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Nos últimos anos, a rede centrada na informação (Information‑centric networking ‑ ICN) ganhou atenção das comunidades de pesquisa e  indústria  como um paradigma de  rede de distribuição de conteúdo eficiente e confiável, especialmente para lidar com aplicativos centrados em conteúdo e que necessitam de alta  largura de banda,  juntamente com os requisitos heterogêneos de redes emergentes, como a Internet das coisas, Redes veiculares Ad‑hoc e Computação na borda da rede. O armazenamento em caches na rede é uma parte essencial do design da arquitetura ICN e o desempenho da rede geral depende da eficiência da política de armazenamento de conteúdos utilizada no cache. Portanto, muitas políticas de  substituição de  conteúdos  foram propostas para atender  às necessidades de diferentes  redes. A literatura  apresenta  extensivamente  estudos  sobre  o  desempenho  das  políticas  de  substituição  em diferentes  contextos.  As  avaliações  podem  apresentar  diferentes  variações  de  características  de contexto,  levando  a  diferentes  impactos  no  desempenho  das  políticas  ou  diferentes  resultados  das políticas mais adequadas. Por outro lado, existe uma lacuna de pesquisas para compreender como as características  do  contexto  influenciam o  desempenho das  políticas.  Também  faltam  iniciativas  que auxiliem no processo de escolha de uma política adequada a um cenário específico. Nesse sentido, esta tese aborda essas lacunas de pesquisa ao (i) apontar o que é contexto da perspectiva das políticas de substituição de cache e as características de contexto que influenciam o comportamento do cache, e (ii) propor uma estratégia de meta‑política de cache para auxiliar na escolha de políticas adequadas ao contexto  vigente.  Para  o  estudo  de  delimitação  de  contexto,  realizamos  uma  extensa  pesquisa  da literatura de ICN para mapear as evidências relatadas de diferentes aspectos do contexto em relação aos esquemas de substituição de cache. Além da contribuição de entender o que é contexto para políticas de cache,  a pesquisa  forneceu uma  classificação útil  de políticas  com base nas dimensões de  contexto usadas para determinar a relevância dos conteúdos. Além disso, como uma investigação de aspectos holísticos para representar o contexto, e motivados pela área emergente das redes centradas no humano, realizamos  um  estudo  de  caso  exploratório  sobre  a  influência  do  comportamento  humano  no desempenho das políticas. Neste sentido, realizamos um estudo baseado em simulação que avaliou o desempenho das políticas de substituição de cache por meio de clusters formados pelos usuários de acordo com seus hábitos de escuta musical. Os resultados mostram evidências de que aspectos distintos de contexto afetam o desempenho das políticas de cache. Após os estudos de contexto, apresentamos uma estratégia de meta‑política capaz de aprender a política mais adequada para caches online e se adaptar dinamicamente às variações de contexto que levam à mudanças em qual política é a melhor. A meta‑política se beneficia da diversidade de políticas e seus aspectos de contexto, e faz uma separação entre a lógica de remoção do conteúdo e o gerenciamento das informações de contexto usadas pela política. A estratégia modela a escolha de políticas adequadas como um problema de aprendizado online com retorno parcial. A meta‑política oferece suporte à  implantação de um conjunto diversificado de políticas de cache autocontidas em diferentes redes. Ela permite que o dispositivo de cache funcione como  um  sistema  adaptativo  agnóstico  aos  contextos  subjacentes,  como  padrões  de  solicitação  de conteúdo  ou  variações  de  popularidade.  Os  resultados  experimentais  mostraram  a  eficácia  e adaptabilidade da meta‑política a diferentes contextos em simulações com dados sintéticos e reais.
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RESUMO

Nos últimos anos, a rede centrada na informação (Information-centric networking
- ICN ) ganhou atenção das comunidades de pesquisa e indústria como um paradigma
de rede de distribuição de conteúdo eficiente e confiável, especialmente para lidar com
aplicativos centrados em conteúdo e que necessitam de alta largura de banda, juntamente
com os requisitos heterogêneos de redes emergentes, como a Internet das coisas, Redes
veiculares Ad-hoc e Computação na borda da rede. O armazenamento em caches na
rede é uma parte essencial do design da arquitetura ICN e o desempenho da rede geral
depende da eficiência da poĺıtica de armazenamento de conteúdos utilizada no cache.
Portanto, muitas poĺıticas de substituição de conteúdos foram propostas para atender
às necessidades de diferentes redes. A literatura apresenta extensivamente estudos so-
bre o desempenho das poĺıticas de substituição em diferentes contextos. As avaliações
podem apresentar diferentes variações de caracteŕısticas de contexto, levando a difer-
entes impactos no desempenho das poĺıticas ou diferentes resultados das poĺıticas mais
adequadas.

Por outro lado, existe uma lacuna de pesquisas para compreender como as carac-
teŕısticas do contexto influenciam o desempenho das poĺıticas. Também faltam iniciativas
que auxiliem no processo de escolha de uma poĺıtica adequada a um cenário espećıfico.
Nesse sentido, esta tese aborda essas lacunas de pesquisa ao (i) apontar o que é contexto
da perspectiva das poĺıticas de substituição de cache e as caracteŕısticas de contexto que
influenciam o comportamento do cache, e (ii) propor uma estratégia de meta-poĺıtica de
cache para auxiliar na escolha de poĺıticas adequadas ao contexto vigente. Para o estudo
de delimitação de contexto, realizamos uma extensa pesquisa da literatura de ICN para
mapear as evidências relatadas de diferentes aspectos do contexto em relação aos esque-
mas de substituição de cache. Além da contribuição de entender o que é contexto para
poĺıticas de cache, a pesquisa forneceu uma classificação útil de poĺıticas com base nas
dimensões de contexto usadas para determinar a relevância dos conteúdos. Além disso,
como uma investigação de aspectos hoĺısticos para representar o contexto, e motivados
pela área emergente das redes centradas no humano, realizamos um estudo de caso ex-
ploratório sobre a influência do comportamento humano no desempenho das poĺıticas.
Neste sentido, realizamos um estudo baseado em simulação que avaliou o desempenho
das poĺıticas de substituição de cache por meio de clusters formados pelos usuários de
acordo com seus hábitos de escuta musical. Os resultados mostram evidências de que as-
pectos distintos de contexto afetam o desempenho das poĺıticas de cache. Após os estudos
de contexto, apresentamos uma estratégia de meta-poĺıtica capaz de aprender a poĺıtica
mais adequada para caches online e se adaptar dinamicamente às variações de contexto
que levam à mudanças em qual poĺıtica é a melhor. A meta-poĺıtica se beneficia da di-
versidade de poĺıticas e seus aspectos de contexto, e faz uma separação entre a lógica de
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remoção do conteúdo e o gerenciamento das informações de contexto usadas pela poĺıtica.
A estratégia modela a escolha de poĺıticas adequadas como um problema de aprendizado
online com retorno parcial. A meta-poĺıtica oferece suporte à implantação de um con-
junto diversificado de poĺıticas de cache autocontidas em diferentes redes. Ela permite
que o dispositivo de cache funcione como um sistema adaptativo agnóstico aos contex-
tos subjacentes, como padrões de solicitação de conteúdo ou variações de popularidade.
Os resultados experimentais mostraram a eficácia e adaptabilidade da meta-poĺıtica a
diferentes contextos em simulações com dados sintéticos e reais.

Palavras-chave: Redes centradas na informação, Cache na rede, Poĺıtica de substi-
tuição de cache, Ciência de contexto, Aprendizado online



ABSTRACT

In recent years, Information-centric networking (ICN) has gained attention from the
research and industry communities as an e�cient and reliable content distribution net-
work paradigm, especially to address content-centric and bandwidth-needed applications
together with the heterogeneous requirements of emergent networks, such as the Internet
of Things, Vehicular Ad-hoc NETwork, and Mobile Edge Computing. In-network caching
is an essential part of ICN architecture design, and the performance of the overall network
relies on caching policy e�ciency. Therefore, a large number of cache replacement strate-
gies have been proposed to suit the needs of di↵erent networks. The literature extensively
presents studies on the performance of the replacement schemes in di↵erent contexts. The
evaluations may present di↵erent variations of context characteristics leading to di↵erent
impacts on the performance of the policies or di↵erent results of most suitable policies.

Conversely, there is a lack of research e↵orts to understand how the context character-
istics influence policy performance. There is also a lack of initiatives to assist the process
of choosing a suitable policy given a specific scenario. In this direction, this thesis address
those research gaps by (i) pointing out what is context from the perspective of cache re-
placement policies and the context characteristics that influence cache behavior, and (ii)
proposing a caching meta-policy strategy to assist the choosing process of suitable policies
according to the current context. For the context delimitation study, we have conducted
an extensive survey of the ICN literature to map reported evidence of di↵erent aspects
of context regarding the cache replacement schemes. Beyond the contribution of under-
standing what is context for caching policies, the survey provided a helpful classification
of policies based on the context dimensions used to determine the relevance of contents.
Moreover, as an investigation of holistic aspects to represent context, and motivated by
the emergent area of human-centric networking, we have performed an exploratory case
study on a human behavior influence over the policies performance. To accomplish such
goal, we carry out a simulation-based study that evaluated the performance of cache
replacement policies through clusters formed by users according to their music listening
habits. The results fostered the evidence that distinct context aspects have an e↵ect on
caching policy performances. Following the context studies, we present a meta-policy
strategy capable of learning the most appropriate policy for cache online and dynami-
cally adapting to context variations that leads to changes in which policy is best. The
meta-policy benefits from the diversity of policies and its context aspects, decouples the
eviction strategy from managing the context information used by the policy, and models
the choice of suitable policies as online learning with bandit feedback problem. The meta-
policy can support the deployment of a diverse set of self-contained caching policies in
di↵erent networks. It enables cache routers to work as adaptive systems agnostic to the
underlying contexts, such as content request patterns or popularity variations. Experi-
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mental results in single and network of caches have shown the meta-policy e↵ectiveness
and adaptability to di↵erent contexts in synthetic and trace-driven simulations.

Keywords: Information-centric networking, In-network caching, Cache replacement
policies, Context-awareness, Online learning
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Chapter

1
INTRODUCTION

In recent years, the proliferation of bandwidth-needed applications and the increased
capacity of modern communication devices (e.g., smartphones, network-equipped vehi-
cles, wearables) have led to a bloom of multimedia contents consumed at the network.
Due to this emerging scenario, the host-centric Internet model has experienced significant
challenges in meeting the current and future users’ and applications’ requirements. The
Internet architecture was originally designed in a host-centric paradigm to support end-
to-end communication. This model struggles to face key communication requirements
of modern network applications such as high content distribution, node’s mobility, and
network scalability.

One of the strategies to make the Internet feasible in such highly content distri-
bution scenarios relies on networking caching approaches, which use cache-equipped
devices to provide the most requested contents locally. Information-centric network-
ing (ICN) (AHLGREN et al., 2012) is one of such initiatives. ICN is a content-centric
network communication model that stand out as potential candidate to substitute the
current TCP/IP model (RAHMAN et al., 2020). It consists of a receiver-driven network-
ing model that focuses on the distribution and retrieval of contents through a publish-
subscribe paradigm.

In ICNs, a content request is based on the content’s name, not on its location, such as
the content provider’s IP address. Contents should have unique names, and any network
node with the content can respond to the request. To this end, ICN replicates content
in a distributed way in Cache-enabled Routers (CRs) over the network that are located
closer to the user. Therefore, delivering the closest content copies to the user saves
communication resources, thus reducing network congestion, server loads, and access
latency while providing better Quality of Service (QoS) and Quality of Experience (QoE)
levels. Content-Centric Networking (CCN) and its successor Named-Data Networking
(NDN) (ZHANG et al., 2010) are examples of initiatives implementing ICN concepts.

In general, any network device can potentially work as a CR with a Content Store (CS)
data structure to implement the cache service. The performance of CS plays a vital role
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in the overall packet forwarding engine to guarantee high-speed packet processing of ICN
architectures. According to Pan, Huang e Li (2017) and Pan et al. (2019), the performance
bottleneck of the packet forwarding systems relies on CS operation and should be the
focus of ICN optimization strategies. This way, ICN-based initiatives strongly rely on
cache replacement policies to manage the CS and keep relevant content available to the
users. Cache replacement policies are methods used to choose which content to evict
from the cache when there is the need for storing new content, and no more space is
available. Examples of replacement policies include Least Recently Used (LRU), Least
Frequently Used (LFU), Random, First-In-First-Out (FIFO), and Recently/Frequently
Used (LRFU) (LEE et al., 2001). A replacement policy ensures that the content most
expected to be accessed in a short time will remain in the cache, and the policy will,
therefore, elect to evict the content that is less expected to be accessed. Di↵erent policies
lead to di↵erent caching performance, and thereby the performance gain of a network of
caches like ICN depends on the reliability of the cache management.

The current literature presents a massive number of performance evaluations for cache
replacement policies comparing di↵erent policies concerning di↵erent network contexts.
A network context refers to a network type—e.g., Edge networks, Internet of Things (IoT)
networks, or Vehicular Ad-hoc NETwork (VANET)—instantiated with particular char-
acteristics for a given purpose. A network context thus brings up a broader view that
encompasses characteristics regarding the network type and other entities related to net-
work performance (e.g., user habits while using the network). Each performance evalu-
ation may present distinct variations in the context characteristics, as well as di↵erent
impacts on policy performances, including changes in performance rank. The variance
of results indicates that the policies’ performance tends to vary according to the con-
text’s characteristics, and the process of choosing the suitable policies should consider
the context in which the caches operate.

The attention to the caching policies is of paramount importance, especially in mod-
ern networks with the recent advances in 5th generation (5G) technology, Mobile Edge
Computing (MEC), and Network Virtualization. Such technologies are revolutionizing
the edge, allowing the emergence of new content-demanding applications IoT, VANETs,
and new network types. The ICN model natively copes with the mobility, scalability,
and security requirements of those new environments. Beyond the benefits of in-network
caching, decoupling the content delivery process from the content location brings native
support to mobility and multicast packet forwarding. In this way, there is an actual and
rising tendency to deploy ICN-enable edge networks in 5G-ICN virtual network slices
(SANTOS et al., 2021; ULLAH et al., 2020; GÜR; PORAMBAGE; LIYANAGE, 2020;
NOUR et al., 2019; JEDARI et al., 2020). That scenario allows the dynamic creation/re-
location of virtual cache nodes according to the demand for content consumption and
customized for the context in which the cache node will be deployed.

1.1 PROBLEM AND CHALLENGES

The deployment of caches on the network leverages the content delivery process and
improves network performance. However, the caching benefits will be e�ciently achieved



1.1 PROBLEM AND CHALLENGES 3

only with the deployment of caching policies suitable to the network context in which
the cache operates. One relevant challenge to be addressed in managing the cache is how
to choose which caching policy should be instantiated to obtain optimal caching perfor-
mances. The choice of suitable policies poses a particular challenge when considering
the dynamic nature of networks. The network dynamics leads to on-demand changes in
the context characteristics, for instance, changes in tra�c patterns or user preferences,
and the cache must adapt to these changes in an attempt to ensure the best network
performance.

In face of the current network diversity and dynamism, with di↵erent types of appli-
cations, heterogeneous characteristics involving mobility, and emerging technologies, it
is not possible to have a single optimal caching policy capable of meeting the operation
requirements o↵ all network contexts. Therefore, the main research challenge we intend
to address is how to assist the choosing process of suitable cache replacement
policies according to the current context, and further, to cope with the natu-
ral dynamism of context variations in networks. In this direction, this thesis aims
to substantiates the reasoning of the caching policy decision process during the design of
caching systems in ICNs. The problem of finding best-fitting cache replacement policies
exponentially grows in complexity when there is a diversity of context aspects. In the
following paragraphs we elaborate on some of the challenges.

Several works incorporated the adaptation of policies according to some context. For
instance, Moon et al. (2016) presented a cache management scheme for wireless NDNs,
in which common Access Points (APs) and user devices attached to the APs have avail-
able cache capacity. The authors advocated that each device can choose to work with
a di↵erent cache replacement policy to improve network performance. In addition to
that, Charpinel et al. (2016) proposed a Software-Defined Networking (SDN) approach
to provide programmable cache replacement algorithms. The replacement algorithms are
defined in a control plane, allowing a CCN controller to modify the replacement schemes
dynamically and allocate di↵erent strategies for each node. Finally, Pacifici e Dán (2013)
proposed autonomous caching in peering ISPs for collaborative deciding their replacement
policies.

Although studies recognize the need to adopt policies according to the network con-
text, the choice itself of suitable schemes is not trivial. There is no explicit and general
understanding of the relationship between the context characteristics and the policies.
Such understanding is essential to assist the choosing process and, consequently, adapt
policies according to the context. More specifically, there are no overall directions or
categorization in which context may influence policy behavior. Yet, regardless of the iso-
lated evidence of individual works reporting their contexts and impacts on the policies’
performance, there is no comprehensive work discussing a unified view of the di↵erent
contextual characteristics and their e↵ects on the policies. The delimitation of context
characteristics and their common e↵ect can enhance and substantiate the caching man-
agement and the design of caching solutions.

Despite the contributions of previous literature reviews related to caching policies and
ICN aspects (AHLGREN et al., 2012; BARI et al., 2012; ZHANG; LI; LIN, 2013; TYSON
et al., 2012; XYLOMENOS et al., 2013; FANG et al., 2014; AMADEO et al., 2014;
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ZHANG; LUO; ZHANG, 2015; ABDULLAHI; ARIF; HASSAN, 2015; FANG et al., 2015;
IOANNOU; WEBER, 2016; AMADEO; CAMPOLO; MOLINARO, 2016; SAXENA et
al., 2016; DIN et al., 2017), there is a lack of guidelines to understand context character-
istics and their e↵ect on the cache replacement policies in ICNs. Furthermore, surveys
on web cache replacement policies (WANG, 1999; PODLIPNIG; BÖSZÖRMENYI, 2003;
BALAMASH; KRUNZ, 2004; PANDA; PATIL; RAVEENDRAN, 2016) do not address
that subject. To the best of our knowledge, there is no broad investigation on cache re-
placement schemes for the ICN domain or an integrated vision of the impacts of di↵erent
context characteristics in the policy choice process.

Similarly, there is a lack of research e↵orts to assist the process of gathering which
caching policy should be deployed in a given network. As a result, the lack of suitable
schemes hinders the more e�cient use of available cache resources, and therefore the
e↵ective extraction of the caching service expected benefits.

1.2 RESEARCH QUESTIONS AND OBJECTIVES

Based on the premise that

ICNs can achieve improved performance by creating customized caches concerning
the context, specifically by choosing the caching policy according to the current con-
text,

and, there is no single optimal policy to meet the requirements of all network con-
texts, since the performance of the caching policies varies according to the context
variations,

this work embraces the research gaps mentioned earlier on the choosing caching policy
problem by tackling the following research questions:

RQ1: What are the di↵erent context characteristics that influence the performance
of caching replacement strategies in ICN?

RQ2: How to explore the cache replacement policies and instantiate best-fitting
strategies dynamically adapting to on-demand changes, considering the available
context characteristics of the overall scenario?

Based on such questions, the main objectives of this thesis are:

Research Goal 1: Contribute to the understanding and delimitation of context-
awareness from caching replacement policy perspective.

Research Goal 2: Design and empirically evaluate a method for context-aware
instantiation of suitable caching replacement policies.
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1.3 METHODOLOGY

To answer our research questions and achieve the intended goals, we have carried out
specific research tasks regarding each goal (Figure 1.1). To tackle the first one, we needed
to understand and delimitate context from the caching policies perspective. Many defini-
tions of context have been given in the literature as well as di↵erent methods to model and
design context-aware applications (ABOWD et al., 1999; BETTINI et al., 2010; DEY,
2001; LIU; LI; HUANG, 2011; VIEIRA; TEDESCO; SALGADO, 2011; ALEGRE; AU-
GUSTO; CLARK, 2016; ENGELENBURG; JANSSEN; KLIEVINK, 2019). Although
there is no single consensual definition, they all converge on the importance and benefits
of integrating the awareness of any relevant information from relevant entities with the
computational environment.
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This way, to consolidate our definition of context, we have performed two parallel re-
search tasks: a literature review and an experimental practical case study. The literature
review aimed to understand which context dimensions were involved in the experiments
reported on the ICN literature. Also, we aimed to map the context dimensions explored
by the current existing replacement policies. Furthermore, the review aimed to investigate
if any explicit pattern could be explored to enhance the choosing process of policies. The
review enables us to map reported evidence of di↵erent aspects of context regarding the
caching replacement policies. Among the lessons learned, the study emphasized no single
optimal caching policy to fit all network settings. Moreover, there is a wide diversity
of context aspects related to the police’s performance and the challenge to identify ex-
plicit patterns linking context variations and policies. Therefore, the challenge to identify
patterns led us to conclude that the policy choosing method would not be feasible with
rule-based or related systems. The literature review process and results were published
as a scientific paper at PeerJ Computer Science journal (see section 1.5).

Regarding the experimental case study, we aimed to consolidate the human character-
istics as an emergent context dimension related to the caching policies. Recent research
fields like people-centric networking (CONTI et al., 2015) and human-centric multimedia
networking (ROSÁRIO et al., 2016) are gathering attention to the basic fact that users
play an essential role in demanding contents or network services, and di↵erent human
characteristics can lead to di↵erent impacts on the network. In this direction, we have
investigated the impact of a human habit on the performance of caching policies through
simulated NDN scenarios with real data from several users of an online music stream. The
study shows the benefits of using caching strategies according to users’ behavior patterns
on downloading songs. Among the lessons learned, there is the relevance of including
human aspects in building modern context-aware caching systems, especially at network
edge caches closer to the users. The case study led us to one publication at the 2018
IEEE Symposium on Computers and Communications. Later, with the evolving of the
research, another publication at XXXVII Brazilian Symposium on Computer Networks
and Distributed Systems.

To tackle the second research question, we started empirical studies about using ma-
chine learning techniques in network and communication systems, which led us to employ
the online learning reasoning to build our proposed solution on the choosing caching pol-
icy problem. We formalize the process of context-aware instantiation of suitable policies
as a continuous decision-making process. In this sense, we have proposed a new strategy
that benefits from the diversity of policies and their di↵erent context aspects to build
self-driven cache systems. The strategy explores multiple caching policies to learn which
policy is more suitable for a given cache context. Each caching policy in the process can
be associated with di↵erent context characteristics. This way, as an online continuous
learning process, the cache works as a self-driven system by adapting its policy choice to
context variations leading to changes on which policy becomes more suitable. We call
our strategy caching meta-policy since it enhances the cache to learn and adapt its policy
without dealing directly with the policies’ eviction logic.

In the sequence, we carried out a proof-of-concept evaluation of our proposed new
strategy. The evaluation relied on a simulation-based study through which the proposed
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approach supports caching in networking nodes of an NDN architecture. The scenarios
encompassed single-cache and multi-cache networks with synthetic and real web traces.
The study shows our strategy feasibility and adaptability to learn in distinct contexts.
Among the lessons learned, there is the potential to embrace the overall cache context
through multiple policies with di↵erent perspectives. Also, the online learning paradigm
proved to be a forceful direction to meet the requirements of modern dynamic networks.
Our model and its experimental evaluation were published in the technical track on
Selected Areas of Wireless Communications and Networking (WCN) of the 37th ACM
Symposium on Applied Computing.

