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Reliably and automatically detecting anomalies is a fundamental problem in 
several domains. Its applications range from financial security to medical 
imaging. One common way to address this problem is to frame it as a one-
class classification problem: the classifier knows only examples from the 
normal distribution a priori, and must determine after which of the novel 
examples are also normal.

Despite the success of this approach in some tasks, the recent advances of 
Machine Learning due to Deep Neural Networks have not yet reached one-
class classification techniques. Previous attempts of bringing these advances 
to the field required compromises, like imposing restrictions to the 
representational power of the neural networks. This is undesirable because 
one of the main strengths of the Deep Learning approach is learning useful 
representations from data directly, instead of relying on manual feature 
engineering.

We propose a method that can perform one-class classification with a different
compromise. Our method imposes no restrictions in the network architecture 
by requiring instead labeled data from related tasks, a requirement which is 
not available for every scenario.

Using these related tasks, we formulate the learning of meaningful features for 
one-class classification as a meta-learning problem: the meta-training stage 
repeatedly simulates one-class classification, using the classification loss of 
the chosen algorithm to learn a feature representation.

We show how SVDD can be used with our method, and also propose a simpler 
variant based on Prototypical Networks that obtains comparable performance. 
This indicates that learning feature representations directly from data may be 
more important than which one-class algorithm we choose.

We validate our approach by adapting few-shot classification datasets to the 
few-shot one-class classification scenario, obtaining similar results to the 
state-of-the-art of traditional one-class classification, and that improves upon 
that of one-class classification baselines employed in the few-shot setting.

Moreover, as a practical application, we employ our method to the biometric 
task of on-device face verification. In this scenario, it compares unfavorably to 
a standard metric learning technique.
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ABSTRACT

Reliably and automatically detecting anomalies is a fundamental problem in several do-
mains. Its applications range from financial security to medical imaging. One common
way to address this problem is to frame it as a one-class classification problem: the clas-
sifier knows only examples from the normal distribution a priori, and must determine
after which of the novel examples are also normal.

Despite the success of this approach in some tasks, the recent advances of Machine
Learning due to Deep Neural Networks have not yet reached one-class classification tech-
niques. Previous attempts of bringing these advances to the field required compromises,
like imposing restrictions to the representational power of the neural networks. This is
undesirable because one of the main strengths of the Deep Learning approach is learning
useful representations from data directly, instead of relying on manual feature engineer-
ing.

We propose a method that can perform one-class classification with a different com-
promise. Our method imposes no restrictions in the network architecture by requiring
instead labeled data from related tasks, a requirement which is not available for every
scenario.

Using these related tasks, we formulate the learning of meaningful features for one-
class classification as a meta-learning problem: the meta-training stage repeatedly simu-
lates one-class classification, using the classification loss of the chosen algorithm to learn
a feature representation.

We show how Support Vector Data Description (SVDD) can be used with our method,
and also propose a simpler variant based on Prototypical Networks that obtains compara-
ble performance. This indicates that learning feature representations directly from data
may be more important than which one-class algorithm we choose.

We validate our approach by adapting few-shot classification datasets to the few-
shot one-class classification scenario, obtaining similar results to the state-of-the-art of
traditional one-class classification, and that improves upon that of one-class classification
baselines employed in the few-shot setting.

Moreover, as a practical application, we employ our method to the biometric task of
on-device face verification. In this scenario, it compares unfavorably to a standard metric
learning technique.

Keywords: Machine Learning, Computer Vision, Meta-Learning
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examples from class i - represented as the Zi sets in the figure - from a
labeled dataset Z. We then sample a minibatch of pairs (x′, y′) with x′

being an example and y′ a binary label indicating whether x′ belongs to
the same class as the examples in X ′, sampling again from sets Zi. Then,
we use a one-class classification algorithm g (e.g. SVDD) in the features
resulting from applying fθ on the examples of X ′. We use the resulting
classifier to classify each example’s features fθ(x

′) as belonging or not to
the same class as X ′, and compute the binary cross entropy loss J with
the true labels y′. We optimize fθ by doing gradient descent in the value of
J over many such tasks. After a final, single fθ is learned from repeating
this procedure for multiple tasks, we proceed to the training stage. There,
we use fθ to produce features for X, the data from our target class. We
remark that X is disjoint from X ′ and that the dashed line represents the
sharing of the same fθ. Applying g to the resulting X features yields the
final one-class classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Figure 3.2 (a) shows in light green embeddings in 2 dimensions and in
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Chapter

1
INTRODUCTION

1.1 MOTIVATION

One-class classification algorithms, i.e. classification algorithms that learn from data
from a single class and must classify unseen data as either in class or not (SCHÖLKOPF
et al., 2001), are the main approach to detecting anomalies from normal data. However,
traditional methods scale poorly both in computational resources and sample efficiency
with the data dimensions (RUFF et al., 2018).

Attempting to overcome these problems, previous work proposed using deep neural
networks to learn feature representations for one-class classification. While successful in
addressing some of the problems, they introduced other limitations. One problem with
these methods is that some of them optimize a metric that is related, but different than
their true one-class classification objective (e.g., input reconstruction (SEEBÖCK et al.,
2016)).

Other methods require imposing specific structure to the models, like removing biases
and restricting the activation functions for the network model (RUFF et al., 2018). This
is undesirable because they could diminish the representational power of the resulting
networks (RUFF et al., 2018). Another approach requires using Generative Adversarial
Networks (GANs) (GOODFELLOW et al., 2014; SCHLEGL et al., 2017), which are no-
toriously hard to optimize (ARJOVSKY; CHINTALA; BOTTOU, 2017; MESCHEDER;
GEIGER; NOWOZIN, 2018).

Furthermore, like most traditional deep neural networks, these methods require thou-
sands of samples from the target class. Unlike the success of Deep Learning techniques,
however, they only obtain results that are comparable to that of the traditional base-
lines (RUFF et al., 2018).

Departing from previous methods, which sacrifice ease of optimization and feature
representation, we propose a method whose compromise is the requirement of more data.
Somewhat paradoxically we require labeled data, albeit not from the one-class classifi-
cation task. Our requirement is for many pairs of binary classification tasks that are
semantically similar to the task we actually care about.

1



2 INTRODUCTION

Figure 1.1 Overview of the proposed method. During the meta-training stage, we emulate a
training stage by first sampling X ′ from a distribution that is similar to the one of our target
class data X. In practice we use some examples from class i - represented as the Zi sets in the
figure - from a labeled dataset Z. We then sample a minibatch of pairs (x′, y′) with x′ being an
example and y′ a binary label indicating whether x′ belongs to the same class as the examples
in X ′, sampling again from sets Zi. Then, we use a one-class classification algorithm g (e.g.
SVDD) in the features resulting from applying fθ on the examples of X ′. We use the resulting
classifier to classify each example’s features fθ(x

′) as belonging or not to the same class as X ′,
and compute the binary cross entropy loss J with the true labels y′. We optimize fθ by doing
gradient descent in the value of J over many such tasks. After a final, single fθ is learned from
repeating this procedure for multiple tasks, we proceed to the training stage. There, we use fθ
to produce features for X, the data from our target class. We remark that X is disjoint from
X ′ and that the dashed line represents the sharing of the same fθ. Applying g to the resulting
X features yields the final one-class classifier.

A simplified overview of our method is as follows: we sample one of the binary classi-
fication tasks and define one of the classes as the normal. Then, we use a neural network
to map the inputs to features, and use the features of examples in the training set to train
a one-class class classification model. We use this model to classify the unused examples
and compute the classification loss for them using the labels. Crucially, this provides us
with a signal to optimize the neural network used for feature representation. We repeat
this step many times and optimize the neural network a bit for each task. The point of
view is that we are optimizing over tasks from the same distribution as our main task,
and thus optimizing over feature representations for one-class classification over the task
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distribution.

This was already observed by the meta-learning community, where it is common
to optimize over related tasks (FINN; ABBEEL; LEVINE, 2017; SNELL; SWERSKY;
ZEMEL, 2017), and was the main inspiration for our method. We also enjoy other benefits
from employing ideas from meta-learning: this approach improves the data efficiency
of the underlying algorithm. As a result, our method obtains similar performance to
traditional methods while using 1,000 times fewer data from the target class. This defines
a trade-off in the availability of data from related tasks and data from the target class.

Despite the fact that our method has a very strong requirement – the availability of
similar binary classification tasks with labeled examples of both classes – there are some
natural domains where this is satisfied. For example, in fraud detection, we could use
normal activity from other users and create related tasks that consist of identifying if
the activity came from the user or not, while still employing and optimizing one-class
classification.

