
Universidade Federal da Bahia
Instituto de Matemática

Programa de Pós-Graduação em Ciência da Computação

DEFINING AND PROVIDING PRAGMATIC
INTEROPERABILITY - THE MIDAS

MIDDLEWARE CASE

Elivaldo Lozer Fracalossi Ribeiro

TESE DE DOUTORADO

Salvador
10 de Dezembro de 2020

ELIVALDO LOZER FRACALOSSI RIBEIRO

DEFINING AND PROVIDING PRAGMATIC INTEROPERABILITY
- THE MIDAS MIDDLEWARE CASE

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientadora: Daniela Barreiro Claro
Co-orientadora: Rita Suzana Pitangueira Maciel

Salvador
10 de Dezembro de 2020

Sistema de Bibliotecas - UFBA

Ribeiro, Elivaldo Lozer Fracalossi.
Defining and Providing Pragmatic Interoperability - The MIDAS Mid-

dleware Case / Elivaldo Lozer Fracalossi Ribeiro – Salvador, 2020.
165p.: il.

Orientadora: Prof. Dr. Daniela Barreiro Claro.
Co-orientadora: Prof. Dr. Rita Suzana Pitangueira Maciel.
Tese (Doutorado) – Universidade Federal da Bahia, Instituto de

Matemática, 2020.

1. Syntactic interoperability. 2. Semantic interoperability. 3. Pragmatic
interoperability. 4. Conceptual framework. 5. Cloud Computing. 6. Cloud
services. I. Claro, Daniela Barreiro. II. Maciel, Rita Suzana Pitangueira.
III. Universidade Federal da Bahia. Instituto de Matemática. IV. Título.

CDD – XXX.XX
CDU – XXX.XX.XXX

TERMO DE APROVAÇÃO

ELIVALDO LOZER FRACALOSSI RIBEIRO

DEFINING AND PROVIDING PRAGMATIC
INTEROPERABILITY - THE MIDAS

MIDDLEWARE CASE

Esta Tese de Doutorado foi julgada ade-
quada à obtenção do título de Doutor em
Ciência da Computação e aprovada em sua
forma final pelo Programa de Pós-Graduação
em Ciência da Computação da Universidade
Federal da Bahia.

Salvador, 10 de Dezembro de 2020

Profa. Dra. Daniela Barreiro Claro
Orientadora/PGCOMP

Profa. Dra. Laís do Nascimento Salvador
Membro interno/PGCOMP

Prof. Dr. Ivan do Carmo Machado
Membro interno/PGCOMP

Prof. Dr. Frank Augusto Siqueira
Membro externo/UFSC

Profa. Dra. Elisa Yumi Nakagawa
Membro externo/USP

I dedicate this work to my God and my family.

ACKNOWLEDGEMENTS

I believe that most people think that this part is merely a formality. I am afraid I have to
disagree. This is one of the most important parts of this thesis. I am sure that this Ph.D.
was an extraordinary, curious, and exhaustive journey. And I would not have arrived
here alone. I could write several pages of acknowledgments, but I will try to summarize
it in a few words.

First, I thank God for the opportunity and strength to complete this work. Thank
you for Your endless blessing, and thank you for the people in my life.

I would like to express my gratitude to all my family members, physically near or far.
I thank my parents, Elizabeth and Olivaldo, and my brother, Elivelton, for their affection
and constant support. To my beloved wife, Adriadna, I thank you for her unconditional
love, understanding, incentive, and solidarity. I appreciate the conditions for finishing
this work, and I apologize for the recent absence and possible lousy mood. I love you so
much. I am also very grateful to my father-in-law and mother-in-law for love and prayers.

I thank all my friends for their support and brotherhood. Thank you for the laughs,
for the conversations, and all the affection.

I am deeply indebted to my advisers Daniela B. Claro and Rita Suzana P. Maciel.
Thank you for the valuable guidance, generosity, partnership, hundreds of advice, and
patience. Thank you for patiently reviewing the same paper countless times. Thank you
Daniela. Thank you Rita. Thank you so much.

This thesis could not be achieved without the support of the Formalisms and Semantic
Applications (FORMAS) research group. Thank you very much to all my friends from
the FORMAS group.

I am deeply thankful to professor Marlo Souza for his contributions, willingness, and
support.

I also would like to thank the Federal University of Southern Bahia (UFSB) and
Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb) for partially supporting
this work.

My apologies for the ones I forgot. My sincere thanks.

vii

If I have seen a little further, it is by standing on the shoulders of giants.

—ISAAC NEWTON

RESUMO

Sistemas de informação modernos estão se tornando cada vez mais complexos. Essa com-
plexidade está relacionada com a necessidade de combinar softwares heterogêneos. Uma
vez que um sistema pode conter diversos softwares, e cada software pode ser desenvolvido
de maneira independente, não é uma tarefa trivial prover uma comunicação transpar-
ente entre sistemas distintos. A falta de padronização ocasiona um problema conhecido
como lock-in. Situações de lock-in ocorrem quando usuários se tornam dependentes de
um sistema devido à falta de interoperabilidade entre os provedores distintos. A inter-
operabilidade é a capacidade de um sistema se comunicar de forma transparente com
outro sistema e tem sido classificada em três níveis: sintático, semântico e pragmático.
O nível sintático permite que informações sejam trocadas entre sistemas a partir de uma
codificação comum. A interoperabilidade semântica está relacionada com a capacidade
dos sistemas compartilharem o mesmo significado dos dados. Por fim, a pragmática tem
a intenção da mensagem que deve ser entendida pelos sistemas, de modo que o resul-
tado produzido esteja dentro das expectativas comuns. Apesar dos diversos níveis, as
soluções para interoperabilidade entre sistemas focam apenas em uma camada específica.
A ausência de um modelo para a interoperabilidade pragmática dificulta a comunicação
transparente entre sistemas, pois as informações necessárias para interoperar não são
explícitas. Além disso, o nível pragmático requer o nível semântico que, por sua vez,
necessita do nível sintático. Além da necessidade de interoperar sistemas heterogêneos,
as tecnologias atuais apresentam os desafios de armazenar, processar e disponizar os da-
dos gerados por essa comunicação. A computação em nuvem tem o objetivo de atender
alguns desses requisitos. A computação em nuvem é um paradigma que permite acesso a
uma rede ubíqua de aplicações, plataformas e hardware como serviços. Esses serviços são
organizados em níveis e acessados sob demanda com uma política de pagamento baseado
no uso. Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a
Service (IaaS) e Data as a Service (DaaS) são exemplos de serviços em nuvem. Assim,
essa tese apresenta um framework conceitual para interoperabilidade pragmática (CAPI-
TAL) que considera os níveis sintático e semântico. Com o intuito de validar o framework
CAPITAL, o modelo para interoperabilidade sintática fornece uma descrição detalhada
dos elementos sintáticos do middleware MIDAS (Middleware for DaaS and SaaS). O
modelo para interoperabilidade semântica auxilia e formaliza a comunicação semântica
entre SaaS e DaaS. O framework CAPITAL descreve o modelo para interoperabilidade
pragmática. Três estudos foram realizados para avaliar nosso framework CAPITAL. No
primeiro estudo, o framework CAPITAL foi simulado em quatro cenários distintos com o
objetivo de fornecer um guia de modelagem e codificação. O segundo estudo é um exper-
imento controlado que investiga se nosso framework auxilia a compreensão do conceito e
interpretação de cenários com interoperabilidade pragmática. No terceiro estudo, nosso

xi

xii RESUMO

framework foi incorporado ao MIDAS como prova de conceito com o objetivo de discu-
tir e apresentar uma versão do middleware para interoperabilidade pragmática. Nossos
estudos sugerem que o CAPITAL framework influencia positivamente no entendimento,
modelagem e padronização de cenários com interoperabilidade pragmática. Os resul-
tados alcançados fornecem evidências que os modelos para interoperabilidade sintática,
semântica e pragmática descrevem os elementos necessários para prover uma comunicação
transparente.

Palavras-chave: Interoperabilidade sintática, interoperabilidade semântica, interoper-
abilidade pragmática, framework conceitual, computação em nuvem, serviços em nuvem

ABSTRACT

Modern information systems are becoming increasingly complex. This complexity is re-
lated to the need to combine heterogeneous software. Since a system may contain many
software programs, and each software may be developed independently, providing trans-
parent communication between heterogeneous systems is not a trivial task. The lack of
standardization causes a problem known as lock-in. Lock-in situations occur when users
are dependent on a system due to the lack of interoperability among different providers.
Interoperability is heterogeneous systems’ ability to communicate transparently, and it
is classified into three levels: syntactic, semantic, and pragmatic. The syntactic level
enables systems to exchange information based on standard coding. Semantic interoper-
ability is concerned with ensuring that systems to share the same data meaning. Finally,
pragmatic interoperability ensures that systems understand the message intention so
that the result is within common expectations. Despite the various levels, solutions for
interoperability among systems focus on a specific layer. The absence of a pragmatic
interoperability model hinders transparent communication among systems because the
mandatory information to interoperate is not explicit. The pragmatic level requires the
semantic level that, in turn, requires the syntactic level. In addition to the need of in-
teroperate heterogeneous systems, current technologies present the challenges of storing,
processing, and making available the data generated by this communication. Cloud Com-
puting aims to fulfill some of these requirements. Cloud Computing is a new paradigm
that enables access to a ubiquitous network of applications, platforms, and hardware as
services. These services are organized in levels, and they are accessed with a pay-per-use
policy. Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Ser-
vice (IaaS), and Data as a Service (DaaS) are examples of cloud services. Therefore, this
work presents a Conceptual frAmework for Pragmatic InTeroperAbiLity (CAPITAL).
Although focused on pragmatic interoperability, the CAPITAL framework considers the
syntactic and semantic levels. We evaluate our CAPITAL framework in threefolds, one
for each model. The model for syntactic interoperability provides a detailed description
of syntactic elements of MIDAS (Middleware for DaaS and SaaS). The model for seman-
tic interoperability provides an ontology to formalize the communication between SaaS
and DaaS. This ontology assists the semantic interoperability of MIDAS. The CAPITAL
framework describes the model for pragmatic interoperability. We perform three stud-
ies to evaluate our CAPITAL framework. In the first study, we modeled the CAPITAL
framework in four distinct scenarios that aim to provide a modeling and coding guide.
The second study is a controlled experiment that investigates whether our framework
eases to understand the concept and interpret scenarios with pragmatic interoperability.
In the third study, we incorporated our framework into MIDAS as a proof of concept
to discuss and present a middleware version for pragmatic interoperability. The three

xiii

xiv ABSTRACT

studies suggest that the CAPITAL framework positively influences the understanding,
modeling, and standardization of scenarios with pragmatic interoperability. Our find-
ings provide evidence that models for syntactic, semantic, and pragmatic interoperability
describe mandatory elements to provide transparent communication.

Keywords: Syntactic interoperability, semantic interoperability, pragmatic interoper-
ability, conceptual framework, cloud computing, cloud services

CONTENTS

List of Figures xix

List of Tables xxiii

List of Acronyms xxv

Chapter 1—Introduction 1

1.1 Problem Statement . 2
1.2 Research Questions and Hypothesis . 2
1.3 Objectives . 3
1.4 Research Method . 4
1.5 Thesis Outline . 6

I Background

Chapter 2—Interoperability 11

2.1 Syntactic . 13
2.2 Semantic . 13
2.3 Pragmatic . 15
2.4 Chapter Summary . 16

Chapter 3—Cloud Computing 19

3.1 Essential Characteristics . 20
3.2 Deployment Models . 20
3.3 Challenges . 21
3.4 Service Model . 22

3.4.1 Software as a Service (SaaS) . 23
3.4.2 Platform as a Service (PaaS) . 23
3.4.3 Infrastructure as a Service (IaaS) 23
3.4.4 Data as a Service (DaaS) . 24
3.4.5 Database as a Service (DBaaS) 24

3.5 The lock-in problem and interoperability in Cloud Computing 28
3.6 Chapter Summary . 29

xv

xvi CONTENTS

Chapter 4—Middleware for Interoperability among Clouds 31

4.1 MIDAS 1.0 . 31
4.2 MIDAS 1.6 . 32
4.3 MIDAS 1.8 . 33
4.4 MIDAS 1.9 . 34
4.5 MIDAS 2.0 . 35
4.6 Chapter Summary . 36

II CAPITAL Framework

Chapter 5—Model for Syntactic Interoperability 41

5.1 Model . 42
5.1.1 Canonical Model mDIS . 42
5.1.2 Canonical Model mSaaS . 43
5.1.3 Canonical Model mDaaS . 44

5.2 Evaluation . 46
5.2.1 Query without data join . 46
5.2.2 Query with data join . 48

5.3 Related Work . 50
5.4 Chapter Summary . 50

Chapter 6—Model for Semantic Interoperability 53

6.1 Model . 54
6.1.1 Specification . 54
6.1.2 Conceptualization . 55
6.1.3 Formalization and Implementation 57

6.1.3.1 Classes and Subclasses. 57
6.1.3.2 Object Properties. 57
6.1.3.3 Individuals. 57

6.2 Evaluation . 58
6.2.1 Experiment 1: Evaluation of Concepts 58
6.2.2 Experiment 2: Motivating Example 59
6.2.3 Experiment 3: Query Running . 61

6.2.3.1 Query without Data Join. 61
6.2.3.2 Query with Data Join. 62

6.3 Discussion . 63
6.4 Related Work . 64
6.5 Chapter Summary . 65

CONTENTS xvii

Chapter 7—Model for Pragmatic Interoperability 67

7.1 Model . 67
7.1.1 Pragmatic Interoperability Unified Definition 69
7.1.2 CAPITAL Framework . 70

7.2 Modeling and Coding Guide . 72
7.2.1 Scenario 1: Laboratory Test . 73
7.2.2 Scenario 2: DNA Ancestry . 78
7.2.3 Scenario 3: Bluetooth . 84
7.2.4 Scenario 4: Public Security Domain 91
7.2.5 Discussion . 97

7.3 Controlled Experiment . 98
7.3.1 Scope . 98

7.3.1.1 Goal. 99
7.3.1.2 Research Question. 99
7.3.1.3 Attributes. 99

7.3.2 Planning . 100
7.3.2.1 Study Design. 100
7.3.2.2 Hypotheses. 101
7.3.2.3 Participants. 102

7.3.3 Operation . 103
7.3.3.1 Preparation. 103
7.3.3.2 Execution. 103
7.3.3.3 Data Validation. 103

7.3.4 Analysis and Interpretation . 104
7.3.4.1 Results Overview. 104
7.3.4.2 Hypothesis Testing. 107
7.3.4.3 Threats to Validity. 109

7.4 Related Work . 109
7.5 Chapter Summary . 110

Chapter 8—Pragmatic MIDAS Architecture 111

8.1 MIDAS 3.0 . 111
8.1.1 Pragmatism Mapping . 114
8.1.2 Enhanced Components . 114

8.2 Proof of Concept . 117
8.2.1 Experiments . 118
8.2.2 Results and Discussion . 119

8.2.2.1 Experiment 1: Overhead. 119
8.2.2.2 Experiment 2: Correctness. 121
8.2.2.3 Experiment 3: Function Point. 121

8.3 Chapter Summary . 123

xviii CONTENTS

Chapter 9—Conclusion and Future Work 125

9.1 Contributions . 126
9.2 Future Research Directions . 126
9.3 Published Papers . 127

Appendix A—Example of Data Sources 139

Appendix B—MIDAS-OWL 141

Appendix C—Controlled Experiment: Support Material 153

C.1 Pre-questionnaire . 153
C.2 Control group questionnaire . 155
C.3 CAPITAL group questionnaire . 158
C.4 Participants overview . 161

Appendix D—Function Point Analysis Adjustment Factor 165

LIST OF FIGURES

1.1 Research method of this thesis. 5
1.2 Overview of the thesis outline. 6

2.1 An overview of lack of a) portability and b) interoperability. 12
2.2 Some semantic representation problems: (a) same symbol for different con-

cepts, (b) same symbol for overlapping concepts, (c) same symbol for more
general (or specific) concepts, (d) different symbols for same concept, (e)
different symbols for overlapping concepts, (f) different symbols for more
general (or specific) concepts, and (g) different definition for same concept.
Adapted from (POKRAEV, 2009). 15

2.3 Some interaction protocol problems: (a) unexpected message, (b) insuffi-
cient message, (c) message order, (d) message aggregation, and (e) message
splitting. Adapted from (POKRAEV, 2009). 16

2.4 Differences among interoperability levels. Adapted from (ADEBESIN et
al., 2013). 17

3.1 The most common service model in the literature for Cloud Computing
(RINGS; GRABOWSKI, 2012). 22

3.2 NoSQL databases based on CAP Theorem. Adapted from (WANG; TANG,
2012; MONIRUZZAMAN; HOSSAIN, 2013). 25

3.3 NoSQL models: (a) Key-value, (b) Column-oriented, (c) Document, and
(d) Graph. 26

3.4 Relevant requirements in cloud applications (RIMAL et al., 2011). 29

4.1 MIDAS 1.0 architecture (MARINHO et al., 2016). 32
4.2 MIDAS 1.6 architecture (VIEIRA et al., 2017). 33
4.3 MIDAS 1.8 architecture (RIBEIRO et al., 2018). 34
4.4 MIDAS 1.9 architecture (RIBEIRO et al., 2019). 35
4.5 MIDAS 2.0 architecture (MANE et al., 2020). 36
4.6 Similarities and differences among the MIDAS versions. 37

5.1 Generic solution p to interoperate s1 and s2 services. 42
5.2 Example of mDIS with two DaaS: w7 and vz. 46
5.3 Example of mSaaS (a) for an SQL/NoSQL query without data join (b). . 47
5.4 Example of mDaaS (a) for data returned by query without join (b). . . . 47
5.5 Final result after model performs limit clause for the query without data

join. 48
5.6 Example of mSaaS (a) for a SQL/NoSQL query with data join (b). . . . 48

xix

xx LIST OF FIGURES

5.7 Example of mDaaS (a) for data returned by query with data join (b). . . 49
5.8 Final result after model performs order, limit and left outer join clauses

for the query with join. 50

6.1 MIDAS-OWL overview. 56
6.2 Taxonomy of the Clauses class. 58
6.3 Detailed clauses of the query without data join in our ontology. 61
6.4 Detailed clauses of the query with data join in our ontology. 62

7.1 Activities for CAPITAL framework. 68
7.2 CAPITAL’s Artifacts: Canonical model, textual definition, and schemes

in Z notation. 68
7.3 Canonical model of our CAPITAL framework. Mandatory elements are

bold. 70
7.4 Scenario of laboratory test. Figure 7.4(a) describes the scenario without

pragmatic interoperability, while Figure 7.4(b) describes the pragmatic
scenario. Adapted from (ASUNCION et al., 2011). 73

7.5 The canonical model for laboratory test scenario. Figure 7.5(a) represents
emergency importance (in red), Figure 7.5(b) urgency (in yellow), and
Figure 7.5(c) the normal importance (in green). 75

7.6 Scenario of DNA ancestry. Figure 7.6(a) describes the scenario without
pragmatic interoperability and Figure 7.6(b) describes the pragmatic sce-
nario. Adapted from (NEIVA et al., 2016). 79

7.7 The canonical model for DNA ancestry scenario. Figure 7.7(a) represents
the DNA sequence (in red) and Figure 7.7(b) represents the RNA sequence
(in yellow); Figure 7.7(c) represents local method (in green) and Figure
7.7(d) represents global method (in blue). 80

7.8 Scenario of the Bluetooth system. Figure 7.8(a) describes the scenario
without pragmatic interoperability and Figure 7.8(b) describes the prag-
matic scenario. 85

7.9 The canonical model for the Bluetooth scenario. Figure 7.9(a), Figure
7.9(b), and Figure 7.9(c) represent the far (in red), moderate (in yellow),
and near (in green) distances, respectively. Figure 7.9(d), Figure 7.9(e),
and Figure 7.9(f) represent the unknown (in blue), known (in purple), and
familiar (in gray) relationships, respectively. 86

7.10 Public security domain scenario. Figure 7.10(a) describes the scenario
without pragmatic interoperability and Figure 7.10(b) describes the prag-
matic scenario. 91

7.11 The canonical model for the public security domain scenario. Figure
7.11(a), Figure 7.11(b), Figure 7.11(c), and Figure 7.11(d) represent the
crimes: child pornography (in red), graffiti (in yellow), stolen car (in green),
and person with firearm (in blue), respectively. 92

7.12 Venn diagram that relates context and intention. In Figure 7.12(c), prag-
matic interoperability occurs more frequently than in Figure 7.12(a). . . 98

LIST OF FIGURES xxi

7.13 Summary of responses on identification and definition of pragmatic inter-
operability for the Bluetooth scenario. 104

7.14 Comparison between the Control group (ConG) and CAPITAL group (CapG)
for five attributes: (a) understandability, (b) completeness, (c) consistency,
(d) conciseness, and (e) performance. 107

8.1 MIDAS 3.0 architecture. 112
8.2 MIDAS 3.0 sequence diagram. 113
8.3 Similarities and differences between MIDAS 3.0 and the previous versions. 116
8.4 MIDAS 3.0 execution sequence. 118
8.5 Return time (y-axis) for 100 queries (x-axis) with a limit of 100 records. . 120
8.6 Return time (y-axis) for 100 queries (x-axis) with a limit of 1000 records. 120
8.7 Return time (y-axis) for 100 queries (x-axis) with a limit of 10000 records. 121

LIST OF TABLES

3.1 Comparison of the four cloud distribution models 21
3.2 Comparison of Relational, NoSQL, and NewSQL databases (GROLINGER

et al., 2013; FATIMA; WASNIK, 2016; MALHOTRA et al., 2017) 27

6.1 Competency questions (CQ) applied in the specification of our ontology . 55
6.2 Examples of MIDAS-OWL classes . 57
6.3 Examples of MIDAS-OWL object properties 59
6.4 Examples of the ontology items evaluation 59
6.5 Data returned by URL2 after changing the label 60

7.1 Pragmatic interoperability definitions in chronological order 69
7.2 Questions used in the evaluation of attributes 100
7.3 Quantitative data collected by all 46 participants (23 participants by each

group) . 105
7.4 Statistical measures of the collected data 106
7.5 Probability for each evaluated attribute based on t-test (two-tailed) . . . 108

8.1 Calculation of function points . 122

A.1 Generic examples of data in DaaS w7 . 139
A.2 Generic examples of data in DaaS vz . 139

C.1 Participants overview . 162

D.1 Value adjustment factors . 165

xxiii

LIST OF ACRONYMS

ACID Atomicity, Consistency, Isolation, and Durability . 24

API Application Programming Interface. .11

CAP Consistency, Availability, and Partition . 25

CAPITAL Conceptual frAmework for Pragmatic InTeroperAbiLity 3

CSV Comma Separated Values . 13

DaaS Data as a Service. .1

DBaaS Database as a Service . 1

DBMS Database Management System . 24

DIS Dataset Information Storage . 31

DL Description Logic . 34

IaaS Infrastructure as a Service . 1

IoT Internet of Things . 1

JSON JavaScript Object Notation . 13

GQM Goal-Question-Metric . 98

MIDAS Middleware for DaaS and SaaS . 4

NIST National Institute of Standards and Technology . 19

NoSQL Not Only SQL . 24

OBQA Ontology-Based Query Answering . 64

OWL Ontology Web Language . 53

PaaS Platform as a Service .1

SaaS Software as a Service . 1

SPARQL SPARQL Protocol and RDF Query Language . 63

SQL Structured Query Language . 24

SMS Semantic Mapping Storage . 35

URL Uniform Resource Locator. .31

XML eXtensible Markup Language. .13

xxv

Chapter

1
This chapter provides an overview of the research topic. Here, we describe the problem, research questions,
hypothesis, objectives, research method, and the thesis outline.

INTRODUCTION

In the last decades, companies have been combining a high number of heterogeneous
software to support their increasingly complex business rules. Nowadays, a single en-
terprise usually performs dozens of applications, such as different operating systems and
databases (POKRAEV, 2009).

The advent of the Internet of Things (IoT), social networks, and mobile devices has
boosted the combined use of heterogeneous software (ARMBRUST et al., 2010). A
successful combination enables two or more systems to work together to achieve a specific
objective. We define interoperability as the ability of multiple systems to work together
to provide transparent communication regardless of the providers’ differences (LOUTAS
et al., 2011; ZHANG; WU; CHEUNG, 2013).

Interoperability is a challenge due to the systems’ lack of standardization, and this
lack of standardization causes a vendor lock-in problem (LOUTAS et al., 2011). The
vendor lock-in problem occurs when a consumer becomes captive to a solution due to the
lack of standardization among systems (SCOTT, 1996; OPARA-MARTINS; SAHANDI;
TIAN, 2014).

Besides the challenge of interoperating heterogeneous systems, the volume of digital
data generated by these collaborations grows exponentially (REINSEL; GANTZ; RYD-
NING, 2018). Consequently, this data needs to be stored and available to both consumers
and organizations anytime and anywhere. Cloud Computing has emerged to fulfill some
of these requirements (MELL; GRANCE, 2011).

Cloud Computing is a paradigm that enables the access to a ubiquitous and on-
demand network of logical and physical resources (e.g., applications, platforms, and
hardware) as services (ARMBRUST et al., 2010). Software as a Service (SaaS), In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), Data as a Service (DaaS),
and Database as a Service (DBaaS) are instances of cloud services (MELL; GRANCE,
2011; HACIGUMUS; IYER; MEHROTRA, 2002; TERZO et al., 2013).

1

2 INTRODUCTION

Cloud Computing facilitates the combination, use, and management of heterogeneous
resources through a pay-per-use policy. In this policy, end consumers pay only for actual
consumption, and the entire infrastructure enables delivering these services, depending
on the consumers’ needs (VECCHIOLA; CHU; BUYYA, 2009).

The pay-per-use policy is the same concept applied to basic and essential services,
such as water, gas, electricity, and telephone. A company provides a utility service
and end-users consume this service anytime, anywhere, with payment according to their
use. Although the user is unaware, a complex infrastructure allows the delivery of these
services transparently (VECCHIOLA; CHU; BUYYA, 2009).

1.1 PROBLEM STATEMENT

Interoperability is an essential requirement for systems to perform together coopera-
tively (BRAVO; ALVARADO, 2008). Rimal et al. (2011) group the Cloud Computing
requirements into providers, enterprises, and consumers. This classification emphasizes
the importance of interoperability in the Cloud Computing domain since only the quality
of service, scalability, and interoperability belong to more than one group.

Although not the only classification (ASUNCION; IACOB; SINDEREN, 2010; MA-
CIEL et al., 2017; VALLE; GARCÉS; NAKAGAWA, 2019), interoperability may be clas-
sified into syntactic, semantic, and pragmatic levels (ASUNCION; SINDEREN, 2010).
Despite the different levels, interoperability proposals provide solutions focused on a spe-
cific level, i.e., solutions are focused on the syntactic, semantic, or pragmatic level sepa-
rately. In addition to making interoperability difficult, the absence of a solution involving
different levels affects the quality and cost of the systems. An “isolated solution” does
not detail the data necessary to interoperate. Therefore, the main problem investigated
in the scope of this thesis is:

Communication among cloud services lacks adequate support for detailing data
necessary to provide pragmatic interoperability.

1.2 RESEARCH QUESTIONS AND HYPOTHESIS

This thesis is related to the challenges and opportunities of Cloud Computing. Based on
interoperability among different clouds, we define the following main research question
to guide this research:

How to provide pragmatic interoperability among cloud services?

We decompose the above research question into the following sub-questions:

• How to describe syntactic interoperability among different cloud services?

The objective of this research question is to describe syntactic interoperability
among cloud services. Based on the bottom-up approach, we present a lightweight
formal description of syntactic interoperability among different cloud services. Our
syntactic description is based on canonical models and mathematical concepts.
Chapter 5 focused on answering this question.

1.3 OBJECTIVES 3

• How to describe semantic interoperability among different cloud services?

The objective of this research question is to describe semantic interoperability
among cloud services. Based on the bottom-up approach, we present an OWL-
based ontology to represent communication among different cloud services formally.
Our ontology enables explicitly expressing the semantic similarity among DaaS and
DBaaS attributes. This semantic similarity enables semantic integration through
queries rewriting. Chapter 6 focused on answering this question.

• What elements are needed to provide pragmatic interoperability?

This research question aims to determine which elements are mandatory to provide
pragmatic interoperability among systems. The heterogeneity of the scenarios mod-
eled in our Conceptual frAmework for Pragmatic InTeroperAbiLity (CAPITAL)
framework illustrated the mandatory information. We suggest these elements based
on the intersection of the results of each scenario. Chapter 7 focused on answering
this question.

• How to provide a generic model capable of representing pragmatic interoperability
among systems?

The objective of this research question is to provide a generic solution to repre-
sent pragmatic interoperability among systems. Initially, since there is no consen-
sus on the literature, we present our pragmatic interoperability unified definition.
Afterwards, we present CAPITAL, our Conceptual frAmework for Pragmatic In-
TeroperAbiLity. The CAPITAL framework is based on canonical models, textual
definition, and schemas in Z notation. Our framework represents and details prag-
matic scenarios. Chapter 7 focused on answering this question.

• How to provide pragmatic interoperability among cloud services?

The objective of this research question is to achieve pragmatic interoperability
among cloud services. In this stage, we apply our CAPITAL framework to the
Cloud Computing domain. Few works are addressing pragmatic interoperability
in Cloud Computing, as well as solutions to solve this problem. Generally, these
researches are domain-specific, and the elements of the communication are non-
consensual. To the best of our knowledge, CAPITAL framework is the first attempt
to provide pragmatic interoperability among cloud services. Chapter 8 focused on
answering this question.

This thesis is based on the hypothesis that it is possible to provide pragmatic inter-
operability among cloud services through our CAPITAL framework. Before that, it is
necessary (i) to describe both syntactic and semantic interoperability and (ii) to provide
a consensual definition of pragmatic interoperability.

1.3 OBJECTIVES

The main objective of this thesis is to investigate and provide a model for prag-
matic interoperability between SaaS and DaaS/DBaaS cloud services. Since

4 INTRODUCTION

pragmatic interoperability requires both syntactic and semantic levels (ASUNCION; SIN-
DEREN, 2010), our methodology envisions both interoperability levels.

The specific objectives of this work are described as follows:

1. present a lightweight formal description of syntactic interoperability between SaaS
and DaaS cloud services;

2. evaluate the correctness of the description for syntactic interoperability;

3. develop an ontology to represent the semantic interoperability between SaaS and
DaaS/DBaaS cloud services;

4. assess the consistency, acceptance, and correctness of our ontology;

5. determine data needed to provide pragmatic interoperability among systems;

6. provide a definition for pragmatic interoperability based on literature;

7. develop a framework to represent pragmatic interoperability among systems;

8. evaluate the effectiveness, completeness, correctness, understandability, consistency,
conciseness, and performance of our framework; and

9. investigate the framework for pragmatic interoperability among cloud services;

Objectives 1 and 2 refer to the syntactic stage, objectives 3 and 4 refer to the semantic
stage, and the other specific objectives refer to pragmatic interoperability.

1.4 RESEARCH METHOD

Based on our objectives and research questions, we applied a combination of strategies to
an in-depth understanding of our research problem (MIGUEL; MORABITO; PUREZA,
2010; WAZLAWICK, 2017).

Pragmatic interoperability depends on the previous consolidation of both syntactic
and semantic interoperability (ASUNCION; SINDEREN, 2010). For this reason, the
present investigation can be split into two main parts: literature review and models.
Figure 1.1 presents both parts in detail.

Part I (Background) comprises an overview of the existing literature on interoperabil-
ity and Cloud Computing. We performed this review focused on SaaS and DaaS cloud
services. This analysis investigated the interoperability among different cloud services.
Finally, we present in-depth the Middleware for DaaS and SaaS (MIDAS) (MARINHO
et al., 2016; VIEIRA et al., 2017; SILVA; RIBEIRO; CLARO, 2018; RIBEIRO et al.,
2018, 2019; MANE et al., 2020). MIDAS is a middleware to interoperate DaaS and SaaS
among different clouds. We present MIDAS in detail because we use this middleware in
the experiments performed with the three models.

Part II (CAPITAL Framework) corresponds to the construction of the three mod-
els. Initially, we present the model for syntactic interoperability. We describe the
lightweight formal description of MIDAS syntactic interoperability, and we evaluate this

1.4 RESEARCH METHOD 5

Time

Cloud Computing

Interoperability

C
ha

p.
 2 Model for Syntactic

Interoperability

Model for Semantic
Interoperability

Model for Pragmatic
Interoperability

Part I

Part II

Literature
review

Top-down

Bottom-up

Kolb cycle Middleware for
DaaS and SaaS

(MIDAS)

C
ha

p.
 3

C
ha

p.
 4

Ontology

C
ha

p.
 5

C
ha

p.
 6

C
ha

p.
 7

Introduction

C
ha

p.
 1

Conclusion &
Future Work

C
ha

p.
 9

Mathematical definition
of model

Syntactic canonical
models

Z Notation

Pragmatic canonical
model

Mathematical definition
of model

Pragmatic MIDAS
Architecture

(proof of concept) C
ha

p.
 8

Figure 1.1 Research method of this thesis.

model through a set of canonical models and mathematical definitions. The model for
semantic interoperability presents an OWL-based ontology of MIDAS semantic interop-
erability (MIDAS-OWL). We evaluate this model through SaaS queries submitted by
MIDAS. Our ontology enables semantic integration through queries rewriting. Finally,
we present the CAPITAL framework, our model for pragmatic interoperability. We de-
scribe this framework based on canonical models, textual definition, and schemas in Z
notation. In the CAPITAL evaluation, we (i) apply our framework into different scenarios
as modeling and implementation guidance and (ii) perform a controlled experiment. At
the end of this part, we discuss the pragmatic MIDAS architecture. We also performed
a proof of concept to evaluate the CAPITAL framework. We evaluated the three levels
of interoperability together and separately.

According to Figure 1.1, this thesis applies three methodological approaches: bottom-
up, top-down, and Kolb cycle. We apply Bottom-up to build the models for syntactic and
semantic interoperability. At this stage, this research contributed to the development of
the MIDAS middleware. We present and evaluate the models to syntactic and semantic
interoperability based on this solution. We built the model for pragmatic interoperability
based on the top-down approach, i.e., we developed this model independently of any
solution.

We apply the Kolb cycle (KOLB, 1984) in all three models. Kolb’s methodology

6 INTRODUCTION

describes that the construction or learning process is based on the continuous and cyclical
execution of four stages: act, reflect, conceptualize, and apply. We adapted and performed
this methodology in a continuous and cyclical execution of the first three steps (act,
reflect, and conceptualize). We perform the fourth step (apply) after obtaining a model
for syntactic, semantic, or pragmatic interoperability. This methodology allowed us to
adjust any model at any stage.

1.5 THESIS OUTLINE

Figure 1.2 presents the thesis outline. Apart from the introduction chapter, this thesis is
organized as follows.

Chapter 1
Introduction

Part I: Background

Chapter 2
Interoperability

Chapter 3
Cloud Computing

Chapter 4
MIDAS middleware

Chapter 9
Conclusion & Future

Work

Motivates

Leads to

Research directions

Part II: CAPITAL Framework

Chapter 5
Model for Syntactic

Interoperability

Chapter 6
Model for Semantic

Interoperability

Chapter 7
Model for Pragmatic

Interoperability

Model, evaluation,
and related work

Chapter 8
Pragmatic MIDAS Architecture

Figure 1.2 Overview of the thesis outline.

• Background: Part I provides background concepts on the topics involved in this
study. This part presents state-of-the-art review of interoperability, Cloud Com-
puting, and MIDAS middleware.

1.5 THESIS OUTLINE 7

– Chapter 2 conceptualizes interoperability and details the syntactic, semantic
and pragmatic levels.

– Chapter 3 defines Cloud Computing and describes characteristics, challenges,
deployment models, and some services, e.g., SaaS, PaaS, IaaS, DaaS, and
DBaaS.

– Chapter 4 introduces MIDAS middleware, a solution used as a basis for
model evaluation. This chapter provides a MIDAS timeline and compares the
MIDAS versions.

• CAPITAL Framework: Part II motivates and presents in detail the models for
syntactic, semantic, and pragmatic interoperability.

– Chapter 5 details the model for syntactic interoperability. In this chapter,
we report model evaluation into MIDAS and some related work.

– Chapter 6 presents our ontology to represents the MIDAS semantic interop-
erability (MIDAS-OWL). In this chapter, we report the ontology evaluation
and some related work.

– Chapter 7 introduces CAPITAL, our conceptual framework for pragmatic
interoperability. In this chapter, we report the CAPITAL framework evalua-
tion (based on four distinct scenarios and a controlled experiment) and some
related work.

– Chapter 8 presents the pragmatic MIDAS architecture. In this chapter,
we discussed the workings of pragmatic MIDAS and then we perform the
CAPITAL framework with the MIDAS middleware.

• Conclusions: Chapter 9 presents our concluding remarks, summarizes the contri-
butions, and discusses future research directions.

PART I

BACKGROUND

Chapter

2
This chapter presents the interoperability concept. We describe syntactic, semantic, and pragmatic in-
teroperability levels, and we discuss their challenges and benefits.

INTEROPERABILITY

Moderns solutions mean a variety of technologies, such as programming languages, oper-
ating systems, databases, Application Programming Interface (API), protocols, data for-
mats, among others (ZHANG; WU; CHEUNG, 2013). The heterogeneity of technologies
hinders two or more systems from working together to solve a specific problem (ZHANG;
CHENG; BOUTABA, 2010; ARMBRUST et al., 2010; SAHANDI; ALKHALIL; OPARA-
MARTINS, 2013). In this situation, users are dependent on the provider since they cannot
easily change nor move their applications. This problem caused by dependence on the
provider is known as lock-in (OPARA-MARTINS; SAHANDI; TIAN, 2016).

Vendor lock-in problem occurs when customers are dependent (i.e., locked-in) of a
specific provider, among other factors, due to the different technologies adopted by dif-
ferent providers (SILVA; ROSE; CALINESCU, 2013; OPARA-MARTINS; SAHANDI;
TIAN, 2014, 2016; LOUTAS et al., 2011). This heterogeneity hampers communication,
and the absence of communication hinders portability, interoperability, and integration
among systems (ARDAGNA et al., 2012; OPARA-MARTINS; SAHANDI; TIAN, 2016).
Although portability, interoperability, and integration have similar objectives, they have
some relevant differences.

Portability is the ability to migrate and reuse data or software components in a dif-
ferent provider (MELL; GRANCE, 2011; SILVA; ROSE; CALINESCU, 2013; OPARA-
MARTINS; SAHANDI; TIAN, 2014). Portability may occur due to the difficulty of
moving virtual machines, code, data, among others (OPARA-MARTINS; SAHANDI;
TIAN, 2014).

Interoperability is the ability of heterogeneous systems to communicate transparently
(MELL; GRANCE, 2011; CHEN; DOUMEINGTS; VERNADAT, 2008). Interoperability
enables two or more systems to understand one another and use one another’s services
(CHEN; DOUMEINGTS; VERNADAT, 2008).

Integration is the process of combining multiple applications, resources, or services
to function together as a unified whole. For instance, when an enterprise integrates

11

12 INTEROPERABILITY

various technologies into a single application to solve a specific problem. Integration is
one solution to achieves interoperability (POKRAEV, 2009; GRAVINA et al., 2017).

Figure 2.1 depicts the difficulty of performing a) portability and b) interoperabil-
ity between two providers. Consumers in Figure 2.1(a) endeavor to migrate their data
from provider A to provider B, while consumers in Figure 2.1(b) attempt to establish
communication between providers A and B. The lack of a standard makes both tasks
difficult. Among the various causes of vendor lock-in, we are interested only in the lack
of interoperability.

Provider A Provider B

Portability

Interoperability

a)

b)

Figure 2.1 An overview of lack of a) portability and b) interoperability.

Successful transactions among systems require multiple layers of interoperability. De-
spite the absence of consensus, interoperability may be described into syntactic, semantic,
and pragmatic levels. Asuncion, Iacob and Sinderen (2010) argue that interoperability
levels surpass those presented by most works (syntactic, semantic, and pragmatic) with
two other levels after the pragmatic: dynamic and organizational (or conceptual).

In summary, (i) syntactic level ensures the exchange of information among systems
based on message standard, (ii) semantic interoperability is concerned with the commu-
nication meaning, (iii) pragmatic interoperability provides that systems share the same
communication intention, (iv) at the dynamic level, systems take into account business
rules, and (v) at the organizational level, systems perform all levels described previously
(WANG; TOLK; WANG, 2009; ASUNCION; IACOB; SINDEREN, 2010; MACIEL et
al., 2017; VALLE; GARCÉS; NAKAGAWA, 2019).

