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RESUMO

Horas de vídeos são enviados para plataformas de streaming a cada minuto, com sistemas
de recomendação sugerindo vídeos populares e relevantes para ajudar economizar o tempo
dos usuários no processo de busca. Sumarizadores de vídeo foram então desenvolvidos
para detectar as partes mais relevantes e automaticamente condensá-las em um vídeo
curto. Atualmente, avaliar esse tipo de método é desafiador uma vez que as métricas não
avaliam a subjetividade dos usuários, como a concisão das anotações. Para lidar com o
critério de concisão, nós propomos uma nova métrica que avalia sumarizadores de vídeo
em múltiplas taxas de compressão. Nossa métrica, chamada Compression Level of USer
Annotation (CLUSA), mensura o desempenho dos sumarizadores de vídeo diretamente
a partir dos escores de relevância preditos. Para isso, a CLUSA gera sumários de vídeo
descartando gradualmente segmentos de vídeo de acordo com os escores de relevância an-
otados pelos usuários. Depois de agrupar os sumários de vídeo pelas taxas de compressão,
a CLUSA os compara com os escores de relevância preditos. Para preservar informações
relevantes em resumos de vídeo concisos, CLUSA então pondera o desempenho dos suma-
rizadores de vídeo em cada faixa de compressão e, por fim, calcula uma pontuação geral
de desempenho. Considerando que a CLUSA pondera todas as faixas de compressão,
mesmo aquelas que não foram abrangidas pelas anotações dos usuários, o desempenho de
base muda com cada conjunto de dados. Consequentemente, a interpretação do escore
de desempenho para os sumarizadores de vídeo não é tão direta quanto em outras métri-
cas. Em nossos experimentos, comparamos a CLUSA com outras métricas de avaliação
para sumarização de vídeo. Nossas descobertas sugerem que todas as métricas analisadas
avaliam adequadamente sumarizadores de vídeo usando anotações binárias. Para as ano-
tações multivaloradas, a CLUSA mostrou-se mais adequada, preservando as informações
de vídeo mais relevantes no processo de avaliação.

Palavras-chave: Sumarização de vídeo. Sumarizadores de vídeo. Avaliação. Métrica.
Taxa de compressão.
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ABSTRACT

Hours of video are uploaded to streaming platforms every minute, with recommender
systems suggesting popular and relevant videos that can help users save time in the
searching process. Video summarizers have been developed to detect the video’s most
relevant parts, automatically condensing them into a shorter video. Currently, evaluat-
ing this type of method is challenging since the metrics do not assess user annotations’
subjective criteria, such as conciseness. To address the conciseness criterion, we propose
a novel metric to evaluate video summarizers at multiple compression rates. Our metric,
called Compression Level of USer Annotation (CLUSA), assesses the video summarizers’
performance by matching the predicted relevance scores directly. To do so, CLUSA gen-
erates video summaries by gradually discarding video segments from the relevance scores
annotated by users. After grouping the generated video summaries by the compression
rates, CLUSA matches them to the predicted relevance scores. To preserve relevant infor-
mation in concise video summaries, CLUSA weighs the video summarizers’ performance
in each compression range to compute an overall performance score. As CLUSA weighs
all compression ranges even that user annotations do not span some compression rates,
the baseline changes with each video summarization data set. Hence, the interpretation
of the video summarizers’ performance score is not as straightforward as other metrics.
In our experiments, we compared CLUSA with other evaluation metrics for video sum-
marization. Our findings suggest that all analyzed metrics evaluate video summarizers
appropriately using binary annotations. For multi-valued ones, CLUSA proved to be
more suitable, preserving the most relevant video information in the evaluation process.

Keywords: Video summarization. Video summarizers. Evaluation. Metric. Compres-
sion rate
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1
INTRODUCTION

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Chapter map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Billions of video hours are watched every day on streaming platforms, such as Youtube,
and the total of available videos on those platforms continuously grows (Youtube, 2018).
As watching each video takes a long time, users need to select the videos they watch
rigorously. Selecting the most relevant videos is an arduous task for users; thus, stream-
ing platforms automate the search for relevant videos according to users’ preferences.
However, just searching and recommending entire videos is no longer enough and users
demand for video summaries with the most important video information, as illustrated
in Fig. 1.1. Determining which video information is relevant to users is challenging as it is
affected by users’ subjective factors (HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALI,
2017). Consequently, video summarizers must not only mimic the way humans under-
stand and judge the relevance of information in videos but also tailor the video summary
to users’ interests (TRUONG; VENKATESH, 2007).

Earlier studies in the video summarization have focused on identifying how humans
judge video information’s relevance. He et al. (1999) suggested that users instinctively
follow four different but complementary criteria for judging the relevance of video in-
formation: Conciseness, coverage, context, and coherence. Conciseness is how much
users have shortened the entire video (i.e., the video compression), while coverage is the
amount of video information users have summarized indeed. Context and coherence are
intrinsically related to video segments’ ordering and how video summaries told the story.
While users follow all of these criteria to summarize an input video, video summarization
studies focus only on coverage and conciseness criteria, as current video summarizers do
not address the ordering or generation of video information.

1



2 INTRODUCTION

Video summary

Entire video

Video summary

Users

Entire video

Video summarizer

Figure 1.1 Instead of users watching the entire video, users watch a video summary with the
most important video information selected by a video summarizer.

Since there were no relevance scores annotated by users for training or testing video
summarizers, earlier studies addressed the task of summarizing videos by using ad-hoc
summarization heuristics. Each study specified visual elements and events that are sup-
posed to be of interest to users (CHANG; HAN; GONG, 2002; XIONG; RADHAKR-
ISHNAN; DIVAKARAN, 2003; Chong-Wah Ngo; Yu-Fei Ma; Hong-Jiang Zhang, 2003;
ZHAO; XING, 2014; SUN; FARHADI; SEITZ, 2014; WU et al., 2016; YAO; MEI; RUI,
2016). For instance, Chang, Han and Gong (2002) formulated a summarization heuristic
for baseball game videos based on the detection of the key events: Home run, catch, hit,
and infield play. Heuristic-based video summarizers are accurate when users search for
known events; otherwise, it is unfeasible to formulate a unique summarization heuristic
that ultimately matches human judgments. Therefore, heuristic-based video summarizers
can no longer be evaluated in a generic video domain, and some studies merely described
video summarizers’ results, pointing out advantages and disadvantages (Xiao-Dong Yu
et al., 2004).

To properly evaluate video summarizers in a generic video domain, video summa-
rization studies targeted the evaluation at users (SUNDARAM; CHANG, 2001; LIU;
ZHANG; QI, 2003; AGNIHOTRI; DIMITROVA; KENDER, 2004; TASKIRAN, 2006;
GYGLI et al., 2014; CHU; Yale Song; JAIMES, 2015; SONG et al., 2015), who are gen-
uinely able to determine which video information is relevant or not via user annotations.
These ones are feedback collected from users who judge the relevance of each video
segment in a collection of videos, as illustrated in Fig. 1.2.

As there is no consensus on collecting user annotation, different guidelines emerge and
change how studies devise new video summarizers. Currently, these summarize videos
by discarding or preserving video segments (ZHANG et al., 2016; FAJTL et al., 2019;
ZHOU; QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018; OTANI et al., 2017). In
other words, video summarizers act as binary classifiers whose label 0 (zero) represents
the discarded video segments and label 1 (one), the preserved ones. Conversely, users find
it challenging to discriminate some video segments’ relevance from the least relevant to
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Entire video

Users

We selected the

relevant video

segments

Video segments

Figure 1.2 Users judge the relevance of video segments, viz., consecutive video frames grouped
and that describe the same video information.

the most relevant using a binary scale. Considering that, Song et al. (2015) collected user
annotations using an assessment scale with five relevance scores, making it possible to
generate video summaries of different lengths. However, video summaries generated from
user annotations and video summarizers must have similar length for the evaluation to be
accurate using the Fβ, a metric commonly used in evaluating classifiers. Therefore, video
summarization studies opt to discard the same proportion of video segments (i.e., the
compression rate) in user annotations (ZHANG et al., 2016; FAJTL et al., 2019; ZHOU;
QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018; OTANI et al., 2017). In doing so,
video summarization studies discard conciseness information of user annotations.

1.1 MOTIVATION

Evaluating video summarizers has always proved to be an obstacle in video summarization
studies that look for ways to address evaluation issues (GYGLI et al., 2014; OTANI et
al., 2019; SHARGHI; LAUREL; GONG, 2017). For example, a recent advance was in
changing the assessment scale used to collect annotations from users. While multi-valued
assessment scales have made it possible to assess the conciseness criterion properly, Fβ
can not deal with video summaries at multiple video compression rates. As Fβ does not
distinguish video summaries’ compression rate, video summarizers’ performance reduces
when high-compressed video summaries (shorter length video summaries) are matched to
low-compressed ones (longer length video summaries). Accordingly, video summarization
studies opt to limit the conciseness criterion, and the evaluation of video summarizers
remains stuck in a single preset compression rate. Here, we emphasize that addressing
the conciseness criterion on video summarizers’ evaluation is crucial to advance the video
summarization.

1.2 GOALS

Video summarization studies collect multi-valued user annotations using different users
and collecting guidelines. For instance, Gygli et al. (2014) and Song et al. (2015) split
collection of videos into video segments using different techniques for video shot segmen-
tation. Because of these differences in collecting guidelines, we can not directly compare
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user annotations from current data sets to investigate the assessment scales’ im-
pacts in the user annotations’ quality. We seek to accomplish this by collecting
user annotations in a standard scenario with the same videos and users.

