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RESUMO

O problema de otimizacao do projeto de redes de distribui¢ao de 4gua (WDND, do inglés wa-
ter distribution network design) alimentadas por gravidade consiste em determinar os didmetros
dos tubos de uma rede de dgua de forma que as restricdes hidraulicas sejam satisfeitas e o
custo total seja minimizado. Tradicionalmente, essas decisdes de design sdo feitas com base
na experiéncia de especialistas. Quando as redes aumentam de tamanho, no entanto, as regras
préticas raramente levam a decisdes quase ideais. Nos dltimos trinta anos, um grande nimero de
técnicas foram desenvolvidas para resolver o problema de projetar de forma otimizada uma rede
de distribuicao de dgua. Este trabalho aborda o problema NP-dificil de otimizacao do projeto de
redes de distribui¢do de 4gua em um cendrio multiperiodo no qual ocorrem padrdes de demanda
varidveis no tempo. E proposta uma nova metaheuristica de busca local iterada (ILS, do inglés
iterated local search) baseada em simulagdo aprimorada que explora ainda mais a estrutura
do problema na tentativa de obter solucdes de alta qualidade. Mais especificamente, quatro
novidades sdo propostas: (a) uma estratégia de busca local para dimensionar de forma inteligente
tubos nos caminhos mais curtos entre os reservatorios € os nds com maiores demandas; (b) uma
técnica para acelerar a convergéncia com base em um esquema de reducao agressiva do diametro
do tubo; (c) um novo mecanismo de perturbacio concentrada que permite escapar de solugdes
6timas locais muito restritas; e (d) um conjunto de solucdes para alcangar um bom compromisso
entre intensificagdo e diversificacdo. Experimentos computacionais mostram que a abordagem ¢
capaz de melhorar uma metaheuristica estado da arte para a maioria dos testes realizados. Além
disso, converge muito mais rapido para solucdes de baixo custo e demonstra um desempenho
mais robusto na medida em que obtém menores desvios das melhores solu¢des encontradas.

Palavras-chave: metaheuristica, projeto de redes de distribui¢ao de dgua, busca local iterada,
simulagao.
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ABSTRACT

The gravity fed water distribution network design (WDND) optimization problem consists in
determining the pipe diameters of a water network such that hydraulic constraints are satisfied and
the total cost is minimized. Traditionally, such design decisions are made on the basis of expert
experience. When networks increase in size, however, rules of thumb will rarely lead to near
optimal decisions. Over the past thirty years, a large number of techniques have been developed
to tackle the problem of optimally designing a water distribution network. This work tackles the
NP-hard water distribution network design (WDND) optimization problem in a multi-period
setting where time varying demand patterns occur. A new enhanced simulation-based iterated
local search (ILS) metaheuristic is proposed which further explores the structure of the problem
in an attempt to obtain high quality solutions. More specifically, four novelties are proposed: (a)
a local search strategy to smartly dimension pipes in the shortest paths between the reservoirs
and the nodes with highest demands; (b) a technique to speed up convergence based on an
aggressive pipe diameter reduction scheme; (c) a novel concentrated perturbation mechanism to
allow escaping from very restrained local optima solutions; and (d) a pool of solutions to achieve
a good compromise between intensification and diversification. Computational experiments
show that the proposed approach is able to improve over a state-of-the-art metaheuristic for
most of the performed tests. Furthermore, it converges much faster to low cost solutions and
demonstrates a more robust performance in that it obtains smaller deviations from the best
known solutions.

Keywords: metaheuristics, water distribution network design, iterated local search, simulation.
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Chapter

INTRODUCTION

1.1 MOTIVATION

A safe, adequate, and accessible supply of potable water is one of the basic necessities
of any human being. According to a World Health Organization| (2011) study, improving
access to safe potable water not only reduces the overall risk of disease, but can also be an
effective part of poverty reduction strategies. Access to safe drinkable water is important as a
health and development issue at national, regional and local levels. Furthermore, it has been
shown that investments in water supply and sanitation can yield a net economic benefit as the
reductions in adverse health effects and health-care costs outweigh the costs of undertaking the
interventions. Consequently, water distribution networks are amongst the most vital elements
of a society’s infrastructure, providing people with high-quality drinking water in sufficient
quantities and at adequate pressures. A water distribution system is an infrastructure that consists
of different elements (such as pumps, reservoirs, pipes, valves, among others) connected together
to convey quantities of water from one or more sources to multiple consumers (which can be
domestic, commercial, or industrial) (De Corte & Sorensen, 2013). The distribution system
is designed to reliably distribute water in sufficient quantities and provide to demand patterns,
pressure and velocity limitations, quality assurance, and maintenance issues. Therefore, different
combinations of reservoir storage, network layout, water mains, and pumps are used, depending
on the system service area, topography, and size. Very often, the reliability of these networks
requires major investments and thus an efficient network design is of crucial importance.

In this direction, the design of water distribution networks (WDN) gives rise to an opti-
mization problem called the water distribution network design (WDND) optimization problem.
Given a network topology, associated demand patterns, a collection of hydraulic constraints,
and a set of available pipe types, each of which with a cost per length, the purpose is to design
network pipe diameters that satisfy all requirements with the minimum possible design cost The
WDND optimization problem is known to be NP-hard (Yates, Templeman, & Boftey, |1984)
and can be formulated as a nonlinear constrained optimization problem due to the nonlinearity
implied by the conditions of the hydraulic system. Such conditions specify that the flow going
through the pipes satisfies the supply and demand nodes of the network and is compatible with



1.1 MOTIVATION 2

the pressure head losses (loss of “hydraulic energy”). The equations that empirically represent
this relationship are nonlinear, implying that the problem constraints have a nonlinear nature.
Furthermore, pipe diameters are often manufactured in a relatively small set of discrete sizes.
This situation requires that the variable be discrete-valued and effectively introduce an extra
layer of difficulty to the problem solution.

Many optimization techniques have been proposed to be effective and feasible alternatives for
dealing with problems of that nature. Heuristic algorithms is a popular category of optimization
techniques that provide feasible solutions that are not necessarily optimal and for optimization
problems they usually run faster and often find high-quality solutions (Resende & Ribeiro, [2016)).
Further, they are capable of handling with hard problems that have an exponential sized solution
space in which enumeration research became impracticable in a reasonable time, even when
an implicit enumeration scheme is used to discard parts where the optimal solution cannot be
found. The core of these algorithms is the use of heuristic techniques designed for tackling a
specif problem. In fact, to prove that a solution is optimal or demonstrate that it does not need to
be examined is generally not trivial to implement such task efficiently.

Metaheuristics (Glover, [1986)) are general high-level procedures that coordinate heuristics
through simple rules and are able to find high-quality solutions to computationally difficult
optimization problems. These procedures are often based on different paradigms and offer
mechanisms to escape from local optima solutions (Resende & Ribeiro, 2016). Metaheuristics
have been proposed in the literature over the years, a few examples are tabu search (Glover
& Laguna, |1998)), genetic algorithms (Banzhaf, Nordin, Keller, & Francone, [1998), greedy
randomized adaptive search procedure (GRASP) (Resende & Ribeiro, 2016), and iterated local
search (ILS) (Lourenco, Martin, & Stiitzle, 2003)). Metaheuristics are very useful in practice
as they can explore an enormous number of solutions by effectively guiding the search with
powerful mechanisms.

Combinations of optimization and simulation methods, called simulation-based optimization,
is an approach of expressive presence in the research community. (Amaran, Sahinidis, Sharda, &
Bury, 2016; Mota, De La Mota, & Serrano, 2015; Henderson & Nelson, 2006} |Zilinskas|, [2005;
Fu, Glover, & April, 2005} Tekin & Sabuncuoglul, [2004)). In a simulation-based optimization
method, the simulation model remains embedded in the routine of an optimization algorithm
with the role of evaluating solutions of the system that must be optimized by the algorithm. Note
that the simulation model could be seen as a black-box structure, the proposal for optimization
approaches based on simulation is to attribute efforts to the optimization algorithms and not
in solving functions that describe the behavior of the system immersed in the object of study.
In addition, studies that used this approach (Chong & Osoriol [2018}; Luna, Ribau, Figueiredo.
& Alves, 2019; Zhang, Best, Chivu, & Meltzer, [2020; |Chu, You, Wassick, & Agarwal, 2015
Pourhassan & Raissi, [2017; |Urayama, Fu, & Marcus, 2015) showed successful results in several
study topics when compared with pure classic methods. Motivated by recently successful results
of De Corte and Sorensen| (2016bl 2016a)), this work tackles the WDND optimization problem
with a simulation-based optimization algorithm. Furthermore, this work tries to overcome the
main problems of De Corte and Sorensen| (2016b)), such as the use of purely stochastic concepts
to arrive at good solutions that faces difficulty as the size of the instances increases.
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1.2 GOALS AND MAIN CONTRIBUTION

In this master’s thesis, our main goal is to study simulated-based optimization approach
and effectively apply them to the WDND problem. We aim to propose a new robust method
for achieving solution values that improves or at least match with the current state-of-the-
art. The proposal try to overcome the mainly problems of |De Corte and Sorensen| (2016b))
incorporating a heuristic that contemplates the structure of the problem, considering from
mechanisms that allow escape from the local optima to procedures that allow the compromise
between intensification and diversification. The approach developed in this work follows
simulation-based optimization method that combine an optimization algorithm with a simulation
model responsible for evaluates the nonlinear objective function. Then, we focus on the
development of robust heuristic algorithms through realistic assumptions about the system in
order to optimize it.

The main contribution of this master’s thesis is a robust simulation-based iterated local search
metaheuristic to tackle the water distribution network design optimization problem focused
on a multi-period setting with time-varying demand patterns. The approach improves over
the simulation-based metaheuristic of De Corte and Sorensen| (2016a) by considering relevant
concepts on the structure of the problem to allow enhancements in performance. The approach
presents four main novelties. Firstly, observing that low cost water distribution networks tend
to have in common a structure pattern in which larger diameter pipes create paths between the
nodes with highest demands and the source nodes, we attempt to smartly dimension the pipes in
these paths. Secondly, it uses an aggressive pipe diameter reduction scheme based on different
factors to speed up convergence. Thirdly, it introduces a concentrated perturbation mechanism
to allow escaping from very restrained local optima solutions. Fourthly, it encompasses a
pool of solutions to achieve a good compromise between intensification and diversification.
Extensive computational experiments carried out using a set of benchmark instances show that
the introduced novelties allow our new approach to outperform a state-of-the-art metaheuristic
for most of the instances. Furthermore, our new approach presents much faster convergence to
good quality solutions and more robustness, as the obtained solutions show much less deviation
from the best ones. Additionally, we contribute new concepts that can be useful for other
optimization problems.

Lastly, the contents of this master’s thesis were submitted for publication in a relevant
operational research journal (Martinho, Melo, & Sorensen, 2020).

1.3 ORGANIZATION

The remainder of this master’s thesis is organized as follows. Chapter[2|presents the Martinho
et al.| (2020) work in which formalizes the WDND optimization problem in a multi-period setting
with time-varying demand patterns. Furthermore, the chapter presents the description of the
proposed simulation-based iterated local search metaheuristic. Finally, the chapter summarizes
the computational experiments marking the improvements achieved with the newly proposed
approach and discusses final comments. Chapter [3] summarizes the main contributions of this
dissertation and discusses future work possibilities.