Another related interoperability is full interoperability (MACIEL et al., 2017). Full
interoperability is achieved when a system reaches all desired interoperability levels. For
instance, some systems may require only syntactic interoperability, while other systems
may require syntactic, semantic, and pragmatic levels.

Although the literature presents different levels (ASUNCION; IACOB; SINDEREN,

2.1 SYNTACTIC 13

2010; MACIEL et al., 2017; VALLE; GARCÉS; NAKAGAWA, 2019), this thesis contem-
plates syntactic, semantic, and pragmatic levels (ASUNCION; SINDEREN, 2010). The
next sections describe these interoperability levels.

2.1 SYNTACTIC

Syntactic interoperability concerns the format of messages exchanged among systems.
This level provides systems with an understanding of the message structure, and the
messages exchanged require a well-defined syntax and encoding (ZARKO et al., 2019;
KUBICEK; CIMANDER; SCHOLL, 2011).

When the sender encodes and sends a message, the receiver must be able to decode
the message according to the same syntactic rules applied by the sender. As a result,
the receiver obtains the message initially sent. Syntactic interoperability problems arise
when the sender and receiver rules are incompatible (MACIEL et al., 2017).

Syntactic interoperability is ensured when systems are aware of data format and
protocols. Systems should have a compatible and consistent approach to structure and
standardize exchanged data (ASUNCION; SINDEREN, 2010).

Syntactic interoperability emphasizes two heterogeneities: syntax and structure. Syn-
tax heterogeneity regards the data types and formats heterogeneities. For instance, DaaS
returns data in different formats, such as eXtensible Markup Language (XML), Comma
Separated Values (CSV), or JavaScript Object Notation (JSON). Given this heterogene-
ity, each return has a different file format, such as file.xml, file.csv, or file.json. The use
of a standard format may help solve syntax differences. However, some cases can not be
standardized, such as DaaS return. End-consumer may choose the return format based
on the formats available by the DaaS provider. A solution to the syntax heterogeneity
problem is the conversion among possible formats. In the DaaS example, the conversion
ensures a standardized format in communication (SHETH, 1999).

Structure heterogeneity arises when the same data is represented using different
schemas of metadata. For instance, systems could standardize a format in communi-
cation. However, each system may use the format differently. A solution to the structure
heterogeneity problem is to standardize messages structure, e.g., with a schema (SHETH,
1999).

Syntactic interoperability is the foundation for higher levels of interoperability, such
as semantic and pragmatic interoperability (ASUNCION; SINDEREN, 2010; KUBICEK;
CIMANDER; SCHOLL, 2011; ZARKO et al., 2019).

2.2 SEMANTIC

Semantic interoperability ensures that systems understand the meaning of the exchanged
messages. This level enables systems to combine data to process it in a meaningful
manner (KUBICEK; CIMANDER; SCHOLL, 2011; STRASSNER; DIAB, 2016).

Semantic interoperability is ensured when systems understand the meaning of the
syntactic elements, i.e., data exchanged must have the same meaning for the sender and
the receiver (ASUNCION; SINDEREN, 2010). Any receiver must understand the data

14 INTEROPERABILITY

exchanged format since the meaning of messages must not change within the domain
(MACIEL et al., 2017).

Some semantic representation problems arise when the sender and the receiver have
a different understanding of the message (POKRAEV, 2009):

• Different systems use the same symbol to represent different concepts. For
instance, system A uses the symbol “height” to represent “the height of a person”,
and system B uses the same symbol to represent “the height of a building” (see
Figure 2.2(a)).

• Different systems use the same symbol to represent overlapping concepts. For
instance, system A uses the symbol “blood” to represent “blood type A”, and system
B uses the same symbol to represent “blood Rh factor positive”. This is important
because not all “blood type A” is “Rh factor positive”, and not all “Rh factor positive”
is “blood type A” (see Figure 2.2(b)).

• Different systems use the same symbol to represent more general (or specific)
concepts. For instance, system A uses the symbol “name” to represent “dog name”,
and system B uses the same symbol to represent “pet name”. This causes doubt
because “pet name” includes all “dog name” (see Figure 2.2(c)).

• Different systems use different symbols to represent the same concept. For
instance, system A uses the symbol “car” and system B uses the symbol “automobile”
to represent the same concept: “a wheeled motor vehicle used for transportation”
(see Figure 2.2(d)).

• Different systems use different symbols to represent overlapping concepts. For
instance, system A uses the symbol “student” to represent the concept of “someone
enrolled in an educational institution” and system B uses the symbol “professor” to
represent the concept of “someone who teaches at an educational institution”. Both
concepts may refer to the same entity in the real world since a “student” can be a
“professor” and a “professor” can be a “student” (see Figure 2.2(e)).

• Different systems use different symbols to representmore general (or specific)
concepts. For instance, system A uses the symbol “consumer” to represent the
concept “client” and system B uses the symbol “partner” to represent the concept
“client or seller” (see Figure 2.2(f)).

• Different systems use different definition of the same concept. For instance,
system A defines “smartphone” as “a device that combines cell phone and handheld
computer” and system B defines the same concept as “a device used as cell phone
and handheld computer” (see Figure 2.2(g)).

Semantic interoperability is ensured when systems aware of messages language, tax-
onomy, and ontologies (ASUNCION; SINDEREN, 2010).

2.3 PRAGMATIC 15

height

height of a
person

height of a
building

concept A concept B

symbol

represents
represents

blood

blood Rh factor
positive

blood type A

concept A
concept B

symbol

represents

represents

name

pet name

dog name

concept B

symbol

represents

concept A

represents

a wheeled motor vehicle
used for transportation

concept

represents

automobilecar

symbol A symbol B

represents

student

someone who teaches at
an educational institution

someone enrolled in an
educational institution

concept A
concept B

symbol A

represents

symbol B

professor

represents

consumer

client or seller

client

concept B

symbol A

represents

concept A

represents

partner
symbol B

device

cell phone and
handheld computer

device

cell phone and
handheld computer

combination of

used as

concept B concept B

concept A concept A

a) b) c) d)
e) f) g)

Figure 2.2 Some semantic representation problems: (a) same symbol for different concepts,
(b) same symbol for overlapping concepts, (c) same symbol for more general (or specific) con-
cepts, (d) different symbols for same concept, (e) different symbols for overlapping concepts, (f)
different symbols for more general (or specific) concepts, and (g) different definition for same
concept. Adapted from (POKRAEV, 2009).

2.3 PRAGMATIC

Although there is no consensus definition (ASUNCION; SINDEREN, 2010; MACIEL et
al., 2017), pragmatic interoperability ensures that the sender and receiver understand
the message context and intention in order to correctly use the message (MACIEL et al.,
2017). This level enables a system to affect the state and behavior of another system
(ASUNCION; IACOB; SINDEREN, 2010; ASUNCION; SINDEREN, 2010). Asuncion
and Sinderen (2010) describe pragmatic interoperability as compatibility between the
intended effect and actual effect of the message received within a context.

Differences between messages intended effect and actual effect occur because this level
considers the context in which the messages are exchanged. Pragmatic interoperability
problems arise when the sender and receiver differs (i) on messages intended effect and
actual effect, or (ii) on the interaction protocols (MACIEL et al., 2017; POKRAEV, 2009).
The most common problems with respect to interaction protocols are (POKRAEV, 2009):

• Unexpected message: system A sends a message that is not expected by system
B. For instance, system A sends message M1 and then message M2 to system B.
However, system B expects only the message M2 (see Figure 2.3(a)).

• Insufficient message: system B intends to receive a message that is not sent
by system A. For instance, system B expects to receive message M1 and then
message M2 from system A. However, system A sends only the message M2 (see
Figure 2.3(b)).

• Message order: system A sends messages in a different order than expected by

16 INTEROPERABILITY

system B. For instance, system A sends messageM1 and then messageM2. However,
system B expects first the message M2 and then message M1 (see Figure 2.3(c)).

• Message aggregation: system A sends separately data that system B expects in
a single message. For instance, system A sends message M1 and then message M2

to system B. However, system B expects only one message that aggregates M1 and
M2 (see Figure 2.3(e)).

• Message splitting: system B intends to receive separately data that system A
sent in a single message. For instance, system B intends to receive message M1 and
then message M2 from system A. However, system A sends only one message that
aggregates M1 and M2 (see Figure 2.3(f)).

system A system B
a)

M1

M2 M2

system A system B

M2 M2

system A system B
c)

M1

M2 M1

system A system B

M1

M2

M1
+

M2

system A system B
e)b) d)

M1 M2
M1
+

M2

M1

M2

Figure 2.3 Some interaction protocol problems: (a) unexpected message, (b) insufficient mes-
sage, (c) message order, (d) message aggregation, and (e) message splitting. Adapted from
(POKRAEV, 2009).

Pragmatic interoperability can only be achieved after obtaining syntactic and se-
mantic levels. Additionally, systems must be aware of the message context and intent
(ASUNCION; SINDEREN, 2010).

2.4 CHAPTER SUMMARY

Interoperability is the ability of a system to share or exchange information with another
system transparently.

Some problems occur when systems communicate to share or exchange information,
such as programming language differences or ambiguity in the development environment.
Cooperation levels have been created to mitigate these problems. Despite the diversity of
levels found in the literature, this thesis considers the syntactic, semantic, and pragmatic
levels (ASUNCION; SINDEREN, 2010).

In syntactic interoperability, systems must be able to answer where other systems
are. Systems achieve syntactic interoperability when, for example, a protocol defines the
communication guidelines (including locations). In semantic interoperability, systems
must be able to answer what other systems want unambiguously. Systems achieve se-
mantic interoperability when, for example, an ontology represents all knowledge of the
domain, and then the communication is carried out without ambiguity. In pragmatic

2.4 CHAPTER SUMMARY 17

interoperability, systems must be able to answer why a specific message was sent or re-
ceived. Systems achieve pragmatic interoperability when they are aware of the intentions
of the messages (van der VEER; WILES, 2008).

We noted that literature has advanced towards a hierarchical understanding of such
levels. Nevertheless, although both syntactic and semantic levels have consensual defini-
tions, the pragmatic interoperability definition is still diverse.

The lack of a standard understanding of pragmatic interoperability can result in (i)
incompatible solutions, (ii) ambiguous interpretations of messages meaning, or (iii) diffi-
culty in achieving the desired interoperability.

Figure 2.4 lists and relates the syntactic, semantic, and pragmatic interoperability.
This idea of hierarchy among levels corroborates with the hypothesis that pragmatic
interoperability is only achieved after obtaining syntactic and semantic interoperability
(ASUNCION; SINDEREN, 2010).

Figure 2.4 Differences among interoperability levels. Adapted from (ADEBESIN et al., 2013).

The next chapter presents a general introduction of Cloud Computing, presenting
their characteristics, challenges, business model, and some cloud services.

Chapter

3
This chapter presents the concepts about Cloud Computing. We describe the characteristics, challenges,
deployment models, and service model.

CLOUD COMPUTING

According to the National Institute of Standards and Technology (NIST), Cloud Com-
puting is a paradigm for enabling ubiquitous and on-demand access to a shared pool of
logical and physical resources (e.g., applications, platforms, and hardware) as services.
Cloud services can be rapidly provisioned and released with minimal management ef-
fort of providers (MELL; GRANCE, 2011). Zhang, Cheng and Boutaba (2010) state
that Cloud Computing is a model that brings together a set of technologies to provide
services differently. Cloud Computing leverages the advantage of existing technologies,
such as Grid Computing, Utility Computing, Virtualization, and Autonomic Computing,
to meet the requirements of today’s demand. By 2025, about 49% of available data will
be managed and stored by a cloud computing provider (REINSEL; GANTZ; RYDNING,
2018).

The major actors in traditional architecture are the consumers and providers. While
consumers use, own, and maintain the services, the providers sell, install, license, consult,
and maintain these services. In the Cloud Computing model, three new actors were added:
auditors, brokers, and carriers. Auditors are responsible for assessing cloud services in
terms of security, privacy, performance, among others. Brokers are entities that aim
to integrate multiple services and intermediate the relationships between providers and
consumers. Finally, carriers provide connectivity and transport among different cloud
services (HOGAN et al., 2011).

One of the significant benefits of Cloud Computing is to enable consumers to use
resources instead of installing them. Differently from traditional applications, modern
applications must meet four major factors: mobility, sharing, end of clock speed, and slow
network speed growth (SCHUBERT; JEFFERY, 2015). Mobility is the ability to access
a service or application anytime and anywhere. Sharing is the ability of providers to
deploy a service or distributed application and to consumers to access it remotely. End
of clock speed concerns the strategies performed to overcome the limitations of current
processors, such as parallelism. Finally, slow network speed growth involves the limitations

19

20 CLOUD COMPUTING

of the network since the number of consumers (cores, processors, and devices) is growing
faster than communication speed.

The following sections present the characteristics, deployment models, challenges, and
service model.

3.1 ESSENTIAL CHARACTERISTICS

According to Mell and Grance (2011), the following characteristics distinguish the Cloud
Computing model from traditional computing:

1. On-demand self-service enables consumers to unilaterally provision and release
computing (e.g., server time and network storage) capabilities as needed without
human interaction between the consumer and the provider. This feature provides
efficiencies and cost savings to both consumers and cloud service providers since
the consumers have the autonomy to manage resources.

2. Broad network access concerns the availability of services. This feature ensures
that Cloud Computing services are available over the network to be accessed by
heterogeneous devices, such as desktop, tablets, smartphones, smartwatch, among
others.

3. Resource pooling enables Cloud Computing providers to pool services to serve
multiple consumers based on the multi-tenant model, with physical and logical
resources dynamically distributed. In most cases, consumers have no control or
knowledge over the geographic location of the provided resources.

4. Rapid elasticity ensures that services can be elastically provisioned and released
depending on demand, in some cases automatically. In the consumer’s view, these
services are available full-time and unlimitedly to be consumed anytime from any-
where.

5. Measured service concerns the payment method for the use of Cloud Computing
resources. Cloud providers automatically control and optimize resource use based
on the type of service, such as storage, processing, bandwidth, and active user
accounts. Typically the payment is made on a pay-per-use policy. Resources are
monitored, controlled, and reported, providing transparency for both the provider
and consumer.

3.2 DEPLOYMENT MODELS

The structural models concern the models of development and availability of clouds to
final consumers. In this classification, clouds can be public, private, community, or hybrid
(MELL; GRANCE, 2011).

The public cloud infrastructure provides resources and services for open use by the
general public. Although public, this cloud may be owned, managed, and operated by a
business, academic, government organization, or some combination of them. Public cloud
may be free, subscription-based, or provided on a pay-per-use model.

3.3 CHALLENGES 21

The private cloud infrastructure provides resources and services for the exclusive
use of a specific public. Many organizations do not adopt public clouds because they are
accessed over the Internet by the general public. A private cloud offers a higher degree
of privacy and control over cloud services, resources, and data. Private clouds may be
hosted on-premise or externally.

The community clouds infrastructure provides resources and services for exclusive
use by a specific community of consumers, e.g., mission, security requirements, and policy.
This cloud model supports a specific community that aims at a common goal. Community
clouds may be owned, managed, and operated by one or more organizations, a third party,
or some combination of them. Similar to the private clouds, community clouds may be
hosted on-premise or externally.

Finally, hybrid clouds are composed of two or more distinct infrastructures (private,
community, or public). As a result of this combination, each hybrid cloud has different
properties, such as performance, cost, and security. Table 3.1 presents a comparison of
the different models.

Table 3.1 Comparison of the four cloud distribution models

Type Consumer Access Provider Location
Public General public Shared External Externally

Private Specific public Private Internal or
External

On-premise or
externally

Community Specific
community Shared Internal or

External
On-premise or
externally

Hybrid Hybrid Hybrid Hybrid Hybrid

3.3 CHALLENGES

Although cloud architecture appears as an attractive solution for companies worldwide,
various challenges remain inadequately addressed (ARMBRUST et al., 2010; DILLON;
WU; CHANG, 2010; ZHANG; CHENG; BOUTABA, 2010; KHORSHED; ALI; WASIMI,
2012; AN; ZAABA; SAMSUDIN, 2016; OPARA-MARTINS; SAHANDI; TIAN, 2016;
NARANG; GUPTA, 2018):

1. Security: Since Cloud Computing available services over the Internet, access au-
thentication, confidentiality, and auditability are examples of important require-
ments.

2. Availability: Cloud providers should allow consumers to access and to utilize the
services anytime and anywhere.

3. Auto scaling: Resources and services (physical and logical) should be (re)configured
automatically whenever possible since Cloud Computing is an autonomous system
managed transparently.

22 CLOUD COMPUTING

4. Data management: Many challenges are associated with data management in
cloud applications. For instance, services should ensure data integrity, backup,
availability, or completeness. These characteristics are critical factors for cloud suc-
cess and depend on the service. Data processing must guarantee service scalability
without compromising data consistency.

5. Financial cost: Clouds should fulfill business rules without overloading consumers’
budgets. The cost reduction happens as cloud providers rapidly provisioned and
released services on demand.

6. Standardization: One of the leading Cloud Computing challenges is to perform
transparent communication among services. This communication is a challenge
due to the high number of technologies involved. Providers develop, manage, and
provide clouds using different technologies without any standardization. The lack
of standardization causes a vendor lock-in problem, and vendor lock-in problem
hinders interoperability and portability among systems (LOUTAS et al., 2011).

3.4 SERVICE MODEL

The most common service model in the literature for Cloud Computing is formed by three
levels: IaaS, PaaS, and SaaS. Figure 3.1 illustrates the relationship among the layers:
system architects manage the IaaS infrastructure to provide a platform in PaaS. Devel-
opers utilize the PaaS platform to provide services for SaaS. Finally, SaaS level provides
services to end-users (RINGS; GRABOWSKI, 2012; TARIQ; KHAN; IFTIKHAR, 2014).
Each layer employs and provides a set of physical or logical resources as services.

Figure 3.1 The most common service model in the literature for Cloud Computing (RINGS;
GRABOWSKI, 2012).

3.4 SERVICE MODEL 23

Some cloud providers create other cloud services. These novel services were incor-
porated into the three layers model to fulfill more specific business rules. For instance,
DBaaS (MALLIGA, 2012), DaaS (DIKAIAKOS et al., 2009), Communication as a Service
(CaaS) (SCHAFFER, 2009), Confidentiality as a Service (FAHL et al., 2012), Privacy as
a Service (PaaS or DPaaS) (SCHAFFER, 2009), and Test as a Service (TaaS) (TUNG;
LIN; SHAN, 2014) are examples of these novel services. Those models are commonly
defined as Everything as a Service (XaaS). This nomenclature indicates that any compu-
tational resource can be created and provided as a service (RIMAL; CHOI; LUMB, 2009;
SIMMON, 2018). The next subsections detail some cloud services.

3.4.1 Software as a Service (SaaS)

SaaS is a delivery model of applications in a cloud environment (BUYYA; BROBERG;
GOSCINSKI, 2011). Cloud environment enables multiple devices to access these applica-
tions (SaaS) through a thin client1. The consumer does not manage or control the cloud
infrastructure (e.g., network, servers, operating systems, or storage). The consumers can
only configure user-specific settings (LIU et al., 2011).

Examples of SaaS are Dropbox2 and Google Docs3. Both applications are available
over the Internet through a web browser or through an API that can be accessed by their
respective mobile and desktop clients or by third-party applications.

3.4.2 Platform as a Service (PaaS)

PaaS provides a platform to develop, manage, and host applications. PaaS platform
provides databases, development environments, operating systems, among others, to fa-
cilitate application development. This layer offers developers a transparent environment
without quantifying the total of processors or memory that a given application may re-
quire (MELL; GRANCE, 2011; BUYYA; BROBERG; GOSCINSKI, 2011).

Heroku4 and Google Colab5 are examples of PaaS services.

3.4.3 Infrastructure as a Service (IaaS)

IaaS affords virtualized resources, such as virtualization, storage, and network on-demand.
This infrastructure provides heterogeneous servers transparently and facilitates the or-
ganizations’ expansion based on infrastructure on-demand (MELL; GRANCE, 2011;
BUYYA; BROBERG; GOSCINSKI, 2011).

Examples of IaaS are VMware6 and Amazon Web Services7.

1In a client-server architecture, a thin client is a simple and low-performance computer optimized for
a remote connection. The client depends mostly on the server for access and processing of resources.

2<https://dropbox.com>
3<https://docs.google.com>
4<https://www.heroku.com>
5<https://colab.research.google.com/>
6<https://www.vmware.com>
7<https://aws.amazon.com>

24 CLOUD COMPUTING

3.4.4 Data as a Service (DaaS)

DaaS is a data delivery and management model on-demand regardless of the geographic
or organizational location of provider and consumer (TRUONG; DUSTDAR, 2009).

As previously stated, data may be stored in non-structured (e.g., text), semi-structured
(e.g., XML, JSON, and CSV), or structured format (e.g., Relational Database). Addi-
tionally, different cloud providers employ different modeling and technologies to provide
the same resources (LOUTAS et al., 2011). For these reasons, Cloud Computing manages
and processes heterogeneous DaaS (TERZO et al., 2013).

DaaS services are dynamic since they must fulfill requests from different consumers.
Terzo et al. (2013) state that a DaaS can be separated into three layers: (i) discovery
layer finds or collects data from heterogeneous sources, (ii) process layer concerns the
processing of massive datasets, and (iii) the store layer regards the issues posed by Big
Data, such as the problem of the store and manage a large amount of data.

Brazilian Open Data Portal8 and DATA.GOV9 bring together some DaaS.

3.4.5 Database as a Service (DBaaS)

DBaaS provides databases as a service to consumers or organizations on-demand. DBaaS
service is scalable with some traditional model features, such as replication, data integrity,
and data authentication (HACIGUMUS; IYER; MEHROTRA, 2002; MALLIGA, 2012).
Although confusing, DaaS and DBaaS are different concepts (ZHENG; ZHU; LYU, 2013).

Some benefits of the DBaaS model compared to the traditional model are: (i) on-
demand scalability allows simple increasing the computational resources when necessary
as opposed to on-site databases; (ii) rapid provisioning ; (iii) enhanced security with the
remote monitoring and database being off-site; (iv) outsourcing the administration en-
ables different services (e.g., backup, optimization, and upgrading) managed by experts;
(v) cost savings since the DBaaS service is cheaper than a commercial DBMS; and (vi)
easy tracking of features as usage time, space, availability, and resource consumption
(HACIGUMUS; IYER; MEHROTRA, 2002; MALLIGA, 2012; SEIBOLD; KEMPER,
2012).

PaaS and DBaaS are similar due to the contracting model. In the PaaS model,
the consumer purchases an environment with a Database Management System (DBMS)
and all necessary computational resources, such as processor and memory (SEIBOLD;
KEMPER, 2012). Similar to DBMS model, DBaaS service consists of a Relational, Not
Only SQL (NoSQL), or NewSQL database.

Relational databases are composed of simple structures according to Atomicity, Con-
sistency, Isolation, and Durability (ACID) properties. The standard language of rela-
tional databases is Structured Query Language (SQL). SQL queries allow the selection,
insertion, updating, and deletion of data (ELMASRI; NAVATHE, 2010).

Although popular10, relational databases do not fully fulfill modern application re-

8<http://dados.gov.br>
9<https://www.data.gov>

10<https://db-engines.com/en/ranking>, last accessed: November 6th, 2020

3.4 SERVICE MODEL 25

quirements, such as processing large volumes of data, scalability, and availability. NoSQL
has emerged to fulfill some of these requirements (STOREY; SONG, 2017).

NoSQL is an approach to manage non-tabular and non-relational databases. Contrary
to Relational models, NoSQL databases use flexible schemes without supporting ACID
properties. NoSQL databases are based on Consistency, Availability, and Partition (CAP)
Theorem. According to CAP Theorem, a NoSQL (or Relational) system can support only
two of these proprieties simultaneously and not much more (HAN et al., 2011). Figure 3.2
presents NoSQL databases according to the two guarantees of the CAP Theorem: CA,
CP, or AP. These databases are classified into Key-value, Column-oriented, Document,
and Graph model.

(C) Consistency
Every read receives the most recent

write or an error
(P

) P
ar

tit
io

n

Th
e

sy
st

em
 c

on
tin

ue
s

to
 o

pe
ra

te

de
sp

ite
 a

n
ar

bi
tra

ry
 n

um
be

r o
f

m
es

sa
ge

s
be

in
g

dr
op

pe
de

s

(A) Availability

Every request receives a response,

without the guarantee that it

contains the m
ost recent write

CPCA

AP

CAP

CP
 - HBase (Column-oriented)
 - MongoDB (Document)
 - Redis (Key-value)

CA
 - Relational databases
 - Neo4j (Graph)
 - OrientDB* (Graph)

AP
 - Riak (Key-value)
 - Cassandra (Column-oriented)
 - CouchDB (Document)
 - OrientDB* (Graph)*depends on cluster configuration

Figure 3.2 NoSQL databases based on CAP Theorem. Adapted from (WANG; TANG, 2012;
MONIRUZZAMAN; HOSSAIN, 2013).

In the key-value model, data is stored without schema, and each data consists of an
indexed key and a value. The column-oriented model is an extension of the key-value
model. This model enables complex structures with nested lists. The document model
stores a set of key-values with unique keys in JSON format. Graph-based databases are
based on graph theory and are useful for interconnected relationship data (HAN et al.,
2011; FERNANDES; BERNARDINO, 2018). Figure 3.3 presents the same dataset in
four different models.

NoSQL model uses a proprietary API to queries data on the database. For instance,
given the same dataset, the following three queries return the same data:

26 CLOUD COMPUTING

“Ribeiro”
“age: 30;
lives: Porto Seguro;
likes: games, book;
married: Santos”

“Santos”
“lives: Porto Seguro;
academicDegree: PhD;
married: Ribeiro”

key value

“id: Ribeiro;
age: 30;
lives: Porto Seguro;
likes: games, book;
married: Santos”

“id: Santos;
lives: Porto Seguro;
academicDegree: PhD;
married: Ribeiro”document 1

document 2

D
atabase

Keys

“Ribeiro”

“Santos”

age 30

lives Porto Seguro

likes games book

married Santos

lives Porto Seguro

academicDegree PhD

married Ribeiro

Ribeiro

column value

Santos
married

30

age

Porto
Seguro

lives
games

book

likes lives

likes

PhD

academicDegree

a)
c)

b)
d)

Figure 3.3 NoSQL models: (a) Key-value, (b) Column-oriented, (c) Document, and (d) Graph.

• MySQL (Relational database):

SELECT id
FROM people
WHERE married = "Santos"

• MongoDB:

db.people.aggregate([
{ $match:{married: "Santos"} },
{ $project:{"id":1} }

])

• Neo4j:

MATCH (t:people)
WHERE t.married = ’Santos’
RETURN t

3.4 SERVICE MODEL 27

Many organizations continue to use traditional relational databases due to uncertain-
ties about NoSQL. The major impediments to companies adopt NoSQL solutions are the
lack of full ACID transaction support and the absence of SQL. NewSQL databases have
emerged to the strengths of the relational and NoSQL models. NewSQL is a relational
and highly scalable database with support for ACID properties (GROLINGER et al.,
2013).

Table 3.2 compares the Relational, NoSQL, and NewSQL databases (GROLINGER et
al., 2013; FATIMA; WASNIK, 2016; MALHOTRA et al., 2017). We evaluate according
to the following criteria: (i) data model, (ii) use of keys, (iii) availability for Big Data
applications (Big Data apps), (iv) query language, (v) ACID properties, (vi) atomicity,
(vii) consistency, (viii) isolation, (ix) durability, (x) CAP properties, (xi) possibility to
partition, and (xii) scheme flexibility.

Table 3.2 Comparison of Relational, NoSQL, and NewSQL databases (GROLINGER et al.,
2013; FATIMA; WASNIK, 2016; MALHOTRA et al., 2017)

Criteria Relational NoSQL NewSQL
Data model Relational Depends on database Relational
Keys Yes No Yes
Big Data apps No Yes Yes
Language SQL Specific API SQL
ACID Yes No Yes
Atomicity Yes Depends on database Yes
Consistency Yes Eventual Yes
Isolation Yes Manual Yes
Durability Yes Depends on database Yes

CAP CA AP or CP AP
Partition Weak Strong Strong
Scheme Hard Light Hard

Oracle11 and MySQL12 are example of Relational databases, MongoDB13 and Redis14

are example of NoSQL databases, and MariaDB15 and VoltDB16 are example of NewSQL
databases.

11<https://www.oracle.com>
12<https://www.mysql.com>
13<https://www.mongodb.com>
14<https://redis.io>
15<https://mariadb.org>
16<https://www.voltdb.com>

28 CLOUD COMPUTING

3.5 THE LOCK-IN PROBLEM AND INTEROPERABILITY IN CLOUD COM-
PUTING

Cloud Computing provides a business strategy for small, medium, or large companies to
remain competitive and meet consumer needs (ARMBRUST et al., 2010). Security and
vendor lock-in are significant challenges for the growth and adoption of Cloud Comput-
ing (DILLON; WU; CHANG, 2010; SAHANDI; ALKHALIL; OPARA-MARTINS, 2013;
LOUTAS et al., 2011).

Vendor lock-in problem in cloud computing occurs when cloud customers are depen-
dent on a specific cloud provider (OPARA-MARTINS; SAHANDI; TIAN, 2016). Vendor
lock-in problems may occur within a single cloud (i.e., vertical heterogeneity) or among
distinct clouds (i.e., horizontal heterogeneity) (RANABAHU; SHETH, 2010).

Cloud users hardly interoperate their services with a different vendor due to sub-
stantial costs, legal constraints, or technical incompatibilities (ARMBRUST et al., 2010;
RODERO-MERINO et al., 2010; OPARA-MARTINS; SAHANDI; TIAN, 2016). The
cost to interoperate clouds can be substantial since different clouds often use propri-
etary protocols and interfaces. Communication between different services requires cloud
providers to interact with other providers using different API (DILLON; WU; CHANG,
2010).

Interoperability in Cloud Computing can be classified into four categories (ARUNK-
UMAR; VENKATARAMAN., 2015):

• Application interoperability is at risk when a service or resource needs to be
accessed by platform or provider, and this service or resource is bound to provider-
specific API.

• Platform interoperability is at risk when the platforms on which services are run-
ning are not able to be moved to another cloud.

• Storage interoperability is at risk when specific RAID configurations and partition-
ing made by a cloud provider prevents data transference to another cloud provider.

• Management interoperability is at risk when details of cloud configuration (e.g.,
network adapters and open ports) may not be replicated at another cloud provider.

The importance of interoperability is related to Software Engineering from another
perspective. According to Rana, Dauren and Kumaran (2015), the first phase in de-
veloping applications for Cloud Computing is to identify the structural model’s specific
characteristics. For instance, access authentication is an optional requirement in a public
cloud and a mandatory requirement in a private cloud.

Tariq, Khan and Iftikhar (2014) state that these requirements are fundamental to
successful cloud adoption. Figure 3.4 summarizes some cloud requirements from the per-
spective of providers, enterprises, and consumers. According to the figure, there are only
three requirements concerning more than one stakeholder: quality of service, scalability,
and interoperability (RIMAL et al., 2011).

3.6 CHAPTER SUMMARY 29

Provider	Requirements Enterprise	Requirements

Fault	tolerance

Scalability

Services

SaaS

PaaS

IaaS

Structural	Model

Public

Private

Hybrid

Community

Data	Management,
Storage,	and	Processing

Virtualization
Management

Security

Cloudonomics

Data	Migration

Business	Process
Management

Consumer	Requirements

Quality	of	Service	(QoS)

Service	Level	Agreement
(SLA)

User	Experience

Adaptability	and
Learning

Interoperability

Figure 3.4 Relevant requirements in cloud applications (RIMAL et al., 2011).

3.6 CHAPTER SUMMARY

This chapter introduced the general concepts of Cloud Computing, their characteristics,
challenges, deployment models, and service model. Cloud Computing provides physical
and logical resources as a service on-demand in a pay-per-use policy. The cloud services
are usually organized into three levels: IaaS, PaaS, and SaaS. However, other services
may be incorporated into the three levels model to fulfill more specific requirements,
such as DaaS and DBaaS. Five significant characteristics enable Cloud Computing to
meet consumers’ expectations: on-demand self-service, broad network access, resource
pooling, rapid elasticity, and measured service. The cloud environment provides services
based on four deployment strategies: public, private, community, and hybrid models.
This paradigm’s most significant challenges are security, availability, auto scaling, data
management, financial cost, and standardization.

The concepts presented in this chapter are the basis for understanding the thesis
domain. The next chapter presents a MIDAS in detail.

Chapter

4
This chapter presents a Middleware for DaaS and SaaS (MIDAS). We describe MIDAS in detail because
this solution is used as a basis for our model evaluation. We compare the different MIDAS versions and
provide a MIDAS timeline.

MIDDLEWARE FOR INTEROPERABILITY AMONG
CLOUDS

MIDAS is a solution to provide interoperability among different SaaS, DaaS, and DBaaS.
Proposed initially by Marinho et al. (2016), some works have improved MIDAS middle-
ware over time (VIEIRA et al., 2017; RIBEIRO et al., 2018; SILVA; RIBEIRO; CLARO,
2018; RIBEIRO et al., 2019; MANE et al., 2020). We present MIDAS in detail because
the evaluation of our models is based on this middleware.

MIDAS is based on open-source technologies with PHP support. The middleware is
hosted by Heroku, an open cloud that provides a complete PaaS, sufficient storage space,
and some programming languages (e.g., PHP, Java, Ruby, Node, Python, and Go).

The next sections introduce MIDAS in detail, from the initial version (MIDAS 1.0)
to the current version (MIDAS 2.0). We describe the improvements provided by each
version.

4.1 MIDAS 1.0

MIDAS 1.0 (see Figure 4.1) is formed by four components: (i) query decomposer, (ii) query
builder, (iii) Dataset Information Storage (DIS), and (iv) result formatter (MARINHO
et al., 2016). Query decomposer breaks the original query submitted by SaaS (in this
version, only SQL) into an independent format. This format is more interoperable than
the SQL query because it enables query builder to build the DaaS request1 independently
of the query language.

After receiving the query decomposed by query decomposer, the query builder assem-
bles the Uniform Resource Locator (URL) to query DaaS. For this, query builder searches
in DIS the information about DaaS requested.

1Each DaaS is accessed by a URL. The URL parameters vary according to the API.

31

32 MIDDLEWARE FOR INTEROPERABILITY AMONG CLOUDS

Query Builder

Dataset Information
Storage

Request Module Result Module

Subtitles

Sending request/result

Direct database communication

Indirect database communication

Inner module communication

DaaS process

MIDAS 1.0

User

Query
Decomposer

DaaS
Request

DaaS

DaaS
Result

SaaS
ResultSaaS

Result Formatter

Query
Request

Figure 4.1 MIDAS 1.0 architecture (MARINHO et al., 2016).

DIS stores information about data and DaaS API. MIDAS 1.0 used a relational
database to manage DIS information. These data were added and updated manually.

After performing the query on DaaS, result formatter handles the returned data. This
component sends to SaaS only relevant information. MIDAS 1.0 received (from DaaS)
and returned (to SaaS) data only in JSON format.

This release recognized SQL queries from a single DaaS.

4.2 MIDAS 1.6

MIDAS 1.6 (see Figure 4.2) is an enhanced version of MIDAS 1.0 (VIEIRA et al., 2017).
This version grouped the MIDAS 1.0 components into DIS and two modules: Request and
Result. As the names suggest, the Request Module handles the incoming SaaS query, while
the Result Module process the DaaS return. Request Module combines query decomposer
and query builder, and Result Module covers the result formatter.

Besides rearrange the MIDAS 1.0 components, MIDAS 1.6 presented some significant
improvements. MIDAS 1.6 enables (i) more robust support to SQL queries, including
join statement and (ii) simple MongoDB (NoSQL) queries. Additionally, this release
(iii) recognizes returned data by DaaS in other formats (e.g., XML and CSV) in addition
to JSON files. Finally, (iv) authors changed the DIS from a relational database (MySQL)
to a JSON file. This improves the MIDAS efficiency and avoids lock-in problems in the
future.

MIDAS 1.6 addresses important issues left open in the first version. The authors

4.3 MIDAS 1.8 33

DaaS
Request

DaaS

DaaS
Result

Query
Request

Query
Decomposer

Query Builder

Dataset Information
StorageRequest Module

Result Module

SaaS
Result

Subtitles
Sending request/result

Indirect database communication

Inner module communication

DaaS process

MIDAS 1.6

SaaS

User

Result Formatter

join
yesno

...

DaaS
Request

DaaS

DaaS
Result

Web
Clawler

Figure 4.2 MIDAS 1.6 architecture (VIEIRA et al., 2017).

claim that results show the effectiveness of new MIDAS for tackling interoperability is-
sues among Cloud Computing services. Nonetheless, a critical problem is presented: the
absence of a crawler to automate the search for DIS information. This problem is sig-
nificant because changes in DaaS parameters are updated manually in MIDAS 1.6. A
Web Crawler was incorporated into MIDAS 1.6 to update DIS automatically (SILVA;
RIBEIRO; CLARO, 2018). This Web Crawler enhances consistencies MIDAS 1.6 com-
munication among cloud services.

4.3 MIDAS 1.8

MIDAS 1.8 (see Figure 4.3) recognizes DBaaS as a data storage service (RIBEIRO et
al., 2018). In contrast to previous versions, MIDAS 1.8 enables (i) queries to DBaaS
service, (ii) to manipulate different data (DaaS and/or DBaaS) into a single query, (iii)
aggregation operation (lookup2 clause) in MongoDB queries, and (iv) to return data to
SaaS in other formats (e.g., XML and CSV) in addition to JSON files.

Queries in DBaaS are possible due to a new module: Resource Module. This module
contains one component: data mapping. When the query sent by SaaS has a DBaaS as a
data source, data mapping is activated, and it simulates a DBaaS as a DaaS. This feature
allows query DBaaS without changing MIDAS components.

MIDAS 1.8 presents a formal description of the middleware components. The formal
2MongoDB lookup is similitar to SQL LEFT OUTER JOIN.

34 MIDDLEWARE FOR INTEROPERABILITY AMONG CLOUDS

Resource
Module

Request Module

Query
Decomposer

Query
Builder

Result Module

Result
Formatter

DaaS 1 DaaS 2 DaaS 3

Data
Mapping

MIDAS 1.8

Crawler

SaaS

User

Query
Result

Query
Request

S
ub

tit
le

s Internal communication

External communication

Alternative communication

NoSQL

NewSQL

Relational

DBaaS

DIS

Figure 4.3 MIDAS 1.8 architecture (RIBEIRO et al., 2018).

model aims to explain and to document the communication among MIDAS components.

4.4 MIDAS 1.9

MIDAS 1.9 (see Figure 4.4) is an attempt to move towards concerning the formalization
of communication (RIBEIRO et al., 2019). This version presents the formal model in
Description Logic (DL).

Additionally, MIDAS 1.9 presented some minor adjustments. Resource Module was
renamed to Data Module. Opposite to the previous version, the Data Module consists
of two components: data mapping and data join. Data mapping identifies, obtains, and
simulates a DBaaS as a DaaS. Data join runs when SaaS submits queries with the clause
join. Data join receives data from data mapping separately, and then it performs the
data merger. This module was split to improve the understanding of the components.
Resource Module (MIDAS 1.8) and Data Module (1.9) have the same functionality.

About Result Module, result formatter was also split into two other components: for-
matter and filtering. Formatter is responsible for data formatting, while filtering performs
the data association and selection. Result Module was split to detail the data flow.

The other modules (DIS, Web Crawler, and Request Module) remained unchanged.

4.5 MIDAS 2.0 35

NoSQL

NewSQL

Relational

Data
Mapping

DaaS 1 DaaS 2 DaaS 3

MIDAS 1.9

Dataset
Information

Storage

DBaaS

SaaS

User

Query
Result

Query
Request

Data Module

Request Module

Formatter Filtering

Result Module

Query
Decomposer

Data
Join

Query
Builder

Web
Crawler

S
ub

tit
le

s Inner communication

Outer communication

Alternative communication

Figure 4.4 MIDAS 1.9 architecture (RIBEIRO et al., 2019).

4.5 MIDAS 2.0

MIDAS 2.0 (see Figure 4.5) is the first attempt to incorporate a semantic approach into
MIDAS middleware (MANE et al., 2020). The semantic approach aims to maximize
MIDAS availability even if DaaS parameters changed over time.

The authors developed a method to semantically combine parameters from DaaS
and data from the original query. The similarity method is based on several knowledge
sources. This approach identifies a conceptual proximity degree between two parameters
based on Cosine similarity, Jaccard index, and WordNet.