Assuming that multi-valued assessment scales are suitable for collecting user anno-
tations and Fβ may not assess video summarizers’ performance at multiple compression
rates, we also seek to devise a novel evaluation metric to handle multi-valued user
annotations and multiple compression rates properly.

1.3 KEY CONTRIBUTIONS

Since Gygli et al. (2014) collected user annotations (the SumMe data set) constraining
their compression rate, Fβ can use them to evaluate video summarizers, in contrast to
the multi-valued annotations collected by Song et al. (2015) (the TVSum50 data set). As
our study demonstrated that multi-valued assessment scales deliver higher annotations’
quality than binary scales, we devised Compression Level of USer Annotation (CLUSA)
metric to overcome the limitations of the Fβ when applied in multi-valued scale annota-
tions. This study has already been published in Elsevier’s journal Expert Systems with
Applications.

While we published the key contributions mentioned above (ABDALLA; MENEZES;
OLIVEIRA, 2019), Otani et al. (2019) introduced ranked correlation coefficients (RCC)
to assess multi-valued user annotations directly. To investigate the differences between
RCC and CLUSA, we ranked five state-of-the-art video summarizers using both metrics
in the SumMe and TVSum50 data sets. Although RCC, as a metric for evaluating video
summarizers, is arguably more appropriate than Fβ, RCC do not perform weighing, and
hence, RCC do not target high-compressed video summaries. Conversely, the weighing
of compression ranges (i.e., compression rates grouped within a range) is crucial when
CLUSA assesses video summarizers’ performance, and hence, missing compression ranges
can skew CLUSA scores. As long as we evaluate video summarizers with the same
compression ranges and user annotations, our study showed that missing compression
ranges do not impinge on video summarizers’ ranking, but the results’ interpretation is
challenging using CLUSA.

To sum up, we highlight three key contributions presented in this study: (i) A metric to
evaluate video summarizers against user annotations, these latter collected with binary or
multi-valued scales, (ii) a study on the quality of user annotations collected from different
assessment scales, and (iii) to provide a better understanding of the limitations of RCC
and CLUSA while identifying what factors can skew their measurements.

1.4 CHAPTER MAP

Chapter 2 presents a background in the fields of video summarization and psychomet-
ric. We detail the task of summarizing videos, the requirements that video summarizers
must meet, and a history of how video summarization studies evaluated their proposals.
Considering the evaluation of video summarizers targeted at users, we investigated how
the collecting process dealt with users’ subjectivity and how evaluation metrics assess
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video summarizers’ performance by matching user annotations to video summaries.

Chapter 3 presents how CLUSA intends to overcome the limitations of evaluation
metrics commonly used for video summarization. We detail the mathematical formu-
lation of CLUSA and the factors that skew CLUSA. Also, we discuss how missing
compression ranges impinge on video summarizers’ performance.

Chapter 4 presents the methodology and results of our experimental study. In short,
we analyzed: (i) The assessment scales’ impact on the user annotations’ quality, (ii) the
evaluation metrics by exploring the relationship between internal consistency and hu-
man consistency, and (iii) how missing compression ranges affect the video summarizers’
ranking in the SumMe and TVSum50 data sets.

Chapter 5 presents our discussions about our study’s impact on video summariza-
tion and how future studies can improve our evaluation approach.
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Although the generation of video summaries must meet three requirements: (i) The
presence of visual elements and events relevant to users, (ii) elimination of redundant
information, and (iii) generation of useful information as possible from input videos
(TRUONG; VENKATESH, 2007), only these are not sufficiently discriminative to rank all
video summarization studies. Therefore Truong and Venkatesh (2007) also have grouped
the studies on video summarization according to their application goals. They are:
Browsing and retrieval systems – to assist users on video searching (AWAD et al.,
2017; ARMAN et al., 1994; ZHANG et al., 1997; Haojin Yang; MEINEL, 2014), compu-
tational reduction and content analysis systems – to abstract video information and
eliminate redundancies (PLUMMER; BROWN; LAZEBNIK, 2017), story navigation
and video editing – to help users on video navigation (NGUYEN; NIU; LIU, 2012),
and highlighting systems to short input videos by selecting relevant video segments
or frames (YAO; MEI; RUI, 2016; GYGLI et al., 2014; XIONG; RADHAKRISHNAN;
DIVAKARAN, 2003). It is noteworthy that current studies (FAJTL et al., 2019; MAHAS-
SENI; LAM; TODOROVIC, 2017; ZHOU; QIAO; XIANG, 2017) referred to highlighting
systems as video summarization methods (i.e., video summarizers). Henceforth, we refer
to highlighting systems as video summarizers.

7
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Figure 2.1 In a generic video summarization pipeline, a video shot segmentation split the input
video into video segments. After estimating the relevance of each video segment, a knapsack
solver selects most relevant segments to generate a video summary.

2.1 PIPELINE OF A VIDEO SUMMARIZER

In general, a video summarizer follows a general pipeline (see Fig. 2.1, according to
three steps: (a) An input video is segmented into video segments by grouping consec-
utive video frames, (b) a relevance score is predicted for each video segment, and (c) the
most relevant segments are selected for the video summary by a knapsack solver. A
video summarizer estimates a non-binary relevance score for each video segment. To com-
ply with video compression constraints when evaluating video summarizers, a knapsack
solver generates video summary by selecting video segments whose predicted relevance
scores are the highest, as depicted in Fig. 2.1. Since video summarizers commonly carry
out the video shot segmentation by using the same technique used on the collecting
process, we cover this topic in more detail in Section 2.4 when discussing the collecting
guidelines in the currently available data sets.

After segmenting a video shot, the video summarizer estimates each video segment’s
relevance. Chu, Yale Song and Jaimes (2015) accomplish this by modeling the summa-
rization as bipartite graphs. The video segments, which are represented by graph nodes,
are connected according to the visual similarity. Finally, the video summarizer selects the
video segments by ordering the weights of the graph edges. Mahasseni, Lam and Todor-
ovic (2017) use Long Short-Term Memory (LSTM) layers to select some video segments
to reconstruct the input video by means of a Generative Adversarial Networks (GAN),
with the video summary being a set of video segments whose reconstructed video was
similar to the input one. Zhang et al. (2016) use bidirectional LSTM layers and an
Multilayer Perceptron (MLP) to compute the probability of each video frame belongs
to the final video summary, and a Determinantal Point Processes (DPP) to eliminate
redundant video frames. The summarization model is trained with previously collected
user annotations. Fajtl et al. (2019) applied attention mechanisms in LSTM layers to
select visual elements that are supposed to be relevant in the video. In a similar way,
Zhou, Qiao and Xiang (2017) also encode temporal dependencies but using Recurrent
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Figure 2.2 In some content domains, video summarizers can focus on detecting key events that
are previously defined. In these cases, the evaluation of video summarizers becomes similar to
the evaluation of event detection task.

Neural Network (RNN) layers instead.

2.2 A BRIEF HISTORY OF THE EVALUATION OF VIDEO SUMMARIZERS

Currently, video summarization studies evaluate video summarizers using annotated rel-
evance scores. However earlier studies did not take into account users’ annotation to
measure the video summarizers’ performance (LIU; ZHANG; QI, 2003; WANG; CHEN;
ZHU, 2011; TRUONG; VENKATESH, 2007). So the evaluation of video summarizers
was limited to descriptive analysis (TRUONG; VENKATESH, 2007). The resulting sum-
maries were obtained from the authors’ perspective in specific situations, and certainly
with biased conclusions. Since there were no experimental arguments to support the
descriptive analysis of the advantages and weaknesses of video summarizers, the results
were considered inadequate (Xiao-Dong Yu et al., 2004; CO-INVESTIGATOR, 2013;
TASKIRAN, 2006; GYGLI et al., 2014; SHARGHI; LAUREL; GONG, 2017).

A solution found to overcome the limitations of descriptive analysis was to change the
evaluation of video summarizers according to each content domain (TRUONG; VENKA-
TESH, 2007), e.g., sports, news, and documentaries. For example, in a soccer match,
specific events, such as goals, fouls, and penalties, attract users’ attention more than
others. In other words, video summarization aims to detect events set by users, and the
event detection nails the video summarizers’ performance (YAO; MEI; RUI, 2016; Chong-
Wah Ngo; Yu-Fei Ma; Hong-Jiang Zhang, 2003; ZHAO; XING, 2014; SUN; FARHADI;
SEITZ, 2014; CHANG; HAN; GONG, 2002). As depicted in Fig. 2.2, the performance
score is computed by matching the events predicted by a video summarizer to events
annotated by users. As users cannot judge video information from a few preset events
for the generic domain’s videos, there is no guarantee that any heuristics used to summa-
rize videos will properly match human judgments (TRUONG; VENKATESH, 2007). As
such, video summarization studies have looked for other evaluation approaches to assess
video summaries from user annotations (Yong Jae Lee; GHOSH; GRAUMAN, 2012; LIU
et al., 2015; GYGLI et al., 2014; SONG et al., 2015; CHU; Yale Song; JAIMES, 2015;
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Figure 2.3 A video shot segmentation split the input video into video segments. Users then
annotate the video segments’ relevance using an assessment scale.

KIM; SIGAL; XING, 2014; SUNDARAM; CHANG, 2001; AGNIHOTRI; DIMITROVA;
KENDER, 2004).

