced the multi-method approach used in this work based on em-
pirical software engineering ideas. The process aims to advance the test evolution body
of knowledge in reusable systems, evaluating characteristics that indicate the effort to
develop and maintain the test suite, identifying reusable aspects that can affect the tests
by analyzing the available evidence, the good practices, and lessons learned. The multi-
method approach was initiated with an informal literature review (Chapter 3), which
provided an overview of the existing research related to this thesis’s subjects and pre-
sented related work to our investigation. The goal was to map out the test evolution field
in reusable systems, synthesize available evidence to suggest important implications for
practice, and identify research trends, open issues, and areas for improvements. Then,
we started the second phase, which was composed of four empirical studies. First, we
performed a case study (Chapter 4) to analyze the test evolution of a large configurable
system. Next, we conducted a comparative analysis (Chapter 5) to evaluate the test evo-
lution in 18 open-source projects from various sizes and domains in configurable systems
and their similarities and differences to 18 SS projects. The comparison allowed us to
identify similarities that can help us adopt techniques from SS to configurable systems
and vice versa. The differences could help us design new strategies addressing the dis-
crepancies. Third, we performed an extended study (Chapter 6) to analyze the test suite
evolution in another category of reusable systems to verify whether some observations are
recurring and gather new data that support the findings. Finally, we surveyed (Chapter
7) test contributors to investigate the test evolution from the development point of view
and improve the findings in previous stages. The survey study extracted evidence from
experts and built a perception of reality compared to the evidence extracted in earlier
studies. In general, the evidence extracted during previous studies was confirmed, and
identified new evidence.

In this chapter, we present the synthesis of the findings identified and validated in this
Thesis. As we conducted a triangulation of data and collected quantitative and qualitative

111

112 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

results, a research synthesis was applied to summarize, integrate, combine, and compare
our findings from different studies to understand test evolution in configurable systems.

This Chapter is organized as follows. Section 8.1 discusses the justification for adopting
the multi-method research approach. Section 8.2 presents the research synthesis methods
applied in this Thesis. Section 8.3 and 8.4 summarize, respectively, the findings of this
Thesis and the applied multi-method approach. Section 8.5 discusses the results and
analysis of this research based on the research questions. Section 8.6 discusses the benefits
and drawbacks of applying this multi-method approach. Finally, Section 8.7 summarizes
the Chapter.

8.1 JUSTIFICATION FOR THE MULTI-METHOD APPROACH

To achieve more reliable and generalizable results, an empirical study requires confirma-
tory power, reached by (i) external replication and (ii) investigation of the same phe-
nomenon through a different empirical study [27]. The most effective way to achieve the
second goal is through an approach that involves different methods. This way, the findings
found during the first study are refined and investigated through the next studies. The
results from each study can, therefore, turn out to confirm one another.

Comparing with the single-method approach (and to a large extent with the same
method replication approach), an evolutionary application of the multi-method approach
offers the following benefits:

• Robust conclusion: Results demonstrated by the multi-method phases are likely
to be robust [27]. Using a combination of research methods applied to different
population samples, conclusions are less likely to be affected by poor design, sample
bias, misapplication of statistical tests, etc. Critically, the complementary nature
of the research methods helps address individual techniques’ relative weaknesses of
individual techniques [27].

• Increased understanding: The multi-method approach can result in a deeper
appreciation of the important factors affecting the phenomenon under investigation
[27]. Different research methods, collecting different data types, are more likely
to provide broad coverage of the problem space and alternative insights. As the
program becomes more focused, a better understand should be developed. Just
as important, differing results provide an opportunity for improved understanding
through detailed investigation of the causes of inconsistency [27].

Consequently, results emerging from a multi-method approach are more impressive
than those from a single empirical study. In turn, the software engineering community is
likely to have more confidence in their reliability.

8.2 RESEARCH SYNTHESIS

The application of a multi-method approach to investigate the test evolution in con-
figurable systems had provided an interesting and important set of empirical results,

8.3 SUMMARY OF THE FINDINGS 113

which has shown consistency across the phases of the study (Chapters 4, 5, 6, and 7).
However, credibly integrating multiple studies is not simple [153]. A classic approach to
understanding what several studies say about some phenomenon is to conduct triangu-
lation of information, a qualitatively existing results summary, and manually synthesize
them [153]. The drawback of this approach is that it lacks a precise method for research
synthesis.

Research synthesis is a collective term for a family of methods used to summarize,
integrate, combine, and compare the findings of different studies on a specific topic or
research question [154]. One of these methods of research synthesis is called Narrative
Synthesis [155]. The Narrative Synthesis is a general framework of selected narrative
descriptions and primary evidence that includes commentary and interpretation combined
with specific tools and techniques that increase transparency, and trustworthiness [155].
A characteristic of narrative synthesis is adopting a narrative (as opposed to statistical)
summary of primary studies’ findings. According to [154], narrative synthesis can be
applied to quantitative and/or qualitative research reviews.

The multi-method approach applied in this thesis synthesizes the evidence combining
the classic and narrative synthesis techniques. This way, we investigated each source of
information to derive each finding in the study and present the results in a narrative form.
For each finding, we analyzed which source of evidence/empirical method contributes to
identifying that finding, reporting it was the original data source or a confirming source.
We also analyzed whether any data sources suggested contradicting evidence.

8.3 SUMMARY OF THE FINDINGS

In this section, all the findings are summarized. Table 8.1 was developed based on [156]
and shows a summary of the empirical studies. The findings were classified based on
different categories. Firstly, they were classified according to the research method, which
exposes it: case study (CS) (Chapter 4), comparative study (CP) (Chapter 5), extend
study (ES) (Chapter 6) or survey (SR) (Chapter 7). As the research methods were
performed sequentially, the first time in which evidence was found was marked with “S”
(Source of information). If confirmed the evidence in another method, a “C” was used
to categorize as a confirming evidence. If the finding was identified and confirmed in the
same method, in this case, the finding was marked as “SC” (source and confirmation).
A finding can also be marked with more than one “S”, which means that there are
alternatives research methods responsible for the finding or research methods used to
produce the findings. A “CE” indicates that a finding of the research method type is
contradictory to the source of the finding.

F1 - The effort to develop a test suite is high. By analyzing the effort metrics
and tabulating their trends over time (in Chapters 4, 5 and 6), we observed a continuous
growth in size, and functional content. Although the number of contributors increases,
the effort of development does not decrease over time. The perception of test contributors
(Chapter 7) reinforced this finding since small changes could result in other alterations
in the related code.

F2 - More effort is spent in the early stages of a project. We identified considerable

114 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

Table 8.1: Summary of Findings.

F# Brief Description CS CP ES SR

Effort

F1 The effort to develop a test suite is high. S C C C
F2 More effort is spent in the early stages of a project. S C C C
F3 The effort increases as the project evolve. S C CE C
F4 Contributors’ workload is high during evolution. S C C
F5 More contributors have to be only involved with test activities S C
F6 Not all projects include tests at the beginning. S SC
F7 Although there is a perception of quality in reusable systems from a

testing perspective, we identified not all projects perform tests.
S

F8 Lack of Test framework considering the reusable aspects. S C

Maintenance

F9 The test code maintainability is low over the evolution. S C C
F10 Some test smells are more prone to occurrence in reusable systems. S C C
F11 Lack of tool support to the specific context of reusable systems. S C C C
F12 High test file churn. S C
F13 Test contributors in configurable systems are less productive as a re-

sult of variability aspects.
S S

F14 The opposite evolution behavior makes difficult the adoption of similar
solutions for SS and configurable systems.

S

Ownership F15 High concentration of work. S C C C
F16 One-time Contributors occurrence. S

Reusable aspects

F17 The scattering and tangle degree are not a problem in the test code. S
F18 There is a correlation between LOC, LOF, and NOFC. S
F19 Variability negatively impacts maintenance. S C
F20 The fraction of variable annotated code in test code is the same as

production code.
S C

F21 The interaction in the test code is a great challenge. S
F22 The variability difficult the code coverage detection. S

CS- Case study.

CP- Comparative Study.

ES- Extended Study.

SR- Survey.

S- Source of information.

C- Confirming evidence.

SC- Source of information and Confirming evidence.

CE- Contradictory evidence.

8.3 SUMMARY OF THE FINDINGS 115

effort in the early stages when the project increased fast due to the initial implementation.
This way, the development teams that intend to start developing tests have to consider
allocating more contributors at the beginning of the project.

F3 - The effort increases as the project evolve. We notice that the effort increases
significantly as the tests evolve, mainly as a result of the growth of the size (LOC) and
functional content (Test Cases) (Chapters 4 and 5). Although the effort does not increase
after the first quarter of evolution lifetime in Chapter 6, the test contributors’ perception
confirms the finding of previous chapters. Interestingly, we identified that the number of
contributors also rises when considering the ratio between LOC and the number of unique
contributors per month. However, the tests exhibit incredibly high values, indicating that
the contributors have a great deal of effort to develop and evolve the test suite. This is a
concerning situation and needs to be avoided since, as more test files a developer oversees,
the more time and effort he will need to devote [25], increasing the time and resources
spent in the test activities.

F4 - Contributors’ workload is high during evolution. As reported in the F3,
although the number of contributors rises, the ratio between LOC and the number of
unique contributors also increases. This way, we identified that the contributors’ workload
is increasing. It is a concerning situation since defects in configurable systems generally
need a quick fix, and this scenario can make a quick fix harder.

F5 - More contributors have to be only involved with test activities. We identi-
fied that the contributors’ workload is increasing (F4). It is a concerning situation since
defects in reusable systems generally need a quick fix, and this scenario can make a quick
fix harder. Development teams have to be watchful of this situation, and whether nec-
essary, should consider having more contributors only involved with test activities. This
situation is especially true at the beginning of the project when a considerable effort is
spent due to the fast growth caused by the initial implementation (F2). This action can
contribute to a better distribution of the tasks, and consequently, the workload reduction.