A semantic approach is possible due to a new module: Semantic Module. This new
module is composed of two components: semantic mapping and Semantic Mapping Stor-
age (SMS). Semantic mapping accesses Web Crawler logs after each DIS update to
identify semantic similarity among DaaS parameters. SMS stores the semantic mapping
results results in a tree structure. The parameter in each result points to its semantically
similar word.

Although the authors pointed out that results present some overhead due to the
middleware structure, experiments show that MIDAS 2.0 is a good attempt towards
semantic interoperability among cloud services.

36 MIDDLEWARE FOR INTEROPERABILITY AMONG CLOUDS

Filtering

Formatter

CrawlerNewSQL

NoSQL

Relational

QueryRequest QueryResult

SemanticMapping

SMS

DIS

DataMapping
Data Join

QueryDecomposer
Builder

Query

Syntactic

Semantic

DBaaS

SaaS

Result Module
SemanticModule

Data Module

Request Module

DaaS 3
DaaS 2

DaaS 1

Figure 4.5 MIDAS 2.0 architecture (MANE et al., 2020).

4.6 CHAPTER SUMMARY

MIDAS is a middleware to provide interoperability among cloud services. In this chapter,
we described the MIDAS and presented all five middleware versions published till today.
We present the MIDAS evolution because the evaluation of this thesis is based on the
middleware versions. This evolution emphasizes the contribution of this thesis in the
middleware improvements. Figure 4.6 depicts the main similarities and differences among
all MIDAS versions.

In Part III, we present our CAPITAL. The next chapter describes the model for
syntactic interoperability. We also report model evaluation into MIDAS.

4.6 CHAPTER SUMMARY 37

Version 1.0
(Marinho et a., 2016)

Version 1.6
(Vieira et al., 2017)

Version 1.8
(Ribeiro et a., 2018)

Version 1.9
(Ribeiro et a., 2018)

Version 2.0
(Mane et al., 2020)

Query
Decomposer

Query
Builder

DIS

Result
Formatter

Crawler

Data
Module

Semantic
Module

join
yesno

DaaS

Singly

Update DIS

join
yesno

Update DIS

*With two components:
Formatter and Filtering

join
yesno

join
yesno

Recognizes:

Returns:

Recognizes:

Returns:

Recognizes:

Returns:

Recognizes:

Returns:

*With two components:
Formatter and Filtering

Recognizes:

Returns:

Update DIS

WordNet

Cosine + Jaccard

Figure 4.6 Similarities and differences among the MIDAS versions.

PART II

CAPITAL FRAMEWORK

Chapter

5
This chapter presents the model for syntactic interoperability. We detail the syntactic interoperability of
MIDAS, and then we present the evaluation of this model. Finally, we present some related work.

MODEL FOR SYNTACTIC INTEROPERABILITY

The objective of this thesis is to investigate and provide a model for pragmatic interoper-
ability among cloud services. Since pragmatic interoperability is achieved after the con-
solidation of syntactic and semantic interoperability (ASUNCION; SINDEREN, 2010),
this thesis describes the syntactic and semantic levels before presenting the pragmatic in-
teroperability. Our models consider horizontal heterogeneity (i.e., among distinct clouds)
and application interoperability (i.e., when a service needs to be accessed by another
service).

Our model for syntactic interoperability is based on MIDAS 1.8 (RIBEIRO et al.,
2018) for chronological reasons. We employ a bottom-up strategy. This model aims to
explain and detail the syntactic interoperability among SaaS, DaaS, and DBaaS.

Generically, we assumed that p is a solution (e.g., a middleware) to provide syntactic
interoperability between cloud services s1 and s2. Figure 5.1 depicts the basic scenario
for the syntactic interoperability model. Given a solution p to interoperate s1 and s2, we
describe the syntactic interoperability based on three canonical models: (i) m1 describes
the flow s1 → p → s2, (ii) m2 describes the flow s2 → p → s1, and (iii) m3 describes p.
Each canonical model mi includes a set of mathematical definitions.

The p solution may be generalized to interoperate s1 with more than one service,
i.e., s2, s3, . . . , sn . For instance, we can assume that our solution interoperates a SaaS
with multiple DaaS (DaaS1, DaaS2, . . . , DaaSn). In this case, two situations may occur:
SaaS communicates with a single or multiple DaaS, i.e., the communication occurs with
or without data join. Regardless of the situation, the models m1, m2, and m3 store and
manipulate information necessary to provide syntactic interoperability, such as projec-
tion, selection, data sources, join condition, among others. When the solution requires
to interoperate SaaS and multiple DaaS, m1 describes the flow SaaS → p → DaaS1,
DaaS2, . . . , DaaSn ; m2 describes the flow DaaS1, DaaS2, . . . , DaaSn → p → SaaS; and
m3 describes information about each DaaS, such as attributes, formats, domain, among
others.

41

42 MODEL FOR SYNTACTIC INTEROPERABILITY

Figure 5.1 Generic solution p to interoperate s1 and s2 services.

The next section details our model for syntactic interoperability (RIBEIRO et al.,
2018). After that, we present the evaluation of this model. Finally, we present some
related work.

5.1 MODEL

Definition 5.1 (MIDAS internal structure). The structure used internally by MIDAS
(MIDASql) is a tupleMIDASql = (mDIS ,mSaaS ,mDaaS), where: mDIS is the canonical
model of DaaS presented in DIS; mSaaS is the canonical model that maps the query sent
by SaaS (i.e., the flow SaaS → MIDAS → DaaS1, DaaS2, . . . , DaaSn); and mDaaS is
the canonical model that maps DaaS return (i.e., the flow DaaS1, DaaS2, . . . , DaaSn →
MIDAS → SaaS).

We name m1 as mSaaS, m2 as mDaaS, and m3 as mDIS. The following subsections
detail each canonical model.

5.1.1 Canonical Model mDIS

Definition 5.2 (mDIS). The canonical model mDIS stores information present in the
DIS. This model is a tuple mDIS = (Nroot ,DAAS), where: Nroot is the name of the model;
and DAAS is a set of DaaS models (daas set).

Definition 5.3 (daas). The canonical model for a specific DaaS (daas ∈ DAAS) is a
tuple daas = (Nrootdaas ,K), where: Nrootdaas is the name of DaaS; and K is a predefined set
of keys (k) for each DaaS, where K = {domain, search path, query, sort, limit, dataset,
records, fields, format}.

Definition 5.4 (k). A key k (k ∈ K) is an information about daas . Each k is defined as
k = (Nrootk , i), where: Nrootk specifies information k (Nrootk ∈ K); and i is the information
about k . Information i may be empty, atomic, or multivalued.

5.1 MODEL 43

5.1.2 Canonical Model mSaaS

Definition 5.5 (mSaaS). The canonical model mSaaS converts the query submitted by
SaaS in a set with n URL, where n (n ≥ 1) is the number of join in the query. For
instance, n = 2 indicates a data join with 2 sources. Each DaaS is accessed by a URL.
The model mSaaS is a tuple mSaaS = (Nroot ,C1), where: Nroot is the value of n; and C1

is a set of first-level clauses (c1) that map and identify queries and operations.

Definition 5.6 (c1). A first-level clause c1 (c1 ∈ C1) stores specific information about
a query OR about an operation. This clause is a tuple c1 = (Nrootc1 ,C2), where: Nrootc1
identifies the query OR the operation; and C2 is a set of second-level clauses (c2) that
map and identify the query attributes and operations. Some important observations: (i)
Nrootc1 ∈ {q1, q2, . . . , qn , param}, where qi is an i-th query of a join with n data sources
and param stores data about join, order by and limit clauses; and (ii) given n, there are
n + 1 clauses c1.

Definition 5.7 (c2). A second-level clause c2 (c2 ∈ C2) stores information about query
clauses (qi) OR about operation clauses (param). This clause is a tuple c2 = (Nrootc2 ,V),
where: Nrootc2 identifies the query clause OR operation clause; and V is a set of values
(v) for each c2. Some important observations: (i) if c1 represents a query qi , then Nrootc2
concerns j attributes (j ≥ 0) of qi , where Nrootc2 ∈ {Projection, Selection,Dataset}; (ii)
if c1 represents param, then Nrootc2 comprises j attributes (j ≥ 0) of all n relations,
where Nrootc2 ∈ {OrderBy ,Limit ,TypeJoin,CondJoin,Return}; and (iii) given n, there
are 3n + 5 clauses c2.

Definition 5.8 (v). A value v (v ∈ V) represents an information about c2. Depending
on c2, V may be empty, atomic, or multivalued, i.e, V = ∅ or V = {v1, v2, . . . , vw},
where: vi is the i-th value v for each c2; and w is the number of values v for key c2.

After generating mDIS and mSaaS , our model for syntactic interoperability needs
to create a set of URLs to retrieve data from DaaS. MIDASql converts both mDIS
and mSaaS into URLs according to the function generateURLs. This function has the
following prototype: URLs generateURLs(mDIS, mSaaS, n). Given mDIS , mSaaS , and
n, generateURLs returns a set of URLs. Each URL is a concatenation sequence of mDIS
and mSaaS elements. The function generateURLs creates n URLs (n ≥ 1), where n is
the number of joins in the query, i.e., each qi (in mSaaS) generates URLi . For this, we
assume that (i) + is the concatenation operator for two literal or variable strings, and
(ii) ch(p) is a function that returns the contents of the child(ren) of p node. Code in
Listing 5.1 describes the function generateURLs.

Some important remarks about function generateURLs: (i) when ch(p) does not re-
turn elements, the corresponding code line for URLi must be disregarded; (ii) multivalued
results for ch(p) are separated by commas; and (iii) if n ≥ 2, then ch(qi.Projection)
must include ch(param.CondJoin) when the join attribute is not included in the projec-
tion attributes.

44 MODEL FOR SYNTACTIC INTEROPERABILITY

Listing 5.1 Function URLs generateURLs(mDIS, mSaaS, n)
1 URLs generateURLs(mDIS , mSaaS , n)
2 for each qi in mSaaS
3 SName = mDIS.ch(qi .dataset)
4 URL i =
5 ch(SName.domain) +
6 ch(SName.search_path) + ‘?’ +
7 ch(SName.dataset) + ‘=’ + ch(qi .Dataset)
8 + ‘&’ + ch(SName.records) + ‘=’ + ch(qi .Projection)
9 + ‘&’ + ch(SName.query) + ‘=’ + ch(qi .Selection)

10 if n > 1 // n is the number of join in the query
11 URL i = URL i +
12 ‘&’ + ch(SName.sort) + ‘=’ + ch(param.OrderBy) +
13 ‘&’ + ch(SName.limit) + ‘=’ + ch(param.Limit)
14 return URL i

5.1.3 Canonical Model mDaaS

Each DaaS returns data through a URL. Before sending the results to SaaS, MIDAS
performs some operations to make the data “presentable”, such as join, order by, and
limit, when applicable. These steps are carried out by employing the canonical model
mDaaS .

Definition 5.9 (mDaaS). The canonical model mDaaS maps the returns of n DaaS.
DaaS sends a return for each URL in a format described in the mDIS . If n = 1, then
mDaaS just converts the format returned by DaaS into format desired by SaaS, i.e.,
mDaaS just converts ch(DIS .ch(q1.dataset).format) into ch(param.Return). When n ≥ 2
(i.e., when there is a join), the relations are mapped two-by-two and mDaaS generates n
canonical mappings. In this case (n ≥ 2), mDaaS is a tuple mDaaS = (Nroot ,CJ), where:
Nroot is the name of the DaaS model; and CJ is a distinct set of ch(param.CondJoin)
(cj) values in the corresponding relation. The name (Nroot) of the i-th model is qiD.

Definition 5.10 (cj). An information cj (cj ∈ CJ) is a value that satisfies the join
condition ch(param.CondJoin) in the relation. Thus, cj is a tuple cj = (Nrootcj ,L),
where: Nrootcj is the name that identifies the value cj ; and L is a set of lists (l) with all
attributes that contain cj .

Definition 5.11 (l). A list l (l ∈ L) contains all elements of the same tuple in which cj is
part, in the same order that occurs in the relation: from left to right. The amount of l ∈ L
is equal to the amount of occurrences of cj in the relation, thus l = {a1, a2, a3, . . . , am},
where: ai is the i-th attribute a for each l in cj ; and m is the number of attributes a ∈ l .

The data join must be done after generating mDaaS . The next step depends on
join type (ch(param.TypeJoin)). In addition to the functions and operator mentioned
previously, we assume that: lch(p) is a function that returns the last child of a p node;
and con(p1, p2) is a function that connects the node p1 to the node p2.

The joins are performed as follows:

5.1 MODEL 45

1. When ch(param.TypeJoin) = ‘left outer ’:

(a) ∀ cj1 ∈ ch(q1D) and ∀ cj2 ∈ ch(q2D), con(lch(q1D .cj1), ch(q2D .cj2)), ∀ cj1 =
cj2;

(b) if cj1 6∈ ch(q1.Projection), then (i) perform con(q1D , ch(q1D .cj1)) and (ii)
remove cj1;

2. When ch(param.TypeJoin) = ‘right outer ’:

(a) ∀ cj1 ∈ ch(q1D) and ∀ cj2 ∈ ch(q2D), con(lch(q2D .cj2), ch(q1D .cj1)), ∀ cj1 =
cj2;

(b) if cj2 6∈ ch(q2.Projection), then (i) perform con(q2D , ch(q2D .cj2)) and (ii)
remove cj2;

3. When ch(param.TypeJoin) = ‘inner join’:

(a) ∀ cj1 ∈ ch(q1D), if cj1 6∈ ch(q2D), then remove cj1;

(b) ∀ cj2 ∈ ch(q2D), if cj2 6∈ ch(q1D), then remove cj2;

(c) ∀ cj1 ∈ ch(q1D) and ∀ cj2 ∈ ch(q2D), perform con(lch(q1D .cj1), ch(q2D .cj2)),
∀ cj1 = cj2 and ∀ cj2 = cj1;

(d) ∀ cj1 6∈ ch(q1.Projection), (i) perform con(q1D , ch(q1D .cj1)) and (ii) remove
cj1;

4. When ch(param.TypeJoin) = ‘full join’:

(a) ∀ cj1 ∈ ch(q1D) and ∀ cj2 ∈ ch(q2D), con(q1D , q2D .cj2);

(b) ∀ cj1 6∈ ch(q1D .Projection), (i) perform con(q1D , ch(q1D .cj1)) and (ii) remove
cj1;

5. Regardless of the join type, the following steps must be performed after the previous
steps:

(a) if ch(param.OrderBy) node exists, then this node must be ordered;

(b) if ch(param.Limit) node exists, then this must be the total of ch(q1D);

(c) q1D should be converted into ch(param.Return) format and the data is sent
to SaaS.

The evaluation of the model for syntactic interoperability is presented in Section 5.2.

46 MODEL FOR SYNTACTIC INTEROPERABILITY

5.2 EVALUATION

We evaluated the model for syntactic interoperability with a proof of concept, and we per-
formed our model based on two different queries: with and without data join. Figure 5.2
depicts a DIS with two DaaS: w7 and vz. Both queries consider the same DIS. The main
node (DIS) references two subtrees, and each subtree stores data about a specific DaaS.
At the last level (i), each node stores information about the k level immediately above.

DIS

w7

dataset filter fieldssortquerysearch_
path

dsw flw fdwswqw

/api/w/

domain format

http://w7.com json

limit

lw

records

rcw

vz

dataset filter fieldssortquerysearch_
path

dsv flv fdvsvqv

/api/v/

domain format

http://vz.com xml

limit

lv

records

rcv

k

i

k

i

daas

daas

Figure 5.2 Example of mDIS with two DaaS: w7 and vz.

Originally, w7 stores data about New York City hospitals, and vz stores data on New
York department of education borough enrollment offices. Table A.1 and Table A.2 in
Appendix A illustrate the data considered in the evaluation of our model for syntactic
interoperability. Queries are presented in the Subsection 5.2.1 (without data join) and
Subsection 5.2.2 (with data join).

5.2.1 Query without data join

The query present in Figure 5.3(b) generates the canonical model mSaaS described in
Figure 5.3(a). The query is described in SQL and NoSQL (MongoDB) without data join.

The main node of mSaaS in Figure 5.3(a) points to two subtrees: q1 and param.
The first subtree (q1) stores data about query: (i) projection attributes (firstname and
age), (ii) selection condition (age > 20), and (iii) data source name (w7). The second
subtree (param) stores data about (i) sort attribute (firstname), (ii) limit clause value

5.2 EVALUATION 47

fi fi

Figure 5.3 Example of mSaaS (a) for an SQL/NoSQL query without data join (b).

(2), and (iii) return format (json). Join type and condition are empty since the query
(Figure 5.3(b)) have no data join. The values present in the v level are independent of
the language used in the query.

DaaS return data through a URL. GivenmDIS (Figure 5.2) andmSaaS (Figure 5.3(a)),
the function generateURLs (Listing 5.1) generates the following URL:

URL1 = http://w7.com/api/w/?dsw=w7&rcw=firstname,age&qw=age>20&sw=
firstname&lw=2

Considering that the query without data join (Figure 5.3(b)) returns the data present
in Figure 5.4(b), mDaaS creates the canonical model in Figure 5.4(a).

mDaaS

cj

l

q1D

Alana

21

Ayanna

39

(a) (b)

Emerson

86

Howard

38

Figure 5.4 Example of mDaaS (a) for data returned by query without join (b).

48 MODEL FOR SYNTACTIC INTEROPERABILITY

After MIDAS receives the return from a DaaS, middleware performs limit clause on
the data before sending the results to SaaS. We assume that mDaaS (Figure 5.5(a))
represents the data that should be returned to the SaaS (Figure 5.5(b)).

(b)

mDaaS

cj

l

q1D
(a)

Alana Ayanna

21 39

Figure 5.5 Final result after model performs limit clause for the query without data join.

5.2.2 Query with data join

The query present in Figure 5.6(b) generates the canonical model mSaaS described in
Figure 5.6(a). The query is described in SQL and NoSQL (MongoDB) with data join.

2

q1 param

Dataset

Selection
Projection

age

mSaaS

c1

v

Cond

Join
TypeJoin

Limit
Order

By

3

c2

w7

q2

Dataset

Selection

Projection

phone vz left

outer
w7.id = vz.IDw7.

Return

xmlqueens
borough =

(a)

(b)
rstname rstname

Figure 5.6 Example of mSaaS (a) for a SQL/NoSQL query with data join (b).

The main node of mSaaS in Figure 5.6(a) points to three subtrees: q1, q2, and param.
The first two sub-trees (q1 and q2) store data about the query. A query with data join
relates two or more data sources (in this case, two data sources). Each data source is

5.2 EVALUATION 49

accessed through a URL. Consequently, our model must convert a query with join into
multiple URLs, so that each data source is accessed by one distinct URL. Since the query
performs data join between two data sources (w7 and vz), the model groups the data
sources information separately:

• q1 subtree stores (i) projection attributes (firstname and age) and (ii) data source
name (w7).

• q2 subtree stores (i) projection attribute (phone), (ii) selection condition (borough
= ‘queens’), and (iii) data source name (vz).

• param subtree stores data about (i) sort attribute (w7.firstname), (ii) limit clause
value (3), (iii) join type (left outer), (iv) join condition (w7.id = vz.ID), and (v)
return format (xml).

Similarly to the query without data join, the values present in the v level are inde-
pendent of the language used in the query.

Given mDIS (Figure 5.2) and mSaaS (Figure 5.6(a)), the function generateURLs
(Listing 5.1) generates the following URLs:

URL1 = http://w7.com/api/w/?dsw=w7&rcw=id,firstname,age

and

URL2 = http://vz.com/api/v/?dsv=vz&rcv=ID,phone&qv=borough=’queens’

Considering that the query with join (Figure 5.6(b)) returns the two datasets present
in Figure 5.7(b), mDaaS creates the canonical models is Figure 5.7(a).

mDaaS

Alana

21

(a)

1 107 135
cj

l

(b)

q2D

1 10 20

1157-... 8724-... 2134-...

2 15 20

q1D

Oleg

9

Ayanna

39

Howard

38
Dakota

19

Eliana

8

Emerson

86

Alf

20

Figure 5.7 Example of mDaaS (a) for data returned by query with data join (b).

After MIDAS receives the return from two DaaS, the middleware performs the steps
for left outer join (Subsection 5.1.3). We assume that mDaaS (Figure 5.8(a)) represents
the data that should be returned to the SaaS (Figure 5.8(b)).

50 MODEL FOR SYNTACTIC INTEROPERABILITY

mDaaS

cj

l

q1D(a)

(b)
Alana Alf Dakota

1157-... 2134-... 8724-...

192021

Figure 5.8 Final result after model performs order, limit and left outer join clauses for the
query with join.

We evaluate the correctness of our model for syntactic interoperability based on two
situations: query with and without data join. In this evaluation, we perform both queries
with our model and then we perform both queries on MIDAS. We noted that our model
represented without loss of information the syntactic interoperability between SaaS and
DaaS provided by MIDAS.

5.3 RELATED WORK

Our model for syntactic interoperability is based on SQLtoKeyNoSQL (SCHREINER;
DUARTE; MELLO, 2015). SQLtoKeyNoSQL is a layer for relational to NoSQL database
mapping. This solution enables users to perform NoSQL databases similar to rela-
tional databases. A hierarchical canonical model maps relational schemes into NoSQL
schemes. This canonical model is composed of trees and key-values. We adapted SQL-
toKeyNoSQL’s canonical model to represent syntactic interoperability in the cloud envi-
ronment.

Benzadri, Belala and Bouanaka (2014), Ma et al. (2012) formally specify cloud ser-
vices, customers, and their interactions. Although Benzadri, Belala and Bouanaka (2014)
focuses on the most common service model (i.e., SaaS, PaaS, and IaaS), the authors aim
to reason about concepts focusing on cloud deployment models. Furthermore, this work
does not focus on the interoperability concern.

Ma et al. (2012) specifies the semantics of services with a focus on web services
composition in the form of ontology. These descriptions represent the types of service,
conditions, and functionality of the service. In contrast to our work, the authors focused
on service specification, discovery, composition, and orchestration.

5.4 CHAPTER SUMMARY

This chapter presented the lightweight formal description of MIDAS syntactic interoper-
ability (RIBEIRO et al., 2018). Based on the bottom-up approach, our model describes
the syntactic interoperability of MIDAS 1.8. We introduced the canonical model and
mathematical definition of each MIDAS component. As proof of concept, we performed

5.4 CHAPTER SUMMARY 51

two different queries in our model: with and without data join. Our results demonstrate
that our model was able to describe both queries.

In the next chapter, we present our model for semantic interoperability. We also
report model evaluation into MIDAS middleware.

Chapter

6
This chapter presents our model for semantic interoperability. We detail the semantic interoperability of
MIDAS, and then we present the evaluation of this model. Finally, we present some related work.

MODEL FOR SEMANTIC INTEROPERABILITY

Our model for semantic interoperability is based on MIDAS 2.0 (MANE et al., 2020) for
chronological reasons. We employ a bottom-up strategy, similar to syntactic interoper-
ability. This model aims to detail the semantic interoperability among SaaS, DaaS, and
DBaaS.

Although MIDAS (1.0, 1.6, 1.8, and 1.9) provides syntactic interoperability among
cloud layers, semantic interoperability has only recently been addressed in MIDAS 2.0.
MIDAS-OWL provides semantic interoperability between SaaS and DaaS/DBaaS, which
was not possible in the previous versions of MIDAS. MIDAS-OWL is an OWL-based
ontology to reason about the communication among SaaS, DaaS, and DBaaS. With such
an ontology, we can translate queries independently of changes in the technology, format,
and information structure transparently. Our ontology represents some structural aspects
of DaaS and DBaaS, as well as queries. This ontology enables explicitly expressing the
semantic similarity between different queries and DaaS/DBaaS attributes.

We create a query vocabulary considering some query clauses and DaaS information.
Our ontology is an artifact of knowledge representation that aims to (i) formalize the
query taxonomy; (ii) establish relationships between different DaaS explicitly; and (iii)
separate business rules from knowledge rules, i.e., how MIDAS works from how MIDAS
integrates data.

MIDAS-OWL eases the query building through of (re)writing process. Our ontology
performs semantic integration based on this (re)writing queries. MIDAS-OWL represents
queries and DaaS structure. Our ontology facilitates semantic interoperability between
SaaS and DaaS.

We develop MIDAS-OWL in Ontology Web Language (OWL) based on Methontol-
ogy (FERNÁNDEZ-LOPEZ; GÓMEZ-PEREZ; JURISTO, 1997). We present an imple-
mentation and evaluation using Protégé 5.5.01 and Pellet2 reasoner. Pellet is an OWL-DL
reasoner, i.e., the DL SROIQ(D) (SIRIN et al., 2007).

1https://protege.stanford.edu/
2https://www.w3.org/2001/sw/wiki/Pellet

53

54 MODEL FOR SEMANTIC INTEROPERABILITY

We perform some experiments to evaluate the consistency, correctness, acceptance,
and integration of our model for semantic interoperability. Our results pointed out that
MIDAS-OWL provides (i) data select through query rewriting, (ii) integrating data-based
on semantically similar attributes, and (iii) a higher abstraction of SaaS and DaaS layers.

The next section details our model for semantic interoperability. Afterwards, we
present the evaluation of this model. Finally, we briefly discuss our findings and related
work.

6.1 MODEL

The literature presents some methodologies for the development and maintenance of
ontologies, such as Enterprise (USCHOLD; KING, 1995), On-To-Knowledge (STAAB
et al., 2001), TOVE (GRÜNINGER; FOX, 1995), and Methontology (FERNÁNDEZ-
LOPEZ; GÓMEZ-PEREZ; JURISTO, 1997).

Methontology provides a set of elements to support ontology development, e.g., knowl-
edge acquisition, specification, conceptualization, formalization, and others. The devel-
opment of our ontology considers the (i) specification, (ii) conceptualization, (iii) formal-
ization/implementation, and (iv) evaluation.

We apply qualitative research approach for the specification, conceptualization, and
evaluation, and Protégé tool and reasoner Pellet for the formalization/implementation
and evaluation.

MIDAS-OWL ontology is available at Appendix B. A complete documentation is
accessible at <https://elivaldolozer.github.io/ontmidas/>.

6.1.1 Specification

The focus of the specification stage was to understand the project scope. We carried
out interviews and meetings with MIDAS experts to obtain MIDAS specific terms and
how these terms relate to each other. MIDAS experts have different degrees levels (e.g.,
bachelor, master, and Ph.D.) and different middleware roles (e.g., developers, requirement
analysts, and project manager). Table 6.1 shows some competency questions which were
carried out in the interviews and meetings with experts.

The answer to each competency question is presented as follows:

• CQ1: MIDAS receives queries through a SaaS;

• CQ2: middleware recognizes SQL and MongoDB (NoSQL) queries;

• CQ3: MIDAS recognizes projection (SELECT in SQL and $project in MongoDB),
selection (WHERE in SQL and $match in MongoDB), order (ORDER BY in SQL and
$sort in MongoDB), limit (LIMIT in SQL and $limit in MongoDB), and join
(LEFT JOIN in SQL and $lookup in MongoDB) clauses. The clauses recognized by
MIDAS are subclasses of the clauses class (blue rectangle in Figure 6.1);

• CQ4: when MIDAS receives a query, the middleware (i) converts the query to a
specific pattern and (ii) based on this format creates a URL;

6.1 MODEL 55

Table 6.1 Competency questions (CQ) applied in the specification of our ontology

Competency Question (CQ)
CQ1 How to submit queries in MIDAS?
CQ2 Which languages are recognized by MIDAS?
CQ3 Which clauses are recognized by MIDAS?
CQ4 What does MIDAS perform when it receives a query?
CQ5 How does MIDAS receive data return from DaaS?
CQ6 How are the joins performed since data is returned from different DaaS/DBaaS?
CQ7 What is a relevant information about each DaaS?

• CQ5: MIDAS experts state that middleware recognizes data returned by DaaS in
CSV, XML, and JSON files (red rectangle in Figure 6.1);

• CQ6: middleware (i) receives the data by source (DaaS or DBaaS), (ii) standardizes
the results in a single format (e.g., XML), (iii) performs the join of these data based
on the query, and (iv) sends the result to the SaaS;

• CQ7: DaaS name, return formats, domain address, search path, attribute names,
and the parameter associated with the projection, selection, order, and limit clauses
(green rectangle in Figure 6.1). This information allows the ontology to performs
the exchange of messages between a SaaS and different DaaS.

From the responses, we establish the following specification:

• based on the interviews and meetings with experts, the domain of MIDAS-OWL is
queries in cloud computing;

• the focus of MIDAS-OWL is to represent queries submitted to MIDAS by a SaaS,
i.e., knowledge representation; and

• MIDAS-OWL will contribute to the implementations of semantic MIDAS version
from (re)writing queries.

6.1.2 Conceptualization

After the specification step, and before implementingMIDAS-OWL on Protégé, we depict
a representation of the abstract view of our ontology. This representation emphasizes the
classes and relationships. Figure 6.1 shows this representation of MIDAS-OWL. Based
on this representation, we define 44 classes and 41 relations. Clauses and attribute are
examples of classes, while has attrb and composed of are examples of relations.

56 MODEL FOR SEMANTIC INTEROPERABILITY

assoc_select

assoc_from assoc_where assoc_order_by assoc_limit

is_ais_a

has_join

has_ret

is_a

is_ais_a
is_a

clauses

is_a

is_a

is_a

has_ext

return

from

has_attrb

where

select

has_attrb

order_
by

has_vallimit

is_a

is_a

attrb1_
join

extension

attribute

has_op

has_val

has_info_dom

domain_info

has_info_sp

search_path
_info

has_info_rec

records_info has_info_ds

dataset_info

has_info_quer

query_info

has_info_sort

sort_info

has_info_lim

limit_info

has_info_form

format_info

DaaS

has_daas mDIS

value operator

has_info_fie

fields_info

has_clau

query
join

has_attrb

group_by

is_a
has_val

has_op

having

source

has_source

generates

op_
join

attrb2_
join

is_a

is_a
is_a

attrb_
proj

has_attrb
is_a

selection

has_sel

op_sel

is_a

attrb_
sel

is_a

value_
sel

is_a

attrb_
ord

is_a

value_
limis_a

attrb_
group

is_a

op_
havvalue_

hav

atb_
hav

is_a
is_a

has_attrb

is_a

has_op has_attrb
has_attrb

type_join

has_type

is_a

parameter

is_similar_to
composed_of

CQ3

CQ7

CQ5

Figure 6.1 MIDAS-OWL overview.

6.1 MODEL 57

6.1.3 Formalization and Implementation

In this step, we provide our representation into a Protégé format. We create 14 classes,
30 subclasses, 41 object properties, and 59 individuals.

6.1.3.1 Classes and Subclasses. Class is a group of individuals that share some
properties. A class can be divided into subclasses (ANTONIOU; HARMELEN, 2004).
We create classes and subclasses represented in Figure 6.1. Table 6.2 presents some classes
of our ontology.

Table 6.2 Examples of MIDAS-OWL classes

Class Subclass of Meaning
clauses — this class represents all the clauses that a query may have, such

as select, from, limit, order by, among others
select clauses this class maps the projected attributes by a query
where clauses this class specifies criteria for selecting data
op sel operator this class maps the operator present in the where clause, such

as greater than (>), not equal to (<>), among others

Figure 6.2 presents the taxonomy of clauses class. This class represents types of
clauses that may appear in a query to a DaaS: where, select, order by, having, group by,
limit, and from. Each of these clauses can be differently performed for each specific
DaaS, depending on its foundational technology, structure, among others. For instance, a
select clause may be performed in SQL as SELECT firstname FROM w7 and in MongoDB
(NoSQL) as db.w7.find({}, {"firstname": 1}).

6.1.3.2 Object Properties. Object property relates individuals of one class with
individuals of another class (ANTONIOU; HARMELEN, 2004). We define object prop-
erties based on Figure 6.1. Table 6.3 presents some object properties of MIDAS-OWL
ontology.

6.1.3.3 Individuals. Protégé recognizes individuals as instances. Instances are real
data from the knowledge base. An instance is the real value of a class (ANTONIOU;
HARMELEN, 2004).

Since MIDAS-OWL aims to represent a domain conceptually, instantiating individ-
uals is not the scope of this work. In the future, these instances will be populated by
MIDAS from each DaaS. Nevertheless, we instantiate some individuals to facilitate the
understanding of our model for semantic interoperability.

The evaluation of the model for semantic interoperability is presented in Section 6.2.

58 MODEL FOR SEMANTIC INTEROPERABILITY

Figure 6.2 Taxonomy of the Clauses class.

6.2 EVALUATION

We evaluate our model for semantic interoperability based on the qualitative research
approach (LOVRENCIC; CUBRILO, 2008).

We performe three distinct experiments. Our first experiment concerns with MIDAS-
OWL concepts and taxonomy. This experiment aims to assess the correctness and accep-
tance of concepts to construct classes and object properties. In the second experiment,
we depict a motivating example. This motivating example evaluates the correctness and
performance ofMIDAS-OWL within MIDAS middleware. The third experiment performs
two queries through SaaS to MIDAS: with and without a join clause. This experiment
aims to evaluate whether the elements meet all clauses in different queries. Experi-
ments 1 and 3 evaluate intrinsic aspects of the ontology, and experiment 2 performs our
ontology inside the MIDAS middleware. Experiments 2 and 3 address interoperability
issues between SaaS and DaaS cloud services (according to Table A.1 and Table A.2 in
Appendix A).

6.2.1 Experiment 1: Evaluation of Concepts

The first experiment checks MIDAS-OWL consistency. We perform the consistency check
test through the Pellet reasoner, looking for inconsistencies in logic and concepts. As a
result, the Pellet reasoner found no inconsistencies in the ontology. Afterwards, MIDAS
experts evaluated our ontology. This evaluation was carried out during two meetings.
Each meeting took three hours approximately.

A group of eight MIDAS experts evaluates the ontology based on the produced doc-
umentation. Experts evaluate the classes and object properties of the ontology. After
evaluating the ontology model, the experts indicate which items of the ontology are in
compliance with MIDAS 2.0. Experts approved all 14 classes and 30 subclasses. Addi-

6.2 EVALUATION 59

Table 6.3 Examples of MIDAS-OWL object properties

Property Domain Range Meaning
has clau query clauses this property indicates that a query has

some clauses, such as select, from, limit,
among others

has attrb selection attrb sel this property indicates that a selection has
a set of attributes (attrb sel)

assoc from dataset info from this property associates the DaaS name
(dataset info) with the from clause of the
query

is similar to attribute attribute this property represents that an attribute
can be semantically similar to another at-
tribute

tionally, the experts suggested the inclusion of one object property (upgrading it to 42).
No exclusion was indicated. Table 6.4 presents examples of the assessment.

Table 6.4 Examples of the ontology items evaluation

Type Name Evaluation Meaning
Class clauses Approval class represents all the clauses of query, such

as select, from, limit, among others
Subclass from Approval subclass represents the from clause of the

query
Object
property

is similar to Inclusion property indicates that an attribute is seman-
tically similar to another attribute

6.2.2 Experiment 2: Motivating Example

As a motivating example to illustrate MIDAS-OWL, we suppose a hospital system that
consumes data distributed across multiple DaaS, such as w7 and vz (Appendix A). In
emergency situations, the medical team may need the patient’s information from different
data sources. In such cases, family contact can take a long time. Moreover, knowing the
historical medical diseases from those patients is vital to prescribe new drugs or not.
MIDAS-OWL enables the hospital to retrieve patient data stored in both DaaS.

We assume that medical team requires patient data (e.g., first name, last name, age,
and blood type) published in DaaS w7. Since w7 is a proprietary cloud, w7 owner can
update DaaS anytime. Therefore, a single label change in w7 can suspend the interop-
erability between w7 and hospital. Consequently, the lack of information can prevent an
emergency prescription of some drugs to save lives.

60 MODEL FOR SEMANTIC INTEROPERABILITY

To surpass such a problem, MIDAS-OWL triggers similar queries (with similar at-
tributes) to the same data source. In this case, if w7 owner changes the label from last
name to family name, then two URLs are created: one with the last name attribute
(incorrect) and another with the family name attribute (correct). We consider as correct
the query that returns some valid result. We consider as valid the result without error,
such as invalid field, runtime error, syntax error, and others.

Although our motivating example illustrates the query rewriting resulting from the
change in the attribute name, MIDAS-OWL enables rewriting due to other changes, such
as the DaaS name. In this case, a property to define semantically similar DaaS names
would be required.

We assume that the query submitted by the hospital in SaaS is as follows:

SELECT firstname, lastname, age, blood
FROM w7
WHERE lastname = "Torres"

In the case that there is no change in label attributes, MIDAS performs the query
without problems. The URL created to collect data in w7 DaaS can be exemplified as
follows:

URL1 = http://w7.com/api/w/?rcw=firstname,lastname,age,blood&qw=
lastname="Torres"

This URL (URL1) returns data about a specific patient.
In the case of changing the label from lastname to familyname, MIDAS-OWL enables

MIDAS to create similar queries automatically. The ontology allows the rewriting of
queries based on semantically similar attributes. In this case, MIDAS creates two URLs
instead of just one. In addition to the URL created in the previous case (URL1), MIDAS
creates another URL3 since lastname and familyname are semantically similar. The
second URL (URL2) can be exemplified as follows:

URL2 = http://w7.com/api/w/?rcw=firstname,familyname,age,blood&qw=
familyname="Torres"

MIDAS-OWL changed the old label (lastname) to the current one (familyname) in this
URL. Table 6.5 summarizes the data returned by URL2 after changing the label from
lastname to familyname. In this scenario, URL1 returned an error since the lastname
attribute does not exist anymore.

Table 6.5 Data returned by URL2 after changing the label

firstname lastname/familyname age blood
Ayanna Torres 39 B+

3Both URL1 and URL2 are fictitious.

6.2 EVALUATION 61

MIDAS automatically translates queries written for the outdated version of DaaS
(with lastname) into the updated version of DaaS (with familyname). This new query
ensures backward compatibility of any SaaS that communicated with the DaaS transpar-
ently, even after changes in the DaaS structure.

We are aware that performing two queries instead of one could lead to performance
problems in MIDAS. However, we emphasize that the benefits of our approach outperform
the overhead caused.

6.2.3 Experiment 3: Query Running

In this third experiment, we evaluate the ontology correctness by running queries with
and without data join based on DaaS in Appendix A. This experiment aims to evaluate
the representation power of the ontology and its usefulness for representing, building,
and reasoning about queries in MIDAS. For this reason, in this experiment, queries are
purposefully simple. We present and discuss the queries in the following subsections.

6.2.3.1 Query without Data Join. We consider the following query without a join
clause in this evaluation:

SELECT firstname, lastname, age
FROM w7
WHERE age > 10
ORDER BY lastname
LIMIT 5

Figure 6.3 represents the query without the join clause. The query without join is
then broken down into individual clauses.

json

SaaS
Query

Query without
join

SELECT firstname,
lastname, age

FROM w7
WHERE age > 10
ORDER BY lastname
LIMIT 5

SQL

has_clau

has_ret

WHERE_age_isMoreThan_
10

FROM_w7

SELECT_firstname
_lastname_age

ORDER_BY_lastname

LIMIT_5

lastname

age
has_attrb_proj

w7
has_source

age_isMoreThan
_10

has_sel

has_attrb_sel

isMoreThan

has_op_selection

10
has_val_selection

has_attrb_order_by

5
has_value_limit

has_attrb_proj

firstname
has_attrb_proj

Figure 6.3 Detailed clauses of the query without data join in our ontology.

62 MODEL FOR SEMANTIC INTEROPERABILITY

In this example, SaaS sends a SQL query without join by SaaS. MIDAS-OWL maps
the query’s clauses to obtain a representation of the elements from SaaS:

i) SELECT firstname lastname age has three projection attributes (firstname, last-
name and age);

ii) FROM w7 has one source (w7);

iii) WHERE age isMoreThan 10 has the three elements necessary to perform the at-
tributes selection: attribute (age), operator (isMoreThan), and value (10);

iv) ORDER BY lastname has order by attribute (lastname); and

v) LIMIT 5 has limit value (5).

6.2.3.2 Query with Data Join. We consider the following query with a join clause
in this evaluation:

SELECT w7.firstname, w7.lastname, vz.phone
FROM w7 LEFT OUTER JOIN vz ON w7.id = vz.ID
WHERE vz.borough = ’queens’
ORDER BY w7.lastname
LIMIT 15

Figure 6.4 represents the query with the join clause. This query is then broken down
into individual clauses similar to previous query.

json

SaaS
Query

Query with
join

SELECT w7.firstname,
w7.lastname, vz.phone

FROM w7 LEFT OUTER JOIN vz
ON w7.id = vz.ID

WHERE vz.borough = 'queens'
ORDER BY w7.lastname
LIMIT 15

SQL

has_clau

has_ret

WHERE_vz.borough_
equals_queens

FROM_w7_
LEFT_O...