Chapter

AN ENHANCED SIMULATION-BASED ITERATED LOCAL
SEARCH METAHEURISTIC FOR GRAVITY FED WATER
DISTRIBUTION NETWORK DESIGN OPTIMIZATION

The gravity fed water distribution network design (WDND) optimization problem consists
in determining the pipe diameters of a water network such that hydraulic constraints are satisfied
and the total cost is minimized. This chapter present a new enhanced simulation-based iterated
local search (ILS) metaheuristic proposed which further explores the structure of the problem
in an attempt to obtain high quality solutions. The content of the chapter was submitted for
publication in an operational research journal (Martinho et al., [2020).

2.1 INTRODUCTION

A safe, adequate, and accessible supply of drinking water is one of the basic necessities of
human beings. The most efficient and effective way to transport drinking water is through a
network of pipelines. Water distribution networks require decisions in three different phases
with distinct time horizons, namely, layout, design, and planning (De Corte & Sorensen, |2016b)).
The layout phase consists of strategic decisions based on which the structure of the network is
defined. In this phase, decisions taken include where the different pipes will be constructed as
well as the locations to build pumps, valves, water tanks, reservoirs, and other components of the
network. Traditionally, the pipe network layout is designed by the engineers and taken as fixed
during the process of component sizing. The design phase also consists of strategical decisions
which will define the type and size of each pipe, pump, valve, tank, and all other components
of the network. All these decisions take into consideration the water demands, the adequacy
of water facilities, and the water storage necessary to meet peak demands. Furthermore, other
reliability conditions of the network should be met with provision for the estimated requirements
in the future. The planning phase groups all tactical decisions which are taken on a daily basis
and are concerned with the functioning of valves and operational pump levels to ensure that
sufficient water is available in all nodes of the network.
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In this master’s thesis we study the water distribution network design (WDND) optimization
problem in a multi-period setting in which time varying demand patterns occur. Informally,
this problem can be defined as follows. Given a network topology (i.e., a set of water supply
points, a set of demand points, and a set of junction points, together with a set of potential pipes
connecting them), associated demand patterns, a collection of hydraulic constraints, and a set of
available pipe types, each of which with a cost per length, the problem consists in assigning a
particular type to each pipe in the network such that all requirements are met and the total design
cost is minimized. In terms of the different phases mentioned before, the WDND can be thought
of as combining the design phase (determining the type of pipe for each potential pipeline) with
aspects of the layout phase (determinining whether a potential pipeline should be built or not).
The WDND optimization problem is challenging for several reasons. Firstly, it is known to be
NP-hard (Yates et al., [ 1984)). Secondly, the hydraulic conditions of the network are affected by
every pipe and therefore changes in one of them can influence the circumstances as a whole. For
these reasons, this work proposes a robust simulation-based iterated local search metaheuristic.

Originally, the proposed methods dealt with water distribution system management problems
using linear/nonlinear optimization techniques. These methods were limited by the system size,
the number of constraints, and the number of loading conditions. |Alperovits and Shamir (1977)
proposed a linear programming (LP) based approach, denoted linear programming gradient
(LPG), in which the pipes were considered to be composed of segments of different sizes and
the sum of these segments, each one with different diameters, was equal to the length of the pipe.
The method decomposes the optimization problem in two levels. In the first level, given a set of
flows, the corresponding optimal cost of the network is obtained using linear programming. At
the second level, this solution is used to modify the flow of the pipes according to the gradient
of the objective function with the aim of improving the cost. The authors proposed to repeat the
procedure using different starting points to increase the probability of finding a global optimum.
Quindry, Liebman, and Brill| (1981) extended the LPG of |Alperovits and Shamir| (1977), but
instead of the flows they considered the head (internal energy per unit weight of fluid) of the
nodes as values in the formulation of the linear program. The authors also adjusted the original
expression of the gradient derivation to express the interaction between paths, which enhanced
the performance of the method. Fujiwara, Jenchaimahakoon, and Edirishinghe (1987) suggested
an improvement of the original LPG in which the adjustments in the flows of the pipes are
performed by a quasi-Newton method rather than a simple gradient search heuristic. A concise
and complete study of the LPG has been adopted and restated in |Kessler and Shamir| (1989)),
where the authors successfully improved the method.

Shamir (1974) proposed a nonlinear programming (NLP) approach that uses a combination
of generalized reduced gradient and penalty methods. The approach constructs a Lagrangian
function by penalizing the objective function for violation of the constraints. The flow values
are obtained by a Newton-Raphson method employing sparse matrix techniques. Fujiwara
and Khang (1990) proposed a two-phase decomposition method called nonlinear programming
gradient (NLPG), which extends the method of Alperovits and Shamir| (1977) to nonlinear
modeling. The method first specifies the flow distribution and pumping heads. Then, it solves
the resulting convex program to get the pipes’ head losses. The Lagrange multipliers of the
obtained optimal solution are used to modify the flow distribution and pumping heads to achieve
a reduction in the cost of the system. In the second phase the obtained pipes’ head losses
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are fixed, and the resulting concave program is solved for the flow distribution and pumping
heads. These two phases are repeated until no further improvement can be achieved. Recently,
Caballero and Ravagnani| (2019) proposed a mixed integer nonlinear programming (MINLP)
model considering the flow directions and the pipes diameters as optimization variables. The
authors used techniques to reduce the number of nonlinear equations in the model, which was
solved using a global optimization solver. The approach was used to solve to optimality network
instances with up to 34 pipes.

Different metaheuristic frameworks have been applied to deal with the WDND optimization
problem. |Loganathan, Greene, and Ahn (1995) proposed an outer flow search-inner optimization
procedure. In their approach, each pipe in the network is subject to an external search scheme
based on simulated annealing (SA) and a multi-start local search that selects alternative flow
configurations. Next, an inner linear program is used for the design of least-cost diameters
through selected flow configurations. Cunha and Sousal (1999) also proposed an SA based
metaheuristic, in which the neighborhood of a solution is any configuration having all the
pipes but one with the same diameter as in the current configuration. Starting with an initial
configuration of pipes with their respective diameters, at each step of the algorithm, a new
configuration is randomly selected from the neighborhood of the current configuration, and then
its cost is evaluated. If it is accepted, the configuration will be used as the starting point for the
next step. If not, the original configuration will play that role. Each generated configuration is
evaluated using the Newton-Raphson method to solve the hydraulic equilibrium equation set
and determine the flows and hydraulic heads of the system.

Evolutionary algorithms represent an alternative strategy for tackling complex problems.
Simpson, Dandy, and Murphy| (1994) proposed an approach using a genetic algorithm (GA)
that uses a binary encoding in which each tube diameter is assigned to a binary code. A
Newton-Raphson method was used for hydraulic network analysis at each function evaluation to
determine the flows and hydraulic heads of the system. The method assigns a penalty cost for
every constraint violation, which is added to the network’s total cost. The algorithm proceeds
until a given total number of generations is evaluated. Results were compared with the techniques
of complete enumeration and nonlinear programming.

Simulation-based heuristics are presented as an alternative for problems that have difficult
solution equations. In this way, it is possible to work on improving heuristic methods for the
problem, without spending too much effort on solving the equations. Savic and Walters| (1997)
used a genetic algorithm which adopts a Gray coding instead of the traditionally used binary
coding. The hydraulic simulator EPANET (Rossman, |1993) was used to solve the equations
of the system and determine the flows and hydraulic heads. Gupta, Gupta, and Khanna (1999)
developed an alternative GA implementation which represents the set of solutions as the discrete
pipe sizes and not in the binary alphabet as usual. Therefore, the decoding or coding required
during the execution of the algorithm for each new set of solutions is avoided. The hydraulic
simulator ANALIS (Bassin, Gupta, & Gupta, |1992) was used to compute the hydraulic equations.
Chen et al.|(2019)) presented a cooperative co-evolutionary algorithm (CCEA) using the hydraulic
simulator EPANET. The authors proposed an iterative trace-based decomposition method to
divide a large-scale water distribution network into sub-networks. After decomposition, the
sub-components are handled by an equal number of cooperative evolutionary algorithms.

Maier et al. (2003) proposed a simulation based ant colony optimization (ACO) approach in
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which every decision point is associated with a pipe in the network. At each decision point, there
are a number of options, corresponding to the available pipe diameters. The cost corresponding
to a particular option is the product of the unit cost per meter length of each of the pipe diameters
and the length of the pipe segment under consideration. The algorithm was linked with the
hydraulic solver WADISO (Gessler & Walski, |1985)) in order to calculate the maximum pressure
deficit for each generated candidate solution. Zecchin, Stmpson, Maier, and Nixon! (2005
presented a similar strategy but additionally conducted an extensive study to determine the
guidelines for assigning values to the various parameters in the ACO algorithm specifically for
WDND optimization. Other approaches such as particle swarm optimization (PSO) (Montalvo.
[zquierdo, Schwarze, & Pérez-Garcia, 2010) and harmony search (HS) (Geem, |2006) were also
applied in the context of WDND optimization.

De Corte and Sorensen| (2016b)) presented an approach using iterated local search (ILS) to
handle the WDND optimization problem. The algorithm constructs an initial solution and then
attempts to iteratively improve this solution by performing small diameter reduction moves.
Therefore, neighboring solutions have configurations in which all pipes but one have the same
diameter as the current solution. The decision of which pipe will be decreased in diameter
depends on a greedy randomized strategy. When a local optimum is reached, a perturbation
move is used to try escaping from this local optimum. The hydraulic simulator EPANET
2 (Rossman, 2000) was used to evaluate the problem constraints for each obtained candidate
solution. Later,|De Corte and Sorensen| (2016a) extended the problem to a multi-period setting
in which time-varying demand patterns occur, which is the variation we consider in our work.

A detailed critical review on gravity-fed water distribution network design optimization
is given in |De Corte and Sorensen| (2013). D’ Ambrosio, Lodi, Wiese, and Bragalli (2015)
presented a survey of mathematical programming approaches widely applied to mixed integer
non-linear programming models and introduced them to the context of water distribution network
optimization. The authors discussed a class of challenging optimization problems related to the
nonlinear network flow model and then attempted to solve them using the described techniques.
More recently, Mala-Jetmarova, Sultanova, and Savic| (2018)) presented a systematic review and
discussed limits, trends, and future research directions in the field of water distribution network
design optimization.

2.2 THE WATER DISTRIBUTION NETWORK DESIGN OPTIMIZATION PROBLEM

Consider a set of nodes N = {1, 2, ...,|N|} representing points of water demand and supply
(such as a reservoir) as well as junctions (points with both demand and supply equal to zero),
and a set of water distribution pipes P = {1,2,...,|P|}. Note that a water distribution network

can be represented as a graph G = (V, E) in which there is a vertex for each node and an edge
for each pipe of the network. A water distribution network is illustrated in Figure Define
a planning horizon 7 = {1, 2, ..., |7 |} which describes a typical network operation cycle. Let
T ={1,2,....|T|} be the set of available pipe types in which each type ¢ € T has an associated
cost ¢; € R, per unit of length, roughness r, € R, and diameter d, € R, (in mm). In this work, it
is assumed that the costs of the types increase as their diameters increase. It is also assumed that
the elements in T are organized such that d; < d, < ... < djp. In addition, consider /, € R, (in
m) to be the length of pipe p € P. Consider, for every node n € N, the expected water demand



2.2 THE WATER DISTRIBUTION NETWORK DESIGN OPTIMIZATION PROBLEM 8

D, € R, (in m*/s) and the water supply R, € R, (in m?/s) that has to be satisfied for every
period T € 7. Consider A" € R, (in m) to be the minimum pressure assumed for every node
n € N and vV"* € R, (in m/s) to be the maximum velocity for each pipe p € P to be satisfied
for every period T € 7. The water distribution network design (WDND) optimization problem
consists in the selection of a type in T = {1, 2, ..., |T|} for each pipe in the network so that the
total cost of the network is minimized without violating any hydraulic constraints. A summary
of the input data and decision variables is given in Table [2.1]

nodes @ nodes @

pipes pipes

Teservoirs H Teservoirs H

(a) (b)

Figure 2.1: Example of a water distribution network. Demand nodes are represented as dots,
reservoirs as rectangles and pipes as lines. The thicker lines represent larger diameter pipes. A
network which is not optimized is exemplified in (a), whereas an optimized network is illustrated
in (b).
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Table 2.1: Summary of used symbols.