F6 - Not all projects include tests at the beginning. In chapter 5, we identified
that part of the projects does not have tests at the beginning of the project’s lifetime. It
was also confirmed in chapter 6, where we observed that 12.7% of the projects take more
than ten releases to introduce the tests. This is a concerning situation since the quality
of the projects is an essential factor for the stability of reusable systems. The presence of
tests, in the beginning, can avoid that defective code propagates errors to a large number
of systems. Thus, project developers should include tests since the project start.

F7 - Although there is a perception of quality in reusable systems from a
testing perspective, we identified not all projects perform tests. One of the
most cited [42] reasons for using projects in reusable systems is the perception of quality.
However, we identified that 14.5% of the projects do not have any test script. Therefore,
from testing, the perception of the quality does not hold. This situation is concerning
since projects that do not have tests still have a lot of clients. These projects without
tests become the systems more error-prone. This way, the utilization of projects without
tests should be avoided, and development teams need to consider analyze if a project

116 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

performs tests and check the history of reported problems. In the short and medium
term, the adoption of these steps can avoid unexpected issues.

F8 - Lack of Test framework considering the reusable aspects. Test frameworks
are an essential part of any successful automated testing process and can improve the
test quality [5]. In Chapters 4 and 5, we observed that the projects do not use any test
frameworks considering the variability aspects. In Chapter 6, we identified that 71% of
the projects do not use any test framework. This is a concerning situation that results in
more effort in the test development. We believed that creating frameworks considering
these specifics points of reusable systems could help the development teams control and
improve upon their current work processes and productivity and improve the test quality
[5].

F9 - The test code maintainability is low over the evolution. In Chapters 4 and
5 we study how some maintainability sub-characteristics of the test evolve. Although not
all metrics selected to evaluate the maintainability present unsatisfactory indicators, the
overall assessment of test code maintainability is low. We observed that the test code’s
maintenance is not easy and could become more difficult as the project evolves. Addition-
ally, our results indicate that the variability of existing tests increases the maintainability
challenges.

F10 - Some test smells are more prone to occurrence in reusable systems. The
analysis of maintainability sub-characteristics show that the test code in reusable systems
is more susceptible to the presence of the following test smells:

• Obscure and Eager Test smell - The high percentage of test programs with
significant values of unit size (LOC) (Chapters 4 and 5) is a warning for the presence
of these smells [101]. An obscure test is a test that has a lot of noise in it, making
it hard to understand, and consequently, hard to maintain. This test does not serve
as documentation, while an eager test attempts to test too much functionality.

• Conditional Test Logic code smell - In the studies (Chapters 4 and 5) we
identified a high incidence of the test code with a very high levels of unit complexity.
The complexity should be kept as low as possible to avoid writing tests for test code
[23]. This is also underlined in the description of the Conditional Test Logic code
smell [101], which advocates keeping the number of possible paths as low as possible
to keep tests correct and straightforward.

• Fragile test smell - We observed unit dependence values totally out of the scale in
test code (Chapter 4). In the context of test code, the modules’ coupling is minimal
[23], and high values indicate that the test can be divided into more units. Thus,
high unit dependence makes the tests more likely to occur fragile test smell [101],
and generally, the presence of this smell increases the test code maintenance effort
[101].

• Test code duplication - We identified a high percent of cloned functions (Chapters
4 and 5), and the clones are scattered in the files (Chapter 4). Test code duplication

8.3 SUMMARY OF THE FINDINGS 117

occurs when copy-paste is used as a way to reuse test logic. This results in many
copies of the same code, which may significantly increase the test maintenance cost
and make the evolution significantly more difficult [23, 105]. It also affects stability
since unmanaged code clones can lead to partially applying a change to the clones,
thus introducing logical errors in the test code.

Some possible solutions for these smells in the context of SS are proposed in [101].
However, we identified that the opposite evolution behavior (Chapter 5) could make
complex the adoption of similar solutions of SS in reusable systems. This way, more in-
vestigation about the nature of these smells in configurable systems needs to be performed
to define suitable solutions.

F11 - Lack of tool support to the specific context of reusable systems. Our re-
sults show that variability increases the challenges in test development and maintenance,
and contributors generally do not recognize (potentially harmful) test smells [125]. Ad-
ditionally, the smell detection process (F10) is not too straightforward for configurable
systems. This way, tool builders should create or extends existing tools.

F12 - High test file churn. We observed that despite the configurable systems’ size and
complexity, the addition and exclusion of test cases are frequent. A high changeability
is a fact that may significantly increase the test maintenance cost. Although the high
value of test file churn suggests that test files are continually evolving [138, 19], this is
an alarming situation since prior research shows that frequently changing on code makes
them more error-prone [138]. This way, development teams need to be watchful of the
changes in test code to avoid the introduction of errors on code since a defect-ridden test
suite could not improve the software’s quality.

F13 - Test contributors in configurable systems are less productive as a result
of variability aspects. By combining evidence from the Chapters 4 and 5, we identified
that the test contributors in reusable systems are less productive than SS when considered
the LOC by the number of contributors. It can be explained by the presence of variability
in the test code, and other aspects, such as feature interaction [108], that make simple
alterations in configurable code more time-consuming (F9). This way, in the analysis of
configurable systems projects, researchers should not only focus on LOC to evaluate the
productivity of the test contributors but also consider variability aspects. We believed
that the creation of tools considering these specifics points in configurable systems could
help the development teams control and improve upon their current work processes and
productivity. Also, studies like [126, 127] to better understand productivity and work
habits in configurable systems can be very useful.

F14 - The opposite evolution behavior makes difficult the adoption of sim-
ilar solutions for SS and configurable systems. In chapter 5, we observed that
configurable systems and single systems have different evolution behavior along most
of the sub-characteristics analyzed. This way, some possible solutions proposed for SS
could make it challenging to adopt in configurable systems. We conjecture that where the
differences, more investigation about the nature of these differences is needed to define
suitable solutions.

118 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

F15 - High concentration of work. Chapters 4, and 5 we observed a high concentration
of work since 20% of contributors are responsible for 92% of the work performed in the
test activities in configurable systems. Recent studies [123, 124] have shown that a high
concentration of activities does not necessarily cause bottlenecks in development and
communication or imply in the quality. However, test activities have different dynamics
[23], and according to the test contributors, a high concentration in the test development
is bad in the long term, and it can be an alert related to the quality of code.

F16 - One-time Contributors occurrence. Test contributors need to be watchful
of the alterations made by One-time Contributors. In Chapter 6, we identified a high
value of One-time Contributors. According to [140], contributors often struggle with code
that they are not familiar. However, test and source code tend to co-evolve [11, 23], i.e.,
changes to the source code often require modifications to the test files, and vice versa, a
novice developer may easily introduce a source code change, unaware that a test change
may be necessary. If the test is not changed when a change is required, it can cause tests
to break (fragile test code smell [101]) and increases the test code maintenance effort [23].
Thus, it is essential the tool support to maps the dependence between the production
code and test code to assist the OTC in identifying code changes that require changes in
the test suite. Additionally, popular package developers should encourage OTCs to place
further contributors.

F17 - The scattering and tangle degree are not a problem in the test code.
In Chapter 4, we observed that although some features do not fit well into the architec-
tural model and are scattered across the test code, the proportion of scattered features is
nearly constant, which may indicate that it is an evolution parameter actively controlled
throughout the evolution. Additionally, the feature expressions present low complexity
in terms of tangle degrees. Low complexity is preferable because feature expressions that
consist of many feature constants impair program comprehension and complex mainte-
nance. This way, we do not find any indications that these characteristics (measurements)
are attractive to evaluate the test code evolution.

F18 - There is a correlation between LOC, LOF, and NOFC. We notice that the
variability increases as the size of test code growth, i.e., the NOFC, and LOF metrics
increases as a result of LOC growth. Researchers’ investigation of this correlation can
be valuable information since development teams could use the existing tools for LOC
measurement to predict the increase of these variability metrics. The prediction becomes
possible that contributors take preventive action to reduce the complexity inherent to the
variability and make the maintenance easier.

F19 - Variability negatively impacts maintenance. Additionally, we noticed that
the test case life cycle is short, and it is not a good indicator of low maintainability
[23]. At the test programs (code files) level, we note that test programs with variability
remain less time than test programs without variability. This can be an indicator that
the variability influence negatively in maintainability since it introduces more changes.

F20 - The fraction of variable annotated code in the test code is the same as the
production code. According to [93], the fraction of cpp-annotated code (LOF/LOC)

8.4 FINDINGS OF THE MULTI-METHOD APPROACH 119

in some mid-size software systems exceeds 50% of the codebase. However, large software
systems (Freebsd, GCC, Linux, and OpenSolaris) contain a small percentage of variable
source code compared to the average. [88] analyzed the variability in 20 open-source
systems and reported that these systems have an average of 22% of cpp-annotated lines
of code. However, in large systems, the percentage of all code annotated lines varies from
9% to 14%. Even though we had analyzed test code that has a different purpose from
the production code analyzed by all the other studies cited here, our results (Chapters 4
and 5 also find a similar proportion of annotated code.

F21 - The interaction in the test code is a great challenge. The main concern
highlighted by the contributors is the feature interaction. The contributors state that
code complexity and the time devoted to implementing changes in the code are increased
due to the interaction of features. Determining the influence of feature interactions on a
system’s behavior has been a challenging subject for decades [108]. Although tool support
has been presented [108], it does not cover the test code.