SELECT_w7.firstname
w7.lastname...

ORDER_vz.lastname

LIMIT_15

w7.lastname

vz.phone
has_attrb_proj

w7
has_source

vz.borough_equals
_queens

has_sel
has_op_selection

queens
has_val_selection

has_attrb_order_by

15
has_value_limit

has_attrb_projw7.firstname

has_attrb_proj

vz
has_source

join1

has_type_join LEFT OUTER JOIN

has_join

w7.id

equals

vz.ID

has_attrb_join

has_attrb_join

has_op_join

vz.borough
has_attrb_sel

Figure 6.4 Detailed clauses of the query with data join in our ontology.

6.3 DISCUSSION 63

In this example, SaaS sends a SQL query with join by MIDAS SaaS. As in the pre-
vious example, MIDAS-OWL maps the query’s clauses to obtain a representation of the
elements from SaaS:

i) SELECT w7.fisrtname w7.lastname vz.phone has three projection attributes (w7.
fisrtname, w7.lastname, and vz.phone);

ii) FROM w7 LEFT O... has two sources (w7 and vz), and join clauses: type join
(LEFT OUTER JOIN), attributes join (w7.id and vz.ID), and operation join
(equals);

iii) WHERE vz.borough equals queens has the three elements necessary to perform the
attributes selection: attribute (vz.borough), operator (equals), and value (‘queens’);

iv) ORDER BY vz.lastname has order by attribute (vz.lastname); and

v) LIMIT 15 has limit value (15).

Based on the representation effort, we evaluate that the ontology is appropriate in the
context of query representation in MIDAS. This evaluation suggests that our ontology
can be used by MIDAS to represent the DaaS structure. Additionally, our ontology can
be used in the query building process, since it allows automation of (re)writing queries,
which will enable semantic data integration.

6.3 DISCUSSION

MIDAS-OWL structure is independent of the label, value, and type of the attributes
from a DaaS. Each attribute is an individual of the ontology. The ontology can consider
parameters such as label (e.g., firstname and age), value (e.g., Alana and 39), and type
(e.g., string and integer) of attributes. Similar attributes do not imply attributes with
the same content, as they can have different representations.

Another prominence point is MIDAS-OWL flexibility. Our model for semantic inter-
operability makes no assumptions about the structure and technology of data sources.
MIDAS-OWL works transparently and does not require other reasoning services. Seman-
tic similarity detection in DaaS (MANE et al., 2020) and methods based on ontology
alignment (EUZENAT; SHVAIKO et al., 2007) are examples of strategies for populating
our ontology.

Currently, MIDAS-OWL recognizes only SQL queries. Although all queries presented
in our experiments were in SQL format, the model for semantic interoperability can
provide queries in other formats, such as NoSQL and SPARQL Protocol and RDF Query
Language (SPARQL). In such cases, MIDAS middleware needs to recognize the query
format and the corresponding clauses into respective classes/subclasses of the ontology.
For instance, SELECT clause (SQL queries) might be replaced by find clause (MongoDB
queries). Additionally, relations must be reevaluated to represent the new format.

About the limitations, since our focus was on a direct attribute-attribute similarity,
the absence of complex queries (e.g., queries with multiple join conditions) was not that

64 MODEL FOR SEMANTIC INTEROPERABILITY

important. More complex similarities (e.g., attribute-query type) are not part of the
scope of this research. However, we emphasize that with this second type of similarity, a
high computational overhead could incur with rewriting queries.

6.4 RELATED WORK

Despite the amount of research dedicated to ontology design, to our knowledge, data
representation in the cloud environment has received far less attention in the literature.

Among the work on semantic interoperability, the use of ontologies and knowledge
representation models to reason about data integration has been proposed by Vidal et al.
(2009), which present an ontology for integrating geographic data. Their approach does
not focus on cloud computing, and authors do not explicitly consider heterogeneous data
sources. Differently than in their work, our ontology deals with data interoperability, not
integration.

We also analyzed some works that propose using ontologies and semantic web tech-
nologies in the area of cloud computing. Rekik, Boukadi and Ben-Abdallah (2015) pro-
pose an ontology for describing cloud services. Their ontology takes into account the most
common cloud service model: SaaS, PaaS, and IaaS. The authors tackle heterogeneous
sources, but they solve the problem in service level without data.

Joshi, Yesha and Finin (2014) present an OWL ontology to describe the cloud service
lifecycle. Their ontology provides models for requirement, discovery, negotiation, com-
position, and consumption phases of cloud services. Although they present the design
of their ontology in cloud computing, their focus is on the relationship among the five
phases of the model and how each phase relates to consumer and service cloud. Authors
do not consider communication among different cloud services.

Moscato et al. (2011) propose mOSAIC, an ontology for negotiation (for instance,
between customers and providers) and composition (for instance, by an administrator)
of cloud services. Authors claim that ontology can improve interoperability among cloud
solutions, platforms, and services. Unlike our approach, interoperability is addressed at
a service level and not at a data level.

Zhang, Haller and Wang (2019) present CoCoOn, an ontology that defines concepts,
attributes, and relationships to IaaS. CoCoOn recommends IaaS services based on price
and features. Similar to previous work, this article considers neither service data nor
interoperability among different cloud services.

In Ontology-Based Query Answering (OBQA), an ontology eases query rewrite based
on a union of conjunctive queries (MUGNIER; THOMAZO, 2014). Contrary to our
MIDAS-OWL, OBQA assumes that an ontology supports all databases and that, more-
over, these ontologies are jointly consistent (MUGNIER; THOMAZO, 2014; ORTIZ,
2013). This assumption is not feasible in cases where the semantics of data is not for-
malized, such as DaaS service. In such a case, only access to the attributes is available
with no schema information. Such a lack of knowledge happens because we deal with
distributed and independent data sources. The different conceptualizations of the domain
can be inconsistent with each other.

We emphasize that our approach is less expressive than OBQA. OBQA is a high-level

6.5 CHAPTER SUMMARY 65

solution to a well-defined problem. Notwithstanding, the OBQA results are not satisfac-
tory when the solution is applied on large bases, such as Cloud Computing (AKERKAR,
2014). MIDAS-OWL deals with a more dynamic problem than OBQA. Although our
solution is very similar to data integration and OBQA approaches, we perform MIDAS-
OWL in a more general context.

6.5 CHAPTER SUMMARY

This chapter describedMIDAS-OWL, an ontology to explain communication among cloud
layers. MIDAS-OWL describes the MIDAS semantic interoperability. Our model for
semantic interoperability assists SaaS applications to access data in a cloud transparently,
even after updating attributes in DaaS. We perform some experiments to validate the
model for semantic interoperability and show our approach’s effectiveness.

MIDAS-OWL provides aspects that are not considered in the current MIDAS version,
as such query rewriting. We emphasize that if two attributes are similar, then these
attributes can perform a join without the SaaS having to map this relationship explicitly.
In a syntactic query, SaaS needs to explicitly know the structure of a DaaS and each
relationship of DaaS data. Our MIDAS-OWL moves towards making the interoperability
provided by MIDAS more transparent.

The next chapter presents the CAPITAL, our model for pragmatic interoperability
and the model evaluation.

Chapter

7
This chapter presents the model for pragmatic interoperability. We detail our pragmatic interoperability,
and then we present the evaluate of this model based on four scenarios. Finally, we present some related
work.

MODEL FOR PRAGMATIC INTEROPERABILITY

Contrary to syntactic and semantic interoperability, we employ a top-down strategy in
our model for pragmatic interoperability for two reasons. First, we realize that there
is no consensus on the pragmatic interoperability definition. Second, our intention is
to provide a domain-independent model for pragmatic interoperability. Therefore, each
scenario is coded depending on their requirements. For these reasons, before investigating
the pragmatic interoperability of MIDAS (Chapter 8), we present our unified definition
for pragmatic interoperability and our CAPITAL. Our CAPITAL framework comprises
three artifacts: a canonical model, a textual definition, and schemas in Z notation.

We evaluate the CAPITAL framework into four distinct scenarios as modeling and
implementation guidance: (i) service from laboratory tests, (ii) service that checks DNA
sequence ancestry, (iii) service of the car’s Bluetooth, and (iv) service related to the
public security domain. These scenarios (i) represent current and future situations, and
(ii) address effectiveness, completeness, and mandatory aspects of the CAPITAL.

Our results pointed out that our CAPITAL fulfills the mentioned issues since the
framework identifies the mandatory elements to provide pragmatic interoperability based
on different scenarios. We believe that pragmatic interoperability is achieved when the
context and intention intersection increases. Our intuition is that a common and shared
understanding of pragmatic interoperability guides towards full interoperability, even with
different strategies and systems.

The next section details our model for pragmatic interoperability. Afterwards, we
evaluate this model based on four scenarios. The artifacts are presented in detail. Finally,
we briefly discuss our findings and related work.

7.1 MODEL

A conceptual framework aims to present a literature synthesis on a specific topic and show
how related elements are associated with each other (JABAREEN, 2009). We develop

67

68 MODEL FOR PRAGMATIC INTEROPERABILITY

our CAPITAL framework based on four activities: definition, investigation, specification,
and evaluation (Figure 7.1). We start by unifying the definition. We perform a search for
definitions on pragmatic interoperability, and then we list eight definitions. Afterwards,
we analyze each definition and identify four recurring terms in the pragmatic interoper-
ability definitions. We describe the CAPITAL framework and, finally, we evaluate our
framework into four distinct scenarios.

Investigation of
common terms

Search by
definitions

Unified
Definition

CAPITAL
FrameworkEvaluation

8 definitions

scenarios and
controlled experiment

4 related termsSubsection 7.1.1 Subsection 7.1.1 Subsection 7.1.1

Subsection 7.1.2Sections 7.2 and 7.3

Figure 7.1 Activities for CAPITAL framework.

Our CAPITAL framework comprises a canonical model, a textual definition, and
schemas in Z notation. A canonical model is a universal data model based on trees
and key-values (SCHREINER; DUARTE; MELLO, 2015). Our canonical model details
terminologies related to pragmatic interoperability towards a unified definition. The
text notation provides a textual description of the elements involved in the pragmatic
interoperability concept. Z notation is a formal language that describes computational
systems with mathematical concepts, such as predicate logic and set theory (SPIVEY,
1989). While the canonical model presents a structural relationship among elements, the
textual description enables a non-formal understanding of the framework. Z notation
simplifies the coding of systems with pragmatic interoperability. Figure 7.2 summarizes
the artifacts in CAPITAL framework.

CAPITAL Framework
Canonical Model Textual Definition Z Notation

......

Figure 7.2 CAPITAL’s Artifacts: Canonical model, textual definition, and schemes in Z no-
tation.

The following subsections depict the literature’s definitions, related terms, our uni-
fied definition of pragmatic interoperability, and CAPITAL framework: our model for
pragmatic interoperability.

7.1 MODEL 69

7.1.1 Pragmatic Interoperability Unified Definition

Pragmatic interoperability definitions from the literature are summarized in Table 7.1.
The set of definitions provides evidence that there is no consensus of pragmatic interop-
erability definition.

Table 7.1 Pragmatic interoperability definitions in chronological order

Definition Reference
Pragmatic interoperability ensures that the messages exchanged
have the desired effect. Usually, this occurs by sending and re-
ceiving multiple messages in a specific order, defined by a protocol.

Pokraev et al.
(2005)

Pragmatic interoperability is achieved when one system knows the
methods and procedures of other systems.

Lee et al. (2007)

The pragmatic web is a set of pragmatic contexts about semantic
resources.

Tamani and
Evripidou
(2007)

Pragmatic interoperability is the compatibility between the in-
tended effect and the actual effect of message exchange.

Asuncion and
Sinderen (2010)

Pragmatic interoperability is the compatibility between intended
use and actual use of message within a relevant shared context.

Asuncion et al.
(2011)

At the system level, pragmatic interoperability is a shared under-
standing between intended use and messages actual use within a
context. At the business level, pragmatic interoperability considers
the compatibility of business intentions, business rules, and organi-
zational systems policies.

Asuncion et al.
(2011)

Pragmatic interoperability is achieved when processes from different
contexts are compounded to support a common intention. The
integration emphasis is context-awareness.

Liu, Li and Liu
(2014)

Pragmatic interoperability uses syntax and semantics as a tool to
achieve goals.

Webster (2014)

Despite the lack of consensus, we identify in Table 7.1 the existence of repeated terms.
For that reason, we list the related terms to make up a unified definition. The literature
presents several definitions for related terms, such as:

• use: (i) how to realize the sender’s intention; (ii) how the receiver interprets the
intended information; and (iii) how systems use data;

• intention: (i) message objective; (ii) actions desired by the message; and (iii)
possible desired state that a sender can achieve through collaboration;

• context: (i) circumstance in which the message is shared; (ii) contextual dimen-
sions: why, how, when, who, where, and what; and (iii) set of contexts in semantic
resources; and

70 MODEL FOR PRAGMATIC INTEROPERABILITY

• effect: (i) relationship between information, action, and context; (ii) (ii) it re-
quires the receiver to understand the message intent deeply; and (iii) it can be
accomplished by sending and receiving messages in a specific order.

Based on these descriptions, we define the related terms as follows: (i) use is the
message achievement and it depends on the intent and context to ensure achievement of
the desired effect; (ii) intention is the collaboration objective and it is composed of a
set of states (conditions); (iii) context is the information necessary to achieve the effect;
and (iv) effect is the result or consequence.

Based on interpretation of the non-consensual definitions (Table 7.1) and related terms
of pragmatic interoperability (use, intention, context, and effect), our pragmatic interop-
erability unified definition is as follows:

At the system level, pragmatic interoperability is achieved when there is a
shared understanding of the intention and context necessary for communi-
cation, aiming to provide the correct use of the message and produce results
within the expected effects.

7.1.2 CAPITAL Framework

From the definitions of Table 7.1, the set of terms, and our definition, Figure 7.3 de-
picts the canonical model of the CAPITAL framework. Mandatory elements are bold.
Although there are other approaches to model context, we apply the 5W1H1 format
(ISODA; KURAKAKE; IMAI, 2005). This format is frequently employed in context-
sensitive systems.

PI

ext
behav

int

ebi

Level	1

Level	2

Level	3

Level	4

msg

ii

effec

action

int
behav

ibi

name inputs except

na ini exi

outpus

outi

cont

...

why1 when1how1 who1

wyi1 wei1hi1 woi1

what1

whi1

cont1

where1

wri1

whyn whennhown whon

wyin weinhin woin

whatn

whin

contn

wheren

wrin

Figure 7.3 Canonical model of our CAPITAL framework. Mandatory elements are bold.

In the root (level 1) there is the term pragmatic interoperability (PI). PI is composed
of three sets of information at level 2: msg (representing the message), int (representing
the term intention), and effec (representing the term effect).

1Why, When, Who, Where, What, and How

7.1 MODEL 71

Level 3 details the elements of level 2: (i) msg is composed of action and cont (con-
text), and (ii) effec contains the behavior performed by the receiver (ext behav). Action
represents the term use, and cont represents the term context. Still at level 3, action
is composed of the service name, inputs, outputs, exceptions (except), and behavior (int
behav). The cont element is composed of a set of contexts.

According to the key-value structure, level 4 represents the value(s) for each key
present in level 3. Therefore, cont contains a set of sub-levels, where (i) each sub-level
represents a specific context (contn), and (ii) each specific context stores the information
in the 5W1H format to detail the context. We consider a set of contexts since each
context represents a possible circumstance or situation.

The following set of tuples express the textual definition of our canonical model:

• PI = (msg , int , effec), where msg represents a message, int represents intention,
and effec represents effect;

• msg = (action, cont), where action represents action and cont represents context;

• action = (name, inputs , outputs , except , intbehav), where name represents the name,
inputs represents the inputs, outputs represents the outputs, except represents the
exceptions, and int behav represents the internal behavior;

• name = {na}, where na is the service name;

• inputs = {ini}, i = 1..j , where ini is the i -th input argument;

• outputs = {outi}, i = 1..j , where outi is the i -th output argument;

• except = {exi}, i = 1..j , where exi is the i -th exception;

• intbehav = {ibi}, i = 1..j , where ibi is the i -th service internal behavior;

• cont = (cont1, . . . , contn), where contn is the n-th context;

• contn = (whyn , hown ,whenn ,whon ,wheren ,whatn);

• whyn = {wyin}, i = 1..k , where wyin is the i -th why feature of the n-th context;

• hown = {hin}, i = 1..k , where hin is the i -th how feature of the n-th context;

• whenn = {wein}, i = 1..k , where wein is the i -th when feature of the n-th context;

• whon = {woin}, i = 1..k , where woin is the i -th who feature of the n-th context;

• wheren = {wrin}, i = 1..k , where wrin is the i -th where feature of the n-th context;

• whatn = {whin}, i = 1..k , where whin is the i -th what feature of the n-th context;

• int = {ii}, i = 1..j , where ii is the i -th intention;

• effec = (extbehav), where extbehav is the behavior performed by the receiver; and

72 MODEL FOR PRAGMATIC INTEROPERABILITY

• extbehav = {ebi}, i = 1..j , where ebi is the i -th external behavior that the receiver
needs to perform to meet the intention.

Z notation is a formal language based on mathematical concepts for specifying com-
puting systems. A Z schema has a name, a declaration part (i.e., static aspects), and a
predicate part (i.e., dynamic aspects). We apply Z notation in the CAPITAL framework
to facilitate the implementations of pragmatic interoperability. The next section presents
the CAPITAL modeling in four different scenarios as a modeling and coding guide.

7.2 MODELING AND CODING GUIDE

The purpose of this exploratory study is to evaluate effectiveness, completeness, and
mandatory elements of CAPITAL framework on scenarios with pragmatic interoperabil-
ity.

We modeled our CAPITAL framework in four distinct scenarios. CAPITAL models
classic and hypothetical scenarios. The scenarios describe problems in different domains,
as follows:

• scenario 1 concerns a situation where an ambulance, hospital, or patient requests
emergency, urgency, or normal laboratory test (ASUNCION et al., 2011);

• scenario 2 concerns a service that verifies the ancestry between two DNA sequences
(NEIVA et al., 2016);

• scenario 3 concerns a car’s Bluetooth that may avoid speakerphone calls when a
undesired person is inside the car with the driver; and

• scenario 4 concerns smart security cameras that recognizes and reports the occur-
rence of new crimes.

Contextual elements vary depending on the scenario. Scenario 1 contains one con-
textual variable (importance) that can assume three values: urgency, emergency, and
normal. Scenario 2 contains two contextual variables (sequence and method) and each
variable can assume two values: sequence can be DNA or RNA; and method can be local
or global. Scenario 3 contains two contextual variables (distance and relationship) and
each variable can assume three values: distance can be far, moderate, or near ; and rela-
tionship can be unknown, known, or familiar. Scenario 4 contains one contextual variable
(crimes) that can assume four values: child pornography, graffiti, stolen car, and person
with firearm.

The representation for each context can consider distinct 5W1H elements. For in-
stance, the first context (cont1) in scenario 1 (importance: emergency) uses why, how,
when, who, and what, while first context (cont1) in scenario 2 (sequence: DNA) uses only
who, what, and who.

The scenarios aim to verify whether the framework answers the following research
questions:

7.2 MODELING AND CODING GUIDE 73

RQ1 Does the CAPITAL framework model scenarios with pragmatic interoperability?
This question focuses on the effectiveness of our framework: CAPITAL may repre-
sent scenarios with pragmatic interoperability?

RQ1.1 Does the framework consider all the elements necessary to represent the prag-
matic interoperability of the scenarios? This question focuses on the com-
pleteness of our framework: CAPITAL considers all the elements necessary to
provide pragmatic interoperability?

RQ1.2 What elements are needed to provide pragmatic interoperability? This question
focuses on the mandatory elements of our framework: CAPITAL considers all
mandatory elements when it models pragmatic interoperability among sys-
tems?

RQ1.3 The strategy chosen to model context was enough? This question investigates
whether the 5W1H format is capable of representing varied contexts.

The scenarios are presented in the following sections.

7.2.1 Scenario 1: Laboratory Test

The first scenario considers a hospital that requests a laboratory test and expects the
laboratory to send the result at an emergency level, according to Figure 7.4 (ASUNCION
et al., 2011).

Figure 7.4 Scenario of laboratory test. Figure 7.4(a) describes the scenario without prag-
matic interoperability, while Figure 7.4(b) describes the pragmatic scenario. Adapted from
(ASUNCION et al., 2011).

In Figure 7.4(a), the hospital intends to receive a test in an emergency context. How-
ever, the laboratory assumes the request as normal because the laboratory and hospital
have a different understanding of the context. Consequently, the laboratory does not real-
ize hospital intention. Despite performing syntactic and semantic interoperability, there
is no pragmatic interoperability because the planned collaboration implicit in context
were not performed.

74 MODEL FOR PRAGMATIC INTEROPERABILITY

In Figure 7.4(b), the laboratory accomplishes the hospital intention since both labora-
tory and hospital have the same understanding of the context. Pragmatic interoperability
allows the laboratory to perform the request in the hospital context. In this case, syn-
tactic, semantic, and pragmatic interoperability was achieved.

The initial step to represent this scenario in our canonical model is to structure the
data necessary for the receiver to accomplish the sender’s intention. This data (called
action) may be represented as follows:

• Name: check test results

• Internal behavior: laboratory (i) receives sender’s identifier, (ii) receives labora-
tory’s employer identification number (EIN), (iii) receives client’s identity document
(ID), and (iv) returns available test

• Inputs: sender’s identifier (literal), laboratory’s EIN (numeric) and client’s ID
(numeric)

• Outputs: active client (boolean), available test (literal), and last updated (date)

• Exceptions: invalid sender, invalid laboratory, invalid client, inactive client, inac-
tive service, and timeout.

We model the context based on the variables that can modify the sender’s behavior.
The laboratory test can be processed in normal, urgency, and emergency importance.
We consider importance as what based on the answer to the following question: what
are the variable elements of the scenario? Cont1 models the conditions so that the
importance is emergency ; Cont2 models urgency ; and Cont3 models normal importance.
For instance, emergency (Cont1) occurs when an ambulance (who) sends the request on
the way to the hospital. In this case, the ambulance waits for a request test in two hours.

Figure 7.5 presents the canonical model for scenario 1. Contexts are presented sepa-
rately in 7.5(a), 7.5(b), and 7.5(c) parts.

The effect expected by the sender (int) is to receive the test in emergency context.
The receiver behavior (ext behav) is (i) get inputs, (ii) get contexts, and (iii) to return
the laboratory test. Therefore, the context Cont1 must be realized since this context
meets the sender’s intention: laboratory test in the emergency context.

7.2 MODELING AND CODING GUIDE 75

PI

outputsinputs except

inval
sender

inval
lab

inval
client

inact
serv

timeout

inact
client

client
IDsender

id

lab EIN last
updat

client
act

avail
tests

rec
sender

id
rec avail

tests
rec lab

EIN

rec client
ID

int
behav

emergency
tests get

cont

get
inputs

ret
tests

ext
behav

cont1

cont2

cont3

why2 when2how2 who2

Urgency

Hospital

12h

Priority

where2 what2

Importance

why1 when1how1 who1

Emergency

Ambulance

2h

Priority

where1 what1

Importance

why3 when3how3 who3

Normal
Patient

24h

Normal

where3 what3

Importance

a)

b)

c)

cont1

cont2

cont3

int

contaction

name

check tests
results

Im
po
rta
nc
e

msg effec

Figure 7.5 The canonical model for laboratory test scenario. Figure 7.5(a) represents emer-
gency importance (in red), Figure 7.5(b) urgency (in yellow), and Figure 7.5(c) the normal
importance (in green).

76 MODEL FOR PRAGMATIC INTEROPERABILITY

The following definitions list abstract data types in Z notation for our first scenario:

[LabTest]
RetLogic ::= ‘yes’ | ‘no’
why ::= ‘emergency’ | ‘urgency’ | ‘normal’
how ::= ‘priority’ | ‘normal’
when ::= ‘2h’ | ‘12h’ | ‘24h’
who ::= ‘ambulance’ | ‘hospital’ | ‘patient’
where ::=
what ::= ‘importance’

A sender can be an ambulance, hospital, or patient. Each sender has a name, an id,
and data about laboratory and client. The id is mandatory and depends on the type of
sender. The specification of a sender is given below.

Sender
name? : who
idSender? : seq1 Char
labEIN ?, clientID? : N

if name = ‘ambulance’ then #idSender = 7
if name = ‘hospital’ then #idSender = 9
if name = ‘patient’ then #idSender = 11
#labEIN = 9
#clientID = 11

In this scenario, we have one contextual variable (importance) that can assume three
values: urgency, emergency, and normal. Consequently, the context specification (Im-
portanceContext) contains three statements, a statement for each value that the variable
can assume: Emergency, Urgency, and Normal importance.

ImportanceContext
ΞEmergency
ΞUrgency
ΞNormal

Each context contains the following contextual elements: why, how, who, where, and
what. The element where is not necessary. The value of each contextual element depends
on the context. The following specifications show the context for emergency, urgency,
and normal importance, respectively.

7.2 MODELING AND CODING GUIDE 77

Emergency
whyEmerg : why
howEmerg : how
whenEmerg : when
whoEmerg : who
whatEmerg : what

whyEmerg = ‘emergency’
howEmerg = ‘priority’
whenEmerg = ‘2h’
whoEmerg = ‘ambulance’
whatEmerg = ‘importance’

Urgency
whyUrg : why
howUrg : how
whenUrg : when
whoUrg : who
whatUrg : what

whyUrg = ‘urgency’
howUrg = ‘priority’
whenUrg = ‘12h’
whoUrg = ‘hospital’
whatUrg = ‘importance’

Normal
whyNorm : why
howNorm : how
whenNorm : when
whoNorm : who
whatNorm : what

whyNorm = ‘normal’
howNorm = ‘normal’
whenNorm = ‘24h’
whoNorm = ‘patient’
whatNorm = ‘importance’

Given the context and sender, we can define service with pragmatic interoperability
(AttendanceWithPI). The central idea is to capture the priority based on the sender’s
name (Sender.name). Afterwards, we perform the context for the sender type: ambu-
lance, hospital, or patient.

78 MODEL FOR PRAGMATIC INTEROPERABILITY

AttendanceWithPI
ΞSender
ΞImportanceContext
priority : why
activeClient ! : RetLogic
availableTest ! : P1 LabTest
lastUpdate! : Date

if Sender .name? = ImportanceContext .Emergency .whoEmerg then
priority = ImportanceContext .Emergency .howEmerg

if Sender .name? = ImportanceContext .Urgency .whoUrg then
priority = ImportanceContext .Urgency .howUrg

if Sender .name? = ImportanceContext .Normal .whoNorm then
priority = ImportanceContext .Normal .howNorm

Finally, exceptions can be modeled.

Exceptions
ΞSender
ΞAttendanceWithPI
error ! : RetLogic

if Sender .name 6∈ who then error ! = ‘yes’
if AttendanceWithPI .activeClient = ‘no’ then error ! = ‘yes’

The Z notation formalizes the canonical model of Figure 7.5. Although both ap-
proaches represent the same scenario, Z notation may facilitate coding since it is less
abstract than the canonical model.

Regarding the RQ1, our results suggest that the CAPITAL framework represents the
pragmatic interoperability between laboratory and hospital, as previously discussed.

About RQ1.1, our findings indicate that our framework considers the elements neces-
sary to provide pragmatic interoperability in this laboratory test scenario.

In respect of RQ1.2, mandatory elements in this scenario are: one name, three in-
puts, three outputs, six exceptions (except), one internal behavior (int behav) com-
posed of four steps, three contexts (cont), one intention (int), and one external behavior
(ext behav) composed of three steps.

Concerning RQ1.3, we noticed that the 5W1H format modeled as expected three
variations of sender behavior: emergency, urgency, and normal priority.

7.2.2 Scenario 2: DNA Ancestry

In this second scenario, we model a service that verifies DNA ancestry (NEIVA et al.,
2016). Ancestry is defined by comparing any DNA sequence with a known DNA sequence,
such as Homo sapiens. Local and global are examples of methods to verify DNA ances-
try. The local method performs alignment on specific regions, and the global method

7.2 MODELING AND CODING GUIDE 79

performs alignment throughout the sequence. Consequently, the local method is use-
ful for corrupted sequences or with different sizes, and the global method is useful for
sequences with close sizes (COURONNE et al., 2003).

Syntactic interoperability occurs when, for instance, a system sends a string, and
another system also expects a string. At this level, the string content is not evaluated.
Semantic interoperability occurs when, for instance, a system sends a string with a DNA
sequence, and another system also expects a string with a DNA sequence. At this level,
systems only send and expect DNA sequences. Problems occur when a system expects to
receive a DNA sequence and receives an RNA sequence. DNA sequence contains genetic
instructions from an organism, while the RNA sequence is responsible for translating
those instructions into proteins by regulating gene expression (CRICK, 1970).

Figure 7.6 describes how pragmatic interoperability is achieved in this scenario (adapted
from (NEIVA et al., 2016)).

System	A

System	A	expects
DNA	alignment
with	local	method

System	A	sends	2	DNA
seq

System	B

System	A	receives	2
DNA	seq

System	B	performs
RNA	alignment

with	global	method
a)	A	non-pragmatic	scenario

System	A

System	A	expects
DNA	alignment
with	local	method

System	A	sends	2
DNA	seq

System	B

System	A	receives	2
DNA	seq

b)	A	pragmatic	scenario

System	B	performs
DNA	alignment
with	local	method

x

Figure 7.6 Scenario of DNA ancestry. Figure 7.6(a) describes the scenario without pragmatic
interoperability and Figure 7.6(b) describes the pragmatic scenario. Adapted from (NEIVA et
al., 2016).

In Figure 7.6(a), system A sends two DNA sequences. System A intends to receive
the level of ancestry according to the local method because both sequences have different
sizes. Nonetheless, system B assumes receiving RNA sequences. Consequently, system B
performs an alignment with another method. System B does not realize system A intent
since both systems have a different understanding of the context.

In Figure 7.6(b), system B performs the intent of system A since both systems have
the same understanding of the context: DNA alignment with the local method.

In this scenario, we represent the action as follows:

• Name: verify ancestry

• Internal behavior: system B (i) receives two sequences (test and known), (ii)
determines sequence types, (iii) determines method, and (iv) returns ancestry

• Inputs: test (literal) and known (literal) sequences

• Outputs: ancestry (boolean), confidence (numeric), and method (literal)

80 MODEL FOR PRAGMATIC INTEROPERABILITY

• Exceptions: invalid sequence, invalid type, inactive service, and timeout.

We model the context based on the number of variables that can modify the sender’s
behavior. The sequences can be DNA or RNA, and alignment method can be local or
global. We consider sequences and types as what based on the answer to the following
question: what is the variable element of the scenario? Cont1 models the DNA
sequence, Cont2 models the RNA sequence, Cont3 models the Local method, and Cont4
models the Global method. Since this scenario has more than one contextual variable
(sequences and types), the number of possible situations is the cartesian product of both
contexts: (i) DNA alignment with local method (Cont1 and Cont3), (ii) DNA alignment
with global method (Cont1 and Cont4), (iii) alignment of RNA with local method (Cont2
and Cont3), and (iv) alignment of RNA with global method (Cont2 and Cont4).

Figure 7.7 presents the canonical model for scenario 2. Contexts are presented sepa-
rately in 7.7(a), 7.7(b), 7.7(c), and 7.7(d) parts.

PI

outputsinputs except

inval
seq inact

serv

timeoutinval
type

known
seq

test seq

meth
perforanc

conf

rec 2
seq return

ancdet seq
types

det meth

int
behav

alin DNA with global met
and conf >= 99.99% get

cont

get
inputs

ret
anc

ext
behav

cont2

cont3

cont4

contaction

name

verify anc

cont1

msg
effecint

why3 when3how3 who3

Local
Receiver

where3 what3

Method

c)

cont3

why4 when4how4 who4

Global
Receiver

where4 what4

Method

d)

cont4 M
et
ho
d

why2 when2how2 who2

RNA

Sender

where2 what2

Sequence

why1 when1how1 who1

DNA

Sender

where1 what1

Sequence

a)

b)

cont1

cont2

Se
qu
en
ce

Figure 7.7 The canonical model for DNA ancestry scenario. Figure 7.7(a) represents the DNA
sequence (in red) and Figure 7.7(b) represents the RNA sequence (in yellow); Figure 7.7(c)
represents local method (in green) and Figure 7.7(d) represents global method (in blue).

Cont1 models the conditions to sent a DNA sequence, and Cont2 models the RNA.

7.2 MODELING AND CODING GUIDE 81

Cont3 models the requirements to use the local method, and Cont4 models the global
method. For instance, Cont1 occurs when the sender (who) sends a DNA sequence (why),
and Cont4 occurs when the receiver (who) performs the global method.

The sender’s intention (int) is to align DNA sequences with the local method with
confidence greater than or equal to 99.99%. The receiver behavior (ext behav) is (i) get
inputs, (ii) get contexts, and (iii) to return the ancestral level. The combination of Cont1
and Cont4 satisfies the sender’s intention.

The following definitions list abstract data types in Z notation for our second scenario:

SequenceTypes ::= ‘DNA’ | ‘RNA’
MethodsTypes ::= ‘Local’ | ‘Global’
RetLogic ::= ‘yes’ | ‘no’
why ::= ‘SequenceTypes’ | ‘MethodsTypes’
how ::=
when ::=
who ::= ‘Sender’ | ‘Receiver’
where ::=
what ::= ‘Sequence’ | ‘Method’

Sender (system A in Figure 7.6) has two sequences (test and known), a method, and
a confidence level. Both sequences are mandatory. The specification of a sender is given
below.

Sender
seqTest?, seqKnow? : seq1 Char
method : methodsTypes
conf ! : R

#seqTest? > 0
#seqKnow? > 0
conf ! ≥ 99.99 [test confidence level]

In this scenario, we have two contextual variables: sequence and method. The se-
quence can assume DNA and RNA values, and the method can assume local and global
values. Each contextual variables (SequenceContext and MethodContext) contains two
statements, a statement for each value that the variable can assume: DNA and RNA in
SequenceContext, and local and global in MethodContext.

SequenceContext
ΞDNAseq
ΞRNAseq

82 MODEL FOR PRAGMATIC INTEROPERABILITY

MethodContext
ΞLocal
ΞGlobal

Each context contains the following contextual elements: why, who, and what. The
elements how, when, and where are not necessary in this scenario. The value of each
contextual element depends on the context. The following specifications show the context
for DNA and RNA sequence, respectively.

DNAseq
whyDNA : why
whoDNA : who
whatDNA : what

whyDNA = ‘DNA’
whoDNA = ‘Sender’
whatDNA = ‘Sequence’

RNAseq
whyRNA : why
whoRNA : who
whatRNA : what

whyRNA = ‘RNA’
whoRNA = ‘Sender’
whatRNA = ‘Sequence’

Similarly, the following specifications show the context for local and global methods,
respectively.

Local
whyLocal : why
whoLocal : who
whatLocal : what

whyLocal = ‘Local’
whoLocal = ‘Receiver’
whatLocal = ‘Method’

7.2 MODELING AND CODING GUIDE 83

Global
whyGlobal : why
whenGlobal : when
whatGlobal : what

whyGlobal = ‘Global’
whoGlobal = ‘Receiver’
whatGlobal = ‘Method’

Given the set of contexts and a sender, we can define one service with pragmatic
interoperability (ReceiverWithPI). The idea is to (i) determine the type of sequences
based on the nitrogen base of the sequence (DNA: A, T, C, and G; RNA: A, U, C, and
G), (ii) determine the most appropriate method based on sequence sizes, and (iii) execute
the context based on sequence and method.

ReceiverWithPI
ΞSequenceContext
ΞMethodContext
ΞSender
typeSeqTest , typeSeqKnow : SequenceTypes [DNA or RNA]
method ! : MethodTypes
ancestry ! : RetLogic

if ‘T’ ∈ Sender .seqTest then
typeSeqTest = SequenceContext .DNAseq .whyDNA

else typeSeqTest = SequenceContext .RNAseq .whyRNA
if ‘T’ ∈ Sender .seqKnow then

typeSeqKnow = SequenceContext .DNAseq .whyDNA
else typeSeqKnow = SequenceContext .RNAseq .whyRNA
if lengthApprox (Sender .seqTest?, Sender .seqKnow?) = ‘yes’ then

method ! = MethodContext .Local .whyLocal
else method ! = MethodContext .Global .whyGlobal

The most appropriate method is defined as follows. Two sequences have close sizes
when the difference between sizes is less than a constant integer value.

84 MODEL FOR PRAGMATIC INTEROPERABILITY

[X ,Y]
lengthApprox : X × Y → RetLogic
limit : N

limit : 1000
∀ x : X , y : Y •

if (#x > #y + limit) ∨ (#y > #x + limit) then
lengthApprox (x , y) = ‘yes’

else
lengthApprox (x , y) = ‘no’

Finally, exceptions can be formalized.

Exceptions
ΞReceiverWithPI
error ! : RetLogic

if ReceiverWithPI .typeSeqTest 6= ‘DNA’ ∧
ReceiverWithPI .typeSeqTest 6= ‘RNA’ then error ! = ‘yes’

if ReceiverWithPI .typeSeqKnow 6= ‘DNA’ ∧
ReceiverWithPI .typeSeqKnow 6= ‘RNA’ then error ! = ‘yes’

The Z notation formalizes the canonical model of Figure 7.7.
Regarding the RQ1, our results suggest that the CAPITAL framework represents the

pragmatic interoperability between two different systems (system A and system B).
About RQ1.1, our findings indicate that our framework considers the elements nec-

essary to provide pragmatic interoperability in a DNA ancestry scenario. For pragmatic
interoperability to occur in this scenario, system B needs to (i) receive two sequences,
(ii) confirm that both are DNA sequences, (iii) determine the most appropriate method
for verifying ancestry, and (iv) return the degree of ancestry.

In respect of RQ1.2, mandatory elements in this scenario are: one name, two inputs,
three outputs, four exceptions (except), one internal behavior (int behav) composed
of four steps, four contexts (cont), one intention (int), and one external behavior (ext
behav) composed of three steps.

Concerning RQ1.3, we noticed that the 5W1H format modeled as expected four vari-
ations of sender behavior: DNA and RNA sequences; and local and global methods.

7.2.3 Scenario 3: Bluetooth

Our third scenario considers a hypothetical situation: one car’s Bluetooth should avoid
speakerphone calls when a undesired person is inside the car with the driver.

We model two variables in this scenario: different types of people and different dis-
tances from these people to the driver. Figure 7.8 describes when pragmatic interoper-
ability is achieved in this scenario.

7.2 MODELING AND CODING GUIDE 85

Driver	expects
Bluetooth	on	because
she/he	is	with	family

people

System	turns
Bluetooth	off	because
it	understands	that
the	driver	is	with
unknown	people

a)	A	non-pragmatic	scenario b)	A	pragmatic	scenario

Driver	expects
Bluetooth	on	because
she/he	is	with	family

people

System	turns
Bluetooth	on	because
it	understands	that
the	driver	is	with
family	people

Driver System Driver System
x

Figure 7.8 Scenario of the Bluetooth system. Figure 7.8(a) describes the scenario without
pragmatic interoperability and Figure 7.8(b) describes the pragmatic scenario.

In this scenario, we represent the action as follows:

• Name: turn on Bluetooth

• Internal behavior: car’s Bluetooth (i) determines the number of people, (ii) deter-
mines the relationship between the driver and the people, and (iii) decides Bluetooth
status (on or off)

• Output: Bluetooth status (boolean)

• Exceptions: invalid relationship, inactive service, and timeout

We model the context based on the variables that can modify the sender’s behavior.
The model determines (i) the people near to the car and (ii) the relationship of these
people with the driver. Since this scenario has more than one contextual variable (distance
and relationship), the number of possible situations is the cartesian product of both
contexts: (i) unknown far (Cont1 and Cont4), (ii) known far (Cont1 and Cont5), (iii)
familiar far (Cont1 and Cont6), (iv) unknown at a moderate distance (Cont2 and Cont4),
among others.

Figure 7.9 presents the canonical model for scenario 3. Contexts are presented sepa-
rately in 7.9(a), 7.9(b), 7.9(c), 7.9(d), 7.9(e), and 7.9(f) parts.

Cont1, Cont2, and Cont3 represent possible values for distance: far, moderate, and
near. For instance, far (why) is a distance greater than or equal to 100 meters (where).
Similarly, Cont4, Cont5, and Cont6 represent possible values for unknown, known, and
familiar relationships. For instance, the relationship familiar (who) represents someone
in the family or a friend.