Symbols Descriptions

N Set of nodes
P Set of pipes
T Set representing the planning horizon
T Set of available pipe types
= Set of closed loops in the network
£ Set of pipes in a closed loop
C Cost of pipe type ¢ € T, per unit of length
I Roughness of pipe type r € T
d; Diameter of pipe type t € T (in mm)
L, Length of pipe p € P (in m)
Dy Water demand (in m’ /s) of node n € N in period 7 € 7~

Ry~ Water supply (in m>/s) of node n € N in period T € 7~

pmin Minimum pressure (in m) allowed in node n € N

ynax Maximum velocity (in m/s) allowed in pipe p € P

hy Variable indicating the pressure (in m) in node n € N in period
TeT

Vpr Variable indicating the velocity (in m/s) of the water flowing
through pipe p € P in period 7 € 7

Xpt Binary variable indicating whether pipe p € Pisof typet € T

Ypr Variable representing the sign that incorporates changes in the

direction of the water flow in pipe p € P in period 7 € 7~
Qq,jr  Variable indicating the water flow from node i € N to node j € N
in period T € 7 (nonnegative)
Opr Variable indicating the water flow through pipe p € # in period
7 € 7 (nonnegative)
AH,.  Variable indicating the head loss (in m) of pipe p € P, connecting
nodes n; and ny, in period 7 € T~

Let x,, be a binary decision variable that determines whether pipe p is of type 7 (x,, = 1) or
not (x,, = 0). The objective function of the WDND optimization problem can be written as

Z=minZth~lp-xp,t. (2.1)

peP teT

A solution minimizing the objective function is conditioned to the principles of conservation
of mass and energy, along with the constraints of minimum pressure head on the nodes and
maximum water velocity in the pipes, for each period 7 € 7.

Conservation of mass states that the volume of water flowing into a node in the network
must be equal to the volume of water flowing out of this node. Consider variable Q; - € R, to
represent the water flowing from node i to node j in period 7. The law of conservation of mass
can be represented as

> Qime= D Qujr=Dur—Rur, forneN, tef. (2.2)
}

ieN\{n JEN\{n}
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The head loss in a piping system can be generalized as the energy used in overcoming
friction caused by the walls of the pipe. Let the set = = {£},&,, ..., €5} represent the closed
loops in the network, where each element & € E represents a set of pipes belonging to that loop.
Therefore, the energy conservation law states that the sum of head losses for every closed loop
¢ € E in the network must be equal to zero. Let variable 4, . € R, (in m) be the pressure in node
n at period 7 and let AH,, ; = hy,  — h,, - (in m) represent the head loss of a pipe p in period T
that connects n; and n, with the direction defined by a closed loop that the nodes belong. The
energy conservation law can be asserted as

D AH, =0, foréeE, teT. (2.3)
159

The head losses in the pipes of a network are approximated using the Hazen-Williams equation.
That equation, for a pipe p at period 7, with the parameters set as the hydraulic solver EPANET
2 (Rossman, 2000) is described as

10.6744 -y, . - Q},‘fjﬂ -1,

pT 1.852 4.871y °
ZIGT(xp,t ey 852 dt 87 )

(2-4)

Therefore, Equation can be rewritten as

10.6744 -y, - Q1852 .

pT P -
— i Am 0, foréeE, 7€7. (2.5)
pee 2ier(Xps o 1 d;*")

This work considers the numerical conversion constant (which depends on the units used) as
10.6744 in Equation (2.4)), as used by the simulator EPANET 2. Other values, such as 10.6750,
are also possible but it is known that small variations in this parameter can lead to different
results (Savic & Walters| |1997; Perelman, Krapivka, & Ostfeld, 2009). Besides, the two other
constants are intrinsic to the formula and related to how it was obtained. The constant exponent

1
1.852 used for Q, - and r; is a unitless coefficient originated from the fraction 054’ while the

2.63
constant exponent 4.871 used for d, comes from the fraction 054" Small variations in these last

constants are possible but they are just numerical, related to the number of considered decimal
places.

Remark that, O, ; represents an alternative formulation of Q; ; . if the pipe p connects the
nodes i and j. However, that notation requires the definition of a variable y), -, which is the sign
that incorporates changes in the direction of the water flow of pipe p relative to the defined flow
directions.

The minimum pressure constraint is described as

hp.>h"", forneN, TeT. (2.6)

Assume variable v, - € R, (in m/s) to be the velocity of the water flowing through pipe p in
time period 7, with
1.27-Qp+

=————— forpeP, 7€T. (2.7)
ZteT(xp,t : dzz)

Vpr
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The maximum water velocity constraint is thus represented by
Vpr SV forpe P, TeT. (2.8)

Finally, every pipe p in the network should get exactly one type ¢ assigned, which is ensured
by
Z x,; =1, forpeP. (2.9)
teT

The integrality requirements of the variables are defined as

X, €1{0,1}, forpeP, teT, (2.10)
Ve €{=1,1}, forpeP, 7€T. (2.11)

2.3 THE SIMULATION-BASED ITERATED LOCAL SEARCH METAHEURISTIC

As mentioned in the introduction, the optimization of water distribution networks has
received considerable attention from the research community. Classical exact methods often
use complex formulations and can be time-consuming for solving large real-world networks,
as can be observed in|D’ Ambrosio et al.| (2015). Metaheuristic approaches have successfully
produced good-quality solutions in reasonable computational time, but most of them are black-
box procedures that seldom use problem-specific structure information (De Corte & Sorensen,
2013).

In this chapter, we describe a new robust simulation-based metaheuristic for the WDND
optimization problem that overcomes some of the drawbacks of existing methods, both exact
and heuristic. Similary to De Corte and Sorensen| (2016a), the metaheuristic combines an
iterated local search (ILS) approach with the hydraulic simulator EPANET 2, but improves
the former in several ways by taking into consideration the structure of the problem. Firstly,
we observed that low cost water distribution networks seem to have in common a structure
pattern in which larger diameter pipes create paths between the nodes with highest demands
and the source nodes. Hence, we attempt to dimension the pipes in some potential paths in a
smart way. In this direction, we take into consideration the pipes in the shortest paths between
nodes with high demands and the source nodes in the corresponding graph and postpone their
reduction. This strategy can potentially lead to solutions with a reduced amount (in meters) of
more expensive pipes with large diameters from which ramifications with cheaper pipes having
small diameters would be originated. Secondly, we apply an aggressive reduction in the pipes’
diameters, attempting to reduce the number of simulations necessary to converge to low cost
solutions. Thirdly, changing a pipe diameter usually becomes harder as its neighbors reach
lower diameters, leading to hard to leave local optima regions. We attempt to overcome this
issue by creating a perturbation which is concentrated on the neighbors of a given pipe, allowing
disturbances which can permit alternative decreases in the diameters of the involved pipes in
later iterations. Last but not least, as the metaheuristic looks for fast convergence, we attempt to
diversify its search using a pool of solutions. In this way, it may perform local searches in the
neighborhood of different solutions, potentially allowing to encounter better solutions.

For simplicity, we assume that the water network with its sets of nodes N and pipes P is
represented as a graph G = (V, E), with V = N and E = P. Note that this is a slight abuse of
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notation, as we do not explicitly define the sets of vertices and edges, but rather perform a direct
mapping from nodes and pipes of the network to the vertices and edges, correspondingly. We
define a solution S of the problem to be an association of a type ¢ € T to each pipe p € P of the
network and S (p) to be the type attributed to pipe p in solution S.

The remainder of this section is organized as follows. The procedure to perform the hydraulic
simulations and evaluate every candidate solution is presented in Subsection [2.3.1] The heuristic
to generate an initial solution is described in Subsection [2.3.2] The local search procedure
is described in Subsection [2.3.3] Subsection [2.3.4] describes the perturbation procedures to
try escaping from local optima. The criterion to accept candidates solutions is defined in
Subsection [2.3.5] The complete simulation-based iterated local search metaheuristic is described
in Subsection

2.3.1 Solution validation using hydraulic simulation

As in|De Corte and Sorensen (2016a)), our algorithm uses the hydraulic simulator EPANET 2
(Rossman, 2000), which performs simulation of hydraulic and water quality behavior within
pressurized pipe networks. EPANET 2’s implementations are based on the global gradient
algorithm (GGA) (Todin1 & Pilati, |1987), and the simulations consist of solving the hydraulic
equations that rule the WDND optimization problem. The use of EPANET 2 allows us to
concentrate our efforts on the search mechanism for good quality solutions without having to
deal with the specific details of the feasibility checking of each individual solution.

The validation of a solution succeeds when all its nodes and pipes comply with the problem
constraints. Therefore, this method first uses the hydraulic simulator EPANET 2 and afterwards
checks the outcome, i.e., the hydraulic parameters in each node and pipe in the solution, to
verify whether a constraint violation occurs.

The Hyprauric-SiMuLATION procedure takes as input the water distribution network G, the
demands D, the supplies R, the planning horizon 7, the minimum pressure 4" allowed at each
node, the maximum velocity v"** permitted at each pipe, and a candidate solution S which is
not necessarily feasible. The pseudocode of the procedure is described in Algorithm [T}

Algorithm 1: SoLuTiON-VALIDATION(G, D, R, T, h™", v"™*, S)

1 fort €7 do

2 Hyprauric-Simuration(G, D, R, 7, S);
3 forn e Vdo

4 hy,r < HyYDRAULIC-PRESSURE(n);

5

6

if h,. < K™ then
L return FALSE;

7 for p e Edo

8 Vpr < HybrAULIC-VELOCITY(D);
9 if v, . > V""" then
10 | return FaLsE;

11 return TRUE;

In Algorithm (1 the for loop of lines iterates over all periods 7 € 7. The simulation
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in period 7 for a network with the pipe types set as solution S occurs in line 2] with a call to
Hyprauric-Smmuration(G, D, R, 7, S'). HyprauLic-SiMuLATION uses the hydraulic simulator which
computes the hydraulic head of the nodes and the flow in the pipes for a fixed set of reservoir
levels, tank levels, and water demands over a succession of points in time. From one time step
to the next, reservoir levels and junction demands are updated according to their prescribed
time patterns while tank levels are updated using the current flow solution. Determining the
values for heads and flows at a particular point in time involves solving simultaneously the
conservation of flow equation for each junction and the head loss relationship across each link of
the network. It determines the heads and flows in period T with pipe configuration S by solving
simultaneously the conservation of flow given by constraints for each node and the head
loss relationship determined by constraints across each pipe of the network. The for loop
in lines [316|iterates over all nodes n € V and verifies whether constraints are satisfied.
Procedure HyprauLic-PREssURE(n) invoked in line ] retrieves the pressure on node n based on
the latest performed simulation. Whenever is violated, the algorithm returns FALSE in line @
Next, the for loop in lines iterates for all pipes p € E and verifies if constraints are
satisfied. Procedure HyprauLic-VELociTY(p) invoked in line [3] retrieves the velocity on pipe p
based on the latest performed simulation. Whenever is violated, the algorithm returns FALSE
in line[TI0] Algorithm [I|returns TRUE in line [IT}if solution S is feasible.