We describe an instance of our method, the Meta Support Vector Data Description,
obtained by using the SVDD (TAX; DUIN, 2004) as the one-class classification algorithm.
We chose the SVDD based on its simplicity, intuitiveness and the success it obtains in
low-dimension input spaces. It is also very similar to the One-Class Support Vector
Machine (OCSVM), and enjoys similar theoretical guarantees (TAX; DUIN, 2004).

The main drawback of the SVDD is that it requires solving a quadratic program to
compute the center of its hypersphere. We noted that if we instead used the centroid of
the inputs, we would obtain a sphere with greater radius but it would be much simpler
to compute. Not only that, but one of the most successful methods for meta-learning is
based on the same idea (SNELL; SWERSKY; ZEMEL, 2017). Despite its simplicity, this
method obtains comparable performance to Meta SVDD.

1.2 FEW-SHOT FACE VERIFICATION

Inspired by the success of Deep Learning techniques for computer vision (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012) in turning automated face recognition from a research
problem into a viable application (SCHROFF; KALENICHENKO; PHILBIN, 2015; TAIG-
MAN et al., 2014), we considered a practical application for our one-class classification
methods: addressing some of the privacy concerns raised by commercial application of
facial recognition technology.

These concerns started when civil society organizations noted that the wide avail-
ability of faces in the internet, driven by mass use of social networks, and demanded
regulatory action. This led San Francisco and then California to ban the use of face
recognition technology by law-enforcement agencies (CAGLE, 2019).

Similar concerns and others regarding fairness towards subrepresented peoples (RAJI
et al., 2020) have also led to the removal of the massive online datasets previously used
for face recognition (MURGIA, 2019a). Not only that, but now there are also tools that
allow searching for faces in most of the reachable internet (PIMEYES, 2017).

These should not impact the usage of face recognition technology for personal use,
which does not require sharing any biometric information with other parties. Nonetheless,
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face recognition software is now developed using metadata from social networks and
mostly unknowing users. The collection of this data into servers belonging to companies
that do not value or respect user privacy resulted in the reduction of research in face
recognition for personal use.

In this work, we consider the usage of face recognition for single-user authentication
in a privacy-preserving manner. In this setting, it is usual to assume the verification
system has many photos of the registered user’s face, e.g. the owner of the device has a
personal photo library with more than one picture with their faces on it. On the other
hand, people querying the system provide only a single image to request access

Therefore, we propose to combine Deep Convolutional Neural Network (CNN) with
our proposed one-class classification methods and compare them with a traditional base-
line for face recognition in this understudied setting. Crucially, the few-shot nature of our
work means adaptation should have low computational cost, should not require specific
hardware, and means it must rely on few data for the unseen task.

We therefore propose a protocol for evaluation of few-shot face verification, and imple-
ment it using the VGGFace2 dataset (CAO et al., 2018), known for its balance between
large scale and comparatively low noise level. We use the resulting benchmark to com-
pare three methods: our two, Meta Support Vector Data Description (Meta SVDD) and
One-class Prototypical Networks, and an adaptation of a traditional method for face
recognition, deep metric learning using Triplet-Loss (SCHROFF; KALENICHENKO;
PHILBIN, 2015) to the few-shot face verification setting.

1.3 CONTRIBUTIONS

� We show how to learn a feature representation for one-class classification (chapter 3)
by defining an estimator for the classification loss of such algorithms (section 3.1).
We also describe how to efficiently backpropagate through the objective when the
chosen algorithm is the SVDD method, so we can parametrize the feature represen-
tation with deep neural networks (section 3.2). The efficiency requirement to train
our model serves to make it work when there are as little as 5 examples, which puts
it in the few-shot regime.

� We simplify Meta SVDD by replacing how the center of its hypersphere is computed.
Instead of solving a quadratic optimization problem to find the weight of each
example in the center’s averaging, we remove the weighting and make the center
the result of an unweighted average. In other words, we use the prototype or
centroid of the examples’ features (Section 3.3). The resulting method, called One-
class Prototypical Networks, are simpler, have lower computational complexity and
more stable training dynamics than Meta SVDD.

� We also show that our method has promising empirical performance by adapting two
few-shot classification datasets to the one-class classification setting and obtaining
comparable results with the state-of-the-art of the many-shot setting (chapter 5).
Our results indicate that learning the feature representations may compensate for
the simplicity of replacing SVDD with feature averaging and that our approach is a
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viable way to replace data from the target class with labeled data from related tasks.
Code to reproduce our experiments and methods is also made publicly available1.

� The last contribution is testing whether our method is applicable to a practical,
useful task: few-shot face verification. We first detail how we frame this problem
as a meta one-class classification problem, and how the few-shot nature of our
method is useful for it (chapter 4). We then conduct experiments in a large face
recognition dataset, adapted to our task, comparing a traditional and well-tested
baseline method to the stronger of our one-class classification methods (chapter 6).
The baseline obtains a better result, which we interpret as indication that more
could be learned from metric learning in the meta-learning community than the
other way around.

This dissertation is organized as follows: chapter 2 reviews related work; chapter 3
briefly reviews the SVDD method and shows how we can use it for meta-learning, thus
obtaining Meta SVDD; Section 3.3 shows that simplifying the method, we obtain a variant
of the Prototypical Networks method for one-class classification; chapter 5 details our
experiments and the observed results; chapter 6 explains our protocol for testing meta
one-class classification in the few-shot face verification setting; and chapter 7 discusses
the method and future work.

1〈https://github.com/gdahia/meta occ〉





Chapter

2
RELATED WORK

2.1 ONE-CLASS CLASSIFICATION

We briefly survey the main ideas related to our work in the one-class classification lit-
erature. A more detailed treatment of this subject can be found in the recent survey of
Perera et. al (PERERA; OZA; PATEL, 2021).

The Support Vector Data Description (SVDD) (TAX; DUIN, 2004), reviewed in chap-
ter 3, is closely related to the One-Class Support Vector Machine (OCSVM) (SCHÖLKOPF
et al., 2001). Whereas the SVDD finds a hypersphere to enclose the input data, the
OCSVM finds a maximum margin hyperplane that separates the inputs from the origin
of the coordinate system. Like the SVDD, it can also be formulated as a quadratic pro-
gram, solved in kernelized form, and use slack variables to account for outliers in the
input data. In fact, when the chosen kernel is the commonly used Gaussian kernel, both
methods are equivalent (SCHÖLKOPF et al., 2001).

Besides their equivalence in that case, the OCSVM more generally suffers from the
same limitations as the SVDD. Both require explicit feature engineering (i.e. it prescribes
no way to formulate fθ), and it scales poorly both with the number of samples and the
dimension of the data.

The limitations of SVDD and OCSVMs led to the development of deep approaches
to one-class classification, where the previous approaches are known as shallow because
they do not rely on deep (i.e. multi-layered) neural networks for feature representation.

Most previous approaches that use deep neural networks to represent the input fea-
ture for downstream use in one-class classification algorithms are trained with a surro-
gate objective, like the representation learned for input reconstruction with deep autoen-
coders (HINTON; SALAKHUTDINOV, 2006).

Autoencoder methods learn feature representations by requiring the network to re-
construct inputs while preventing it to learn the identity function. These are usually
divided into an encoder, tasked with converting an input example into an intermediate
representation, and a decoder, that gets the representation and must reconstruct the
input (GOODFELLOW; BENGIO; COURVILLE, 2016).

7
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The idea is that if the identity function cannot be learned, then the representation
has captured semantic information of the input that is sufficient for its partial recon-
struction and other tasks. How the identity function is prevented determines the type of
autoencoder and many options exist: by reducing the dimensions of or imposing specific
distributions to the intermediate representations, by adding a regularization term to the
model’s objective, or by corrupting the input with noise (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Philipp Seeböck et al. (SEEBÖCK et al., 2016) train a Deep Convolutional Autoen-
coder (DCAE) in images for the target class, here healthy retinal image data, and after
that the decoder is ignored and an OCSVM is trained on the resulting intermediate rep-
resentations. The main issue with this approach is that the objective of autoencoder
training does not assure that the learned representations are useful for classification.

A related approach is to reuse features from networks trained for multiclass classifica-
tion. Oza and Patel (OZA; PATEL, 2019) remove the softmax layer of a Convolutional
Neural Network (CNN) (LECUN et al., 1990) trained in the ImageNet dataset (DENG
et al., 2009) as its feature extractor. The authors then train the fully-connected layers of
the pre-trained network alongside a new fully connected layer tasked with discriminat-
ing between features from the target class and data sampled from a spherical Gaussian
distribution; the convolutional layers are not updated.