86 MODEL FOR PRAGMATIC INTEROPERABILITY

PI

outputsinputs except

inval
relat

inact
serv

timeout

Bluet
status

det number
people

det relat between
driver and people

dec Bluet
status

int
behav

on/off Bluet
get
cont

get
inputs

on/off Bluet

ext
behavcont2

cont3

cont4

int

contaction

name

turn on
Bluet

cont1
cont6

cont5

why3 when3how3 who3

Near

where3

<=10m

what3

Distance

c)

cont3

why2 when2how2 who2

Moderate

where2

<100m and
>10m

what2

Distance

why1 when1how1 who1

Far

where1

>=100m

what1

Distance

a)

b)

cont1

cont2

D
is
ta
nc
e

why6 when6how6 who6

Familiar

Family

where6 what6

Relationship

f)

cont6

why5 when5how5 who5

Known

Student

where5 what5

Relationship

why4 when4how4 who4

Unknown

Unknown

where4 what4

Relationship

d)

e)

cont4

cont5

R
el
at
io
ns
hi
p

Friend

msg effec

Figure 7.9 The canonical model for the Bluetooth scenario. Figure 7.9(a), Figure 7.9(b), and
Figure 7.9(c) represent the far (in red), moderate (in yellow), and near (in green) distances,
respectively. Figure 7.9(d), Figure 7.9(e), and Figure 7.9(f) represent the unknown (in blue),
known (in purple), and familiar (in gray) relationships, respectively.

7.2 MODELING AND CODING GUIDE 87

The following definitions list abstract data types in Z notation in this scenario:

BluetoothStatus ::= ‘on’ | ‘off’
DistanceTypes ::= ‘Far’ | ‘Moderate’ | ‘Near’
RelationshipTypes ::= ‘Unknown’ | ‘Known’ | ‘Familiar’
RetLogic ::= ‘yes’ | ‘no’
why ::= ‘DistanceTypes’ | ‘RelationshipTypes’
how ::=
when ::=
who ::= ‘Unknown’ | ‘Student’ | ‘Friend’ | ‘Family’
where ::= ‘>=100m’ | ‘<100m and >10m’ | ‘<=10m’
what ::= ‘Distance’ | ‘Relationship’

The Bluetooth system needs to establish the relationship between people and the
driver to determine the Bluetooth status. The system determines the person’s distance
to the car and the person’s relationship with the driver for each person.

Person
distCar : DistanceTypes
relationshipWithDriver : who

In this scenario, we have two contextual variables: distance and relationship. The
distance can assume far, moderate, and near values, while the relationship can assume
unknown, known, and familiar values.

DistanceContext
ΞFar
ΞModerate
ΞNear

RelationshipContext
ΞUnknown
ΞKnown
ΞFamiliar

Context1, Context2, and Context3 consider elements why, where, and what, while
Context4, Context5, and Context6 consider elements why, who, and what. The value of
each contextual element depends on the context. The following specifications show the
context for far, moderate, and near distances, respectively.

88 MODEL FOR PRAGMATIC INTEROPERABILITY

Far
whyFar : why
whereFar : where
whatFar : what

whyFar = ‘Far’
whereFar = ‘>=100m’
whatFar = ‘Distance’

Moderate
whyMod : why
whereMod : where
whatMod : what

whyMod = ‘Moderate’
whereMod = ‘<100m and >10’
whatMod = ‘Distance’

Near
whyNear : why
whereNear : where
whatNear : what

whyNear = ‘Near’
whereNear = ‘<=10’
whatNear = ‘Distance’

Similarly, the following specifications show the context for an unknown, known, and
familiar relationship, respectively.

Unknown
whyUnkn : why
whoUnkn : who
whatUnkn : what

whyUnkn = ‘Unknown’
whoUnkn = ‘Unknown’
whatUnkn = ‘Relationship’

7.2 MODELING AND CODING GUIDE 89

Known
whyKn : why
whoKn : who
whatKn : what

whyKn = ‘Known’
whoKn = ‘Student’
whatKn = ‘Relationship’

Familiar
whyFamil : why
whoFamil a,whoFamil b : who
whatFamil : what

whyFamil = ‘Near’
whoFamil a = ‘Familiar’
whoFamil b = ‘Friend’
whatFamil = ‘Relationship’

Given the set of contexts and a group of people, we can define a Bluetooth service
with pragmatic interoperability (BluetoothWithPI). The main idea is to (i) determine the
relationship between the driver and each person in the group, (ii) determine the ‘lowest’
relationship, and (iii) apply the contexts. The ‘lowest’ relationship is essential when
there are people with different relationships: for instance, if an unknown and a family
member accompany the driver, then Bluetooth must be turned off. The model performs
this action because the unknown relationship is ‘lowest’ than the family relationship.

90 MODEL FOR PRAGMATIC INTEROPERABILITY

BluetoothWithPI
ΞPerson
ΞDistanceContext
ΞRelationshipContext
totalPeople : N
companionNear : P1 Person
lowerRelationship : who
bluetStatus ′ : BluetoothStatus

∀ people : People •
if people.distCar = DistanceContext .Near .whyNear then

people ∈ CompanionNear
totalPeople = #companionNear
if ∃ p : companionNear •

p.relationshipWithDriver = Unknown.whoUnkn then
lowerRelationship = RelationshipContext .Unknown.whyUnkn

elseif ∃ p : companionNear •
p.relationshipWithDriver = Known.whoKn then

lowerRelationship = RelationshipContext .Known.whyKn
elseif ∃ p : companionNear •

p.relationshipWithDriver = Familiar .whoFamil a ∨
p.relationshipWithDriver = Familiar .whoFamil b then

lowerRelationship = RelationshipContext .Familiar .whyFamil
if lowerRelationship = RelationshipContext .Familiar .whyFamil then

blueStatus ′ = ‘on’
else

blueStatus ′ = ‘off’

Finally, exceptions can be specified.

Exceptions
ΞPerson
ΞBluetoothWithPI
error ! : RetLogic

error ! = ‘no’
if Person.relationshipWithDriver 6∈ who then error ! = ‘yes’
if BluetoothWithPI .lowerRelationship 6∈ who then error ! = ‘yes’

The Z notation formalizes the canonical model of Figure 7.9.
Regarding the RQ1, our results suggest that the CAPITAL framework represents the

pragmatic interoperability between the driver and the car’s Bluetooth system.
About RQ1.1, our finding evidence that CAPITAL framework considers the elements

necessary to provide pragmatic interoperability in Bluetooth scenario. For pragmatic

7.2 MODELING AND CODING GUIDE 91

interoperability to occur in this scenario, the Bluetooth system needs to: (i) determine
the number of people close to the car, (ii) determine the ‘lowest’ relationship between the
people nearby and the driver, and (iii) decide the Bluetooth status.

In respect of RQ1.2, mandatory elements in this scenario are one name, one output,
three exceptions (except), one internal behavior (int behav) composed of three steps, six
contexts (cont), one intention (int), and one external behavior (ext behav) composed
of three steps.

Concerning RQ1.3, 5W1H format represented as expected the six variations of sender
behavior: far, moderate, and near distances; and unknown, known, and familiar relation-
ships.

7.2.4 Scenario 4: Public Security Domain

The fourth scenario is related to the public security domain. We consider smart security
cameras that recognize and report the occurrence of new crimes. After receiving a new
crime, the system forwards the incident to the appropriate agency. Depending on the
crime, the system sends the notification to the Federal Police of Brazil (PFB), Military
Police of Bahia State (PMBA), or City Guard of Salvador city (GMSSA). Each agency
acts according to its internal rules, i.e., outside the system scope.

Problems on pragmatic interoperability occur when, for instance, the security cameras
report “person with a firearm” and “the person” is a police officer. We consider that there is
no crime when a police officer carries a firearm. In this case, the system must understand
the situation context to trigger the appropriate agency or not. Uniform and location are
examples of elements that can assist in decision making.

Figure 7.10 describes how pragmatic interoperability is achieved in this scenario.

Smart	security	camera
reports	person	with	a

firearm

System	does	not
understand	that	the
person	is	a	police
officer	and	triggers

PMBA
a)	A	non-pragmatic	scenario b)	A	pragmatic	scenario

x
System System

Smart	security	camera
reports	person	with	a

firearm

System	understands
that	the	person	is	a

police	officer	and	does
not	trigger	the	agency

Security	cameras Security	cameras

Figure 7.10 Public security domain scenario. Figure 7.10(a) describes the scenario without
pragmatic interoperability and Figure 7.10(b) describes the pragmatic scenario.

We represent the action as follows:

• Name: report a crime

• Internal behavior: system (i) receives the possible crime, (ii) determines if there
is a crime, and (iii) triggers the appropriate agency

92 MODEL FOR PRAGMATIC INTEROPERABILITY

• Input: the crime (literal), date (date), time (time), and location (literal)

• Output: crime (boolean) and appropriate agency (literal)

• Exceptions: non-existent crime, inactive service, and timeout

We model the context based on four crimes and some contextual situations. We
assume the system recognizes the following crimes: child pornography, illegal graffiti,
stolen car, and person with firearm. These crimes are modeled according to contexts
Cont1, Cont2, Cont3, and Cont4, respectively. Figure 7.11 presents the canonical model
for scenario 4. Contexts are presented separately in 7.11(a), 7.11(b), 7.11(c), and 7.11(d)
parts.

PI

outputs

non-ex
crime inact

serv

timeout

timecrime
agency

crime? rec pos
crime trig agency

det if a
crime call the police

get
cont

get
inputs trig

agency

action

name

report
crime

why3 when3how3 who3

stolen car

no exceptions

PMBA

pmba.com

where3

anywhere

what3

crimes

c)

cont3

why4 when4how4 who4

person with firearm PMBA

pmba.com

where4

except police
agencies

what4

crimes

d)

cont4 C
rim

es

location

int

inputs except
int

behav cont2
cont3

cont4

contcont1

msg effec

ext
behav

why2 when2how2 who2

graffiti
except artists

GMSSA
gmssa.com

where2

square

what2

crimes

why1 when1how1 who1

child porno

no exceptions

PFB

pfb.com

where1

anywhere

what1

crimes

a)

b)

cont1

cont2

monument

building
except police

officers

date

Figure 7.11 The canonical model for the public security domain scenario. Figure 7.11(a),
Figure 7.11(b), Figure 7.11(c), and Figure 7.11(d) represent the crimes: child pornography (in
red), graffiti (in yellow), stolen car (in green), and person with firearm (in blue), respectively.

Each context represents a crime. The model considers some contextual elements of
each crime. For instance, graffiti (why in Cont2) crime can occur in a square, monu-
ment, or building (where), except when practiced by artists (who). In this crime, the
City Guard of Salvador city (when) must be called through the API gmssa.com (how).
Similarly, person with firearm (why in Cont4) crime can occur in anywhere, except in
police agencies (where). We assume that this crime is not committed by police officers

7.2 MODELING AND CODING GUIDE 93

(who). In this crime, the Military Police of Bahia State (when) must be called through
the API pmba.com (how).

We assume the Federal Police of Brazil (PFB) is responsible for the child pornography
crime, the City Guard of Salvador city (GMSSA) is responsible for the graffiti crime, and
the Military Police of Bahia State (PMBA) is responsible for stolen car and person with
firearm crimes.

The following definitions list abstract data types in Z notation in this scenario:

isCrime ::= ‘yes’ | ‘no’
CrimesTypes ::= ‘child porno’ | ‘graffiti’ | ‘stolen car’ |

‘person with firearm’
RetLogic ::= ‘yes’ | ‘no’
why ::= ‘CrimesTypes’
how ::= ‘pfb.com’ | ‘gmssa.com’ | ‘pmba.com’
when ::= ‘PFB’ | ‘GMSSA’ | ‘PMBA’
who ::= ‘no exceptions’ | ‘not artists’ | ‘not police officers’
where ::= ‘anywhere’ | ‘square’ | ‘monument’ | ‘building’ |

‘not police agencies’
what ::= ‘crimes’

Smart security cameras sender one notification with possible crime, date, time, and
location. The last three elements can be sent automatically depending on the device used
in the notification. Other elements may be considered.

Notification
possCrime : CrimesType
date : Date
time : Time
location : seqChar

In this scenario, we have one contextual variable (crimes) that can assume four values:
child pornography, graffiti, stolen car, and person with firearm.

CrimesContext
ΞChild porn
ΞGraffiti
ΞStolen car
ΞPerson w fireman

Each context contains the all contextual elements: why, how, when, who, where, and
what. The value of each contextual element depends on the context. The following
specifications show the context for child pornography, graffiti, stolen car, and person with
firearm crimes, respectively.

94 MODEL FOR PRAGMATIC INTEROPERABILITY

Child porn
whyChPorn : why
howChPorn : how
whenChPorn : when
whoChPorn : who
whereChPorn : where
whatChPorn : what

whyChPorn = ‘child porno’
howChPorn = ‘pfb.com’
whenChPorn = ‘PFB’
whoChPorn = ‘no exceptions’
whereChPorn = ‘anywhere’
whatChPorn = ‘crimes’

Graffiti
whyGraf : why
howGraf : how
whenGraf : when
whoGraf : who
whereGraf a,whereGraf b,whereGraf c : where
whatGraf : what

whyGraf = ‘graffiti’
howGraf = ‘gmssa.com’
whenGraf = ‘GMSSA’
whoGraf = ‘not artists’
whereGraf a = ‘square’
whereGraf b = ‘monument’
whereGraf c = ‘building’
whatGraf = ‘crimes’

7.2 MODELING AND CODING GUIDE 95

Stolen car
whyStCar : why
howStCar : how
whenStCar : when
whoStCar : who
whereStCar : where
whatStCar : what

whyStCar = ‘stolen car’
howStCar = ‘pmba.com’
whenStCar = ‘PMBA’
whoStCar = ‘no exceptions’
whereStCar = ‘anywhere’
whatStCar = ‘crimes’

Person w fireman
whyPFire : why
howPFire : how
whenPFire : when
whoPFire : who
wherePFire : where
whatPFire : what

whyPFire = ‘person with firearm’
howPFire = ‘pmba.com’
whenPFire = ‘PMBA’
whoPFire = ‘not police officers’
wherePFire = ‘not police agencies’
whatPFire = ‘crimes’

Given a set of contexts and one notification, we define public security service with
pragmatic interoperability (PublicSecurityWithPI) as follows. The central idea is to
capture the possible crime (Notification.possCrime) and check for divergence between
the contextual elements of the notification (data, time, and location) and the context
(who and where). If there are no divergences, the system triggers the most appropriate
agency.

96 MODEL FOR PRAGMATIC INTEROPERABILITY

PublicSecurityWithPI
ΞNotification
ΞCrimesContext
isCrime? : isCrime
apprAgency? : when
crime : CrimesType
local : where

crime = Notification.possCrime
local = Notification.location
isCrime? = ‘yes’ [Based on location only]
if crime = CrimesContext .Child porn.whyChPorn then

if local = CrimesContext .Child porn.whereChPorn then
apprAgency? = ‘PFB’

elseif crime = CrimesContext .Graffiti .whyGraf then
if local = CrimesContext .Graffiti .whereGraf a ∨
local = CrimesContext .Graffiti .whereGraf b ∨
local = CrimesContext .Graffiti .whereGraf c then
apprAgency? = ‘GMSSA’

elseif crime = CrimesContext .Stolen car .whyStCar then
if local = CrimesContext .Stolen car .whereStCar then

apprAgency? = ‘PMBA’
elseif crime = CrimesContext .Person w fireman.whyPFire then

if local = CrimesContext .Person w fireman.wherePFire then
apprAgency? = ‘PMBA’

else
isCrime? = ‘no’

Finally, we specify the exceptions as follows.

Exceptions
ΞNotification
error ! : RetLogic

if Notification.possCrime 6∈ why then
error ! = ‘yes’

else
error ! = ‘no’

The Z notation formalizes the canonical model of Figure 7.11. At the current stage,
we evaluate crime based only on the reported location.

Regarding the RQ1, our findings suggest that our CAPITAL framework represents
a very simple scenario of pragmatic interoperability in the public security domain. We
are aware that we need to refine the contexts and consider other contextual elements in

7.2 MODELING AND CODING GUIDE 97

addition to location.
About RQ1.1, our results evidence that our framework considers the elements nec-

essary to provide pragmatic interoperability. For pragmatic interoperability to occur in
this scenario, the system needs to: (i) recognize the reported crime, (ii) determine the
existence of the crime, and (iii) trigger the most appropriate agency.

In respect of RQ1.2, mandatory elements in this scenario are: one name, four input,
two output, three exceptions (except), one internal behavior (int behav) composed
of three steps, four contexts (cont), one intention (int), and one external behavior (ext
behav) composed of three steps.

Concerning RQ1.3, 5W1H format represented as expected the four crimes.

7.2.5 Discussion

We evaluated the effectiveness, completeness, and mandatory elements of the CAPITAL
framework. Our findings show that the CAPITAL framework represents pragmatic in-
teroperability in heterogeneous scenarios. Our results suggest that our framework might
be generalized to other scenarios. These results validate our RQ1.

Our framework represents the mandatory elements to provide pragmatic interoper-
ability in each scenario. This result validates RQ1.1 and suggests that the elements in
the CAPITAL framework might model other scenarios.

The heterogeneity of the scenarios emphasized the mandatory information. We sug-
gest the framework mandatory elements based on the intersection of the results of each
scenario. This assessment helps us to answer RQ1.2. Regarding the action, the name
identifies the service, but not every system needs inputs, e.g., scenario 3. Since prag-
matic interoperability provides communication among systems, at least one output is
mandatory. Timeout and inactive service are examples of traditional exceptions. Some
predefined sequences of steps (int behavior) illustrate what the receiver must do to send
the output expected by the sender. The context represents all variables that can change
the receiver behavior. Our framework assumes the existence of at least one variable and
two contexts. In each context, CAPITAL considers mandatory only the why and what.
What refers to the variable, and why are all possible variations of what. According to
(MCCARTHY, 1993), the context cannot be described entirely because of its infinite
dimension. The framework considers as mandatory the intention (int) and external be-
havior (ext behav). The external behavior is usually composed by (i) get inputs, (ii)
get the context, and (iii) the action to be performed. Mandatory elements are bold in
Figure 7.3.

Although our scenarios have validated RQ.1.3, other contextual representations can
be employed in our framework. In this case, the novel representation must be shared
between the receiver and the sender. Both canonical models and textual descriptions can
guide conversion among context representation models.

The discussions in each scenario emphasize the relation between context and in-
tention. Since the context describes possible variations of a scenario, we realize that
pragmatic interoperability is achieved when the context encompasses a high number of
situations present in the intention. In the Venn diagram, pragmatic interoperability is

98 MODEL FOR PRAGMATIC INTEROPERABILITY

achieved when the intersection between context and intention increases. Figure 7.12
summarizes this relationship. In Figure 7.12(c), pragmatic interoperability occurs more
frequently than in Figure 7.12(a).

a)

Context Intention

Pragmatic
Interoperability

c)

b)

Figure 7.12 Venn diagram that relates context and intention. In Figure 7.12(c), pragmatic
interoperability occurs more frequently than in Figure 7.12(a).

The sets are distinct because the context has infinite dimension (MCCARTHY, 1993),
i.e., there is always an unmapped context contained only in the context set (not the
intersection).

The next section presents the controlled experiment to evaluate CAPITAL framework
understandability, completeness, consistency, conciseness, and performance.

7.3 CONTROLLED EXPERIMENT

This controlled experiment investigates the capacity of users to understand the definition
and interpret scenarios with pragmatic interoperability with and without our framework.
Based on the guidelines defined by Wohlin et al. (2012), this experiment is structured in
four stages: scope, planning, operation, and analysis and interpretation.

7.3.1 Scope

The experiment scope defines the study goals and questions. In this stage, we define the
goal in the Goal-Question-Metric (GQM) template (BASILI; ROMBACH, 1988), research
question, and evaluation attributes of our experiment.

7.3 CONTROLLED EXPERIMENT 99

7.3.1.1 Goal. In this controlled experiment, we investigate the capacity of users to
understand and interpret scenarios with pragmatic interoperability. According to GQM,
the objective of this study is:

Analyze <the CAPITAL framework> for the purpose of <evaluation> with
respect to <understandability, completeness, consistency, conciseness, and
performance> from the point of view of <developers, professors, and stu-
dents> in the context of <scenarios with pragmatic interoperability>.

7.3.1.2 Research Question. Based on the goal, we defined the following research
question:

Does the use of the CAPITAL framework influence the understanding and
modeling of scenarios with pragmatic interoperability?

Since there is no similar framework in the literature, we investigate whether there
is a difference between (i) modeling scenarios with the CAPITAL framework and (ii)
modeling scenarios only with the definition of pragmatic interoperability.

Our framework simplifies the pragmatic interoperability definitions from the liter-
ature since the CAPITAL framework considers our definition unified. We investigate
whether there is a significant difference between modeling scenarios with and without
our framework based on the attributes described in the next section.

7.3.1.3 Attributes. The comparison of models with and without CAPITAL frame-
work is based on the following quality attributes:

• understandability (unders) evaluates the effort required to understand scenarios
with pragmatic interoperability;

• completeness (compl) evaluates CAPITAL’s ability to model scenarios with prag-
matic interoperability;

• consistency (consist) evaluates the uniformity of the model generated by CAPITAL,
i.e., whether CAPITAL’s outcomes are uniform;

• conciseness (concis) evaluates the existence of unnecessary elements in the gener-
ated model. For instance, elements never used; and

• performance (perf) evaluates the time required to model scenarios with pragmatic
interoperability.

We evaluate each attribute based on a questionnaire with nine questions available
in Table 7.2. Each participant (specified in Subsection 7.3.2.3) assigned a score from 1
(very low) to 5 (very high) in each question. We measured each attribute by at least two
questions, and then we consider the attribute evaluation as the average of the questions
associated with them. The questionnaire is available in Appendix C.

100 MODEL FOR PRAGMATIC INTEROPERABILITY

Table 7.2 Questions used in the evaluation of attributes

Attribute Question
q1 unders What effort is required to understand the scenario?
q2 compl What effort is required to identify possible missing elements in the

modeling?
q3 consist What effort is required to assess the uniformity of the elements in the

modeling?
q4 concis What effort is required to identify unnecessary elements in modeling?
q5 unders What effort is required to understand and add a new context?
q6 compl What effort is required to assess the completeness of the modeling?
q7 consist What effort is required to identify conflicting or ambiguous elements

in the modeling?
q8 concis What effort is required to identify redundant elements in modeling?
q9 unders What effort is required to list the intention, the message, and the effect

of the scenario?

We perform the average (AVG) of understandability, completeness, consistency, and
conciseness, respectively, as follow:

AVG unders = (q1 + q5 + q9)/3 (.)

AVG compl = (q2 + q6)/2 (.)

AVG consist = (q3 + q7)/2 (.)

AVG concis = (q4 + q8)/2 (.)

We evaluate performance based on the time required to complete the task with and
without the CAPITAL framework.

7.3.2 Planning

The planning stage describes the experiment conduct, i.e., how we will conduct the study.
We present the design, materials, tasks, hypotheses, and participants.

7.3.2.1 Study Design. The design of our experiment comprises one factor with two
treatments. The factor considered was the modeling technique, and the treatments were
CAPITAL framework and ad-hoc (i.e., with and without CAPITAL framework). There-
fore, we carried out this experiment based on two groups: CAPITAL group (CapG)
and Control group (ConG). The CAPITAL group modeled pragmatic scenarios with the
CAPITAL framework, and Control group modeled pragmatic scenarios only with prag-
matic interoperability definitions from literature2 (i.e., without the CAPITAL framework,

2The definitions are available in Table 7.1

7.3 CONTROLLED EXPERIMENT 101

ad-hoc). Each participant belongs only to one group.
The dependent variables are the attributes understandability, completeness, consis-

tency, conciseness, and performance. Independent variable is the modeling technique.
We vary the independent variable in two values: CAPITAL framework and ad-hoc.

7.3.2.2 Hypotheses. Based on the objective, research question, and attributes, we
define five sets of null and alternative hypotheses. Each hypothesis corresponds to an
attribute.

When true, a null hypothesis (H0) indicates that there is no statistical difference
between the two groups. When a null hypothesis is false, a true alternative hypothesis
(Ha) indicates a statistical difference between them.

We divided each alternative hypothesis into two sub-hypotheses: the first (Ha1) indi-
cates that the average for the CAPITAL group (CapG) is statistically more significant
than the average for the Control group (ConG), and the other (Ha2) otherwise. We define
the hypotheses as follows:

• (H 1) Understandability

– H10: the use of CAPITAL does not influence the understanding of scenario
with pragmatic interoperability (AVG undersConG = AVG undersCapG)

– H1a : the use of CAPITAL influences the understanding of scenario with prag-
matic interoperability (AVG undersConG 6= AVG undersCapG)

∗ H1a1: AVG undersConG < AVG undersCapG

∗ H1a2: AVG undersConG > AVG undersCapG

• (H 2) Completeness

– H20: the use of CAPITAL does not influence the modeling of a scenario with
pragmatic interoperability (AVG complConG = AVG complCapG)

– H2a : the use of CAPITAL influences the modeling of a scenario with pragmatic
interoperability (AVG complConG 6= AVG complCapG)

∗ H2a1: AVG complConG < AVG complCapG

∗ H2a2: AVG complConG > AVG complCapG

• (H 3) Consistency

– H30: the use of CAPITAL does not influence the standardization of scenarios
with pragmatic interoperability (AVG consistConG = AVG consistCapG)

– H3a : the use of CAPITAL influences the standardization of scenarios with
pragmatic interoperability (AVG consistConG 6= AVG consistCapG)

∗ H3a1: AVG consistConG < AVG consistCapG

∗ H3a2: AVG consistConG > AVG consistCapG

102 MODEL FOR PRAGMATIC INTEROPERABILITY

• (H 4) Conciseness

– H40: the use of CAPITAL does not influence the construction of complete sce-
narios with pragmatic interoperability (AVG concisConG = AVG concisCapG)

– H4a : the use of CAPITAL influences the construction of complete scenarios
with pragmatic interoperability (AVG concisConG 6= AVG concisCapG)

∗ H4a1: AVG concisConG < AVG concisCapG

∗ H4a2: AVG concisConG > AVG concisCapG

• (H 5) Performance

– H50: the use of CAPITAL does not influence the time required to model
scenarios with pragmatic interoperability (AVG perfConG = AVG perfCapG)

– H5a : the use of CAPITAL influences the time required to model scenarios with
pragmatic interoperability (AVG perfConG 6= AVG perfCapG)

∗ H5a1: AVG perfConG < AVG perfCapG

∗ H5a2: AVG perfConG > AVG perfCapG

7.3.2.3 Participants. We sent a pre-questionnaire (Section C.1 in Appendix C)
to potential participants aimed to collect their experience and status. Since our pre-
questionnaire received 46 responses, we created two groups with 23 participants based
on experience and status collected. We applied stratified random sampling (WOHLIN et
al., 2012) to determine the group of each participants.

We recruited eight professors and 36 students related to different computer fields from
two federal universities. Additionally, we recruited two professional developers with M.Sc.
degree from two different companies. Among the 46 participants, four participants have
a Ph.D. degree, six participants have a M.Sc. degree, and the others participants are
undergraduate students.

We randomly allocated one developer, two professors with a Ph.D. degree, and two
professors with an M.Sc. degree to each group. Regarding undergraduate students,
we randomly allocated 18 students to each group. Since we invited students from two
universities (U1 and U2), we randomly allocated 16 students from U1 and two students
from U2 to each group. We also allocated the participants based on their experiences.

Although we do not require any prior knowledge, 82.6% of the participants do not
know and have never used interoperability before, and 91.3% do not know and have
never used pragmatic interoperability before. No participant was aware of our CAPITAL
framework.

According to our design, we created two similar groups based on the participants’
experience and status: CAPITAL group (CapG) and Control group (ConG). Section C.4
in Appendix C presents a participants overview involved in this controlled experiment.
All participants agreed with the research objectives. We did not reward the participants
and we guarantee the confidentiality of personal data.

7.3 CONTROLLED EXPERIMENT 103

7.3.3 Operation

The experiment operation phase describes how the treatments are applied to participants.
We present the preparation, execution, and data validation steps.

7.3.3.1 Preparation. We invited students and professors from two different univer-
sities and two developers from two different companies in this phase. Along with the
invitation, we present our research and the purpose of this controlled experiment.

After the pre-questionnaire answers, we group the participants into two groups. Each
group received a specific questionnaire (Sections C.2 and C.3 in Appendix C). We make
available and apply all questionnaires in electronic format.

Although we did not conduct a pilot study, two researchers with a Ph.D. degree
validated our three questionnaires.

7.3.3.2 Execution. We provided the pre-questionnaire from 09/15/2020 to 09/22/2020
and the specific questionnaires for each group from 09/24/2020 to 09/30/2020.

The experiment was carried online and individually. We provided an e-mail with the
questionnaires for eventual questions. We received two e-mails from the Control group
(ConG) and one e-mail from the CAPITAL group (CapG).

Both groups consider two scenarios: Bluetooth and smartphone. The Bluetooth sce-
nario is the same as that presented in Section 7.2.3. The smartphone scenario has the
following description: the smartphone should prevent the device to change the screen
setting to night mode during the day.

The experiment consisted of the following tasks:

• ConG: initially, each participant received definitions about pragmatic interoperabil-
ity and the Bluetooth scenario described only textually. Then, they had to answer
about the existence or not of pragmatic interoperability in the first scenario. After
that, the group received the smartphone scenario and a set of questions about prag-
matic interoperability in the scenario. Finally, the attributes were assessed. This
questionnaire is available in Section C.2 (Appendix C).

• CapG: initially, each participant received our CAPITAL framework and the Blue-
tooth scenario described textually and modeled in CAPITAL. Then, they had to
answer about the existence or not of pragmatic interoperability in the first scenario.
After that, the group received the smartphone scenario and the blank CAPITAL to
fill out the information. Finally, the attributes were assessed. This questionnaire is
available in Section C.3 (Appendix C).

7.3.3.3 Data Validation. We did not detect any inconsistency in the answers. There-
fore, we use all the answers in the data analysis.

104 MODEL FOR PRAGMATIC INTEROPERABILITY

7.3.4 Analysis and Interpretation

In this section, we present the analysis and interpretation of the results. This phase
supports draw conclusions based on the collected data.

7.3.4.1 Results Overview. According to Appendix C, Part II of the questionnaires
for each group verifies whether the participants identify pragmatic interoperability in the
Bluetooth scenario with and without our CAPITAL framework. As a result, 60.9% of
the Control group (14 participants) identify the scenario as pragmatic. Among these par-
ticipants, two participants (14.3%) consider only the context to describe interoperability,
three participants (21.4%) consider only the driver’s intention, and the other participants
(64.3%) describe pragmatic interoperability with other terms.

With our framework, 78.3% of the CAPITAL group (18 participants) identify prag-
matic interoperability in the Bluetooth scenario. Among these participants, four par-
ticipants (23.5%) consider only the context to describe interoperability, two participants
(11.8%) consider only the driver’s intention, four participants (23.5%) consider both con-
text and intention, and the other participants (41.2%) describe pragmatic interoperability
with other terms. This data suggests that our framework helps to understand pragmatic
scenarios. Figure 7.13 details the answer by group.

Figure 7.13 Summary of responses on identification and definition of pragmatic interoperabil-
ity for the Bluetooth scenario.

The identification of pragmatic interoperability in the smartphone scenario (Part III
of the questionnaires in Appendix C) follows the same pattern as in Part II. While 52.2%
of the Control group (12 participants) identify the scenario as pragmatic, 73.9% of the
CAPITAL group (17 participants) identify pragmatic interoperability in this scenario.
The remaining questions in Part III aim to assist the questions in Part IV.

7.3 CONTROLLED EXPERIMENT 105

Table 7.3 presents all the data collected from Part IV of the questionnaires regarding
the quantitative responses (Part IV of the questionnaires in Appendix C).

Table 7.3 Quantitative data collected by all 46 participants (23 participants by each group)

Control group: ConG CAPITAL group: CapG
unders compl consist concis unders compl consist concis

q1 q5 q9 q2 q6 q3 q7 q4 q8 q1 q5 q9 q2 q6 q3 q7 q4 q8
p1 4 2 4 5 3 5 2 3 5 2 3 4 3 3 1 1 2 2
p2 4 3 4 5 4 4 3 3 3 2 5 2 2 1 3 2 3 3
p3 3 3 3 3 2 4 3 3 3 1 2 2 2 2 2 2 2 2
p4 4 5 4 4 5 3 5 5 5 1 1 2 3 2 2 3 4 2
p5 3 3 4 3 3 4 4 3 3 3 2 2 2 4 2 1 3 5
p6 4 2 4 5 4 2 5 1 5 1 1 2 1 1 2 4 2 5
p7 4 5 5 5 4 3 3 5 5 2 2 2 2 2 4 2 3 5
p8 4 3 4 4 4 3 3 5 4 3 1 2 3 1 1 1 2 3
p9 4 5 5 4 5 2 5 5 5 3 3 1 3 2 1 1 2 2
p10 3 3 3 3 3 2 3 3 3 1 4 2 4 4 4 2 4 4
p11 4 4 4 4 5 2 2 4 4 1 5 2 3 5 4 2 5 5
p12 1 4 4 3 5 4 2 5 5 2 3 2 3 3 2 3 1 5
p13 2 4 4 4 4 4 2 3 5 2 1 2 1 1 2 1 1 1
p14 1 3 5 3 3 2 2 1 2 4 3 3 2 4 4 3 4 3
p15 5 2 3 3 3 1 2 3 3 5 5 5 3 5 4 2 5 5
p16 2 4 3 2 4 3 4 3 2 2 2 4 3 2 1 2 2 2
p17 4 5 3 5 5 2 2 5 3 2 3 2 3 3 4 3 3 3
p18 4 5 4 5 4 5 5 5 3 1 5 3 2 3 1 1 3 2
p19 2 4 3 3 4 3 2 1 1 3 3 2 3 4 5 3 4 3
p20 1 2 5 3 4 3 5 1 2 2 3 4 4 3 1 2 4 3
p21 1 3 3 3 4 4 4 3 3 2 5 4 3 4 2 2 2 2
p22 1 5 5 4 5 5 4 4 3 4 4 4 3 5 1 3 4 2
p23 4 5 5 4 4 4 4 4 4 3 3 1 3 2 1 2 4 1

The table is divided by participants (p1, p2, . . . , p23), by group (Control group and
CAPITAL group), by attribute (understandability, completeness, consistency, and
conciseness), and by questions (q1, q2, . . . , q9). The questions associated with each at-
tribute are defined according to Equations 7.1, 7.2, 7.3, and 7.4.

Table 7.4 presents the statistical measures of the collected data. We present the
minimum value (min), lower quartile (Q1/4), median (med), average (avg), upper quar-
tile (Q3/4), the maximum value (max), standard deviation (sd), and coefficient of vari-
ation (cv) for each attribute. The table is divided by attribute (understandability,
completeness, consistency, conciseness, and performance) and by groups (Control
group: ConG; and CAPITAL group: CapG). The values associated with the performance
are given in minutes, except the coefficient of variation (cv).

106 MODEL FOR PRAGMATIC INTEROPERABILITY

Table 7.4 Statistical measures of the collected data

Attribute Group min Q1/4 med avg Q3/4 max sd cv (%)

unders ConG 2.33 3.00 3.33 3.54 4.00 4.67 0.66 18.80
CapG 1.33 2.17 2.33 2.61 3.00 5.00 0.86 32.84

compl ConG 2.50 3.25 4.00 3.87 4.50 5.00 0.69 17.95
CapG 1.00 2.23 3.00 2.76 3.50 4.00 0.90 32.70

consist ConG 1.50 2.75 3.50 3.26 4.00 5.00 0.88 26.91
CapG 1.00 1.50 2.00 2.22 3.00 4.00 0.91 41.26

concis ConG 1.00 3.00 3.50 3.46 4.00 5.00 1.14 32.90
CapG 1.00 2.25 3.00 3.02 3.50 5.00 0.99 32.90

perf ConG 6.00 9.00 13.00 13.43 17.00 23.00 4.91 36.52
CapG 6.00 10.50 16.00 15.74 19.50 29.00 6.57 41.72

Regarding understandability (see Figure 7.14(a)), the average group suggests that
understanding scenarios with the CAPITAL framework (avg = 2.61) is easier than un-
derstanding scenarios without the CAPITAL framework (avg = 3.54). However, the
standard deviation (sd) and coefficient of variation (cv) of CAPITAL group (sd = 0.86
and cv = 32.85%) are greater than Control group’s values (sd = 0.66 and cv = 18.80%).
These differences indicate that the Control group’s values had a smaller variation than the
values of the CAPITAL group. This dispersion around the average may have influenced
the increase in the Control group’s average value.

Regarding completeness (see Figure 7.14(b)), the average group suggests that model-
ing of scenarios is easier with the CAPITAL framework (avg = 2.76) than without the
CAPITAL framework (avg = 3.87). However, the standard deviation (sd) and coefficient
of variation (cv) of CAPITAL group (sd = 0.90 and cv = 32.70%) are also greater than
Control group’s values (sd = 0.69 and cv = 17.95%). Similar to the previous attribute,
this dispersion around the average may have influenced the increase in the Control group’s
average value.

Regarding consistency (see Figure 7.14(c)), the average group suggests that pragmatic
interoperability scenarios are more consistent with the CAPITAL framework (avg = 2.22)
than without the CAPITAL framework (avg = 3.26). However, the standard deviation
(sd) and coefficient of variation (cv) of CAPITAL group (sd = 0.91 and cv = 41.26%) are
also greater than Control group’s values (sd = 0.88 and cv = 26.91%). Similar to the two
previous attribute, this dispersion around the average may have influenced the increase
in the Control group’s average value.

Regarding conciseness (see Figure 7.14(d)), the average group suggests that the con-
struction of complete scenarios with pragmatic interoperability is slightly easier with the
CAPITAL framework (avg = 3.02) than without the CAPITAL framework (avg = 3.46).
The standard deviation (sd) and coefficient of variation (cv) of CAPITAL group (sd =
0.99 and cv = 32.90%) are very close to the Control group (sd = 1.14 and cv = 32.90%).

Finally, regarding performance (see Figure 7.14(e)), the groups’ averages suggests a

7.3 CONTROLLED EXPERIMENT 107

difference in the time required to model scenarios with pragmatic interoperability with
the CAPITAL framework (avg = 15.74) and without the CAPITAL framework (avg =
13.43). The standard deviation (sd) and coefficient of variation (cv) of CAPITAL group
(sd = 6.57 and cv = 41.72%) are greater than Control group’s values (sd = 4.91 and
cv = 36.52%). These differences indicate that the time to model scenarios without the
CAPITAL framework varied less than time to model scenarios with our framework.

(a)

qu
an

tit
at

iv
e

re
sp

on
se

s

(b)

qu
an

tit
at

iv
e

re
sp

on
se

s

(c)

qu
an

tit
at

iv
e

re
sp

on
se

s

(d)

qu
an

tit
at

iv
e

re
sp

on
se

s

(e)

tim
e

(m
in

ut
es

)

Figure 7.14 Comparison between the Control group (ConG) and CAPITAL group (CapG) for
five attributes: (a) understandability, (b) completeness, (c) consistency, (d) conciseness, and (e)
performance.

Generally, data suggest that the CAPITAL framework positively influenced the un-
derstandability, modeling (completeness), and standardization (consistency) of scenarios
with pragmatic interoperability. By contrast, the CAPITAL framework negatively influ-
enced the time required (performance) to model scenarios. We noted that our CAPITAL
framework did not influence the construction of complete scenarios (conciseness). Next,
we present and discuss a statistical analysis to confirm or refute the influence of our
framework.

7.3.4.2 Hypothesis Testing. We perform the hypothesis test (WOHLIN et al.,
2012) to investigate whether there is a significant difference between the data collected
from the two groups based on attributes.

108 MODEL FOR PRAGMATIC INTEROPERABILITY

We apply the t-Student test (t-test) (HOTELLING et al., 1951) two-tailed for each
attribute. T-test’s alternative hypothesis is that there is a significant difference between
the two sets of data. T-test has the following assumptions: (i) the samples are indepen-
dent of each other, (ii) the samples follow normal distributions, and (iii) the samples have
the same variance. Our samples are independent since they are associated with a specific
group (control or CAPITAL) or attribute. We apply the Shapiro-Wilk test (RAZALI;
WAH et al., 2011) to confirm that our samples are normal, and the Levene test (NORD-
STOKKE; ZUMBO, 2010) to confirm that our samples have the same variance.

Table 7.5 presents the probability of the null hypothesis (p-value) for each evaluated
attribute. We use the p-value to accept or reject each attribute’s hypotheses with a
significance level of p = 0.05 (i.e., 95% confidence level). Therefore, we may reject the
null hypothesis (H0) of attributes with p < 0.05.