Assuming that only users are truly able to determine which video segments are relevant
in videos, two evaluation approaches emerged as user studies: (a) Requesting users to
assess the quality of video summaries (LIU; ZHANG; QI, 2003; TASKIRAN, 2006; CHU;
Yale Song; JAIMES, 2015), and (b) requesting users to annotate the relevance of video
segments (GYGLI et al., 2014; SONG et al., 2015). Since (a) does not guarantee the
same conditions when evaluating video summarizers, (b) is currently the most common
type of evaluation procedure in the state of the art, nowadays. To clarify this evaluation
approach, the annotated relevance scores (in Fig 2.3) are used to generate users’
video summaries with which all video summarizers are evaluated in the same way.
Although the evaluation based on relevance scores annotated by users is currently the
most straightforward way to assess video summarizers’ performance, the collecting process
has led to some challenges. Since annotations can be skewed as the users’ perception
of relevance changes constantly, video summarization studies often apply psychological
testing to mitigate bias and improve the quality of the user annotations.

2.3 COLLECTING VIDEO INFORMATION USERS FIND RELEVANT

Psychological testing is part of a complex process aimed at diagnosing individuals’ perfor-
mance on specific tasks. These tests aim to evaluate, measure, or estimate a latent factor
in user behavior (URBINA, 2014; HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALI,
2017). In video summarization, psychological tests attempt to measure the users’ per-
ception of relevance, which is the intended latent factor. Since user’s perception is a
psychological phenomenon, the relevance of a video segment can not be measured
directly. Instead, it is measured from user feedback via annotation, as illustrated in
Fig. 2.4.
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Figure 2.4 After watching a video segment, user assesses the relevance of the video segment.
However, user’s perception is a psychological phenomenon that can only be measured indirectly
through user feedback, in this case, annotations.

In psychometric studies, there are two different epistemological approaches to measure
the users’ perceptions: Classical Test Theory (CTT), which focuses exclusively on the
evaluation of the user annotations and their measurement error, and Item Response
Theory (IRT), which focuses on each test item and its influence on the measurement of
the latent factor (HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALI, 2017). To the
best of our knowledge, there are no video summarization studies, which apply IRT, while
Gygli et al. (2014) and Song et al. (2015) applied CTT in the collecting process of the
SumMe and TVSum50 data sets, respectively. Given that, our study focuses on CTT
theory; however, psychometric studies investigate the advantages of using IRT over CTT
(JABRAYILOV; EMONS; SIJTSMA, 2016).

In CTT, video summarization studies (GYGLI et al., 2014; SONG et al., 2015) model
the users’ perception as

t = D − E , (.)

where t is the true relevance of video segments. t is supposed to be the latent factor
if it is measured directly. Unfortunately, it is unlikely to control all environmental and
psychological conditions when users annotate video segments’ relevance. As a result, the
measured value is different from t, which leads t to be decomposed into two variables:
The D annotated relevance scores and an E random error.

2.4 HOW CURRENT VIDEO SUMMARIZATION STUDIES COPE WITH RAN-
DOM ERROR

Pasquali (2017) and Kline (2013) listed several situations and factors that boost E, shift-
ing D away from t. Among this list, Gygli et al. (2014) and Song et al. (2015) coped
with: How much time users spend on completing the collecting process and how much
users can distinguish the relevance of video segments on levels.

The time spent by users taking videos is not only determined by the number of
videos, but also how many segments they are split into. Before users start annotating the
relevance of each video segment, a video shot segmentation split the input videos (YUAN
et al., 2007; PAL et al., 2015; HANJALIC, 2002), as illustrated in Fig. 2.3. Gygli et
al. (2014) accomplished this by grouping video frames into five-second video segments,
stretching them out according to the visual features of consecutive video frames to avoid
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fragmentation of relevant video information. In turn, Song et al. (2015) split the input
videos into two-second video segments. As the length of video segments affects the total
of items in the psychological test, there is a limit on how many video segments each
user can consistently annotate before getting tired (KLINE, 2013). To the best of our
knowledge, the studies with the biggest amount of annotated video segments were carried
out by Song et al. (2015), who collected annotations for 6,291 video segments from 50
videos, and Gygli et al. (2014), who collected 820 video segments from 25 videos.

In the annotation process, users judge video segments by selecting the relevance scores
that best match users’ perception within an assessment scale (SONG et al., 2015). Among
the four types of assessment scales, Hutz, Bandeira and Trentini (2015) argue only two
are suitable for psychometric studies: Ordinal scales, for situations in which it is only
possible to discriminate order, and interval scales, for when users are also able to dis-
criminate magnitude. Hutz, Bandeira and Trentini (2015) also argue that if we could
observe a latent factor directly, there would be an interval scale with infinite values. For
that to occur in video summarization, users are required to discriminate a unique rele-
vance score for each video segment, although users are unable to do this (BORSBOOM,
2005). Therefore, each video summarization study presets how many and which relevance
scores users can pick on an assessment scale. Gygli et al. (2014), Chu, Yale Song and
Jaimes (2015) and Song et al. (2015) used assessment scales with two, three and five
relevance scores, respectively. However, choosing the number of relevance scores for the
assessment scale is not a trivial decision. As the study carried out by Simms et al. (2019)
shows, users tend to disagree when there are not enough relevance scores to discriminate a
latent factor appropriately. Users are also unable to make fine-grained distinctions when
there are many scores to decide. In short, the assessment scale depends on users’ ability
to distinguish the relevance of video segments.

To encourage users to be more discerning about which video segments are relevant,
Gygli et al. (2014) and Song et al. (2015) impose constraints on the distribution of
relevance scores. Gygli et al. (2014) preset a limit of 15% of the length of video that
users can annotate as relevant. Similarly, Song et al. (2015) preset a distribution of
relevance scores on a five-point assessment scale. Gygli et al. (2014) and Song et al.
(2015) argue this tight control over how users annotate the relevance of video segments
is necessary to generate high-quality video summaries from user annotations.

2.5 ENSURING THE QUALITY OF USER ANNOTATIONS

Collecting guidelines aim to improve user annotations’ quality by coping with biasing
factors. Urbina (2014), Pasquali (2017), and Hutz, Bandeira and Trentini (2015) point
two quality indicators often used in psychometric studies: Test validity – to verify whether
the psychological test and its items measure the psychological phenomenon they intend
to measure (in particular, the relevance of video segments), and test reliability – to
investigate the internal consistency of scores annotated by users (being specific, how
much users agree with the relevance of video segments). To the best of our knowledge,
video summarization studies (GYGLI et al., 2014; SONG et al., 2015) only investigate
test reliability.
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To explain the basis of test reliability, let us take the relevance perception modeling
in Eq. ., assuming that t is constant over time for a single user and E is estimated
by periodically testing users (PASQUALI, 2017; URBINA, 2014). The smaller the dif-
ference between measurements, the less susceptible is the collecting guidelines to factors
that boost E. Therefore, users must repeatedly annotate each video segment’s relevance
several times. Repeating annotation is not feasible in video summarization, as users are
often rewarded in cash on Amazon Mechanical Turk (SONG et al., 2015) to perform
this. Hence Gygli et al. (2014) and Song et al. (2015) collected user annotations from a
cross-sectional perspective in a single test, calculating the internal consistency between
users.

Anastasi (2000) points out three ways to measure the internal consistency of user an-
notations collected from a single psychological test: Split-half method – that measures
the consistency for a sample of user annotations, Kuder-Richardson coefficient – for
user annotations collected with binary ordinal scales, and Cronbach’s alpha – for user
annotations collected with generic ordinal scales. Cronbach (1951) derived Cronbach’s
alpha equation from Kuder-Richardson, and thus, both coefficients are directly compara-
ble on the same scale. Currently, Cronbach’s alpha is the most used internal consistency
estimator, being applied to user annotations collected by Gygli et al. (2014) and Song et
al. (2015).

Formally, Cronbach’s alpha coefficient, α, measures the internal consistency of K
video segments according to

α =
K

K − 1

(
1−

∑K
j=1 σ

2
Dj

σ2
D

)
, (.)

where the variance of the j-th video segment, σ2
Dj
, is divided by the user annotation

variance, σ2
D. Cronbach’s alpha is a direct measure of user disagreement, so the greater

the variance of users’ responses, the lower the value of Cronbach’s alpha. Cronbach’s
alpha values range from 0 (when user annotations totally differ from each other) and
1 (when user annotation values are all equal). Since these values are constant for any
user annotations, the reference values showed in Table 2.1 are used in the literature to
assess the reliability of psychometric tests (GEORGE; MALLERY, 2010; HUTZ; BAN-
DEIRA; TRENTINI, 2015). As a rule, user annotations must reach at least the internal
consistency value of 0.7.

In the studies conducted by Gygli et al. (2014) and Song et al. (2015), the average
qualities calculated by Cronbach’s alpha for all videos were 0.74 and 0.81, respectively.
However, not all user annotations collected by Gygli et al. (2014) have an acceptable
quality. Notably, Gygli et al. (2014) found that 9 out of the 20 videos annotated in
the SumMe data set are of unacceptable quality score. For example, the quality of user
annotations for the video titled "Saving dolphins" was 0.21. Song et al. (2015) did not
report the quality values for each video, as was done by Gygli et al. (2014); hence, it is
not possible to assert whether users disagreed on any specific video. Overall, the average
quality of the TVSum50’s annotations is above 0.8, and therefore, "good" according to
Table 2.1.
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Table 2.1 Reference values to evaluate Cronbach’s alpha estimations.