1.4 CONTRIBUTIONS

We unfold the first research goal of this thesis into three main research contribution
groups:

• An evidence-based mapping of context dimensions correlated with the caching re-
placement schemes proposed for ICNs. The mapping contributes to (i) provide a
classification of contexts to assist those engaged in the design of adaptive caching
solutions for ICN that target the more e�cient use of available cache resources;
(ii) substantiates the reasoning of the caching policy decision process by presenting
and analyzing information from previous works; and (iii) enhances the set of knowl-
edge on caching systems regarding emergent networks while underpins context-
aware caching solutions.

• An exploratory investigation of human behavior patterns as holistic aspects to rep-
resent context regarding caching replacement policies. We present an analysis of
the behavioral profiles of music users and how di↵erent profiles influence the per-
formance of cache replacement policies. The study contributes to: (i) identify user
profile relations with cache replacement policies based on evaluations with real
datasets; (ii) ratify the inclusion of human context dimension as a context factor
that influences the choice of cache replacement policies; and (ii) substantiate the
building of user profiles predictor systems by presenting a correlation model between
user profiles and content popularity patterns.

• Research directions useful for researchers who plan to work in this domain. We
have pinpointed future research directions regarding context information manage-
ment, scalability of context suitability, exploration of context information through
machine learning techniques, human aspects, and privacy.

Those contributions underpinned the investigation of methods to address our second
research goal. The main contributions related are:

• A generic caching meta-policy strategy to assist the process of choosing suitable
cache replacement policies. The strategy is designed to learn the most appropriate
policy for caching online and dynamically adapting to context variations that leads
to changes in which policy is best. The strategy is generic regarding the network
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type in which the cache operates. Furthermore, the strategy is suitable for caches
operating in di↵erent settings such as ICNs, Content Delivery Network (CDN), and
Web proxy caches.

• Empirical evaluations of the proposed caching meta-policy strategy in ICN-based
scenarios.

• Directions for future investigations of online learning models for collaborative caching
systems. Moreover, research directions on emergent network technologies to foster
the dynamic and adaptive instantiation of caching policies.

1.5 PUBLICATIONS

This thesis resulted in the following publications:

• On Evaluating the Influence of Users Music Listening Habits on Cache
Replacement Policies.
Pires, Stéfani S. ; Ribeiro, Adriana V. ; De Souza, Antonio M. ; Freitas, Allan E.
S. ; Sampaio, Leobino N.
In: 2018 IEEE Symposium on Computers and Communications (ISCC), 2018, Na-
tal. 2018. p. 00930.

• Análise de Perfis de Usuários de Música e Seus Impactos no Desempenho
de Poĺıticas de Substituição de Cache.
Pires, Stéfani S. ; Araújo, Francisco R. C. ; Freitas, Allan E. S. ; Sampaio, Leobino
N.
In: XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos,
2019. (SBRC 2019). v. 37. p. 848-880.

• Contextual dimensions for cache replacement schemes in information-
centric networks: a systematic review.
Pires, Stéfani S. ; Ziviani, Artur ; Sampaio, Leobino N.
In: PEERJ Computer Science, v. 7, p. e418, 2021.

• A Meta-policy Approach for Learning Suitable Caching Replacement
Policies in Information-centric Networks
Pires, Stéfani S. ; Ribeiro, Adriana V. ; Sampaio, Leobino N.
In: 37th ACM Symposium on Applied Computing (ACM SAC’22).

1.6 DOCUMENT ORGANIZATION

The remaining chapters are structured as follows:

Chapter 2 presents introductory concepts of ICN and caching policies. In addition,
the chapter explores the relation of the human-centric paradigm with caching systems.

Chapter 3 details the review of the ICN literature regarding caching replacement
policies.



1.6 DOCUMENT ORGANIZATION 9

Chapter 4 presents the exploratory case study investigating the impact of the human
context on caching policies.

Chapter 5 presents our proposed generic method for choosing caching policies.

Chapter 6 presents the experimental evaluation of the proposed choosing strategy.

Chapter 7 presents our final considerations. We pinpointed subjects out of scope of
this thesis and future research directions.





Chapter

2
BACKGROUND

This chapter presents fundamental concepts related to ICN and caching policies. We
pinpoint the core features of the ICN model, the discussion for real-world deployment,
and the main structure of the in-network caching in NDN architecture (2.1). Next, we
explore a set of application areas suitable for the execution of ICN approaches (2.2).
Then, we present the types of caching policies used in ICNs, along with an example set
of policies proposed in the literature (2.3). We conclude the chapter by discussing the
relevance of considering human characteristics in caching solutions and presenting related
user-centric research (2.4).

2.1 INFORMATION-CENTRIC NETWORKS

ICN is a new Internet architecture proposal widely discussed in the literature designed
to meet the current de facto usage pattern of the Internet: the dissemination of content,
such as videos and web pages. ICN comprises interconnected core functionalities for con-
tent naming, caching, and routing/forwarding to natively provide a content dissemination
network. In its fundamental concept, the content name becomes an essential element for
network routing, enabling the decoupling of content location from the content delivery
process. Allied to that, ICN replicates contents in caches distributed across the network
at the routers, and the closest copy will be returned when a user requests a content.
Beyond the advantages of caching that provide reductions of network congestion, server
loads, and access latency, the premise of independence of content location paves the way
for e�cient content distribution. Therefore, it adds advantages to ICN architectures,
such as native support for mobility and multicast communication.

The informational RFC 8763 (RAHMAN et al., 2020) presented by the IRTF1 Information-
Centric Networking Research Group (ICNRG) discusses some approaches for the real-
world deployment of ICNs and trial experiments. Besides the clean-slate approach, there
are directions for its coexistence with the TCP/IP—for example, the ICN adoption as

1Internet Research Task Force (IRTF) - https://datatracker.ietf.org/rg/icnrg/about

11
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an overlay network. The overlay approach proposes ICN islands deployed over existing
IP infrastructure and connected using tunneling solutions. In this way, ICN packets are
encapsulated inside IP packets through ICN/IP tunnels. Madureira et al. (2020) propose
a resembling overlay approach with an SDN-based core network connecting edge net-
works operating NDN. In that case, the SDN core network encapsulates the NDN packet.
Another approach is ICN as an underlay network, with the ICN islands connected to the
Internet through proxies or protocol conversion gateways.

The literature presents several ICN architectures, such as Data-Oriented Network
Architecture (KOPONEN et al., 2007), Content Mediator architecture for content-aware
Networks (GARCÍA et al., 2011), MobilityFirst (RAYCHAUDHURI; NAGARAJA; VENKATARA-
MANI, 2012), and the previously mentioned NDN. They explore di↵erent architectural
decisions about the naming scheme, caching, and routing processes (XYLOMENOS et al.,
2013). Overall, the support for in-network caching is an essential feature of ICN design.
In general, every router works with a CS structure to temporally store the contents. This
way, when a router receives a content request, the router verifies whether the content is
present in its own CS and immediately returns the content if stored locally. Otherwise,
the router will forward the request to another destination.
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Figure 2.1 Packet forwarding engine at an NDN router (ZHANG et al., 2014).

Among the di↵erent architectures, NDN outstands as a recent and promising trend
to substitute (or coexist with) the current TCP/IP model. In NDN, each CR has three
main structures to support in-network caching: CS, Pending Interest Table (PIT), and
Forwarding Information Base (FIB). Figure 2.1 illustrates an overview of the interaction
among these structures. A content request comes in the form of an Interest packet to the
CR, which returns a copy of the content in a Data packet format if the content is already
present in its CS for the same incoming interface of the Interest packet. Otherwise, a
new PIT entry records a pending Interest with the respective incoming interface, and
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the CR forwards the Interest packet according to some named-based protocol. Multiple
interests for the same data are aggregated in the same PIT entry. Once the Data-packet
arrives at the CR, the corresponding PIT entry is satisfied by forwarding the data to the
saved interfaces. The CS will, therefore, store the passing data according to some cache
management protocols.

2.2 ICN APPLICATION AREAS

The informational RFC 7476 (PENTIKOUSIS et al., 2015) presented by the IRTF-
ICNRG describes a set of application areas in which ICN architectures can potentially
perform better than the current host-centric Internet approach. This technical document
discusses diverse network contexts in emergent areas such as social networking, real-time
communication, mobile networking, vehicular networking, delay- and Disruption-Tolerant
Networking (DTN), IoT, and Smart Cities. In the following subsections, we present the
discussion for generic networks on information-centric IoT (ARSHAD et al., 2018; DONG;
WANG, 2016), vehicular named-data networking (KHELIFI et al., 2020), and ICN-enable
edge and core networks (ZHOU et al., 2017; ZHANG et al., 2018).

2.2.1 Information-centric Internet of Things

The adoption of IoT networks in many segments of society is gradually changing the
way people interact with the physical world by connecting new things to the Internet.
The imminent revolution of IoT applications must be followed by a revolution in how
the network structure deals with the content. The current Internet architecture is fun-
damentally not prepared to deal with the massive amount of data from an expected
number of billions of heterogeneous devices. The majority of IoT applications will be
content-oriented, and TCP/IP will be struggling to meet their bandwidth requirements.

Cache-enabled solutions like information-centric architectures are strong candidates
to assist in the deployment of IoT applications (ARSHAD et al., 2018; QUEVEDO;
CORUJO; AGUIAR, 2014; DONG; WANG, 2016; ARAúJO; SOUSA; SAMPAIO, 2019).
The ubiquitous content caching of ICN contributes to reducing the delay to retrieve
content and enhances the contents’ availability, especially when dealing with power re-
stricted devices that periodically switch on and o↵ in duty cycling to save resources. In
cache-enabled network solutions, IoT tra�c usually is o✏oaded at the Internet content
routers through a connected gateway (RAO; SCHELEN; LINDGREN, 2016; MEDDEB
et al., 2017) to aggregate the services of specialized IoT cloud platforms, such as Cisco
IoT Cloud Connect, Microsoft Azure IoT Suite, and Google Could IoT. Also, the IoT
devices can cache the tra�c in a dynamically distributed IoT network (HAHM et al.,
2016). Whether one case or another, two significant characteristics are a large number of
heterogeneous devices and the ephemerality of the content produced by them.

2.2.2 Vehicular Named-Data Networking

The integration of vehicles in the network communication infrastructure is a trend to
be incorporated into intelligent transport systems. In vehicular networking, the vehicles
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can exchange information with any other communication device available next to the
vehicle, in a concept of Vehicle-to-everything (V2X) communication. This includes com-
munication between vehicle and other vehicles (Vehicle-to-Vehicle (V2V)), or road infras-
tructure (Vehicle-to-Infrastructure (V2I)), communication network structure (Vehicle-to-
Network (V2N)), pedestrians (Vehicle-to-Pedestrian (V2P)), or any other communication
device.

Vehicular networking exhibit singular characteristics in tra�c generation patterns,
delivery requirements, and spatial and temporal scope (PENTIKOUSIS et al., 2015),
mostly due to high node mobility, very intermittent connections, and the support for
typical road-tra�c-related applications (LI et al., 2020), infotainment applications, and
code dissemination (LI; ZHAO; WONG, 2020). Thus, the content requests usually present
highly temporal/spatial dependencies, and the in-network caching capabilities of ICNs
can potentially improve the content delivery process. The decentralized content distri-
bution among the vehicles allows maintaining communication in the face of intermittent
connections. Also, it suits the needs of applications used in such networks, for example,
to inform tra�c conditions and accidents to a group of geographically close vehicles on
the road.

2.2.3 ICN integration with Mobile Edge Computing

Caching at the edge in Mobile Edge Computing (MEC) (SAFAVAT; NAVEEN; RAWAT,
2019) will play an essential role in the next-generation wireless network. The Radio Ac-
cess Network (RAN) is enhanced with cache capacity on Base Station (BS) structures
to better attend the content demand due to its proximity. This way, Small-cell Base
Station (SBS), Macro-cell Base Station (MBS), Wi-fi APs, mobile devices, and even re-
cent cache-enabled Unmanned Aerial Vehicles (UAVs) (ZHANG et al., 2020; JI et al.,
2020; HUANG et al., 2020) can store contents and respond to the content requests faster.
UAVs can act as flying base stations to support the ground cellular network. They can
also work as relay nodes to assist content delivery and data collection in areas without
available transmission links.

The integration with ICN concepts leverages the mobile-edge caching by supporting
in-network caching (ZHOU et al., 2017; PSARAS et al., 2018; SHARIAT; TIZGHADAM;
LEON-GARCIA, 2016). The imminent fifth-Generation (5G) mobile networks also re-
inforces that merge as several initiatives discuss the benefit of the integration with
ICN (ZHANG et al., 2018; GÜR; PORAMBAGE; LIYANAGE, 2020; RAVINDRAN
et al., 2021).

2.2.4 ICN-enabled Core Network

ICN’s benefits encompass large-scale networks with backbone core nodes and high-
speed links with di↵erent capacities, interconnecting heterogeneous Autonomous Systems
(AS) with multiple access networks. In this way, core networks aggregate content requests
from di↵erent access networks, and unlike the edge, the temporal/spatial correlation of
requests is gradually reduced and becomes weaker as the content requests approach the
core nodes. Many solutions enhance ICN’s applicability at core network structures for
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inter-domain network services such as routing (LIU et al., 2019), tra�c engineering (LI
et al., 2019), and globally accessible name schemes (ADRICHEM; KUIPERS, 2013).

2.3 ICN CACHING POLICIES

Cache capacity tends to be a small segment of the amount of distinct content dis-
tributed over the network. Thus, it is essential to have an e�cient eviction scheme among
the cache management protocols. There are di↵erent policies to tackle the management of
the CS structure. They can be classified as placement and replacement policies. Place-
ment policies, also called insertion policies, target the decision of whether a passing
content should be stored locally. Examples of placement policies include Leave Copy Ev-
erywhere (LCE), Probabilistic caching (Prob), Leave Copy Down (LCD) (LAOUTARIS;
SYNTILA; STAVRAKAKIS, 2004), Betweenness Centrality (Betw) (CHAI et al., 2012),
ProbCache (PSARAS; CHAI; PAVLOU, 2012), and CRCache (WANG et al., 2014). On
the other hand, as described in the introduction section, the replacement policies are
responsible for selecting which content to evict from the cache to store new content. This
work focuses on replacement policies, as we detail in the following sections.

Traditional replacement policies, such as LRU, LFU, or FIFO, are eviction strategies
inherited from computer memory systems and are commonly used in ICN and web-
proxy caching domains. These policies have been extensively explored to analyze cache
characteristics and the performance of complex network contexts through approximation
models. Orthogonally, they were not designed to fit the needs of a network of caches and
do not explore its potential.

Thus, the literature presents a variety of newly proposed schemes. Jin et al. (2017)
surveyed solutions for mobile caching in ICN, and among the contributions, they briefly
described sets of cache insertion and replacement policies. Besides the usual LRU,
LFU, FIFO, and simple Random, the list of replacement policies includes LRFU, LRU-k
(O’NEIL; O’NEIL; WEIKUM, 1993), Time Aware Least Recent Used (TLRU) (BILAL;
KANG, 2014), Aging Popularity-based Caching scheme (APC) (LI; LIU; WU, 2013),
Frequency-Based-FIFO (FB-FIFO) (GOMAA et al., 2013), and Adaptive Replacement
Cache (ARC) (MEGIDDO; MODHA, 2004).

However, there is no broader study on replacement schemes for ICN domains. Our
thesis tackled that gap by cataloging the schemes proposed for ICN to investigate con-
textual influences on the policies. Therefore, our work does not seek to discuss individual
policies, and the reader can refer to the original literature to further information. To
support the reading of the following chapters, Table 2.1 presents a description of content
placement and replacement policies reported along with the chapters.

Abb. Policy Name Type Description Ref.

LRU Least Recently
Used

Replacement Removes the last accessed content in the cache. -

LFU Least Frequently
Used

Replacement Removes the last frequently used content in the
cache.

-

FIFO First-In-First-Out Replacement Removes the oldest content placed in the cache. -
Continued on next page
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Table 2.1 – continued from previous page

Abb. Policy Name Type Description Ref.
- Random Replacement Removes one content randomly. -
- Size Replacement Removes the content with largest size in the cache. (ABRAMS et

al., 1996)
TTL Time-to-Live Replacement Removes expired contents. (BERGER et

al., 2014)
LRFU Least Recent-

ly/Frequently
Used

Replacement Considers the recency and frequency of contents to
compute a Combined Recency and Frequency (CRF)
metric. CRF values are higher for more recent and
frequent contents. The policy evicts contents with
lower CRFs.

(LEE et al.,
2001)

FCDC Fast convergence
caching replace-
ment algorithm
based on dynamic
classification
method

Replacement Considers categories of contents by content’s popu-
larity and a popularity rank by categories. Contents
in lower ranked categories can be evicted for ones in
higher ranked categories.

(CHAO et al.,
2013)

RUF Recent Usage Fre-
quency

Replacement Considers categories of contents by similarity and
a popularity rank by categories. Contents in lower
ranked categories can be evicted for ones in higher
ranked categories.

(KANG;
LEE; KO,
2012)

EV Energy e�ciency
cache scheme
based on virtual
round trip time

Placement
/ Replace-
ment

Considers the energy consumption to store and to
transport the content. Places the contents with stor-
age energy smaller than their transport energy, and
compares the energy saving of the cached contents
with the energy saving of the passing content to evict
the contents.

(WANG et
al., 2014)

PBRS Content-
Popularity and
Betweenness based
Replacement
Scheme

Replacement Removes the content with the lower popularity.
Computes the content popularity based on the con-
tent’s requests and node’s betweenness centrality.

(LIU et al.,
2019)

ABC Age-based Cooper-
ation

Replacement Removes the content based on content’s Time-to-
Live (TTL). Computes TTL based on the node’s lo-
cation in the topology and the content popularity.
The closer to the edge and/or the more popular a
content, the longer its TTL value. Also called TTL.

(MING;
XU; WANG,
2012)

2Q Two Queues Replacement Designed for bu↵er management, it considers two
lists of pages. The first list applies FIFO in the in-
coming page requests. The second list receives the
pages in the first list requested again and their sub-
sequent requests and applies LRU.

(JOHNSON;
SHASHA,
1994)

ARC Adaptive Replace-
ment Cache

Replacement Designed for bu↵er management, it considers two
LRU lists. The first list contains pages requested
once in a recent time, and the second list pages re-
quested at least twice. The policy adaptively decides
the number of pages to maintain in each list accord-
ing to the workload characteristic.

(MEGIDDO;
MODHA,
2003)

LIRS Low Inter-reference
Recency Set

Replacement Designed for bu↵er management, it considers the
number of other pages accessed between the last and
penultimate access for a page as Inter-Reference Re-
cency (IRR) metric. The policy removes the page
with the largest IRR.

(JIANG;
ZHANG,
2002)

MQ Multi-Queue Replacement Designed for bu↵er management, it considers multi-
ple lists with di↵erent access frequencies for di↵erent
periods.

(ZHOU;
PHILBIN;
LI, 2001)

PPC Popularity Predic-
tion Caching

Replacement Designed for video content. Predicts and caches the
future most popular videos’ chunks based on the
number of requests for neighboring chunks in the
same video content. Evicts chunks with the least
future popularity.

(ZHANG;
TAN; LI,
2018)

Continued on next page
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Table 2.1 – continued from previous page

Abb. Policy Name Type Description Ref.
CCP Cache Policy based

on Content Popu-
larity

Replacement Considers previous content popularity and the num-
ber of hits in a current interval of time to compute
the current content popularity. The policy evicts less
popular content.

(RAN et al.,
2013)

Betw Betweenness cen-
trality

Placement Considers the node’s position at the topology in
terms of node’s centrality measures to place the con-
tent. Only selected nodes with higher measures
cache the content. Also called Leave-Copy-Betw
(LCB), or Centrality.

(CHAI et al.,
2012)

LCD Leave Copy Down Placement Places the content only in the immediate down-
stream node of a cache-hit point.

(LAOUTARIS;
SYNTILA;
STAVRAKAKIS,
2004)

LCE Leave Copy Every-
where

Placement Places the contents in all caches along the reverse
path of the content request.

(LAOUTARIS;
SYNTILA;
STAVRAKAKIS,
2004)

Prob Probabilistic
caching

Placement Each cache in the reverse path of the content request
stores the content with a constant probability p. Also
called Leave-Copy-Probabilistically (LCP).

(LAOUTARIS;
SYNTILA;
STAVRAKAKIS,
2004)

- ProbCache Placement Considers the shared storage capacity of the request
path and the node’s distance to the content producer
to calculate the node’s probability of caching the con-
tent; Also called PProb.

(PSARAS;
CHAI;
PAVLOU,
2012)

- CRCache Placement Considers the content popularity and the node’s
centrality measures to calculate the probability of
caching the content. The most popular contents are
cached in the nodes with the highest centrality. Also
called Cross.

(WANG et
al., 2014)

PCP Progressive
Caching Policy

Placement Considers the immediate downstream node of a
cache-hit point to store the content, the number of
interfaces saved in PIT entry for the intermediate
nodes, and the number of requests for edge nodes.

(WANG;
BENSAOU,
2012a)

Rand Single node ran-
dom caching

Placement Places the contents in one random intermediate node
along the delivery path.

(EUM et al.,
2012)

Table 2.1: Set of content placement and replacement policies.

2.4 CACHING POLICIES AND HUMAN CONTEXT

The researches concerning caching policies comparisons in di↵erent network scenarios
usually investigate variations of parameters that might indicate a direct relation with
cache behavior, such as network topology, cache size, average size of transmitted files,
and content popularity distribution. However, recent studies have been investigating the
influence of human behavior on the network operation, enhancing an emergent research
field of people-centric networking (CONTI et al., 2015; OLIVEIRA et al., 2016; CHEN et
al., 2016; COSTA et al., 2018). The human aware paradigm is an emerging theme in the
development of computer networking solutions. In this paradigm, the characteristics of
human behavior can be incorporated into processes and applications, making the network
e�ciently adapted to the specific needs of users. Thus, the user is no longer seen as a
generic element of the network, and is introduced as a new context aspect capable of
influencing the network performance and the decisions of protocols and solutions used.

The new paradigm draws attention to the fact that network performance may vary
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according to user profile, and characteristics of applications. Both of them can be asso-
ciated to a group of users. User behavioral profiles o↵er new inputs in the development
of network protocols and strategies, and contribute to the consolidation of the concept of
human-centered networks. Hence, network architectures can be benefited from user pro-
file characterization, which can vary from di↵erent perspectives, from people’s mobility
regular patterns to community and social relationships habits.

In ICN architectures, user behavioral data can be explored in the development of
strategies aimed at improving the performance of such networks, since they are based
on a consumption/request model centered on the content holder. In the following para-
graphs we summarize some related works that attempted to incorporate features related
to the user in the caching process.