Table 7.5 Probability for each evaluated attribute based on t-test (two-tailed)

Attribute p-value
Understandability 0.000187
Completeness 0.000032
Consistency 0.000281
Conciseness 0.174552
Performance 0.185026

The test result showed that the null hypotheses of the attributes conciseness (p-
value = 0.174552 > 0.05) and performance (p-value = 0.185026 > 0.05) cannot be re-
jected. These values show that there is no significant difference between the means of
each group. As a consequence, we accept the following null hypotheses:

• H40 (about conciseness): the use of CAPITAL does not influence the construc-
tion of complete scenarios with pragmatic interoperability, i.e., AVG concisConG =
AVG concisCapG

• H50 (about performance): the use of CAPITAL does not influence the time
required to model scenarios with pragmatic interoperability, i.e., AVG perfConG =
AVG perfCapG

This result shows no evidence that the CAPITAL framework influences the time
required to model scenarios and the construction of complete scenarios.

However, the t-test showed that we can reject the null hypotheses of the attributes
understandability (p-value = 0.000187 < 0.05), completeness (p-value = 0.000032 < 0.05),
and consistency (p-value = 0.000281 < 0.05). These values show that there is a significant
difference between the means of each group. As a consequence, we accept the following
alternative hypotheses:

• H1a (about understandability): the use of CAPITAL influences the understanding
of scenario with pragmatic interoperability, i.e., AVG undersConG 6= AVG undersCapG

7.4 RELATED WORK 109

• H2a (about completeness): the use of CAPITAL influences the modeling of a
scenario with pragmatic interoperability, i.e., AVG complConG 6= AVG complCapG

• H3a (about consistency): the use of CAPITAL influences the standardization of
scenarios with pragmatic interoperability, i.e., AVG consistConG 6= AVG consistCapG

This result shows evidence that the CAPITAL framework influences the understand-
ing, modeling, and standardization of scenarios with pragmatic interoperability.

7.3.4.3 Threats to Validity. This sections describes some threats to the validity of
our controlled experiment. Additionally, we present our strategy to mitigate each threat.

Threats to conclusion validity concern the ability to relate treatment and experi-
ment outcomes (WOHLIN et al., 2012). The low statistical power of a test may affect the
decision to accept or reject a hypothesis. In our controlled experiment, we consider a ro-
bust and well-known test to assess our hypotheses. Moreover, we take care not to violate
any test assumptions. We mitigate the threat of a random heterogeneity of participants
based on the proper randomization of participants by treatments. We designate each
participant to a group depending on their experience and status according to stratified
random sampling.

Threats to internal validity regard the non-controlled factors that can affect the in-
dependent variable without the researcher’s knowledge (WOHLIN et al., 2012). We argue
that answering the online questionnaire without a predetermined time may mitigate the
maturation effect. This strategy avoids the participants are affected negatively (e.g., tired
or bored) over time. Regarding the selection, all participants answer the questionnaire
voluntarily. We emphasized that there would be no rewards of any kind.

Threats to construct validity concern the generalization of the results (WOHLIN
et al., 2012). Evaluation apprehension might have influenced the overall results. Some
participants were probably afraid of being evaluated because we presented this experiment
to students during an undergraduate course. To mitigate this threat, we informed that
the controlled experiment was to evaluate only our framework. We also reported that
there were no right or wrong answers. We mitigate the threat of mono-method bias
by applying at least two questions for the same attribute. We argue that this strategy
decreases the questionnaire’s subjectivity.

Threats to external validity regard the ability to generalize the results (WOHLIN
et al., 2012). The interaction of selection and treatment is our most massive threat.
Although we applied our experiment with two developers, our participants are almost
all students or professors. This sample may not be enough to generalize our results to a
non-academic environment.

7.4 RELATED WORK

Tamani and Evripidou (2007) propose a pragmatic methodology for discovering web
services in a specific domain. Authors summarize the problem of semantic web as the
inability to select the most appropriate service from similar ones. This solution is based on
human judgment to select the most suitable service automatically. As the semantic web

110 MODEL FOR PRAGMATIC INTEROPERABILITY

is usually dynamic, these judgments can make the solution infeasible since the contexts
change. Different from our approach, CAPITAL deals as many contexts as possible.

Neiva et al. (2016) introduce PRIME (Pragmatic Interoperability to Meaningful Col-
laboration), an architecture to support pragmatic interoperability in the collaborative
development of scientific workflows. PRIME provides a mechanism for scientists to find
services that meet their expectations. The architecture receives some search parameters,
and it returns a list of services that satisfy the request. Although this search results
in services ordered by relevance, contextual elements are not applied to compare two or
more services.

Liu, Li and Liu (2014) propose a framework to interoperate data from a radiology
department by a semantic and pragmatic perspective. Similar to other work, authors
offer a solution for a specific domain, and they do not consider contextual elements when
modeling the pragmatic model.

Lee et al. (2007) present a context-aware geospatial data and service integration frame-
work based on the combination of syntactic, semantic, and pragmatic models. Although
the authors use notions of context, pragmatic model considers only contextual aspects
related to place and time. The absence of elements (e.g., why, who, and how) can limit
the representation of other scenarios. Additionally, even if not explicit, authors consider
that the pragmatic model has a single intention.

Most of these researches are domain-specific, i.e., each approach fulfills problems in
a specific area. Similar to the definitions, there is no consensus on employing contextual
nor intentional elements in solutions.

7.5 CHAPTER SUMMARY

This chapter described the CAPITAL framework, our model for pragmatic interoperabil-
ity. Pragmatic interoperability enables systems to mutually affect each other’s state and
behavior so that the result produced by one participant matches the result expected by
other participants.

Due to a lack of consensus, we performed a literature review on pragmatic interoper-
ability definitions and related terms towards a unified definition. Based on this review,
we presented our CAPITAL framework with canonical models, textual definition, and Z
notation. We validated the CAPITAL framework in (i) four different scenarios and (ii) a
controlled experiment. As discussed, our findings suggest that our CAPITAL framework
positively influences the understanding, modeling, and standardization of scenarios with
pragmatic interoperability.

The next chapter presents the pragmatic MIDAS architecture. We discuss the work-
ings of pragmatic MIDAS, and we perform a proof of concept of our CAPITAL framework.

Chapter

8
This chapter presents and discusses MIDAS 3.0: middleware for pragmatic interoperability among cloud
services. We evaluated MIDAS 3.0 based on our CAPITAL framework.

PRAGMATIC MIDAS ARCHITECTURE

As a proof of concept of our CAPITAL, we develop a prototype of the pragmatic MIDAS:
MIDAS 3.0. Similar to the previous versions, MIDAS 3.0 intermediates communication
between SaaS applications and heterogeneous data sources (e.g., DaaS and DBaaS) in-
dependently of API.

The next section describes and discusses the MIDAS 3.0 architecture.

8.1 MIDAS 3.0

MIDAS 3.0 is our first attempt to address pragmatic interoperability in cloud environ-
ments. MIDAS 3.0 recognizes (i) SQL and MongoDB (NoSQL) queries, (ii) data stored
in a single or multiple DaaS/DBaaS providers, and (iii) queries with and without data
join. Based on the CAPITAL framework, MIDAS 3.0 stores contextual information for
each data source in the DIS. This information enables pragmatic MIDAS to understand
the SaaS intent and access the appropriate source. MIDAS 3.0 is based on the previous
versions since pragmatic interoperability requires syntactic and semantic levels (ASUN-
CION; SINDEREN, 2010).

We reuse functionalities of all modules and components of MIDAS 2.0 (MANE et
al., 2020): Request Module (Query Decomposer and Query Builder), Data Module (Data
Mapping and Data Join), Semantic Module (Semantic Mapping and SMS), Result Module
(Filtering and Formatter), DIS, and Crawler. The reuse of the MIDAS 2.0 modules
and components suggests that an appropriate syntax and semantic is necessary before
implementing the pragmatic concept.

Additionally, we upgrade Query Builder, Crawler, and DIS components and we add
in MIDAS 3.0 a new component: Pragmatism Mapping. Although SaaS is not within
MIDAS scope, it requires adjustments since it must send contextual elements to pragmatic
MIDAS. The encoding of this step depends on the device used in the query.

Figure 8.1 depicts MIDAS 3.0 architecture. The layered presentation illustrates the
modules and components provided and reused by each level of interoperability.

111

112 PRAGMATIC MIDAS ARCHITECTURE

Prag
Mapping

DIS

Crawler

Sy
nta

cti
c L

ev
el

Data
Mapping Data Join

Data Module

Request Module

Prag
Mapping

DIS

Crawler

Pra
gm

ati
c L

ev
elRequest Module

Query
Builder

Data Join

Data Module

Request Module

Prag
Mapping

DIS

Crawler

Sem
an

tic
 Le

ve
l

Semantic Module

Semantic Module

SMS Semantic
Mapping

SMS Semantic
Mapping

Query
Builder

Query
Decomp

Query
Builder

Query
Decomp

Result Module

Formatter

Filtering

Figure 8.1 MIDAS 3.0 architecture.

8.1 MIDAS 3.0 113

Figure 8.2 provides a sequence diagram that describes the interaction between the
user, SaaS, MIDAS 3.0, and providers. Initially, the user sends their query and return
format. SaaS receives this data and gets the (i) user intention and (ii) contextual elements.
We emphasize that the strategy or technology employed to capture these information
is not part of this thesis’s scope. Afterwards, SaaS sends to MIDAS: query, format,
intention, and contextual elements. After receiving this data, MIDAS 3.0 performs the
query based on intention and context. The query is performed, and then the result
returns to MIDAS. If any source is a DBaaS, then MIDAS simulates a DBaaS as a DaaS,
according to the Data Mapping component. If there is data join, then MIDAS will query
more than one DaaS/DBaaS provider. Finally, MIDAS receives the data, processes it as
expected, and then sends it to the SaaS provider.

Send the query, format, intention,
and contextual elements

Describe query and select return
format

Formatted Result
Show result on the screen

Data Information Storage

Pragmatism Mapping

Query Decomposer

Query Builder

Send DaaS/DBaaS request

Result

Send DaaS/DBaaS request

Result

alt : if

[join]

[else]

loop [while there is join]

Data Join

alt : if

[source is a
DBaaS]

Data Mapping

alt : if

[source is a
DBaaS]

Data Mapping

Data Information Storage

Result Module

SaaS
Application MIDAS 3.0 DaaS/DBaaS

Provider

Figure 8.2 MIDAS 3.0 sequence diagram.

The next sections focus on the new and enhanced components of MIDAS 3.0.

114 PRAGMATIC MIDAS ARCHITECTURE

8.1.1 Pragmatism Mapping

The Pragmatism Mapping component is responsible for (i) receiving the SaaS request,
(ii) separating the query and format from pragmatic information, such as user intent and
contextual elements, (iii) forwarding the query and format to Query Decomposer, and
(iv) forwarding the pragmatic information to the Query Builder.

The component responsible for receiving the query in MIDAS 2.0 is the Query De-
composer. In previous version, SaaS sends only the query (in SQL or MongoDB) and
the desired return format, such as XML, CSV, and JSON. Nonetheless, MIDAS 3.0
requires pragmatic information to facilitate the query in the source desired by the user,
such as intention and contextual elements. Listing 8.1 illustrates a SaaS request. Inten-
tion and contextual elements are necessary information for MIDAS to provides pragmatic
interoperability. MIDAS 2.0 does not consider these new pragmatic information.

Listing 8.1 Example of SaaS request
1 query: [SELECT blood FROM w7 WHERE id=10]
2 format: [JSON]
3 intention: [blood type of a patient within two hours]
4 contextual elements: [Date: 2020/12/09;
5 Time: 8:05 p.m.;
6 Requester: ambulance]

The Query Decomposer component decomposes queries and formats them as done
by MIDAS 2.0. The Query Builder component builds a URL based on intention(s) and
contextual elements. Other contextual elements can be captured or requested depending
on the SaaS request, such as location.

8.1.2 Enhanced Components

MIDAS 3.0 requires an update on three components: Query Builder, Crawler, and DIS.
In MIDAS 3.0, the Query Builder assembles the URL to query DaaS based on (i) data
received by the Query Decomposer, (ii) intention(s) and contextual elements received by
the Pragmatism Mapping, and (iii) data about DaaS from the DIS. The Query Builder
in MIDAS 2.0 considers only data received by the Query Decomposer and data about
DaaS from the DIS. We notice that the Query Builder creates n URLs for a query with
n intentions.

Additionally, the Crawler needs to search context information about each DaaS and
to store this information into DIS. This new information enables the Query Builder to
determine the correct data source based on user intention. We model the context about
each DaaS with the 5W1H format. Based on the example in Section 7.2.1, the Listing
8.2 (in JSON syntax) presents fictitious data stored on DIS with two DaaS (w7 and
vz, lines 2–41) and three contexts (ambulance, hospital, and patient, lines 42–64). In
this example, the key that identifies each context in the JSON file is the who element.
Contexts are necessary for MIDAS to provide pragmatic interoperability.

8.1 MIDAS 3.0 115

Listing 8.2 Fictitious data stored on DIS

1 {
2 "DaaS": {
3 "w7": {
4 "domain ": "http ://w7.com",
5 "search_path ": "/api/w/",
6 "query_param ": "qw",
7 "filter_param ": "flw",
8 "sort_param ": "sw",
9 "limit_param ": "lw",

10 "dataset_param ": "qsw",
11 "records_param ": "rcw",
12 "fields_param ": {
13 "1": "id",
14 "2": "age",
15 "3": "firstname",
16 "4": "lastname",
17 "5": "blood"
18 },
19 "format_param ": ".csv",
20 },
21 "vz": {
22 "domain ": "http ://vz.com",
23 "search_path ": "/api/v/",
24 "query_param ": "qv",
25 "filter_param ": "flv",
26 "sort_param ": "sv",
27 "limit_param ": "lv",
28 "dataset_param ": "dsv",
29 "records_param ": "rcv",
30 "fields_param ": {
31 "1": "ID",
32 "2": "phone",
33 "3": "borough",
34 },
35 "format_param ": ".xml",
36 }
37 },
38 "Context ": {
39 "ambulance ": {
40 "why": "emergency",
41 "how": "priority",
42 "when": 2,
43 "where": "",
44 "what": "importance",
45 },
46 "hospital ": {
47 "why": "urgency",
48 "how": "priority",
49 "when": 12,
50 "where": "",
51 "what": "importance",

116 PRAGMATIC MIDAS ARCHITECTURE

52 },
53 "patient ": {
54 "why": "normal",
55 "how": "normal",
56 "when": 24,
57 "where": "",
58 "what": "importance",
59 },
60 }
61 }

Figure 8.3 depicts the main similarities and differences between MIDAS 3.0 and the
previous versions.

Version 1.0
(Marinho et a., 2016)

Version 1.6
(Vieira et al., 2017)

Version 1.8
(Ribeiro et a., 2018)

Version 1.9
(Ribeiro et a., 2018)

Version 2.0
(Mane et al., 2020)

Version 3.0
This Ph.D. thesis

Query
Decomposer

Query
Builder

DIS

Result
Formatter

Crawler

Data
Module

Semantic
Module

Pragmatism
Mapping

DaaS

Singly

*With two components:
Formatter and Filtering

Recognizes:

Returns:

Recognizes:

Returns:

Recognizes:

Returns:

Recognizes:

Returns:

*With two components:
Formatter and Filtering

Recognizes:

Returns:

*With two components:
Formatter and Filtering

Recognizes:

Returns:

Update DIS Update DIS Update DIS Update DIS

WordNet

Cosine + Jaccard

WordNet

Cosine + Jaccard

*Based on query and
DIS

join
yesno

*Based on query and
DIS

join
yesno

*Based on query and
DIS

join
yesno

*Based on query and
DIS

join
yesno

*Based on query and
DIS

join
yesno

*Based on query, DIS,
intention, and

contextual elements

Intention + Contextual
elements

Figure 8.3 Similarities and differences between MIDAS 3.0 and the previous versions.

The next section presents the MIDAS 3.0 proof of concept. We implement the MI-

8.2 PROOF OF CONCEPT 117

DAS 3.0 based on the example of Section 7.2.1. Our pragmatic MIDAS considers elements
of CAPITAL framework aiming to provide pragmatic interoperability among cloud ser-
vices.

8.2 PROOF OF CONCEPT

As a MIDAS 3.0 proof of concept, we implement the example from Section 7.2.1 into MI-
DAS middleware. This proof of concept is based on our CAPITAL to provide pragmatic
interoperability between SaaS and DaaS/DBaaS. We assume that MIDAS recognizes two
sources, i.e., two DaaS (w7 and vz):

• DaaS w7 concerns personal data about patients (attributes: id, age, firstname,
lastname, and blood), and

• DaaS vz concerns phone and residence data of people (attributes: ID, phone, and
borough).

Table A.1 and Table A.2 in Appendix A illustrate both DaaS. Data is fictitious.
In this proof of concept, SaaS requests data stored in a single DaaS (DaaS w7).

Although the example (Section 7.2.1) is concerned with retrieving a patient’s laboratory
tests, we assume a query that requests a patient’s blood type:

SELECT blood
FROM w7
WHERE id = 10

We assume that a query must be performed by an ambulance, a hospital, or a patient.
Each requester has some specific characteristics, such as the time waiting for the return
(when element). Listing 8.2 presents the DIS of this proof of concept. The DIS contains
two DaaS and three contexts, one context for each requester. Each context is modeled
based on the 5W1H template, and the key for each context is the who element.

Since the automatic detection of contextual elements is outside this thesis’s scope, we
set the contexts (Listing 8.2) and intentions, and we capture the requester (ambulance,
hospital, or patient). The intention depends on the requester:

• the ambulance’s intention is to receive the result within 2 hours,

• the hospital ’s intention is to receive the result within 12 hours, and

• the patient ’s intention is to receive the result within 24 hours.

We have created one priority queue for each requester since the difference among the
requester’s intentions is the data return time. We take this approach only to perform a
simple query and evaluate the MIDAS 3.0 architecture. However, we emphasize improving
the capture of intentions and contexts is a relevant future work. Figure 8.4 depicts the
MIDAS 3.0 execution sequence when an ambulance performs the above query.

In this execution, the user sends a SQL query by SaaS to MIDAS. Besides the query
and format, the SaaS application sends the user intention and some contextual elements

118 PRAGMATIC MIDAS ARCHITECTURE

 SaaS
Query
Result

O+
CSV

query: [SELECT blood FROM w7 WHERE id = 10]
format: [JSON]
intention: [blood type of a patient within

 two hours]
contextual elements: [Date: 2020/12/09;

 Time: 8:05 p.m.;
 Requester: ambulance]

Query
Request

Pragmatism
Mapping

query: [SELECT blood FROM w7 WHERE id = 10]
format: [JSON]

intention: [blood type of a patient within two
 hours]

contextual elements: [Date: 2020/12/09;
 Time: 8:05 p.m.;
 Requester: ambulance]

Query
Decomposer

[‘select’] => [‘blood’];
[‘from’] => [‘w7’];
[‘where’] => [‘id = 10’]

DIS Crawler

Query
Builder

DaaS:
w7w7.com/api/w/?rcw=blood&qw=id=10

Formatter
and Filtering

{‘blood’ : ‘O+’}
JSON

Semantic
Module

SELECT blood FROM w7 WHERE id = 10

Format:
JSON

SQL

with 5W1H data

Requester:
ambulance

Figure 8.4 MIDAS 3.0 execution sequence.

to MIDAS, such as date, time, and requester. The Pragmatism Mapping (i) receives the
SaaS request, (ii) forwards query and format to the Query Decomposer, and (iii) forwards
the intention and contextual elements to the Query Builder. The Query Decomposer
performs the query decomposition according to MIDAS internal structure and forwards
the decomposed query to the Query Builder. Based on the decomposed query (sent
by the Query Decomposer), intention and contextual elements (sent by the Pragmatism
Mapping), and DIS (including contexts in 5W1H format), the Query Builder builds the
request to DaaS w7. Finally, Formatter and Filtering format the return and forward the
data to SaaS. Since there is no data join nor access to the DBaaS in this example, the
Data Module is not triggered.

The next sections present the experiments and results of MIDAS 3.0.

8.2.1 Experiments

We provide a set of experiments to handle functional, execution time, overhead, and
interoperability issues. These experiments investigate the communication among cloud
services. We performed three experiments to evaluate our pragmatic MIDAS.

The first experiment (E1) evaluates the overhead of our Pragmatism Mapping module
in MIDAS middleware. For this, we submitted:

• 100 queries to one DaaS provider without our Pragmatism Mapping module, and

• 100 queries to one DaaS provider with our Pragmatism Mapping module.

In both tasks of E1, we perform queries for a single DaaS, and we vary the number of
records returned by 100, 1000, and 10000.

8.2 PROOF OF CONCEPT 119

In the second experiment (E2), we evaluate MIDAS middleware’s correctness when
receiving a query. For this, we submit 100 queries to MIDAS, randomly varying the
requester: ambulance, hospital, or patient. After that, we check the correctness of the
responses based on the context of each requester. In this experiment, we do not limit the
number of records returned.

Finally, the third experiment (E3) evaluates the effort to implement MIDAS 3.0 with
dynamic pragmatic information, such as intention and context. In this experiment, we
provide a function point estimate. The purpose of this experiment is to estimate the
effort to receive pragmatic information from online sources.

Function Point Analysis is based on five metrics (or information domain values)
(PRESSMAN, 2011):

• Number of internal logical files (ILFs): An ILF is a logical grouping of data within
the boundaries of the software.

• Number of external interface files (EIFs): An EIF is a logical grouping of data useful
to the system and kept outside the software boundary.

• Number of external inputs (EIs): An EI processes data or control information that
comes from outside the software boundary. These entries are generally used to
update ILFs.

• Number of external outputs (EOs): An EO sends data or control information out-
side the software boundary.

• Number of external inquiries (EQs): An EQ presents the user with data or infor-
mation through simple retrieval.

We develop an application based on HTML, CSS, and JavaScript front-end, and
PHP back-end to simulate a SaaS performing queries. This application is hosted on the
Heroku1 PaaS, and it can be accessed at <http://pragmidas.herokuapp.com/test>.
Our cloud instance has one CPU core, 512 MB of RAM, and enough storage space for
the experiments. We perform experiments E1 and E2 with PHP native functions. We do
not use any external tool to avoid interference in the assessment.

The following DaaS was used to perform experiments E1 and E2: Transportation
Sites2. This DaaS has 22,891 instances and 18 attributes.

8.2.2 Results and Discussion

This section presents and discusses our findings.

8.2.2.1 Experiment 1: Overhead. We classify the results of this experiment based
on the value assigned to the limit clause. This value defines the number of records
returned, and we restricted this clause to 100, 1000, and 10000 records returned. Internet

1https://www.heroku.com/
2https://data.cityofnewyork.us/Transportation/Transportation-Sites/hg3c-2jsy

120 PRAGMATIC MIDAS ARCHITECTURE

measured 21.2 Mbps download and 8.2 Mbps upload before the experiment, and 25.7
Mbps download and 9.1 Mbps upload after the experiment.

Initially, we submitted the same query 100 times to return 100 data records. In this
case, Figure 8.5 shows the average execution time:

• 0.1728 ± 0.0232 s for queries without our Pragmatism Mapping module, and

• 0.1939 ± 0.0196 s for queries with our Pragmatism Mapping module.

Ti
m

e
(s

)

0.1

0.2

0.3

0.4

0 25 50 75 100

MIDAS without Pragmatism Mapping MIDAS with Pragmatism Mapping

Limit 100

Figure 8.5 Return time (y-axis) for 100 queries (x-axis) with a limit of 100 records.

Afterward, we submitted the same query 100 times to return 1000 data records. In
this case, Figure 8.6 shows the average execution time:

• 0.1975 ± 0.0415 s for queries without our Pragmatism Mapping module, and

• 0.2275 ± 0.0430 s for queries with our Pragmatism Mapping module.

Ti
m

e
(s

)

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100

MIDAS without Pragmatism Mapping MIDAS with Pragmatism Mapping

Limit 1000

Figure 8.6 Return time (y-axis) for 100 queries (x-axis) with a limit of 1000 records.

Finally, we submitted the same query 100 times to return 10000 data records. In this
case, Figure 8.7 shows the average execution time:

8.2 PROOF OF CONCEPT 121

• 0.3435 ± 0.0597 s for queries without our Pragmatism Mapping module, and

• 0.4825 ± 0.0543 s for queries with our Pragmatism Mapping module.

Ti
m

e
(s

)

0.2

0.4

0.6

0.8

0 25 50 75 100

MIDAS without Pragmatism Mapping MIDAS with Pragmatism Mapping

Limit 10000

Figure 8.7 Return time (y-axis) for 100 queries (x-axis) with a limit of 10000 records.

Queries without our pragmatic module were on average faster than queries with our
module: (i) 12.2% for queries with 100 returned data, (ii) 15.2% for queries with 1000
returned data, and (iii) 40.5% for queries with 10000 returned data.

The results show an overhead caused by the Pragmatism Mapping module of up to
40.5%. According to Ribeiro et al. (2018), the Data Join component is one of MIDAS
middleware’s most critical components because it aggregates results from distinct and
heterogeneous providers. This component requires a certain time with or without our
pragmatic module. The optimization of MIDAS algorithms is not part of this thesis’s
scope.

8.2.2.2 Experiment 2: Correctness. In this experiment, we assessed the pragmatic
MIDAS’s correctness. For this, we submit the same query to MIDAS 100 times, varying
the requester in ambulance, hospital, or patient. In the end, we compared whether the
context was selected correctly based on the context of the requesters.

Each requester had the following participation rate: 30% ambulance, 36% hospital,
and 34% patient. As expected, MIDAS 3.0 correctly (i) selected 100% of contexts based
on the requester and (ii) sent the results within the estimated deadline based on the
requester’s when element.

8.2.2.3 Experiment 3: Function Point. This experiment aims to estimate the ef-
fort required to design, implement, and test MIDAS 3.0 completely from online sources.
Function Point Analysis is a standardized method to measure the functional size of the
software. This metric derives from an empirical analysis based on the domain and com-
plexity of the software. Although there are several methodologies (FREITAS JUNIOR;
FANTINATO; SUN, 2015), we follow the guidelines presented by Pressman (2011). We
conducted this experiment with the collaboration of two MIDAS developers.

122 PRAGMATIC MIDAS ARCHITECTURE

This experiment considers the type of count as an enhancement project since we
present MIDAS 3.0 based on previous versions.

The counting scope considers (i) the Pragmatism Mapping module and (ii) the three
updated components in MIDAS 3.0: Query Builder, Crawler, and DIS. We consider that
external users may (i) perform queries through a SaaS and (ii) receive data from DaaS.
MIDAS is responsible for mediating the communication between SaaS and DaaS. Both
SaaS and DaaS are external to MIDAS.

After defining the counting type and scope, we list MIDAS 3.0 ILFs, EIFs, EIs, EOs,
and EQs:

• ILFs: (i) DIS, (ii) DBaaS configuration file, (iii) data return, and (iv) internal
structure of MIDAS (count = 4);

• EIFs: none (count = 0);

• EIs: (i) type (DaaS or DBaaS), (ii) dataset, (iii) fields, (iv) where clause, (v) order
by clause, (vi) limit clause, (vii) return format, (viii) intention, and (ix) contextual
elements (count = 9);

• EOs: (i) send query result (count = 1); and

• EQs: (i) query a DaaS and (ii) query a DBaaS (count = 2).

After listing and classifying the domain information, we calculate the complexity of
each counting group (Table 8.1). The value associated with each level of complexity is
standardized, and it depends on subjective analysis (PRESSMAN, 2011).

Table 8.1 Calculation of function points

Complexity factorInformation domain values Count Simple Average Complex Total

ILFs 4 ×7 ×10 ×15 = 60
EIFs 0 ×5 ×7 ×10 = 0
EIs 9 ×3 ×4 ×6 = 54
EOs 1 ×4 ×5 ×7 = 5
EQs 2 ×3 ×4 ×6 = 8

Total Count (TC) 127

The number of function points (FP) is given by the following equation:

FP = TC ∗ [0.65 + 0.01 ∗
14∑
i=1

Fi] (.)

where, FP is the total of function points, TC is the total count (Table 8.1), and Fi are the
value adjustment factors. These factors are calculated based on 14 questions, where each

8.3 CHAPTER SUMMARY 123

question is measured with a factor ranging from Fi = 0 (i.e., question i is not important or
it is not applicable) to Fi = 5 (i.e., question i is absolutely important). In this experiment,∑14

i=1 Fi = 46. Individual measures by questions are available in Appendix D. The
constant values are determined empirically (PRESSMAN, 2011). Therefore, according to
Eq. ., FP = 127 ∗ [0.65 + 0.01 ∗ 46] = 140.97.

MIDAS 3.0 with static pragmatic information (version used in experiments E1 and
E2) has 9,155 non-comment lines of code. Considering the rate of 67 lines of code per
function point in the PHP language3, we estimate an increase of approximately 9,444.99
(67 ∗ 140.97) lines of code so that MIDAS middleware performs pragmatic queries with
online sources from intention and context. Therefore, we estimate MIDAS 3.0 with
dynamic pragmatic information with 18,599 (9,155 + 9,444) lines of code.

Although this thesis is an advance in state of the art, we understand that this analysis
illustrates the complexity of providing pragmatic interoperability among clouds.

8.3 CHAPTER SUMMARY

Our CAPITAL framework provides aspects that are not considered in the MIDAS 2.0,
such as data that middleware must store and manage to provide pragmatic interoperabil-
ity among cloud services. The absence of this information makes it difficult to provide
pragmatic interoperability.

This chapter described the MIDAS 3.0, our first attempt to provide pragmatic inter-
operability among cloud services. We apply our CAPITAL framework as a coding guide
to provide a version of MIDAS 3.0. Our findings suggest that (i) the overhead of the
Pragmatism Mapping module is approximately 40%, (ii) pragmatic MIDAS correctly se-
lects the requester’s intent when the context and intentions are static, and (iii) providing
pragmatic interoperability among clouds with dynamic context and intent is a complex
task.

The next chapter presents the concluding remarks and future directions of this thesis.

3https://www.cs.helsinki.fi/u/taina/ohtu/fp.html

Chapter

9
This chapter presents our concluding remarks. We describe the contributions of this thesis and discuss
future research directions.

CONCLUSION AND FUTURE WORK

Interoperability is the ability of heterogeneous systems to exchange and to use mutually
exchanged information. Interoperability is generally described into syntactic, semantic,
and pragmatic levels. Pragmatic interoperability enables systems to affect one another’s
state and behavior so that the produced result matches the expected result. In this inves-
tigation, our main efforts were mainly focused on investigating how to provide pragmatic
interoperability among cloud services.

Our model for syntactic interoperability (Chapter 5) presents a lightweight formal
description of MIDAS syntactic interoperability. We evaluated the correctness of this
model based on syntactic interoperability between SaaS and DaaS.

Our model for semantic interoperability (Chapter 6) presents an ontology (MIDAS-
OWL) to represent the MIDAS semantic interoperability. MIDAS-OWL provides a higher
level of abstraction between service (SaaS) and data (DaaS) layers. We evaluated the con-
sistency, acceptance, and correctness of MIDAS-OWL based on semantic interoperability
among cloud services.

Finally, our model for pragmatic interoperability (Chapter 7) presents a CAPITAL.
We investigated and introduced (i) the data needed to provide pragmatic interoperabil-
ity among systems, (ii) a consensual definition for pragmatic interoperability, and (iii) a
conceptual framework to represent pragmatic interoperability. We evaluated the CAPI-
TAL framework in three ways: (i) running of four heterogeneous scenarios, (ii) controlled
experiment, and (iii) proof of concept of MIDAS 3.0, version of pragmatic MIDAS.

Our investigation envisions the syntactic and semantic levels since these levels are
required to provide pragmatic interoperability. To achieve all the objectives of this study,
we present a model for each level of interoperability. This thesis’s main objective was to
investigate and provide a model for pragmatic interoperability among cloud services.

This thesis addresses an issue arising from an ongoing project: Cloud Security Interop-
erable Society (CSIS), project number 8064/2015 funded by the Foundation for Research
Support of the State of Bahia (FAPESB). CSIS aims to provide interoperability among

125

126 CONCLUSION AND FUTURE WORK

different cloud services to mitigate the lack of interoperability in public security. This
project intends to develop an infrastructure to provide syntactic, semantic, and pragmatic
interoperability between SaaS and DaaS.

The following sections present the main contributions of this thesis, future research
directions, and publications resulting from this work.

9.1 CONTRIBUTIONS

The main contributions of this thesis are listed as follows:

1. summary of the state of the art on interoperability and Cloud Computing (Chap-
ters 2 and 3);

2. improvements in the MIDAS middleware to provides syntactic and semantic inter-
operability among cloud services (Chapter 4);

3. a detailed description of the operations performed by MIDAS syntactic interoper-
ability (Chapter 5);

4. an ontology to represent the MIDAS semantic interoperability (Chapter 6);

5. a unified definition for pragmatic interoperability based on various definitions (Chap-
ter 7);

6. mandatory elements to provide pragmatic interoperability (Chapter 7);

7. a conceptual framework capable of representing pragmatic interoperability among
systems (Chapter 7); and

8. MIDAS architecture focused on pragmatic interoperability between SaaS and DaaS
levels: MIDAS 3.0 (Chapter 8).

9.2 FUTURE RESEARCH DIRECTIONS

As future work, we plan to contribute to novel MIDAS improvements. These upgrades
may suggest further improvements to the models previously presented. We list the main
future research directions that arise from this thesis:

• Adjust MIDAS-OWL to recognize queries in other languages. We intend to adjust
classes, properties of objects, and individuals of our ontology to recognize languages,
e.g., NoSQL and SPARQL. We expect that no significant changes are necessary.

• Include MIDAS-OWL into MIDAS. We intend to add our ontology within MIDAS
to evaluate the ontology overhead in real scenarios.

• Apply CAPITAL framework in other scenarios. We expect to model other scenarios
to investigate the accuracy of our model in more detail.

9.3 PUBLISHED PAPERS 127

• Refine the public security scenario. We intend to improve (i) our modeling based
on a real environment and (ii) our contexts. Detail more the crimes may emphasize
the need for contextual elements not considered.

• Convert canonical models into other formats. We intend to convert the canoni-
cal models of the model for pragmatic interoperability into formats such as XML
or JSON to facilitate compression and automate possible changes to the context
representation.

• Improve the capture of intention and contexts. We intend to improve the capture of
intention and contexts aiming to facilitate pragmatic interoperability among cloud
services since, in practice, the interaction is not explicit. This future work is related
to improvements in the pragmatic MIDAS.

• In-depth evaluation of pragmatic interoperability provided by MIDAS 3.0. We intend
to investigate the reasons that caused an approximately 40% overhead. This future
work is also related to improvements in the pragmatic MIDAS.

9.3 PUBLISHED PAPERS

The following papers summarize the main contributions of this thesis:

• RIBEIRO, E. L. F.; VIEIRA, M. A.; CLARO, D. B.; SILVA, N. Transpar-
ent Interoperability Middleware between Data and Service Cloud Layers. In: 8th
International Conference on Cloud Computing and Services Science (CLOSER).
Funchal, Portugal: SCITEPRESS, 2018. p. 148–157. (RIBEIRO et al., 2018).

• RIBEIRO, E. L. F.; MONTEIRO, E. L.; CLARO, D. B.; MACIEL, R. S. P.
A Conceptual Framework for Pragmatic Interoperability. In: 15th Brazilian Sym-
posium on Information Systems (SBSI). Aracaju, Brazil: SBC, 2019. p. 1–8.
(RIBEIRO et al., 2019).

• RIBEIRO, E. L. F.; VIEIRA, M. A.; CLARO, D. B.; SILVA, N. Interoper-
ability between SaaS and Data Layers: Enhancing the MIDAS Middleware. In:
MUÑOZ, V. M.; FERGUSON, D.; HELFERT, M.; PAHL, C. (Ed.). Cloud Comput-
ing and Services Science (CCIS). Cham: Springer International Publishing, 2019.
p. 102–125. (RIBEIRO et al., 2019).

• RIBEIRO, E. L. F.; SOUZA, M.; CLARO, D. B. Towards an Ontology for Inter-
operability between Data and Service Cloud Layers. Under review by International
Conference on Cloud Computing and Services Science (CLOSER) 2021.

• RIBEIRO, E. L. F.; MONTEIRO, E. L.; CLARO, D. B.; MACIEL, R. S. P.
CAPITAL: A Conceptual Framework for Pragmatic Interoperability. Under review
by Information and Software Technology (IST) Journal.

128 CONCLUSION AND FUTURE WORK

• RIBEIRO, E. L . F.; CLARO, D. B.; MACIEL, R. S. P. Comparison and Choice
of Computational Architectures Based on Cost-Value Approach. Under review by
Brazilian Journal of Information Systems (iSys).

• RIBEIRO, E. L . F.; JESUS, L. E. N.; CLARO, D. B.; MOURA, N. S. Towards
a Pragmatic Interoperability on the MIDAS Middleware. Under review by Brazilian
Symposium on Information Systems (SBSI) 2021.

• RIBEIRO, E. L . F.; CLARO, D. B.; MACIEL, R. S. P. Pragmatic Interoperability
for Cloud Services: the CAPITAL Framework. To be submitted to a journal.

Additionally, this thesis contributed less significantly in the publication of the follow-
ing works in the FORMAS research group:

• VIEIRA, M. A.; RIBEIRO, E. L. F.; ROCHA, W. S.; MANE, B.; CLARO, D.
B.; OLIVEIRA, J. S.; LIMA, E. Enhancing MIDAS Towards a Transparent Inter-
operability Between SaaS and DaaS. In: 13th Brazilian Symposium on Information
Systems (SBSI). Lavras, Brazil: SBC, 2017. p. 356–363. (VIEIRA et al., 2017).

• SILVA, N.; RIBEIRO, E. L. F.; CLARO, D. B. DaaS Repository Through MI-
DAS Web Crawler. In: 14th Brazilian Symposium on Information Systems (SBSI).
Caxias do Sul, Brazil: SBC, 2018. p. 246–253. (SILVA; RIBEIRO; CLARO, 2018).

• MANE, B.; ROCHA, W. S.; RIBEIRO, E. L. F.; JESUS, L. E. N.; MOTTA, I.
C.; LIMA,E.; CLARO, D. B. Enhancing Semantic Interoperability on MIDAS with
Similar DaaS Parameters. In: 16th Brazilian Symposium on Information Systems
(SBSI). São Bernardo do Campo, Brazil: SBC, 2020. p. 1–8. (MANE et al., 2020).

• VIEIRA, M. A.; RIBEIRO, E. L. F.; CLARO, D. B. Integration Model between
Heterogeneous Data Services in a Cloud. Under review by Journal of Universal
Computer Science (JUCS).

BIBLIOGRAPHY

ADEBESIN, F.; FOSTER, R.; KOTZÉ, P.; GREUNEN, D. V. A Review of Interoper-
ability Standards in E-health and Imperatives for their Adoption in Africa. South African
Computer Journal, v. 50, n. 1, p. 55–72, 2013.

AKERKAR, R. Big Data Computing. [S.l.]: CRC Press, 2014.

AN, Y. Z.; ZAABA, Z. F.; SAMSUDIN, N. F. Reviews on Security Issues and Challenges
in Cloud Computing. IOP Conference Series: Materials Science and Engineering, v. 160,
n. 012106, p. 1–9, 2016.

ANTONIOU, G.; HARMELEN, F. van. Web Ontology Language: OWL. In: .
Handbook on Ontologies. [S.l.]: Springer, 2004. cap. 4, p. 62–92.

ARDAGNA, D.; NITTO, E.; MOHAGHEGHI, P.; MOSSER, S.; BALLAGNY, C.;
D’ANDRIA, F.; CASALE, G.; MATTHEWS, P.; NECHIFOR, C.; PETCU, D.; GER-
ICKE, A.; SHERIDAN, C. MODAClouds: A model-driven approach for the design and
execution of applications on multiple Clouds. In: 4th International Workshop on Modeling
in Software Engineering (MISE). Zurich, Switzerland: IEEE, 2012. p. 50–56.

ARMBRUST, M.; FOX, A.; GRIFFITH, R.; JOSEPH, A. D.; KATZ, R.; KONWINSKI,
A.; LEE, G.; PATTERSON, D.; RABKIN, A.; STOICA, I.; ZAHARIA, M. A View of
Cloud Computing. Commun. ACM, v. 53, n. 4, p. 50–58, 2010.

ARUNKUMAR, G.; VENKATARAMAN., N. A Novel Approach to Address Interoper-
ability Concern in Cloud Computing. Procedia Computer Science, v. 50, n. 1, p. 554 –
559, 2015.