Cronbach’s alpha Internal consistency
0.9 ≤ α Excellent

0.8 ≤ α < 0.9 Good
0.7 ≤ α < 0.8 Acceptable
0.6 ≤ α < 0.7 Questionable
0.5 ≤ α < 0.6 Poor

α < 0.5 Unacceptable

Users' video

summary
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Fb 
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score

Common 
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approach

i
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Figure 2.5 The state-of-the-art approach to evaluating video summarizers is to apply knap-
sack solver to user annotations to generate a video summary that matches automatic video
summaries.

2.6 EVALUATING VIDEO SUMMARIZERS FROM USER ANNOTATIONS

While video summarizers attempt to match the relevance scores collected with multi-
valued ordinal scales (e.g., Likert scales), video summarization is binary. Therefore, the
annotated relevance scores (in the balloon (i) in Fig. 2.5) are mapped to binary
with a similar compression rate of the video summary generated by summarizers (in the
balloon (ii)). An evaluation metric then measures the similarity of the predicted video
summary compared to the annotated one (in the balloon (iii)), with the Fβ=1 being the
most common in current video summarization studies (GYGLI et al., 2014; SONG et al.,
2015). Derived from the confusion matrix, Fβ metric is a convenient way to fully describe
the performance of a predictive model by matching expected values to predicted ones
(MOSLEY, 2013).

For a binary predictive model, Table 2.2 summarizes the value matching in four cat-
egories: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN), which correspond to the number of hits and misses for each class label.
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Table 2.2 Confusion matrix organizes the matching of expected and predicted values in a
classification model in a structured way, allowing detailed analysis of hits and misses.

Annotated
Positive Negative

Predicted Positive TP FP
Negative FN TN

From these four categories’ values, some rates (e.g., accuracy, precision, recall, and fall-
out) emerged to assess the classifier’s performance aiming at specific statistical analysis.

Gygli et al. (2014) propose to evaluate video summarizers using metrics based on
precision and recall rates, arguing that the evaluation should aim at the selected video
segments (i.e relevant video segments). While precision describes the hits of relevant
video segments concerning all video segments predicted to be relevant as

precision =
TP

TP + FP
= P (annotated = relevant | predicted = relevant) , (.)

recall describes the hits of relevant video segments in relation to all video segments
annotated as

recall =
TP

TP + FN
= P (predicted = relevant | annotated = relevant) . (.)

Precision and recall rates measure the most relevant video segments from complemen-
tary perspectives. Thus, video summarization studies pursue a trade-off between both
rates via harmonic mean known as Fβ score (KELLEHER; NAMEE; D’ARCY, 2015), is
given by

Fβ = (1 + β2)
precision · recall

β2 · precision+ recall
, (.)

with β = 1 being the weight parameter used in current studies. The Fβ metric ranges from
0 to 1 which represent the worst and optimal performance value, respectively. Within
this range, the value 0.5 represents the random classification method’s performance.

The presented Fβ assesses the classifiers’ binary outputs as categorical targets, be-
ing necessary to calculate the arithmetic mean of Fβ values for each class label when
classifiers’ outputs are non-binary. Finally, this average value is the performance of a
multi-label classifier, which is not used in video summarization to the best of our knowl-
edge.

2.6.1 Other way to assess classification performance

Evaluation metrics, such as Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves, assess the classifiers’ prediction scores (KELLEHER; NAMEE;
D’ARCY, 2015). Consequently, performance analysis is not limited to an ad-hoc bina-
rization of the relevance scores. Instead, ROC and PR curves threshold the relevance
scores with multiple values, generating Ci confusion matrices for each video summary.
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In short, the difference between PR and ROC curves is the rates calculated from
Ci confusion matrices. PR curve is computed as (precisioni, recalli) pairs, which are
summarized in a single performance score by calculating the area under curve (AUC) as

AUC-PR =
I−1∑
i=1

precisioni + precisioni+1

2
(recalli+1 − recalli) , (.)

i being the index for each class label. Conversely, the ROC curve is computed from
(recalli, fall-outi) pairs, with the fall-out rate being calculated as

fall-out =
FP

FP + TN
. (.)

Likewise PR curve, (recalli, fall-outi) pairs of ROC are summarized by

AUC-ROC =
I−1∑
i=1

recalli + recalli+1

2
(fall-outi+1 − fall-outi) . (.)

It is worth mentioning that video summarization studies did not evaluate video sum-
marizers using ROC and PR curves to the best of our knowledge.

2.7 RETHINKING THE EVALUATION OF VIDEO SUMMARIZERS

Current studies model video summarizers as classification tasks, but Otani et al. (2019)
proposed to evaluate them differently. Assuming that the annotated and predicted rele-
vance scores are equivalent in terms of the order of relevance scores (non-linear monotonic
relationship), Otani et al. (2019) assess how high this relationship is by using ranked cor-
relation coefficients (RCC). Otani et al. (2019) applied two RCC (Kendall (KENDALL,
1945) and Spearman (SPEARMAN, 1904)) to match annotated relevance scores (in
the balloon (i) of Fig. 2.6) to the relevance scores predicted by video summarizers (in
the balloon (ii) of Fig. 2.6).

Formally, the τ Kendall coefficient calculates the total agreement and disagreement
pairs for ranked scores from predicted and annotated relevance scores. Admittedly,
we found three versions of the Kendall coefficient in the literate (KENDALL, 1938;
KENDALL, 1945; STUART, 1953), the τB being the version used by Otani et al. (2019),
and described as

τB =
kc − kd√

(k0 − k1)(k0 − k2)
, (.)

k0 = k(k − 1)/2 , (.)

k1 =
∑
i

ti(ti − 1)/2 , (.)

k2 =
∑
j

uj(uj − 1)/2 , (.)
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Figure 2.6 The simplified model of evaluation approach using RCC. The relevance scores that
come out of the (i) collecting of user annotations and (ii) generic video summarizers are ranked
in order of importance and then compared. The internal stages in (i) and (ii) were omitted.

where kc, kd, ti, uj, k are the total of concordant and discordant pairs, the ties in the first
and second group, and the number of video segments, respectively. Similarly, rs Spearman
coefficient matches X ranked scores generated from video summarizers’ prediction to M
annotated relevance scores, according to

rs = ρrX ,rM =
cov(rX , rM)

σrXσrM
=

∑n
i=1(xi − x̄)(mi − m̄)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(mi − m̄)2
. (.)

where rs is the usual Pearson correlation (PEARSON, 1904), the x and y vectors being
the annotated and predicted relevance values, respectively, for each i video segment of a
input video.

After the computation of both RCC, p-values (i.e., statistical significance) indicate
whether the RCC values were not found by chance. Although statistical analyzes can
consider several values of significance, three values are often used: 0.05 (5%), 0.01 (1%),
and 0.001 (0.01%). If the probability is lower than 0.05 (5%), the association between
variables is not incidental and can be deemed statistically significant. Moreover, lower
p-values such as 0.01 and 0.001 show an even higher level of significance.

As a rule, the Kendall and Spearman values lie in the range [−1,+1] for any data
association. Values below zero (a negative correlation) represents an inverse relationship;
that is, the high relevance scores misestimated by the video summarizers match to the
low scores annotated by users, and vice-versa. This situation is illustrated in Fig. 2.7(a).
The predicted relevance is high for the green video segment (the first bar in the plots),
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Figure 2.7 Relevance scores whose correlation is negative show inverted values in relation to
the y − axis = 0.5, whereas the same does not occur when the correlation is null.
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Figure 2.8 For each video segment, represented by different colors, an integer number is ran-
domized (top face of the rolled dice) at a preset range. The set of random integer numbers
forms a randomly generated annotation.

but low for users annotation. This oppositional relationship also occurs in other video
segments in the plots (such as the yellow one), rendering a negative correlation value.
So, the more dissimilar the ranked scores, the closer to -1. In contrast, the more similar
the ranked scores, the more positive the correlation coefficient is, peaking at +1. When
there are no significant associations between relevance scores, the correlation coefficient
is null, and hence, 0 (zero). To sum up, video summarizers should pursue positive RCC
values, with 0 (zero) being the expected value for the random classification method’s
performance.

The performance score does not provide information on the quality of the automatic
video summaries. For this purpose, at least one video summarizer should be used as a
reference for performance, being the random classification method the most common one.
In effect, this method generates relevance scores at random for each video segment such
as rolling a dice (SONG et al., 2015) (see Fig. 2.8). The top face of the dice simulating a
video summarizer that predicts relevance scores by chance. Hence, state-of-the-art video
summarizers should pursue a performance score greater than the one achieved by the
random classification method, with 0 (zero) being the random classification method’s
performance in the RCC.
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2.8 CURRENT ISSUES ON THE EVALUATION OF VIDEO SUMMARIZERS

Fβ and RCC have limitations that make it difficult to assess the performance of video
summarizers accurately. The evaluation using Fβ addresses the video summarization task
as a binary classification of video segments from the input video. As video summarizers
typically predict non-binary relevance scores for each video segment, a knapsack solver
maps the relevance scores to a video summary at a preset compression rate. RCC can
overcome this limitation by matching annotated and predicted relevance scores directly.
Hence, RCC do not aim to preserve the most relevant video segments as they are not
weighted. By carefully investigating how Fβ and RCC assess the performance of video
summarizers, we identified three issues: (a) The degree of error, when Fβ matches
the expected and predicted relevance scores directly; (b) the correlation of relevance
scores that are equivalent in rank order; and (c) weighing of the most compressed video
summaries. These issues are illustrated in Fig. 2.9, and further detailed.