Some caching policies proposed for ICNs intended to incorporate features related to
the user in the caching process (AL-TURJMAN; AL-FAGIH; HASSANEIN, 2013; XING
et al., 2017; ZHANG; TAN; LI, 2018). However, the human characteristics are not directly
used by the policies. For instance, Wei et al. (2014) proposed a mobility-aware caching
strategy for mobile networks in which they model the transition of users among WiFi
access points as a stationary Markov model. In a broad sense, the user’s mobility has the
same connotation as the node’s mobility. In the surveyed works that deal with mobility,
the concept of a node’s mobility suits the objectives since the human dimension is not
directly associated with mobility patterns. Di↵erent user’s profiles can be associated with
di↵erent mobility patterns, for example, di↵erent ages or professions (LIANG et al., 2012)
or even di↵erent personalities (CHORLEY et al., 2013).

There are other initiates recognizing the relevance of the user and attempting to
incorporate aspects related to the user in the caching process. For instance, Al-Turjman,
Al-Fagih e Hassanein (2013) incorporate the past requesting preferences of groups of
users as tuning parameters to assign a weight value for the types of contents accessed,
and accordingly adjust the replacement policy to maintain the most suitable types to
be accessed by the same group of users. The three main types of content are delay-
based, demand-based, and age-based contents. Although they involved the idea of users
requesting preferences in the process, the user is still represented just as a node, like a
smartphone, or a laptop.

Another work related to the user request pattern was proposed by Xing et al. (2017).
The authors used Neural Networks to model and predict the request pattern of groups
of users in cellular partitions. They introduced a metric called Accumulate Network
Tra�c (ANT) to quantify users interest in contents, which represents the overall network
flow generated to get a content, and it is based on a set of additional content’s features.
In this way, it is possible to associate di↵erent measures of ANT with di↵erent request
patterns. The contents are cached according to their ANT value, and the proposed
replacement scheme uses the ANT value in the eviction process.

Zhang, Tan e Li (2018) attempt to model the behavior of users when watching
videos, aiming to model the relationship between chunks of the same content video type.
This relation is the base of a prediction process that utilizes the request information of
neighboring chunks to make the popularity prediction for future chunk requests. The
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proposed replacement scheme works with the predicted future popularity rank to decide
which chunk to evict. As the previously mentioned works, this one deals only with
content’s properties, and do not direct models human attributes.

The work presented by Neves et al. (2013) reproduces a variety of scenarios with
the intention of finding the best policy for streaming media in CDNs. The scenarios
presented di↵erent combinations of video sizes, popularity models, number of requests,
cache size and user session duration. Although the work includes a parameter related to
user behavior, through the average time a user watches videos – classified as a discrete
variable, i.e., short or long session – the analysis does not explore this perspective.

Another little-explored approximation of user behavior can be found in (ROSENSWEIG;
MENASCHÉ; KUROSE, 2013). The authors investigate the ergodicity of content net-
works and its relationship to cache replacement policies. In one of its examples analyzing
the e↵ects of di↵erent initial states, the work succinctly discusses the influence of user
request patterns, and concludes that small changes in request patterns can have a signif-
icant impact on policy behavior.

In contrast, the work of Bernardini, Silverston e Festor (2014) directly involves the
user in defining cache policies. The authors propose a new cache location policy that
looks at the number of connections a user has on their social networks. Users with many
connections are considered “influential” and their contents receive a di↵erent treatment
on the network, being proactively replicated in the caches towards the user’s social con-
nections. Simulations with synthetic data show a better performance of this new policy
compared to standard policies used in ICN networks.

Furthermore, it is possible to find works that propose the identification of behav-
ior patterns of content producers, seeking to minimize the hando↵ e↵ects (LEHMANN;
BARCELLOS; MAUTHE, 2016; ARAUJO; SOUSA; SAMPAIO, 2018); the use of cache
policies according to user context (Ribeiro; Sampaio; Ziviani, 2018); the choosing cache
location from users daily routines (SILVA; CAMPISTA; COSTA, 2016); and the for-
warding of interests based on forecasting the relocation of producers (ARAUJO; SOUSA;
SAMPAIO, 2018).

Although such initiatives present contributions in ICNs architectures, they still timidly
explore the behavioral profiles of users in their solutions. Moreover, there is a gap in the
literature regarding evaluations of how behavioral profiles of users can influence the cache
replacement policies adopted in ICN architectures.

2.5 CHAPTER SUMMARY

ICN proposes a new Internet architecture model centered on the content distribution
on the network. The core fundamental of ICN is decoupling the content delivery from the
content location address. The model values the content’s name instead of its location.
Therefore, ICN counts with the in-network caching functionality to deliver contents and
caching policies to manage the caches e�ciently. There are two main categories of caching
policies: placement and replacement policies. The placement policy decides if the cache
should store a passing content, while the replacement policy decides which content to
evict to free up memory space for new contents. Several policies are proposed in the
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literature, and our work focuses on the choice of replacement policies. Moreover, there
are recent researches on the advantages of integrating human characteristics in the design
of caching systems. The chapter explores some initiatives on that subject.



Chapter

3
CONTEXTUAL DIMENSIONS FOR CACHE

REPLACEMENT SCHEMES IN ICNS

Based on the principle that cache replacement policies perform di↵erently according
to the context, we first attempted to define what is context from the perspective of the
caching policies. A fundamental question to direct this process is to understand what
can influence the performance of the policies. In this direction, we have conducted a
Systematic Literature Review (SLR) to investigate evidence in the ICN literature about
the e↵ects of context aspects on cache replacement schemes’ performance. SLR is a
straightforward and consistent process to compile evidence to answer a set of research
questions and help further understand the evidence reported.

In this chapter, we first present an outline of the systematic review (Sec. 3.1). Next,
we describe the methodology adopted to perform the review, including the definition of
specific research questions that drove the review process (Sec. 3.2). Then, we discuss the
extracted evidence to answer the research questions, and present analyses of the main
findings (Sec. 3.3). Moreover, we argue the applicability of our main findings in emergent
ICN-enable scenarios (Sec. 3.4). Last, we discuss remaining aspects on the lessons learned
(Sec. 3.5) and summarize the chapter (Sec. 3.6).

3.1 SYSTEMATIC LITERATURE REVIEW OUTLINE

Following a predefined SLR protocol, we first cataloged the cache replacement schemes
used in ICNs. The current literature presents various proposed strategies exploring dif-
ferent context aspects to enhance the eviction logic, aiming to achieve more potentially
precise and customized techniques. We mapped context dimensions related to the content,
network, node, and human aspects. We then categorized the respective context proper-
ties used by the replacement schemes proposed for ICNs. With the context properties,
we provide a taxonomy of context dimensions and a policy categorization accordingly.
Taxonomies may support the choosing process in the absence of the overall understanding
of specific network contexts and what influences policy behavior.

21
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In addition to the taxonomy, we compiled the context variations with reported relevant
impacts on the policies, especially those leading to changes in the policies’ performance
rank. This SLR was able to identify common context factors that di↵erentiated the choice
of best policy performance. Even so, as expected, there is no single optimal strategy to
meet the requirements of all surveyed network contexts, since the performance of the
caching policies varied according to the characteristics of each network.

Last, we extended the SLR results with the analysis of proper context dimensions to
be explored by the eviction process in di↵erent emergent networks, such as information-
centric IoTs (ARSHAD et al., 2018; DONG; WANG, 2016), vehicular named-data net-
working (KHELIFI et al., 2020), and in-network cache-based edge computing solutions
(ZHOU et al., 2017; ZHANG et al., 2018). These emergent networks have gained atten-
tion from the research and industry communities, fostering the evolution of heterogeneous
ICN solutions. The taxonomy and policy classification presented in this paper can help
to infer the choice among current or new policies adapted to these networks to ensure
better network performance.

Hence, as mentioned before, the SLR contribution is threefold. It (i) provides a
classification of contexts to assist those engaged in the design of adaptive caching solutions
for ICN that target the more e�cient use of available cache resources; (ii) substantiates the
reasoning of the caching policy decision process by presenting and analyzing information
from previous works; and (iii) contributes to the set of knowledge on caching systems
regarding emergent networks and underpins context-aware caching solutions.

3.2 SLR METHODOLOGY

The SLR methodology specifies a well-defined searching protocol, with the definition
of research questions, research strings, explicit inclusion criteria of papers, among other
steps. The methodology used in this paper follows an adaptation of previously adopted
SLRs in the Software Engineering discipline (KITCHENHAM; CHARTERS, 2007; PE-
TERSEN et al., 2008). Figure 3.1 summarizes the adopted SLR process.

The planning process ensures delimitation of the search scope with the definition of
leading research questions, inclusion criteria, and the necessary inputs to operate the
search. The search process is the paper triage phase to collect relevant works and extract
meaningful data that match the research questions. The data analysis evaluates the
extracted data to summarize the primary evidence and point contributions. We detail
the processes activities in the following.

This study aimed to map context information associated with the performance of
cache replacement strategies to help the choosing and design process while applying ICN.
Since the scope and definition of context information can be relative to the research do-
main, we intended to characterize relevant dimensions surrounding the cache replacement
schemes. Additionally, we also intended to identify the cache replacement strategies ap-
plied and their context characteristics, and investigate reported evidence about how the
identified context information influences the behavior of cache replacement policies in
ICNs. To this end, we defined the following research questions (RQs):
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Figure 3.1 Steps of the SLR process.

RQ1: What is context from the perspective of a cache replacement policy?
RQ2: Which are the context characteristics used by the policies?
RQ3: Which are the cache replacement strategies applied for in-networking caching

in ICN?
RQ4: What context variations had e↵ects on the performance of the cache replace-

ment strategies?

Notice that the research questions correlate with each other in the sense that they
rely on each other’s outputs in di↵erent ways: the first three questions are requisites to
answer the last question; to answer RQ2 it is necessary a primary overview direction for
RQ1 and also the output for RQ3; the complete delimitation of context that answers
RQ1 is an iterative process that relies on RQ2 and RQ3 outcomes.

After the definition of the research questions, we specified a list of relevant keywords
based on the analysis of manually selected papers, and we defined correspondent search
strings using AND and OR operators, as exemplified in Table 3.1. The search strings
were meant to drive automatic searches on relevant research engines. Table 3.2 contains
the list of the selected scientific databases. We adapted the search strings according to
the syntax of the scientific databases.

(”ICN” OR ”NDN” OR ”CCN” OR ”information centric” OR ”information-centric”
OR ”named data” OR ”named-data” OR ”content centric” OR ”content-centric”)
AND (“cache” OR “caching”) AND (“replacement” OR “eviction” OR “perfor-
mance” OR “management” OR “policy” OR “policies” )

Table 3.1 Search string example.

The selection criteria included works written in English, addressing any aspects of
cache replacement policy comparisons in ICNs. We also had the papers approaching new
schemes for the eviction process for ICNs as part of the contributions.

After the planning phase, we applied the search activities. The first step of the
searching process was applying the automatic searches as specified in the planning phase.
We did not set a lower year threshold in the search databases for the publication year
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Engine URL

ACM Digital Library https://dl.acm.org
Elsevier - Science Direct https://www.sciencedirect.com
IEEE Xplore Digital Library https://ieeexplore.ieee.org
Springer https://link.springer.com

Table 3.2 Academic search databases.

range, and the upper bound was set to 2019. We cataloged a total of 1650 papers in this
phase. In the following, the screening process comprehended abstract reading and analysis
of all matched papers, to filter according to the inclusion criteria. Upon abstract filtering,
we obtained 275 papers. Those were potential works where we could find answers to the
predefined research questions. Finally, we performed full paper reading and analysis of the
potential works to extract relevant information and evidence about the research questions.
As a result, we reached a total of 168 papers pertinent to our research. Additionally, we
incremented the results by carrying out a non-systematic snowballing research process
on the read papers and search engines to update with new works not covered in the first
search. This process resulted in the addition of two relevant documents.

Finally, the resulting papers and their correspondent extracted data consisted the
input for our study. In the analysis phase, we have categorized and correlated data from
di↵erent papers to empirically mining relevant information patterns. We report our main
findings regarding the research questions in the following section.

3.3 SLR RESULTS AND ANALYSIS

The SLR process described in the previous section enabled us to answer the main
research questions introduced in this manuscript. The following subsections describe the
process to accomplished this.

3.3.1 Research Question 01 - Context Dimensions

As a result of the literature review analysis process, our definition of context comprises,
in a broad sense, information that can be used by the policy as input data to direct the
eviction process. Also, it includes information “external” to the policy that can be used
within a computational environment and could influence the policy’s performance.

To understand and delimit what entities could represent the context from the per-
spective of cache replacement strategies, we direct the paper reading and extraction of
possibly relevant information based on leading questions related to the content. Since
the process of dealing with contents is the overall purpose of having caching policies,
we placed content as a feedstock for caching policies, and we defined questions from the
content’s point of view, as follows:

• What content is being requested? In this dimension, we seek for characteristics of
the content itself (and the application), such as content size, popularity, type;
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• When is the content requested? This dimension specifies time-related information
regarding the content and its relation to the user—for instance, time of access, time
of creation, or user delay to receive the content.

• Where is the content located and distributed? This dimension specifies network char-
acteristics, such as topology and link capacity, and features about the node/routers
that store the content, such as cache capacity and the number of interfaces.

• Who is requesting the content? Also, who is publishing the content? This di-
mension relates to the human aspect, in which preferences, behavior, and routines
are mapped as a context dimension. The dimension can also refer to machine-to-
machine communication, but, in this case, the characteristics overlap with informa-
tion of the node contemplated in the previous dimension.

Therefore, we extracted relevant information that would apply to these dimensions
and correlate with the cache replacement schemes. Based on the extracted data, we char-
acterized context dimensions according to four main categories: network, node, content,
and human. Figure 3.2 illustrates the hierarchy of our classification. A context view is
represented by current information of cached content in a particular node, which belongs
to a network, and is accessed or produced by a user. Each of these dimensions contains
properties related to the cache eviction process in one or more of the surveyed papers.
We detail the list of properties in the next subsection.

Additionally, we also consider ICN architecture decisions as part of the context. The
other cache-related protocols, such as placement policies or naming schemes, are relevant
aspects and should be included as part of the context. This dissertation surveyed the
impacts of di↵erent architecture decisions on the replacement schemes; however, the
discussion of specific caching protocols properties is out of the scope of this work.

3.3.2 Research Question 02 - Context Characteristics

Our second research question aims at identifying the context characteristics directly
related to the policies. To this end, we collected the types of information used as input
data for the replacement schemes and classified correspondent properties for the main
context dimensions of Figure 3.2. We further discuss the context characteristics as follows:

• The content dimension is subcategorized into four types of properties: feature,
popularity, time-related, and type-specific. The feature properties are global ones,
i.e., are inherent to the content and usually do not vary according to the other
context dimensions. Conversely, popularity and time-related properties are related
to the node caching the content, and consequently, their values di↵er from node to
node. The type-specific subcategory is reserved for specifying singular aspects of
data or application types. Figure 3.3 contains a list of properties extracted from the
surveyed papers for the content dimension. In this case, the type-specific properties
are mainly about video content, for illustrative purposes.
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Figure 3.2 The hierarchy of context dimensions identified from the surveyed papers and the
proposed classification for the correspondent characteristics associated with the cache replace-
ment schemes.

• The node dimension is subcategorized in resource, connectivity, location, content-
related, and tra�c. Accordingly, the resource properties are inherent to the node;
connectivity and location features are mostly related to neighbor nodes and the po-
sition of the node into the topology. The content-related represents the intersection
with the content’s dimension and gathers content’s information in a broader granu-
larity. The tra�c properties are related to the flows of data tra�c passing through
the node. Figure 3.4 shows the list of properties extracted from the surveyed papers
for the node dimension.

• The network dimension represents properties common to general network types.
The properties are categorized into four classes: resource, topology, tra�c, and
time-related. The resource class groups the overall network capabilities, such as
bandwidth, link capacity, and fetching content costs. The topology properties are
more specific about network’s size, represented mainly with the distances between
nodes. The tra�c class has the same connotation as in the node dimension but
di↵ers in granularity, and the time-related class defines temporal properties. The
presented properties in the time-related class are similar to some of the topology
properties. They are related to the distance between nodes measured in time units
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to reflect the delay to retrieve content. Figure 3.5 presents the list of properties
extracted from the surveyed papers for the network dimension.
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Figure 3.3 Properties from content dimension extracted from the cache replacement schemes
for ICNs.
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Figure 3.4 Properties from node dimension extracted from the cache replacement schemes for
ICNs.

The previous list of properties is a broad definition of context characteristics to assist
in the analysis of cache replacement schemes. It helps to visualize what dimensions are
directly related to the policies and could significantly impact the applied network context.
However, it is not a static list and can be increased as new information becomes available
and relevant to a specific ICN instance. Furthermore, some of those properties are closely
related to more than one context dimension. It is possible to change their perspective
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Figure 3.5 Properties from network dimension extracted from the cache replacement schemes
for ICNs.

in terms of classification to represent a given ICN context. Moreover, the unified view
of properties can substantiate the design of novel cache solutions by helping to identify
potential gaps for new situations.

The human dimension is an emergent and new approach to be explored as part
of the context. In this way, human attributes are potential drivers in the design of
network solutions. The many examples of human data, such as behaviors, interests,
personality, character, social interactions, humor, daily routines, gender, age, etc., opens
up a range of possibilities to be explored. We have performed experiments with real user
data and associated distinct user habits with di↵erent cache replacement policies (See
Chapter 4). The experiment reinforces the relevance of the human dimension for network
configuration. However, it is an incipient research field, and there is still a lack of studies
intersecting human features with caching policies. Thus, it was unsuitable for proposing
a proper classification of properties for the human dimension in the current research.

3.3.3 Research Question 03 - Cache Replacement Schemes for ICNs

The literature shows various proposed replacement schemes for ICNs exploring beyond
the context of the content and adding properties of node and network’s dimensions. In
this direction, we cataloged the replacement schemes applied to the surveyed papers
to collect context features and understand their correlations. To better readability, we
classified the schemes according to the classes of context information they used. They are
classified in: content-based; content and network-based; content and node-based; content,
network and node-based; and network and/or node-based schemes. Tables 3.3, 3.4, 3.5,
3.6, and 3.7 contain the lists of the cache replacement schemes in each class, respectively.

The tables also detail the correspondent context property categories used by the
policies, which reveal the diversity of context combinations explored in the literature.
We grouped the policies accordingly. This classification provides a comprehensive view
of what context information the techniques required. Therefore, it is the first guide to
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Content property categories Replacement schemes

Popularity (ROSSI; ROSSINI, 2011),(CHAO et al., 2013),(RAN et al.,
2013),(YEH et al., 2015),(NAKAYAMA; ATA; OKA, 2015),(LIU;
ZHU; MA, 2016),(ZHAO et al., 2017),(KALGHOUM; GAMMAR,
2017),(SINKY et al., 2018),(LI; YU; LI, 2018),(KALGHOUM;
SAIDANE, 2019).

Time-related (RAVI; RAMANATHAN; SIVALINGAM, 2014),(LI; MA; HU,
2015),(REZAZAD; TAY, 2015),(RHAIEM; FOURATI; AJIB,
2016),(SHUKLA; ABOUZEID, 2017),(DHIAB et al., 2017),(VU-
RAL et al., 2017),(HOU et al., 2019),(MEDDEB et al., 2019),(DIN
et al., 2019).

Popularity and Time-related (WANG et al., 2012),(SANTOS et al., 2013),(QIAN et al.,
2014),(CHEN et al., 2014),(ABIDI; GAMMAR, 2015),(XIN et
al., 2016),(YAO et al., 2018),(CHOOTONG; THAENTHONG,
2017),(ZHANG; TAN; LI, 2018),(HUANG et al., 2018),(TANG et
al., 2019).

Popularity, Time-related
and Feature

(KANG; LEE; KO, 2012),(BILAL; KANG, 2014),(HAN et
al., 2014),(BILAL; KANG, 2017),(PRAKASH; MOHARIR,
2018),(SERTBAŞ et al., 2018).

Time-related and Feature (THOMAS; XYLOMENOS, 2014),(RAO; SCHELEN; LIND-
GREN, 2016),(WU et al., 2014),(TARNOI et al., 2019).

Popularity and Feature (CHANDRASEKARAN; WANG; TAFAZOLLI, 2015; CHAN-
DRASEKARAN et al., 2018),(LEE; HONG, 2017).

Popularity and Type-specific (JIA et al., 2016),(GE et al., 2016).
Time-related and Type-specific (ZHANG et al., 2017)
Time-related, Type-specific
and Feature

(GHAHFAROKHI; MOGHIM; EFTEKHARI, 2017)

Type-specific and Feature (LEE; LIM; YOO, 2013)
Popularity, Time-related,
Type-specific and Feature

(LEE; LIM; YOO, 2013)

Table 3.3 Content-based cache replacement schemes.

map which context variances could directly influence the performance of the technique.
The replacement policies explore one or more features listed in Figures 3.3, 3.4, and

3.5, according to the classification. Naturally, almost all the schemes further explore the
content dimension; however, we also found methods dealing only with network and node
features to assist the eviction process. Figure 3.6 illustrates the usage distribution of
context properties by their categories. We ranked the context categories according to the
number of policies that used one or more of the corresponding category properties. It
is important to remark that for the classification of policies, we did not account for the
general use of node CS cache capacity and the number of interface information, since it
can usually be part of the caching process.

3.3.4 Research Question 04 - E↵ects of Context Variation

Our objective in this section is to carry out an evidence-based analysis and identify
what context dimensions can a↵ect the policies’ performance. In this way, we collected
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Content prop-

erty categories

Node property

categories
Replacement schemes

Popularity

Location (WEI et al., 2014),(CHEN et al., 2016),(MICK;
TOURANI; MISRA, 2016),(LAL; KUMAR, 2019).

Content-related (LAL; KUMAR, 2016),(ZHANG; TAN; LI,
2017),(BAUGH; GUO, 2018).

Tra�c (SALTARIN et al., 2018)
Tra�c and Connectivity (YANG; CHOI, 2018)
Tra�c and Location (LIU et al., 2019)

Popularity and
Time-related

Tra�c (KARAMI; GUERRERO-ZAPATA,
2015),(ROCHA et al., 2016),(ZHOU; YE,
2017),(KHAN; KHAN, 2017),(QU et al., 2018).

Connectivity (AN; LUO, 2018)
Content-related and Tra�c (YAO et al., 2019)

Time-related and
Feature

Content-related (HAHM et al., 2016)
Connectivity and Location (AOKI; SHIGEYASU, 2017)

Popularity, Time-
related and Feature

Connectivity (WOOD et al., 2013)
Content-related and Tra�c (ONG et al., 2014)

Popularity and Fea-
ture

Content-related (LI et al., 2015),(DRON et al., 2013).

Table 3.4 Content and Node-based cache replacement schemes.