ASUNCION, C. H.; BOLDYREFF, C.; ISLAM, S.; LEONARD, M.; THALHEIM,
B. Pragmatic interoperability in the enterprise - A research agenda. In: 23rd Confer-
ence on Advanced Information Systems Engineering (CAiSE). London, United Kingdom:
Springer, 2011. p. 8.

ASUNCION, C. H.; IACOB, M.; SINDEREN, M. J. van. Towards a Flexible Service
Integration through Separation of Business Rules. In: 14th IEEE International Enterprise
Distributed Object Computing Conference (EDOC). Vitoria, Brazil: IEEE, 2010. p. 184–
193.

ASUNCION, C. H.; SINDEREN, M. J. van. Pragmatic Interoperability: A Systematic
Review of Published Definitions. In: 5th International Conference Enterprise Architec-
ture, Integration and Interoperability (EAI2N). Brisbane, Australia: Springer, 2010. p.
164–175.

129

130 BIBLIOGRAPHY

BASILI, V. R.; ROMBACH, H. D. The TAME Project: Towards Improvement-oriented
Software Environments. IEEE Transactions on Software Engineering, v. 14, n. 6, p. 758–
773, 1988.

BENZADRI, Z.; BELALA, F.; BOUANAKA, C. Towards a Formal Model for Cloud
Computing. In: LOMUSCIO, A. R.; NEPAL, S.; PATRIZI, F.; BENATALLAH, B.;
BRANDIĆ, I. (Ed.). 11th International Conference on Service Oriented Computing (IC-
SOC). Cham: Springer International Publishing, 2014. p. 381–393.

BRAVO, M.; ALVARADO, M. On the pragmatic similarity between agent communication
protocols: Modeling and measuring. In: 8th Confederated International Conferences: On
the Move to Meaningful Internet Systems (OTM). Berlin, Germany: Springer, 2008. p.
128–137.

BUYYA, R.; BROBERG, J.; GOSCINSKI, A. Cloud Computing: Principles and
Paradigms. 1. ed. [S.l.]: John Wiley & Sons, 2011.

CHEN, D.; DOUMEINGTS, G.; VERNADAT, F. Architectures for enterprise integration
and interoperability: Past, present and future. Computers in Industry, v. 59, n. 7, p. 647
– 659, 2008.

COURONNE, O.; POLIAKOV, A.; BRAY, N.; ISHKHANOV, T.; RYABOY, D.; RU-
BINDWARD, E.; PACHTER, L.; DUBCHAK, I. Strategies and Tools for Whole-Genome
Alignments. Genome research, v. 13, n. 1, p. 73–80, 2003.

CRICK, F. Central Dogma of Molecular Biology. Nature, v. 227, n. 1, p. 3, 1970.

DIKAIAKOS, M. D.; KATSAROS, D.; MEHRA, P.; PALLIS, G.; VAKALI, A. Cloud
Computing: Distributed Internet Computing for IT and Scientific Research. IEEE Inter-
net Computing, v. 13, n. 5, p. 10–13, 2009.

DILLON, T.; WU, C.; CHANG, E. Cloud Computing: Issues and Challenges. In: 24th
IEEE International Conference on Advanced Information Networking and Applications
(AINA). Perth, Australia: IEEE, 2010. p. 27–33.

ELMASRI, R.; NAVATHE, S. B. Fundamentals of Database Systems. 6. ed. [S.l.]:
Addison-Wesley Longman Publishing Co., Inc., 2010.

EUZENAT, J.; SHVAIKO, P. et al. Ontology matching. 1. ed. [S.l.]: Springer, 2007.

FAHL, S.; HARBACH, M.; MUDERS, T.; SMITH, M. Confidentiality As a Service –
Usable Security for the Cloud. In: 11th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). Liverpool, England: IEEE,
2012. p. 153–162.

FATIMA, H.; WASNIK, K. Comparison of SQL, NoSQL and NewSQL databases for
internet of things. In: 2nd Bombay Section Symposium (IBSS). Baramati, India: IEEE,
2016. p. 1–6.

BIBLIOGRAPHY 131

FERNANDES, D.; BERNARDINO, J. Graph Databases Comparison: AllegroGraph,
ArangoDB, InfiniteGraph, Neo4J, and OrientDB (DATA). In: 7th International Con-
ference on Data Science, Technology and Applications. Porto, Portugal: SCITEPRESS,
2018. p. 373–380.

FERNÁNDEZ-LOPEZ, M.; GÓMEZ-PEREZ, A.; JURISTO, N. METHONTOLOGY:
from Ontological Art towards Ontological Engineering. AAAI-97 Spring Symposium Se-
ries, v. 1, n. 1, p. 33–40, 1997.

FREITAS JUNIOR, M.; FANTINATO, M.; SUN, V. Improvements to the Function Point
Analysis Method: A Systematic Literature Review. IEEE Transactions on Engineering
Management, v. 62, n. 4, p. 495–506, 2015.

GRAVINA, R.; PALAU, C. E.; MANSO, M.; LIOTTA, A.; FORTINO, G. Integration,
Interconnection, and Interoperability of IoT Systems. 1. ed. [S.l.]: Springer International
Publishing, 2017.

GROLINGER, K.; HIGASHINO, W.; TIWARI, A.; CAPRETZ, M. Data management
in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud Computing:
Advances, Systems and Application, v. 2, n. 22, p. 24, 2013.

GRÜNINGER, M.; FOX, M. S. Methodology for the Design and Evaluation of Ontologies.
In: 14th International Joint Conferences on Artificial Intelligence Organization (IJCAI).
Montreal, Canada: IJCAI, 1995. p. 1–10.

HACIGUMUS, H.; IYER, B.; MEHROTRA, S. Providing database as a service. In: 18th
International Conference on Data Engineering (ICDE). San Jose, USA: IEEE, 2002. p.
29–38.

HAN, J.; HAIHONG, E.; LE, G.; DU, J. Survey on NoSQL database. In: 6th Interna-
tional Conference on Pervasive Computing and Applications (ICPCA). Port Elizabeth,
South Africa: IEEE, 2011. p. 363–366.

HOGAN, M.; LIU, F.; SOKOL, A.; TONG, J. NIST Cloud Computing Standards
Roadmap (SP 500-291). Gaithersburg, USA, 2011.

HOTELLING, H. et al. A generalized T test and measure of multivariate dispersion. In:
2nd Berkeley Symposium on Mathematical Statistics and Probability. California, USA:
University of California Press, 1951. p. 23–41.

ISODA, Y.; KURAKAKE, S.; IMAI, K. Context-Aware Computing System for Hetero-
geneous Applications. In: 1st International Workshop on Personalized Context Modeling
and Management for UbiComp Applications (ubiPCMM). Tokyo, Japan: Springer, 2005.
p. 17–25.

JABAREEN, Y. Building a Conceptual Framework: Philosophy, Definitions, and Proce-
dure. International Journal of Qualitative Methods, v. 8, n. 4, p. 49–62, 2009.

132 BIBLIOGRAPHY

JOSHI, K. P.; YESHA, Y.; FININ, T. Automating Cloud Services Life Cycle through
Semantic Technologies . IEEE Trans. Serv. Comput., v. 7, n. 1, p. 109–122, 2014.

KHORSHED, M. T.; ALI, A. B. M. S.; WASIMI, S. A. A survey on gaps, threat reme-
diation challenges and some thoughts for proactive attack detection in cloud computing.
Future Generation Computer Systems, v. 28, n. 6, p. 833 – 851, 2012.

KOLB, D. A. Experiential learning: experience as the source of learning and development.
1. ed. [S.l.]: Prentice Hall, 1984.

KUBICEK, H.; CIMANDER, R.; SCHOLL, H. J. Layers of Interoperability. In: .
Organizational Interoperability in E-Government. [S.l.]: Springer Berlin Heidelberg, 2011.
cap. 7, p. 85–96.

LEE, J.; LEE, Y.; SHAH, S.; GELLER, J. HIS-KCWater: Context-aware Geospatial
Data and Service Integration. In: 21st ACM Symposium on Applied Computing (SAC).
Seoul, Korea: ACM, 2007. p. 24–29.

LIU, F.; TONG, J.; MAO, J.; BOHN, R.; MESSINA, J.; BADGER, L.; LEAF, D. NIST
Cloud Computing: Reference Architecture (SP 500-292). Gaithersburg, USA, 2011.

LIU, S.; LI, W.; LIU, K. Pragmatic Oriented Data Interoperability for Smart Healthcare
Information Systems. In: 14th International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). Chicago, USA: IEEE, 2014. p. 811–818.

LOUTAS, N.; KAMATERI, E.; BOSI, F.; TARABANIS, K. Cloud Computing Interop-
erability: The State of Play. In: 3rd IEEE International Conference on Cloud Computing
Technology and Science (CLOUDCOM). Athens, Greece: IEEE, 2011. p. 752–757.

LOVRENCIC, S.; CUBRILO, M. Ontology Evaluation - Comprising Verification and
Validation. In: 19th Central European Conference on Information and Intelligent Systems
(CECIIS). Varazdin, Croatia: CECIIS, 2008. p. 1–7.

MA, H.; SCHEWE, K.; THALHEIM, B.; WANG, Q. A formal model for the interoper-
ability of service clouds. Serv. Oriented Comput. Appl., v. 6, n. 3, p. 189–205, 2012.

MACIEL, R. S. P.; DAVID, J. M. N.; CLARO, D. B.; BRAGA, R. Full Interoperability:
Challenges and Opportunities for Future Information Systems. In: . I Grand Re-
search Challenges in IS in Brazil (GranDSI-BR) - 2016-2026. [S.l.]: SBC, 2017. cap. 9,
p. 107–118.

MALHOTRA, S.; DOJA, M. N.; ALAM, B.; ALAM, M. Bigdata analysis and comparison
of bigdata analytic approaches. In: 3rd International Conference on Computing, Com-
munication and Automation (ICCCA). Greater Noida, India: IEEE, 2017. p. 309–314.

MALLIGA, P. Database Services for Cloud Computing – An Overview. International
Journal of Computers & Technology, v. 2, n. 3, p. 67–70, 2012.

BIBLIOGRAPHY 133

MANE, B.; ROCHA, W. S.; RIBEIRO, E. L. F.; JESUS, L. E. N.; MOTTA, I. C.; LIMA,
E.; CLARO, D. B. Enhancing Semantic Interoperability on MIDAS with Similar DaaS
Parameters. In: 16th Brazilian Symposium on Information Systems (SBSI). São Bernardo
do Campo, Brazil: SBC, 2020. p. 1–8.

MARINHO, T.; CIDREIRA, V.; CLARO, D. B.; MANE, B. MIDAS: A Middleware
to Provide Interoperability Between SaaS and DaaS. In: 12th Brazilian Symposium on
Information Systems (SBSI). Florianópolis, Brazil: SBC, 2016. p. 401–408.

MCCARTHY, J. Notes on Formalizing Contexts. In: 13th International Joint Conference
on Artificial Intelligence (IJCAI). Chambéry, France: IJCAI, 1993. p. 555–560.

MELL, P. M.; GRANCE, T. The NIST Definition of Cloud Computing (SP 800-145).
Gaithersburg, USA, 2011.

MIGUEL, P. A. C.; MORABITO, R.; PUREZA, V. Metodologia de pesquisa em engen-
haria de produção e gestão de operações. 1. ed. [S.l.]: Elsevier, 2010.

MONIRUZZAMAN, A. B. M.; HOSSAIN, S. A. NoSQL Database: New Era of Databases
for Big data Analytics - Classification, Characteristics and Comparison. CoRR, v. 6, n. 4,
p. 1–14, 2013.

MOSCATO, F.; AVERSA, R.; MARTINO, B. D.; FORTIş, T.; MUNTEANU, V. An
analysis of mOSAIC ontology for Cloud resources annotation . In: 19th Federated Confer-
ence on Computer Science and Information Systems (FedCSIS). Szczecin, Poland: IEEE,
2011. p. 973–980.

MUGNIER, M.-L.; THOMAZO, M. An introduction to ontology-based query answering
with existential rules. In: . Reasoning Web: Reasoning on the Web in the Big Data
Era. Cham, Switzerland: Springer, 2014. cap. 6, p. 245–278.

NARANG, A.; GUPTA, D. A Review on Different Security Issues and Challenges in Cloud
Computing. In: 1st International Conference on Computing, Power and Communication
Technologies (GUCON). Greater Noida, India: IEEE, 2018. p. 121–125.

NEIVA, F. W.; DAVID, J. M. N.; BRAGA, R.; CAMPOS, F. Towards pragmatic inter-
operability to support collaboration: A systematic review and mapping of the literature.
Information and Software Technology, v. 72, n. 1, p. 137–150, 2016.

NORDSTOKKE, D. W.; ZUMBO, B. D. A new nonparametric Levene test for equal
variances. Psicologica, v. 31, n. 2, p. 401–430, 2010.

OPARA-MARTINS, J.; SAHANDI, R.; TIAN, F. Critical review of vendor lock-in and its
impact on adoption of cloud computing. In: 1st International Conference on Information
Society (i-Society). London, UK: IEEE, 2014. p. 92–97.

OPARA-MARTINS, J.; SAHANDI, R.; TIAN, F. Critical analysis of vendor lock-in
and its impact on cloud computing migration: a business perspective. Journal of Cloud
Computing, v. 5, n. 1, p. 4, 2016.

134 BIBLIOGRAPHY

ORTIZ, M. Ontology Based Query Answering: The Story So Far. In: 7th Alberto Mendel-
zon International Workshop on Foundations of Data Management (AMW). Puebla, Mex-
ico: CEUR-WS.org, 2013. p. 1–14.

POKRAEV, S.Model-Driven Semantic Integration of Service-Oriented Applications. Tese
(Doutorado) — The Netherlands, 2009.

POKRAEV, S.; REICHERT, M. U.; STEEN, M.; WIERINGA, R. J. Semantic and Prag-
matic Interoperability: A Model for Understanding. In: 17th Conference on Advanced
Information Systems Engineering (CAiSE). Porto, Portugal: FEUP, 2005. p. 377–382.

PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Profissional. 7. ed. [S.l.]:
AMGH Editora, 2011.

RANA, M. E.; DAUREN, J.; KUMARAN, S. An improved Requirements Engineering
framework for cloud based application development. In: 13th IEEE Student Conference
on Research and Development (SCOReD). Kuala Lumpur, Malaysia: IEEE, 2015. p.
702–709.

RANABAHU, A.; SHETH, A. Semantics Centric Solutions for Application and Data
Portability in Cloud Computing. In: 2nd International Conference on Cloud Computing
Technology and Science (CloudCom). Indianapolis, USA: IEEE, 2010. p. 234–241.

RAZALI, N. M.; WAH, Y. B. et al. Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics,
v. 2, n. 1, p. 21–33, 2011.

REINSEL, D.; GANTZ, J.; RYDNING, J. The Digitization of the World from Edge to
Core. Framingham, USA, 2018.

Rekik, M.; Boukadi, K.; Ben-Abdallah, H. Cloud description ontology for service dis-
covery and selection . In: 10th International Joint Conference on Software Technologies
(ICSOFT). Colmar, France: Springer, 2015. p. 1–11.

RIBEIRO, E. L. F.; MONTEIRO, E. L.; CLARO, D. B.; MACIEL, R. S. P. A Conceptual
Framework for Pragmatic Interoperability. In: 15th Brazilian Symposium on Information
Systems (SBSI). Aracaju, Brazil: SBC, 2019. p. 1–8.

RIBEIRO, E. L. F.; VIEIRA, M. A.; CLARO, D. B.; SILVA, N. Transparent Inter-
operability Middleware between Data and Service Cloud Layers. In: 8th International
Conference on Cloud Computing and Services Science (CLOSER). Funchal, Portugal:
SCITEPRESS, 2018. p. 148–157.

RIBEIRO, E. L. F.; VIEIRA, M. A.; CLARO, D. B.; SILVA, N. Interoperability Between
SaaS and Data Layers: Enhancing the MIDAS Middleware. In: . Communications
in Computer and Information Science. [S.l.]: Springer International Publishing, 2019.
cap. 6, p. 102–125.

BIBLIOGRAPHY 135

RIMAL, B. P.; CHOI, E.; LUMB, I. A Taxonomy and Survey of Cloud Computing
Systems. In: 5th International Joint Conference on INC, IMS and IDC (NCM). Seoul,
South Korea: IEEE, 2009. p. 44–51.

RIMAL, B. P.; JUKAN, A.; KATSAROS, D.; GOELEVEN, Y. Architectural Require-
ments for Cloud Computing Systems: An Enterprise Cloud Approach. Journal of Grid
Computing, v. 9, n. 1, p. 3–26, 2011.

RINGS, T.; GRABOWSKI, J. Pragmatic Integration of Cloud and Grid Computing
Infrastructures. In: 5th IEEE International Conference on Cloud Computing (CLOUD).
Hawaii, USA: IEEE, 2012. p. 710–717.

RODERO-MERINO, L.; VAQUERO, L. M.; GIL, V.; GALÁN, F.; FONTÁN, J.; MON-
TERO, R. S.; LLORENTE, I. M. From infrastructure delivery to service management in
clouds. Future Generation Computer Systems, v. 26, n. 8, p. 1226–1240, 2010.

SAHANDI, R.; ALKHALIL, A.; OPARA-MARTINS, J. Cloud Computing from SMEs
Perspective: A Survey-based Investigation. Journal of Information Technology Manage-
ment (JITM), v. 24, n. 1, p. 1–12, 2013.

SCHAFFER, H. E. X as a Service, Cloud Computing, and the Need for Good Judgment.
IT Professional, v. 11, n. 5, p. 4–5, 2009.

SCHREINER, G. A.; DUARTE, D.; MELLO, R. dos S. SQLtoKeyNoSQL: a layer for
relational to key-based NoSQL database mapping. In: 17th International Conference on
Information Integration and Web-based Applications & Services (iiWAS2019). Brussels,
Belgium: ACM, 2015. p. 74.

SCHUBERT, L.; JEFFERY, K. New Software Engineering Requirements in Clouds and
Large-Scale Systems. IEEE Cloud Computing, v. 2, n. 1, p. 48–58, 2015.

SCOTT, H. H. Interactive on-line manufacturing and repair system (io-mars). In: 10th
International Automatic Testing Conference (AUTOTESTCON). Dayton, USA: IEEE,
1996. p. 40–45.

SEIBOLD, M.; KEMPER, A. Database as a Service. Datenbank-Spektrum, v. 12, n. 1,
p. 59–62, 2012.

SHETH, A. P. Changing Focus on Interoperability in Information Systems: From Sys-
tem, Syntax, Structure to Semantics. In: . Interoperating Geographic Information
Systems. [S.l.]: Springer US, 1999. cap. 2, p. 5–29.

SILVA, G. C.; ROSE, L. M.; CALINESCU, R. A systematic review of cloud lock-in
solutions. In: 5th International Conference on Cloud Computing Technology and Science
(CloudCom). Bristol, UK: IEEE, 2013. p. 363–368.

SILVA, N.; RIBEIRO, E. L. F.; CLARO, D. B. DaaS Repository Through MIDAS Web
Crawler. In: 14th Brazilian Symposium on Information Systems (SBSI). Caxias do Sul,
Brazil: SBC, 2018. p. 246–253.

136 BIBLIOGRAPHY

SIMMON, E. Evaluation of Cloud Computing Services Based on NIST (SP 800-145).
Gaithersburg, USA, 2018.

SIRIN, E.; PARSIA, B.; GRAU, B. C.; KALYANPUR, A.; KATZ, Y. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, v. 5, n. 2, p. 51 – 53, 2007.

SPIVEY, J. M. The Z Notation: A Reference Manual. 1. ed. [S.l.]: Prentice-Hall, Inc.,
1989.

STAAB, S.; STUDER, R.; SCHNURR, H.; SURE, Y. Knowledge processes and ontolo-
gies. IEEE Intelligent Systems, v. 16, n. 1, p. 26–34, 2001.

STOREY, V. C.; SONG, I.-Y. Big data technologies and Management: What conceptual
modeling can do. Data & Knowledge Engineering, v. 108, n. 1, p. 50 – 67, 2017.

STRASSNER, J.; DIAB, W. W. A semantic interoperability architecture for Internet of
Things data sharing and computing. In: 3rd IEEE World Forum on Internet of Things
(WF-IoT). Reston, USA: IEEE, 2016. p. 609–614.

TAMANI, E.; EVRIPIDOU, P. A Pragmatic Methodology to Web Service Discovery.
In: 4th IEEE International Conference on Web Services (ICSW). Salt Lake City, USA:
IEEE, 2007. p. 1168–1171.

TARIQ, A.; KHAN, S. A.; IFTIKHAR, S. Requirements Engineering process for
Software-as-a-Service (SaaS) cloud environment. In: 10th International Conference on
Emerging Technologies (ICET). Islamabad, Pakistan: IEEE, 2014. p. 13–18.

TERZO, O.; RUIU, P.; BUCCI, E.; XHAFA, F. Data as a Service (DaaS) for Sharing and
Processing of Large Data Collections in the Cloud. In: 7th International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS). Taichung, Taiwan: IEEE,
2013. p. 475–480.

TRUONG, H. L.; DUSTDAR, S. On Analyzing and Specifying Concerns for Data as a
Service. In: 4th IEEE Asia-Pacific Services Computing Conference (APSCC). Biopolis,
Singapore: IEEE, 2009. p. 87–94.

TUNG, Y.; LIN, C.; SHAN, H. Test as a Service: A Framework for Web Security TaaS
Service in Cloud Environment. In: 8th IEEE International Symposium on Service Ori-
ented System Engineering (SOSE). Oxford, England: IEEE, 2014. p. 212–217.

USCHOLD, M.; KING, M. Towards a Methodology for Building Ontologies. In: 14th In-
ternational Joint Conferences on Artificial Intelligence Organization (IJCAI). Montreal,
Canada: IJCAI, 1995. p. 1–15.

VALLE, P. H. D.; GARCÉS, L.; NAKAGAWA, E. Y. A Typology of Architectural Strate-
gies for Interoperability. In: 8th Brazilian Symposium on Software Components, Archi-
tectures, and Reuse (SBCARS). Salvador, Brazil: Association for Computing Machinery,
2019. p. 3–12.

BIBLIOGRAPHY 137

van der VEER, H.; WILES, A. Achieving Technical Interoperability - The ETSI Approach.
Sophia Antipolis Cedex, France, 2008.

VECCHIOLA, C.; CHU, X.; BUYYA, R. Aneka: a Software Platform for .NET based
Cloud Computing. CoRR, v. 9, n. 7, p. 267–295, 2009.

VIDAL, V. M. P.; SACRAMENTO, E. R.; MACÊDO, J. A. F.; CASANOVA, M. A.
An Ontology-Based Framework for Geographic Data Integration . In: 28th International
Conference on Conceptual Modeling (ER). Berlin, Heidelberg: Springer, 2009. p. 337–346.

VIEIRA, M. A.; RIBEIRO, E. L. F.; ROCHA, W. S.; MANE, B.; CLARO, D. B.;
OLIVEIRA, J. S.; LIMA, E. Enhancing MIDAS Towards a Transparent Interoperability
Between SaaS and DaaS. In: 13th Brazilian Symposium on Information Systems (SBSI).
Lavras, Brazil: SBC, 2017. p. 356–363.

WANG, G.; TANG, J. The NoSQL Principles and Basic Application of Cassandra Model.
In: 2nd International Conference on Computer Science and Service System (CSSS). Nan-
jing, China: IEEE, 2012. p. 1332–1335.

WANG, W.; TOLK, A.; WANG, W. The Levels of Conceptual Interoperability Model:
Applying Systems Engineering Principles to M&S. In: 3rd Spring Simulation Conference
(SpringSim). San Diego, USA: ACM, 2009. p. 1–9.

WAZLAWICK, R. Metodologia de Pesquisa para Ciência da Computação. 2. ed. [S.l.]:
Elsevier Editora Ltda., 2017.

WEBSTER, C. From Syntactic & Semantic To Pragmatic Interoperability In Healthcare.
2014.

WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLN,
A. Experimentation in Software Engineering. 1. ed. [S.l.]: Springer, 2012.

ZARKO, I. P.; MUELLER, S.; PLOCIENNIK, M.; RAJTAR, T.; JACOBY, M.; PARDI,
M.; INSOLVIBILE, G.; GLYKANTZIS, V.; ANTONIĆ, A.; KUSEK, M.; SOURSOS, S.
The symbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-based IoT
Platforms. In: 3rd Global IoT Summit (GIoTS). Aarhus, Denmark: IEEE, 2019. p. 1–6.

ZHANG, Q.; CHENG, L.; BOUTABA, R. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, v. 1, n. 1, p. 7–18, 2010.

ZHANG, Q.; HALLER, A.; WANG, Q. CoCoOn: Cloud Computing Ontology for IaaS
Price and Performance Comparison. In: 18th International Semantic Web Conference
(ISWC). Auckland, New Zealand: Springer, 2019. p. 325–341.

ZHANG, Z.; WU, C.; CHEUNG, D. W. A survey on cloud interoperability: taxonomies,
standards, and practice. ACM SIGMETRICS Performance Evaluation Review, v. 40,
n. 4, p. 13–22, 2013.

138 BIBLIOGRAPHY

ZHENG, Z.; ZHU, J.; LYU, M. R. Service-Generated Big Data and Big Data-as-a-Service:
An Overview. In: 2nd International Congress on Big Data (BigData Congress). Santa
Clara, USA: IEEE, 2013. p. 403–410.

Appendix

A
EXAMPLE OF DATA SOURCES

This Appendix presents examples of data in DaaS w7 and vz. We consider these data to
validate the models for syntactic and semantic interoperability.

Table A.1 Generic examples of data in DaaS w7
id age firstname lastname blood
1 21 Alana Pena A–
2 9 Oleg John AB+
5 39 Ayanna Torres B+
7 38 Howard Whit O–
10 19 Dakota Garner O+
13 8 Eliana James A+
15 86 Emerson Hary AB-
20 10 Alf Wheeler A–

Table A.2 Generic examples of data in DaaS vz
ID phone borough
1 1157-1882 queens
2 2964-9218 bronx
7 8710-6657 manhattan
10 8724-3917 queens
11 6117-9480 brooklyn
12 5396-1807 queens
14 1245-6236 manhattan
20 2134-4205 queens

The data is fictitious and both DaaS are purposefully simple. The complete and
original data are available on the DaaS homepages:

139

140 EXAMPLE OF DATA SOURCES

• w7 : https://data.cityofnewyork.us/Health/NYC-Health-Hospitals-patient
-care-locations-2011/f7b6-v6v3

• vz : https://data.cityofnewyork.us/Education/Borough-Enrollment-Offices
/vz8c-29aj

Appendix

B
MIDAS-OWL

This Appendix presents MIDAS-OWL in RDF/XML syntax.

Listing B.1 MIDAS-OWL
1 <?xml version ="5.3"?>
2 <rdf:RDF xmlns="http :// ontmidas .000 webhostapp.com/"
3 xml:base="http :// ontmidas .000 webhostapp.com/"
4 xmlns:owl="http :// www.w3.org /2002/07/ owl#"
5 xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"
6 xmlns:xml="http :// www.w3.org/XML /1998/ namespace"
7 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema#"
8 xmlns:obda="https :// w3id.org/obda/vocabulary#"
9 xmlns:rdfs="http :// www.w3.org /2000/01/ rdf -schema#"

10 xmlns:ontmidas="http :// ontmidas .000 webhostapp.com/#"
11 xmlns:untitled -ontology -5="http ://www.semanticweb.org/elivaldo/ontologies /2019/9/ untitled -ontology -5#">
12 <owl:Ontology rdf:about="http :// ontmidas .000 webhostapp.com/">
13 <owl:versionIRI rdf:resource="http :// ontmidas .000 webhostapp.com/"/>
14 </owl:Ontology >
15
16 <!--
17 /////////////////////////////////////
18 // Object Properties
19 /////////////////////////////////////
20 -->
21
22 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#assoc_from">
23 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#associates"/>
24 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#dataset_info"/>
25 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#from"/>
26 <rdfs:comment >This object property associates "dataset info" (DaaS name) and "from" (query source).</rdfs:

comment >
27 </owl:ObjectProperty >
28
29 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#assoc_limit">
30 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#associates"/>
31 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#limit_info"/>
32 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#limit"/>
33 <rdfs:comment >This object property associates "limit info" (information about "limit" clause of each DaaS) and

"limit" clause of the query.</rdfs:comment >
34 </owl:ObjectProperty >
35
36 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#assoc_order_by">
37 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#associates"/>
38 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#sort_info"/>
39 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#order_by"/>
40 <rdfs:comment >This object property associates "sort info" (information about "order by" clause of each DaaS)

and "order by" clause of the query.</rdfs:comment >
41 </owl:ObjectProperty >
42
43 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#assoc_select">
44 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#associates"/>
45 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#records_info"/>
46 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#select"/>
47 <rdfs:comment >This object property associates "records info" (information about "select" clause of each DaaS)

and "select" clause of the query.</rdfs:comment >
48 </owl:ObjectProperty >
49

141

142 MIDAS-OWL

50 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#assoc_where">
51 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#associates"/>
52 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#query_info"/>
53 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#where"/>
54 <rdfs:comment >This object property associates "query info" (information about "where" clause of each DaaS) and

"where" clause of the query.</rdfs:comment >
55 </owl:ObjectProperty >
56
57 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#associates">
58 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
59 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#SymmetricProperty"/>
60 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
61 <rdfs:comment >This property object associates elements of mDIS (for each DaaS) with elements in the query.</

rdfs:comment >
62 </owl:ObjectProperty >
63
64 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#composed_of">
65 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
66 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
67 <rdfs:comment >This object property indicates that an attribute can be composed of another attribute.</rdfs:

comment >
68 </owl:ObjectProperty >
69
70 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#generates">
71 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
72 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
73 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
74 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#source"/>
75 <rdfs:comment >This object property indicates that a join operation generates a data source.</rdfs:comment >
76 </owl:ObjectProperty >
77
78 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_DaaS">
79 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
80 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
81 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#mDIS"/>
82 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#DaaS"/>
83 <rdfs:comment >This object property indicates that the mDIS contains a set of DaaS.</rdfs:comment >
84 </owl:ObjectProperty >
85
86 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb">
87 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
88 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
89 <rdfs:comment >This object property indicates that a clause contains attribute(s).</rdfs:comment >
90 </owl:ObjectProperty >
91
92 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_group_by">
93 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
94 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#group_by"/>
95 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_group"/>
96 <rdfs:comment >This object property indicates that a "group by" clause contains an attribute: "attrb_group ".</

rdfs:comment >
97 </owl:ObjectProperty >
98
99 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_having">

100 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
101 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#having"/>
102 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_hav"/>
103 <rdfs:comment >This object property indicates that a "having" clause contains an attribute: "attrb_hav ".</rdfs:

comment >
104 </owl:ObjectProperty >
105
106 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_join">
107 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
108 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
109 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb1_join"/>
110 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb2_join"/>
111 <rdfs:comment >This object property indicates that a join opoeration contains two attributes: "attrb1_join" and

"attrb2_join ".</rdfs:comment >
112 </owl:ObjectProperty >
113
114 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_order_by">
115 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
116 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#order_by"/>
117 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_ord"/>
118 <rdfs:comment >This object property indicates that a "order by" clause contains an attribute: "attrb_ord ".</

rdfs:comment >
119 </owl:ObjectProperty >
120
121 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_proj">
122 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
123 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#select"/>
124 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_proj"/>
125 <rdfs:comment >This object property indicates that a "select" clause contains an attribute: "attrb_proj ".</rdfs

:comment >
126 </owl:ObjectProperty >
127
128 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_attrb_sel">
129 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_attrb"/>
130 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
131 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_sel"/>

MIDAS-OWL 143

132 <rdfs:comment >This object property indicates that a "where" clause contains an attribute: "attrb_sel ".</rdfs:
comment >

133 </owl:ObjectProperty >
134
135 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_clau">
136 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
137 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
138 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#query"/>
139 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
140 <rdfs:comment >This object property indicates that a query contains a set of clauses , e.g., select , from , where

, limit.</rdfs:comment >
141 </owl:ObjectProperty >
142
143 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_ext">
144 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
145 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
146 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
147 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
148 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#extension"/>
149 <rdfs:comment >This object property indicates that each return contains an extension. For instance , JSON files

contains ".json" extension.</rdfs:comment >
150 </owl:ObjectProperty >
151
152 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info">
153 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
154 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
155 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#DaaS"/>
156 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
157 <rdfs:comment >This object property indicates that a DaaS contains a set of information.</rdfs:comment >
158 </owl:ObjectProperty >
159
160 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_dom">
161 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
162 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
163 <rdfs:comment >This object property indicates that a DaaS contains a information about domain: "domain_info ".</

rdfs:comment >
164 </owl:ObjectProperty >
165
166 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_ds">
167 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
168 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
169 <rdfs:comment >This object property indicates that a DaaS contains a information about dataset name: "

dataset_info ".</rdfs:comment >
170 </owl:ObjectProperty >
171
172 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_fie">
173 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
174 <rdfs:comment >This object property indicates that a DaaS contains a information about fields: "fields_info ".</

rdfs:comment >
175 </owl:ObjectProperty >
176
177 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_form">
178 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
179 <rdfs:comment >This object property indicates that a DaaS contains a information about formats: "format_info ".<

/rdfs:comment >
180 </owl:ObjectProperty >
181
182 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_lim">
183 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
184 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
185 <rdfs:comment >This object property indicates that a DaaS contains a information about "limit" clause: "

limit_info ".</rdfs:comment >
186 </owl:ObjectProperty >
187
188 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_quer">
189 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
190 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
191 <rdfs:comment >This object property indicates that a DaaS contains a information about "where" clause: "

query_info ".</rdfs:comment >
192 </owl:ObjectProperty >
193
194 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_rec">
195 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
196 <rdfs:comment >This object property indicates that a DaaS contains a information about "select" clause: "

records_info ".</rdfs:comment >
197 </owl:ObjectProperty >
198
199 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_sort">
200 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
201 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
202 <rdfs:comment >This object property indicates that a DaaS contains a information about "order by" clause: "

sort_info ".</rdfs:comment >
203 </owl:ObjectProperty >
204
205 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_info_sp">
206 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_info"/>
207 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
208 <rdfs:comment >This object property indicates that a DaaS contains a information about search path: "

search_path_info ".</rdfs:comment >
209 </owl:ObjectProperty >

144 MIDAS-OWL

210
211 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_join">
212 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
213 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
214 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
215 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
216 <rdfs:comment >This object property indicates that a clause can contain a join operation.</rdfs:comment >
217 </owl:ObjectProperty >
218
219 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_op">
220 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
221 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
222 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
223 <rdfs:comment >This object property indicates that some clauses can contain some operations.</rdfs:comment >
224 </owl:ObjectProperty >
225
226 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_op_having">
227 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_op"/>
228 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#having"/>
229 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
230 <rdfs:comment >This object property indicates that the "having" clause contains an operations: "op_hav ".</rdfs:

comment >
231 </owl:ObjectProperty >
232
233 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_op_join">
234 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_op"/>
235 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
236 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#op_join"/>
237 <rdfs:comment >This object property indicates that the join operation contains an operations: "op_join ".</rdfs:

comment >
238 </owl:ObjectProperty >
239
240 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_op_selection">
241 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_op"/>
242 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
243 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
244 <rdfs:comment >This object property indicates that the "where" clause contains an operations: "op_sel ".</rdfs:

comment >
245 </owl:ObjectProperty >
246
247 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_ret">
248 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
249 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
250 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
251 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#query"/>
252 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
253 <rdfs:comment >This object property indicates that a query contains a return.</rdfs:comment >
254 </owl:ObjectProperty >
255
256 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_sel">
257 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
258 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
259 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
260 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#where"/>
261 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
262 <rdfs:comment >This object property indicates that the "where" clause contains a selection operation.</rdfs:

comment >
263 </owl:ObjectProperty >
264
265 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_source">
266 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
267 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
268 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#from"/>
269 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#source"/>
270 <rdfs:comment >This object property indicates that the "from" clause contains source.</rdfs:comment >
271 </owl:ObjectProperty >
272
273 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_type_join">
274 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
275 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
276 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
277 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
278 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#type_join"/>
279 <rdfs:comment >This object property indicates that the join operation contains a type join.</rdfs:comment >
280 </owl:ObjectProperty >
281
282 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_val">
283 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#FunctionalProperty"/>
284 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#AsymmetricProperty"/>
285 <rdf:type rdf:resource="http :// www.w3.org /2002/07/ owl#IrreflexiveProperty"/>
286 <rdfs:comment >This object property indicates that some clauses can contain some values.</rdfs:comment >
287 </owl:ObjectProperty >
288
289 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_val_having">
290 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_val"/>
291 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#having"/>
292 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#value_hav"/>
293 <rdfs:comment >This object property indicates that the "having" clause contains an value: "value_hav ".</rdfs:

comment >
294 </owl:ObjectProperty >

MIDAS-OWL 145

295
296 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_val_limit">
297 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_val"/>
298 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#limit"/>
299 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#value_limit"/>
300 <rdfs:comment >This object property indicates that the "limit" clause contains an value: "value_limit ".</rdfs:

comment >
301 </owl:ObjectProperty >
302
303 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#has_val_selection">
304 <rdfs:subPropertyOf rdf:resource="http :// ontmidas .000 webhostapp.com/#has_val"/>
305 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
306 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#value_sel"/>
307 <rdfs:comment >This object property indicates that the "where" clause contains an value: "value_sel ".</rdfs:

comment >
308 </owl:ObjectProperty >
309
310 <owl:ObjectProperty rdf:about="http :// ontmidas .000 webhostapp.com/#is_similar_to">
311 <rdfs:domain rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
312 <rdfs:range rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
313 <rdfs:comment >This object property indicates that an attribute can be semantically similar to another

attribute.</rdfs:comment >
314 </owl:ObjectProperty >
315
316 <!--
317 /////////////////////////////////////
318 // Classes
319 /////////////////////////////////////
320 -->
321
322 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#DaaS"/>
323
324 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb1_join">
325 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
326 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#parameter"/>
327 <rdfs:comment >This class models the first attribute of the join operation. For instance: given "FROM w7 LEFT

OUTER JOIN vz ON w7.id = vz.id", attrb1_join = "w7.id".</rdfs:comment >
328 </owl:Class >
329
330 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb2_join">
331 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
332 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#parameter"/>
333 <rdfs:comment >This class models the second attribute of the join operation. For instance: given "FROM w7 LEFT

OUTER JOIN vz ON w7.id = vz.id", attrb2_join = "vz.id".</rdfs:comment >
334 </owl:Class >
335
336 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb_group">
337 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
338 <rdfs:comment >This class models the attribute(s) of the "group by" clause. For instance: given "GROUP BY w7.

age" clause , attrb_group = "w7.age".</rdfs:comment >
339 </owl:Class >
340
341 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb_hav">
342 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
343 <rdfs:comment >This class models the attribute(s) of the "having" clause. For instance: given "HAVING vz.b1 = "

queens "" clause , attrb_hav = "vz.b1".</rdfs:comment >
344 </owl:Class >
345
346 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb_ord">
347 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
348 <rdfs:comment >This class models the attribute(s) of the "order by" clause. For instance: given "ORDER BY w7.

lastname" clause , attrb_ord = "w7.lastname ".</rdfs:comment >
349 </owl:Class >
350
351 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb_proj">
352 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
353 <rdfs:comment >This class models the attribute(s) of the "select" clause. For instance: given "SELECT w7.

firstname , w7.lastname , w7.age" clause , attrb_proj has the values "w7.firstname", "w7.lastname", and "w7.
age".</rdfs:comment >

354 </owl:Class >
355
356 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attrb_sel">
357 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
358 <rdfs:comment >This class models the attribute(s) of the "where" clause. For instance: given "WHERE vz.b1 = "

queens "" clause , attrb_sel = "vz.b1".</rdfs:comment >
359 </owl:Class >
360
361 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#attribute"/>
362
363 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#clauses"/>
364
365 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#dataset_info">
366 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
367 <rdfs:comment >This class models the name of each DaaS present in mDIS.</rdfs:comment >
368 </owl:Class >
369
370 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#domain_info">
371 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
372 <rdfs:comment >This class models the domain of each DaaS present in mDIS.</rdfs:comment >
373 </owl:Class >

146 MIDAS-OWL

374
375 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#extension"/>
376
377 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#fields_info">
378 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
379 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
380 <rdfs:comment >This class represents all fields (attributes) of each DaaS present in mDIS.</rdfs:comment >
381 </owl:Class >
382
383 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#format_info">
384 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
385 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
386 <rdfs:comment >This class represents the formats recognized by each DaaS present in mDIS.</rdfs:comment >
387 </owl:Class >
388
389 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#from">
390 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
391 <rdfs:comment >This class models all elements of the "from" clause. For instance: given "FROM w7" clause , from