F22 - The variability difficult the code coverage detection. Code coverage im-
proves fault detection. However, the coverage is not direct in configurable systems due
to the variability inside the test artifacts, which increases the possible paths. This way,
the test suite’s coverage is not correlated with its size since the tests may not identify
the variability aspects. Additionally, it is challenging to determine whether the tests are
covering the correct code interaction. Although different coverage tool has been proposed
[5, 63], these tools do not consider the interaction among features in the analysis.

8.4 FINDINGS OF THE MULTI-METHOD APPROACH

The findings F1 to F22 were based on the evidence identified through the research meth-
ods. Also, we identified the findings F23 to F28 concerning the multi-method approach
analysis. These last findings contribute to a comprehensive body of knowledge about the
multi-method research approach.

F23. The empirical study that found the highest number of findings was the case
study (Chapter 4). However, it is valid to highlights that this study was the first one,
and some of the findings of this study guide the conjunctions of the next steps.

F24. The empirical study which confirmed the highest number of findings was the
comparative study (Chapter 5).

F25. The findings F6 and F13 could not have been established without having access
to multiple data sources. In Chapter 5 we observed that some projects do not start with
tests. However, at that point, this observation was not investigated. In the extended study,
we investigated this observation, and we could confirm the perception. The same occurred
in the finding F13 when the LOC by number of contributors was used to evaluate the
productivity of them. Therefore, the data source triangulation strategy has been used not
only to build confidence for the findings F6 to F13, also to their establishment.

F26. One finding (F3) has been identified as a contradictory finding. Although three
different studies indicate one direction, one study showed a different perception of this
finding. We believed that for this finding, more empirical studies are required to confirm
or refute them.

120 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

F27. The findings F7, F14, F16, F17, F18, F21, and F22 have not been confirmed
by more than one empirical study. Similarly, these not confirmed findings need more
empirical investigations.

8.5 RESEARCH QUESTION ANALYSIS

In this section, we summarize the results based on each research question defined in this
work (Chapter 1).

RQ1 - How much effort is required to evolve test suite?
We identified that the effort to develop the test suite is high, mainly in the early stages of
the project. Moreover, we observed that few test suites concentrated a significant part of
the development effort, and the effort increase as the projects evolve. As a result, the test
contributors presented a high workload during evolution. One possible solution to solve
this problem could be the adoption of contributors only involved in test activities. Other
factors as the high concentration of work and the lack of tool support considering the
variability aspects also contribute to the increased effort required to develop and evolve
the test suite in reusable systems.

RQ2 - How maintainable is the test suite?
Although, not all the maintainability sub-characteristics investigated present unsatisfac-
tory indicators, the overall assessment of test code maintainability is low. Also, we iden-
tified that the maintenance of the project is not easy and could become more problematic
as it evolves. We observed that a significant percentage of the test code is classified with a
high chance of problems, indicating that tests’ maintenance is difficult. Additionally, the
presence of high values of cloned functions is a concerning situation since it increases the
test code’s maintenance effort. Finally, the lack of tool support to the specific context of
reusable systems also increases the maintainability.

RQ3 - How is the ownership of test code?
We identified a high concentration of work of the test contributors in configurable sys-
tems. Although recent studies have shown that a high concentration of activities does not
necessarily cause bottlenecks in development and communication or imply in the quality,
the test contributors’ perception contrary, and according to them a high concentration is
bad in the long term, and it can be an alert related to the quality of code. Additionally,
we observed a high value of One-time Contributors. The test code made by OTCs is more
prone to introduction of errors, resulting in the increases the test code maintenance ef-
fort. Thus, we had identified that the balance of work needs of constant evaluation by the
development teams to keep the sustainability of the test as the projects evolve.

RQ4 - Are there reusable aspects that affect the tests?
We observed that the variability negatively impacts maintenance since it introduces more
complexity in the test code, consequently more time is devoted to implementing changes.
According the test contributors’ perception the main challenge is the interaction inside
the code. We identified that there is a correlation between LOC, LOF, and NOFC. This
correlation could be used by development teams to predict the increase of these variability

8.6 MULTI-METHOD APPROACH EVALUATION 121

metrics. The prediction becomes possible that contributors take preventive action to reduce
the complexity inherent to the variability and make the maintenance easier. On the other
hand, we identified that the scattering and tangle degree are not a problem in the test
code, and this way, these indications are unattractive to evaluate the test code evolution
related to variability.

8.6 MULTI-METHOD APPROACH EVALUATION

Applying the multi-method approach to test evolution in the context of configurable
systems has produced some exciting and important findings. As a result, we identified
some benefits of the approach’s application: (i) approach has demonstrated several con-
sistent findings across the phases, i.e., the approach has provided confirmatory power for
its results, and, hence, they are more reliable, and (ii) the approach became easier the
identification of important hypotheses for further investigation within the research pro-
gram. As a result of these benefits, the research program focuses on significant and more
critical problems. On the other hand, as an original research undertaking, we can cite a
drawback: the time and effort required to plan, design, and organize each phase of the
research program and analyze the collected data was considerably more than expected.

Although it is argued that the multi-method approach’s success far outweighs the
shortcomings, there are lessons to be learned. As a follow, we make some recommendations
that should aid researchers in attempting similar research programs.

• The high time and effort required to conduct a multi-method research program can
be reduced by the best planning of the phases and the inclusion of more people to
execute the study if necessary.

• Each phase must be recognized as an empirical study in its own right and no just
part of a multi-method approach. This offers two advantages: (i) the details of each
phase become available as the multi-method approach evolves, and (ii) each phase
should be reported with enough details to be replicated, and the findings should be
important enough to warrant it.

8.7 CHAPTER SUMMARY

The multi-method approach allowed us to achieve more reliable and generalized results.
Moreover, this approach demonstrated confirmatory power as most findings (facts) had
been consistently presented and validated by more than one empirical method. Thus,
the software engineering community is more likely to have confidence in the reliability
of the findings. Additionally, this approach’s application produced empirical results that
resulted in a body of knowledge about test evolution in configurable systems.

We believe that the findings of this study can serve as the basis to propose method-
ologies for test evolution in configurable systems and contribute to the design of new
techniques, tools, or frameworks in the future. Additionally, the effort’s comprehension
can help the community better plan the test development and reduce the costs spent in
the test phase.

122 RESEARCH SYNTHESIS AND EVALUATION OF THE MULTI-METHOD APPROACH

The next chapter presents the conclusions discussing our contributions, limitations
and outlines directions for future work.

Chapter

9
CONCLUDING REMARKS AND FUTURE WORK

Configurable Systems allow end-users to customize a system to suit their needs and
expected operational context [80]. It is based on the idea that configurable components,
built based on a standard design, can be configured and composed in different ways,
enabling the creation of a diversity of products [10]. The main benefits of this development
strategy are reducing the time to market, as mass-customization facilitates the creation
of tailored solutions, and improved software quality, as re-used components are tested in
different contexts [60].

Developing a configurable operational system is not easy [10] since these systems have
to cope with a considerable number of features that represent a unit of the functionality
of a software system and provide a potential configuration option [157]. The features can
be shared among several products, and any change in one feature may affect all related
products [10]. This way, it is crucial to have a good test suite to ensure product quality
and to facilitate future changes. However, developing and maintaining a test suite is time-
intensive [5, 7] and costly [8]. According to Brooks [9], the total time devoted to testing
is 50% of the total allocated time, while Kung et al. [8] suggest that 40 to 80% of the
development costs of software development is spent in the testing phase. This scenario
puts software development projects in a difficult situation: on the one hand, tests are
essential for software success; on the other hand, tests become a severe burden during
maintenance [11].

Interestingly, existing research in configurable systems has focused much of its efforts
on variability evolution as it occurs in the variability model. Still, it has ignored the
evolution of other related artifacts [75, 76, 77, 78, 79, 80]. The existing studies covering
variability evolution across different artifacts focus mainly on production code and build
systems [19, 12]. Thus, as an incipient topic, test evolution in configurable systems re-
quires a solid body of knowledge to guide test contributors and development teams to
take appropriate procedures for handling test evolution. As an attempt to bridge such
a gap, in this thesis, we employed a multi-method approach to developing an in-depth
understanding of test evolution in configurable systems to unveil evidence on the topic
from a range of sources.

123

124 CONCLUDING REMARKS AND FUTURE WORK

We emphasize that empirical evidence can promote the aimed understanding based
on factors that lead to test evolution from the point of view of effort and maintenance
and mitigation strategies to address these factors, building further knowledge about test
evolution. From that knowledge, it can be easier to develop tools to support the test
evolution process and methodologies that help the development teams to maintain the
test suite.

Along this Chapter, we summarize the main research contributions (Section 9.1),
discuss a future agenda, based on the set of yet-to-solve topics (Section 9.2), and draw
concluding remarks (Section 9.3).

9.1 SUMMARY OF CONTRIBUTIONS

Some test evolution studies were identified through the informal literature review study
described in Chapter 3. Although we do not find studies focusing on test artifacts as
the systems evolve, the key difference between this work and the previous ones is that
we combine different but complementary studies to address research. Additionally, we
performed a research synthesis that can provide both researchers and practitioners with
a means to define guidelines and adopt quality procedures to address test evolution issues.
Next, we present the contributions of this Thesis.

This work’s main contributions can be split into the following aspects: (i) a set of
empirical studies combining evidence from different sources, (ii) a set of empirical findings
to achieve the understanding of the test evolution, and (iii) dataset for the software
engineering community. These contributions are further described next.