AnoGANs (SCHLEGL et al., 2017) are trained like Generative Adversarial Net-
works (GANs) (GOODFELLOW et al., 2014) to generate samples from the target class.
After that, gradient descent is used to find the sample in the noise distribution that best
reconstructs the unseen example to be classified, which is equivalent to approximately
inverting the generator using optimization. The classification score is the input recon-
struction error, which assumes pixel-level similarity determines membership in the target
class.

Like the method we propose, Deep SVDD (RUFF et al., 2018) attempts to learn
feature representations for one-class classification from the data using gradient-based
optimization with a neural network model. It consists of directly reducing the volume
of a hypersphere containing the features, and in that it is a deep version of the original
SVDD.

Deep SVDD’s algorithm relies on setting the centers every few iterations with the
mean of the features from a forward pass instead of computing the minimum bounding
sphere. Since their objective is to minimize the volume of the hypersphere containing
the features, the algorithm must avoid the pathological solution of outputting a constant
function. This requires imposing architectural constraints on the network, the stronger
of which is that the network’s layers can have no bias terms. The authors also initialize
the weights with those of an encoder from a trained autoencoder.

One advantage of Deep SVDD over our work is that it does not require data from
tasks from a similar distribution: it is trained only on the target class data. While this is
an advantage, there is a downside to it. It is not clear for us, reading the paper describing
Deep SVDD, how to know for how long to train a Deep SVDD model, how to tune its
many hyperparameters, or what performance to expect of the method in unseen data.
These are usually done with computing useful metrics in a validation set. However, for
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Deep SVDD, the optimal value can be reached for pathological solutions, so a validation
set is not useful.

Ruff et al. (RUFF et al., 2018) prove that using certain activation functions or keeping
bias terms allow the model to learn the constant function but they do not prove the
reciprocate, i.e. they do not prove that constant functions cannot be learned by the
restricted models. The authors also do not analyze which functions are no longer learnable
when the model is restricted as such.

2.2 FEW-SHOT LEARNING

The main inspiration for the ideas in our paper besides Deep SVDD came from the field of
meta-learning, in particular, that of few-shot classification. Roughly speaking, few-shot
classification means there are as few as 5 examples to learn a given task. The scarcity of
data is compensated by the abundance of semantically similar tasks for meta-training.

Meta-training, on its turn, consists on either learning a good initialization so that
the few examples suffice to train a classifier – usually called optimization-based learn-
ing and best exemplified by Model Agnostic Meta-Learning (FINN; ABBEEL; LEVINE,
2017) – or learning a metric space that transfers to the unseen task – the metric learn-
ing Meta-Learning approach started by Prototypical Networks (SNELL; SWERSKY;
ZEMEL, 2017). Our approach is an example of the latter, and we focus our review on
such methods.

Prototypical Networks (SNELL; SWERSKY; ZEMEL, 2017) are few-shot classifiers
that create prototypes from few labeled examples and use their squared Euclidean dis-
tances to an unseen example as the logits to classify it as one of their classes. We first
saw the idea of learning the feature representation from similarly distributed tasks and of
using the squared distances in this paper. They also propose feature averaging as a way
to summarize class examples and show its competitive performance despite its simplicity;
One-class Prototypical Networks are the one-class variant of this method.

Recently, Lee et al. (LEE et al., 2019) proposed to learn feature representations for
few-shot classification convex learners, including multi-class Support Vector Machines
(SVMs) (CORTES; VAPNIK, 1995), with gradient-based optimization. Their work is
similar to ours in its formulation of learners as quadratic programs, and in solving these
with quadratic programming layers but it does not address one-class classification.

2.3 FEW-SHOT ONE-CLASS CLASSIFICATION

Concurrent with our work, others have started investigating the use of few-shot clas-
sification methods for the one-class classification task. Most similar to our work, Ola-
dosu et al. (OLADOSU et al., 2020) propose to perform meta-learning in a setting that is
similar to ours. Their method is trained with multiple supervised tasks so it can perform
on unseen tasks with only positive example at deploy time.

The main differences between our methods is that theirs uses set equivariant networks
to learn representations from the positive examples, whereas we use either SVDD or
a Prototypical Network layer. This means they require classifying the entire positive
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dataset for each query point, but doing so allows them to avoid defining a explicit metric
in feature space.

Like us, they also evaluate their method by adapting datasets with supervision to the
meta-learning one-class setting by splitting them over the labels instead of over examples.

2.4 FACE RECOGNITION

CNNs improved computer vision drastically (KRIZHEVSKY; SUTSKEVER; HINTON,
2012), and it did not take long for the automatic face recognition community to take no-
tice. Previously, successful face recognition methods required acquisition of face images
in environments with controlled pose, lighting and facial expressions. Deep learning tech-
niques allowed these constraints to be lifted, as noted by the increase in performance in
the then default benchmark for face recognition in-the-wild with the introduction of these
techniques (TAIGMAN et al., 2014; SCHROFF; KALENICHENKO; PHILBIN, 2015).
This has broaden the scope for which reliable biometrics can be used in security; for ex-
ample, we no longer require contact-based modalities like fingerprints to reliably recognize
individuals. These advances have recently been surveyed in much more detail (WANG;
DENG, 2021).

Most successful work formulates the problem of face recognition as a variation of a
standard pipeline consisting of: image acquisition, face normalization, feature represen-
tation, and matching. The achievement of deep learning in this area is the ability to
reduce the feature representation step to an stochastic optimization problem relying on
large amounts of data. Notably, the field of metric learning allows one to solve feature
representation and example matching at once, by learning features that map semantic
distance onto a simple space, like Euclidean space. Several works approach the prob-
lem like these, proposing variations on the specifics of embedding the feature space into
the simple space or heuristics to improve separability therein (TAIGMAN et al., 2014;
SCHROFF; KALENICHENKO; PHILBIN, 2015; WEN et al., 2016; DENG et al., 2019;
WANG et al., 2018).

The Center-Loss method (WEN et al., 2016), in particular, is very similar to the One-
Class Prototypical networks we investigate in this work. There are some subtle differences.
The first is that Center-Loss keeps one center for each identity during the entire training,
and updates them using a weighted average, which requires another hyperparameter;
one-class prototypical networks compute centers or prototypes from mini-batch examples.
The other difference is that there is no separation between query and support examples
when training with Center-Loss, which was previously thought as problematic for few-shot
classification (SNELL; SWERSKY; ZEMEL, 2017; FINN; ABBEEL; LEVINE, 2017) but
has since been reevaluated (LAENEN; BERTINETTO, 2021).

However, most of this progress has been seriously challenged by imposing fairer com-
parisons and a more rigorous benchmark for metric learning in computer vision (MUS-
GRAVE; BELONGIE; LIM, 2020b). More traditional methods, like contrastive loss (TAIG-
MAN et al., 2014) and triplet-loss (SCHROFF; KALENICHENKO; PHILBIN, 2015) have
been shown to be as competitive or more than proposed more recent methods. We there-
fore focus our comparison with triplet-loss, a widely known and effective baseline for
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face recognition (SCHROFF; KALENICHENKO; PHILBIN, 2015; MUSGRAVE; BE-
LONGIE; LIM, 2020b).

Interestingly, most face verification benchmarks evaluate scenarios that do not match
the specific setting of few-shot face verification. When human performance was surpassed
in one-to-one face verification in-the-wild (HUANG et al., 2007; TAIGMAN et al., 2014),
the newer benchmarks started focusing on more challenging tasks. Nowadays, the focus
is improvement on the Youtube Faces Dataset (Wolf; Hassner; Maoz, 2011), and the
IARPA Janus Benchmark (KLARE et al., 2015), which evaluate few-shot face verifica-
tion; on the MegaFace dataset (KEMELMACHER-SHLIZERMAN et al., 2016), which
evaluates open-set face identification. The most relevant benchmark is the MSCelebFaces
dataset with its few-shot challenge (GUO; ZHANG, 2017). It evalutes closed-set few-shot
identification, a setting which differs from what we study in two aspects: (1) it proposes
to match multiple genuine users providing few samples of each, instead of one, and (2) it
ensures that all query users will be in the known dataset, whereas we use only unknown
users for testing.





Chapter

3
META SVDD

The Support Vector Data Description (SVDD) method (TAX; DUIN, 2004) computes
the hypersphere of minimum volume that contains every point in the training set. The
idea is that only points inside the hypersphere belong to the target class, so we minimize
the sphere’s volume to reduce the chance of including points that do not belong in the
target class.