= "FROM _w7".</rdfs:comment >
392 </owl:Class >
393
394 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#group_by">
395 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
396 <rdfs:comment >This class models all elements of the "group by" clause. For instance: given "GROUP BY w7.age"

clause , group_by = "GROUP_BY_w7.age".</rdfs:comment >
397 </owl:Class >
398
399 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#having">
400 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
401 <rdfs:comment >This class models all elements of the "having" clause. For instance: given "HAVING vz.b1 = "

queens "" clause , having = "HAVING_vz.b1_equals_queens ".</rdfs:comment >
402 </owl:Class >
403
404 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
405
406 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#join"/>
407
408 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#limit">
409 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
410 <rdfs:comment >This class models all elements of the "limit" clause. For instance: given "LIMIT 15" clause ,

limit = "LIMIT_15 ".</rdfs:comment >
411 </owl:Class >
412
413 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#limit_info">
414 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
415 <rdfs:comment >This class models the information about "limit" clause of each DaaS present in mDIS.</rdfs:

comment >
416 </owl:Class >
417
418 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#mDIS"/>
419
420 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#op_hav">
421 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
422 <rdfs:comment >This class models the operation of the "having" clause. For instance: given "HAVING vz.b1 = "

queens "" clause , op_hav = "equals ".</rdfs:comment >
423 </owl:Class >
424
425 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#op_join">
426 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
427 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#parameter"/>
428 <rdfs:comment >This class models the operation of the join operation. For instance: given "FROM w7 LEFT OUTER

JOIN vz ON w7.id = vz.id", op_join = "equals ".</rdfs:comment >
429 </owl:Class >
430
431 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#op_sel">
432 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
433 <rdfs:comment >This class models the operation of the "where" clause. For instance: given "WHERE vz.b1 = "

queens "" clause , op_sel = "equals ".</rdfs:comment >
434 </owl:Class >
435
436 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#operator"/>
437
438 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#order_by">
439 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
440 <rdfs:comment >This class models all elements of the "order by" clause. For instance: given "ORDER BY w7.

lastname" clause , order_by = "ORDER_BY_w7.lastname ".</rdfs:comment >
441 </owl:Class >
442
443 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#parameter"/>
444
445 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#query"/>
446
447 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#query_info">
448 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
449 <rdfs:comment >This class models the information about "where" clause of each DaaS present in mDIS.</rdfs:

comment >
450 </owl:Class >
451
452 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#records_info">
453 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>

MIDAS-OWL 147

454 <rdfs:comment >This class models the information about "select" clause of each DaaS present in mDIS.</rdfs:
comment >

455 </owl:Class >
456
457 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#return"/>
458
459 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#search_path_info">
460 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
461 <rdfs:comment >This class models the search path of each DaaS present in mDIS.</rdfs:comment >
462 </owl:Class >
463
464 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#select">
465 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
466 <rdfs:comment >This class models all elements of the "select" clause. For instance: given "SELECT w7.firstname ,

w7.lastname , w7.age" clause , select = "SELECT_w7.firstname_w7.lastname_w7.age".</rdfs:comment >
467 </owl:Class >
468
469 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#selection"/>
470
471 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#sort_info">
472 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#infoDaaS"/>
473 <rdfs:comment >This class models the information about "order by" clause of each DaaS present in mDIS.</rdfs:

comment >
474 </owl:Class >
475
476 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#source"/>
477
478 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#type_join">
479 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#parameter"/>
480 <rdfs:comment >This class models the type join of the join operation. For instance: given "FROM w7 LEFT OUTER

JOIN vz ON w7.id = vz.id", type_join = "LEFT_OUTER_JOIN ".</rdfs:comment >
481 </owl:Class >
482
483 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#value"/>
484
485 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#value_hav">
486 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#value"/>
487 <rdfs:comment >This class models the value(s) of the "having" clause. For instance: given "HAVING vz.b1 = "

queens "" clause , value_hav = "queens ".</rdfs:comment >
488 </owl:Class >
489
490 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#value_limit">
491 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#value"/>
492 <rdfs:comment >This class models the value of the "limit" clause. For instance: given "LIMIT 15" clause ,

value_limit = "15".</rdfs:comment >
493 </owl:Class >
494
495 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#value_sel">
496 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#value"/>
497 <rdfs:comment >This class models the value(s) of the "where" clause. For instance: given "WHERE vz.b1 = "queens

"" clause , value_sel = "queens ".</rdfs:comment >
498 </owl:Class >
499
500 <owl:Class rdf:about="http :// ontmidas .000 webhostapp.com/#where">
501 <rdfs:subClassOf rdf:resource="http :// ontmidas .000 webhostapp.com/#clauses"/>
502 <rdfs:comment >This class models all elements of the "where" clause. For instance: given "WHERE vz.b1 = "queens

"" clause , where = "WHERE_vz.b1_equals_queens ".</rdfs:comment >
503 </owl:Class >
504
505 <!--
506 /////////////////////////////////////
507 // Individuals
508 /////////////////////////////////////
509 -->
510
511 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#DaaS_vz">
512 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#DaaS"/>
513 <rdfs:comment >Example of DaaS name.</rdfs:comment >
514 </owl:NamedIndividual >
515
516 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#DaaS_w7">
517 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#DaaS"/>
518 <rdfs:comment >Example of DaaS name.</rdfs:comment >
519 </owl:NamedIndividual >
520
521 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#FROM_w7">
522 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#from"/>
523 <ontmidas:has_source rdf:resource="http :// ontmidas .000 webhostapp.com/#w7"/>
524 <rdfs:comment >Example of "from" clause.</rdfs:comment >
525 </owl:NamedIndividual >
526
527 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#FROM_w7_LEFT_OUTER_JOIN_vz_ON_w7.id_equals_vz.

id">
528 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#from"/>
529 <ontmidas:has_join rdf:resource="http :// ontmidas .000 webhostapp.com/#join1"/>
530 <ontmidas:has_source rdf:resource="http :// ontmidas .000 webhostapp.com/#vz"/>
531 <ontmidas:has_source rdf:resource="http :// ontmidas .000 webhostapp.com/#w7"/>
532 <rdfs:comment >Example of "from" clause.</rdfs:comment >
533 </owl:NamedIndividual >
534 <owl:Axiom>

148 MIDAS-OWL

535 <owl:annotatedSource rdf:resource="http :// ontmidas .000 webhostapp.com/#FROM_w7_LEFT_OUTER_JOIN_vz_ON_w7.
id_equals_vz.id"/>

536 <owl:annotatedProperty rdf:resource="http :// ontmidas .000 webhostapp.com/#has_join"/>
537 <owl:annotatedTarget rdf:resource="http :// ontmidas .000 webhostapp.com/#join1"/>
538 <rdfs:comment >teste </rdfs:comment >
539 </owl:Axiom >
540
541 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#FULL_OUTER_JOIN">
542 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#type_join"/>
543 <rdfs:comment >Example of type join.</rdfs:comment >
544 </owl:NamedIndividual >
545
546 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#INNER_JOIN">
547 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#type_join"/>
548 <rdfs:comment >Example of type join.</rdfs:comment >
549 </owl:NamedIndividual >
550
551 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#LEFT_OUTER_JOIN">
552 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#type_join"/>
553 <rdfs:comment >Example of type join.</rdfs:comment >
554 </owl:NamedIndividual >
555
556 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#LIMIT_15">
557 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#limit"/>
558 <ontmidas:has_val_limit rdf:resource="http :// ontmidas .000 webhostapp.com/#15"/>
559 <rdfs:comment >Example of "limit" clause.</rdfs:comment >
560 </owl:NamedIndividual >
561
562 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#LIMIT_5">
563 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#limit"/>
564 <ontmidas:has_val_limit rdf:resource="http :// ontmidas .000 webhostapp.com/#5"/>
565 <rdfs:comment >Example of "limit" clause.</rdfs:comment >
566 </owl:NamedIndividual >
567
568 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#ORDER_BY_lastname">
569 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#order_by"/>
570 <ontmidas:has_attrb_order_by rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.lastname"/>
571 <rdfs:comment >Example of "order by" clause.</rdfs:comment >
572 </owl:NamedIndividual >
573
574 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#ORDER_BY_w7.lastname">
575 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#order_by"/>
576 <ontmidas:has_attrb_order_by rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.lastname"/>
577 <rdfs:comment >Example of "order by" clause.</rdfs:comment >
578 </owl:NamedIndividual >
579
580 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#RIGHT_OUTER_JOIN">
581 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#type_join"/>
582 <rdfs:comment >Example of type join.</rdfs:comment >
583 </owl:NamedIndividual >
584
585 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#SELECT_firstname_lastname_age">
586 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#select"/>
587 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.age"/>
588 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.firstname"/>
589 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.lastname"/>
590 <rdfs:comment >Example of "select" clause.</rdfs:comment >
591 </owl:NamedIndividual >
592
593 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#SELECT_w7.firstname_w7.lastname_w7.age_vz.

phone">
594 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#select"/>
595 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#vz.phone"/>
596 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.age"/>
597 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.firstname"/>
598 <ontmidas:has_attrb_proj rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.lastname"/>
599 <rdfs:comment >Example of "select" clause.</rdfs:comment >
600 </owl:NamedIndividual >
601
602 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#WHERE_age_isMoreThan_10">
603 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#where"/>
604 <ontmidas:has_sel rdf:resource="http :// ontmidas .000 webhostapp.com/#age_isMoreThan_10"/>
605 <rdfs:comment >Example of "where" clause.</rdfs:comment >
606 </owl:NamedIndividual >
607
608 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#WHERE_vz.b1_equals_queens">
609 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#where"/>
610 <ontmidas:has_sel rdf:resource="http :// ontmidas .000 webhostapp.com/#vz.b1_equals_queens"/>
611 <rdfs:comment >Example of "where" clause.</rdfs:comment >
612 </owl:NamedIndividual >
613
614 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#age_isMoreThan_10">
615 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
616 <ontmidas:has_attrb_sel rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.age"/>
617 <ontmidas:has_op_selection rdf:resource="http :// ontmidas .000 webhostapp.com/#isMoreThan"/>
618 <ontmidas:has_val_selection rdf:resource="http :// ontmidas .000 webhostapp.com/#10"/>
619 <rdfs:comment >Example of selection ("where" clause).</rdfs:comment >
620 </owl:NamedIndividual >
621
622 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#csv">

MIDAS-OWL 149

623 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#format_info"/>
624 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
625 <ontmidas:has_ext rdf:resource="http :// ontmidas .000 webhostapp.com/#.csv"/>
626 <rdfs:comment >Example of value for format_info.</rdfs:comment >
627 </owl:NamedIndividual >
628
629 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#equals">
630 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
631 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_join"/>
632 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
633 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
634 <rdfs:comment >Example of operation.</rdfs:comment >
635 </owl:NamedIndividual >
636
637 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#isLessEqualThan">
638 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
639 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
640 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
641 <rdfs:comment >Example of operation.</rdfs:comment >
642 </owl:NamedIndividual >
643
644 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#isLessThan">
645 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
646 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
647 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
648 <rdfs:comment >Example of operation.</rdfs:comment >
649 </owl:NamedIndividual >
650
651 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#isMoreEqualThan">
652 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
653 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
654 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
655 <rdfs:comment >Example of operation.</rdfs:comment >
656 </owl:NamedIndividual >
657
658 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#isMoreThan">
659 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_hav"/>
660 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#op_sel"/>
661 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#operator"/>
662 <rdfs:comment >Example of operation.</rdfs:comment >
663 </owl:NamedIndividual >
664
665 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#join1">
666 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#join"/>
667 <ontmidas:generates rdf:resource="http :// ontmidas .000 webhostapp.com/#vz"/>
668 <ontmidas:generates rdf:resource="http :// ontmidas .000 webhostapp.com/#w7"/>
669 <ontmidas:has_attrb_join rdf:resource="http :// ontmidas .000 webhostapp.com/#vz.id"/>
670 <ontmidas:has_attrb_join rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.id"/>
671 <ontmidas:has_op_join rdf:resource="http :// ontmidas .000 webhostapp.com/#equals"/>
672 <ontmidas:has_type_join rdf:resource="http :// ontmidas .000 webhostapp.com/#LEFT_OUTER_JOIN"/>
673 <rdfs:comment >Example of join operation.</rdfs:comment >
674 </owl:NamedIndividual >
675
676 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#json">
677 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#format_info"/>
678 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
679 <ontmidas:has_ext rdf:resource="http :// ontmidas .000 webhostapp.com/#.json"/>
680 <rdfs:comment >Example of value for format_info.</rdfs:comment >
681 </owl:NamedIndividual >
682
683 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#lim">
684 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#limit_info"/>
685 <rdfs:comment >Example of value for limit_info.</rdfs:comment >
686 </owl:NamedIndividual >
687
688 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#ord">
689 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#sort_info"/>
690 <rdfs:comment >Example of value for sort_info.</rdfs:comment >
691 </owl:NamedIndividual >
692
693 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#queens">
694 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#value_sel"/>
695 <rdfs:comment >Example of value for value_sel.</rdfs:comment >
696 </owl:NamedIndividual >
697
698 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#queryWithJoin">
699 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#query"/>
700 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#FROM_w7_LEFT_OUTER_JOIN_vz_ON_w7.

id_equals_vz.id"/>
701 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#LIMIT_15"/>
702 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#ORDER_BY_w7.lastname"/>
703 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#SELECT_w7.firstname_w7.lastname_w7.age_vz

.phone"/>
704 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#WHERE_vz.b1_equals_queens"/>
705 <ontmidas:has_ret rdf:resource="http :// ontmidas .000 webhostapp.com/#json"/>
706 <rdfs:comment >Example of query.</rdfs:comment >
707 </owl:NamedIndividual >
708
709 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#queryWithoutJoin">
710 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#query"/>

150 MIDAS-OWL

711 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#FROM_w7"/>
712 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#LIMIT_5"/>
713 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#ORDER_BY_lastname"/>
714 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#SELECT_firstname_lastname_age"/>
715 <ontmidas:has_clau rdf:resource="http :// ontmidas .000 webhostapp.com/#WHERE_age_isMoreThan_10"/>
716 <ontmidas:has_ret rdf:resource="http :// ontmidas .000 webhostapp.com/#json"/>
717 <rdfs:comment >Example of query.</rdfs:comment >
718 </owl:NamedIndividual >
719
720 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#rec">
721 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#records_info"/>
722 <rdfs:comment >Example of value for records_info.</rdfs:comment >
723 </owl:NamedIndividual >
724
725 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#recds">
726 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#records_info"/>
727 <rdfs:comment >Example of value for records_info.</rdfs:comment >
728 </owl:NamedIndividual >
729
730 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#setDaaS">
731 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#mDIS"/>
732 <rdfs:comment >Example of mDIS name.</rdfs:comment >
733 </owl:NamedIndividual >
734
735 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#vz">
736 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#dataset_info"/>
737 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#source"/>
738 <rdfs:comment >Example of value for dataset_info.</rdfs:comment >
739 </owl:NamedIndividual >
740
741 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#vz.b1">
742 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_sel"/>
743 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
744 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
745 <rdfs:comment >Attribute. Example of value for attrb_sel and fields_info.</rdfs:comment >
746 </owl:NamedIndividual >
747
748 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#vz.b1_equals_queens">
749 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#selection"/>
750 <ontmidas:has_attrb_sel rdf:resource="http :// ontmidas .000 webhostapp.com/#vz.b1"/>
751 <ontmidas:has_op_selection rdf:resource="http :// ontmidas .000 webhostapp.com/#equals"/>
752 <ontmidas:has_val_selection rdf:resource="http :// ontmidas .000 webhostapp.com/#queens"/>
753 <rdfs:comment >Example of selection.</rdfs:comment >
754 </owl:NamedIndividual >
755
756 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#vz.id">
757 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb2_join"/>
758 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
759 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
760 <rdfs:comment >Attribute. Example of value for attrb2_join and fields_info.</rdfs:comment >
761 </owl:NamedIndividual >
762
763 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#vz.phone">
764 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_proj"/>
765 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
766 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
767 <rdfs:comment >Attribute. Example of value for attrb_proj and fields_info.</rdfs:comment >
768 </owl:NamedIndividual >
769
770 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7">
771 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#dataset_info"/>
772 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#source"/>
773 <rdfs:comment >Example of value for dataset_info.</rdfs:comment >
774 </owl:NamedIndividual >
775
776 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.age">
777 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_proj"/>
778 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
779 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
780 <rdfs:comment >Attribute. Example of value for attrb_proj and fields_info.</rdfs:comment >
781 </owl:NamedIndividual >
782
783 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.blood">
784 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
785 <rdfs:comment >Example of attribute.</rdfs:comment >
786 </owl:NamedIndividual >
787
788 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.familyname">
789 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
790 <ontmidas:is_similar_to rdf:resource="http :// ontmidas .000 webhostapp.com/#w7.lastname"/>
791 <rdfs:comment >Example of attribute.</rdfs:comment >
792 </owl:NamedIndividual >
793
794 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.firstname">
795 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
796 <rdfs:comment >Example of attribute.</rdfs:comment >
797 </owl:NamedIndividual >
798
799 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.id">
800 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb1_join"/>

MIDAS-OWL 151

801 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
802 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
803 <rdfs:comment >Attribute. Example of value for attrb1_join and fields_info.</rdfs:comment >
804 </owl:NamedIndividual >
805
806 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.identifier">
807 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
808 <rdfs:comment >Example of attribute.</rdfs:comment >
809 </owl:NamedIndividual >
810
811 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#w7.lastname">
812 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_ord"/>
813 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attrb_proj"/>
814 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#attribute"/>
815 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#fields_info"/>
816 <rdfs:comment >Attribute. Example of value for attrb_ord , attrb_proj , and fields_info.</rdfs:comment >
817 </owl:NamedIndividual >
818
819 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#xml">
820 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#format_info"/>
821 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#return"/>
822 <ontmidas:has_ext rdf:resource="http :// ontmidas .000 webhostapp.com/#.xml"/>
823 <rdfs:comment >Example of value for format_info.</rdfs:comment >
824 </owl:NamedIndividual >
825
826 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#$limit">
827 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#limit_info"/>
828 <rdfs:comment >Example of value for limit_info.</rdfs:comment >
829 </owl:NamedIndividual >
830
831 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#$order">
832 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#sort_info"/>
833 <rdfs:comment >Example of value for sort_info.</rdfs:comment >
834 </owl:NamedIndividual >
835
836 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#$where_v">
837 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#query_info"/>
838 <rdfs:comment >Example of value for query_info.</rdfs:comment >
839 </owl:NamedIndividual >
840
841 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#$where_w">
842 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#query_info"/>
843 <rdfs:comment >Example of value for query_info.</rdfs:comment >
844 </owl:NamedIndividual >
845
846 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#.csv">
847 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#extension"/>
848 <rdfs:comment >Example of extension.</rdfs:comment >
849 </owl:NamedIndividual >
850
851 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#.json">
852 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#extension"/>
853 <rdfs:comment >Example of extension.</rdfs:comment >
854 </owl:NamedIndividual >
855
856 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#.xml">
857 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#extension"/>
858 <rdfs:comment >Example of extension.</rdfs:comment >
859 </owl:NamedIndividual >
860
861 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#/r/">
862 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#search_path_info"/>
863 <rdfs:comment >Example of value for search_path_info.</rdfs:comment >
864 </owl:NamedIndividual >
865
866 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#/v/">
867 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#search_path_info"/>
868 <rdfs:comment >Example of value for search_path_info.</rdfs:comment >
869 </owl:NamedIndividual >
870
871 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#10">
872 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#value_sel"/>
873 <rdfs:comment >Example of value for value_sel.</rdfs:comment >
874 </owl:NamedIndividual >
875
876 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#15">
877 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#value_limit"/>
878 <rdfs:comment >Example of value for value_limit.</rdfs:comment >
879 </owl:NamedIndividual >
880
881 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#5">
882 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#value_limit"/>
883 <rdfs:comment >Example of value for value_limit.</rdfs:comment >
884 </owl:NamedIndividual >
885
886 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#d.com/w7">
887 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#domain_info"/>
888 <rdfs:comment >Example of value for domain_info.</rdfs:comment >
889 </owl:NamedIndividual >
890

152 MIDAS-OWL

891 <owl:NamedIndividual rdf:about="http :// ontmidas .000 webhostapp.com/#qw.net/vz">
892 <rdf:type rdf:resource="http :// ontmidas .000 webhostapp.com/#domain_info"/>
893 <rdfs:comment >Example of value for domain_info.</rdfs:comment >
894 </owl:NamedIndividual >
895
896 <!-- Generated by the OWL API (version 4.5.9.2019 -02 -01 T07 :24:44Z) https :// github.com/owlcs/owlapi -->

Appendix

C
CONTROLLED EXPERIMENT: SUPPORT MATERIAL

This Appendix presents the questionnaires (in Portuguese) and participants of our con-
trolled experiment (Chapter 7). This appendix is organized as follows:

1. Section C.1 presents the pre-questionnaire applied to all participants.

2. Section C.2 presents the questionnaire applied to Control group (ConG).

3. Section C.3 presents the questionnaire applied to CAPITAL group (CapG).

4. Section C.4 presents a participants overview.

C.1 PRE-QUESTIONNAIRE

A. Nome:

B. E-mail:

C. Escolaridade:

© Graduação incompleta

© Graduação completa

© Especialização

© Mestrado

© Doutorado

Sobre interoperabilidade (1/2)

D. Qual sua experiência com interoperabilidade?

© Não conhece e nunca utilizou

153

154 CONTROLLED EXPERIMENT: SUPPORT MATERIAL

© Conhece o conceito mas nunca utilizou

© Conhece o conceito e utiliza (ou já utilizou)

E. Caso já tenha utilizado interoperabilidade antes, como/onde utilizou?

� Projetos de pesquisa

� Disciplinas ou cursos

� Empresas

� Outros projetos

F. Caso já tenha utilizado interoperabilidade anteriormente, utilizou por quanto tempo?

© Menos de 1 ano

© Entre 1 e 5 anos

© Entre 5 e 10 anos

© Mais de 10 anos

G. Qual sua experiência com interoperabilidade pragmática?

© Não conhece e nunca utilizou

© Conhece o conceito mas nunca utilizou

© Conhece o conceito e utiliza (ou já utilizou)

H. Caso já tenha utilizado interoperabilidade pragmática antes, como/onde utilizou?

� Projetos de pesquisa

� Disciplinas ou cursos

� Empresas

� Outros projetos

I. Caso já tenha utilizado interoperabilidade pragmática antes, utilizou por quanto
tempo?

© Menos de 1 ano

© Entre 1 e 5 anos

© Entre 5 e 10 anos

© Mais de 10 anos

Sobre interoperabilidade (2/2)

J. Na sua opinião, qual dos conceitos abaixo melhor define interoperabilidade?

C.2 CONTROL GROUP QUESTIONNAIRE 155

© Capacidade de um sistema combinar informações, artefatos e serviços entre
si
© Capacidade de um sistema se comunicar de forma transparente com outro
sistema
© Capacidade de extrair informações do cliente sobre o que ele deseja que seja
desenvolvido
© Capacidade de componentes serem facilmente movidos e reutilizados, inde-
pendentemente do formato e do provedor
© Não sei

K. Na sua opinião, qual dos conceitos abaixo melhor define interoperabilidade prag-
mática?

© Capacidade de entidades distintas compreenderem o significado da men-
sagem trocada entre os participantes
© Capacidade de entidades distintas compreenderem a intenção da mensagem
trocada, de modo que o resultado produzido esteja dentro das expectativas co-
muns
© Capacidade de entidades distintas atingirem todos os níveis de interoper-
abilidade desejados, do mais básico ao mais específico
© Capacidade de entidades distintas trocarem dados entre si a partir de uma
codificação comum
© Não sei

C.2 CONTROL GROUP QUESTIONNAIRE

A. Nome:

B. Hora inicial :

Parte I

A literatura apresenta várias definições para “interoperabilidade pragmática”. A seguir, listamos
algumas dessas definições:

• A interoperabilidade pragmática garante que as mensagens trocadas causem o efeito pre-
tendido. Muitas vezes, isso ocorre enviando e recebendo múltiplas mensagens em ordem
específica, definidas em um protocolo de interação [1].

• A interoperabilidade pragmática é atingida quando os sistemas interoperantes são con-
scientes dos métodos e procedimentos uns dos outros. Ou seja, o contexto da aplicação é
entendido pelos sistemas participantes [2].

• A web pragmática pode ajudar a superar o problema de descoberta na web porque é um
conjunto de contextos pragmáticos sobre os recursos semânticos [3].

• A interoperabilidade pragmática é a compatibilidade entre o efeito pretendido e o efeito
real da troca de mensagens [4].

• Compatibilidade entre uso pretendido e uso real da mensagem recebida dentro de um
contexto compartilhado relevante [5].

156 CONTROLLED EXPERIMENT: SUPPORT MATERIAL

• A interoperabilidade é alcançada neste nível quando os processos que atendem diferentes
finalidades em diferentes contextos por diferentes sistemas de informação, podem ser com-
postos para apoiar conjuntamente uma intenção comum [6].

• A pragmática é sobre como usamos sintaxe e semântica como uma ferramenta para atingir
metas. A interoperabilidade pragmática faz algo útil com os resultados da sintática e
semântica. O significado não literal deve ser inferido a partir do conhecimento comparti-
lhado (tarefas, fluxos de trabalho, planos e objetivos) [7].

[1] S. Pokraev, et al. 2005. Semantic and Pragmatic Interoperability: A Model for Understand-
ing. In Proceedings of the CAiSE’05 Workshops, J. Castro and E. Teniente (Eds.). 377–382.
[2] J. Lee, et al. 2007. HIS-KCWater: Context-aware Geospatial Data and Service Integration.
In Proceedings of the 2007 ACM Symposium on Applied Computing. ACM, New York, NY,
USA, 24–29.
[3] E. Tamani and P. Evripidou. 2007. A Pragmatic Methodology to Web Service Discovery. In
IEEE International Conference on Web Services. 1168–1171.
[4] C. H. Asuncion and M. M. J. v. Sinderen. 2011. Pragmatic interoperability: A systematic
review of published definitions. Enterprise Architecture, Integration and Interoperability. 731
(2011), 164–175.
[5] C. H. Asuncion, C. Boldyreff, S. Islam, M. Leonard, and B. Thalheim. 2011. Pragmatic
interoperability in the enterprise - A research agenda. 731.
[6] S. Liu, W. Li, and K. Liu. 2014. Pragmatic Oriented Data Interoperability for Smart
Healthcare Information Systems. In 14th International Symposium on Cluster, Cloud and Grid
Computing. 811–818.
[7] C. Webster. 2014. From Syntactic & Semantic To Pragmatic Interoperability In Healthcare.
https://bit.ly/2PWCiTY

C. Com base nas definições acima, como você definiria interoperabilidade pragmática?

Parte II

Considere o seguinte cenário hipotético: o motorista deseja que o Bluetooth do seu automóvel seja
habilitado (e esteja disponível para chamadas em viva-voz) apenas quando familiares estiverem
dentro do automóvel. Não é desejado a ativação do Bluetooth em outras situações (por exemplo,
quando amigos do motoristas estiverem dentro do automóvel).

D. Na sua opinião, há interoperabilidade pragmática no cenário acima?

© Sim

© Não

E. Caso tenha sinalizado que “sim, há interoperabilidade pragmática no cenário acima”,
descreva essa interoperabilidade com base na sua definição:

Parte III

Considere o seguinte cenário hipotético: um usuário deseja que seu smartphone altere a config-
uração de tela e mude a iluminação para o modo noturno (com “cores quentes”) apenas durante
a noite. Não é desejado o modo noturno durante o dia.

C.2 CONTROL GROUP QUESTIONNAIRE 157

F. Na sua opinião, há interoperabilidade pragmática no cenário acima?

© Sim

© Não

G. Caso tenha sinalizado que “sim, há interoperabilidade pragmática no cenário acima”,
descreva essa interoperabilidade com base na sua definição:

H. Caso tenha sinalizado que “sim, há interoperabilidade pragmática no cenário acima”,
descreva uma situação (i.e., um contexto) que pode ocorrer nesse cenário prag-
mático:

Parte IV

Observações:

1. Responda as questões abaixo considerando o cenário do “smartphone no modo noturno”.
2. Entenda “modelagem” como sua descrição textual (definição e contexto) para o cenário do

smartphone.
3. Considere (1) como “muito baixo” e (5) como “muito alto”.

I. Pergunta:

1 2 3 4 5
q1: Qual o esforço requerido para entender o
cenário?

© © © © ©

q2: Qual o esforço requerido para identificar pos-
síveis elementos ausentes na modelagem?

© © © © ©

q3: Qual o esforço requerido para avaliar a uniformi-
dade dos elementos na sua modelagem?

© © © © ©

q4: Qual o esforço requerido para identificar elemen-
tos desnecessários na sua modelagem?

© © © © ©

q5: Qual o esforço requerido para entender e adi-
cionar um novo contexto?

© © © © ©

q6: Qual o esforço requerido para avaliar a comple-
tude de sua modelagem?

© © © © ©

q7: Qual o esforço requerido para identificar elemen-
tos conflitantes e/ou ambiguos na sua modelagem?

© © © © ©

q8: Qual o esforço requerido para identificar elemen-
tos redundantes na sua modelagem?

© © © © ©

q9: Qual o esforço requerido para listar a intenção,
a mensagem e o efeito do cenário?

© © © © ©

J. Hora final :

158 CONTROLLED EXPERIMENT: SUPPORT MATERIAL

C.3 CAPITAL GROUP QUESTIONNAIRE

A. Nome:

B. Hora inicial :

Parte I

Após uma extensa revisão da literatura, nosso grupo de pesquisa definiu interoperabilidade prag-
mática como segue: “Interoperabilidade pragmática, em nível de sistemas, é alcançada quando
ocorre uma compreensão compartilhada do conjunto de condições (intenção) e dos contextos
necessários para a comunicação, a fim de proporcionar o uso correto da mensagem e, como
consequência, ter um resultado produzido dentro das expectativas comuns (efeito).”
Nossa definição aborda quatro elementos que consideramos fundamentais para que a interoper-
abilidade pragmática ocorra:

• efeito: aquilo que é produzido, consequência ou resultado;
• contexto: informações necessárias para realizar o efeito (representado por informações

contextuais: why, how, when, who, where e what);
• uso: como dados (ou a mensagem) são usados; e
• intenção: o que o remetente espera que o efeito da mensagem seja.

De posse da definição, apresentamos o framework conceitual para interoperabilidade pragmática
(chamado de CAPITAL) abaixo.
A interoperabilidade pragmática (PI) é composta por três conjuntos de informações no nível 2:

• “msg”, representando a mensagem
• “int”, representando a *intenção*
• “effec”, representando o *efeito*

O nível 3 detalha os elementos do nível 2:

• “msg” é composta por uma ação (action) e um conjunto de contextos (cont)
• “effec” contém o comportamento externo executado pelo receptor (ext behav)

Ainda no nível 3, a ação (action) é composta pelo nome do serviço (name), entradas (inputs),
saídas (outputs), exceções (except) e comportamento (int behav), e cont é um conjunto de
contextos similares. Cada contexto específico é representado por “conti ”
O elementos “action” representa o *uso* e o “cont” representa o *contexto*.

Framework CAPITAL:

PI

ext
behav

int

ebi

Level	1

Level	2

Level	3

Level	4

msg

ii

effec

action

int
behav

ibi

name inputs except

na ini exi

outpus

outi

cont

...

why1 when1how1 who1

wyi1 wei1hi1 woi1

what1

whi1

cont1

where1

wri1

whyn whennhown whon

wyin weinhin woin

whatn

whin

contn

wheren

wrin

Imagem em tamanho maior:
https://github.com/elivaldolozer/imgExpCAPITAL/blob/master/fig1-CAPITAL.pdf

C.3 CAPITAL GROUP QUESTIONNAIRE 159

Parte II

Considere o seguinte cenário hipotético: o motorista deseja que o Bluetooth do seu automóvel seja
habilitado (e esteja disponível para chamadas em viva-voz) apenas quando familiares estiverem
dentro do automóvel. Não é desejado a ativação do Bluetooth em outras situações (por exemplo,
quando amigos do motoristas estiverem dentro do automóvel).
Esse cenário pode ser representado no framework CAPITAL conforme figura abaixo.

Cenário do Bluetooth no framework CAPITAL:
PI

outputsinputs except

inval
relat

inact
serv

timeout

Bluet
status

det number
people

det relat between
driver and people

dec Bluet
status

int
behav

on/off Bluet
get
cont

get
inputs

on/off Bluet

ext
behavcont2

cont3

cont4

int

contaction

name

turn on
Bluet

cont1
cont6

cont5

why3 when3how3 who3

Near

where3

<=10m

what3

Distance

c)

cont3

why2 when2how2 who2

Moderate

where2

<100m and
>10m

what2

Distance

why1 when1how1 who1

Far

where1

>=100m

what1

Distance

a)

b)

cont1

cont2

D
is
ta
nc
e

why6 when6how6 who6

Familiar

Family

where6 what6

Relationship

f)

cont6

why5 when5how5 who5

Known

Student

where5 what5

Relationship

why4 when4how4 who4

Unknown

Unknown

where4 what4

Relationship

d)

e)

cont4

cont5

R
el
at
io
ns
hi
p

Friend

msg effec

Imagem em tamanho maior:
https://github.com/elivaldolozer/imgExpCAPITAL/blob/master/fig2-cen3CAPITAL.pdf

C. Na sua opinião, há interoperabilidade pragmática no cenário acima?

© Sim

© Não

D. Caso tenha sinalizado que “sim, há interoperabilidade pragmática no cenário acima”,
descreva essa interoperabilidade:

Parte III

Considere o seguinte cenário hipotético: um usuário deseja que seu smartphone altere a config-
uração de tela e mude a iluminação para o modo noturno (com “cores quentes”) apenas durante
a noite. Não é desejado o modo noturno durante o dia.

E. Na sua opinião, há interoperabilidade pragmática no cenário acima?

© Sim

© Não

F. Caso tenha sinalizado que “sim, há interoperabilidade pragmática no cenário acima”,
modele o cenário acima com o framework CAPITAL:

160 CONTROLLED EXPERIMENT: SUPPORT MATERIAL

Framework CAPITAL “em branco”

PI

ext
behav

int

Level	1

Level	2

Level	3

Level	4

msg

action

int
behavname inputs exceptoutpus

effec

cont

...cont1 contn

Imagem em tamanho maior:
https://github.com/elivaldolozer/imgExpCAPITAL/blob/master/fig3-CAPITALbranco.pdf

G. Qual nome (name) você julga apropriado para a ação que esse cenário hipotético
pode/deve realizar?

H. Qual(is) entrada(s) (inputs) esse cenário hipotético pode/deve ter para realizar a
ação acima?

I. Qual(is) saídas(s) (outputs) esse cenário hipotético pode/deve ter para realizar a
ação acima?

J. Qual(s) exceção(ões) (except) esse cenário hipotético pode/deve ter para realizar a
ação acima?

K. Que comportamento (int behav) o smartphone pode/deve ter para realizar a ação
nesse cenário hipotético?

L. Qual(is) contexto(s) (cont) você julga necessário(s) nesse cenário hipotético?

M. Qual é a intenção (int) do usuário do smartphone?

N. O que o smartphone de fato faz (effec)? Ou seja, qual o resultado final do cenário?

Parte IV

Observações:

1. Responda as questões abaixo considerando o cenário do “smartphone no modo noturno”.
2. Entenda “modelagem” como sua respostas para o cenário do smartphone.
3. Considere (1) como “muito baixo” e (5) como “muito alto”.

C.4 PARTICIPANTS OVERVIEW 161

O. Pergunta:

1 2 3 4 5
q1: Qual o esforço requerido para entender o
cenário?

© © © © ©

q2: Qual o esforço requerido para identificar pos-
síveis elementos ausentes na modelagem?

© © © © ©

q3: Qual o esforço requerido para avaliar a uniformi-
dade dos elementos na sua modelagem?

© © © © ©

q4: Qual o esforço requerido para identificar elemen-
tos desnecessários na sua modelagem?

© © © © ©

q5: Qual o esforço requerido para entender e adi-
cionar um novo contexto?

© © © © ©

q6: Qual o esforço requerido para avaliar a comple-
tude de sua modelagem?

© © © © ©

q7: Qual o esforço requerido para identificar elemen-
tos conflitantes e/ou ambiguos na sua modelagem?

© © © © ©

q8: Qual o esforço requerido para identificar elemen-
tos redundantes na sua modelagem?

© © © © ©

q9: Qual o esforço requerido para listar a intenção,
a mensagem e o efeito do cenário?

© © © © ©

P. Hora final :

C.4 PARTICIPANTS OVERVIEW

Table C.1 depicts the participants involved in this controlled experiment: 36 undergrad-
uate students (Un-st), two developers (Dev), and eight professors (Prof). The students
and professors are from two different federal universities (U1 and U2) and the developers
work in two different companies (C1 and C2).

We classified the participant with respect to prior knowledge about interoperabil-
ity (Interop.) and pragmatic interoperability (Prag. Interop.): participant knows the
concept and has experience with interoperability or pragmatic interoperability (X), par-
ticipant knows the concept but has no experience with interoperability or pragmatic
interoperability (�), participant does not know the concept and has no experience with
interoperability or pragmatic interoperability (×).

We grouped the participants into two groups: Control group (ConG) and CAPITAL
group (CapG).

162 CONTROLLED EXPERIMENT: SUPPORT MATERIAL

Table C.1: Participants overview

Prior knowledgeParticipant Institution Status Degree Group Interop. Prag. Interop.
1 U2 Prof Ph.D. ConG � ×
2 U2 Prof M.Sc. CapG × ×
3 U2 Prof Ph.D. CapG � ×
4 U2 Prof Ph.D. ConG × ×
5 C1 Dev M.Sc. CapG X �
6 C2 Dev M.Sc. ConG X �
7 U2 Un-st – ConG × ×
8 U2 Un-st – CapG × ×
9 U2 Un-st – CapG × ×
10 U2 Un-st – ConG × ×
11 U2 Prof M.Sc. ConG × ×
12 U2 Prof M.Sc. ConG × ×
13 U1 Prof Ph.D. CapG × ×
14 U1 Prof M.Sc. CapG × ×
15 U1 Un-st – ConG × ×
16 U1 Un-st – ConG × ×
17 U1 Un-st – CapG × ×
18 U1 Un-st – CapG � ×
19 U1 Un-st – ConG × ×
20 U1 Un-st – ConG × ×
21 U1 Un-st – CapG × ×
22 U1 Un-st – CapG × ×
23 U1 Un-st – ConG × ×
24 U1 Un-st – ConG × ×
25 U1 Un-st – CapG × ×
26 U1 Un-st – CapG × ×
27 U1 Un-st – CapG × ×
28 U1 Un-st – ConG × ×
29 U1 Un-st – CapG × ×
30 U1 Un-st – CapG × ×
31 U1 Un-st – ConG × ×
32 U1 Un-st – ConG × ×
33 U1 Un-st – ConG � �
34 U1 Un-st – CapG X �
35 U1 Un-st – ConG � ×
36 U1 Un-st – ConG × ×
37 U1 Un-st – ConG × ×
38 U1 Un-st – ContG × ×
39 U1 Un-st – CapG × ×
40 U1 Un-st – CapG × ×

C.4 PARTICIPANTS OVERVIEW 163

41 U1 Un-st – CapG × ×
42 U1 Un-st – ConG × ×
43 U1 Un-st – CapG × ×
44 U1 Un-st – CapG × ×
45 U1 Un-st – CapG × ×
46 U1 Un-st – ConG × ×

Appendix

D
FUNCTION POINT ANALYSIS ADJUSTMENT

FACTOR

This Appendix presents Function Point Analysis value adjustment factors. In this part,
we present the 14 questions used in the calculation. Each question must be measured
with a factor F : Fi = 0 indicates that the question i is not important/applicable, and
Fi = 5 indicates that the question i is absolutely important.

Table D.1 Value adjustment factors
Factor Fii Question 0 1 2 3 4 5

1 Does the system require reliable backup and recovery? ×
2 Are data communications required? ×
3 Are there distributed processing functions? ×
4 Is performance critical? ×
5 Will the system run in an existing, heavily utilized op-

erational environment?
×

6 Does the system require on-line data entry? ×
7 Does the on-line data entry require the input transaction

to be built over multiple?
×

8 Are the master files updated on-line? ×
9 Are the inputs, outputs, files, or inquiries complex? ×
10 Is the internal processing complex? ×
11 Is the code designed to be reusable? ×
12 Are conversion and installation included in the design? ×
13 Is the system designed for different organizations? ×
14 Is the application designed to facilitate change and use

by the user?
×∑14

i=1 Fi = 46

165