• A set of empirical studies. Set of empirical studies that combine evidence from
different sources and to achieve the research’s objective. In the first phase of the
research program (Chapter 3), we provided an overview of the existing research re-
lated to this thesis’s subjects and presented related work to our investigation. The
goal was to map out the test evolution field in reusable systems, synthesize avail-
able evidence to suggest important implications for practice, and identify research
trends, open issues, and areas for improvements. The second phase was composed of
four empirical studies. First, we performed a case study to analyze the test evolution
of a large configurable system. Second, we conducted a comparative study to eval-
uate the test evolution in 18 open-source projects from various sizes and domains
in configurable systems and their similarities and differences to 18 SS projects.
The comparison allows us to identify similarities that can help us adapt techniques
from SS to configurable systems and vice versa. The differences can help us design
new strategies addressing the discrepancies. Third, we performed a comprehensive
study to analyze the test suite evolution in another category of reusable systems to
verify whether some observations are recurring and gather new data that support
the findings. Finally, we surveyed test contributors to investigate the test evolution
from the development point of view and improve the conclusions in previous stages.
The survey study extracted evidence from experts and built a perception of real-
ity compared to the evidence extracted in earlier studies. In general, the evidence
extracted during previous studies was confirmed, and new evidence was identified.

9.2 FUTURE WORK 125

• A set of empirical findings. The set of empirical findings from this multi-
method research approach promoted the understanding of the test evolution in
configurable systems in many perspectives, such as: (i) evidence of the effort to
evolve the test suite; (ii) evidence related to maintainability sub-characteristics of
the test evolution; (iii) variability aspects that impacts in the test evolution; and
(iv) analysis about the human factors that may influence the test evolution. The
knowledge base from these findings makes the test evolution in configurable systems
easier and reduces the time and cost to evolve the tests.

• Dataset. By mining the versioned systems of open source projects from various
sizes and domains used in the studies on this thesis, we provided three large datasets
on test evolution. The dataset can provide researchers with a testbed that can be
used for empirical research in software engineering;

9.2 FUTURE WORK

This work is an achievement towards a guide for test evolution in configurable systems,
and exciting directions remain to improve what was started here, and new routes can be
explored in the future. Thus, the following issues should be investigated as future work:

• Model of maintainability for test code in configurable systems - This
thesis presented the first investigations of the maintainability of test code in con-
figurable systems in an extended period. To evaluate the maintenance, we used
the maintainability sub-characteristics from the test code quality model proposed
by [23]. Future research includes investigating the relevance of the chosen metrics
for maintainability in configurable systems’ test code and formal proposition and
validation of a test evolution model in the context of variability.

• Dynamic analysis of the test code - We only provided a static analysis of
the test suite, and dynamics aspects are not considered in the evaluation. Future
work can include dynamics analyses such as code coverage, and fault detection
effectiveness of test suite in configurable systems [99].

• Tool support - Tool support has been out of the scope of this research. However,
developing a new tool or extending an existing one for supporting the test evolution
process will be an essential contribution to this area.

• More Empirical Studies - This Thesis presented the definition, planning, oper-
ation, analysis, interpretation, and packaging of a set of empirical studies. However,
new studies in different contexts, including various subjects and other domains, are
still necessary to increment the collection of empirical evidence extracted.

9.3 CONCLUDING REMARKS

Configurable systems have to cope with considerable numbers of points of variabilities.
The high degree of variability and features spread across many software artifacts makes

126 CONCLUDING REMARKS AND FUTURE WORK

variability pervasive in the system. This way, it is of utmost importance to have a test
suite available to ensure the current state of the software system and ease future changes.
Surprisingly, little is known about test evolution in configurable systems, directly impact-
ing the quality of existing tools and methodologies.

This work presented a set of empirical evidence that aims to promote the understand-
ing of test evolution in configurable systems towards advancing the research concerning
test evolution. Based on the identified reasons that increase the test suite effort and
maintainability, we provided some implications for development teams and researchers.
Such implications can improve the current practices, tools and make the software tests
less expensive and time-consuming.

Additionally, this Thesis presented a multi-method approach used to perform empir-
ical software engineering research. The multi-method research methodology was adopted
in this investigation to understand better how the tests evolve in configurable systems.
According to the data collected and analyzed, the approach presented indications of its
viability. We believe that this Thesis is one more step to the maturation of the test
evolution topic.

BIBLIOGRAPHY

1 LEHMAN, M. On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software, v. 1, p. 213 – 221, 1979. ISSN 0164-1212.

2 Lehman, M. M.; Ramil, J. F.; Wernick, P. D.; Perry, D. E.; Turski, W. M. Metrics
and laws of software evolution-the nineties view. In: Proceedings Fourth International
Software Metrics Symposium. [S.l.: s.n.], 1997. p. 20–32.

3 LEHMAN, M. m. Software’s future: Managing evolution. IEEE Softw., IEEE Computer
Society Press, Los Alamitos, CA, USA, v. 15, n. 1, p. 40–44, jan. 1998. ISSN 0740-7459.
Dispońıvel em: ¡http://dx.doi.org/10.1109/MS.1998.646878¿.

4 Bennett, K. Legacy systems: coping with success. IEEE Software, v. 12, n. 1, p. 19–23,
Jan 1995.

5 MOONEN, L.; DEURSEN, A. van; ZAIDMAN, A.; BRUNTINK, M. On the interplay
between software testing and evolution and its effect on program comprehension. In:

. Software Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 173–
202. ISBN 978-3-540-76440-3.

6 Reiss, S. P. Constraining software evolution. In: International Conference on Software
Maintenance, 2002. Proceedings. [S.l.: s.n.], 2002. p. 162–171.

7 ELLIMS, M.; BRIDGES, J.; INCE, D. C. The economics of unit testing. Empirical
Softw. Engg., Kluwer Academic Publishers, Hingham, MA, USA, v. 11, n. 1, p. 5–31,
mar. 2006. ISSN 1382-3256.

8 KUNG, D. C.; GAO, J.; KUNG, C.-H. Testing Object-Oriented Software. 1st. ed. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1998. ISBN 0818685204.

9 BROOKS JR., F. P. The Mythical Man-month (Anniversary Ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN 0-201-83595-9.

10 MACHADO, I. D. C.; MCGREGOR, J. D.; CAVALCANTI, Y. a. C.; ALMEIDA, E. S.
D. On strategies for testing software product lines: A systematic literature review. Inf.
Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 56, n. 10, p. 1183–1199,
out. 2014. ISSN 0950-5849.

11 ZAIDMAN, A.; ROMPAEY, B. V.; DEMEYER, S.; DEURSEN, A. v. Mining software
repositories to study co-evolution of production & test code. In: 2008 1st International
Conference on Software Testing, Verification, and Validation. [S.l.: s.n.], 2008. p. 220–229.
ISSN 2159-4848.

127

http://dx.doi.org/10.1109/MS.1998.646878

128 BIBLIOGRAPHY

12 ZAIDMAN, A.; ROMPAEY, B.; DEURSEN, A.; DEMEYER, S. Studying the co-
evolution of production and test code in open source and industrial developer test pro-
cesses through repository mining. Empirical Softw. Engg., Kluwer Academic Publishers,
Hingham, MA, USA, v. 16, n. 3, p. 325–364, jun. 2011. ISSN 1382-3256. Dispońıvel em:
¡http://dx.doi.org/10.1007/s10664-010-9143-7¿.

13 PINTO, L. S.; SINHA, S.; ORSO, A. Understanding myths and realities of test-suite
evolution. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. New York, NY, USA: ACM, 2012. (FSE ’12), p.
33:1–33:11. ISBN 978-1-4503-1614-9.

14 PINTO, L. S.; SINHA, S.; ORSO, A. TestEvol: A tool for analyzing test-suite evo-
lution. In: 2013 35th International Conference on Software Engineering (ICSE). [S.l.]:
IEEE, 2013. p. 1303–1306. ISBN 978-1-4673-3076-3. ISSN 02705257.

15 HILTON, M.; BELL, J.; MARINOV, D. A large-scale study of test coverage evolution.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2018. (ASE 2018), p. 53–63. ISBN 978-1-4503-
5937-5.

16 SOUTO, S.; D’AMORIM, M.; GHEYI, R. Balancing soundness and efficiency for
practical testing of configurable systems. In: Proceedings of the 39th International Con-
ference on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2017. (ICSE ’17), p.
632–642. ISBN 978-1-5386-3868-2.

17 Kim, C. H. P.; Khurshid, S.; Batory, D. Shared execution for efficiently testing product
lines. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering.
[S.l.: s.n.], 2012. p. 221–230. ISSN 1071-9458.

18 NGUYEN, H. V.; KäSTNER, C.; NGUYEN, T. N. Exploring variability-aware exe-
cution for testing plugin-based web applications. In: Proceedings of the 36th International
Conference on Software Engineering. New York, NY, USA: ACM, 2014. (ICSE 2014), p.
907–918. ISBN 978-1-4503-2756-5.

19 MCINTOSH, S.; ADAMS, B.; NGUYEN, T. H.; KAMEI, Y.; HASSAN, A. E. An em-
pirical study of build maintenance effort. Proceeding of the 33rd international conference
on Software engineering - ICSE ’11, p. 141, 2011. ISSN 0270-5257.

20 MCINTOSH, S. Build system maintenance. n. Section 4, p. 1167, 2011.

21 NETO, C. R. L.; NETO, P. A. da M. S.; ALMEIDA, E. S. de; MEIRA, S. R. de L. A
mapping study on software product lines testing tools. In: Proceedings of the 24th Inter-
national Conference on Software Engineering & Knowledge Engineering (SEKE’2012),
Hotel Sofitel, Redwood City, San Francisco Bay, USA July 1-3, 2012. [S.l.]: Knowledge
Systems Institute Graduate School, 2012. p. 628–634.

http://dx.doi.org/10.1007/s10664-010-9143-7

BIBLIOGRAPHY 129

22 Kudrjavets, G.; Nagappan, N.; Ball, T. Assessing the relationship between software
assertions and faults: An empirical investigation. In: 2006 17th International Symposium
on Software Reliability Engineering. [S.l.: s.n.], 2006. p. 204–212. ISSN 1071-9458.