2.3.2 Initial solution

As proposed by |De Corte and Sorensen (2016b), the initial solution procedure attempts to
construct a low-cost solution in which all pipes have the same diameter. The main idea of the
approach is to start with all pipes having the largest diameter possible, and iteratively reduce the
diameter of all pipes in the network while a feasible candidate solution can be obtained.

The procedure to build an initial feasible solution takes as input the water distribution
network G, the demands D, the supplies R, the planning horizon 7, the minimum pressure nmn
allowed at each node, the maximum velocity v"** permitted at each pipe, as well as the set
of available pipe types T. The pseudocode of the IntTiAL-SoLuTiON procedure is presented in
Algorithm 2]

Algorithm 2: INrTiaL-SoLuTioN(G, D, R, T, b, V"™, T)

1 fort=T,...,1do

2 S’ « solution obtained with S'(p) = ¢t for all p € E;

3 if SoLuTION-VALIDATION(G, D, R, T, ™", v"**, S’ ) then
4 L S « S

5 else if 7 # |T| then

6 L return S ;

7 else
8 L terminate “No feasible solution exists using the same type for all pipes.”;
9 return S;

As exposed in Equation (2.4)), the head loss in a pipe is inversely proportional to the diameter
of the pipe. As a consequence, the constraint of minimum pressure allowed at each node is more
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likely to be satisfied by large diameter pipes. For this reason, the procedure starts with the for
loop in lines [IHg] that iterates over the pipe types from the largest to the smallest diameter. A
candidate solution S’, which is not necessarily feasible, is created in line [2| with all pipes set as
type t. Solution S’ is evaluated in line [3|and in case it is feasible, it is taken as current solution,
represented by S, in line[d A solution S from a previous iteration is returned in line [6]if at least
one decrease of pipe type was performed. Line [§|deals with the case in which it is not possible
to construct a feasible solution with all pipes set as the largest pipe diameter available. In case
a feasible candidate solution can be obtained with all pipes set as the smallest type, i.e., the
cheapest pipe with the smallest diameter, that solution is returned in line [0

2.3.3 Local search

The local search attempts to achieve improvements by iteratively performing small changes
in the obtained solutions. At each iteration of the local search, a pipe is selected using a greedy
randomized (Resende & Ribeirol 2016) mechanism to have its diameter reduced. Whenever
reducing the diameter of the selected pipe leads to an infeasible candidate solution, such move is
inserted into a tabu list (Glover & Laguna, 1998) to prevent the algorithm to waste computational
effort trying to perform changes which were attempted without success.

Two important features differentiate our approach from that of |De Corte and Sorensen
(2016Db)). Firstly, the selection of pipes to have the diameter reduced considers a list of pipes
to be avoided, which are those in shortest paths between source nodes and those with highest
demands. This intents to keep these pipes with larger diameters while the other pipes are further
reduced. The intuition behind this idea is to have a smaller quantity (in meters) of pipes with
larger diameters from which pipes with smaller diameters would branch to serve other nodes.
Therefore, our approach uses this information about shortest paths to increase the chances of
achieving such type of low cost solutions.

Given an incumbent solution S, its neighborhood N(§) is composed of all solutions having
configurations in which all pipes but one, which has its diameter reduced, have the same diameter
as §. The LocaL-SearcH procedure takes as input the water distribution network G, the demands
D, the supplies R, the planning horizon 7°, the minimum pressure 2™ allowed at each node,
the maximum velocity v"** permitted at each pipe, the greediness factor a € [0, 1], the type
reduction factor f, as well as the current solution S. The pseudocode of the LocAL-SEARCH



2.3 THE SIMULATION-BASED ITERATED LOCAL SEARCH METAHEURISTIC 15

procedure is presented in Algorithm 3]
Algorithm 3: LocaL-SEARcH(G, D, R, T, K™, v a, f, S)

1 Ltahu — m’

2 LPY"  Patu-LisT(SPT, T, D, a);
3 improve < TRUE;
4 while improve do
5 improve < FALSE;
6 LP — E \ Lmhu;
7 | while L # 0 do
8 Create RCL(L?, @) with the best elements of L”;
9 if RCL(L", @) \ L?" # ( then
10 L Randomly choose p € RCL(L?, @) \ {LP*™y;
11 else
12 L Randomly choose p € RCL(L?, a);
13 if S(p) > f then
, : : [ S'(p)=S(p) - fand
14 S’ « solution obtained with { P , ,
S'(p’) = S(p') forall p" € E\ {p};
15 if SoLuTION-VALIDATION(G, D, R, 7, K™, vV"**, §’) then
16 S « S
17 improve <« TRUE;
18 else
19 L Ltabu - Ltabu U {p}’
20 LT < L7\ {p}
21 return S;

In Algorithm [3| the memory set L'®" that stores moves which led to infeasible candi-
date solutions is created as empty in line |[l| . Consider the base demand of node n, d, =

m%l:l {D, .} foralln € V, to be its smallest demand that occurs during the planning horizon.
TE

Define d"** = rzlleabx{d,,} and d™" = r’%i‘gl{dn} to be, respectively, the maximum and minimum
base demands of the network G in the planning horizon. Consider a shortest path tree (SPT)
obtained when finding the shortest path from the reservoirs to all other nodes in G, consider-
ing that the distance between nodes u and v 1s measured by the length [, of the pipe e = uv
connecting them. Note that SPT can be obtained using a variation of Dijkstra’s Algorithm
(Dijkstra, |1959) which can be implemented to run in O(|E| + |V|log|V]). A set LP¥" is obtained
in line 2] with a call to Paru-List(S PT, 7, D, @), which retrieves from SPT a set containing the
pipes that are in the shortest path from the nodes that have a base demand d,, in the interval
[d™ — a(d™™ — d™™), d™*] to their nearest reservoirs. We remark that Para-List only needs to
be invoked once before the call to LocaL-SEARcH as the information does not change throughout
the algorithm, and it is shown in LocAL-SEARCH just for easiness of explanation.

The variable improve, which is set as TRUE in line 3] keeps the local search procedure running
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as long as improvements in the current solution S are obtained. The outer while loop of lines
MH20]iterates while the flag improve is set as TRUE, that is, the solution S was improved in the
previous iteration which indicates opportunity for further improvements. For every iteration
of the outer loop, the flag improve is set to FaLSE in line Sl The set L” containing all pipes of
the network which are not tabu is created in line [6] The inner while loop of lines iterates
while the set L” contains pipes that did not experience a type reduction attempt. Consider

Jrax — magg(lp) and " = miI}}(lp) to be, respectively, the maximum and minimum lengths of
peL peL

pipes in L”. A restricted candidate list RCL(L”, @) is created in line |8 containing pipes p € L”
with lengths [, in the interval [["* — a(I"* - I"™), "**]. Whenever RCL(L", @) \ L"" # ( a
pipe p is randomly chosen from RCL(L”, @) \ L”*" as shown in line Otherwise, a pipe p is
randomly chosen from RCL(L’, @) as represented in line Whenever the selected pipe p is
not in the memory set L and its type identification is greater than the factor size f, the new
candidate solution S’, which is not necessarily feasible, is created as the solution S but with the
type of pipe p reduced with a factor f in line[I4] Then, a hydraulic simulation is performed in
line Whenever the solution S” does not violate any constraints, solution S is replaced by S’
as a new current solution in line [16/and the flag improve is set to TRUE in line Otherwise, the
attempt to reduce the type of pipe p is added to the tabu memory set L in line Finally,
pipe p is removed from the set L” in line restarting the inner loop. Algorithm [3|returns a
possibly new incumbent solution S'.

2.3.4 Perturbations

Perturbations are used to allow the search to escape from locally optimal solutions. Even
though this can be achieved by restarting from a random solution (so-called multistart local
search), using perturbations is a more efficient approach, since it does not completely destroy the
solution built during the previous local search iteration. Two different perturbations are employed
in our metaheuristic. The perturbation used in|De Corte and Sorensen| (2016b) randomly selects
a pipe and increases its diameter by one size type until a certain percentage of pipes of the water
distribution network has been disturbed. In this work, we improve this concept by attempting
to increase the diameter by one size type for a certain percentage of the pipes in the water
distribution network at once, which provides savings in the number of simulations required
during the procedure. We call this a “dispersed” perturbation. Additionally, a new “concentrated”
perturbation is added. This procedure randomly selects a pipe amongst the most expensive
pipes of the network and increases a certain amount of its neighboring pipes by one type size.
The intuition of the concentrated perturbation is to focus the changes in a specific region of the
network that contains a high cost pipe. The aim is to allow the next local search to find some
improvements in this region that could not be found without the concentrated perturbation.

2.3.4.1 Dispersed perturbation The DisPERSED-PERTURBATION procedure receives as input
the water distribution network G, the demands D, the supplies R, the planning horizon 7, the
minimum pressure 2™ allowed at each node, the maximum velocity v"** permitted in each
pipe, the current solution §, as well as a greediness factor @ € [0, 1]. The pseudocode of the
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DisPERSED-PERTURBATION is presented in Algorithm 4]

Algorithm 4: DispERSED-PERTURBATION(G, D, R, T, BT ymax S )

1 m« [a|E|];

2 while m > 0 do

3 | LT« E;

4 | while L” # 0 do

5 P’ « subset with min{m, |L"|} pipes randomly chosen from LF;

6 S’ « solution obtained from S with { g,gj ; : ggj ;,+f(; :ﬁrpal; I;i f’P,/};and
7 if SoLUTION-VALIDATION(G, D, R, 7, W™, v, S’) then
8 L return S’;
9 Randomly choose p’ € P’
10 LY — LP\{p'};
- |
no|ome bJ
12 return S;

The procedure begins initializing the maximum amount m of pipes to have their types
changed in line|l|based on a percentage a of the number of pipes in the network. The outer while
loop in lines proceeds until m reaches zero or a feasible solution is obtained. The set L” is
created with all pipes of the network in line[3] The inner while loop in lines @{I0]iterates while
there are still pipes remaining in L” and a feasible solution is not found. A subset P’ is populated
with min{m, |L"|} pipes randomly chosen from L” as detailed in line[5| A candidate solution S’,
which is not necessarily a feasible solution, is created based on the current solution S but for
every pipe p € P’ with its type incremented by one as presented in line[6} The candidate solution
S’ is evaluated in line In case S’ does not violate any constraints, it is returned as feasible
perturbed solution. Otherwise, a pipe p’ is randomly chosen from P’ in line [9]and removed from
L” in line Therefore, in the next iteration of the inner while loop it is guaranteed that the
new set of pipes chosen for P’ from L’ is different from the previous iteration. For the next
iteration of the outer while loop, the value of m is rounded down with a geometric progression

to the nearest integer of {EJ Therefore, at each iteration m tends to zero. Lastly, if a feasible

perturbation could not be performed, the current solution S is returned in line[I2] Algorithm
returns a new candidate solution S’ whenever one is obtained, otherwise it returns the input
solution §.