Formally, the radius R(X, c; θ) of the hypersphere centered at c ∈ Rd covering the
training set X transformed by fθ : RD → Rd is

R(X, c; θ) = max
x∈X
‖fθ(x)− c‖. (3.1)

The SVDD objective is to find the center c∗ that minimizes the radius of such a hyper-
sphere, i.e.

c∗ = arg min
c

R(X, c; θ). (3.2)

Finally, the algorithm determines that a point x′ belongs to the target class if

‖fθ(x′)− c∗‖ ≤ R(X, c∗; θ). (3.3)

The SVDD objective, however, does not specify how to optimize the feature repre-
sentation fθ. Previous approaches include using dimensionality reduction with Principal
Component Analysis (PCA) (RUFF et al., 2018), using a Gaussian kernel with the kernel
trick (TAX; DUIN, 2004), or using features learned with unsupervised learning methods,
like deep belief networks (ERFANI et al., 2016). We take a different approach: Our goal
is to learn fθ for the task, and we detail how next.

3.1 META-LEARNING ONE-CLASS CLASSIFICATION

Our objective is to learn a fθ such that the minimum volume hypersphere computed by the
SVDD covers only the samples from the target class. We, therefore, divide the learning
problem into two stages. In the meta-training stage, we learn the feature representation

13
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fθ. Once we learn fθ, we use it to learn a one-class classifier using the chosen algorithm
(in this case, SVDD) from the data of the target class in the training stage. This is
illustrated in Figure 1.1.

Notice how both the decision on unseen inputs (Equation 3.3) and the hypersphere’s
center c∗ (Equation 3.2) depend on fθ. Perfectly learning fθ in the meta-training stage
would map any input distribution into a space that can be correctly classified by SVDD,
and would therefore not depend on the given data X nor on what is the target class; that
would be learned by the SVDD after transforming X with fθ in the subsequent training
stage. We do not know how to learn fθ perfectly but the above observation illustrates
that we do not need to learn it with data from the target class.

With that observation, we can use the framework of nested learning loops (RAGHU
et al., 2019) to describe how we propose to learn fθ:

� Inner loop: Use fθ to transform the inputs, and use SVDD to learn a one-class
classification boundary for the resulting features.

� Outer loop: Learn fθ from the classification loss obtained with the SVDD.

We use the expected classification loss in the outer loop. With this, we can use data
that comes from the same distribution as the data for the target class, but with different
classification tasks. To make this definition formal, first, let g be a one-class classification
function parametrized by θ which receives as inputs a subset of examples from the target
class X ′ and an example x′, and outputs the probability that x′ belongs to the target
class. For a suitable classification loss J , our learning loss is

L(θ) = EX′∼DX
[E(x′,y′)∼DZ|X′ [J(g(x′, X ′; θ), y′)]] (3.4)

where y′ is a binary label indicating whether x′ belongs to the same distribution of X ′ or
not. The outer expectation of Equation 3.4 defines a one-class classification task, and the
inner expectation is over labeled examples for this task (hence the dependency on X ′ for
the labeled example distribution DZ|X′). Since we do not have access to the distribution
DX nor we have access to DZ|X , we approximate it with related tasks. Intuitively, the
closer the distribution of the tasks we use to approximate it, the better our feature
representation.

To compute this approximation in practice, we require access to a labeled multiclass
classification dataset Z = {(x1, y1), . . . , (xN , yN)}, where xi ∈ RD is the ith element and
yi ∈ Z its label, that has a distribution similar to our datasetX, but is disjoint from it (i.e.
none of the elements in X are in Z and none of its elements belong to any of the classes in
Z). Datasets like Z are common in the meta-learning or few-shot learning literature, and
their existence is a standard assumption in previous work (SNELL; SWERSKY; ZEMEL,
2017; FINN; ABBEEL; LEVINE, 2017; LEE et al., 2019). However, this restricts the
tasks to which our method can be applied to those that have such related data available.

We then create the datasets Z1, . . . , Zk from Z by separating its elements by class,
i.e.

Zi = {xj | (xj, i) ∈ Z}. (3.5)
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We create the required binary classification tasks by picking Zi as the data for the target
class, and the examples from Zj, j 6= i, to be the input data from the negative class.
Finally, we approximate the expectations in Equation 3.4 by first sampling mini-batches of
these binary classification tasks and then averaging over mini-batches of labeled examples
Z ′ from each of the sampled tasks. By making each sampled X ′ have few examples (e.g.
5 or 20), we not only make our method scalable but we also learn fθ for few-shot one-class
classification.

In the next section, we define a model for fθ and show how to optimize it over
Equation 3.4.

3.2 GRADIENT-BASED OPTIMIZATION

If we choose fθ to be a neural network, it is possible to optimize it to minimize the loss
in Equation 3.4 with gradient descent as long as J and g are differentiable and have
meaningful gradients because of the chain rule of calculus. J can be the standard binary
cross-entropy between the data and model distributions (GOODFELLOW; BENGIO;
COURVILLE, 2016).

We also modify the SVDD to satisfy the requirements of the g function. Neither how
it computes the hypersphere’s center, by solving an optimization problem (Equation 3.2),
nor its hard, binary decisions (Equation 3.3) are immediately suitable for gradient-based
optimization.

To solve the hard, binary decisions problem, we adopt the approach of Prototypical
Networks (SNELL; SWERSKY; ZEMEL, 2017) and consider the squared distance from
the features fθ(x

′) to the center c∗ (the left-hand side of Equation 3.3) as the input
logits for a logistic regression model. Doing this not only solves the problem of unin-
formative gradients coming from the binary outcomes of SVDD but also simplifies its
implementation in modern automatic differentiation/machine learning software, e.g. Py-
Torch (PASZKE et al., 2019). As our logits are non-negative, using the sigmoid function
σ to convert logits into probabilities would result in probabilities of at least 0.5 for ev-
ery input, so we replace it with the tanh and keep the binary cross-entropy objective
otherwise unchanged.

As for how to compute c∗ in a differentiable manner, we can write it as the weighted
average of the input features

c∗ =
n∑
i=1

αifθ(xi) (3.6)

where the weights α are the solution of the following quadratic programming problem,
which is the dual of the problem defined in Equation 3.2 (ELZINGA; HEARN, 1972;
TAX; DUIN, 2004)

max
α

αTdiag(K)− αTKα (3.7)

subject to
n∑
i=1

αi = 1 (3.8)

0 ≤ αi, i ∈ {1, . . . , n} (3.9)
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and
Ki,j = fθ(xi)

Tfθ(xj) (3.10)

is the kernel matrix of fθ for input set X. Hence, we can interpret fθ as a data-dependent
kernel function trained on a related distribution.

Despite such quadratic programs not having known analytical solutions and requir-
ing a projection operator to unroll its optimization procedure because of its inequality
constraints, the quadratic programming layer (AMOS; KOLTER, 2017) can efficiently
backpropagate through its solution and supports Graphics Processing Unit (GPU) us-
age.

Still, the quadratic programming layer has complexity O(m3) for m optimization
variables (AMOS; KOLTER, 2017); in the case of Meta SVDD, m is equal to the number
of examples in X during training (LEE et al., 2019). As the size of the network is
constant, this is an upperbound on the overall complexity of performing a training step
in the model. Since we keep the number of examples small, 5 to 20, the runtime is
dominated by the computation of fθ.

In practice, we follow previous work that uses quadratic programming layers (LEE et
al., 2019) and we add a small stabilization value λ = 10−6 to the diagonals of the kernel
matrix (Equation 3.10), i.e.

K ′ = K + λI (3.11)

and we use K ′ in Equation 3.7. Not adding this stabilization term results in failure to
converge in some cases.

Using the program defined by objective 3.7, and constraints 3.8 and 3.9 to solve SVDD
also allows us to use the kernel trick to makeK non-linear with regards to fθ (TAX; DUIN,
2004). We believe this would not add much since using a deep neural network to represent
fθ can handle the non-linearities that map the input to the output, in theory.

SVDD (TAX; DUIN, 2004) also introduce slack variables to account for outliers in
the input set X. Since our setting is few-shot one-class classification, we do not believe
these would benefit the method’s performance because we think outliers are unlikely in
such small samples. We leave the analysis to confirm or refute these conjectures to future
work.

3.3 ONE-CLASS PROTOTYPICAL NETWORKS

The only reason to solve the quadratic programming problem defined by objective 3.7
and constraints 3.8 and 3.9 is to obtain the weights α for the features of each example in
Equation 3.6.