23 ATHANASIOU, D.; NUGROHO, A.; VISSER, J.; ZAIDMAN, A. Test code quality
and its relation to issue handling performance. IEEE Transactions on Software Engineer-
ing, v. 40, n. 11, p. 1100–1125, Nov 2014. ISSN 0098-5589.

24 BIRD, C.; NAGAPPAN, N.; MURPHY, B.; GALL, H.; DEVANBU, P. Don’t touch
my code! examining the effects of ownership on software quality. In: Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering. New York, NY, USA: Association for Computing Machinery, 2011.
(ESEC/FSE ’11), p. 4–14. ISBN 9781450304436.

25 ZHOU, M.; CHEN, Q.; MOCKUS, A.; WU, F. On the scalability of linux kernel
maintainers’ work. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. New York, NY, USA: ACM, 2017. (ESEC/FSE 2017), p. 27–37.
ISBN 978-1-4503-5105-8. Dispońıvel em: ¡http://doi.acm.org/10.1145/3106237.3106287¿.

26 RUNESON, P.; HöST, M. Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg., Kluwer Academic Publishers, Hingham,
MA, USA, v. 14, p. 131–164, April 2009. ISSN 1382-3256.

27 WOOD, M.; DALY, J.; MILLER, J.; ROPER, M. Multi-method research: an empirical
investigation of object-oriented technology. J. Syst. Softw., Elsevier Science Inc., New
York, NY, USA, v. 48, p. 13–26, August 1999. ISSN 0164-1212.

28 BROOKS, A.; DALY, J.; MILLER, J.; ROPER, M.; WOOD, M. Replication of Ex-
perimental Results in Software Engineering. [S.l.], 1996.

29 BREWER, J.; HUNTER, A. Multimethod Research: A Synthesis of Styles. [S.l.]: Sage
Publications, 1989. 1–5 p.

30 MARTIN, J. A garbage can model of the research process. Judgment calls in research,
Sage, Book, p. 17–39, 1982.

31 MARINESCU, P. D.; HOSEK, P.; CADAR, C. Covrig: a framework for the analysis
of code, test, and coverage evolution in real software. In: International Symposium on
Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014.
[S.l.: s.n.], 2014. p. 93–104.

32 COOPER, D.; SCHINDLER, P. Business Research Methods. [S.l.]: Mcgraw-Hill Col-
lege; 8th edition, 1998.

33 GILL, J.; JOHNSON, P. Research Methods for Managers. [S.l.]: London: Paul, 1991.

34 GALLIERS, R. Choosing Information System Research Approaches. [S.l.]: Information
System Research: issues, methods and practical guidelines, 1992.

http://doi.acm.org/10.1145/3106237.3106287

130 BIBLIOGRAPHY

35 FRANZ C.R., R. D.; KOEBLITZ, R. User response to an online information system:
A field experiment. MIS Quarterly, v. 10, p. 29–42, 1986.

36 MORSE, J. M. Principles of mixed methods and multimethod research designs. In
A. Tashakkori & C. Teddlie (Eds.) Handbook of mixed methods in social & behavioral
research, p. 189–208, 2003.

37 MIXED Methods Research: Merging Theory with Practice. Qualitative Social
Work, v. 11, n. 2, p. 220–225, 2012. Dispońıvel em: ¡https://doi.org/10.1177/
1473325011433761b¿.

38 BASTOS, J. F.; NETO, P. A. da M. S.; ALMEIDA, E. S. de; MEIRA, S. R. de L.
Software product lines adoption: An industrial case study (keynote). In: Proceedings of the
Third International Workshop on Conducting Empirical Studies in Industry. Piscataway,
NJ, USA: IEEE Press, 2015. (CESI ’15), p. 35–42.

39 BASTOS, J. F.; NETO, P. A. da M. S.; OLEARY, P.; ALMEIDA, E. S. de; MEIRA,
S. R. de L. Software product lines adoption in small organizations. J. Syst. Softw., Elsevier
Science Inc., New York, NY, USA, v. 131, n. C, p. 112–128, set. 2017. ISSN 0164-1212.
Dispońıvel em: ¡https://doi.org/10.1016/j.jss.2017.05.052¿.

40 NETO, P. A. da M. S.; MACHADO, I. d. C.; MCGREGOR, J. D.; ALMEIDA, E. S.
de; MEIRA, S. R. de L. A systematic mapping study of software product lines testing.
Inf. Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 53, n. 5, p. 407–423,
maio 2011. ISSN 0950-5849.

41 GAROUSI, V.; KüçüK, B. Smells in software test code: A survey of knowledge
in industry and academia. Journal of Systems and Software, v. 138, p. 52 – 81,
2018. ISSN 0164-1212. Dispońıvel em: ¡http://www.sciencedirect.com/science/article/
pii/S0164121217303060¿.

42 ABDALKAREEM, R.; NOURRY, O.; WEHAIBI, S.; MUJAHID, S.; SHIHAB, E.
Why do developers use trivial packages? an empirical case study on npm. In: Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2017.
[S.l.: s.n.], 2017. p. 385–395. ISBN 9781450351058.

43 POHL, K.; BöCKLE, G.; LINDEN, F. J. v. d. Software Product Line Engineering:
Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2005. ISBN 3540243720.

44 ALMEIDA, E. S. de. Software reuse and product line engineering. In: . Hand-
book of Software Engineering. Cham: Springer International Publishing, 2019. p. 321–348.
ISBN 978-3-030-00262-6.

45 TRACZ, W. Confessions of a Used Program Salesman: Institutionalizing Software
Reuse. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN
0-201-63369-8.

https://doi.org/10.1177/1473325011433761b
https://doi.org/10.1177/1473325011433761b
https://doi.org/10.1016/j.jss.2017.05.052
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://www.sciencedirect.com/science/article/pii/S0164121217303060

BIBLIOGRAPHY 131

46 BASILI, V. R.; BRIAND, L. C.; MELO, W. L. How reuse influences productivity in
object-oriented systems. Commun. ACM, ACM, New York, NY, USA, v. 39, n. 10, p.
104–116, out. 1996. ISSN 0001-0782.

47 EZRAN, M.; MORISIO, M.; TULLY, C. Practical Software Reuse. Berlin, Heidelberg:
Springer-Verlag, 2002. ISBN 1-85233-502-5.

48 KRUEGER, C. W. Software reuse. ACM Comput. Surv., ACM, New York, NY, USA,
v. 24, n. 2, p. 131–183, jun. 1992. ISSN 0360-0300.

49 POHL, K.; METZGER, A. Variability management in software product line engineer-
ing. In: Proceedings of the 28th International Conference on Software Engineering. New
York, NY, USA: ACM, 2006. (ICSE ’06), p. 1049–1050. ISBN 1-59593-375-1.

50 APEL, S.; KäSTNER, C. An overview of feature-oriented software development. Jour-
nal of Object Technology, v. 8, n. 5, p. 49–84, jul 2009. ISSN 1660-1769.

51 SOARES, L. R.; MACHADO, I. do C.; ALMEIDA, E. S. de. Non-functional properties
in software product lines: A reuse approach. In: Proceedings of the Ninth International
Workshop on Variability Modelling of Software-intensive Systems. New York, NY, USA:
ACM, 2015. (VaMoS ’15), p. 67:67–67:74. ISBN 978-1-4503-3273-6.

52 CZARNECKI, K.; EISENECKER, U. W. Generative Programming: Methods, Tools,
and Applications. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000. ISBN 0-201-30977-7.

53 Medeiros, F.; Ribeiro, M.; Gheyi, R.; Apel, S.; Kästner, C.; Ferreira, B.; Carvalho,
L.; Fonseca, B. Discipline matters: Refactoring of preprocessor directives in theifdefhell.
IEEE Transactions on Software Engineering, v. 44, n. 5, p. 453–469, May 2018. ISSN
0098-5589.

54 BOSCH, J. From software product lines to software ecosystems. In: Proceedings of the
13th International Software Product Line Conference. Pittsburgh, PA, USA: Carnegie
Mellon University, 2009. (SPLC ’09), p. 111–119.

55 MCGREGOR, J. D. Testing a software product line. In: . Testing Techniques
in Software Engineering: Second Pernambuco Summer School on Software Engineering,
PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised Lectures. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. p. 104–140. ISBN 978-3-642-14335-9.

56 PATTON, R. Software Testing (2Nd Edition). Indianapolis, IN, USA: Sams, 2005.
ISBN 0672327988.

57 COLLARD, J.-F.; BURNSTEIN, I. Practical Software Testing. Berlin, Heidelberg:
Springer-Verlag, 2002. ISBN 0387951318.

58 AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 1. ed. New York, NY,
USA: Cambridge University Press, 2008. ISBN 0521880386, 9780521880381.

132 BIBLIOGRAPHY

59 MYERS, G. J.; SANDLER, C. The Art of Software Testing. USA: John Wiley &
Sons, Inc., 2004. ISBN 0471469122.

60 CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2001. ISBN 0201703327.

61 MONTALVILLO, L.; DÍAZ, O. Requirement-driven evolution in software product
lines. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 122, n. C, p. 110–143,
dez. 2016. ISSN 0164-1212.

62 HARROLD, M. J. Testing: A roadmap. In: Proceedings of the Conference on The
Future of Software Engineering. New York, NY, USA: ACM, 2000. (ICSE ’00), p. 61–72.
ISBN 1-58113-253-0.

63 HILTON, M.; BELL, J.; MARINOV, D. A large-scale study of test coverage evolution.
In: KASTNER, C.; HUCHARD, M.; FRASER, G. (Ed.). ASE 2018 - Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering. [S.l.]:
Association for Computing Machinery, Inc, 2018. p. 53–63.