2.3.4.2 Concentrated perturbation For the concentrated perturbation, consider the breadth-
first search (BFS) algorithm that traverses a graph G in layers exploring the neighboring nodes
from a given source of nodes with a runtime complexity O(|V| + |E|) (Cormen, Leiserson, Rivest!
& Stein, 2009). Assume the sequence K = (1,2, ..., |K]|) as the distance levels found by BFS.
Therefore, each pipe p € E can be classified with a distance level k € K from the source nodes
based on the number of pipes in the path. Let w : L — K be a function which assigns each pipe
p € L” to a distance level k € K. Consider an auxiliary procedure, denoted SELECTION-CRITERION,
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whose purpose is to choose a fixed number of elements from a given set of pipes, while giving
priority to pipes that are at low distance levels.

The pseudocode of SELEcTION-CRITERION is detailed in Algorithm [5] It takes as input a set of
pipes L, a sequence of distance levels K and a variable m that gives the maximum number of
pipes to be selected.

Algorithm 5: SELECTION-CRITERION(LP , K, m)

1 7 < min{m, |L|};

2 P« 0

3 foreach k € K do

4 Ck<—{peLP|w(p):k};

5 | ne< |G

6 foreach p € C; do

7 if 7| > O then

8 if random(0,1) <" /,, then
9 L P« P U{p};

10 ro«—r—1;

11 7 —ry,—1;

12 else
13 L return P’;

SELECTION-CRITERION begins setting variable r|, representing the amount of elements yet to
be selected by the procedure, to min{m, |L"|} in line|l|. Also, a set P’ containing the pipes to
be returned is initialized as empty in line 2| Next, for each element k of the sequence K, a set
Cy is created with the pipes p € L” such that w(p) = k, as shown in line Let the variable r»,
which is set in line[5] be the number of pipes in Cy that have not been evaluated by the procedure.
Afterwards, for each element p € C;, whenever there are still elements to be selected, i.e. r; > 0,
a pipe p is selected with a probability Pr(random(0,1) <" /,,). Remark that, random(0, 1) is
a real-valued random variable defined on the sample space of the uniform distribution in the
interval [0, 1]. Whenever pipe p is selected with a probability Pr(rnd < "'/,,), it is inserted
into P’ as shown in line 9 and r; is decremented by one in line After each evaluation, r,
is decremented by one in line Otherwise, with r pipes selected, the set P’ is returned in
line Observe that a call to SELECTION-CRITERION always returns a nonempty set P’ in line
assuming that the input L” is not empty.

The CoNCENTRATED-PERTURBATION procedure receives as input the water distribution network
G, the demands D, the supplies R, the planning horizon 7~, the minimum pressure 4" allowed
at each node, the maximum velocity v"** permitted in each pipe, the current solution S, as well
as a greediness factor a € [0, 1]. The pseudocode of the CONCENTRATED-PERTURBATION is detailed
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in Algorithm [6]

Algorithm 6: CoNCENTRATED-PERTURBATION(G, D, R, T, BT ymax S )

1 Create RCL(E, S, ) with the best elements of S';

2 Randomly choose p € RCL(E, S, a);

3 K — BFS(G,{u,v| p=uv}),

4 m <« |a|E|];

5 while m > 0 do

s | L"—E\{p}

7 | while L # 0 do

8 P« SELECTION—CRITERION(LP , K, m);

9 S’ « solution obtained from S with { g,g ; ; gEZ; ;_011 jﬁrpalé %E\ fpi};and
10 if SoLuTION-VALIDATION(G, D, R, 7, k™" v S") then
11 | return S’;

12 Randomly choose p’ € P’;
13 LY — LP\{p'};
-0 |
14 i m «— {EJ,
15 return S;

Given a solution §, consider ¥s(p) to be the cost of a pipe p obtained as the cost of its
type per unit of length cg(, multiplied by its length [, ¥s(p) = cs() - [, Remark that, the

type t of a pipe p is determined by solution S, i.e., t = S(p). Also, let y§“* = maEX{wS (p)} and
pE

min

o= mitl?l{lﬁg (p)} be, respectively, the costs of the most expensive and of the cheapest pipes
pE

of the network in a solution §. A restricted candidate list RCL(E, S, @) containing every pipe
p € E whose cost lies in the interval [y/¢* — a(y/y** — /&™), y/¢*] is defined in line[l] In order
to avoid an excessively restricted list, we always ensure that at least the five best elements are
included. The pipe p is randomly chosen from the list RCL(E, S, @) as shown in line 2| Consider
as source nodes those which are incident to p. Procedure BF'S (G, {u,v | p = uv}) invoked in
line [3|traverses a graph G starting from nodes u, v and returns the distance levels as a sequence
K =(1,2,...,|K]). The maximum amount m of pipes to have their types changed is defined as a
percentage « of the number of pipes in the network in line[d The outer while loop in lines
proceeds until m reaches zero or a feasible solution is obtained. The set L” is created with all
pipes of the network except p in line[6] The inner while loop in lines iterates while there
are still pipes in the set L” and a feasible solution is not found. The SELECTION-CRITERION(K,
L”, m) procedure invoked in line 12| returns min{m, |L|} pipes from the set L. The candidate
solution S’, which is not necessarily feasible, is created based on the current solution S but for
every pipe p € P’ with its type incremented by one as presented in line[9} The candidate solution
S’ is evaluated in line In case S’ does not violate any constraints, it is returned as current
solution in line Otherwise, a pipe p’ is randomly chosen from P’ in line |12{and removed
from L” in line Therefore, in the next iteration of the inner while loop it is guaranteed that
the new set of pipes chosen for P’ is different from the previous iteration. For the next iteration
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of the outer while loop, the value of m is rounded down with a geometric progression to the
nearest integer of {EJ as shown in lme Therefore, at each iteration m tends to zero. Lastly,

if a feasible perturbation could not be performed, the current solution § is returned in line

2.3.5 Acceptance criterion

As the local search algorithm converges, it may reach a local optimum caused by the
intensification in certain neighborhoods. The acceptance criterion determines whether a newly
proposed candidate solution should replace the current one and can be used to control the
balance between intensification and diversification during the search and potentially lead to
better solutions (Lourenco et al., 2003).

Differently from De Corte and Sorensen| (2016b), where the authors use a first improvement
paradigm which accepts a new solution whenever the current one is improved, we propose
an acceptance criterion approach which uses a pool of solutions. The aim is to achieve a
compromise between diversification and intensification. The diversification is achieved by using
solutions with possibly different characteristics, i.e., with the potential to allow the search to
move into unexplored regions of the search space. On the other hand, intensification is produced
by the prioritization of solutions that are more likely to improve the best known. These two
concepts are achieved by allowing to select solutions which are either in the pool or are the best
encountered ones.

Define z(S) to be the cost of a solution S defined according to the objective function in
Equation (2.1)). The algorithm works with two solutions indicating its current state, namely,
S represents an incumbent solution from which the algorithm iteratively generates a new
candidate solution from its neighborhood N(S "), denoted by ™. Let S be the solution
with the lowest cost found so far. Consider I1" to be a memory structure which stores v solutions
and S ™ to be the highest cost solution in IT”. This memory structure is maintained through
decisions that determine when a solution is replaced and guarantee its diversity.

Procedure AccepTANCE-CRITERION takes as inputs the best solution found so far § best the
candidate solution S, the incumbent solution S, and the memory structure I1". The
pseudocode of the AccepTANCE-CRITERION procedure is presented in Algorithm

Algorithm 7: AccEPTANCE-CRITERION(S best geand ' greur 77y
if z(S ™) < z(S“") then

2 | if Z2(S ) < Z(SP) then

3 L Sbest - Scand;

ot

4 else

5 L ngst — Scand;
6 return S <"

7 else

-]

L return Randomly choose an element from IT" U {§ "}

Algorithm [7|starts testing whether the candidate solution S “*™ improves the incumbent one

S Whenever this happens, in case it also improves the best solution S, §**" is replaced
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worst

by § as shown in line 3| Otherwise, replaces the worst solution in the memory S’
as shown in line[5] Later, the procedure returns the candidate solution S ™ in line[6} In case
the candidate solution S does not improve the incumbent one S, the procedure returns a
solution randomly chosen from IT” U S " as shown in line 8| Observe that Algorithm [7|returns
either the candidate solution received as input or a solution selected from the pool of solutions
or the best solution found so far.

S cand

2.3.6 Simulation-based iterated local search metaheuristic

The proposed simulation-based iterated local search (ILS) metaheuristic embeds all the
components presented previously in this section. The main idea consists of, starting from an
initial solution, performing a sequence of local searches and perturbations until a time limit
is reached. The simulation-based ILS receives as input the water distribution network G, the
demands D, the supplies R, the planning horizon 7, the available pipe types T, the minimum
pressure 1™ at each node, the maximum velocity v"** permitted in each pipes, the time limit
time™", the size of the memory of solutions v, the greediness factor a € [0, 1], and the type
reduction factor f. The pseudocode of the simulation-based ILS metaheuristic is described in
Algorithm §]

Algorithm 8: Simurarion-Basep-ILS(G, D, R, 7, T, R VMY time™ Yy, )
IT" « Populate with v copies of INrTiaL-SoLuTiON(G, D, R, T, pmin ymax Ty

o

2 Scur’Sbest — Sgs)rst;

3 while time™"* not reached do

4 S « LocaL-SEarcH(G, D, R, T, K™ v, a, f, S);

5 if f > 1 then

6 t [« [f / 2J ;

7 Scad . AccepTANCE-CRITERION(S ™, §cand | geur T1v).

8 if random(0, 1) < (1 — @) then

9 L S DispERSED-PERTURBATION(G, D, R, 7, h™™" v, § )

10 else

11 L §cand  CoNCENTRATED-PERTURBATION(G, D, R, T, K™, y"¥ §and )

12 return S

SmmuLATION-Basep-ILS starts with the creation of the memory structure IT” (see Section
containing v copies of the initial solution returned by the call to InrTiaL-SoLuTtion(G, D, R, T,
RMnymax T as shown in line |1l The current and best solutions, S and S, are defined
according to S}>™ in line 2} i.e., they all correspond to the initial solution. Note that such
solution is both the worst and the best one in I1" at this moment. The approach attempts to
improve the current solution S by a call to LocaL-SEARCH(G, D, R, T, K™, v, a, f, S™) in
line 4, and the resulting solution is stored into S “*™. The main while loop in lines repeats
while the time limit is not reached. Right after the LocaL-SEarRcH, whenever the factor f is
greater than one, it is divided by two as shown in line 6] Thus, we are more likely to decrease
the chance of getting infeasible solutions in the next attempts to perform type reductions in the

local search. In line|7|the approach determines if the recently generated S ™ will be accepted
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for further iterations via a call to AccEPTANCE-CRITERION(S *®t, §¢ ' Ty In line 8] the
approach determines which perturbation will be executed. For each iteration the probabilities
to perform a dispersed perturbation and a concentrated perturbation are, respectively, @ and
1 — @. The procedure DisPERSED-PERTURBATION(G, D, R, T, Jmin ymax o S is invoked in line
|§I and CONCENTRATED-PERTURBATION(G, D, R, T, i, V"™, a, S°) is performed in line
Both methods return a perturbed solution S ™ starting from the current solution §*. Lastly,
Algorithm [§| returns the best feasible solution found so far .