We experiment with replacing the weights α in Equation 3.6 by uniform weights
αi = 1/n. The center c∗ then becomes a simple average of the input features

c∗ =
1

n

n∑
i=1

fθ(xi) (3.12)

and we no longer require solving the quadratic program. The remainder of the method,
i.e. its training objective, how tasks are sampled, etc, remains the same. This avoids the
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Figure 3.1 Figure 3.2 (a) shows in light green embeddings in 2 dimensions and in grey the
center obtained by using SVDD. Notice that four points are in the dotted circle of smaller
radius and four other points are outside of it, requiring the dashed circle. The smaller dashed
circle near the center shows their average. Figure 3.2 (b) shows what happens with Proto Nets,
where we use the average as center: the cyan points are correctly classified by taking the dotted
circle as the decision boundary, and only the red circle requires a larger radius to classify.

cubic complexity in the forward pass, and the destabilization issue altogether. We call
this method One-class Prototypical Networks because the method can be cast as learning
binary Prototypical Networks (SNELL; SWERSKY; ZEMEL, 2017) with a binary cross-
entropy objective. Figure 3.1 shows an illustration of the difference between the two
methods in two dimensions.

Despite being a simpler method than Meta SVDD, we conjecture that learning fθ
to be a good representation for One-class Prototypical Networks can compensate its
algorithmic simplicity so that performance does not degrade.
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4
FACE VERIFICATION AS META ONE-CLASS

CLASSIFICATION

4.1 SIMILARITIES BETWEEN FACE RECOGNITION AND META-LEARNING

Beyond both the face recognition and meta-learning community having discovered each
other’s techniques independently, like in the contrastive loss (TAIGMAN et al., 2014;
LAKE; SALAKHUTDINOV; TENENBAUM, 2015) and the similarities between center
loss (WEN et al., 2016) and prototypical networks (SNELL; SWERSKY; ZEMEL, 2017),
there is a natural connection between both areas.

Whereas in traditional computer vision applications we are given a fixed set of cate-
gories and for a given unseen example must determine to which class it belongs (DENG
et al., 2009; KRIZHEVSKY; SUTSKEVER; HINTON, 2012), in modern face recgonition
we are given a dataset of labeled faces from which to learn the abstract task of face
recognition, and then a test set of face images of individuals not in the training set and
must determine which of these examples belong to the same person (HUANG et al., 2007;
GUO et al., 2016; CAO et al., 2018).

In meta-learning, we also assume a disjoint set of training and test tasks. We must
then use the labeled training tasks to learn a task representation, and use this to gener-
alize to unseen test tasks (LAKE; SALAKHUTDINOV; TENENBAUM, 2015; SNELL;
SWERSKY; ZEMEL, 2017; FINN; ABBEEL; LEVINE, 2017). Oftentimes, generaliza-
tion is only attempted in the same domain, i.e. from computer vision tasks to other
computer vision tasks, from natural language processing tasks to other such tasks.

We propose, then, to consider each face identity as one learning task. More specifically,
the task is determined by a given identity I with enough of examples of their face, and
consists of labeling unseen examples as belonging to I or not. Crucially, we also rely on
the ability of a learned classifier to generalize across unseen identities/tasks; otherwise,
we would require knowing all identities beforehand during the training phase, which is
incompatible with the current privacy requirements dictated by society.

19
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4.2 FACE VERIFICATION AS FEW-SHOT ONE-CLASS CLASSIFICATION

The above formulation has no implications whatsoever in a different protocol for face
recognition, it just highlights the similarities between these two areas. Most commercial
applications attempt to solve the entire problem of face recognition at once from a large
enough training dataset, and then use collected image(s) from the user to specialize the
classifier to them. Also given the recent privacy constraints, ceding one’s images and
associating them to access control is undesirable. Our proposed solution is then to allow
the same classifier to be specialized to each user by the user herself. Doing that, no
images are shared with the classifier provider.
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Figure 4.1 Differences between standard face recognition and proposed few-shot face verifica-
tion pipelines. The usual pipeline, shown in the left of the vertical line, usually consists of 3
steps: (1) the genuine user shares their face image with a central server, where his identity is
stored, (2) a query face image is also sent to determine if the depicted person should be granted
access, and (3) the server responds with its veredict, if the user is genuine, they are granted
access, otherwise they are not. Notice the amount of biometric data that is exchanged with
the central server - sharing is denoted by arrows crossing the dashed line. On the right of the
vertical line, we show the proposed framework. (1) A trained meta one-class classifier is shared
with the personal device. Notice that this is the only communication between server and device,
and it flows from server to user. (2) The images of the owner of the device are used to obtain a
final binary classifier, which (3) given a query image, (4) responds with its access control status.

The proposed method for meta one-class classification also has other benefits from
the user’s point of view. By making the method few-shot, the user need only to use few
of its face images; this also increases the runtime of classifier specialization. Figure 4.1
shows the differences between the proposed pipeline and the usual one.
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We formally frame face verification as an instance of our method as follows:

1. We have a dataset of labeled face identities; these serve as the related tasks Z.

2. The target user is identified with the dataset X.

3. The remainder of the method remains unchanged.

To simulate this scenario and validate our approach, we adapt a traditional face
recognition dataset to this setting, the VGGFace2 dataset (CAO et al., 2018).

4.3 VGGFACE2

The VGGFace2 dataset is an image dataset for face recognition, containing 3.31 million
face images with varying age, ethnicity, illumination, and pose of 9131 subjects. It
provides not only a large number of different people, but several examples per person,
with an average of 326.6 for each subject (CAO et al., 2018).

The maintainers of the dataset propose a default split for it, with 1000 identities
reserved for testing and the remainder for training. Importantly, this is a subject disjoint
split, i.e. there is no identity in both training and testing subsets.

Despite not being the dataset with neither the greatest number of individuals, nor
the one with the most images absolutely or in average, the VGGFace2 dataset balances
these two attributes well, with enough images to train data-hungry CNN-based methods.
Furthermore, the alternative dataset with more images, MSCeleb1M (GUO et al., 2016)
is no longer publicly available (MURGIA, 2019b).

An even better reason to use VGGFace2 in our setting is that it is the largest dataset
with moderate amount of noise in its identity labels (CAO et al., 2018). Since we believe
the total number of examples and the number of examples per individual is enough to
empirically validate our method, and its labels are less noisier than other datasets of
similar size, we believe VGGFace2 is the best dataset in which to run our experiments.
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5
FEW-SHOT CLASSIFICATION VALIDATION

5.1 EVALUATION PROTOCOL

Our first experiment is an adaptation of the evaluation protocol of Deep Support Vector
Data Description (SVDD) (RUFF et al., 2018) to the few-shot setting to compare Meta
SVDD with previous work. This experiment is a comparison between deep one-class
classification methods, and we adapt it to also assess the potential of Deep SVDD in
the few-shot setting. The reason for not using a few-shot baseline is because while we
developed our methods, we were not aware of methods operating simultaneously in the
few-shot and one-class classification settings.

The original evaluation protocol proposed by the authors of Deep SVDD consists of
picking one of the classes of the dataset, training the method in the examples in the
training set (using the train-test split proposed by the maintainers), and using all the
examples in the test set to compute the mean and standard deviation of the Area Under
the Curve (AUC) of the trained classifier. The mean is computed over 10 repetitions in
the MNIST (LeCun et al., 1998) and CIFAR-10 (KRIZHEVSKY, 2009) datasets, and
they were chosen by the authors of Deep SVDD (RUFF et al., 2018).

We modified the protocol because there are only 10 classes in these datasets, which
is not enough for meta-learning one-class classifiers. These methods usually require
many more tasks to learn feature representations that transfer from one task to the
other (SNELL; SWERSKY; ZEMEL, 2017; FINN; ABBEEL; LEVINE, 2017; LEE et al.,
2019); in our case, each task corresponds to one class, and so 10 classes do not suffice.
This illustrates the trade-off introduced by our approach: Despite requiring many fewer
examples per class, it requires many more classes. Our modifications are only to address
the number of classes and we tried to keep the protocol as similar as possible to make
the results more comparable.

5.2 DATASETS

The first modification is the replacement of CIFAR-10 dataset by the CIFAR-FS dataset
(BERTINETTO et al., 2019), a new split of CIFAR-100 for few-shot classification in
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which there is no class overlap between the training, validation and test sets. CIFAR-FS
has 64 classes for training, 16 for validating, and 20 for testing, and each class has 600
images. This results in a split of 64% of the data for training, 16% for validation and
20% for testing in the CIFAR-FS dataset.