64 ELBAUM, S. G.; GABLE, D.; ROTHERMEL, G. The impact of software evolution on
code coverage information. In: 2001 International Conference on Software Maintenance,
ICSM 2001, Florence, Italy, November 6-10, 2001. [S.l.: s.n.], 2001. p. 170–179.

65 MIRZAAGHAEI, M.; PASTORE, F.; PEZZè, M. Automatic test case evolution. Soft-
ware Testing, Verification and Reliability, v. 24, n. 5, p. 386–411, 2014.

66 ENGSTRÖM, E.; RUNESON, P. Software product line testing - A systematic map-
ping study. Information & Software Technology, v. 53, n. 1, p. 2–13, 2011.

67 MEDEIROS, F.; KäSTNER, C.; RIBEIRO, M.; GHEYI, R.; APEL, S. A comparison
of 10 sampling algorithms for configurable systems. In: Proceedings of the 38th Inter-
national Conference on Software Engineering. New York, NY, USA: ACM, 2016. (ICSE
’16), p. 643–654. ISBN 978-1-4503-3900-1.

68 SOUTO, S.; D’AMORIM, M. Time-space efficient regression testing for configurable
systems. Journal of Systems and Software, v. 137, p. 733–746, 2018.

69 CHRISTIAN, K.; HERBSLEB, J.; BOGART, C.; KÄSTNER, C.; HERBSLEB, J.;
THUNG, F. How to break an API : Cost negotiation and community values in three soft-
ware ecosystems. In: Proceedings of the 24th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering. [S.l.: s.n.], 2016. p. 13–18. ISBN 9781450342186.

70 DECAN, A.; MENS, T.; CONSTANTINOU, E. On the impact of security vulnerabil-
ities in the npm package dependency network. In: Proceedings of the 15th International
Conference on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-
29, 2018. [S.l.: s.n.], 2018. p. 181–191.

BIBLIOGRAPHY 133

71 AXELSSON, J.; SKOGLUND, M. Quality assurance in software ecosystems: A sys-
tematic literature mapping and research agenda. Journal of Systems and Software, v. 114,
p. 69 – 81, 2016. ISSN 0164-1212.

72 GREILER, M.; DEURSEN, A. van. What your plug-in test suites really test: an in-
tegration perspective on test suite understanding. Empirical Software Engineering, v. 18,
n. 5, p. 859–900, Oct 2013. ISSN 1573-7616.

73 KULA, R. G.; GERMAN, D. M.; ISHIO, T.; INOUE, K. Trusting a library: A study
of the latency to adopt the latest Maven release. In: 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings.
[S.l.: s.n.], 2015. p. 520–524. ISBN 9781479984695. ISSN 1534-5351.

74 Claes, M.; Mens, T.; Grosjean, P. On the maintainability of cran packages. In: 2014
Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). [S.l.: s.n.], 2014. p. 308–312.

75 ALVES, V.; GHEYI, R.; MASSONI, T.; KULESZA, U.; BORBA, P.; LUCENA, C.
Refactoring product lines. In: . [S.l.: s.n.], 2006. p. 201–210.

76 SHE, S.; LOTUFO, R.; BERGER, T.; ASOWSKI, A. W.; CZARNECKI, K. The
variability model of the linux kernel. In: In VaMoS. [S.l.: s.n.], 2010.

77 LOTUFO, R.; SHE, S.; BERGER, T.; CZARNECKI, K.; WASOWSKI, A. Evolution
of the linux kernel variability model. In: Proceedings of the 14th International Conference
on Software Product Lines: Going Beyond. Berlin, Heidelberg: Springer-Verlag, 2010.
(SPLC’10), p. 136–150. ISBN 3-642-15578-2, 978-3-642-15578-9.

78 GUO, J.; WANG, Y.; TRINIDAD, P.; BENAVIDES, D. Consistency maintenance for
evolving feature models. Expert Syst. Appl., v. 39, p. 4987–4998, 04 2012.

79 PASSOS, L. T.; TEIXEIRA, L.; DINTZNER, N.; APEL, S.; WASOWSKI, A.; CZAR-
NECKI, K.; BORBA, P.; GUO, J. Coevolution of variability models and related software
artifacts - A fresh look at evolution patterns in the linux kernel. Empirical Software
Engineering, v. 21, n. 4, p. 1744–1793, 2016.

80 DINTZNER, N.; DEURSEN, A. van; PINZGER, M. FEVER: an approach to ana-
lyze feature-oriented changes and artefact co-evolution in highly configurable systems.
Empirical Software Engineering, v. 23, n. 2, p. 905–952, 2018.

81 LARSON, P.; HINDS, N.; RAVINDRAN, R.; FRANKE, H. Improving the Linux Test
Project with Kernel Code Coverage Analysis. [S.l.], 2003.

82 LARSON, P. Testing linux with the linux test project. In: Proceedings of the Ottawa
Linux Symposium. [S.l.: s.n.], 2002. p. 265–273. ISBN 1-58113-253-0.

83 TORVALDS, L. The linux edge. Commun. ACM, ACM, New York, NY, USA, v. 42,
n. 4, p. 38–39, abr. 1999. ISSN 0001-0782.

134 BIBLIOGRAPHY

84 BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. The goal question metric ap-
proach. In: Encyclopedia of Software Engineering. [S.l.]: Wiley, 1994.

85 MODAK, S.; SINGHM, B.; YAMATO, M. Putting ltp to test—validating both the
linux kernel and test-cases. In: Proceedings of the Linux Symposium. [S.l.: s.n.], 2009. p.
209–220.

86 NETO, P. A. d. M. S.; MACHADO, I. d. C.; CAVALCANTI, Y. C.; ALMEIDA, E. S.
d.; GARCIA, V. C.; MEIRA, S. R. d. L. A regression testing approach for software prod-
uct lines architectures. In: 2010 Fourth Brazilian Symposium on Software Components,
Architectures and Reuse. [S.l.: s.n.], 2010. p. 41–50.

87 HRUBIS, C. Kernel test automation with LTP. 2014. ¡https://lwn.net/Articles/
625969/¿. Accessed: 2017-01-12.

88 HUNSEN, C.; ZHANG, B.; SIEGMUND, J.; KäSTNER, C.; LEBENICH, O.;
BECKER, M.; APEL, S. Preprocessor-based variability in open-source and industrial
software systems: An empirical study. Empirical Softw. Engg., Kluwer Academic Pub-
lishers, Hingham, MA, USA, v. 21, n. 2, p. 449–482, abr. 2016. ISSN 1382-3256.

89 EL-SHARKAWY, S.; YAMAGISHI-EICHLER, N.; SCHMID, K. Metrics for analyz-
ing variability and its implementation in software product lines: A systematic literature
review. Information and Software Technology, v. 106, p. 1 – 30, 2019. ISSN 0950-5849.
Dispońıvel em: ¡http://www.sciencedirect.com/science/article/pii/S0950584918301873¿.

90 BAGGEN, R.; CORREIA, J. P.; SCHILL, K.; VISSER, J. Standardized code quality
benchmarking for improving software maintainability. Software Quality Journal, v. 20,
n. 2, p. 287–307, Jun 2012. ISSN 1573-1367. Dispońıvel em: ¡https://doi.org/10.1007/
s11219-011-9144-9¿.

91 PASSOS, L.; GUO, J.; TEIXEIRA, L.; CZARNECKI, K.; WASOWSKI, A.; BORBA,
P. Coevolution of variability models and related artifacts: A case study from the linux
kernel. In: Proceedings of the 17th International Software Product Line Conference. New
York, NY, USA: ACM, 2013. (SPLC ’13), p. 91–100. ISBN 978-1-4503-1968-3.

92 PASSOS, L.; PADILLA, J.; BERGER, T.; APEL, S.; CZARNECKI, K.; VALENTE,
M. T. Feature scattering in the large: A longitudinal study of linux kernel device drivers.
In: Proceedings of the 14th International Conference on Modularity. New York, NY, USA:
ACM, 2015. (MODULARITY 2015), p. 81–92. ISBN 978-1-4503-3249-1.

93 LIEBIG, J.; APEL, S.; LENGAUER, C.; KäSTNER, C.; SCHULZE, M. An analysis
of the variability in forty preprocessor-based software product lines. In: Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering - Volume 1. New
York, NY, USA: ACM, 2010. (ICSE ’10), p. 105–114. ISBN 978-1-60558-719-6.

94 LIEBIG, J.; KäSTNER, C.; APEL, S. Analyzing the discipline of preprocessor anno-
tations in 30 million lines of c code. In: Proceedings of the Tenth International Conference

https://lwn.net/Articles/625969/
https://lwn.net/Articles/625969/
http://www.sciencedirect.com/science/article/pii/S0950584918301873
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9144-9

BIBLIOGRAPHY 135

on Aspect-oriented Software Development. New York, NY, USA: ACM, 2011. (AOSD ’11),
p. 191–202. ISBN 978-1-4503-0605-8.

95 SHIHAB, E.; KAMEI, Y.; ADAMS, B.; HASSAN, A. E. Is lines of code a good
measure of effort in effort-aware models? Information and Software Technology, v. 55,
n. 11, p. 1981 – 1993, 2013. ISSN 0950-5849. Dispońıvel em: ¡http://www.sciencedirect.
com/science/article/pii/S0950584913001316¿.

96 COOK, S.; HARRISON, R.; WERNICK, P. A simulation model of self-organising
evolvability in software systems. In: IEEE International Workshop on Software Evolv-
ability (Software-Evolvability’05). [S.l.: s.n.], 2005. p. 17–22.