Keeping in mind that user annotations are collected using ordinal scales with several
degrees of relevance. The intuitive solution would be to expand the binary classification
model to a non-binary model (multi-label classification) using assessment scales with
higher representativeness. In this way, each relevance score annotated by users corre-
sponds to a specific class of the multi-label model. For example, on a three-point Likert
scale, the relevance scores 3, 2, and 1 correspond to the "relevant", "neutral", and "irrele-
vant" class labels, respectively. The evaluation of video summarizers is then performed by
matching the annotated and predicted relevance scores directly. In practice, multi-label
classification conflicts with psychometric studies on the normative reference as there is no
guarantee that users will understand the relevance of information in the same way. Users
who are aware of the input video’s content may judge video information as belonging to
the "irrelevant" class; in contrast, other users may judge this same video information as
belonging to the "relevant" class. This situation is illustrated in Fig. 2.9(a). Both video
summaries accurately predicted the annotated relevance scores, except in the highlighted
magenta area. As evaluation metrics for classification ignores the distance between ex-
pected and annotated values, all differences are treated equally as an error; in other
words, the error of high-compressed video summaries is equal to low-compressed ones.
The evaluation by classification approach also ignores relevance scores’ rank, as illus-
trated in Fig. 2.9(b). In the magenta bars, the annotated and predicted relevance scores
are different. However, both generate the same video summaries, as the relevance scores
follow the same relevance order. To sum up, the multi-label approach is not suitable for
evaluating video summarizers.

Estimating the distance and order of relevance scores is useful, as it increases the
discrimination of video summarizers’ performance. RCC are more suited for comparing
relevance scores as RCC assess the correlation between two variables. However, RCC
goes against video summarization as RCC does not aim to preserve the video segments
with the highest relevance scores. In Fig. 2.9(c), one video summarizer predicted higher
relevance scores than the other. Hence, the video summaries generated from them have
different compression rates. The video summarizer that discriminates the relevant video
information more accurately should have the highest performance score. Nonetheless, the
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(a) Degree of errors: Equal evaluations with different degrees of error.
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(c) Weighing of video summaries: Video summaries are evaluated equally although the compression
rates are different, as they hit different relevance levels.

Figure 2.9 Evaluation issues identified in current video summarization metrics.
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Figure 2.10 The compression rates of videos summaries generated by the thresholding of two
user annotations.

performance scores of both video summarizers are equal using RCC. Indeed, there are
ways for RCC to weight each relevance score on the ordinal scale. However, even with
these approaches, video summaries are not weighted according to the compression rate.
Consider Fig. 2.10 that illustrates two users who have annotated six video segments.
Except for the magenta video segment, both users annotated the same values for each
video segment, as shown in Figs. 2.10(a) and 2.10(b). The user in Fig. 2.10(a) judged the
magenta video segment as highly relevant, choosing the relevance score ’4’. On the other
hand, the user in Fig. 2.10(b) considered the same video segment as of little importance,
giving just a ’1’. Since both users have the relevance score ’4’ as the highest order of
importance possible for a video segment, this particular relevance score guides the video
summary to different compression rates. For instance, selecting the video segments whose
relevance score is equal to or above ’4’ in Fig. 2.10(a), a video summarizer removes 50% of
the video segments. Conversely, the compression rate is 66% for the user in Fig. 2.10(b)
by selecting video segments with the same relevance score.

2.9 CLOSURE

Current studies evaluate video summarizers using Fβ, this being the most widely used
(MAHASSENI; LAM; TODOROVIC, 2017; ZHANG et al., 2016; FAJTL et al., 2019;
ZHOU; QIAO; XIANG, 2017; OTANI et al., 2017; ROCHAN; YE; WANG, 2018; GYGLI
et al., 2014; SONG et al., 2015; CHU; Yale Song; JAIMES, 2015). More recently, (OTANI
et al., 2019) introduced RCC with aim at coping with the limitations of Fβ . However,
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both metrics present issues when applied to video summarization. Next chapter, we
propose a novel metric to overcome these issues.
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To overcome the issues of Fβ and ranked correlation coefficients (RCC) in video sum-
marization, we conceived a novel metric named Compression Level of USer Annota-
tion (CLUSA) by assigning relevance scores to the order of importance. While current
studies (FAJTL et al., 2019; ZHOU; QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018;
OTANI et al., 2017; ZHANG et al., 2016) evaluate video summarizers by mapping multi-
valued relevance scores to video summaries at a single compression rate, CLUSA evaluates
the relevance scores predicted by video summarizers (see the balloon (ii) in Fig. 3.1) at
multiple compression rates. To do so, CLUSA generates all possible video summaries from
the annotated relevance scores (see the balloon (i) in Fig. 3.1) by gradually discard-
ing video segments according to their relevance (the thresholding process in the balloon
(iii) of Fig. 3.1). For example, CLUSA extracted three video summaries with different
compression rates from annotated relevance scores in the balloon (i) by assigning value
1 to the selected video segments (the bars in X) and value 0, otherwise. After grouping
these video summaries, each video summary is matched to relevance scores predicted by
video summarizers in the balloon (iii). CLUSA then computes an overall performance
score by weighing the mean matching scores.

3.1 FORMAL DEFINITION OF CLUSA

Let m = (mj) ∈ RK be a vector containing relevance scores predicted by a video sum-
marizer for K video segments. To properly evaluate m, CLUSA requires a data set

23
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Figure 3.1 The simplified model of CLUSA’s evaluation approach. After mapping the rele-
vance scores that come out of (i) collecting user annotations, the video summaries are matched
with the output from the (ii) generic video summarization method, being later grouped and
weighed by compression range. The internal stages in (i) and (ii) were omitted.

D = (di,j) ∈ RU×K annotated by U users. As D values can be non-binary, they are
mapped to Oi video summaries considering the unique relevance scores in each row, ui.
Here, we express this operation by defining a set of distinct relevance scores as

ui = {di,j : ∀j, 1 ≤ i ≤ U, 1 ≤ j ≤ K} . (.)

The top-down example in Fig. 3.2 illustrates this mapping process. Starting on a
single row-vector of D matrix, CLUSA applies thresholds of 0.2 and 0.6 to generate two
concatenated video summaries, Oi. Oi is given by

Oi = ([di,j ≥ ui,k] : 1 ≤ k ≤ |ui|)− 1 ∈ R|ui|−1×K , (.)

|ui| being the cardinality of ui, this is the number of elements. CLUSA thresholds the
row-vectors di using each ui,k value. Together, the resulting row-vectors make up the O
matrices.

As the highest values in ui leads all values in Oi to zero, CLUSA discards them
and concatenates Oi video summaries into a single matrix, X = (xi,j) ∈ R(

∑
(|ui|−1)×K :

(OT
1 |OT

2 |...|OT
i )T . The steps described above built a set of video summaries (as shown in

each row of Fig. 3.3(a)), X, from the user annotations, D (illustrated in each row of Fig.
3.3(b)).

Each row-vector, xi ∈ X, denotes a binary form obtained from user annotation, so
CLUSA computes a matching score vector, zi, given by
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(b) Data set of user annotations for a target video.

Figure 3.3 (a) illustrates the X result map generated from the user annotations arranged as
row-vectors in (b). The row-vectors in (a) were ordered by their compression rate.

zi = (θ(m,xi) : 1 ≤ i ≤
∑
|ui|) , (.)

where θ is a vanilla function, which matches m with xi values, such as the area under
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (AUC-ROC
and AUC-PR). Hence, if m relates to xi on an exact monotonic association, all area
under curve (AUC) values reach the maximum area, zi = 1. The matching process is
depicted in Fig. 3.4: User annotations are binarized (on the left) and then matched to
the relevance scores (on the right), delivering a different ROC curve for each match.

To weight the matching scores properly, CLUSA calculates the ratio between the
discarded video segments and the entire video for each row-vector in X data. This ratio
is here called the compression rate, wi = P (xi = 0), which represents the proportion
of video segments not included in the video summaries. The score vector, zi, is then
grouped into clusters, ci, according to the video summaries’ compression rate, wi. The
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Figure 3.4 To match user annotation and predicted relevance scores, CLUSA metric computes
area under ROC curves from the video summaries associated to a compression rate.

ci clusters are defined as

ci = µ(zk : ‖wk − pi‖2 ≤ ‖wk − pj‖2,∀j, 1 ≤ i ≤ j ≤ B,

1 ≤ k ≤
∑
|ui|) ,

(.)

where B represents the number of compression ranges, while pi is a median point in each
range, given by pi = (2i − 1)(2B)−1, 1 ≤ i ≤ B. ci clusters are suitable to assess video
summarizers’ performance in a general way; that is to say that we can now compare
techniques considering any compression range.

The mean scores of ci clusters are weighted using the pi values, and at the end,
CLUSA is giving by

CLUSA(D,m) = pTc . (.)

It is noteworthy that CLUSA does not require that D and m be on the same assess-
ment scales; therefore, our proposed metric is expected to set a benchmark for different
video summarizers and data sets.