No such split is possible for MNIST because there is no fine-grained classification like
in the case of the CIFAR-10 and CIFAR-100 datasets. Therefore, we use the Omniglot
dataset (LAKE; SALAKHUTDINOV; TENENBAUM, 2015), which is considered the
“transposed” version of the MNIST dataset because it has many classes with few examples
instead of the many examples in the 10 classes of MNIST. This dataset consists of 20
images of each of its 1623 handwritten characters, which are usually augmented with four
multiples of 90◦ to obtain 1623× 4 = 6492 classes (VINYALS et al., 2016; BERTINETTO
et al., 2019; SNELL; SWERSKY; ZEMEL, 2017; FINN; ABBEEL; LEVINE, 2017). We
follow the pre-processing and dataset split proposed by VINYALS et al. (2016), i.e. we
resize the images to 28× 28 pixels, and use 4800 classes for training and 1692 for testing;
this is nowadays standard in few-shot classification work (FINN; ABBEEL; LEVINE,
2017; SNELL; SWERSKY; ZEMEL, 2017; BERTINETTO et al., 2019). Hence, we have
approximately 73% of the data for training and 26% of the data for testing in the Omniglot
dataset.

Note that these many examples are only used to sample tasks with few examples each.
During evaluation, we only use 5 examples unless otherwise noted.

We also modify the number of elements per class in the test set evaluation. Since
there are many classes and we are dealing with few-shot classification, we use only two
times the number of examples in X for the target and for the negative class, e.g. if the
task is 5-shot learning, then there are 10 examples from the target class and 10 examples
from the negative class for evaluation.

5.2.1 Metrics and Comparison

Another modification is that since there are only 10 classes in MNIST and CIFAR-10,
Deep SVDD (RUFF et al., 2018) reports the AUC metrics for each class. This is feasible
for CIFAR-FS, which has 20 testing classes, but not for Omniglot, which has 1692. We
summarize these statistics by presenting the minimum, median, and maximum mean
AUC alongside their standard deviations.

To better compare the previous methods with ours in the few-shot setting, we evaluate
the state-of-the-art method for general deep one-class classification, Deep SVDD (RUFF
et al., 2018), in our modified protocol. We run the evaluation protocol in CIFAR-FS
using only 5 images for training, and we evaluate it using 10 images from the target class
and 10 images from a negative class. We do this 10 times for each pair of the 20 test
classes to compute mean and standard deviation statistics for the AUC. We do not do
this for Omniglot because it would require training more than 1692 Deep SVDD models.

5.2.2 Second experiment

We also conduct a second experiment, based on the standard few-shot classification ex-
periment (SNELL; SWERSKY; ZEMEL, 2017; FINN; ABBEEL; LEVINE, 2017): we
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evaluate the mean 5-shot one-class classification accuracy over 10,000 episodes of tasks
consisting of 10 examples from the target class and 10 examples from the negative class.
We use this experiment to compare with a shallow baseline, PCA and Gaussian kernel
One-class SVM (SCHÖLKOPF et al., 2001), and One-class Prototypical Network. We
use the increased number of episodes to compute 95% confidence intervals like previous
work for few-shot multiclass classification (BERTINETTO et al., 2019; LEE et al., 2019).

5.3 SETUP

5.3.1 Network Architecture

We parametrize fθ with the neural network architecture model introduced by VINYALS et
al. (2016). This is standard practice in the meta-learning literature, as this architecture
is commonly used in other few-shot learning work (FINN; ABBEEL; LEVINE, 2017;
SNELL; SWERSKY; ZEMEL, 2017). This Convolutional Neural Network (CNN) has
four convolutional blocks with number of filters equal to 64, and each block is composed of
a 3× 3 kernel, stride 1, “same” 2D convolution, batch normalization (IOFFE; SZEGEDY,
2015), followed by 2× 2 max-pooling and ReLU activations (JARRETT et al., 2009).

We implemented the neural network using PyTorch (PASZKE et al., 2019) (version
1.2.0) and the qpth package (AMOS; KOLTER, 2017) (version 0.0.15) for the quadratic
programming layer. We also used Scikit-Learn (PEDREGOSA et al., 2011) (version
0.21.3) and NumPy (OLIPHANT, 2006–) (version 1.17.3) to compute metrics, implement
the shallow baselines and for miscelaneous tasks, and Torchmeta (DELEU et al., 2019)
(version 1.1.1) to sample mini-batches of tasks, like described in Section 3.1. All our code
is publicly available at 〈https://github.com/gdahia/meta occ/〉.

5.3.2 Optimization and Hyperparameters

We optimize both Meta SVDD and One-class Prototypical Networks using stochastic
gradient descent (ROBBINS; MONRO, 1951) on the objective defined in Section 3.1
and Equation 3.4 with the Adam optimizer (KINGMA; BA, 2015). We use a constant
learning rate of 5× 10−4 over mini-batches of tasks of size 16, each having set X ′ with
5 examples, and set Z ′ with 10 examples from the target class and 10 examples from a
randomly picked negative class. The learning rate value was the first one we tried, so no
tuning was required.

We picked the task batch size that performed better in the validation set when training
halts; we tried sizes {2, 4, . . . , 32}. We evaluate the performance in the validation set with
95% confidence intervals of the model’s accuracy. These confidence intervals are computed
over 500 tasks, and we sample them randomly from the validation sets. To select the best
model, we define that a model is better than another if the lower bound of its confidence
interval is greater than that of the other. We break ties (i.e., their lower bounds are equal
up to 5 decimal points) by considering the one with higher mean accuracy to be better.

Early stopping halts training when performance in the validation set does not increase
for 10 evaluations in a row. In all experiments, we use the model with higher performance
in the validation set. We evaluate the model in the validation set every 100 training steps.
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5.3.3 Baselines

The results for the few-shot experiment with Deep SVDD are obtained modifying the
code made available by the authors1, keeping the same hyperparameters.

For the few-shot baseline accuracy experiment with Principal Component Analysis
(PCA) and One-Class Support Vector Machines (OCSVMs) with Gaussian kernel, we
use the grid search space used by the experiments in prior work (RUFF et al., 2018): γ
is selected from {2−10, 2−9, . . . , 2−1}, and ν is selected from {0.01, 0.1}. Furthermore, we
give the shallow baseline an advantage by evaluating every parameter combination in the
test set and reporting the best result.

5.4 RESULTS

Table 5.1 Minimum, median and maximum mean AUC alongside their standard deviation for
one-class classification methods for 10 repetitions. We highlight in boldface the highest mean
and others which are within one standard deviation from it. The results for the many-shot
baseline DCAE in MNIST and CIFAR-10 are compiled from the table by Ruff et al. (RUFF et
al., 2018). The results for Omniglot and CIFAR-FS are for 5-shot one-class classification, and
as noted before, it is unfeasible to report results for Deep SVDD in the Omniglot dataset.

Dataset DCAE
Deep
SVDD

Dataset
Deep
SVDD

One-Class
Protonet

Meta
SVDD

Min. 78.2 ± 2.7 88.5 ± 0.9 89.0 ± 0.2 88.6 ± 0.4
Med. MNIST 86.7 ± 0.9 94.6 ± 0.9 Omniglot – 99.5 ± 0.0 99.5 ± 0.0
Max. 98.3 ± 0.6 99.7 ± 0.1 100.0 ± 0.0 100.0 ± 0.0

Min. 51.2 ± 5.2 50.8 ± 0.8 47.9 ± 4.9 60.2 ± 3.4 59.0 ± 5.7
Med. CIFAR-10 58.6 ± 2.9 65.7 ± 2.5 CIFAR-FS 64.0 ± 5.0 72.7 ± 3.0 71.0 ± 4.0
Max. 76.8 ± 1.4 75.9 ± 1.2 92.4 ± 2.3 90.1 ± 2.3 92.5 ± 1.7

5.4.1 First Experiment

We reproduce the results reported for Deep SVDD (RUFF et al., 2018) and its baselines
alongside the results for 5-shot Meta SVDD and One-class Prototypical Networks, and
our experiment with 5-shot Deep SVDD in Table 5.1. Figure 5.1 also provides mean AUC
with shaded standard deviations for the results in the CIFAR dataset variants.

While the results from different datasets are not comparable due to the differences
in setting and application listed in Section 5.1, they show that the approach has similar
performance to the many-shot state-of-the-art in terms of AUC. Figure 5.1 shows that
when we sort the mean AUCs for CIFAR-10 and CIFAR-FS, the performance from hardest

1〈https://github.com/lukasruff/Deep-SVDD-Pytorch〉
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Figure 5.1 Mean AUC with shaded standard deviations for tasks in CIFAR datasets sorted
by increasing mean value. Comparing Deep SVDD across datasets and protocols shows that
the modified protocol is reasonable to evaluate few-shot one-class classification because the
trend in task difficulty is similar. Within the few-shot protocol in CIFAR-FS, meta one-class
classification are numerically superior, show less variance and can be meta-trained once for all
tasks, with simple adaptation for unseen tasks, but require related task data.

to easier tasks exhibit similar trends despite these differences. These results also show
that the modifications to the protocol are reasonable.