97 CAPILUPPI, A.; MORISIO, M.; RAMIL, J. F. Structural evolution of an open source
system: a case study. In: Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004. [S.l.: s.n.], 2004. p. 172–182. ISSN 1092-8138.

98 N CAPILUPPI A, R. J. S. A study of open source software evolution data using
qualitative simulation. In: Software Process Improvement and Practice. [S.l.: s.n.], 2005.
p. 287—-300.

99 ISRAELI, A.; FEITELSON, D. G. The linux kernel as a case study in software evolu-
tion. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 83, n. 3, p. 485–501,
mar. 2010. ISSN 0164-1212.

100 JONES, C.; BONSIGNOUR, O. The Economics of Software Quality. 1st. ed. [S.l.]:
Addison-Wesley Professional, 2011. ISBN 0132582201, 9780132582209.

101 MESZAROS, G. XUnit Test Patterns: Refactoring Test Code. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2006. ISBN 0131495054.

102 MCCABE, T. J. A complexity measure. IEEE Trans. Softw. Eng., IEEE Press, Pis-
cataway, NJ, USA, v. 2, n. 4, p. 308–320, jul. 1976. ISSN 0098-5589.

103 MYERS, G. J. An extension to the cyclomatic measure of program complexity. SIG-
PLAN Not., ACM, New York, NY, USA, v. 12, n. 10, p. 61–64, out. 1977. ISSN 0362-1340.

104 SHEPPERD, M. A critique of cyclomatic complexity as a software metric. Softw.
Eng. J., Michael Faraday House, Herts, UK, UK, v. 3, n. 2, p. 30–36, mar. 1988. ISSN
0268-6961.

105 Cordy, J. R.; Roy, C. K. The nicad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension. [S.l.: s.n.], 2011. p. 219–220. ISSN 1092-8138.

106 QUEIROZ, R.; PASSOS, L.; VALENTE, M. T.; APEL, S.; CZARNECKI, K. Does
feature scattering follow power-law distributions?: An investigation of five pre-processor-
based systems. In: Proceedings of the 6th International Workshop on Feature-Oriented
Software Development. New York, NY, USA: ACM, 2014. (FOSD ’14), p. 23–29. ISBN
978-1-4503-2980-4.

http://www.sciencedirect.com/science/article/pii/S0950584913001316
http://www.sciencedirect.com/science/article/pii/S0950584913001316

136 BIBLIOGRAPHY

107 ZHANG, B.; BECKER, M.; PATZKE, T.; SIERSZECKI, K.; SAVOLAINEN, J. E.
Variability evolution and erosion in industrial product lines: A case study. In: Proceedings
of the 17th International Software Product Line Conference. New York, NY, USA: ACM,
2013. (SPLC ’13), p. 168–177. ISBN 978-1-4503-1968-3.

108 SOARES, L. R.; SCHOBBENS, P.-Y.; MACHADO, I. do C.; ALMEIDA, E. S. de.
Feature interaction in software product line engineering: A systematic mapping study.
Information and Software Technology, v. 98, p. 44 – 58, 2018. ISSN 0950-5849.

109 LEHMAN, M. M. On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 1, p.
213–221, set. 1984. ISSN 0164-1212.

110 LEGUNSEN, O.; HARIRI, F.; SHI, A.; LU, Y.; ZHANG, L.; MARINOV, D. An
extensive study of static regression test selection in modern software evolution. In: Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. New York, NY, USA: ACM, 2016. (FSE 2016), p. 583–594. ISBN
978-1-4503-4218-6. Dispońıvel em: ¡http://doi.acm.org/10.1145/2950290.2950361¿.

111 LOPEZ-HERREJON, R. E.; FERRER, J.; CHICANO, F.; EGYED, A.; ALBA, E.
Evolutionary computation for software product line testing: An overview and open chal-
lenges. In: . Computational Intelligence and Quantitative Software Engineering.
Cham: Springer International Publishing, 2016. p. 59–87. ISBN 978-3-319-25964-2.

112 ENGSTRÃ¶M, E.; RUNESON, P.; SKOGLUND, M. A systematic review on re-
gression test selection techniques. Information and Software Technology, v. 52, n. 1, p.
14 – 30, 2010. ISSN 0950-5849. Dispońıvel em: ¡http://www.sciencedirect.com/science/
article/pii/S0950584909001219¿.

113 BORGES, H.; Tulio Valente, M. What’s in a GitHub Star? Understanding Repository
Starring Practices in a Social Coding Platform. Journal of Systems and Software, Elsevier
Inc., v. 146, p. 112–129, 2018. ISSN 01641212.

114 Izurieta, C.; Bieman, J. M. How software designs decay: A pilot study of pattern evo-
lution. In: First International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2007). [S.l.: s.n.], 2007. p. 449–451. ISSN 1949-3770.

115 Izurieta, C.; Bieman, J. M. Testing consequences of grime buildup in object oriented
design patterns. In: 2008 1st International Conference on Software Testing, Verification,
and Validation. [S.l.: s.n.], 2008. p. 171–179. ISSN 2159-4848.

116 AHMED, I.; MANNAN, U. A.; GOPINATH, R.; JENSEN, C. An Empirical Study
of Design Degradation: How Software Projects Get Worse over Time. International Sym-
posium on Empirical Software Engineering and Measurement, v. 2015-Novem, p. 31–40,
2015. ISSN 19493789.

http://doi.acm.org/10.1145/2950290.2950361
http://www.sciencedirect.com/science/article/pii/S0950584909001219
http://www.sciencedirect.com/science/article/pii/S0950584909001219

BIBLIOGRAPHY 137

117 EL-SHARKAWY, S.; KRAFCZYK, A.; SCHMID, K. Metric haven — more than
23,000 metrics for measuring quality attributes of software product lines. In: Proceedings
of the 23rd International Systems and Software Product Line Conference. New York, NY,
USA: ACM. Accepted.

118 CASALNUOVO, C.; DEVANBU, P.; OLIVEIRA, A.; FILKOV, V.; RAY, B. Assert
use in github projects. In: Proceedings of the 37th International Conference on Software
Engineering - Volume 1. Piscataway, NJ, USA: IEEE Press, 2015. (ICSE ’15), p. 755–766.
ISBN 978-1-4799-1934-5.

119 BAUER, D. F. Constructing confidence sets using rank statistics. Journal of the
American Statistical Association, Taylor Francis, v. 67, n. 339, p. 687–690, 1972.

120 CLIFF, N. Ordinal Methods for Behavioral Data Analysis. [S.l.]: Psychology Press,
2014.

121 ROMANO, J.; KROMREY, J. D. Appropriate statistics for ordinal level data: Should
we really be using t-test and cohen’s d for evaluating group differences on the nsse and
other surveys? 01 2006.

122 ALALFI, M. H.; ANTONY, E. P.; CORDY, J. R. An approach to clone detection in
sequence diagrams and its application to security analysis. Software & Systems Modeling,
v. 17, n. 4, p. 1287–1309, Oct 2018.

123 MAJUMDER, S.; CHAKRABORTY, J.; AGRAWAL, A.; MENZIES, T. Why Soft-
ware Projects need Heroes (Lessons Learned from 1100+ Projects). IEEE Transactions
on Software Engineering, p. 1–12, 2019.

124 AGRAWAL, A.; RAHMAN, A.; KRISHNA, R.; SOBRAN, A.; MENZIES, T. We
don’t need another hero?: the impact of ”heroes” on software development. In: Proceedings
of the 40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May 27 - June 03, 2018. [S.l.: s.n.],
2018. p. 245–253.

125 TUFANO, M.; PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LU-
CIA, A. D.; POSHYVANYK, D. An empirical investigation into the nature of test smells.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2016. (ASE 2016), p. 4–15. ISBN 978-1-4503-
3845-5.

126 MEYER, A. N.; BARTON, L. E.; MURPHY, G. C.; ZIMMERMANN, T.; FRITZ,
T. The work life of developers: Activities, switches and perceived productivity. IEEE
Trans. Software Eng., v. 43, n. 12, p. 1178–1193, 2017.

127 MELO, J.; NARCIZO, F. B.; HANSEN, D. W.; BRABRAND, C.; WASOWSKI, A.
Variability through the eyes of the programmer. In: Proceedings of the 25th International
Conference on Program Comprehension. [S.l.: s.n.], 2017. (ICPC ’17), p. 34–44. ISBN
978-1-5386-0535-6.

138 BIBLIOGRAPHY

128 BAVOTA, G.; QUSEF, A.; OLIVETO, R.; LUCIA, A.; BINKLEY, D. Are test smells
really harmful? an empirical study. Empirical Software Engineering, v. 20, n. 4, p. 1052–
1094, ago. 2015. ISSN 1382-3256.

129 KRüGER, J.; AL-HAJJAJI, M.; SCHULZE, S.; SAAKE, G.; LEICH, T. Towards
automated test refactoring for software product lines. In: Proceedings of the 22Nd In-
ternational Systems and Software Product Line Conference - Volume 1. [S.l.: s.n.], 2018.
(SPLC ’18), p. 143–148. ISBN 978-1-4503-6464-5.

130 BELLON, S.; KOSCHKE, R.; ANTONIOL, G.; KRINKE, J.; MERLO, E. Compar-
ison and evaluation of clone detection tools. IEEE Trans on Software Engineering, v. 33,
n. 9, p. 577–591, set. 2007. ISSN 0098-5589.

131 SAINI, V.; FARMAHINIFARAHANI, F.; LU, Y.; BALDI, P.; LOPES, C. V. Oreo:
detection of clones in the twilight zone. In: Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018. [S.l.: s.n.], 2018. p. 354–365.

132 ROY, C. K.; CORDY, J. R. Benchmarks for software clone detection: A ten-year
retrospective. In: 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018. [S.l.: s.n.], 2018.
p. 26–37.