3.2 SELECTING A SUITABLE θ FUNCTION FOR CLUSA

In the SumMe (GYGLI et al., 2014) and TVSum50 (SONG et al., 2015) data sets,
the total of relevant and non-relevant video segments are unbalanced, while the video
segments labeled as "less relevant" are more frequent. As ROC is known for skewed
assessments in situations whereby the distribution of labels is unbalanced (FAWCETT,
2006; DAVIS; GOADRICH, 2006), a less bias-sensitive approach is needed to establish
guidelines for the general interpretation of CLUSA scores. Therefore, we propose to
calculate the θ(m,xi) matching in Fig. 3.1 using the PR curve, instead of ROC curve.
PR curves focus on positive labels (i.e., relevant video segments) by calculating pairs of
precision and recall rates. Hence, the predominant label does not skew the performance
scores when calculating the AUC.

Both AUC-ROC and AUC-PR scores behave differently, as depicted in Fig. 3.5. For
the ci scores with AUC-PR, the random classification method’s performance inversely
follows the video summaries’ compression rate, pi, because the probability of having a
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Figure 3.5 The expected mean scores ci for each pi compression range using CLUSA with
AUC-ROC and AUC-PR curves considering randomly generated relevance scores.

relevant label assigned is higher at low compression (the orange dashed line). On the
other hand, ci should not deviate from a constant value (the blue dashed line) for the
AUC-ROC curve. Both curves plotted in Fig. 3.5 illustrate the expected performance for
a random classification method if CLUSA evaluates all pi compression ranges. However,
video summarization data sets cover only a few compression rates, changing how we
interpret the CLUSA score values.

3.3 INTERPRETING CLUSA SCORE VALUES

By default, CLUSA sets the value of B to 10. CLUSA presets ten equally divided com-
pression ranges, which together cover all compression rates. Although this parameter
can be changed, values lower than the default tend to increase empty groups’ occurrence.
These, namely the compression ranges that do not have annotated video summaries, are
not counted toward CLUSA general score, reducing video summarizers’ performance.

To illustrate how empty groups impair the evaluation of video summarizers, consider
the video summaries produced by the user at the top of Fig. 2.10. Three compression
ranges are covered, ]10%, 20%], ]30%, 40%], and ]40%, 50%], as opposed to the user at the
bottom whose values include ]30%, 40%], ]40%, 50%], and ]60%, 70%]. Even if we concate-
nate these two users’ video summaries, there are no video summaries in the compression
range ]70%, 100%]. As CLUSA does not assess video summarizers’ performance at these
compression ranges, the performance score decreases for all video summarizers, including
the random classification method. As it is necessary to identify the video summaries’
compression ranges in video summarization data sets, the interpretation of the CLUSA is
not as straightforward as for the RCC. Formally, the total number of combinations for the
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Figure 3.6 Performance scores expected in the evaluation of relevance values generated ran-
domly in specific subsets of compression ranges pi.

compression ranges, pi, could be arranged as
∑10

i=1

(
10
i

)
, which for 10 compression range

results in 1023 possible combinations. To simplify the task of interpreting the CLUSA
scores, we selected a few combinations by gradually removing the lower compression range
to reduce the total number of combinations. The last row of the table in Fig. 3.6 shows
how all compression ranges (i.e., [0%, 100%[ video segments removed) were used for the
computation of the performance score. For any video summarizer to be better than a
random classification method, it must have a performance greater than 0.50 and 0.35
for CLUSA with AUC-ROC and AUC-PR curves, respectively. Conversely, the first row
(i.e., [90%, 100%[ video segments removed) comprises 10% of the most important video
segments of the targeted video that has been used. Thus, if video summarizers can be
assessed only in this situation, their performance should be greater than 0.09 and 0.01
for the ROC and PR curves, respectively. All values in Fig. 3.6 are performance scores
of the random classification method, but the choice of which score is suitable depends
on the statistical distribution of the compression rate for each data set. Therefore, it is
necessary to investigate the statistical distribution of X for each video summarization
data set and, from their statistical distribution, determine which compression ranges are
missing.

3.4 CLOSURE

Although CLUSA supposedly fulfills all video summarization requirements, issues such
as missing compression ranges and unbalanced class labels can skew CLUSA scores. As
these particular issues are present in the SumMe and TVSum50 data sets, it is necessary
to analyze how CLUSA reacts to both issues. In the next chapter, we detail how we
analyze CLUSA when evaluating video summarizers in the SumMe and TVSum50.
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Our study involves the analysis and discussion around evaluating video summarizers
at multiple compression rates. Notably, we investigate three issues in this scope: (a)
the quality of user annotations collected with different assessment scales on a standard
scenario, (b) the human consistency compatibility with the internal consistency, and (c)
an analysis of evaluation metrics while deploying state-of-the-art video summarizers at
multiple compression rates. We describe each of these experiments in this chapter.

4.1 METHODOLOGY OF OUR STUDY

4.1.1 Collecting user annotations on a standard scenario

As the quality of user annotations is inherently related to the guideline deployed for
collecting data, the assessment scales are also supposed to affect user annotations’ qual-
ity. SumMe and TVSum50 have collected annotations in different ways, and as a result,

29
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Figure 4.1 User interface of Summers.

we cannot compare their collecting process directly. To circumvent this problem, we
collected annotations using our web-based annotation tool called Summers on a stan-
dardized scenario where the same users annotated the same videos using three types of
ordinal assessment scales: Binary, three-point Likert scale, and five-point Likert scale.
Figure 4.1 illustrates the Summers’ user interface. In top-down order, Summers com-
prises of: (i) A guide with step-by-step instructions to enable users to use our annotation
tool, (ii) a progress bar for the current video, (iii) the input video, (iv) a video segment
to be judged, and finally, (v) the assessment scale with the available relevance scores.

Users may not comprehend how to proceed in the collecting process. Thus, we intro-
duced clear and unequivocal instructions to the users at the very beginning of the session,
as illustrated in Fig. 4.2. Admittedly, users might feel tempted to skip the instructions.
Therefore, we set up a lock mechanism on our annotation tool to prevent this behavior
from happening the first time test instructions are shown. Figure 4.2 illustrates four
messages displayed to users. First, the tool clarifies that the messages are step-by-step
instructions. Second, the annotation tool compels users to watch the entire video. Only
after they have watched the entire video, the third message is shown requesting users to
watch a video segment. Only after watching the video segment, Summers enables the
assessment scale for the user to pick a relevance score. Finally, users are requested to
judge relevance on an assessment scale. After guiding users on their first annotation,
Summers shuffles the sequence of muted video segments presented to users, as users tend
to annotate higher relevance scores to the video segments that appear earlier Song et al.
(2015).
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Figure 4.2 Our annotation tool presents the instructions to users at the beginning of an
annotation session. The next instruction is shown to the user only after completing the action
required in the previous instruction.

(a) (b)

Figure 4.3 Samples of used videos from UCF101 data set: (a) Surfing and (b) basketball.

To determine what videos are to be annotated by the users in Summers, we queried
two types of actions in the UCF101 collection of videos (SOOMRO; ZAMIR; SHAH,
2012): Surfing and basketball. Assuming that users are familiar with this kind of
content, we selected ten videos whose duration was around three minutes. Some samples
of the selected videos are illustrated in Fig. 4.3. Following, the boundary video shot
detector proposed by Gygli et al. (2014) split the input videos into video segments to be
annotated.
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4.1.2 Assessing the quality of user annotations collected from Summers

Users annotated the relevance of a specific arrangement of video segments shuffled in
the annotation collecting. However, video summarizers are not limited to the segments
annotated by the users, but any resulting arrangement of a video shot segmentation.
The relevance scores annotated by users were then mapped to the frame level to allow
for the evaluation of video summarizers regardless of their video shot segmentation. As
illustrated in Fig. 4.4, this segment-to-frame mapping is performed by repeating the video
segments’ relevance value in the video frames. Conversely, psychometric estimators assess
the quality at the level where users annotated the data; in our case, at the segment level.
Therefore, we bring the level mapping back to the segment level to calculate Cronbach’s
alpha values. By comparing Cronbach’s alpha values of user annotations collected with
different assessment scales, we sought to elucidate the relationship between assessment
scales’ representativeness and Cronbach’s alpha values.

4.1.3 Relating evaluation metrics for video summarization to internal consistency

Gygli et al. (2014) calculated human consistency by averaging the distances between
pairs of users using Fβ, as shown in Fig. 4.5(a). Similarly, we calculate the human
consistency of user annotations using CLUSA. Unlike Fβ, CLUSA matches one user
annotation, m, to multiple user annotations concatenated in a single matrix, D. As
the pair-wise strategy implies that D contains only one user annotation, the pair-wise
strategy impinges CLUSA. Accordingly, we also calculated the human consistency using
a leave-one-out strategy. In this strategy, a row-vector of D is removed and becomes the
vector m. In other words, CLUSA evaluates one user from all others, as illustrated in
Figure 4.5(b).

(see Fig. 4.5(b))
After we assessed the human consistency with Fβ and CLUSA, we related the ordering

of their scores from different assessment scales to Cronbach’s alpha. Cronbach’s alpha and
evaluation metrics measure users’ agreement; thus, we assumed that both should follow a
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Figure 4.5 Approaches used to compute human consistency using CLUSA: (a) Pair-wise and
(b) leave-one-out.

similar order. By comparing the order relation, we investigated: (a) Whether the Fβ and
CLUSA deal with more representative assessment scales similar to psychometric quality
estimators, and (b) whether Fβ and CLUSA can deal with relevance scores directly.
When we carried out this stage of our experimental study, Otani et al. (2019) had not
yet introduced RCC in the evaluation of video summarizers. For this reason, we did not
assess human consistency using Kendall and Spearman coefficients.