Content prop-

erty categories

Network property cat-

egories

Replacement schemes

Popularity
Topology (WANG et al., 2011; WANG; BI; WU,

2012),(MING; XU; WANG, 2012),(REN et
al., 2014),(HU et al., 2015), (HUANG et al.,
2017),(KHAN et al., 2018).

Resource (CAARLS; HARGREAVES; MENASCHÉ, 2015)
Tra�c and Time-related (SINKY et al., 2018)

Popularity and
Time-related

Topology (CHEN; FAN; YIN, 2013),(OSTROVSKAYA et al.,
2018).

Time-related (YOKOTA et al., 2016)
Resource (PAL; KANT, 2017)

Popularity and
Feature

Resource (WANG; BAYHAN; KANGASHARJU, 2015)
Time-related (SUN; WANG, 2015)
Resource and Time-related (NDIKUMANA et al., 2018)

Popularity, Time-
related and Feature

Topology (DUAN et al., 2013)

Time-related Time-related (DAI et al., 2017)
Feature Resource (XING et al., 2017)

Table 3.5 Content and Network-based cache replacement schemes.

reported evidence from the surveyed papers about the e↵ects of context variations on
replacement schemes’ performance.

We have found policy comparisons in di↵erent network types with variations of many
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Content prop-

erty categories

Node property categories Network property

categories

Replacement

schemes

Popularity and
Feature

Content-related and Location Topology (Panigrahi et al., 2014)
Content-related and Tra�c Tra�c (LIU et al., 2018)
Tra�c Resource (BADOV et al., 2014)
Resource Time-related and Re-

source
(GÜR, 2015)

Popularity and
Time-related

Content-related Topology (RATH; PANIGRAHI;
SIMHA, 2016)

Tra�c and Location Topology and Time-
related

(AL-TURJMAN; AL-
FAGIH; HASSANEIN,
2013)

Popularity
Tra�c Topology (CHEN et al., 2017)
Connectivity Topology and Resource (ZHANG et al., 2016)

Time-related
Resource Topology and Resource (LLORCA et al., 2015)
Location Topology (NAZ; RAIS;

QAYYUM, 2016)
Popularity,
Time-related
and Feature

Tra�c Topology and Time-
related

(AL-TURJMAN,
2017)

Table 3.6 Content, Node, and Network-based cache replacement schemes.

Node property categories Network property cat-

egories

Replacement schemes

Content-related and Location Topology (WANG; BENSAOU, 2012a; WANG;
BENSAOU, 2012b; YANUAR;
MANAF, 2017)

Content-related and Resource Time-related (SURESHJANI; MOGHIM, 2018)
Resource Resource (WANG et al., 2014)

- Resource (IOANNIDIS; YEH, 2016; IOANNIDIS;
YEH, 2018)

Table 3.7 Node and/or Network-based cache replacement schemes.

aspects such as request rates, forwarding strategies, number of consumers, number of
contents, and overall topology. Nevertheless, in summary, we found that variations in
the node location, cache size, cache placement policy and content popularity had some
relevant e↵ect on the policies’ performance. The first three presented variations resulting
in di↵erent choices of replacement policies. Also, beyond the impact on the choosing
point of which cache replacement schemes to apply, variations in cache size and content
popularity presented other relevant e↵ects related to the policies’ performance. We discuss
the context variations separately in the following.
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Figure 3.6 Distribution of context properties categories according to the number of policies
that used the correspondent properties in their eviction logic.

NETWORK NODE CONTENT ICN ARCHITECTURE

Ref. Topology Node
loca-
tion

Cache
size

Popularity
(Zipf(a))

Placement
policy

Eviction
policy

Metrics E↵ect

(WANG;
BEN-
SAOU,
2012a)

Internet-
like;
32
CRs.

Edge
and
Inter-
medi-
ate

[100-
8000]
chunks

[0,92;
0,78]
and
[0,96;
0,74]

LCE
and
PCP

LRU; Pro-
posed edge
and core.

Hit rate;
Hit gain;
Path
stretch.

[Node-location]
Di↵erent policies
for di↵erent node
locations; Limited
evaluation.

(LI;
SI-
MON;
GRAVEY,
2012)

Internet-
like;
40
CRs.

Edge
and
Inter-
medi-
ate

100
chunks

1.0 LCE LRU, LFU
and LRFU
multi-�.

Hit rate;
Number of
access to
server.

[Node-location]
Di↵erent configu-
rations of LRFU
for di↵erent node
locations.

(TARNOI
et al.,
2014)

Cascade;
5
CRs.

Edge
and
Inter-
medi-
ate

10,
20,
50,
and
100
ob-
jects.

[0.4-
1.6]

LCE
and
Prob

LRU,
LFU and
Random

Hit rate;
Server
load;
Round
trip hop
distance.

[Node-location]
LRU and Random
interchange posi-
tions for di↵erent
node locations;
[Placement-policy]
Di↵erent eviction
policies for dif-
ferent placement
policies.

(TARNOI
et al.,
2014)

Internet-
like;
50
CRs.

Edge
and
Inter-
medi-
ate

80,
160,
400,
and
800
ob-
jects.

[0.4-
1.6]

LCE
and
Prob

LRU,
LFU and
Random

Hit rate;
Server
load;
Round
trip hop
distance.

[Node-location]
LRU and Random
interchange posi-
tions for di↵erent
node locations.
[Placement-policy]
Di↵erent eviction
policies for dif-
ferent placement
policies.

Continued on next page
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Table 3.8 – continued from previous page

NETWORK NODE CONTENT ICN ARCHITECTURE

Ref. Topology Node
loca-
tion

Cache
size

Popularity
(Zipf(a))

Placement
policy

Eviction
policy

Metrics E↵ect

(GALLO
et al.,
2014)

Tree;
3
CRs.

Edge
and
Root

[10-
100]
ob-
jects

1.7 LCE LRU and
Random

Miss prob-
ability

[Node-location]
LRU and Random
interchange posi-
tions for di↵erent
node locations.

(NEWBERRY;
ZHANG,
2019)

Data
Cen-
ter
Fat-
tree;
80
CRs.

Core,
aggre-
ga-
tion,
edge

64,
128,
256,
512
and
1024
MB

- LCE LRU, 2Q,
ARC, LIRS
and MQ

Total net-
work tra�c

[Node-location]
[Cache-size] Dif-
ferent policies for
di↵erent node loca-
tions, for di↵erent
applications, and
for di↵erent cache
sizes.

(CHAO
et al.,
2013)

- - [5-
75]
ob-
jects

1.0 - FCDC,
LRU and
RUF

Hit rate. [Cache-size] LRU
and FCDC inter-
change positions
for di↵erent cache
sizes.

(WANG
et al.,
2014)

Cascade;
5
CRs.

- aprox.
[5-
40]
ob-
jects

0.8,
1.5,
and
2.0

LCE
and EV
Place-
ment

LRU, EV
Replace-
ment, and
Popu.

Energy e�-
ciency

[Cache-size] Di↵er-
ent combinations of
placement and re-
placement policies
for di↵erent cache
sizes.

(LIU
et al.,
2019)

Tree;
7
CRs.

Edge
and
Inter-
medi-
ate

[10-
90]
MB

0.7 LCE PBRS,
LRU, LFU
and FIFO

Hit rate [Cache-size] LFU
and PBRS inter-
change positions
for di↵erent cache
sizes.

(SUN
et al.,
2014)

Internet-
like;
80K
CRs.

Edge,
Mid-
dle,
and
Core

1GB,
10GB,
100GB,
and
1TB

1.174 LCE,
LCD,
Rand,
Prob,
PProb,
Cen-
trality
and
Cross

LRU, LFU,
FIFO, TTL
and Size

Hit rate;
Tra�c
reduction;
Server load
reduction

[Cache-size]
[Placement-policy]
Di↵erent eviction
policies for di↵er-
ent cache sizes,
and for di↵erent
placement policies.

(CHEN
et al.,
2016)

Wireless
Mesh;
15
CRs.

- 210
bytes

0.8 LCE,
LCP,
LCD,
and
LCB

LRU, LFU,
Random,
and FIFO

Hit ratio;
Energy
consump-
tion.

[Placement-policy]
Di↵erent eviction
policies for dif-
ferent placement
policies.

Table 3.8: Scenarios concerning replacement policies evaluations with di↵erent
e↵ects on the policy choice. CR = Content Router; N.Cons. / N. Prod. =
Number of content consumers / Number of content producers.

3.3.4.1 Cache Node Position in Topology The works from Wang e Bensaou
(2012a), Tarnoi et al. (2014), Gallo et al. (2014), Li, Simon e Gravey (2012), Newberry e
Zhang (2019) presented evidence of the impact of node’s location on cache replacement
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scheme choice. Table 3.8 summarizes the reported underlying system parameters. Those
are the context characteristics that supported the analyses. In the following, we discuss
the reported impacts:

• Wang e Bensaou (2012a) proposed two complementary replacement algorithms to
handle di↵erent workload characteristics observed by both edge and intermediate
router nodes. The eviction logic uses the hop count factor to prioritize the main-
tenance of more distant contents and, consequently, reduce network resource con-
sumption. Besides the hop count, the replacement algorithm for intermediate nodes
considers the number of node’s interfaces saved in the PIT entry for a content to
estimate the diversity of the content requests. The proposed solution outperforms
homogeneous configuration with LCE+LRU, and the results emphasize the ben-
efits of using heterogeneous replacement policies according to the location of the
node into the topology. However, the eviction solutions were evaluated only in
conjunction with a proposed placement policy named PCP, limiting the analysis of
the heterogeneous eviction solution separately. The proposed replacement schemes
logic would be able to work with other location policies, such as LCE.

• Li, Simon e Gravey (2012) used the LRFU policy with a weighting parameter y to
represent a multi-policy caching where every content router implements its caching
policy according to its location in the network. The LRFU behavior can switch to
be more closely similar to LRU or LFU according to the value of y. The router
location is relative to his position between users and servers. The routers (CRs) are
classified according to a defined “entering degree”, which represents the number of
the shortest path connecting front-end CRs with servers via a CR. The reasoning
to configure di↵erent values of LRFU parameter y comes from an experiment under
an emulated European Backbone Ebone topology with 40 nodes, in which they
performed experiments with homogeneous configurations of y in all routers. They
observed that the routers with lower hit rate achieved their best performance with
higher values of y, and on the contrary, routers with higher hit rates achieved their
best performance with lower values of y. Allied to that, they also observed that the
position of the router in the hit rate rank is directly proportional to his position
in the topology, in the sense that the closer to the edge, the higher is the hit ratio
performance.

• The experiments of Tarnoi et al. (2014) reveal the di↵erence of performances be-
tween LRU and Random according to the node position. For the experiment with
a cascade network and one content requester, LRU and Random, in combination
with LCE placement policy, interchange positions on the rank of the cache hit per-
formance: for the level 1, LRU outperforms Random, but from level 2 onward, LRU
performance decreases drastically and Random also slightly decreases but now with
better performance than LRU. The di↵erence in the rank of cache hit rate is similar
for the experiment variation with multiple content requests, but LRU and Random
interchange position after the third level node. For the Internet topology, the result
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groups edge and core nodes, and again, LRU presented the best results for edge
nodes while Random for core nodes.

• Continuing the discussion about LRU and Random replacement policies, Gallo et
al. (2014) came to a similar conclusion in terms of the di↵erence in performance
when varying node locations. For that, the authors presented an analysis of cache
miss probability depending on the content popularity distribution. The analysis
suggest that LRU and Random have significantly di↵erent performances only for
popularity distributions highly concentrated on a relatively small number of objects.
That di↵erence is also relative to the position of the node in the topology. The more
popular objects are more likely to be found at the edge node when using LRU, but
those more popular objects can be more evenly distributed when using Random
across the path. Due to the randomness of the eviction logic and its independence
regarding other caches evictions, Random increases content diversity in the network.
Also, the evaluation presents heterogeneous configuration for the leaves and root
levels of a tree topology: LRU-Random and Random-LRU, also LRU-LRU and
Random-Random. The heterogeneous LRU-Random configuration achieved better
performance than the other configuration options, i.e., LRU and Random configured
respectively in the edge and intermediate levels.

• While evaluating the advantages of integrating big data applications in an ICN-like
architecture, Newberry e Zhang (2019) argue the benefits of using di↵erent cache
replacement policies at each layer of a data center fat-tree topology. They compared
the performance of homogeneous and heterogeneous policy configurations, placing
the cache in each node of a fat-tree topology with three layers, composed of 16 core,
32 aggregation, and 32 edge switches. They performed combinations of the policies
LRU, 2Q, ARC, LIRS, and MQ, on the levels of the tree topology, totaling 125
combinations for each variation of cache size. The results could reveal the di↵erent
behaviors at di↵erent layers of the topology and the suitability of di↵erent policies
at each level. However, the gain of the reported best heterogeneous configurations
regarding the best homogeneous configuration is not explicit in the paper.

All the network contexts discussed in this subsection concluded that heterogeneous
policy configurations achieved the highest performances than the homogeneous configura-
tions. Whether for small topologies (TARNOI et al., 2014; GALLO et al., 2014) or larger
topologies (WANG; BENSAOU, 2012a; LI; SIMON; GRAVEY, 2012; TARNOI et al.,
2014; NEWBERRY; ZHANG, 2019), the works observed di↵erent tra�c characteristics
in the di↵erent nodes. They attributed this di↵erence to the node position and associated
di↵erent policies to di↵erent tra�c profiles.

Multiple levels of caches naturally present that di↵erence in tra�c characteristics by
cache-level due to the knowing filtering-e↵ect. The filtering-e↵ect happens any time a
lower-level cache hits a content request. The cache does not propagate that request to
the rest of the network and propagates only the miss requests to upper-level caches. This
behavior modifies the original characteristics of the tra�c. Many studies have been ad-
dressing the progressive filtering e↵ect in hierarchical web caches (WILLIAMSON, 2002;
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ZHOU et al., 2013; MELAZZI et al., 2014). That filtering has a direct impact on the tem-
poral locality of the requests (JIN; BESTAVROS, 1999). Temporal locality refers to the
property that recently accessed objects are likely to be reaccessed in the near future. As
cache levels filter requests, the temporal locality intensity becomes gradually weakening,
and the tra�c profile at upper-level caches becomes more random (JIN; BESTAVROS,
1999). Besides the content diversity in the network obtained with the Random pol-
icy, the temporal locality e↵ect also explains why Random achieved better performances
for intermediate nodes in some of the discussed works. As expected, workloads with
temporal locality property have a strong correlation with caching policies (GARETTO;
LEONARDI; MARTINA, 2016), and variations in the temporal locality patterns directly
impact the variations of caching policies performances.

Regarding the context attributes explored by the replacement schemes, only two of the
works presented evaluations including context features in the eviction logic that helped
di↵erentiate the node’s position: the node’s number of interfaces (WANG; BENSAOU,
2012a) and the node degree as a general rank according to the topology (LI; SIMON;
GRAVEY, 2012). However, other works are exploring those, and other context attributes
that could be helpful. The context attributes with their respective classification and
reference works are:

• Node-Location: node betweenness centrality (CHEN et al., 2016; LIU et al., 2019);

• Node-Location: reachability of a node (Panigrahi et al., 2014);

• Node-Location: node’s general rank according to topology position (MICK; TOURANI;
MISRA, 2016; AOKI; SHIGEYASU, 2017; NAZ; RAIS; QAYYUM, 2016);

• Node-Content-related: number of interfaces saved in PIT entry for a chunk (WANG;
BENSAOU, 2012a);

• Node-Connectivity: one-hop neighbor nodes (ZHANG et al., 2016);

• Node-Resource: number of interfaces (WANG; BENSAOU, 2012a; BAUGH; GUO,
2018).

Although the node’s location is a context that should be considered when selecting
a replacement policy, it is not easy to foresee a straight map between policies and node
positions. First, because there are many policies and diversity of topologies with di↵erent
requirements, but mostly because there are other contextual factors that can also impact
the performance of the policies. As we continue to show in the next sections, this SLR
was able to pinpoint some of these factors.

3.3.4.2 Cache Size The works from Chao et al. (2013), Wang et al. (2014), Sun et
al. (2014), Newberry e Zhang (2019), Liu et al. (2019) contains evidence of cache size
variations on the performance ranking variations of cache replacement policies. Table 3.8
summarizes the reported underlying system parameters. Those are the context charac-
teristics that supported the analyses. In the following, we discuss the reported impacts:
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• According to Sun et al. (2014), the replacement scheme’s optimal choice depends
on the cache size and the placement policy. The authors combined seven placement
policies with five replacement policies - LRU, LFU, FIFO, TTL, Size - and cache
size variations of 0.0007%, 0.007%, 0.07%, and 0.7% of the unique contents. The
content routers have homogeneous cache sizes for all experiments. We observe that
the most significant impact on the replacement scheme choice happens when passing
from 0.0007% to 0.007% of cache sizes. That is, for all combinations of placement
policies, the best choice of replacement scheme changed when the cache size moved
from 0.0007% to 0.007%. Meanwhile, for most combinations of placement policies,
the experiments running with 0.007%, 0.07%, and 0.7% of cache sizes presented
their highest performance values with the same replacement policy. For example,
combined with LCE, LRU and TTL achieved the highest performances for 0.007%
of cache size, while LFU stands out for the other sizes.

• Chao et al. (2013) also show evidence that variations on cache size can lead to vari-
ations on the policy with the best performance. This work presents a content-based
replacement policy named FCDC that manages the content popularity property -
request count - to classify and replace contents according to popularity categories.
The evaluation shows comparisons of the proposed scheme against LRU and RUF
policies. According to the results, FCDC presents a better cache hit rate than
LRU and RUF when the cache memory is less than 5%. Yet, the performance
rank changed for cache sizes larger than 10%, and LRU performed slightly better
than FCDC. The authors attribute this behavior to each policy’s property, in which
FCDC can keep track of content popularity and maintain the most popular content
better than LRU for small cache sizes. At the same time, LRU prioritizes most
recently accessed over the most accessed and popular content. However, this does
not directly correlate to the performance di↵erences according to the cache sizes.
FCDC deals with dynamic changes of content popularity and does not directly rely
on node information.

• Furthermore, the experiments performed by Wang et al. (2014) also reveal di↵er-
ences in policy performance rank while varying the cache size. The work proposes
the EV policy, a node-based replacement scheme coupled with a placement scheme.
EV was evaluated and compared against LCE+LRU and LCE+Popu - a referenced
popularity-based policy. The configuration of the content popularity follows a Zipf
distribution, and besides the impact of di↵erent cache sizes, the results also reveal
a correlation with the popularity skewness factor. For ↵ skewness factor equals 0.8,
EV and Popu had similar performances for all cache size variations. Meanwhile,
for ↵ = 1.5 or 2.0, the policies interchanged positions in the rank of average total
energy consumption for di↵erent cache sizes: Popu achieved better performance
than EV for cache sizes between 10 to 20% of total contents; for larger cache sizes,
EV turns to be the better choice. The work does not provide an analysis of this
e↵ect. The results show the impact of cache size on placement and replacement
schemes combined, limiting the evidence of the eviction scheme solely.
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• Similarly, Liu et al. (2019) presented evidences of variations in the rank of hit ratio
of the policies for di↵erent cache sizes. The work shows evaluations of a proposed
replacement policy named PBRS against LRU, LFU, and FIFO. PBRS and LFU
interchange positions for di↵erent cache sizes in a tree topology. This e↵ect is most
evident for intermediate nodes, in which LFU presented better results for cache
sizes between 10MB to approximately 50MB, and PBRS presented better cache hit
values for larger cache sizes. Both policies rely on content popularity, but LFU
computes the popularity directly to count the number of requests, while PBRS
increments the computation by adding di↵erent weights associated with the nodes.

• Finally, besides the e↵ect of heterogeneous policies for di↵erent node locations in a
fat-tree topology observed by Newberry e Zhang (2019), we also observed variations
in policy performances’ rank while varying cache sizes. The work evaluated LRU
and other replacement policies named 2Q, ARQ, LIRS, and MQ policies. For a
homogeneous policy configuration in all levels of the topology, the rank of policy
performances did not change when using cache sizes from 64 to 512MB. However,
when cache sizes varied from 512MB to 1GB, a couple of changes happened in the
rank: first, LRU and 2Q interchanged positions, in which 2Q achieved better results
than LRU up to 512MB, but LRU presented better results for 1GB; second, ARQ
and MQ changed positions, with MQ presenting better results up to 512MB and
ARQ with 1GB; and finally, LIRS and ARQ also changed positions in the rank,
with LIRS presenting better results than all other policies up to 512MB, but ARQ
achieved better performance with 1GB of cache size. For a heterogeneous policy
configuration, the results presented similar e↵ects on the rank. Without going into
specific characteristics of policies, this work has evidence of the influence of cache
size and the lack of simple patterns that associate the performance of cache policies
with the size of the cache.

Regarding the impact on the replacement policy choice, in none of the presented
works it is evident why variations in cache size led to di↵erent policy choices. Also, the
analysis of the works does not reveal potential patterns due to the heterogeneity of the
context factors. The works range from country-wide router-level topology with around
80K routers to a small and straightforward linear topology, with variations of placement
and replacement policies, and di↵erent ranges of cache size evaluations. Although the
evidence clearly shows the relevance of cache size in particular works, it is not su�ciently
conclusive the why.

Yet, we cataloged other e↵ects regarding variations on cache size and the performance
of the policies. It is natural to expect an increase in the cache size should increase the
performance gain for any caching policy since there is more space to store contents. In
practice, the constraints of memory access speed or node devices’ power will limit cache
size. However, evidence shows that caching policies’ performance gain is not linear to
the cache size increase (HAN et al., 2014; CHEN et al., 2014; ONG et al., 2014; SUN
et al., 2014; PIRES et al., 2018; MANGILI; MARTIGNON; CAPONE, 2013). In this
way, adding cache resources on the network could not be the most suitable solution to
improve the performance. The observed e↵ect is because size allocation is a function
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of the content’s popularity distribution. For example, for large amounts of non-popular
content, the cache size may be small because the gain in caching is restrictive. On the
contrary, for large amounts of popular content, the benefits will be best achieved for larger
cache sizes. In this way, balancing optimal cache size in terms of cost and e↵ectiveness
of policies shall be done considering the fluctuations in content popularity.

Another observed e↵ect of the relationship between cache size and replacement pol-
icy gain is that as the relative cache size increases, the performance di↵erence among
the techniques decreases (CHARPINEL et al., 2016; HAN et al., 2014; NAKAYAMA;
ATA; OKA, 2015; BILAL; KANG, 2017; XING et al., 2017; Panigrahi et al., 2014; LI;
SIMON; GRAVEY, 2012; FRICKER et al., 2012; NEWBERRY; ZHANG, 2019). That
means the performances tend to converge eventually. Such an e↵ect is in line with Che’s
approximation (CHE; TUNG; WANG, 2002), which we briefly discuss here. The longest
possible time between two sequential hits for a content c present in the cache, i.e., before
removing c from the cache, is expected to be random and related to c. That is the cache
eviction time for content c. However, Che’s approximation stands that, for reasonably
large cache sizes, this cache eviction time tends do be deterministic to the point of being
a constant irrespective of the content. Therefore, as cache size increases, the dependence
on c decreases and becomes negligible. Following this direction, we infer that if the de-
pendence on the content decreases, the dependence on which content will be removed
also decreases since all contents converge to the same relevance in terms of eviction time.
Although Che’s approximation has been proposed for network contexts with LRU under
Independent Reference Model (IRM), other extensions and generalizations also show the
approximation’s validity to other context’ variations (GARETTO; LEONARDI; MAR-
TINA, 2016; FRICKER; ROBERT; ROBERTS, 2012; ARALDO; ROSSI; MARTIGNON,
2015).