2.4 COMPUTATIONAL EXPERIMENTS

This chapter summarizes the performed computational experiments. All the tests were
carried out on a machine running under Ubuntu x86-64 GNU/Linux, with an Intel Core 17-
8700 Hexa-Core 3.20GHz processor and 16Gb of RAM. The simulation based iterated local
search metaheuristic was implemented in C++, and its interaction with the hydraulic simula-
tor EPANET was established via the Extended EPANET Toolkit 1.5 (Lopez-Ibanez, 2009b,
20094)). Subsection 2.4.T]describes the benchmark set of instances. Section [2.4.2]lists the tested
approaches and reports the parameter settings. Section [2.4.3| reports the results comparing
our newly proposed approach with a state-of-the-art metaheuristic presented in De Corte and
Sorensen| (20164a)). Sectionpresents a graphical summary of the results. Subsection [2.4.
analyzes the impacts of each individual novelty to the solution’s quality using a subset of the
instances. Subsection [2.4.6| compares some additional indicators achieved by the approach
of De Corte and Sorensen| (2016a) and by our new improved simulation based iterated local
search metaheuristic.

2.4.1 Benchmark set

The developed algorithm was tested using a set of challenging benchmark instances generated
using HydroGen (De Corte & Sorensen, 2014a), which is a tool that generates virtual water
distribution networks. The input files of these networks are available via De Corte and Sorensen
(2014b). The benchmark instances are divided into 30 instance groups. Each instance group
contains five instances with similar size, expressed by the number of pipes, allng characteristics,
2IN| =5
in graph theory which evaluates the number of loops against the maximum number of loops in a
planar graph (Buhl et al., 2006). Remark that |=| and |N| represent, respectively, the numbers
of independent loops and of nodes in the network. Note that, independent loops are loops
that contain at least one element that is not part of another independent loop. The sizes and
characteristics of each instance group are given in Table [2.2]

reflected by the meshedness coefficient. The meshedness coefficient, M = , 1S a concept
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Table 2.2: Information about the instance groups.

Network Meshedness Pipes Demand Water Network Meshedness Pipes Demand Water
Coefficient Nodes Reservoirs Coefficient Nodes Reservoirs
HG-MP-1  0.20 100 73 1 HG-MP-16 0.20 606 431 4
HG-MP-2  0.15 100 78 1 HG-MP-17 0.15 607 465 4
HG-MP-3  0.10 99 83 1 HG-MP-18 0.10 608 503 5
HG-MP-4  0.20 198 143 1 HG-MP-19 0.20 708 503 5
HG-MP-5 0.15 200 155 1 HG-MP-20 0.15 703 538 5
HG-MP-6  0.10 198 166 1 HG-MP-21 0.10 707 586 5
HG-MP-7  0.20 299 215 2 HG-MP-22 0.20 805 572 6
HG-MP-8  0.15 300 232 2 HG-MP-23 0.15 804 615 6
HG-MP-9  0.10 295 247 2 HG-MP-24 0.10 808 669 6
HG-MP-10 0.20 397 285 2 HG-MP-25 0.20 906 644 6
HG-MP-11  0.15 399 308 2 HG-MP-26 0.15 905 692 7
HG-MP-12  0.10 395 330 3 HG-MP-27 0.10 908 752 7
HG-MP-13  0.20 498 357 2 HG-MP-28 0.20 1008 716 7
HG-MP-14 0.15 499 385 3 HG-MP-29 0.15 1007 770 7
HG-MP-15 0.10 495 413 3 HG-MP-30 0.10 1009 835 8

The set of available pipe types and their corresponding costs can be found in Table The
planning horizon 7~ is composed of 24 time periods (corresponding to the hourly scenarios in a
day). Additionally, a minimum pressure head of 20m is required in every demand node at every
time period, and a maximum velocity of 2m/s is set for the water flow through every pipe in
the network, at every time period. Demand nodes are divided into five categories (domestic,
industrial, energy, public services, and commercial demand nodes), each with a corresponding
base load and demand pattern. The base loads and demand patterns can be found in the EPANET
input files of the instances (De Corte & Sorensen, 2014b). We remark that we do not use
multi-period counterparts for the classic single-period instances available in the literature since
these are relatively small (considering the number of pipes). Besides, De Corte and Sorensen
(2016b) tested the algorithm with the classical instances and were able to reach the best-known
solutions. Furthermore, the proposed approaches are directed to improve the capability of
obtaining good quality solutions for more challenging larger instances.

Table 2.3: Information about the available pipe types.

Number Diameter Roughness Cost (in EUR | Number Diameter Roughness Cost (in EUR
(in mm) (unitless) per m) (in mm) (unitless) per m)
1 20 130 9 9 200 130 116
2 30 130 20 10 250 130 150
3 40 130 25 11 300 130 201
4 50 130 30 12 400 130 290
5 60 130 35 13 400 130 290
6 80 130 48 14 500 130 351
7 100 130 50 15 600 130 528
8 150 130 61 16 1000 130 628

2.4.2 Tested approaches and settings

In this subsection we present the tested approaches and the preliminary experiments carried
out to determine the parameters of the proposed techniques. We compared the following
approaches:



2.4 COMPUTATIONAL EXPERIMENTS 24

(a) the simulation based iterated local search metaheuristic of De Corte and Sorensen| (2016a)
(ILS);

(b) our newly proposed enhanced simulation based iterated local search metaheuristic (ILS+),
described in Section

In the computational tests, each approach was executed ten times on each test instance for
each of the time limits time™** € {60, 180, 300, 600} (in seconds). The best and average costs
over these ten runs are reported in the following sections.

ILS was executed with the same parameter settings used in the authors’ original work. The
settings for ILS+ were determined based on preliminary computational experiments, which
took into consideration around 10% of the instances, randomly chosen, with varying sizes and
characteristics.

The following values were tested for each parameter:

e greediness factor: a € {0.05,0.08,0.10};
e type reduction factor: f € {1, 2,4};
e size of the pool of solutions: v € {1, 2, 3}.

Based on the preliminary experiments, the selected configurations for the parameters were
a=0.05f=4andv =3.

2.4.3 Computational results

Tables [2.4] and [2.5] summarize the performed computational results. We remind that the
reported values for each combination of instance and time limit take into consideration ten runs
of the corresponding approach. For each instance group, the reported best and average values
are the average over the five instances in the group.

Table [2.4] reports the results for the instance groups with less than 500 pipes while Table [2.5]
presents the results for those with more than 500 pipes. In each of these tables, the first two
columns identify the instance group and the time limit (in seconds). The next two columns
give, respectively, the best and average solutions achieved by ILS for the corresponding instance
group. Due to their magnitude, the best and average values are presented using the scientific
notation value x 10°, with four significant digits. The next six columns present the results for
ILS+ and indicate how it compares against ILS. More specifically, the fifth and sixth columns
indicate the best and average solutions for the corresponding instance group. The lowest values
for best and average solutions are shown in boldface. The seventh and eighth columns indicate,
respectively, the numbers of instances (out of the five in the instance group) the best and average
values obtained by ILS+ were strictly better than those obtained by ILS. The last two columns

. . 2Ls+ — 2 .
represent the average gain, calculated for each instance as 100 x HiSr SIS achieved by ILS+

2Ls
over ILS for best and average values, correspondingly.

Table shows that for the instances with less than 500 pipes, ILS and ILS+ present quite
similar results when it comes to the best encountered solutions. As it can be seen in the two last
lines of the table, ILS+ presented improved best solutions for 156 out of the 300 combinations
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and an average gain of only 0.5%. However, it is remarkable that ILS+ is more robust for these
instances. To be more specific, ILS+ achieved improved average results for 227 out of the 300
combinations and an average improvement of 3.6%. As expected, considerably large gains were
achieved for the more restricted time limits (e.g., with a time limit of 60 seconds, average gains
of 12.4% and 8.1% were achieved, respectively, for instance groups HG-MP-2 and HG-MP-13).

Table [2.5]exhibits that ILS+ outperforms ILS for the instances with more than 500 pipes.
The best and average results achieved by ILS+ are considerably better than those obtained by
ILS for most of the instance groups. As it can be seen in the two last lines of the table, ILS+
presented improved best solutions for 228 out of the 300 combinations and an average gain of
8.4%. Additionally, it was able to obtain improved average solutions for 240 out of the 300
combinations and an average gain of 9.3%. The results evidence the fact that noticeable gains
were achieved by ILS+ for all instance groups when considering the more restricted time limits.
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Table 2.4: Results obtained by ILS and ILS+ for instances with less than 500 pipes.

ILS ILS+
Instance group Time limit Best Avg Best Avg #impr #impr Gain (%) Gain (%)
(seconds) (10% (0% | (10%  (10% (Best) (Avg) (Best) (Avg)
HG-MP-1 60 0.345 0.358 0.336 0.341 3 3 2.7 5.0
180 0.344 0.357 0.336 0.339 3 3 2.6 5.1
300 0.343 0.357 0.335 0.339 3 3 2.5 5.2
600 0.343 0.357 0.335 0.339 3 3 2.3 5.1
HG-MP-2 60 0.301 0.355 0.303 0.308 3 5 -0.9 12.4
180 0.300 0.351 0.301 0.306 3 5 -0.3 12.1
300 0.300 0.349 0.301 0.305 3 5 -0.5 11.9
600 0.299 0.348 0.301 0.304 3 5 -0.6 11.8
HG-MP-3 60 0.388 0.413 0.387 0.389 2 5 0.3 5.6
180 0.388 0.408 0.386 0.389 2 5 0.3 4.6
300 0.388 0.407 0.386 0.389 2 5 03 4.6
600 0.387 0.406 0.386 0.388 3 5 0.3 4.6
HG-MP-4 60 0.699 0.728 0.706 0.723 2 3 -1.0 0.6
180 0.695 0.723 0.702 0.717 2 3 -1.1 0.6
300 0.695 0.722 0.701 0.715 2 3 -0.9 0.7
600 0.694 0.721 0.700 0.713 2 3 -0.9 0.9
HG-MP-5 60 0.748 0.810 0.740 0.759 3 4 1.0 6.4
180 0.744 0.800 0.738 0.753 3 3 0.8 6.0
300 0.742 0.796 0.738 0.751 3 3 0.5 5.7
600 0.739 0.791 0.738 0.749 3 3 0.2 5.4
HG-MP-6 60 0.753 0.779 0.755 0.780 1 2 -0.4 -0.2
180 0.750 0.775 0.752 0.773 1 2 -0.4 0.0
300 0.749 0.774 0.751 0.771 1 2 -0.4 0.2
600 0.741 0.771 0.749 0.766 0 2 -1.1 0.4
HG-MP-7 60 0.847 0.905 0.818 0.856 3 5 3.1 5.0
180 0.823 0.883 0.799 0.839 4 5 2.6 4.6
300 0.815 0.880 0.789 0.834 4 5 2.9 4.9
600 0.811 0.875 0.787 0.830 4 5 2.7 4.9
HG-MP-8 60 0.871 0.954 0.858 0.904 3 3 1.3 4.9
180 0.862 0.934 0.846 0.886 3 4 1.7 5.0
300 0.859 0.931 0.843 0.880 3 4 1.7 5.3
600 0.856 0.927 0.834 0.873 4 4 2.4 5.6
HG-MP-9 60 0.844 0.881 0.861 0.892 1 3 -2.1 -1.3
180 0.833 0.863 0.840 0.869 1 3 -0.9 -0.6
300 0.828 0.858 0.836 0.861 1 3 -1.0 -0.4
600 0.826 0.854 0.825 0.854 3 4 -0.0 -0.1
HG-MP-10 60 0.827 0.893 0.802 0.845 5 5 2.9 5.5
180 0.797 0.855 0.786 0.812 4 5 1.4 5.0
300 0.793 0.849 0.782 0.807 4 5 1.3 5.0
600 0.791 0.843 0.778 0.800 5 5 1.7 5.0
HG-MP-11 60 0.932 0.998 0.942 0.991 1 4 -1.1 0.6
180 0.907 0.955 0.920 0.959 2 3 -1.5 -0.4
300 0.904 0.948 0.912 0.945 2 3 -1.0 0.4
600 0.896 0.941 0.905 0.932 2 4 -1.0 0.9
HG-MP-12 60 1.050 1.104 1.071 1.107 2 2 -1.8 -0.2
180 1.024 1.069 1.048 1.067 1 3 2.3 03
300 1.019 1.061 1.040 1.059 1 3 -2.0 0.3
600 1.014 1.053 1.033 1.050 0 4 -1.9 0.4
HG-MP-13 60 1.321 1.419 1.214 1.301 5 5 8.0 8.1
180 1.189 1.274 1.174 1.221 3 5 1.3 4.2
300 1.174 1.247 1.164 1.204 3 5 0.9 3.5
600 1.161 1.226 1.155 1.184 3 5 0.6 3.5
HG-MP-14 60 1.166 1.257 1.125 1.177 3 4 2.4 5.4
180 1.089 1.141 1.093 1.121 3 3 -0.6 1.5
300 1.064 1.121 1.075 1.106 2 2 -1.3 1.1
600 1.056 1.106 1.070 1.095 2 3 -1.5 0.9
HG-MP-15 60 1.222 1.314 1.180 1.240 4 4 33 55
180 1.162 1.220 1.132 1.186 3 4 2.3 2.6
300 1.149 1.196 1.127 1.177 3 4 1.7 1.2
600 1.139 1.176 1.118 1.164 3 4 1.6 0.6
Total 156/300 227/300
Average (%) 0.5 3.6
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Table 2.5: Results obtained by ILS and ILS+ for instances with more than 500 pipes.