4.1.4 Assessing video summarizers’ performance using evaluation metrics

Assuming that Cronbach’s alpha values are at least acceptable using the values in Ta-
ble 2.1 as a reference, we used the user annotations to evaluate video summarizers. We
selected state-of-the-art video summarizers by focusing primarily on video summarizers
whose source codes are available in code repositories, such as GitHub. Our search query
on GitHub was performed by date (e.g., recently updated) with the combined words
"video summarization". The search results returned six automatic state-of-the-art meth-
ods based on deep learning techniques. Aiming at video summarizers whose backbone
layers were pre-trained (see Table 4.1), we downloaded from GitHub five video summa-
rizers: dppLSTM (ZHANG et al., 2016), vasnet (FAJTL et al., 2019), vsummRI (ZHOU;
QIAO; XIANG, 2017), vsumDSF (OTANI et al., 2017), and VSwFCSN (ROCHAN; YE;
WANG, 2018). Accordingly, we discarded the AVS as the pre-trained weights are not
available on GitHub. Given that our study aims to evaluate video summarizers at multi-
ple compression rates, we removed the knapsack solver stage in the source codes provided
by the authors.

Briefly, the results of human consistency (presented and discussed later in this chapter)
showed that the Fβ is not suitable for evaluating video summaries directly from the
relevance scores. Therefore, we did not analyze Fβ in this second experimental study.
Instead, we analyze Kendall and Spearman correlation coefficients and CLUSA with ROC
or PR curves, using the performance of a random classification method as a reference.

To determine the performance score expected for a random classification method, we
simulated one by generating integer numbers arbitrarily within the range [1, 5] for each
annotated video in the SumMe (GYGLI et al., 2014) and TVSum50 (SONG et al., 2015).
Then, we compared the average performance of 500 video summaries generated by the
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Table 4.1 State-of-the-art video summarizers retrieved from GitHub repositories.

Method Pre-trained in data set
SumMe TVSum50

AVS (MAHASSENI; LAM; TODOROVIC, 2017)
dppLSTM (ZHANG et al., 2016) features features
vasnet (FAJTL et al., 2019) features features
vsummRI (ZHOU; QIAO; XIANG, 2017) features features
vsumDSF (OTANI et al., 2017) features
VSwFCSN (ROCHAN; YE; WANG, 2018) features

random classification method with state-of-the-art video summarizers.
As missing compression ranges are supposed to affect CLUSA, we analyzed the fre-

quency of compression ranges in each data set to compare the performance of the random
classification method against the performance scores depicted in Fig. 3.6.

4.2 EXPERIMENTAL RESULTS

4.2.1 The quality of user annotations collected with different assessment scales

Initially, we asked users to annotate ten action videos. However, just four were annotated
by sixteen users (on average) using the Binary, Likert-3, and Likert-5 assessment scales.
Therefore we reduce the total of videos to avoid the users’ withdraw during the annotation
process.

In our standardized scenario, with the same annotated videos and users, we are in-
terested in the impact of assessment scales on video summarization tasks. Therefore,
we calculated Cronbach’s alphas for user annotations grouped by the assessment scale
in Table 4.2. The Cronbach’s alpha values for our user annotations increase proportion-
ally to the assessment scale’s degree, suggesting that multi-valued assessment scales are
more suitable to collect user annotations for video summarization tasks. The five-point
Likert scale turned out to be the most suitable assessment scale for video summarization
tasks, considering human consistency growth. This finding does not rule out the potential
use of assessment scales higher than 5 points; however, the increase in user response time
and overlapping responses between similar adjacent categories (e.g., "somewhat disagree"
versus "slightly disagree") can be regarded as a deterrent to the use of more scale points.

Cronbach’s alpha values in Table 4.2 are different at frame- and segment- levels. The
repeated relevance scores at the frame level skewed the Cronbach’s alpha values, and the
quality of users annotations collected with Likert-3 were reduced from "good" (at the
frame level) to "acceptable" (at the segment level) by taking Table 2.1 as a reference.

4.2.2 Using CLUSA to calculate the human consistency

We compared the ordering of CLUSA scores with the Cronbach’s alpha and Fβ scores.
Table 4.3 summarizes the results, and the arrows in the row "Ours" highlight the in-
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Table 4.2 Cronbach’s alpha for different assessment scales: Binary and multi-valued (Likert-3
and Likert-5).

Data set Assessment
scale

Annotations per
video (mean) Cronbach’s alpha (mean)

Frame-level Segment-level

Ours binary 16 0.712 0.718
Likert-3 16 0.809 0.799
Likert-5 16 0.842 0.833

Table 4.3 Human consistency using Fβ and CLUSA in their respective assessment scales:
Binary and multi-valued (Likert-3 and Likert-5). The green, red and blue arrows highlight the
growth of the values (from smallest to largest).

Data set Assessment
scale Internal consistency

Pair-wise Leave-One-Out
Cronbach’s α Fβ CLUSA CLUSA

Ours binary 0.712 0.647 0.033 0.271
Likert-3 0.809 0.516 0.066 0.432
Likert-5 0.842 0.333 0.151 0.635

SumMe binary (ego) 0.766 0.292 0.103 0.212
binary (moving) 0.748 0.308 0.104 0.176
binary (static) 0.850 0.359 0.110 0.228

TVSum50 Likert-5 (BK) 0.791 0.377 0.338 0.505
Likert-5 (BT) 0.871 0.385 0.357 0.550
Likert-5 (DS) 0.760 0.350 0.319 0.494
Likert-5 (FM) 0.789 0.367 0.323 0.486
Likert-5 (GA) 0.866 0.394 0.362 0.533
Likert-5 (MS) 0.826 0.380 0.338 0.529
Likert-5 (PK) 0.741 0.359 0.308 0.494
Likert-5 (PR) 0.813 0.378 0.332 0.533
Likert-5 (VT) 0.875 0.410 0.359 0.540
Likert-5 (VU) 0.783 0.367 0.332 0.495

ternal consistency growth on the Cronbach’s alpha, Fβ, and CLUSA by changing the
assessment scale. The order of Fβ scores presents the opposite behavior (decreasing as
the degree of assessment scales increases) concerning Cronbach’s alpha in our standard-
ized scenario (row "Ours"); in other words, Fβ indicated that binary assessment scale
should be more consistent than multi-valued ones. Conversely, the growth of human con-
sistency in CLUSA became similar to Cronbach’s alpha, suggesting that both deal with
user annotations similarly.

Table 4.3 also summarizes the results of SumMe and TVSum50 according to the
characteristics of each data set. SumMe data set is formed by three types of videos: Ego-
centric, moving, and static, which were determined by the camera and scene motions,
whereas TVSum50 collected user annotations for the following video contents: Changing
Vehicle Tire (VT), getting Vehicle Unstuck (VU), Grooming an Animal (GA), Making
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Sandwich (MS), ParKour (PK), PaRade (PR), Flash Mob gathering (FM), BeeKeeping
(BK), attempting Bike Tricks (BT), and Dog Show (DS). As SumMe and TVSum50 an-
notations were collected using different guidelines, video contents, and users, we cannot
directly compare the Cronbach’s alpha values. Therefore, we analyzed each row in iso-
lation. By comparing CLUSA values using pair-wise and leave-one-out strategies, the
human consistency of annotations collected with binary assessment scales (in the rows
’SumMe’ and ’Ours’) came closer than the annotations collected with a Five-point Likert
scale (in the rows ’TVSum50’ and ’Ours’). This increase of CLUSA values in the five-
point Likert scale suggests that the leave-one-out strategy is less impaired by the issue of
missing compression ranges.

4.2.3 Ranking video summarizers by their performance scores

Using the SumMe’s and TVSum50’s annotations, we assessed the performance scores of
the earlier listed state-of-the-art video summarizers and the random classification method.
Table 4.4 summarizes the performance scores computed using the Spearman and Kendall
correlation coefficients, and using CLUSA with AUC-ROC and AUC-PR curves. We
highlighted the highest performance score on each row.

Table 4.4 Performance scores of state-of-the-art video summarization methods using Kendall
and Spearman correlation coefficients, and using CLUSA metrics with AUC-ROC and AUC-PR
curves.

Data set Evaluation
metric

Automatic method
dppLSTM vasnet vsummRI VSwFCSN vsumDSF random

SumMe
Kendall -0.074*** 0.057* -0.074 -0.049* 0.000
Spearman -0.097** 0.074* -0.101 -0.055* 0.000
CLUSA AUC-ROC 0.314 0.405 0.300 0.345 0.157
CLUSA AUC-PR 0.176 0.228 0.172 0.204 0.063

TVSum50
Kendall 0.043* -0.074** -0.012* -0.004 0.000
Spearman 0.055* -0.101* -0.013* -0.005 0.000
CLUSA AUC-ROC 0.448 0.692 0.486 0.499 0.423
CLUSA AUC-PR 0.262 0.480 0.347 0.349 0.285

Statistical significance. * p < 0.05. ** p < 0.01. *** p < 0.005.

For each evaluation metric in Table 4.4, we ranked the video summarizers by decreas-
ing order of performance in the SumMe and TVSum50 data sets. Table 4.5 summarizes
the rank position of each video summarizer. The performance scores computed using
AUC-ROC and AUC-PR curves delivered the same rank order for video summarizers in
the SumMe and TVSum50 so that we merged the results of both curves in the column
"CLUSA" and the results of the Spearman and Kendall coefficients in the column "RCC".
It is worth noting that there was a divergence in the Kendall and Spearman coefficients in
the TVSum50: The vsummRI rank position (the value indicated by the magenta arrow)
tied for 3rd using the Kendall coefficient, but not using the Spearman coefficient.