This experiment is evidence that our method is able to reduce the required amount of
data from the target class in case we have labeled data from related tasks. Note that it
is not the objective of our experiments to show that our method has better performance
than previous approaches, since they operate in different settings, i.e. few-shot with
related tasks and many-shot without them.

The comparison with Deep SVDD in the few-shot scenario gives further evidence of
the relevance of our method: both Meta SVDD and One-Class Prototypical Networks
obtain higher minimum, and median AUC than Deep SVDD. Another advantage is that
we train fθ once in the training set of Omniglot or CIFAR-FS, and learn only either the
SVDD or the average on each of the sets X in the test set. We also obtain these results
without any pre-training, and we have established a clear validation procedure to guide
hyperparameter tuning and early stopping.

These results also show we can train a neural network for fθ without architectural
restrictions to optimize a one-class classification objective whereas other methods either
require feature engineering, optimize another metric, or impose restrictions on the model
architecture to prevent learning trivial functions.
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Table 5.2 Mean accuracy alongside 95% confidence intervals computed over 10,000 tasks for
Gaussian kernel One-class SVM with PCA, Meta SVDD and One-class Protoypical Networks.
The results with highest mean and those with overlapping confidence interval with it are in
boldface. We report the best result for the One-class SVM in its parameter search space, which
gives it an advantage over the other two methods. Despite employing a simpler algorithm for
one-class classification, One-class Prototypical networks obtain equivalent accuracy for Omniglot
and better accuracy for CIFAR-FS than Meta SVDD. This indicates that learning feature
representations is more important than which one-class classification algorithm we use.

Dataset PCA+SVM
One-class
Protonet

Meta SVDD

Omniglot 50.64 ± 0.10% 94.68 ± 0.17% 94.33 ± 0.19%
CIFAR-FS 54.77 ± 0.31% 67.67 ± 0.39% 64.95 ± 0.37%

The final advantage of our method over Deep SVDD is that the related tasks give
predictive measures of metrics of interest like AUC, which allows tuning hyperparameters
and using early stopping to regularize the training.

5.4.2 Second Experiment

The results for our second experiment, comparing the accuracies of Meta SVDD, a shallow
baseline and One-class Prototypical Networks are presented in Table 5.2.

In this experiment, we can see an increase from almost random performance to al-
most perfect performance for both methods when compared to the shallow baseline in
Omniglot. Both methods for few-shot one-class classification that use related tasks have
equivalent performance in Omniglot. The gain is not as significant for CIFAR-FS but
more than 10% in absolute for both methods, which shows they are a marked improve-
ment over the shallow baseline.

We attribute the improvement to learning fθ from related tasks, which addresses the
feature engineering problem of OCSVM. Our method requires only a small number of
examples to learn the one-class classification boundary, solving the scalability problem
in the number of samples experienced by the shallow baseline. Finally, by making the
feature dimension d much smaller than the original dimension of the input space D,
we address the scalability issue regarding the feature dimensionality that affects both
traditional SVDD and OCSVM.

Comparing the two proposed methods, we observe the unexpected result that the
simpler method, One-class Prototypical Networks, has equivalent accuracy in the Om-
niglot experiment, and better accuracy in the CIFAR-FS experiment. This indicates that
learning the feature representation directly from data might be more important than the
one-class classification algorithm we choose, and the increased complexity of using SVDD
over simple averaging does not translate into improved performance in this setting.
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5.4.3 Other Experiments

We have also attempted to run this same experiment with the miniImageNet dataset
(VINYALS et al., 2016), a dataset for few-shot learning using the images from the Ima-
geNet dataset (DENG et al., 2009). The accuracy in the validation set, however, never
rose above 50%. One of the motivations of introducing CIFAR-FS was that there was
a gap in the challenge between training models in Omniglot and miniImageNet and
that successfully training models in the latter took hours (BERTINETTO et al., 2019).
Since none of the previous methods attempted solving ImageNet level datasets, and the
worst performance in datasets from CIFAR is already near random guessing, we leave
the problem of training one-class classification algorithms in this dataset open for future
work.

We have run a small variation of the second experiment in which the number of
examples in X is greater than during training, using 10 examples instead of 5. The
results stayed within the accuracy confidence intervals for 5-shot for both models in this
10-shot deployment scenario.

Finally, we have also conducted experiments for One-class Prototypical networks, the
most promising of the two methods, in a practical task: few-shot face verification.
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6
FACE VERIFICATION EXPERIMENTS

In our experiments to evaluate our method in the few-shot face verification setting, we
divide the training dataset into training and validation subsets (Section 6.3). Then, we
use the entire training set to train a given method, using the validation set to tune
hyperparameters and to select models (Section 6.4). It is important to remark we train
and validate each technique according to its prescribed methodology; only evaluation in
the test set must follow the few-shot face verification protocol.

After selecting both baseline and proposed models using the same procedure, we
evaluate it using the few-shot protocol inspired by meta-learning few-shot classification
in the test set and report traditional face recognition metrics (Section 6.2). We compare
One-class prototypical networks, described in Section 3.3, with a strong and traditional
baseline for face recognition, metric learning with triplet-loss (Section 6.1) (SCHROFF;
KALENICHENKO; PHILBIN, 2015).

6.1 BASELINE METHOD

To assess the practical applicability of the method we propose, we compare it with a
strong face recognition baseline, triplet-loss (SCHROFF; KALENICHENKO; PHILBIN,
2015). We choose triplet-loss because it is well established, its performance does not
require much hyperparameter tuning and it has competitive or superior performance
than more recent work (MUSGRAVE; BELONGIE; LIM, 2020b).

Triplet-loss is a loss function for metric learning: given face images alongside identity
labels, first we convert these images into embeddings, and then we find triplets composed
of anchor, positive and negative embeddings. The anchor and positive examples belong
to the same identity, and the negative must belong to another identity. Learning then
proceeds by updating the model’s parameters to minimize the number of triplets where
the Euclidean distance between the negative example and the anchor is less than its
distance to the positive example. As is usual with neural networks and deep learning,
these updates are in the form of small steps following the direction of the negative gradient
of the loss function.
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The number of triplets in a dataset scales cubically with its size measured in number of
examples, and so to make this objective feasible, triplet-loss is combined with heuristics to
select triplets, which are called mining strategies. The most common of these, proposed by
the same authors (SCHROFF; KALENICHENKO; PHILBIN, 2015), is semi-hard mini-
batch mining: given a desired number of triplets, this mining strategy chooses triplets
that maximize the margin between the negative and positive examples, and discards
positive examples that are too close to the anchor already. This is the mining strategy
we use, and we will refer to it hereon simply by triplet-loss.

Triplet-loss is designed for face recognition, but has since been adopted more widely for
metric learning (MUSGRAVE; BELONGIE; LIM, 2020b). These uses, however, do not
include few-shot face verification. Therefore, the comparison we make is unfair to triplet-
loss, specially in the protocol we design: it only receives one image of the support face
instead of the few our method obtain, and inference is done by computing the similarity
score as the minus the distance between the query and support face embeddings. Where
One-Class Prototypical networks get K support images and from them creates a model,
Triplet-Loss gets only one image from the genuine identity, and makes no model from it.
We could, for example, use the embeddings of the support set to normalize the Triplet-
Loss embeddings, or compute their average pairwise distance and use this to normalize
against imposters. So, in a way, we are comparing the paradigm of face recognition as is
with the proposed few-shot face verification using our method.

6.2 EVALUATION PROTOCOL

To compare the methods, we combine the usual protocol of few-shot classification used
to evaluate methods in meta-learning with traditional metrics used for face recognition
and biometrics evaluation in general.

The meta-learning part of the protocol is that we separate the test set in episodes
and use them to compute our metrics of interest, following standard practice in the
field (BERTINETTO et al., 2019; LEE et al., 2019). Each episode consists of a support
set and a query set. The examples in the support set all belong to a single identity, which
we refer to as the target or genuine identity. In terms of few-shot face verification, these
would be the examples the user provides to the system; they are therefore used to adapt
the classifier to the given task.

The examples in the query set can be from any identity in the test set, including the
target identity, and are meant to emulate the access to the system adapted to the target
identity. The method hence performs better if it detects faces from an identity which is
not the target as impostors, and the faces belonging to the target identity as genuines.
Each support set contains 5 examples of the genuine identity, and each query set contains
5 distinct examples of 5 distinct identities, including the genuine. We also permute the
episodes to avoid repeating them. Overall, we use 40,000 episodes, grouped in batches of
size 4 for performance.