3.3.4.3 Content Placement Policy ICN in-path cache works as an opportunistic
cache to distribute the content along with the network, and that opportunistic charac-
teristic makes more flexible the distribution of caches on network nodes and the content
location choices. Once there is a cache, though, the replacement scheme is mandatory
for all cache nodes. Nevertheless, both content placement and replacement decisions are
closely correlated and influence each other behaviors. The decisions can be implemented
separately and combined according to the network requirements. Each combination of
placement and replacement policies can lead to di↵erent behaviors. On the other hand,
both placement and replacement strategies may complement each other. Some of the
replacement schemes reported in ICN literature are already coupled with a placement
strategy (SANTOS et al., 2013; SINKY et al., 2018; REN et al., 2014; HU et al., 2015;
PAL; KANT, 2017; XING et al., 2017; MICK; TOURANI; MISRA, 2016; ZHANG; TAN;
LI, 2017; WANG et al., 2014; CHEN et al., 2017; KHAN; KHAN, 2017) and deployed in
conjunction.

In this work, we chose to look at the placement policy as a context factor that influ-
ences the replacement policy choice. This subsection presents the works (CHEN et al.,
2016; TARNOI et al., 2014; SUN et al., 2014) in which variations in the placement poli-
cies led to di↵erent choices of replacement schemes. Table 3.8 summarizes the reported
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underlying system parameters. Those are the context characteristics that supported the
analyses.

• Chen et al. (2016) develop an ICN-Wireless Sensor Network (WSN) system in which
they tested 16 combinations between four placement strategies - LCE, Prob (i.e.,
LCP), LCD, and Betw (i.e., LCB) - and four replacement policies - Random, FIFO,
LFU, and LRU - in a WSN with 15 nodes. The results reveal a significant vari-
ation in the rank of policies for di↵erent combinations of placement policies and
comparison metrics. Considering the metric cache hit rate, LCE and Prob achieved
their best results combined with LFU, while LCD and Betw with Random; Yet,
when considering the metric energy consumption, LCE and Prob achieved their
best results with FIFO, while LCD with LRU, and LCB with Random.

• In addition to analyzing the e↵ect of heterogeneous policies configuration by node
locations, Tarnoi et al. (2014) also analyzed variations on the replacement scheme
choice according to the di↵erent placement policies. The work shows how the
probabilistic caching placement behavior varies as a function of the replacement
scheme. The authors evaluated combinations of LRU, LFU, and Random policies
with LCE and Prob. In general, for both cascade and Internet-like topologies, and
considering both server load and round trip-hop distance evaluation metrics, the
results show that Prob can improve the performance of the network and achieve
its best performance only when combined with LRU, while LCE achieves its best
performance when in conjunction with LFU.

• Finally, as we mentioned earlier, the results reported by Sun et al. (2014) show
that the optimal choice of the replacement scheme depends on the cache size and
the placement policy. Regarding the variations of placement policies, the work
combined seven placement policies - LCE, LCD, Rand, Prob, ProbCache, Betw
(i.e., Centrality), and CRCache (i.e., Cross) - with five replacement policies - LRU,
LFU, FIFO, TTL, and Size - and the results presented evidence of the di↵erence in
performance ranks for each combination. For example, considering the metric server
load reduction and 1G of cache size, LCE, Rand, Prob, and ProbCache achieved
its highest values when combined with TTL; while LCD with FIFO; Betw with
LRU; and CRCache with TTL or LRU. However, for cache sizes of 100G and 1T,
all placement policies presented their best results with LFU, except for LCD, which
achieved the best results combined with LRU or TTL. The work also stands for a
dominant strategy among the compared ones in terms of caching metrics. Partially
in line with Chen et al. (2016), and contrary to the analysis presented by Tarnoi et
al. (2014), the authors place Prob+LFU as the closest to the best strategy for their
context. However, the analysis between the di↵erent results is limited because the
two works (CHEN et al., 2016; SUN et al., 2014) did not mention the probability
value used for caching contents. The Prob performance may vary according to the
configured probability value.

Reinforcing the intrinsic correlation property between content placement and replace-
ment decisions, all the works presented in this section show evidence of the di↵erent and
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unique e↵ects of each policy’s combinations for distinct network contexts. Di↵erent place-
ment policies can have a di↵erent impact when changing a replacement scheme (REZA-
ZAD; TAY, 2015; TARNOI et al., 2015; ZHANG et al., 2017; MEDDEB et al., 2017).
This way, each placement strategy requires evaluation of what replacement scheme per-
forms the better. Each placement policy has a di↵erent requirement in terms of evictions,
and the more is the number of evictions, the more the placement policy relies on the re-
placement scheme and, therefore, is a↵ected accordingly.

3.3.4.4 Content Popularity One of the behaviors we were expecting to find ev-
idence for was the impact of content popularity variation on the replacement policy
choice, especially on the choice between frequency-based policies, e.g., LFU, and others,
such as recency-based policies. That reasoning relies on the argument of many works that
frequency-based policies suit better content populations with high popularity skewness,
while with low popularity skewness would suit other policies (BECK et al., 2017).

However, while analyzing the variations of popularity skewness during the compara-
tive evaluation of the replacement schemes, we found works in which popularity skewness
variations did not influence policies’ rank (WANG et al., 2011; GÜR, 2015; HUANG et
al., 2017; ZHANG; TAN; LI, 2018; AN; LUO, 2018; JEON; LEE; SONG, 2013; SHAILEN-
DRA et al., 2016; LIU et al., 2017; TARNOI et al., 2014; GALLO et al., 2014; YOKOTA
et al., 2016; ZHANG; TAN; LI, 2017; SINKY et al., 2018; YAO et al., 2016). Those
comprehend works under Zipf popularity distribution, with di↵erent variations of the
skew factor from, for example, 0 to 2, with conventional policies like LRU and LFU as
well as more recently proposed policies, but the performance rank among the policies re-
mained unchanged. Variations in the skew factor represent variations in the distribution
of contents’ popularity. The increase in the factor leads to an increase in the number
of popular content. It is also associated with the diversity of contents distributed in a
network of caches. The increase in the number of popular contents reduces the diversity
of the contents stored in the caches since popular contents are more conducive to be
accessed and occupy cache spaces for relatively long times.

Also, we observed a similar e↵ect as the one about the increasing of cache size discussed
earlier: under variations of the skew factor solely, as the skew factor increases, the di↵er-
ence of performance among the techniques decreases (BADOV et al., 2014; YOKOTA et
al., 2016; ZHANG; TAN; LI, 2017; ZHANG; TAN; LI, 2018; SINKY et al., 2018; YAO
et al., 2016).

3.4 POLICY CATEGORIES FOR ICN APPLICATION AREAS

This subsection presents potential context characteristics to enhance the eviction per-
formance in emergent networks. We correlated characteristics of emergent networks with
the context characteristics relevant to the choice of suitable cache replacement schemes.
In the following paragraphs, we highlight the most suitable context characteristics for
generic network contexts on information-centric IoT (ARSHAD et al., 2018; DONG;
WANG, 2016), vehicular named-data networking (KHELIFI et al., 2020), and ICN-enable
edge and core networks (ZHOU et al., 2017; ZHANG et al., 2018). Table 3.9 summarizes
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the discussion.

Cache-enable net-
work

Characteristics and/or re-
quirements

Policy category Correlation of requirements
with context dimensions

IoT (Smart home,
home care. . . )

High heterogeneity among IoT
devices with di↵erent priorities;
High ephemerality of contents;
Limited resources.

Content and Node-
based

Content features, like content
provider identification, priority,
and time-related properties

VANETs High intermittency of connec-
tions; Multi-path propagation;
Di↵erent strategies for delay-
sensitive data from safety appli-
cations and delay-tolerant data
from infotainment applications.

Content and node-
based

Node location properties like
mobility pattern plus direction,
node’s rank according to topol-
ogy position; Content features,
like type, priority, and popular-
ity and time-related properties.

Edge computing
(Small-cells radio
access; 5G; Device-to-
Device (D2D) commu-
nication; UAVs)

High temporal and spatial cor-
relation of content requests; En-
ables clusters by user similari-
ties.

Content and future
human-based

Content popularity properties;
User preferences, habits, and
social interaction.

Internet-scale networks Globally content preferences;
Heterogeneous link/node capac-
ities; Long geographical dis-
tances.

Content, node and
network-based

Content feature and popular-
ity properties; Network topol-
ogy, resource, and time-related
properties; Node resource and
tra�c properties.

Table 3.9 Suggestion of cache replacement policy category for di↵erent ICN-enable scenarios.

Information-centric Internet of Things

The suitable kind of cache replacement schemes for information-centric IoTs should
deal with the two most significant characteristics of IoT tra�c: i) the large number
of heterogeneous devices and ii) the ephemerality of the content produced by them.
In the former, the di↵erent types of devices usually have di↵erent resources re-
strictions in terms of processing capabilities, memory, energy constraints, and they
produce contents with di↵erent requirements regarding the context. For example,
Smart Cities will need to integrate intelligent urban sensing services for many pur-
poses, such as management of smart garbage collection, street lighting, parking, the
monitoring of road conditions, urban noise, security cameras, and environmental
conditions, among other possibilities. In this case, the infrastructure comprises a
diversity of sensors with di↵erent content production rates and characteristics. The
replacement scheme may apply di↵erent treatment to the contents according to the
type of device by exploring both content and node context dimensions, with features
like content provider identification, content priority, and node resource features.

The latter characteristic points out the typical time-restricted data generated by
some IoT devices that periodically inform sensor measurements monitoring the envi-
ronment. For example, the content periodically generated by temperature sensors
and collected by distributed applications to monitor the ambient in urban areas
can be usefully cached to serve user applications’ requests. However, the most re-
cent measure will usually be of interest to most applications, and there is no need
to maintain the previous measures in the cache. The replacement scheme should
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also combine time-related features of the content context dimension in the eviction
process logic. The combinations of the features mentioned above can help detect
redundant contents from the same producer while increasing the techniques for stale
content detection.

Vehicular Named-Data Networking

For vehicular-NDNs, the cache replacement scheme should consider the singular
temporal and spatial characteristics of vehicular tra�c because they can a↵ect the
local relevance of contents. For example, accident information’s relevance is highly
dependent on the vehicle location and the direction towards it was moving (de
Sousa; Araújo; Sampaio, 2018). If the vehicle has passed the accident, that infor-
mation may no longer be useful. The replacement schemes can handle this decision
with node location properties like mobility pattern, plus vehicle direction, and node’s
rank according to the current topology position.

Moreover, and combined with node location properties, di↵erent strategies should
be applied to deal with the di↵erent types of applications running in vehicular net-
works. For that, the strategy can explore content features, like content type and
content priority. The road-tra�c-related applications, such as road congestion noti-
fication, tra�c monitoring, and accident warning, usually are delay-sensitive appli-
cations and are better handled by content time-related properties or even newly
type-specific properties. Similarly, applications for code dissemination designed
to support smart city infrastructures’ upgrades can benefit from those properties.
Meanwhile, the infotainment applications are mostly delay-tolerant and more suit-
able to be handled by content popularity features.

In-network Cache-based Data O✏oading through Edge Computing

A fundamental characteristic created by the user’s closeness in edge networks is
the temporal and spatial correlation of content requests. In this way, one of the
widely explored approaches at the network edge is user-centric clustering tech-
niques (Ribeiro; Sampaio; Ziviani, 2018; HE; WANG; WANG, 2019; ELBAMBY et
al., 2014). User characteristics are the input and motivation for virtual groupings,
whether regarding the network structure or the users’ connection to the network.
As a consequence, user and their content requests can be grouped according to user
behavior patterns.

Thus, the replacement schemes for in-network caching at the edge can benefit from
content-based properties, especially content popularity features, and the exploration
of a variety of human properties related to preferences, habits, and social interaction.
Therefore, user behavior analysis is a relevant area in the future of edge-caching,
fostering future human-based replacement policies.
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ICN-enabled Core Network

Because of the considerable physical distances naturally presented in large-scale
networks to connect content consumers and producers, requests typically have to
traverse several nodes within the network. Therefore, the network topology context
must be taken into account to optimize cache replacement policies in content-based
core nodes. Context properties, in this case, are related to the distance connecting
two end-nodes, like hop count, properties related to the network resources, like
packet transmission cost, link capacity, and time-related features with network delay
for retrieving content.

The cache replacement schemes should also explore content and node contexts to
reflect globally content preferences and the di↵erent capacities of core nodes, re-
spectively. The content feature and popularity properties and node resource and
tra�c properties may further increment the replacement policies’ decision. On the
other hand, there is a trade-o↵ relating the performance while processing many
context information, since core routers process requests at line speed.

3.5 FURTHER DISCUSSION ON LESSONS LEARNED

The SLR covered many works with evaluations of cache replacement policies that
presented di↵erent behaviors according to variations in contexts. Contextual factors are
triggering this di↵erence in performance, and the SLR was able to identify some common
factors in a set of works, as we exposed in the previous subsections. One important lesson
of the overall review is the confirmation by many evidence that e�cient utilization of cache
resources relies on employing cache replacement policies according to some context.

The influence of some contextual factors was already evident when looking at individ-
ual works. However, one of our intentions with this SLR was to analyze the works that
had similar e↵ects, to look for patterns that could relate the contextual factors to the
policy’s properties. That cames in contrast with the diversity of context characteristics
and evaluated policies, which limited the analysis.

Besides, there was no more in-depth analysis of why and how the e↵ects happened,
most of the works came to evidence by testing the context variations, and small changes
in any context characteristic could have led to di↵erent results. In general, there was
no explicit pattern in the surveyed works associating the context factor to the policies
or their properties. That also limited a more in-depth analysis from the perspective
of the proportion of impacts for di↵erent contexts, since the extent to which context
characteristics a↵ected cache replacement strategies varied for the di↵erent works.

We must also highlight that most of the works did not indicate the confidence interval
in their experiments. A few of the di↵erences between policies’ performance measurements
were relatively small, and a confidence interval would help investigate the significance of
the di↵erence values.

Due to the reasons mentioned above, the policy choosing process can not be reduced
to rule-based schemes or related solutions. Instead, the choosing process is suitable for
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solutions that dynamically analyze context factors and perform large-scale correlations
between the factors and policies, for example, with reinforcement learning techniques.

3.6 CHAPTER SUMMARY

This chapter detailed a comprehensive and systematic review of studies regarding
cache replacement policies in ICNs. The literature presents a vast set of eviction strategies
exploiting combinations of multi-dimension aspects of context information in di↵erent
ways, aiming at making more customized and e↵ective decisions about the relevance of
contents. Among its contents, the chapter presents:

• The relevance of considering context’s properties in choosing suitable replacement
policies.

• The characterization the context factors correlated with the caching policies and
the reported e↵ect of context variations on cache replacement policies’ performance.

• Features of the content, node, network and human dimensions that can be explored
by the replacement schemes to evaluate the relevance of contents.

• A catalog of caching replacement policies classified according to the context infor-
mation used by the policies.

• Evidence that the cache performance associated with replacement policies is in-
fluenced by features like cache size, location of the cache node into the topology,
content popularity, and content location policy.

• Evidence to confirm the absence of a single context factor determining the choice
of policies; there is no explicit pattern regarding context properties variations to
support the choosing process of policies for di↵erent network contexts.

• An analysis of context features to be explored in emergent network scenarios such
as Information-centric IoTs and Vehicular Named-Data Networking.





Chapter

4
THE INFLUENCE OF HUMAN HABITS ON CACHE

REPLACEMENT POLICIES

This chapter presents a case study experiment to investigate the influence of user
habits on the performance of cache replacement policies. We aim to consolidate by
evidence the human dimension as a context aspect related to the caching policies. In
the following sections, we first describe an outline of our case study (Sec. 4.1). Next, we
detail the methods and protocols used to perform our experiment (Sec. 4.2). Then, we
present the experiment results and an analysis of our main findings (Sec. 4.3). Last, we
summarize the chapter (Sec. 4.4).

4.1 EXPLORATORY CASE STUDY OUTLINE

We carried out an exploratory case study based on the hypothesis that the most
predominant profile among users in cluster-based networking approaches (MAO et al.,
2017; KLAINE et al., 2017) may lead to di↵erent performances for di↵erent caching
policies. Thus, each cluster can work with a best-fit customized policy according to a
predominant user habit.

To confirm our hypothesis, we investigated habits of users on listening to music. We
defined user profiles according to a group of users that share the same habits when using
a music streaming service. The characterization of habits considers frequency of music
requests. Then, the resulted profiles guided the building of the clusters, which were
extracted from historical records from an on-line music streaming service. Methods of
a data mining process assisted the construction of the clusters. We finally evaluated
the performance of common used replacement policies under the actual requests of each
cluster. The evaluation considered simulated NDN scenarios.

In addition to the cache performance analysis, we also investigated the correlation
between user’s profile and the songs popularities. For that, we explored the popularity
distribution of the songs from the perspective of Benford’s Law (PIETRONERO et al.,
2001). Benford’s law is a distribution of probability P observed empirically in numerical

47
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data of several natural processes. This research reveals that the popularity distribution
of the songs follows an approximation of Benford’s Law, and it is possible to di↵erentiate
profiles for di↵erent users according to the behavior of Benford curve for the accessed
songs.

Hence, the case study contribution is threefold. It (i) identifies user profile relations
with cache replacement policies based on evaluations with real datasets; (ii) ratifies the
inclusion of human context dimension as a context factor that influences the choice of
cache replacement policies; and (ii) substantiates the building of user profiles predictor
systems by presenting a correlation model between user profiles and content popularity
patterns.

4.2 CASE STUDY METHODOLOGY

The case study aims to analyzes how cache replacement policies perform according to
di↵erent user profiles. To this end, we used a real dataset extracted from Last.FM1, an
online music stream service that stores traces of di↵erent users around the world. Figure
4.1 describes the whole process.
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Figure 4.1 Steps of the whole evaluation approach adopted for the experiments.

1. We defined user classes based on song repetition habits empirically observed in a
historical dataset from Last.FM (step 1)

1http://www.last.fm
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2. We use data mining processes to select data samples that represent song requests
from each class (step 2);

3. With the selected samples, we divided the process into two parallel branches:

• The first uses part of the samples to reproduce an experimental cache replace-
ment policy evaluation study;

• The second branch uses the samples for a correlation analysis of user informa-
tion with the popularity of the songs accessed.

The process steps are detailed in the following subsections.

4.2.1 User Habits Definition

In order to identify di↵erent characteristics of users, our study relied on the definition
of two user profiles (P ) based on their listening habits to build clusters (C). We mapped
the users habits according to the level of repeatability of accessed music and defined two
profiles as follows:

• P1: users that frequently request the same songs: with this profile we infer habits
of methodical and systematic people, used to listen to favorite playlists;

• P2: users that do not usually repeat the requested songs: deducing habits of more
dynamic and impulsive people, who almost never repeat their songs

Accordingly, the experiments rely on two user clusters (i.e., C1 and C2) built through
the aforementioned profiles, P1 and P2, respectively. So, P �! C. Additionally, we
created a third cluster (i.e., C3) composed by random users with mixed behaviors, that
served as a baseline for comparison purposes.

4.2.2 Selecting User Groups

We carried out the cluster selection step by following a data mining process that
identifies groups of similar users existing in the Last.FM dataset, according to each profile.
The dataset contains all music requested by users in a period of approximately four years
with more than 19 million usage records. Each data record describes the song, data and
time of request, artist, and user who requested the song. We manipulated this data to
generate three clusters that served as inputs to the simulations. Two sets (i.e., C1 and
C2) consisted of users that matched with definition of profiles P1 and P2, respectively.
The whole procedure relied on pre-processing phase of data mining methods and was
carried out through the following steps:

• Pre-processing - Sample selection by time: we filtered 10 random interval samples
in periods of a month, totalizing a period of 10 months. Each month has an average
of 594,483 requests, 191.703 distinct songs, and 622 distinct users;
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(a) Sample of the total requests of all users in the
dataset in a period of a month

(b) Sample of pre-processing result for identification
of outliers based on the number of requests

(c) Sample of random selection of 20 users without
distinction of habits

(d) Samples of two clusters area of distinct users
profiles

Figure 4.2 Building user’s clusters: dataset selection sample.

• Extract listening habits: For each sample interval, we extract datasets to map the
habits of users according to the total of music repetitions made during the month
by each user. Figure 4.2(a) illustrates a sample in a period of a month. Each dot
in a board is a distinct user, where x-axis represents the total amount of music
requests (per user), and y-axis defines the total repetitions of music a user made in
the same period. The total of user’s repetitions is defined as follows: Let Su be the
set of n distinct songs accessed by user u, with (s1...sn) 2 Su. Yet, let Qu(si) be
the total amount of access to song si by user u. The total repetitions R for a user
u is defined as Ru =

P
n

i=1 Qu(si), 8si Qu(si) > 1;

• Data cleaning - Identification and removal of outliers: To mitigate biases on ran-
domness of the selection of users, we analyzed all users of the selected samples
in regard to the total of requests, to cut o↵ the ones considered as outliers for
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the corresponding sample. We have applied a data pre-processing algorithm (RA-
MASWAMY; RASTOGI; SHIM, 2000) that detects outliers based on the Euclidean
distance from each record to its k-th nearest neighbor. Since it is hard to define
the threshold that qualifies a user as an outlier due to the subjectivity of the con-
text, and we aimed to do minimal interferences in the dataset, we configured the
Euclidian distance parameters with minimal values. Figure 4.2(b) shows the result
of a sample dataset classified with number of outliers = 2.

• Data groups selection: After filtering the outliers, we proceed a random selection of
the users. For each sample interval, we have selected three sets of 20 random users.
The first set is a general set, without distinction of listening habits, to be used as a
negative control on performance evaluation. Figure 4.2(c) shows an example of one
selection of user clusters we carried out. The other two sets are meant to reflect
distinct habits, related to di↵erent user profiles. The former represents the profile
P1 (the highlighted top area of the Figure 4.2(d)), and the other group represents
the profile P2 (the highlighted bottom area of the Figure 4.2(d)).

4.2.3 Cache Policy Analysis

After building sets, we reproduced all user’s songs requests through simulations con-
ducted during the experimental study. We evaluated the cache replacement policies
through a simulation-based experimental study conducted over ndnSIM, an ns3-based
NDN simulator (AFANASYEV et al., 2012). The study consisted in simulating user re-
quests according to the clusters created, in order to evaluate the influence of their listening
habits on the performance of each evaluated cache replacement policy. Thus, this section
presents the details of the experimental study, including the simulation environment and
the evaluated metrics.