133 FARMAHINIFARAHANI, F.; SAINI, V.; YANG, D.; SAJNANI, H.; LOPES, C. V.
On precision of code clone detection tools. In: 26th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, Febru-
ary 24-27, 2019. [S.l.: s.n.], 2019. p. 84–94.

134 SCHULZE, S.; APEL, S.; KÄSTNER, C. Code clones in feature-oriented software
product lines. In: Generative Programming And Component Engineering, Proceedings of
the Ninth International Conference on Generative Programming and Component Engi-
neering, GPCE 2010, Eindhoven, The Netherlands, October 10-13, 2010. [S.l.: s.n.], 2010.
p. 103–112.

135 MENS, T.; GOEMINNE, M. Analysing the evolution of social aspects of open source
software ecosystems. In: . [S.l.: s.n.], 2011. v. 746, p. 1–14.

136 GOUSIOS, G.; ZAIDMAN, A. A dataset for pull-based development research. In:
11th Working Conference on Mining Software Repositories, MSR 2014, Proceedings, May
31 - June 1, 2014, Hyderabad, India. [S.l.: s.n.], 2014. p. 368–371.

137 ZHU, J.; ZHOU, M.; MOCKUS, A. Patterns of folder use and project popularity:
a case study of github repositories. In: 2014 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, Torino, Italy, September
18-19, 2014. [S.l.: s.n.], 2014. p. 30:1–30:4.

BIBLIOGRAPHY 139

138 Nagappan, N.; Ball, T. Use of relative code churn measures to predict system defect
density. In: Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005. [S.l.: s.n.], 2005. p. 284–292. ISSN 0270-5257.

139 TANTITHAMTHAVORN, C.; MCINTOSH, S.; HASSAN, A. E.; MATSUMOTO,
K. The impact of automated parameter optimization on defect prediction models. IEEE
Trans. Software Eng., v. 45, n. 7, p. 683–711, 2019.

140 ANTONIOL, G.; GUÉHÉNEUC, Y. Feature identification: A novel approach and
a case study. In: 21st IEEE International Conference on Software Maintenance (ICSM
2005), 25-30 September 2005, Budapest, Hungary. [S.l.: s.n.], 2005. p. 357–366.

141 KITCHENHAM, B. A.; PFLEEGER, S. L. Personal Opinion Surveys. [S.l.]: Springer
London, 2008. 63-92 p.

142 LI, M.; SMIDTS, C. A ranking of software engineering measures based on expert
opinion. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 29, p. 811–824,
September 2003. ISSN 0098-5589.

143 JHA, M.; O’BRIEN, L. Identifying issues and concerns in software reuse in software
product lines. In: Proceedings of the 11th International Conference on Software Reuse:
Formal Foundations of Reuse and Domain Engineering. Berlin, Heidelberg: Springer-
Verlag, 2009. p. 181–190.

144 AHMED, F.; CAPRETZ, L. F.; SHEIKH, S. A. Institutionalization of software prod-
uct line: An empirical investigation of key organizational factors. Journal System Soft-
ware, Elsevier Science Inc., New York, NY, USA, v. 80, p. 836–849, June 2007. ISSN
0164-1212.

145 Daka, E.; Fraser, G. A survey on unit testing practices and problems. In: 2014 IEEE
25th International Symposium on Software Reliability Engineering. [S.l.: s.n.], 2014. p.
201–211.

146 Kochhar, P. S.; Thung, F.; Nagappan, N.; Zimmermann, T.; Lo, D. Understanding
the test automation culture of app developers. In: 2015 IEEE 8th International Confer-
ence on Software Testing, Verification and Validation (ICST). [S.l.: s.n.], 2015. p. 1–10.

147 FINK, A. The Survey Handbook. [S.l.]: Sage Publications, 2003. 129 p.

148 SINGER, J.; SIM, S. E.; LETHBRIDGE, T. C. Software engineering data collection
for field studies. In: . Guide to Advanced Empirical Software Engineering. London:
Springer London, 2008. p. 9–34. ISBN 978-1-84800-044-5.

149 COOKE, R. Experts in uncertainty: opinion and subjective probability in science.
[S.l.]: Oxford University Press, USA, 1991. 336 p.

150 CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 20, p. 476–493, June
1994. ISSN 0098-5589.

140 BIBLIOGRAPHY

151 KRÜGER, J.; BERGER, T. An empirical analysis of the costs of clone- and platform-
oriented software reuse. In: Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. [S.l.]: ACM, 2020. (ESEC/FSE).
Accepted.

152 KRüGER, J.; BERGER, T. Activities and costs of re-engineering cloned variants into
an integrated platform. In: Proceedings of the 14th International Working Conference on
Variability Modelling of Software-Intensive Systems. New York, NY, USA: Association
for Computing Machinery, 2020. (VAMOS ’20). ISBN 9781450375016.

153 PORTER, A. A.; JOHNSON, P. M. Assessing software review meetings: Results
of a comparative analysis of two experimental studies. IEEE Transactions on Software
Engineering, v. 23, p. 129–145, 1997.

154 CRUZES, D. S.; DYBA, T. Research synthesis in software engineering: A tertiary
study. Inf. Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 53, p. 440–
455, May 2011. ISSN 0950-5849.

155 RODGERS, M.; SOWDEN, A.; PETTICREW, M.; ARAI, L.; ROBERTS, H.; BRIT-
TEN, N.; POPAY, J. Testing Methodological Guidance on the Conduct of Narrative
Synthesis in Systematic Reviews: Effectiveness of Interventions to Promote Smoke Alarm
Ownership and Function. Evaluation, v. 15, n. 1, p. 49–73, jan. 2009.

156 BRATTHALL, L.; JØRGENSEN, M. Can you trust a single data source exploratory
software engineering case study? Empirical Softw. Engg., Kluwer Academic Publishers,
Hingham, MA, USA, v. 7, p. 9–26, March 2002. ISSN 1382-3256.

157 APEL, S.; KäSTNER, C. An overview of feature-oriented software development.
Journal of Object Technology (JOT), v. 8, p. 49–84, 07 2009.

This volume has been typeset in LATEXwith the UFBAThesis class (¡www.dcc.ufba.br/˜flach/
ufbathesis¿). For details about this document, click here.

www.dcc.ufba.br/~flach/ufbathesis
www.dcc.ufba.br/~flach/ufbathesis

	1: Mod 3
	List of Figures
	List of Tables
	List of Acronyms
	I Overview
	Chapter 1—Introduction
	Motivation
	Objective
	Research Questions (RQs)
	Research Methodology
	Research Design

	Contributions
	Out of Scope
	Organization of the Thesis

	II Background
	Chapter 2—Main Concepts and Foundations
	Software Reuse
	Reusable Systems
	Highly-Configurable Systems (HCS)
	Variability Implementation in HCS.

	Ecosystems

	Software Testing
	Testing Levels

	Chapter Summary

	Chapter 3—An Overview of the State-of-the-art and Related Work
	Connection between test, reusable systems, and evolution
	Studies on test evolution
	Testing in Configurable Systems
	Testing in Ecosystems
	Studies Comparison

	Chapter Summary

	III Empirical studies
	Chapter 4—Test Suite Evolution in a Highly-Configurable System: A Case Study on the Linux Test Project (LTP)
	Background
	The Linux Test Project (LTP)
	LTP Structure
	Basic test structure

	Methodology
	GQM Model
	Research Questions
	Data Collection

	Results
	RQ1 - What is the effort to develop the test suite?
	M1 - Test Cases:
	M2 - Unit Size:
	M3 - Contributors:

	RQ2 - What is the maintainability of the test suite?
	M2 - Unit Size:
	M4 - Unit Complexity:
	M5 - Duplication:
	M6 - Dependence:

	RQ3 - How does the test suite change?
	M7 - Test Case Changes:
	M8 - Test Program Changes:

	RQ4 - How does variability affect the maintainability of the test suite?
	M9 - Lines of Feature Code (LOF):
	M10 - Number of Feature Constants (NOFC):
	M11 - Scattering Degree (SD):
	M12 - Tangling Degree (TD):

	Discussion
	Threats to Validity
	External Validity
	Construct Validity

	Chapter Summary

	Chapter 5—Test Evolution in Configurable Systems and Single Systems: A comparative Study
	Methodology
	Study Subjects
	Data Collection
	Data Preparation
	Tools Selection

	Results
	RQ1- How much effort is required to evolve test suite?
	Number of Contributors:
	Man-Month (M/M):
	Modified files:
	Assertions:

	RQ2 - How maintainable is the test suite and how that evolves?
	Unit Size:
	Unit Complexity:
	Unit Dependence:
	Duplication:

	Discussion
	Threats to Validity
	Chapter Summary

	Chapter 6—Test Evolution in a Software Ecosystem: The extended study on npm packages
	Data Collection
	Results
	RQ1: How often do packages perform testing?
	RQ2: How does test code evolve?
	RQ3: How is the ownership of test code?

	Discussion
	Threats to Validity
	Chapter Summary

	Chapter 7—Survey with Test Contributors to Understand the Test Evolution
	Related Work
	Methodology
	Results
	General Information
	Effort Characteristics
	Maintainability sub-characteristics
	Main Challenges

	Discussion
	Threats to Validity
	Chapter Summary

	IV Conclusions
	Chapter 8—Research Synthesis and Evaluation of the Multi-Method Approach
	Justification for the Multi-Method Approach
	Research Synthesis
	Summary of the Findings
	Findings of the Multi-Method Approach
	Research Question Analysis
	Multi-Method Approach Evaluation
	Chapter Summary

	Chapter 9—Concluding Remarks and Future Work
	Summary of Contributions
	Future Work
	Concluding Remarks