ILS ILS+
Instance group Time limit Best Avg Best Avg #impr #impr Gain (%) Gain (%)
(seconds) (10%) (10% (10%  (10% (Best) (Avg) (Best) (Avg)
HG-MP-16 60 1.821 2.007 1.619 1.701 5 5 11.3 15.3
180 1.523 1.666 1.542 1.610 3 3 -1.0 3.7
300 1.487 1.610 1.527 1.584 2 3 2.4 2.0
600 1.463 1.575 1.499 1.560 2 3 2.2 14
HG-MP-17 60 1.913 2.096 1.718 1.903 4 4 9.6 8.7
180 1.623 1.764 1.667 1.802 4 4 -3.5 2.5
300 1.595 1.717 1.655 1.766 3 4 -4.6 -3.4
600 1.573 1.689 1.632 1.715 4 4 -4.5 2.1
HG-MP-18 60 1.770 1.964 1.621 1.759 5 5 8.3 10.6
180 1.507 1.637 1.560 1.627 1 3 -3.9 04
300 1.480 1.597 1.537 1.601 1 2 -4.3 -0.4
600 1.465 1.567 1.514 1.572 2 2 -3.7 -0.5
HG-MP-19 60 2.999 3.296 2.408 2.565 5 5 19.4 21.9
180 2.253 2.473 2.193 2.354 3 5 2.8 4.6
300 2.184 2.359 2.145 2.293 3 4 1.9 2.6
600 2.144 2.297 2.093 2.220 3 4 2.5 3.1
HG-MP-20 60 2.928 3.211 2.215 2.409 5 5 22.7 23.7
180 2.196 2.365 2.114 2.242 4 4 3.9 5.5
300 2.095 2.232 2.046 2.156 4 4 2.5 3.7
600 2.031 2.150 2.010 2.084 2 3 1.2 33
HG-MP-21 60 2.786 2.967 2.225 2.356 5 5 20.3 20.8
180 2.243 2.385 2.134 2.207 5 5 4.9 7.5
300 2.192 2.298 2.125 2.180 4 4 3.1 5.2
600 2.157 2.246 2.108 2.151 4 4 2.3 4.3
HG-MP-22 60 4.358 4.758 3.144 3.401 5 5 27.4 28.0
180 2.957 3.196 2.815 2.997 5 5 4.5 5.9
300 2.798 2.965 2.707 2.885 5 5 3.2 2.5
600 2.657 2.830 2.620 2.769 4 5 1.4 2.1
HG-MP-23 60 4.129 4.516 3.228 3.521 5 5 21.7 21.5
180 2.950 3.263 2.883 3.121 4 4 2.2 4.1
300 2.808 3.000 2.826 3.040 2 2 -0.8 -1.6
600 2.734 2.856 2.683 2.917 2 2 1.7 2.4
HG-MP-24 60 3.765 4.062 2.825 2.975 5 5 25.1 27.0
180 2.759 2.923 2.649 2.792 4 3 4.0 4.7
300 2.628 2.784 2.594 2.717 3 3 1.4 24
600 2.573 2.690 2.517 2.618 3 3 2.1 2.6
HG-MP-25 60 7.440 7.827 4.856 5.306 5 5 34.6 32.3
180 4.661 5.054 4.206 4.577 4 5 8.6 8.7
300 4211 4.507 4.012 4.347 3 3 3.6 2.8
600 3.956 4.173 3.792 4.145 3 2 3.1 -0.1
HG-MP-26 60 6.836 7.257 4.635 4.952 5 5 32.0 314
180 4.204 4.667 4.070 4.381 4 5 3.0 6.1
300 3.846 4.225 3.889 4.242 1 2 -1.1 -0.5
600 3.697 3.965 3.743 4.079 2 2 -1.2 -3.0
HG-MP-27 60 6.649 7.027 4.206 4.477 5 5 36.6 36.1
180 4.164 4.471 3.791 4.015 5 5 8.5 9.8
300 3.799 4.140 3.720 3.905 3 3 1.8 5.5
600 3.665 3.926 3.679 3.808 3 3 -0.6 3.0
HG-MP-28 60 10.518 11.365 6.917 7.472 5 5 33.9 33.9
180 6.212 6.598 5.102 5.563 5 5 17.9 15.5
300 5.356 5.705 4.768 5.260 5 5 11.0 7.6
600 4.838 5.141 4.670 5.047 5 4 3.5 1.9
HG-MP-29 60 11.624 12.385 7.162 7.679 5 5 38.4 38.1
180 6.229 6.974 5.555 6.091 5 5 10.7 12.5
300 5.444 5.845 5.304 5.710 3 3 2.5 2.3
600 5.023 5.325 5.104 5.447 2 2 -1.6 2.2
HG-MP-30 60 9.557 10.011 5.764 6.068 5 5 39.7 39.3
180 5.613 6.097 4.562 5.096 5 5 18.5 16.0
300 4.999 5.463 4.334 4.776 5 5 12.9 12.1
600 4.557 4.992 4.215 4474 5 5 7.4 10.0
Total 228/300 240/300
Average (%) 8.4 9.3
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2.4.4 Graphical summary

A graphical summary of the computational results is depicted in Figure [2.2] The figure
illustrates the improvements achieved by ILS+ over ILS, considering the individual instances
rather than instance groups.

Considering all the 150 instances, Figure shows that ILS+ improved the average
solutions achieved by ILS for over 71.3% of them for all the tested time limits, and such
improvement is more evidenced for the time limit of 60 seconds, for which improved solutions
were obtained for 87.3% of the instances. The figure also shows that the average gain is
considerably larger for the more restricted time limit of 60 seconds (15.1%) and progressively
decreases as the time limit increases. Figure shows that ILS+ encountered improved
best solutions when compared to ILS for over 56.0% for all the considered time limits. ILS+
encountered improved best solutions for 76.7% of the instances when the time limit was set to
60 seconds. Similarly to what was observed for the average solutions, it can be seen that the
average gain is considerably larger for the more restricted time limit (13.3%) and progressively
decreases with the increase of the time limit.

Considering the 75 instances with less than 500 pipes, Figure [2.2¢|shows that ILS+ improved
the average solutions achieved by ILS for over 73.3% of them with a similar behavior for all the
tested time limits, for which improved solutions were obtained for percentages of the instances
varying between 73.3% and 78.7%. The figure also shows that the obtained average gains were
between 3.3% and 4.2% for all the tested time limits. Figure [2.2d|shows that ILS+ encountered a
very similar performance when compared to ILS. ILS+ encountered improved best solutions for
54.7% of the instances for the time limits of 60 and 600 seconds. However, for the time limits of
180 and 300 seconds ILS+ encountered improved best solutions for just 49.3%. Further, there
1s no considerably gain for any of the time limits, for which the average gains were obtained
around 0.55%.

Considering the 75 instances with more than 500 pipes, Figure shows that ILS+
improved the average solutions achieved by ILS for over 64.0% of them for all the tested
time limits, and such improvement is more evident for the time limit of 60 seconds, for which
improved solutions were obtained for 98.7% of the instances. The figure also shows that the
average gain is considerably larger for the more restricted time limit of 60 seconds (25.9%) and
progressively decreases as the time limit increases. Figure shows that ILS+ encountered
improved best solutions when compared to ILS for over 61.3% for all the considered time limits.
It is remarkable the fact that ILS+ obtained improved best solutions for 98.7% of the instances
when the time limit was set to 60 seconds. Similarly to what was observed for the average
solutions, it can be seen that the average gain is considerably larger for the more restricted time
limit (25.4%) and progressively decreases with the increase of the time limit.
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Figure 2.2: Graphical summary of the improvements achieved by ILS+ over ILS. The subfigures
show the percentage of the instances for which ILS+ improved ILS, as well as the average gains
of ILS+ over ILS. Subfigures (a) and (b) consider the average and best costs for all instances;
Subfigures (c) and (d) examine the average and best costs for instances with less than 500 pipes;
Subfigures (e) and (f) contemplate instances with more than 500 pipes.
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2.4.5 Analyzing the impact of each individual novelty

In this section, we analyze the impact of each of the proposed novelties individually on the
obtained solution values and compare these with ILS and ILS+. Each of the tested novelties
is defined as using a single improvement on top of ILS, namely: the aggressive reduction
(ILS-REDU), the pool of solutions (ILS-POOL), the new perturbations (ILS-PERT), and the
shortest path-based local search (ILS-SPT). We consider a subset of the instances described in
Subsection [2.4.1] containing 10% of them, chosen randomly from varying instance groups. The
settings are defined as in Subsection [2.4.2]

Figures summarize the results. The values composing the boxplots for each instance
and time limit represent ten runs of the corresponding approach. It is noteworthy that the
enhancements achieved by the individual novelties on the obtained solutions are very diverse.
ILS-PERT was able to reach a good performance in certain cases, and that behavior is possibly
related to its ability to overcome local minima solutions encountered by the algorithm. ILS-
REDU seldom allows considerable gains over ILS, especially when the allowed running time
is increased. This is probably due to the nature of ILS-REDU, as it attempts to improve the
convergence of the algorithm, quickly reaching hard-to-escape-from local minima solutions.
It can allow, however, much faster convergence in some situations. ILS-POOL has a good
performance, especially when considering instances with less than 500 pipes, showing the
benefits of diversification. This is most likely related to the fact that it increases the possibility
of exploring more diverse solutions. ILS-SPT has a great performance and seems to be the
individual novelty that allows the most considerable reduction in the costs of the obtained
solutions, corroborating our claim that the pattern compelled by the shortest path-based local
search indeed allows reaching good quality solutions.