4.2.3.1 Simulation Environment Through the ndnSIM simulator, we built a sim-
ulation environment which enabled us to reproduce a caching networking architecture.
Each record of a song requested in the dataset corresponds to an Interest packet sent to
network. Besides, the simulation reproduced the sequence and time of requests exactly
as recorded in timestamps of the sample data.

Figure 4.3 depicts the ICN scenario through which the simulation took place. It
consists of one router with cache capacity to intermediate requests and one music server
(i.e., the producer of contents). The simulation performs user requests of each cluster at
once and according to the recorded timestamps. Each experiment runs one individual
cluster at time. Since the communication process follows an ICN architecture, the content
is initially searched in the cache router. In case of it being found, a cache-hit is counted
and the content is immediately returned to the user. Otherwise, i.e. the content is not
founded in the cache, the request is forwarded to the server.

4.2.3.2 Performance Metrics and Simulation Parameters We choose the cache
hit ratio as performance metric to evaluate the replacement policies under analysis, that
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Figure 4.3 ICN scenario reproduced by simulations.

is: the capacity of cache solving the requests locally, instead of downloading contents
from the server, thereby saving network resources. This metric was measured through
Equation �.�, where totalHit is the number of music requests satisfied by the network
cache, and totalRequests represents the number of requests received by the cache. As
we extracted 1-month interval subsets (total of 10 di↵erent months), we measured the
cache-hit for each sample, and the results correspond to an average of the measures of
each sample separately.

HitRatio =
totalHit

(totalRequests)
⇥ 100 (�.�)

Table 4.1 summarizes simulation parameters adopted in experiments.

4.2.4 Data Correlation Analysis

The listening habits modeled herein are intuitively related to the content’s popularity.
Therefore, we examined the popularity distribution of the songs in the dataset by analyz-
ing one-month samples previously extracted. For each song in the sample, we computed
its popularity by counting all the requests of all existing users in the dataset.

By analyzing the relationship among the data, we notice that the popularity distri-
bution of the songs follows an approximation of the Benford’s law. The law states that
given a numerical set on a decimal basis, the proportion of the first most significant digit
d of any number is approximately equal to the probability function:

2LFU with Dynamic Aging (ARLITT et al., 2000).
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Table 4.1 Simulation parameters.

Parameter Value

Quantity of users (by cluster) 20
Quantity of routers 1
Mean of distinct contents (cluster 1) 3221
Mean of distinct contents (cluster 2) 10125
Mean of distinct contents (cluster 3) 7059
Caching Policy FIFO, LRU, LFU e LFU-DA2

Caching Size 5%, 15% and 30% of distinct content
Data rate 1Mbps
Delay 10ms
Simulation time accordingly to the trace

P (d) = log10(d+ 1)� log10(d)

= log10

✓
d+ 1

d

◆

= log10

✓
1 +

1

d

◆
(�.�)

where 8d 2 {1, 2, 3, ..., 9}. In this way, we calculate the proportion of digits d in a base
containing the numerical value of the popularity of all songs in the sample.

Benford’s law can be applied in several areas of knowledge for di↵erent purposes.
For instance, in computer science, it has been used for network anomalies detection
(ARSHADI; JAHANGIR, 2014).

The investigation led us to evidence of a correlation between users’ profile and song
popularity, and to a popularity model that identifies users’ profile. The results of the
correlation analysis are detailed in Section 4.3.2.

4.3 CASE STUDY RESULTS

4.3.1 Cache Policy Results

The results obtained through the experimental study allow us to evaluate the influence
of the clusters on the performance of the caching policies. They describe the cache hit
ratio obtained when using LRU, LFU, LFU-DA, and FIFO replacement policies, varying
cache size from 5%, to 15% and to 30%. In addition to hit ratio analysis, we also discuss
the cache storage consumption. Such results show di↵erent performance outcomes for
each user profile as we discuss in the following subsections.

4.3.1.1 Impact of User Habits Figure 4.4 presents the results from the experi-
ments that supported our analysis in respect to the listening habits of users. Figure
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4.4(a) describes the hit ratio obtained when the cluster is formed by users with profile
P1 (i.e., users that frequently request the same songs). As it shows, LRU presents better
performance than the other policies when users frequently repeat song’s requests. Con-
versely, for the other network scenarios, this advantage does not exist. As Figures 4.4(b)
and 4.4(c) show, despite of a slight improvement on the LFU’s hit ratio mean, when it is
compared to the other policies, they are statistically equal, if we consider the confidence
interval. We remark that the random-habits cluster presented an even higher confidence
interval. Certainly, this is due to the group of users that present random listening habits
that lead to a big variation in the hit ratio.

Such results reveal that the user profile can influence the performance of cache re-
placement policies. The hit ratio varies from both profiles P1 and P2, and the whole set
of policies has changed their performance only by varying user profile, irrespectively the
di↵erence among them. So, the user habits should be considered when choosing a re-
placement policy in order to achieve optimal performance. Figure 4.5 presents the same
results of cache hit ratio but from another perspective of analysis. As it shows, irre-
spectively the cache capacity, the advantage of clustering users that frequently request
the same songs is always bigger when compared to the non-cluster approach (baseline
group), whereas clustering users with few song repetitions is worst. This discussion leads
to another finding: clustering users with similar preferences is the best option to obtain
higher hit ratios, in particular for groups of users that frequently request the same songs.
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Figure 4.4 Cache hit ratio for each cluster of users.
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4.3.1.2 Impact of Cache Size In addition, the experiment contributes to the cost-
benefit analysis of cache size. The results show that the increase in cache capacity is not
proportional to the increment in the hit rate. This way, just adding cache resource on
the network could not be the most suitable solution to improve the performance.

Furthermore, the results reveal that the choice of replacement policy does not rely on
cache capacity, but on user profile. That is, the best replacement policy may be di↵erent
for di↵erent profiles, but for most cases, remains the same for di↵erent cache sizes.

(a) 5% of cache capacity (b) 15% of cache capacity

(c) 30% of cache capacity

Figure 4.5 Cache hit ratio for each cache size.

4.3.1.3 Cache Behavior Analysis Finally, in order to further investigate cache
behavior, Figures 4.6(a) and 4.6(b) depict sample sets of song requests from profiles P1

and P2 respectively. They show the 20 most requested songs in a period of a month, and
each dot represent a song request, i.e., each horizontal line shows the time one music was
repeatedly requested by any user in the trace. The upper line contains all song requests
in the trace to be used as baseline.

By analyzing Figure 4.6(a) we can see the high frequency of song repetitions, but
the interval between the repetitions is too short in most cases. For instance, song 1 was
requested 173 times in a short interval, while song 2 was requested 165 times, and song 3
had 157 requests. Since we are evaluating a group composed by users that have a lot of
repetitions, it may be expected that LFU would have the best results, because data are
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requested more frequently. However, in that application, the time between the requests
is more important than the frequency of requests. Thus, the two policies that consider
time of request have better results: FIFO and LRU.

All Music Requests

Time (sec)

(a) Music requests from profile P1

All Music Requests

Time (sec)

(b) Music requests from profile P2

Figure 4.6 Cache behavior analysis: sample of the most repeated songs.

4.3.2 Data Correlation Results and Dynamic Profile Identification

Figure 4.7(a) illustrates the popularity of the songs in a sample for a period of one
month. It shows a log-log scale of the number of requests for each song versus the ranking
of the songs. It is possible to note that the first i-ths in the rank are the most popular
songs. Besides that, the plot demonstrates the accordance of the dataset with the Zipf-
like distribution ⌦/i

↵ with ↵ = 0.53. It shows a smoothing on the di↵erence of the
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popularity among songs in the ranking when compared to the plain Zipf (i.e., ↵ = 1),
through which the second most popular content has exactly half of the popularity of the
first one in rank, and so on.
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(a) One-month sample that shows a Zipf-like distribu-
tion with the number of requests for each song versus
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of the first most significant digit of songs popular-
ity.
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(c) One-day sample containing the distribution of
the first most significant digit of songs popularity.

Figure 4.7 Popularity distribution of songs in a sample set that follows the Zipf distribution
and the Benford’s law.

Figures 4.7(b) and 4.7(c) depict the distribution of digits that follows the Benford’s
law, as well as the popularity distribution of all songs accessed by all users existing in a
sample of one-month and one-day periods. The x-axis refers to the first digit of the total
request value of a song by all users (song popularity). It is possible to observe that the
popularity of songs follows a derivation of Benford’s law, with significant change for the
songs with popularity whose first digit is equal to 1 (in the majority are the songs of low
popularity).

To investigate the existence of a relationship between user habits and the popularity of
his/her accessed songs, we analyzed how songs are accessed by user profile. Figures 4.7(b)
and 4.7(c) show that the profiles are similar for most “high-popularity” content, but di↵er
in access proportion to most “low-popularity” content. By evaluating the behavior of the
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curves, we can di↵erentiate user habits from its access proportion to content with “low
popularity”. For example, deriving the following rules: (i) Users with profile P1 access
less than 40% of contents with popularities whose first significant digit is 1; (ii) Users
with profile P2 access more than 60% of contents with popularities whose first significant
digit is 1.

Hence, the analysis shows that it is possible to infer the profile of the user by observing
only the global popularity of the content that he accesses, without the need of counting
the repetition level of each individual. That is, it enables the online identification of user
profiles without higher computational costs. Based on this correlation, we propose to use
the residual sum of squares (RSS) as a metric to define user profile. In statistics, RSS is
the sum of the squares of residuals (i.e., deviations predicted from actual empirical values
of data). It is a measure of the discrepancy between the data and an estimation model.
A small RSS indicates a tight fit of the model to the data. In this analysis, RSS metric
evaluates the distance between the user profile and Benford model through Equation �.�:

RSS =
9X

d=1

(yd � ŷd)
2 (�.�)

where ŷd is the expected proportion for music with popularity on first digit d, following
Benford’s law, and yd is the measured one.

Figure 4.8 contains the RSS values measured by user profile. Users from profile P1

(many repetitions) have significantly di↵erent RSS values from profile P2 (few repetitions).
The RSS di↵erence between the profiles is resulted from the di↵erence of popularity
distribution of the songs that each profile usually accesses, and therefore can be calculated
by means of the RSS. Its value allows determining the profile of the user by observing
only the proportion of the popularity of the content that a user requests. That is, based
on RSS, it is possible to build a Benford’s law based predictor capable of inferring user
profile only through the information about his/her playlist.
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Figure 4.8 RSS for the modeled profiles computed through Equation �.� by day measurements.
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4.4 CHAPTER SUMMARY

We have presented an experimental case-study which shows the potential gains in
adopting cache replacement policies according to the most predominant profile of users
they serve. The case-study contributed with an investigation of the concept of human-
aware information-centered networks, and presented an analysis of the habits of users of
online music streaming applications. The study showed that the performance of cache
replacement policies can be optimized when the policy is chosen according to user habit.
We can improve the hit ratio by around 30% when a cache policy is used according to
the profile of the users. Therefore, user habits should not be overlooked when adopting
a cache policy for maintaining contents in content-routers close to the user.

Additionally, the analysis of user’s habits on using online music streaming application
reveals that the popularity distribution of the songs follows an approximation of Benford’s
law. The case study reveals the suitability of the proposed model for an online predictor,
capable of classifying the user according to listening habit and, therefore, guiding the
design of human-aware caching strategies in many networking settings.

Together with the literature review presented in Chapter 3, this chapter added evi-
dence of context aspects related to caching policies. In the following chapter, we present
a new context-aware method to choose suitable caching replacement policies online.





Chapter

5
A CACHING META-POLICY STRATEGY

Sets of context information have been raised from multi-dimension aspects that can
directly influence the behavior of cache eviction policies. We have seen that there is a vast
set of strategies exploiting combinations of those information in di↵erent ways, aiming to
make more customized and e↵ective decisions about the relevance of contents. However,
we still don’t know how to choose a suitable policy regarding a given scenario. As we
stand previously, there is a lack of research e↵orts to assist the process of gathering which
caching policy should be deployed in a given network scenario.

Traditionally, the choice of caching policies requires some empirical knowledge asso-
ciating context characteristics of the cache production environment with the policy type
that should be adopted. For example, some works point to recency-based policies as more
suitable for tra�cs with strong temporal correlation, such as video streaming (EUM et
al., 2015); or frequency-based policies for more stationary tra�c patterns (DRäXLER;
KARL, 2012); other works point to random policies as an e�cient choice to handle fil-
tered tra�c from a hierarchical caching structure (GALLO et al., 2012). However, it is
not always possible to previously know the characteristics of the workload scenario.

Besides, tra�c characteristics can possibly change over time, leading to changes in
which caching policy would better fit the cache. Changes in the number of users, predom-
inant user habits, and applications type (among other contexts) can dynamically change
the characteristics of the network at di↵erent times. Also, user mobility imposes a partic-
ular challenge leading to on-demand changes in the network topology, node connectivity,
and workload aspects. Variations in context aspects may a↵ect policies’ performance over
time, and the cache must adapt to those changes to ensure optimal performance.

As described in the Introduction section (1.2), the research question of this work that
addresses the issues mentioned above is: How to explore the cache replacement policies and
instantiate best-fitting strategies dynamically adapting to on-demand changes, considering
the available context characteristics of the overall scenario.

Toward answer this question, we take advantage of the diversity of policies presented in
the literature and model the caching policy choice problem as an online learning problem.
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We assume that the cache has multiple cache replacement policies potentially suitable
and operable by the cache. Thus, we formalize the decision-making process of choosing
the most suitable policy from a finite set of possible policies.

In the following subsection, we introduce online learning concepts for caching systems
(Sec. 5.1). Then, we present the system model used by our strategy to assist the choosing
process of cache replacement schemes (Sec. 5.2). Next, we describe the proposed meta-
caching policy strategy (Sec. 5.3) and detail the main components in separate subsections.
In addition, we discuss the generic aspects of the caching meta-policy strategy (Sec. 5.4).
We conclude the chapter by presenting the chapter summary (Sec. 5.5).

5.1 ONLINE LEARNING FOR CACHING SYSTEMS

Online learning models represent a subset of machine learning techniques to tackle
online prediction problems. An agent interacts with the environment in successive online
rounds by taking one action at each round over a range of possibilities. Di↵erent actions
cause di↵erent impacts on the environment measured by corresponding reward values.
Each iteration is a new decision instance, and the problem is to predict which action to
execute, aiming to maximize the cumulative rewards in a time horizon (or reduce the
regret when not choosing the best action). The model of choosing over a finite set of
actions is known as learning from expert advice, as each action plays as an expert by
returning numerical feedback information used to improve future predictions. Two usual
feedback models are the full information, in which the agent has access to the feedback
of all actions, and the partial information, in which only the played action yields its
feedback value. This partial feedback setting is also known as bandit feedback.

Bandit models are widely explored to solve resource allocation problems in caching
systems (BLASCO; GÜNDÜZ, 2014; MÜLLER et al., 2016; ZHANG; REN; DU, 2017;
CHEN et al., 2019; BITAGHSIR et al., 2019; DAI et al., 2019). In particular, the
content allocation problem in cache-enabled cellular infrastructures can be modeled as
bandit applications. For instance, Blasco e Gündüz (2014) proposed a bandit model for
content placement in wireless small base stations (sBS). The model places an agent as
the manager of an sBS and the contents present in a connected macro base station (mBS)
as the actions. In summary, the bandit problem is to select a subset of popular contents
to cache at the sBS by accounting for the popularity of the contents present in the sBS
only. The agent has no information about the popularity of all contents placed at the
mBS. This way, the strategy needs to choose the best subsets of popular content.

Moreover, the authors in Paschos et al. (2019) employ an online gradient ascent
method as a caching policy to address the content allocation problem. Gradient as-
cent is a type of optimization algorithm also used to solve resource allocation problems.
Following the content allocation problem’s general goal, the strategy chooses a smaller
subset of potential popular contents to store at the cache given a content set. Each ar-
riving content request triggers the proposed algorithm to adapt the cached subset based
only on the current cache composition and the most recent request.

Another study in Li et al. (2018) models cache content configurations as cache states
and transition states as Markov. The work shapes caching policies as online distribution
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learning algorithms, in which each caching policy can be associated with a distinct pop-
ularity distribution of the cached contents. The authors also propose an adaptive policy
directed to the learning process under non-stationary request models based on the study.

The employment of online learning techniques as a content replacement policy can be
computationally costly since the cache has to trigger the learning agent at each content
request arriving at the cache. Besides, the commonality of those and most proposed
cache-related solutions is the focus on the content choice. Naturally, that is the central
objective of the caching policies. We, instead, model the online caching problem with
an upper abstraction level. We propose employing online learning to enhance the cache
with the meta capacity to choose among an available set of potentially suitable policies.
Our model overcomes the intensive iteration of learning agents as the agent needs to
interact with the cache in predefined time intervals, instead of at each arriving content
request. This setting is particularly conducive for in-network caching architectures with
no restrictions on the content set.

In machine learning language, a sequence of actions chosen according to some learning
algorithm is called policy. To avoid misunderstanding with the caching strategies, this
work applies the term policy only to reference the caching replacement strategies.

5.2 SYSTEM MODEL

Consider a cache-enabled router CR with fixed capacity for n contents from a content
library set L of unknown size, but it is known that |L| � n. The router responds to the
content requests passing the network when the content is stored locally, thus counting a
cache hit. Otherwise, the router forwards the request to another node on the network and
counts a cache miss. Content packages passing through the cache can be opportunistically
stored locally, but the cache space is always fully occupied in the steady-state. Therefore,
the cache works with a cache replacement policy ! to keep the contents most likely to be
reaccessed.

Given a discrete-time setting, we slotted the time into fixed intervals I. The cache
e�ciency of CR inside the interval I can be defined as:

CE(!)I =
HI

MI +HI

(�.�)

in which HI is the number of content interests satisfied by the cache in I and MI is
the number of missed requests in the same interval. The cache e�ciency relies on the
policy ! since di↵erent policies perform di↵erently according to their eviction logic.

Consider a finite set ⌦ = (!1,!2,!3, ...,!m) of m content replacement policies feasible
to the CR, for m 2 N. Without loss of generality, we assume that CE(!1)I > CE(!2)I >
CE(!3)I > ... > CE(!m)I . Each ! 2 ⌦ can use a di↵erent set of contextual information
for the eviction logic. Most of the contextual information used by the replacement poli-
cies are content related such as content access frequency or access time, but contextual
information can also explore characteristics of the router node and the network.

We denote the best policy choice for CR in time interval I as
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!
⇤
I
= !i | CE(!i)I > CE(!j)I , 8j  m. (�.�)

Network environments are dynamic, and changes such as variations in the content
request pattern can lead to variations in policies’ performances. Therefore, the best
policy may unpredictably vary over time. The problem is choosing which policy should
be executed by the CR at each interval I to maximize cache e�ciency over a time horizon
T .

Since we have continuous decision tasks during caching operations, the problem can
be represented as an online learning problem. The cache has to learn which policy is
more suitable to execute at each iteration. In our model, the cache operates only with
one cache replacement policy at a time. Thus, the cache can measure the CE associated
only with the running policy.

5.3 META-POLICY: LEARNING SUITABLE CACHING POLICIES ONLINE

Caching replacement policies behave di↵erently according to their heuristic, but re-
gardless of the policy, sequential CE(!i) measures could be seen as a sequence of random
variables shaped by the running caching policy !i. CE measures are expected to be
random since the sequence of future content requests is unknown. Also, the calculation
of cache e�ciency over a current interval does not consider e�ciency values calculated
over past intervals. This way, the measures are distributed random variables in the range
[0,1].

Notice that the CE(!i) measures of each policy may follow distinct Gaussian distribu-
tions1 since each policy implements particular eviction decisions. Therefore, our strategy’s
primary rationale is to model caching policies’ e�ciencies as distinct and fixed stochastic
distributions. In this direction, we modeled the policy choice as an exploration and ex-
ploitation problem, typically covered by Online Learning with Partial Feedback (OLPF)
algorithms.

The second rationale of our strategy is the decoupling of the content eviction strategy
from managing the context information used by the policies. For that, we consider a
Content and Context Management (CCM) module able to manage the cached contents
and the context features associated with the set of content replacement policies ⌦ available
in the cache.

We combined the two procedures to propose a caching meta-policy strategy capable of
learning the suitable policies online and dynamically adapting to context variations that
leads to changes in which policy is best. Figure 5.1 illustrates the two main components:
an OLPF agent and a CCM module. The cache node works with the two components by
implementing the caching meta-policy protocol described in Algorithm 1. In summary,
the OLPF agent is responsible for choosing the policies to run in each interval, while
the CCM module operates the cache and measures the cache e�ciency CE. Then, the
OPLF algorithm receives the CE measured to update its parameters used in the learning
process.

1Observed from our experimental data (see Figure 6.2).
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Figure 5.1 A meta-caching policy approach based on online learning with partial feedback and
a content/context management module.

Algorithm 1: Caching Meta-policy protocol

1 foreach iteration I in a time horizon T do
2 Choose policy !I 2 ⌦ according to the OLPF algorithm
3 Call CCM(I, !I , ⌦) to configure/operate the cache and compute the cache

e�ciency
4 Receive the cache e�ciency CE(!I)I 2 R
5 Update policy choice parameters according to the OLPF algorithm
6 end

That model allows the cache node to act as an agent learning traditional stochastic
Gaussian distributions regardless of the policy set. Moreover, the strategy enhances the
cache with an upper abstraction level over the content eviction strategies, capable of
adjusting the cache to network changes that influence the policies’ performance. We
detail the components in the following subsections.

5.3.1 Online Learning Agent with Partial Feedback

OLPF describes a set of sequential decision-making problems. An agent interacts
with the environment online by deciding to execute one action over a finite set of actions.
The chosen action yields a numerical reward after being executed, and the reward of
the unplayed actions remains unknown. The agent has no previous knowledge about
the mechanism generating the sequence of rewards for each action. This way, there is
always uncertainty about whether the agent made the best choice. The agent can explore
a new action at each iteration or exploit the best action learned in previous iterations.
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The agent has to explore to learn its possibilities and also exploit to increase its gains
in the long term. This exploration-exploitation dilemma has been the focus of extensive
research over decades, giving rise to a diversity of OLPF algorithms targeted to variations
of online learning problems.

In the caching meta-policy strategy, the decision-maker agent is represented by the
cache node, and each cache replacement policy is an option to be chosen. For in-network
architectures, cache nodes are the network routers enhanced with storage capacity. The
cache works with a fixed set of policies. Then, in a continuous task, the agent chooses a
policy to run inside a predefined interval of time. At the end of each interval, the agent
receives the reward associated with the policy and evaluates whether the same caching
policy will be running in the next interval or another policy. The reward is the cache
e�ciency measured inside the interval and relies only on the running policy. This way, the
OLPF agent uses the reward obtained in each interval to learn the policies’ distributions,
i.e., the cache e�ciencies’ distributions. The agent is agnostic to the caching policy
eviction logic and does not associate the choice with any tra�c pattern or network-related
characteristic.