After computing scores for each example in the query set for all episodes, we sum-
marize all of them into a single Receiver Operating Characteristic (ROC) curve for each
method, and report the Equal Error Rate (EER) for each curve. This allows us to draw
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conclusions even in the presence of more impostor queries than genuine ones, and follows
standard practice in face recognition and biometrics research more broadly.

6.3 DATASET

We use the VGGFace2 dataset, described in Section 4.3, in our experiments, and we
respect the training and testing splits provided by its authors (CAO et al., 2018). How-
ever, we further separate 20% of the identities randomly in the training set to become
our validation set during training.

Furthermore, we pre-process the face images as follows:

1. we use the authors’ provided bounding boxes to crop a central region over the
face, keeping a margin of 32 pixels around it. By cropping the images using these
fixed bounding boxes, we isolate the performance obtained in the experiments from
face detection and normalization issues. This also improves reproducibility, by
depending only on data available alongside the dataset and no further learned face
detection module.

2. we resize the images to 128 × 128 pixels and compress them using JPEG. Doing
this, we reduce the dataset size from hundreds of Gigabytes to tens of Gigabytes,
and improve the runtime of the data input pipeline considerably.

3. We save the images in HDF5 format and the corresponding identity labels in JSON
format.

6.4 SETUP

We conduct our face verification experiments using a Convolutional Neural Network
(CNN) as the model to compute real valued, 256-dimension embeddings from face im-
ages. The CNN architecture we use is the Myrtle-5 non-residual model (PAGE, 2018;
SHANKAR et al., 2020) because of its small number of parameters, simplicity and low
computational cost. Despite not being a traditional network architecture for face recog-
nition, thus obtaining performance much below what is currently expected of state-of-
the-art face recognition methods, using the Myrtle-5 allows us to run experiments with
many fewer computational resources, and we do not extend our conclusions to these other
models. Furthermore, our intended application was on-device few-shot face verification,
which would require such low-resource network architecture.

We follow standard practice and optimize the hyperparameters of neural network
that generates the embeddings using mini-batch stochastic gradient descent, with the
Adam (KINGMA; BA, 2015) update rule. For the One-class Protoypical Network model,
we create mini-batches with 4 episodes, and each episode contains 5 identities (5-way)
and each identity is represented by 5 images (5-shot). We reduce the number of episodes
and identities compared to our previous experiments due to computational resource con-
straints.

For the baseline, triplet-loss model, we create standard mini-batches using the total
number of identities and faces per identity to equal the number we use for our method,
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which is 10 examples per identity and 20 identities per batch. The learning rate for both
methods was set manually by observing the validation metrics over the first 5 validation
epochs.

We use the loss function of each method unchanged, and use the validation set with
the metrics appropriate to each method - i.e. mean accuracy over episodes for One Class
Prototypical Network, and validation loss for Triplet Loss - to select models based on
early-stopping with a tolerance of 5 non-improving rounds of 1,000 batches. We then
select the best model obtained using this procedure for further evaluation.

We implement both methods using Pytorch (PASZKE et al., 2019), and the auxil-
iary Torchmeta (DELEU et al., 2019) and Pytorch Metric Learning (MUSGRAVE; BE-
LONGIE; LIM, 2020a) libraries for the One-class Prototypical Network and Triplet-loss
implementations, respectively. We use the standard hyperparameters for these libraries
regarding the loss functions.

6.5 RESULTS
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Figure 6.1 ROC curve for the face verification experiment. Notice that the figure depicts only
the upper-left corner of the curve – from 0.82 to 1 in the TPR axis and from 0 to 0.2 in the
FPR axis – to make the comparison between both methods easier to analyze. The one-class
prototypical network, when used for few-shot face verification, attains a lower value of TPR
than the triplet-loss baseline if both operate at the same FPR for the entire displayed area of
the graph. This happens even in this setting where Triplet loss does not use the support set
fully, and is therefore in a disadvantage.
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Table 6.1 EERs for the triplet loss baseline and the one-class prototypical network methods
in the face verification experiment in VGGFace2. Lower values are better, hence the baseline
triplet-loss is superior to the proposed method in this experiment even in a disadvantegous
setting.

One-class Protonet Triplet-loss

EER 12.19% 8.05%

Figure 6.1 shows the ROC curve for the face verification experiment, and Table 6.1
displays the EER obtained for the One-Class Protonet and the Triplet-loss baseline in
the same experiment. We can observe that the baseline, despite having access only to
one support example, outperforms the proposed method in the entire displayed range
and attains a lower EER; we imagine that adapting it to fully leverage the support set
could increase its advantage.

The only advantage we perceive of Triplet-Loss over the proposed methods is that it
has access to all labels during optimization of the network, whereas the meta one-class
classification methods we propose require only pairwise labels indicating whether two
elements belong to the same class or not.

As the One-Class Prototypical network obtained better results than the Meta Support
Vector Data Description (SVDD) method in the validation experiments (Chapter 5), it
is easy to infer that it would also underperform the Triplet-Loss baseline.

It is also worth noting that the results we obtained from these experiments are not
on the level of the current state-of-the-art of face recognition in the standard bench-
marks (HUANG et al., 2007; TAIGMAN et al., 2014; CAO et al., 2018; WANG; DENG,
2021), including for the baseline, where we do not reproduce the original results (SCHROFF;
KALENICHENKO; PHILBIN, 2015). We attribute this to the smaller size of the neural
network architectures we use, which despite allowing us to reach the above conclusions
with reduced computational power, prevents us from comparing these results with that
of methods studied in other work.
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7
CONCLUSION

7.1 META-ONE CLASS CLASSIFICATION

We have described a way to learn feature representations so one-class classification algo-
rithms can learn decision boundaries that contain the target class from data, optimizing
an estimator of its true objective. Furthermore, this method works with 5 samples from
the target class with performance similar to the state-of-the-art in the setting where tar-
get class data is abundant, and better when the many-shot state-of-the-art method is
employed in the few-shot setting. We also provide an experiment that shows that using a
simpler one-class classification yields comparable performance, displaying the advantages
of learning feature representations directly from data.

One possibility to replace the main requirement of our method with a less limiting
one would be the capability of generating related tasks from unlabeled data. A simple
approach in this direction could be using weaker learners to define pseudolabels for the
data. Doing this successfully would increase the number of settings where our method
can be used significantly.

The main limitations of our method besides the requirement of the related tasks are
the destabilization of the quadratic programming layer, which we solved by adding a
stabilization term to the diagonal of the kernel matrix or by simplifying the one-class
classification algorithm to use the mean of the features, and its failure to obtain mean-
ingful results in the miniImageNet dataset.

We believe not only finding solutions to these limitations should be investigated in
future work but also other questions left open in our work, like confirming our hypothesis
that introducing slacks would not benefit Meta Support Vector Data Description (SVDD).

Other directions for future work are extending our method for other settings and using
other one-class classification methods besides SVDD. Tax and Duin (TAX; DUIN, 2004)
also detail a way to incorporate negative examples in the SVDD objective, so we could
try learning fθ using this method and to minimize the hypersphere’s volume instead of
converting SVDD into a binary classification problem that uses the unseen examples’
distances to the center as logits. Another avenue for future work is that we could avoid
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using labeled related tasks by using only examples created using mixup (ZHANG et al.,
2018) from examples in the positive class.

7.2 FEW-SHOT FACE VERIFICATION

With our face verification experiments, we found that the results for the proposed meta
one-class classification methods did not improve over the well-established baseline even
when comparing to it in an unfavorable scenario. We believe this could indicate that the
meta-learning community could instead learn more from metric learning and face recog-
nition work, instead of otherwise, and techniques like triplet mining could improve the
results even if lacking some of the nice theoretical underpinnings of current meta-learning
techniques. Recent work already notes that, for example, the division of mini-batches into
episodes or tasks is harmful to prototypical networks in few-shot classification (LAENEN;
BERTINETTO, 2021). We leave the investigation of the performance of our method
without this division as future work.

Furthermore, as we noted, the triplet-loss baseline leverages the entirety of mini-batch
labels during training, whereas the methods we proposed for meta one-class classification
require only pairwise comparison labels for the examples. Perhaps our methods could be
useful in other practical applications, like credit card fraud, where imposter buy attempts
are not associated with a fixed identity and cannot be compared to identities of other
credit card users.

This also shows another avenue for future work: there seems to be other, useful
applications for meta one-class classification where metric-learning is not suitable, and
where our method could be advantageous.
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