Most importantly, the figures allow us to observe that ILS+ presented the best overall
performance, showing that the combination of the individual novelties is indeed valuable.
Together they reach robustness and reduce the possible deficiency that each of them could
present individually.
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Figure 2.3: Impact of the individual novelties on the obtained solution costs considering instances
with less than 500 pipes.
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2.4.6 Analyzing additional indicators for ILS and ILS+

In this section, we analyze the behavior of ILS and ILS+ when considering indicators such
as the number of iterations, the number of calls to the hydraulic simulator, and the number of
tested solutions. We consider the same set of instances used in Subsection Besides, the
settings are defined as in Subsection [2.4.2

Table [2.6lsummarizes the results. The first two columns indicate the instances and the allowed
running times. For each combination of instance and allowed running time, ten executions of
each approach were performed. The next columns report, for ILS and ILS+, the average number
of iterations (i.e., number of executions of the while loop of lines in Algorithm [§)), the
average number of calls to the hydraulic simulator, and the amount of tested solutions (including
the average percentage of feasible solutions). Table [2.6]shows that both ILS and ILS+ present
reasonably high numbers of iterations, hydraulic simulation calls, and tested solutions, and these
values tend to decrease as the size of the instances increase, as expected. This indicates that the
simulations do not seem to be a real bottleneck, and the main challenge lies in the search for
good quality solutions. The table also shows that ILS+ consistently achieved higher values for
all indicators but the percentage of feasible solutions. A possible explanation for that behavior is
the faster convergence of ILS+. We remark that these indicators suggest that ILS+ presents a
better efficiency in the search for good quality solutions when compared to ILS.
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Table 2.6: Additional indicators for analyzing the behavior of ILS and ILS+.

ILS LS+
Instance Time #iter  #hydr  #testedsol ( 103) #iter #hydr  #testedsol ( 103)
(s) (10%)  (10%  {Peas. rate (%)} | (10%)  (10%)  {Feas. rate (%)}
HG-MP-2-1 60 1.98  1.03 93.58 {21.05} 294 143  130.67 {14.01}
180 | 6.05  3.08  281.25{20.62) | 8.89 426  390.09{13.87}
300 | 10.13  5.12  469.44 {2044} | 1488 7.08  649.22 {13.91}
600 | 2036 1023  940.06 {20.30} | 30.08 14.11  1301.81 {13.99}
HG-MP-4-3 60 048  0.55 45.17 {25.52) 086  0.73 67.01 {16.24}
180 | 154 159  135.79{2347) | 271 216  204.17 {15.58}
300 | 2.60 263  22654{23.19) | 458 359  341.91{15.48}
600 | 526 524  453.77{22.95} | 927  7.17  687.18 {15.40}
HG-MP-6-5 60 048  0.60 55.61 {19.55} 074 075 82.88 {9.93}
180 | 1.51 175  168.40{17.77) | 230 224 251.07 {9.37}
300 | 254 290  281.20{1743} | 387 3.73 419.44 {9.28}
600 | 5.12 578  563.18{17.20} | 7.86  7.47 839.93 {9.31}
HG-MP-8-5 60 0.19 038 30.44 {28.05) 041 048  45.95{16.93}
180 | 0.66  1.07 92.29 {23.73} 128 142 140.89 {15.11}
300 | 1.13 176 154.01{22.86} | 2.13 235  235.53{14.66}
600 | 231 348  309.22{22.13} | 426  4.68  472.42{14.27}
HG-MP-10-4 60 0.09 030 20.42 {33.53} 0.16 036  26.46{20.31}
180 | 035  0.84 59.75 {28.09} 067  1.05 81.18 {18.81}
300 | 062 138 99.01 {27.00} 119 174 136.39 {18.63}
600 | 130 270  197.49{26.17} | 251 346  275.76 {18.53}
HG-MP-12-4 60 0.10 032 21.52 {33.00} 0.16 038 29.40 {16.40}
180 | 034  0.90 64.42 {25.78} 056  1.15 90.33 {13.88}
300 | 060 147  107.36{24.35} | 097 191 151.51 {13.40}
600 | 124  2.88  214.53{23.23} | 198  3.81  305.25{13.05}
HG-MP-14-5 60 0.05 023 15.85 {39.98} 0.10 0.8 24.27 {20.60}
180 | 0.21 0.63 47.56 {30.75} 041  0.84 72.70 {18.15}
300 | 038  1.02 79.10 {28.74} 073 140  121.74 {17.74}
600 | 0.81 199  157.66{27.52} | 159 280  245.95{17.57}
HG-MP-16-1 60 0.02  0.19 12.48 {40.48) 0.05 022 15.90 {26.35}
180 | 0.11 051 36.53 {31.65} 023  0.64 50.66 {19.54}
300 | 021  0.81 59.63 {29.31} 042  1.06 86.09 {18.04}
600 | 046 155  117.08{27.07} | 090  2.10  175.24 {17.05}
HG-MP-18-2 60 0.02 022 12.07 {57.20} 0.06 024 16.09 {25.68}
180 | 0.13  0.57 38.34 {36.48) 024 073 52.23 {18.42}
300 | 024 093 64.03 {32.35} 043 121 89.46 {17.14}
600 | 053 1.80  126.79{29.51} | 093 241 184.15 {16.28}
HG-MP-20-2 60 0.02  0.19 11.58 {48.46} 0.05  0.20 15.34 {28.77}
180 | 0.10 049 36.59 {32.93} 022 059 50.05 {21.10}
300 | 0.18  0.79 60.80 {30.07} 040 097 84.98 {19.65}
600 | 041 1.51 12049 {28.01} | 0.84 193  172.46{18.60}
HG-MP-22-2 60 001  0.15 8.99 {49.60} 002 015 10.97 {34.34}
180 | 0.05 039 26.66 {38.72} 0.10  0.46 36.12 {22.89}
300 | 011 0.6l 43.85 {34.11} 020  0.76 61.01 {19.65}
600 | 025 116 87.01 {29.09} 042 153 12273 {17.09}
HG-MP-24-4 60 001  0.19 9.55 {67.53} 0.02 018 12.67 {31.75}
180 | 0.06 047 30.88 {40.93} 011 053 41.71 {20.45}
300 | 012 074 52.41 {33.76} 020  0.88 70.80 {17.96}
600 | 028 143  105.26{28.82} | 045 1.77  144.00{15.90}
HG-MP-26-1 60 001  0.15 7.95 {62.49} 001  0.15 10.25 {34.44}
180 | 0.04 040 25.02 {41.21} 0.07 045 33.37 {22.07}
300 | 0.08  0.63 42.85 {33.58} 013 075 56.64 {18.85}
600 | 019  1.20 86.08 {28.35} 030 149 11544 {15.95}
HG-MP-28-1 60 001  0.14 8.09 {49.06} 001  0.14 9.25 {40.30}
180 | 0.03 036 23.54 {41.13} 0.05 039 29.84 {26.57}
300 | 0.06  0.57 38.96 {36.31} 0.10  0.64 50.15 {22.54}
600 | 0.15  1.05 75.97 {31.12} 023  1.26 99.87 {18.83}
HG-MP-30-3 60 001  0.15 8.23 {56.68} 001  0.14 10.01 {35.84}
180 | 0.03 039 25.00 {42.29} 0.05 042 31.77 {25.74)
300 | 006 061 42.42 {35.52} 0.10  0.71 52.62 {21.29}
600 | 0.16  1.16 85.48 {29.18} 022 143  104.89 {16.93}
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2.5 FINAL REMARKS

In this work, we addressed the water distribution network design (WDND) optimization
problem and proposed a new enhanced simulation-based iterated local search (ILS) metaheuristic.
Grounded on the structure of the problem, the proposed simulation-based ILS presents four main
novelties: a local search strategy for smart dimensioning the pipes in shortest paths between
reservoirs and high demand nodes, an aggressive pipe diameter reduction scheme based on
varying factors to speed up convergence to good quality solutions, a concentrated perturbation
mechanism to allow escaping from very restrained local optima regions, and a pool of solutions
to allow a good balance between intensification and diversification.

The performed computational experiments have shown that the novelties embedded in our
newly proposed simulation-based ILS allow improved performances when compared to a state-
of-the-art simulation-based ILS. Furthermore, the results showed that our new approach presents
a much faster convergence to good quality solutions and more robustness, as it obtained low costs
solutions when allowing stricter time limits and achieved less deviation from the encountered
best solutions when multiple executions were performed. Our approach found improved best
solutions for 64.0% (384 out of 600) of the tests for the instance groups and improved average
solutions for 77.8% (467 out of 600) of them. Remarkable improvements were achieved for the
larger instance groups, for which these values were 76.0% (228 out of 300) for best solutions
and 80.0% (240 out of 300) for average solutions. Furthermore, the average gains for the larger
instances were in the order of 8.4% for best solutions and 9.3% for average solutions.



Chapter

CONCLUSION

This chapter summarizes the main contributions of this master’s thesis and discusses pos-
sible directions for future works. We proposed a simulated-based optimization approach for
a nonlinear NP-hard optimization problem in the field of water resource, which hybridizes
metaheuristics with a simulation model. Extensive computational experiments have shown that
the proposed are effective and reported new best results for several tested instances.

The water distribution network design (WDND) problem studied in this master’s thesis
introduced a new enhanced simulation-based iterated local search (ILS) metaheuristic which
further explores the structure of the problem in an attempt to obtain high quality solutions. The
approach is able to improve over a state-of-the-art metaheuristic for most of the performed
tests. Furthermore, it converges much faster to low cost solutions and demonstrates a more
robust performance in that it obtains smaller deviations from the best known solutions. Our
approach found improved best solutions for 64.0% for the instance groups where remarkable
improvements were achieved for the larger instance groups, for which these values were 76.0%
for best solutions. The results have shown that simulated-based optimization approaches is
effective to deal with complex optimization problems and its use contributes to the development
of effective algorithms. Lastly, the contents of Chapter 2 were submitted for publication in a
relevant operational research journal (Martinho et al., 2020).

3.1 FUTURE WORKS

The strong point of the work is the investigation and identification of concepts about
the structure of the problem that allow improvements in performance instead of the use of
common random heuristics with generalized concepts. It would be interesting to investigate
why some instances the algorithm is able to work much better than the state of the art, while
in other instances the performance was similar or even without a good performance, finding
more concepts in the structure and exploring them. The possibilities for improving the work
include diversification through the use of solutions with possibly different characteristics. The
improvement would investigate a more aggressive approach that would widely use this possibility
without loss of performance compromise for large instances. In addition to adding machine
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learning concepts to increase efficiency with the use of larger and more complex instances.
Furthermore, all the findings in this direction can provide new insights into the development of
robust algorithms and valid concepts that can leverage the effectiveness of such approaches.
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