Caching policies’ performance may vary according to tra�c characteristics changes,
especially for highly dynamic networks with intermittent wireless communication. In
that context, the distributions are expected to be non-stationary. Models with station-
ary distributions have no variation in which option will achieve the highest cumulative
rewards over time. This way, the learning process focuses on finding which one is the
best option. However, in non-stationary stochastic problems, the distributions may infre-
quently change in a time horizon. The learning process, thus, requires di↵erent strategies
to adapt to possible variations of best arms. Therefore, the agent may employ algorithms
able to deal with non-stationarity in stochastic models.

The stationarity degree and characteristics depend on the set of policies. The strategy
e↵ectiveness and adaptability rely on the employment of OLPF algorithms appropriate
to the distributions’ profile of changes.

5.3.2 Content and Context Management Module

Since the caching meta-policy strategy consults the OLPF agent at each iteration I to
configure the cache with the policy chosen by the agent (see Algorithm 1), each iteration
can be executed with a di↵erent policy !.

A requirement to allow the dynamic change of policies during the cache operation is
to maintain the context information associated with each policy’s eviction logic in the set
⌦. This way, the strategy implements a CCM module to store the context for all contents
in the cache. Examples of context information commonly used by policies are the access
frequency and last access time of contents. The management module keeps the context
information used by all the policies in the cache policy set ⌦ regardless of which policy
is executing. Besides, the module manages the content eviction engine by matching the
stored context feature with the context feature used by the running replacement policy.

Upon the beginning of an iteration, a chosen policy begins its execution relying on the
stored context. This way, it is possible to continue the cache operation from the current



5.4 META-POLICY GENERALITY 67

cache state left by the previous running policy. Otherwise, it would not be possible to
change policies online. Algorithm 2 presents the pseudo-code of the CCM module.

The policy set can vary in number and replacement logic exploring di↵erent context
aspects, such as content, router, and network properties. Several context factors can
influence the performance of policies. Therefore, there is no single criterion for choosing
the candidate caching policies to compose the set. Each cache on the network can work
with a di↵erent set. The meta-policy strategy is a mechanism of choice, and the learning
will converge to the most suitable policy among the options in the chosen set. In other
words, the cache performance will converge to the performance obtained if only the best
policy present in the set is executed.

Algorithm 2: CCM - Content and Context Management for the meta-policy
strategy

1 Input: I, !I 2 ⌦, ⌦
2 Output: CE(!I)I
3 Initialize cache miss and hit counters: M = 0, H = 0
4 foreach request for content c during the iteration I do
5 if c is not in the cache then
6 Increment cache miss counter: M = M + 1
7 Elect content c’ to evict from the cache according to !I eviction logic
8 Add new content c in the cache
9 foreach !i 2 ⌦ do

10 Remove context data used by !i and related to c’
11 end
12 else
13 Increment cache hit counter: H = H + 1
14 end
15 foreach !i 2 ⌦ do
16 Update context data used by !i and related to c

17 end
18 end
19 Compute and return CE(!I)I =

H

M+H

5.4 META-POLICY GENERALITY

It is worth emphasizing the generic aspects of our proposed caching meta-policy (See
Fig. 5.2). The strategy allows the employment of di↵erent policy sets and OLPF algo-
rithms. It is also generic regarding the network type in which the cache operates. The
strategy is suitable for caches operating in di↵erent settings such as ICNs, CDNs, and
proxy caches. The next chapter presents a proof-of-concept evaluation in an ICN setting
with traditional caching replacement policies and basic non-stationary stochastic ban-
dit algorithms. The results reveal the potential for widespread use in di↵erent caching
scenarios.
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The meta-policy model can also be extended to collaborative caching systems. In that
case, it is necessary to define a collaboration model and performance evaluation metrics
for the overall network. We have pointed out research directions for collaborative caching
models in section 7.3.
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Figure 5.2 The generic aspects of the caching meta-policy encompass both the policy set with
its corresponding context features and the OLPF algorithm.

5.5 CHAPTER SUMMARY

This chapter presented our proposed solution to address the problem of choosing
caching policies during the design of caching systems. The solution models the caching
policy choosing problem as an online learning problem with bandit feedback. Therefore,
the chapter presents introductory concepts of online learning for caching systems and
related works to position our proposed strategy. The strategy is a caching meta-policy
that enhances the cache with an upper abstraction level above the logic of choosing
content. To implement the strategy, the cache must work with a set of cache replacement
policies. The meta-policy operates with an OLPF agent and a CCM module. In a
continuous task, the OLPF agent chooses the policy to run at the cache and receives
periodic feedback. The OLPF agent is designed to learn the best policy in the long run,
and adapt to variations that impact the policy choice. Meanwhile, the CCM module
guarantees the maintenance of the context information required to operate the policies.
The meta-policy is a generic strategy and can support deploying a diverse set of self-
contained caching policies in di↵erent scenarios.
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6
META-POLICY EXPERIMENTAL EVALUATION,

RESULTS, AND ANALYSIS

To demonstrate the applicability and benefits of using the caching meta-policy strat-
egy for choosing suitable caching policies, we have carried out a simulation-based study
through the NDN architecture. NDN in-path cache works as an opportunistic cache to
distribute contents across the network. This section details the evaluation methodology
and discusses the experimentation settings.

6.1 EVALUATION ENVIRONMENT

We have implemented the meta-caching strategy in a modified version of the ndnSIM
simulator (MASTORAKIS; AFANASYEV; ZHANG, 2017; MASTORAKIS et al., 2016)
coupled with the ns3-gym framework (GAW LOWICZ; ZUBOW, 2019).

The ndnSIM is an open-source NDN simulator to reproduce discrete-event network
scenarios. The simulator is a module of the Network Simulator (NS-3) framework (RI-
LEY; HENDERSON, 2010), in which all network nodes implement the NDN protocol
stack and the in-network cache structure. The cache works with a cache replacement
policy configured at the beginning of the simulation. To implement our strategy, we have
adapted the simulator to enable the change of policies during the execution of a simulation
scenario. We also adapted the simulator to reproduce requests from real datasets.

The ns3-gym framework is a module of NS-3 designed to support the interaction of
machine learning agents with the network environment. This way, a learning agent based
on the ns3-gym framework can interact with the NDN cache node created by the ndnSIM.
To evaluate our proposed strategy, we have implemented cache replacement policies on
the ndnSIM and online learning algorithms on the ns3-gym. In the following subsections,
we describe the policies and algorithms and details the scenario settings.
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6.2 EXPERIMENTATION SETTINGS

6.2.1 Cache Replacement Policies

We have implemented a meta-caching policy strategy for the evaluation through an
agent that chooses over a fixed set of four policies: LRU, LFU, FIFO, and Random.
In their eviction logic, LRU removes the last accessed content, LFU removes the last
frequently used content, FIFO removes the oldest content, and Random removes one
content randomly. Those are traditional replacement policies inherited from the memory
management of operating systems and used in Web cache networks.
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(b) Total cache e�ciency over time, i.e., at each iteration, we measured
the total content requests and total cache hit from the simulation’s start
to the corresponding iteration.

Figure 6.1 Distribution of policies‘s performance for a single cache under IRM model.
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Figure 6.2 Graph of the probability density function for the distributions obtained by each
policy under the IRM model.

To exemplify possible e�ciency distributions for the distinct caching policies, Figures
6.1 and 6.2 illustrate the execution of LFU, LRU, FIFO, and Random, in a single cache
scenario running individual policies separately. The scenario had a fixed catalog of 20.000
contents, static content popularity following the Zipf model with ↵ = 0.8, relative cache
size of 5%, and request rate of 10 requests/s. We illustrate each policy’s cache e�ciency
in a day, measured in 5 seconds intervals. The figures show the distribution of policies’
performances from three di↵erent perspectives: the log-scale graph of all immediate mea-
sures by interval (Fig. 6.1 (a)), the total cache e�ciency over time (Fig. 6.1 (b)), and
the normal distribution for each policy (Fig. 6.2). Under the IRM model, LFU has op-
timal performance but requires some time to populate the cache with the most popular
contents. Notice the variance in the first iterations, in which other policies performed
better than LFU. Upon increasing the iterations number, LFU started to perform better,
and the distributions became stationary. In this scenario, FIFO and Random obtained
similar distributions, almost indistinguishable in the graph.

Di↵erent scenario settings would generate distinct distributions. Our proposed strat-
egy stems from the analysis of similar distributions to learn which ones should be used by
the cache. In the following, we present the online learning strategies we have employed
in that learning process.

6.2.2 OLPF Algorithms

The OLPF problems describe bandit problems and can be tackled by a class of Multi-
armed bandit (MAB) algorithms. Upper confidence bound (UCB) is a MAB strategy
successfully used to solve stochastic bandit problems. In a stochastic setting, bandit
algorithms usually estimate the arm’s values by incrementally averaging its rewards in a
time horizon. The more an action is taken, the more confidence we have that the average
will reflect the action’s actual value. UCB strategies add a fixed confidence interval to
each arm’s mean to estimate the expected arm’s values optimistically. It is based on the
concept of optimism in the face of uncertainty about the mean values. The strategy can
gradually reduce the interval as the bandit gains more confidence in the mean values.
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The literature presents several variations of UCB algorithms. A standard UCB deals
with stationary problems in which the average considers the entire distribution evenly. In
non-stationary scenarios, it is possible to include a discount factor to give higher weights
to more recent rewards, similar to the ones proposed by (GARIVIER; MOULINES, 2011)
and (SUTTON; BARTO, 2018). Another alternative is to consider only the most recent
measurements in a sliding window over time (GARIVIER; MOULINES, 2011).

The experiments considered UCB algorithms for non-stationary stochastic bandits
that choose the policy ! for the interval I according to the following equation:

!I = argmax
!2⌦

"
CEI(!) + c

s
ln I

NI(!)

#
(�.�)

in which CEI(!t) is the average e�ciency for policy ! obtained before iteration I, and
the square root part is the confidence interval; NI(!) is the number of times policy w

has been chosen, and c is a fixed parameter to tune the e↵ect of the confidence interval
thereby controlling the degree of exploration (SUTTON; BARTO, 2018).

The algorithms are (i) UCB with discount factors (UCBd) and (ii) sliding-window
UCB (SW -UCB). For the UCBd, we have applied the incremental Exponential Recency-
Weighted Average (ERWA), according to equation �.�,

CEI+1(!) = CEI(!) + d

h
CEI(!)� CEI(!)

i
(�.�)

in which d 2 (0, 1] is a step-size parameter that works as a discount factor in the av-
erage learning process. The discount factor adjusts distinct weights over the reward
distribution, wherein higher values emphasize recent rewards. So, in the experiments, we
adopted d = 0.2 and d = 0.8 as two opposite values to evaluate the bandit’s adaptability.
The SW -UCB used the simple average and tuned the window size parameter according
to Garivier e Moulines (2011).

Parameter Values

Caching policy set LRU, LFU, FIFO, Random
OLPF algorithms UCBd=2, UCBd=8, SW -UCB
Agent iteration interval 2, 3, 4, 5, 10, 15, 20, 25, 30 s.
Number of cache nodes 1, 4, 9
Node positions edge, intermediate positions
Cache size 2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20%
Content request pattern IRM model Boston

sample

trace (1 day)

Youtube

sample

trace (1 day)

DEC sam-

ple trace (1

day)

Content library size 1.000, 20.000 ⇡ 20.000 ⇡ 30.000 ⇡ 600.000
Content Zipf(a) 0.8 ⇡ 0.80 ⇡ 0.53 ⇡ 0.63
Total content request 2, 5, 10 /s. ⇡ 10.000 ⇡ 50.000 ⇡ 1.5 million

Table 6.1 Scenarios parameters.
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6.2.3 Scenarios and Evaluation Metrics

We have conducted experiments to analyze our strategy e↵ectiveness in choosing the
best policy for di↵erent scenarios. The scenarios contain variations on content request
patterns, cache sizes, and locations of the cache node into the topology. We also analyzed
the impact of di↵erent interval times that the learning agent interacts with the cache.
Table 6.1 summarizes the scenarios parameters and their respective values.

We evaluate the convergence of the cache’s performance to the performance of the
best policy present in the policy set. We expect the performance of a cache executing
the meta-policy to converge to the performance of the policy best suited to the context
of the cache’s operation.

The strategy e�ciency was compared with the correspondent benchmark scenario
consisting of one replacement policy throughout the simulation period.
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Figure 6.3 Sample traces for three distinct real content request datasets. The number of
content requests were measured in 5 seconds intervals. The distributions of content requests
per content refers to measures in one sample day.
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6.2.3.1 Datasets To accomplish variations of the access pattern, we have performed
experiments with the IRM request model implemented in the simulator, and also on
three public datasets suitable for caching experimentation: a dataset of user requests
for Youtube videos (ZINK et al., 2008), a Web Proxy dataset from Digital Equipment
Corporation (DEC) (COOPERATION, 1996), and web tra�c traces from Boston Uni-
versity (CUNHA; BESTAVROS; CROVELLA, 1995). All datasets contain trace files
with users’ content requests and the respective timestamps. Figure 6.3 illustrates sample
traces of each dataset. The figure shows the di↵erent content request rates over time and
the distribution of content popularity in a sample day. We carried out experiments with
di↵erent periods on the datasets and selected one-day traces to present the results.

6.2.3.2 Network Topology Regarding the network topology, we divided the evalu-
ations into single-cache and multi-cache scenarios (Fig. 6.4). In the single-cache, we have
tested the impact of di↵erent access patterns, cache sizes, and agent iteration times.

In the multi-cache scenario, we present an analysis regarding the impact of di↵erent
node positions on the network. We aim to explore the variance of suitable policies for
the individual caches. To this end, we first carried out experiments with a tree topology
composed of one intermediate caching node and three edges caching nodes. Then, we
expand the study on di↵erent intermediate positions with nine caching nodes arranged
in a 3x3 grid topology. We placed the producer and consumers at opposite ends of the
same grid’s diagonal. The consumer issues content interests that transverse the caching
nodes up to match searched contents in respective caches or the content producer. When
a cache node does not have a requested content, it broadcasts the incoming content
interest to neighbor nodes. This setting allows us to simulate dense cache connections
while exploring the di↵erent in-network cache positions. The di↵erent positions allow each
cache to have unique tra�c views and thereby possible variations of suitable policies. All
caches have similar sizes.
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Figure 6.4 Cache network topologies for the experiments. The network devices implement the
NDN protocol stack, and all the NDN routers have cache capacity.
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6.3 CACHING META-POLICY RESULTS AND ANALYSIS

This subsection presents our findings in applying the meta-policy strategy under dif-
ferent network scenario variations. In general, the policies presented di↵erent behaviors
for each scenario, and most bandit configurations performed close to the best-fixed policy
for all scenarios. We first show the meta-strategy application in the single-cache IRM
scenario of section 6.2.1 with the three variations of bandit algorithms.
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(b) Immediate e�ciency measures at each interval. The graph shows one
every 100 measures to improve visualization.

Figure 6.5 Cache e�ciency for the single-cache IRM scenario. Simulation parameters: relative
cache size: 5%, iteration time: 5s, c = 0.2, warm-up period: 200 s; 20.000 distinct contents,
Zipf(a)=0.8, request rate: 10 requests/s.

Figures 6.5 and 6.6 depict the results of letting bandits agents learning the best policy
online. The figures shows: the total cache e�ciency over time, i.e., at each iteration, we
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Figure 6.6 Distribution of actions taken by OLPF agent.

measured the total content requests and total cache hit from the simulation’s start to
the corresponding iteration (Fig. 6.5 (a)), the immediate measures of cache e�ciency at
each 5 seconds intervals (Fig. 6.5 (b)), and the distribution of policies choices by bandit
algorithms (Fig. 6.6).

The agents explored all policies in the set according to its learning algorithm. As we
have described, LFU is the best policy in the set for the IRM model, followed by LRU.
Figure 6.5 (a) shows that both UCBd=0.2 and UCBd=0.8 performed closer to LFU in the
long run. Even applying discount factors, UCBd is influenced by the initial distribution
values. However, in this scenario, both lightweight and aggressive discount factors could
minimize the influence of lower LFU initial values. A stationary strategy would not be
able to have that e↵ect. Although SW -UCB considers more recent distribution values
and is not impacted by the initial values, the bandit had struggled to adapt by showing
a slower learning curve. One possible reason is that the policies may obtain immediate
measures with nearby values that may overlap in some iterations, as shown in part (b)
of Figure 6.5. Hence the importance of learning with many iterations of the agent to
estimate more confident policy values.

It is worth mentioning that the distributions perceived by the bandit in the learn-
ing process are not exactly the same as those obtained when a single policy is executed
throughout the entire cache execution. Inside the bandit, the policies obtain di↵erent
reward values due to the di↵erent cache states at each iteration that starts with a new
policy. Even with fragmented executions, the policies manage to maintain their distri-
bution characteristics. However, we notice that in such a static setting, frequency-based
policies may perform optimally when executed alone but may not perform the same way
inside the bandit. The reason is the possible loss of high-frequency contents during other
policies’ execution. In similar cases, the bandits can only approximate their performance.
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6.3.1 Impact of Content Request Patterns

Figures 6.7, 6.8, and 6.9 depict the results of applying the caching meta-policy strategy
in scenarios with di↵erent content request patterns. The figures show the cache e�ciency
for one sample day of Youtube, DEC, and Boston traces, respectively. We maintained the
same simulation parameters used in the IRM scenario described above while varying the
input requests. Unlike the IRM model, the real web traces present degrees of temporal
locality between content requests. Temporal locality describes correlation properties in
content requests, in which recently accessed contents are likely to be reaccessed shortly.
Policies such as LRU tend to present better performances when the temporal correlation
is the prevailing characteristic of the content request pattern.
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Figure 6.7 Youtube trace. Cache e�ciency for single-cache scenario. Simulation parameters:
relative cache size: 5%, iteration time: 5s, c = 0.2, warm-up period: 200 s.

For Youtube trace, LRU stands as the best policy in the set, and the performance
of all bandits approached LRU. The other policies performed well and approximated to
LRU, except for LFU, which had degraded performance as the simulation progressed.
Therefore, in more dynamic scenarios such as with content popularities changes, the
bandits can perform as well as the best-fixed policy in the long run. In such a scenario,
even stationary bandits would perform well.

The DEC trace results presented interesting behavior with the variation of the best
policy during the simulation time. After an initial period in which all policies appeared
to perform almost evenly, LFU started to perform better and became the best option.
Still, LFU gradually lost performance due to content popularity profile changes, and
LRU remained stable as the best choice. Since LRU uses the least recent approach to
evict content, it is more appropriate for dynamic scenarios. However, the cache size
is also a factor that impacts cache e�ciency. The increase in cache size could mitigate
LFU performance degradation in such cases. Regarding the bandit’s behaviors, UCBd=0.8

demonstrated better adaptability. The bandit approached LFU and then adapted to LRU
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Figure 6.8 DEC trace. Cache e�ciency for single-cache scenario. Simulation parameters:
relative cache size: 5%, iteration time: 5s, c = 0.2, warm-up period: 200 s.

when LRU became the best option. UCBd=0.2 got stuck in LRU from the beginning,
probably due to its higher initial distribution values when LFU went through its natural
learning curve. The trace results rea�rmed the better adaptability of the meta-policy
strategy to more dynamic scenarios since most bandits performed as well as the best-fixed
policy in the long run.
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Figure 6.9 Boston trace. Cache e�ciency for single-cache scenario. Simulation parameters:
relative cache size: 5%, iteration time: 5s, c = 0.2, warm-up period: 200 s.

For the Boston trace, the policies behaved very similarly to the Youtube trace; how-
ever, the agents could not approach the LRU performance in the same way. The reason
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was the absence of request patterns in approximately half of the trace time. In the trace,
requests are practically extinguished in the second half of the day. Thus, the performance
measurements obtained by the agents in the absence of requests were not able to measure
the value of each policy. Still, the learning process in the first half of the time allowed
the agent to perform close to the best policies in the set.

6.3.2 Impact of Agent Iteration Time Interval
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Figure 6.10 Average cache e�ciencies for di↵erent agent iteration intervals in a single-cache
scenario. Average over 10 runs. Common simulation parameters: duration of each run: 1
day, relative cache size: 5%, c = 0.2, warm-up period: 200 s; For IRM model: 20.000 distinct
contents, Zipf(a)=0.8, request rate: 10 requests/s.; The Youtube trace samples are similar to
the sample in Table 6.1.
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The iteration interval determines the time an agent will intervene in the cache to
evaluate the running policy and perform policy changes. As such, the interval sets the
time a policy has to run before being evaluated. The shorter the interval, the more
interactions the agent will make in a time horizon, and thereby the agent will have more
confidence in the estimated policies’ values. However, small intervals may not adequately
reflect the value of the evaluated policies, as the policies need time to show their ability
to assist content requests. In contrast, long intervals lead to slow convergence in agent
learning.

We assessed the impact of di↵erent time intervals on cache performance when applying
our meta-policy strategy. Figure 6.10 depicts the results of experiments with the IRM
model and Youtube traces. There were variations for each interval as the distributions
obtained are distinct, but the average performance for each interval size remained nearby
to each other. The variation was more significant for the IRM experiments, while the
cache performance remained almost constant for the Youtube experiments.

In general, the cache maintained the performance regardless of the time interval used
by the agent. The experiments used the static time configuration, but the cache can
adopt dynamic approaches to increase or reduce the interval according to variations in
the network in which the cache operates.

6.3.3 Impact of Cache Size

The cache size is one of the context factors correlated to the policies’ performances and
can influence the policy choice. We carried out experiments with cache size variations
in scenarios with the IRM model and Youtube traces to analyze the impact on our
proposed method. Figure 6.11 depicts the results. In general, the direct impact of cache
size variations relied on the policies’ performances. However, we notice a not negligible
impact on the average performance of the agents.

Regarding the policies performances, the increase in cache size usually causes two
e↵ects: first, the cache performance naturally increases regardless of the policy since
there is more space to store popular content, but the performance gain is not linear
with increasing cache size; and second, the policies performances tend to converge for
reasonably large cache size. The IRM and Youtube scenarios presented both e↵ects but
with very di↵erent granularities, as shown in the picture.

Regarding the caching meta-policy strategy, the agents choose between the four re-
placement policies as in the previous experiments. The figure shows the comparison
with the two most representative policies. In the IRM experiments, the agents generally
achieved better average performance for smaller cache sizes. There were more variations
for larger cache sizes, as seen from the increase in the standard deviation. That means
the UCB agents explored the policies more. This behavior could be associated with the
slight convergence of policies’ performance and the learning pattern of UCB algorithms.
For the Youtube experiments, the agents performed very similarly for all cache sizes.
The combination of both results reinforces that variations in the policy set’s performance
pattern can influence the agent’s learning rate, not the cache size directly.
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Figure 6.11 Average cache e�ciencies for di↵erent cache sizes in a single-cache scenario. Av-
erage over 5 runs. Common simulation parameters: duration of each run: 1 day, relative cache
size: 5%, iteration time: 5s, c = 0.2, warm-up period: 200 s; For IRM model: 1.000 distinct
contents, Zipf(a)=0.8, request rate: 5 requests/s.; The Youtube trace samples are similar to the
sample in Table 6.1.

6.3.4 Impact of Node Location in the Network

This section presents our experiment in the multi-cache topologies described in section
6.2.3.2. The experiments aimed to explore the variance of suitable policies for di↵erent
cache node positions on the network, and thereby our strategy’s e↵ectiveness in learning
accordingly.

Multiple cache levels naturally present variations in the tra�c characteristics per-
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ceived by each cache. The reason is the filtering e↵ect when a cache closer to the user
hits a content request. The cache does not propagate that request to the rest of the
network and propagates only the miss requests to upper-level caches. This behavior
modifies the original characteristics of the tra�c and directly impacts each cache’s choice
of policies. Therefore, a homogeneous policy configuration may not adequately address
the individual cache needs.

Besides, a policy running in one cache can influence the e�ciency of all neighbor
caches. Therefore, an appropriate choice of policies would consider that interaction to
ensure overall network e�ciency. Yet, this section presents a simple model of independent
and distributed bandits. We show that, even without collaboration, most bandits can
learn and adapt the policies with all routers executing the meta-policy selfishly. We
compare the results with the homogeneous policy setting, i.e., all routers with the same
replacement policy.

We first show the results of the experiment in the tree topology. The topology has
one intermediate router and three access routers. We aimed to evaluate the meta-policy
adaptability in the intermediate node while all edge routers also run the meta-policy. We
set up distinct tra�c profiles for each access router: IRM tra�c, parts of DEC trace,
and Youtube trace. Thus, the intermediate node receives filtered and mixed tra�c of all
three edge nodes. Figure 6.12 depicts the results. The edge nodes maintained the cache
behavior discussed before in the single cache experiments according to their respective
tra�cs. Meanwhile, the intermediate cache node was also able to adapt its policy on-
demand. The graphs show the e�ciency of an agent in the intermediate node relative to
the e�ciency of all other edge nodes’ e�ciencies running the same agent type. Likewise,
the single policies’ e�ciencies are relative to the same policy running in all edges.
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Figure 6.12 Cache e�ciencies for di↵erent node positions in the tree topology. Simulation
parameters: relative cache size: 2%, iteration time: 5s, c = 0.2, warm-up period: 200 s; For
IRM model: 20.000 distinct contents, Zipf(a)=0.8, request rate: 2 requests/s; For Dec trace: ⇡
65.000 requests, ⇡ 37.000 contents; For Youtube trace: ⇡ 45.000 requests, ⇡ 30.000 contents.
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To further explore the adaptability in intermediate cache nodes, we performed ex-
periments in the 3x3 grid topology presented in section 6.2.3.2. We placed the content
consumers at one cache node to isolate the edge e↵ect and evaluated the agent’s ability
to learn from the di↵erent intermediate node positions.
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(a) Heatmap of individual cache e�ciencies.

(b) Histogram of individual cache e�ciencies.

Figure 6.13 Cache e�ciencies for di↵erent node positions in the IRM 3x3 grid scenario. Sim-
ulation parameters: relative cache size: 5% for each cache node, iteration time: 5s, c = 0.2,
warm-up period: 200s, distinct contents: 20.000, Zipf(a)=0.8, request rate: 10 requests/s.

Figure 6.13 illustrates the caching nodes’ e�ciencies for the experiment with IRM traf-
fic. We kept the same simulation parameters as the single-cache IRM scenario presented
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earlier (see Fig. 6.5), e.g., the same consumer request rate and the number of distinct
contents. Notice the variance in both cache e�ciencies and policy behaviors according to
the node position. In the present scenario with equal caches setting, the variations are
mainly due to each node’s particular tra�c view.

The caches enhanced with the meta-policy were able to adapt their policies on-
demand. The bandits presented variations in e�ciency for each node position as the
single policies due to the di↵erent tra�c views in each position. Overall, UCBd=0.2 stood
out with the highest performance levels. As mentioned earlier, the bandits’ performances
are linked to the policy set. FIFO has performed poorly in the cache network scenario for
most node positions, and the bandits managed to maintain good performance even using
FIFO in their continuous learning process. Regarding the cache e�ciencies compared
with the single-cache IRM scenario, as expected, the overall cache network e�ciency im-
proves, i.e., the sum of all individual cache e�ciencies, since we have increased the total
system cache capacity. Naturally, the average cache e�ciency reduces due to a combina-
tion of the hierarchical grid structure and the configuration parameters of the simulated
scenario (e.g., content popularity, request rate, and cache size).

In caching networks, each cache could work with di↵erent policy sets and bandit
algorithms. More realistic tra�c presents variations in the temporal locality patterns
perceived by each cache. The tra�c received by caches closer to the users presents strong
temporal localities. As cache levels filter requests, the temporal locality intensity becomes
gradually weakening, and the tra�c profile at upper-level caches becomes more random.
Real caching networks would similarly benefit from the online policy adaptation.

6.4 CHAPTER SUMMARY

The chapter presented evaluation experiments of the caching meta-policy strategy.
We have implemented the strategy in a NDN simulator and evaluated in conjunction
with algorithms for non-stationary stochastic bandits. We carry out experiments with
di↵erent tra�c patterns, cache size, agent iteration time, and cache position in multi-
cache network topologies.

The main evaluation outcomes are:

• The caching meta-policy strategy can learn the best caching policy for a variety of
scenarios, with di↵erent tra�c patterns and cache sizes.

• The combination of the adopted policy set with non-stationary UCB algorithms
showed better learning for dynamic tra�c patterns.

• Long periods with no tra�c patterns compromise an e↵ective estimation of policy
e�ciency, and thus make it di�cult for the agent to learn.

• The size of interval time in which an agent interacts with the cache had low impact
on the average cache performance.

• Variations in the cache size had indirect impact on the meta-policy due to the
influence on the performance behavior of the policy set.
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• The meta-policy can be employed in multiple hierarchical caches. We presented a
simple model of independent and distributed caches, but the evaluation in multi-
cache scenarios requires the modelling of collaborative caching systems.





Chapter

7
CONCLUSIONS

This section concludes the thesis document. We present concluding remarks about
the work we carried out along the thesis research (Sec. 7.1); we pinpoint related subjects
out of the scope of this thesis (Sec. 7.2); and, last, discuss a broad of future research
directions (7.3).

7.1 RESEARCH CONCLUSION

In-network cache architectures, such as ICNs, have proven to be an e�cient alterna-
tive to deal with the growing content consumption on networks. In caching networks,
any device can potentially act as a caching node. In practice, real cache networks may
employ di↵erent caching replacement policies by a node. The reason is that the policies
may vary in e�ciency according to several context factors, and a better understanding of
the relationship between context features and cache policies becomes necessary. In addi-
tion, caching systems would benefit from models designed for choosing caching policies
appropriately to cache contents on-demand and over time. The lack of suitable policies
for all nodes and scenarios undermines the e�cient use of available cache resources.

This thesis presented relevant contributions regarding the delimitation of context
features that impacts cache performance, and a method to enhances the cache with the
meta capacity of learning suitable policies on-demand. To the better of our knowledge,
this work is the first attempt to collect context features’ impact on caching replacement
policies, and also to employ a caching meta-policy model to improve caching systems.
Although the research scope of the thesis was on ICNs, the context findings and policy
choice strategy can be generalized and extended to other caching systems, such as CDNs
and Web proxy caches.

The results of the context delimitation studies encompassed evidence-based proof that
e�cient utilization of cache resources relies on deploying cache replacement policies ac-
cording to the overall network context. The results rea�rm the absence of a single optimal
strategy to meet the requirements of all network since the caching policies’ performances
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vary according to di↵erent context characteristics. Moreover, the results included cata-
logs of features from the content, node, and network dimensions explored by the policies.
The studies also embraced the human dimension as an incipient and potential factor to
be incorporated in the cache system design.

The design of caching policies has been seen a paradigm shift with the application of
online learning techniques in recent literature. In this work we explore the online learning
potential from a di↵erent perspective. Instead of proposing new caching policies, we have
introduced a meta-policy approach that models the replacement policy choosing problem
as an online learning with bandit feedback problem. The meta-policy is a general model
to adapt the cache to suitable policies according to the cache context. Such strategy opens
up straightforward mappings to build self-driven intelligent networks. In this thesis scope,
we have presented preliminary simulation-based evaluations of the meta-policy strategy in
ICNs, and the results have shown its adaptability and e↵ectiveness for di↵erent scenarios.
Nevertheless, the evaluation can be extended to real world deployments with di↵erent
policies sets and reinforcement learning algorithms.

7.2 OUT OF SCOPE SUBJECTS

The following topics were out of this thesis scope:

New cache replacement policy proposal. We did not intend to propose a new
replacement policy. Instead, we propose a method for choosing between existing
ones.

Cache replacement policy comparisons. We also did not aimed to explain
individual behaviors and rationals of the cache replacement schemes proposed in
the literature. Instead, we aimed to understand the context information intersecting
the schemes and their possible e↵ects.

7.3 FUTURE RESEARCH DIRECTIONS

In this section, we discuss di↵erent research directions for context-aware cache re-
placement schemes in ICNs.

Collaborative caching systems:

Collaborative caching systems are complex and may employ di↵erent caching strate-
gies. One approach to tackle the correlation in cache’s decisions is to model the
problem as a combinatorial MAB (CMAB). In CMAB, a bandit plays a set of arms
together and observes their individual rewards. This way, one action corresponds
to a combination of di↵erent arms. The learning process, thus, aims to converge to
the best combination. Such strategy has been shown e↵ective for proactive cache
content placement in mobile BSs (BLASCO; GÜNDÜZ, 2014). In that case, the
contents are arms for a BS bandit player. The general problem is to choose the
best combinations of contents to be cached over a fixed content set. Regarding the
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caching replacement policy choosing problem for multiple caches, a possible com-
binatorial model would have a centralized entity deciding over the policies’ com-
binations for all caches together. Instead of accounting for the individual caches
e�ciencies separately, that centralized entity would account for the aggregated net-
work e�ciency. Such a model requires investigation of computationally e�cient
multi-task bandit approaches.

Meanwhile, a centralized bandit convergence would be impractical in feasible times
for dynamic, distributed, and heterogeneous caching settings with intermittent con-
nections. Besides the variance of caching nodes, heterogeneous devices could work
with di↵erent policy sets and bandit algorithms. Moreover, the caching nodes may
employ di↵erent bandit iteration times. Such cache networks are well suited for
collaborative multi-agent MAB models. Convergent learning is still a challenge but
feasible in combination with solutions designed for game-theoretical problems.

Context information management:

Dealing with contextual information requires well-defined procedures on acquir-
ing, representing, reason, and distributing the information. Context information
management is widely studied and applied in many sciences that rely on context-
awareness (PERERA et al., 2013). Still, it is a challenge for complex systems such
as dynamically distributed networks to e�ciently perform online context manage-
ment, especially when there is a need to represent a high number of dimensions
and elements relevant to represent the domain. The integration between ICN
and SDNs (KIM; CHUNG; MOON, 2015; CHARPINEL et al., 2016; YAO et al.,
2016; KALGHOUM; GAMMAR; SAIDANE, 2018; LIU et al., 2018; SAADEH et
al., 2019) can further benefit context management solutions because of the SDN
paradigm’s centralized control view. It is necessary to investigate what context
information could be e�ciently handled by central controlling.

The sets of context features identified within our proposed classification are enablers
to a semantic representation of the context domain and can be extended or adapted
according to di↵erent application requirements. However, towards an e�cient real-
world deployment, there is also the need to argue about the quality of context
information. Quality can associate many aspects like reliability, precision, timeless,
access right, significance, granularity, and completeness. Those aspects are trans-
lated into metrics defined by the science of Quality of Context (QoC) (BUCHHOLZ;
KÜPPER; SCHIFFERS, 2003). The relevance of QoC metrics varies following the
type of information. Hence, di↵erent QoC metrics should follow the di↵erent con-
text subcategories in each context dimension.

Scalability of context suitability:

Exploring context information is essential to address a mismatch between caching
policies and emerging networks. This exploration contributes to achieving more
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potentially precise and customized techniques. However, the more the use of con-
textual information, the more computationally expensive the caching scheme might
become. The need to compute more context information may increase the com-
plexity of the caching policy itself. Therefore, it is essential to investigate the
performance cost of individual context information and the solution as a whole.
The performance cost depends not only on managing the information but also on
how the policy treats the information.

Machine learning techniques:

In addition to being used for context information inference (ZHAO et al., 2017;
NAKAYAMA; ATA; OKA, 2015; LIU et al., 2018), machine learning techniques
can investigate how to exploit better context information to optimize the eviction
process. In one perspective, machine learning techniques could select which con-
textual information is most relevant and should shape the eviction process. The
relevance of contextual information may vary depending on the network and objec-
tives. This way, given a network with a set of available contextual information, it
would help investigate how to choose what should be used by the eviction scheme
to increase network performance.

In another perspective, the techniques can direct the learning of the best kind
of policy based on what context information is available. Reinforcement learning
techniques have been successfully applied for caching schemes (SUNG et al., 2016;
SADEGHI; SHEIKHOLESLAMI; GIANNAKIS, 2017). However, in those works,
the context state is represented solely by the cached contents in an instant of time. It
would be relevant to extend the concept of context to represent the state with more
available information that would impact the learning policy process. Depending
on the number of context information used, there may be a large space of possible
states, which will require considerable computational e↵ort to represent the possible
variations. When most of the states are rarely revisited, the chosen technique must
deal with some sort of generalization. Furthermore, model-free techniques are best
indicated when there is no previous knowledge dataset to help the decision process.

Dynamic and adaptive instantiation of cache policies:

Along with SDN and ICN, Network Function Virtualization (NFV) techniques are
strong candidates for realizing and fostering next-generation networks (Zhang et
al., 2018; SAADEH et al., 2019). Through the network function virtualization con-
cept, in-network caching strategies can quickly execute as Virtual Network Func-
tion (VNF) along with some management structure. This combination paves the
way for e�cient deployment of adaptive caching policies according to the context’s
dynamic changes. To realize a plug-and-play vision of virtual function would be
interesting to have a rich repository of heterogeneous caching functions and multi-
attribute functions exploring di↵erent combinations of context information.
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Human aspects:

In recent years, the community has witnessed a growing number of researches fo-
cused on solutions that exploit the human-user context to solve problems in di↵erent
areas (Shafigh et al., 2019; Zaidi et al., 2019; ZENG et al., 2019). Due to mobile
computing expansion, networking-related studies also tend to consider human as-
pects such as interactions, social ties, and personality to propose human-awareness
solutions. This movement from device-to-device to people-to-people communication
paradigm aims to look at network configurations taking into account the user’s per-
spective, integrating human perception approaches with QoS metrics, and further,
with the mapping of user behavioral profiles. Network contexts are more likely to
cope with group-based rather than individual user profiles. Di↵erent user profiles,
such as personality profiles, may reflect distinct patterns of how users in each pro-
file interact with the network, and consequently, each profile may produce di↵erent
impacts on the network resource consumption. Therefore, the network can adapt
according to the predominant user profiles to improve the distribution/consumption
of resources and user QoE at the same time.

In ICN research, human factors present great potentials to improve the communi-
cation service delivery, in particular through adaptive caching solutions (Ribeiro;
Sampaio; Ziviani, 2018). One approach is to explore potential correlations between
user characteristics and cache policies and adopt mechanisms for dynamically adapt
the most suitable caching strategies to the predominant user behavior. A key chal-
lenging consists of finding out the human aspects that most positively impact the
network e�ciency and how they could be operatively explored in ICN architectures.
That requires a multidisciplinary view with the integration of psychology research
to support lower granularity levels of user information.

Privacy:

In-network cache aggregates benefits to ICN architectures by reducing bandwidth
consumption and the latency to deliver contents over the network, but it also intro-
duces architectural vulnerabilities regarding cache privacy (ACS et al., 2013). For
example, in side-channel timing attacks, a malicious user can deduce what content
was accessed recently by another user on the same network by merely measuring
content delivery times with standard content requests. Acs et al. (2013) discussed
techniques for mitigating privacy caching attacks in which contents marked as pri-
vate could have di↵erent treatments by the cache management mechanism. One
countermeasure presented to inhibit the timing attack consists of the insertion of
artificial delay times in the content delivery process, so the malicious user can-
not di↵erentiate which content was retrieved from the cache or directly from the
producer.

Recent e↵orts from the NDN research community have tried to address many of
the current privacy concerns (COMPAGNO et al., 2020; DOGRULUK et al., 2020),
but more work lies ahead concerning the context information processed by caching
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strategies. The use of context information to allow the dynamic adoption of the
most appropriate cache policy may require the processing of sensitive data of related
users stored in communication devices. One major concern resides in guaranteeing
the anonymity of data processed, particularly involving users for privacy-preserving
cache management.

Similarly, there is a concern about the privacy of cache management strategies
adopted on the network routers. Fan et al. (2020) recently presented a method
capable of detecting the placement policy configured in the routers. As described
in the malicious attempt to discover the previously accessed content in the network,
the method does not require any privileged access and can infer a placement policy
through ordinary content requests. Knowing the strategies used for content man-
agement can enhance the inference mechanisms of accessed content.



BIBLIOGRAPHY

ABDULLAHI, I.; ARIF, S.; HASSAN, S. Survey on caching approaches in information
centric networking. Journal of Network and Computer Applications, Elsevier, v. 56, p.
48–59, 2015.

ABIDI, A.; GAMMAR, S. Towards new caching strategy for information-centric network-
ing based on data proximity control. In: IEEE. Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Com-
puting; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE
International Conference on. [S.l.], 2015. p. 540–547.

ABOWD, G. D.; DEY, A. K.; BROWN, P. J.; DAVIES, N.; SMITH, M.; STEGGLES,
P. Towards a better understanding of context and context-awareness. In: SPRINGER.
International symposium on handheld and ubiquitous computing. [S.l.], 1999. p. 304–307.

ABRAMS, M.; STANDRIDGE, C.; ABDULLA, G.; FOX, E.; WILLIAMS, S. Removal
policies in network caches for world-wide web documents. In: . [S.l.: s.n.], 1996. v. 26, p.
293–305.

ACS, G.; CONTI, M.; GASTI, P.; GHALI, C.; TSUDIK, G. Cache privacy in named-
data networking. In: IEEE. 2013 IEEE 33rd International Conference on Distributed
Computing Systems. [S.l.], 2013. p. 41–51.

ADRICHEM, N. L. V.; KUIPERS, F. A. Globally accessible names in named data net-
working. In: IEEE. 2013 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). [S.l.], 2013. p. 345–350.

AFANASYEV, A.; MOISEENKO, I.; ZHANG, L. et al. ndnsim: Ndn simulator for ns-3.
University of California, Los Angeles, Tech. Rep, v. 4, 2012.

AHLGREN, B.; DANNEWITZ, C.; IMBRENDA, C.; KUTSCHER, D.; OHLMAN, B. A
survey of information-centric networking. IEEE Communications Magazine, IEEE, v. 50,
n. 7, p. 26–36, 2012.

AL-TURJMAN, F. Cognitive caching for the future sensors in fog networking. Pervasive
and Mobile Computing, Elsevier, v. 42, p. 317–334, 2017.

AL-TURJMAN, F. M.; AL-FAGIH, A. E.; HASSANEIN, H. S. A value-based cache
replacement approach for information-centric networks. In: LCN Workshops. [S.l.: s.n.],
2013. p. 874–881.

93



94 BIBLIOGRAPHY

ALEGRE, U.; AUGUSTO, J. C.; CLARK, T. Engineering context-aware systems and
applications: A survey. Journal of Systems and Software, Elsevier, v. 117, p. 55–83, 2016.

AMADEO, M.; CAMPOLO, C.; MOLINARO, A. Information-centric networking for
connected vehicles: a survey and future perspectives. IEEE Communications Magazine,
IEEE, v. 54, n. 2, p. 98–104, 2016.

AMADEO, M.; CAMPOLO, C.; MOLINARO, A.; RUGGERI, G. Content-centric wire-
less networking: A survey. Computer Networks, Elsevier, v. 72, p. 1–13, 2014.

AN, Y.; LUO, X. An in-network caching scheme based on energy e�ciency for content-
centric networks. IEEE Access, IEEE, v. 6, p. 20184–20194, 2018.

AOKI, M.; SHIGEYASU, T. E↵ective content management technique based on coopera-
tion cache among neighboring routers in content-centric networking. In: IEEE. 2017 31st
International Conference on Advanced Information Networking and Applications Work-
shops (WAINA). [S.l.], 2017. p. 335–340.

ARALDO, A.; ROSSI, D.; MARTIGNON, F. Cost-aware caching: Caching more (costly
items) for less (isps operational expenditures). IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE, v. 27, n. 5, p. 1316–1330, 2015.

ARAUJO, F. R. C.; SOUSA, A. M. de; SAMPAIO, L. N. Armazenamento oportunista em
redes de dados nomeados sem fio como suporte à mobilidade de produtores. In: XXXVI
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NEVES, M.; RODRIGUES, M.; AZEVÊDO, E.; SADOK, D.; CALLADO, A.; MOR-
EIRA, J.; SOUZA, V. Selecting the most suited cache strategy for specific streaming me-
dia workloads. In: IEEE. Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on. [S.l.], 2013. p. 792–795.

NEWBERRY, E.; ZHANG, B. On the power of in-network caching in the hadoop dis-
tributed file system. In: Proceedings of the 6th ACM Conference on Information-Centric
Networking. [S.l.: s.n.], 2019. p. 89–99.

NOUR, B.; LI, F.; KHELIFI, H.; MOUNGLA, H.; KSENTINI, A. Coexistence of icn and
ip networks: An nfv as a service approach. In: IEEE. 2019 IEEE Global Communications
Conference (GLOBECOM). [S.l.], 2019. p. 1–6.

OLIVEIRA, E. M. R.; VIANA, A. C.; SARRAUTE, C.; BREA, J.; ALVAREZ-
HAMELIN, I. On the regularity of human mobility. Pervasive and Mobile Computing,
Elsevier, v. 33, p. 73–90, 2016.

O’NEIL, E. J.; O’NEIL, P. E.; WEIKUM, G. The lru-k page replacement algorithm for
database disk bu↵ering. Acm Sigmod Record, ACM, v. 22, n. 2, p. 297–306, 1993.

ONG, M. D.; CHEN, M.; TALEB, T.; WANG, X.; LEUNG, V. Fgpc: Fine-grained
popularity-based caching design for content centric networking. In: ACM. Proceedings of
the 17th ACM international conference on Modeling, analysis and simulation of wireless
and mobile systems. [S.l.], 2014. p. 295–302.

OSTROVSKAYA, S.; SURNIN, O.; HUSSAIN, R.; BOUK, S. H.; LEE, J.; MEHRAN,
N.; AHMED, S. H.; BENSLIMANE, A. Towards multi-metric cache replacement policies



BIBLIOGRAPHY 107

in vehicular named data networks. In: IEEE. 2018 IEEE 29th Annual International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC). [S.l.], 2018.
p. 1–7.
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