Whereas vasnet is ranked first using CLUSA, it switches to the last position using
RCC (as indicated by the blue arrow in Table 4.5). The same trend, but in the opposite
direction, was observed for dppLSTM, whose position was 4th using CLUSA, moving up
to 1st using RCC (as indicated by the green arrow).
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Table 4.5 Rank of state-of-the-art video summarization methods using RCC and CLUSA
metric. The subcategories of each evaluation metric were omitted since the ranks are the same
across metrics, with the exception of the method vsummRI using RCC.

Data set Automatic method
Metrics (Ranking order)
CLUSA RCC

SumMe

vasnet 1st 1st
vsumDSF 2nd 2nd
dppLSTM 3rd 3rd
vsummRI 4th 3rd/4th

TVSum50

vasnet 1st 4th
VSwFCSN 2nd 2nd
vsummRI 3rd 3rd
dppLSTM 4th 1st

Table 4.6 The compression rate distribution of video summaries generated from user annota-
tions in each video summarization data set.

Data set pi

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SumMe 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.874 0.126
TVSum50 0.000 0.000 0.001 0.004 0.189 0.056 0.077 0.159 0.192 0.321

4.2.4 The compression ranges in which video summarizers are accurate

The reason why RCC and CLUSA ranked video summarizers differently is in the as-
sessed compression ranges. Therefore, we investigated the compression rate distribution
on SumMe and TVSum50. Gygli et al. (2014) prioritized the annotation of highly com-
pressed video summaries in the SumMe, as shown in Table 4.6. So the compression rate
distribution lied in the ranges [0.8.0.9[ and [0.9, 1.0[. Since [0.8.0.9[ contains 87% of the
total annotated summaries, CLUSA weighted almost all video summaries equally, and
hence, the ranking of video summarizers using CLUSA and RCC came equally in the
SumMe.

The compression rate distribution in the SumMe reveals why CLUSA and RCC be-
have similarly, but to explain the contrasting pattern of both metrics in TVSum50. In
contrast to SumMe, the compression rates in TVSum50 are more spread out, covering
more compression ranges. As shown in Table 4.6, for all compression ranges above 20%,
there is at least one video summary.

Since the weighing introduced by CLUSA plays a crucial role in the evaluation of
video summarizers, we investigate in which compression ranges the video summarizers
are accurate on the TVSum50. In Fig. 4.6, we combined the mean scores of all 50 videos
that comprise TVSum50 by assigning zero to the missing compression ranges. Computing
both AUC-ROC (the left plot) and AUC-PR (the right plot) curves, dppLSTM performed
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Figure 4.6 Mean performance scores on each compression range using CLUSA with: (a) Area
under ROC curve and (b) area under PR curve in the TVSum50 data set.

poorly in compression ranges below 40%, albeit slightly better than other video summa-
rizers for higher ranges. Although compression ranges above 40% are more weighed, the
higher values’ performance was insufficient to compensate because dppLSTM did not pre-
dict the video segments’ relevance in low compression rates. For this reason, dppLSTM
ranked 4th in CLUSA.

The performance evaluation of video summarizers in Fig. 4.6 includes two situations
of label imbalance: Preserving or removing as many video segments as possible. AUC-
ROC (the left plot) and AUC-PR (the right plot) curves respond differently to the label
imbalance. At very low (]0.0, 0.1[) and very high ([0.9, 1.0[) compression ranges, the ROC
curve is more sensitive. Hence, AUC-ROC boosted the mean scores as the compression
weights are higher at the very high compression range than the others. In contrast, the
mean scores at very low and at very high compression ranges tend to be more steady
for the PR curve, causing the AUC-PR curve to come closer to the random classification
at both compression ranges. To sum up, how the ROC and PR curves deal with label
imbalance justifies the substantial difference in the performance scores found between
both curves.

4.2.5 Comparing video summarizers with a baseline

The performance of the random classification method sets a baseline for the quantitative
evaluation of video summarizers. For the Spearman and Kendall correlation coefficients,
this baseline performance score reached the null correlation (the value 0 in Table 4.4)
for both SumMe and TVSum50 data sets. However, this does not apply to CLUSA. As
Table 4.6 indicates that it is only possible to generate video summaries by discarding



4.3 CLOSURE 39

at least 20% of the videos in the TVSum50 data set, the random classification method’s
performance using the PR curve is supposed to be 0.30 accordingly to the reference values
in Fig. 3.6. Instead, the performance score achieved for the random classification method
was 0.28 in the experimental study. Similarly, the performance score using AUC-ROC is
supposed to be 0.48 in the TVSum50, while the performance score reached was 0.42 in
the experimental study.

To clarify why there was a substantial difference between the expected and obtained
performance scores for the random classification method, we must turn to the compres-
sion rate distribution in Table 4.6. Only 0.1 % of all video summaries generated from
TVSum50 are at the compression range [0.2, 0.3[. Consequently, pi = 0.2 is not the mini-
mum pi value for all videos, only for a few. Since defining a minimum compression range
for all videos in a data set is not trivial, the performance score achieved experimentally
is more accurate.

4.3 CLOSURE

In the next chapter, we discuss the consequences of the results presented here, the limita-
tions of Fβ, RCC and CLUSA in the evaluation of video summarizers, and how CLUSA
advances the field of video summarization.
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Here we discuss the advances in video summarization achieved from our study and
the limitations faced: The consequences of users’ disagreement on the relevance of video
segments, the appropriate assessment scale for collecting annotations, and the evaluation
of video summarizers using multi-valued scale annotations. Finally, we point out what
can be improved in future work.

5.1 WHEN USERS DISAGREE ABOUT THE RELEVANCE OF INFORMATION

The studies conducted by Gygli et al. (2014) and Song et al. (2015) use the Cronbach’s
alpha coefficient to ensure the annotations’ quality in the SumMe and TVSum50 data
sets, respectively. Both data sets reached a Cronbach’s alpha higher than 0.7 on average
(which is the minimum acceptable value in psychometric studies); however, 9 of the 20
videos on SumMe showed unacceptable quality. Since Cronbach’s alpha coefficient is
a direct measure of user disagreement, values lower than 0.7 reveal that users consider
different video segments relevant in SumMe. This issue illustrates how challenging the
evaluation of video summarizers is in certain situations. For example, users might judge
the video segments’ relevance in a way unrelated to the video information if it goes against
their interests. Due to the size of the sample of users, we cannot say whether there are
distinct patterns of behavior or whether the notes are inconsistent.

When Fβ, RCC, and CLUSA match annotations from divergent users, video summa-
rizers’ performance decreases. Notably, we can identify this issue in the RCC and CLUSA.
In RCC, the video segments that users diverged are those whose average correlation is

41
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Figure 5.1 Relating zi CLUSA’s scores for each wi compression range on collected annotations:
(a) and (d) Binary assessment scale, (b) and (e) Three-point Likert scale, and (c) and (f) Five-
point Likert scale, with leave-one-out approach.

close to or below zero. In CLUSA, the matching score’s variance on each compression
range indicates how much the users diverged. Figure 5.1 shows box plots for each com-
pression range (the x-axis) in CLUSA. The higher the interquartile range of each box
(the box’s height), the higher the divergence between users. Comparing each plot from
top to bottom, respectively, users diverge differently in each video. This suggests that
there is no single compression rate to summarize all videos.

5.2 A SUITABLE ASSESSMENT SCALE FOR COLLECTING USER ANNOTA-
TIONS

The box plots in Fig. 5.1(c) and 5.1(f) were generated from annotations collected using
five-point Likert scale. We found different variances for both videos. In the top video, the
variance in each compression range is higher compared to the bottom video. Contrarily,
the variance is similar when the same video is annotated on different scales, as illustrated
in Figs. 5.1(e) and 5.1(f). The assessment scale does not seem to affect the users’
divergence, only user annotations’ internal consistency.

On average, Cronbach’s alphas on the binary scale are lower than on the three-point
Likert scale, which is lower than on the five-point Likert scale. Despite the collecting
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guidelines of SumMe and TVSum50 can not be directly compared, SumMe’s binary scale
annotations also had a lower Cronbach’s alpha compared to TVSum50’s multi-valued
annotations. Thus, collecting annotations using multi-valued scales is recommended, the
five-point Likert scale being the most convenient scale for video summarization. In this
case, metrics should definitely be able to evaluate video summarizers using multi-valued
scale annotations.

5.3 ASSESSING PERFORMANCE BY MATCHING RELEVANCE SCORES DI-
RECTLY

The Fβ metric is limited for video summarization as it only evaluates binary scales. This
is restrictive mainly for data sets like TVSum50, which tackles this issue by converting
a multi-valued scale into a binary scale with a preset compression rate. On the other
hand, two other metrics - RCC and CLUSA - were devised to deal with any types of
annotated data set, be the scales multi-valued or binary. Accordingly, both of them
meet the video summarization assumption of preserving relevant video information when
evaluating video summarizers applied to data sets annotated with binary scales. In this
case, CLUSA sets a different weight for each compression range predefined to evaluate a
video summarizer. Hence different data sets could present different baselines according
to the way the set of compression ranges spans the annotations. Contrarily, RCC have
an advantage over CLUSA in data sets annotated with binary scales because the base-
line is constant (zero) for any set of user annotations. This means that summarization
studies using RCC would not need to calculate a baseline for each data set, though it
is noteworthy that both metrics play the same role for data sets annotated in a binary
scale.

In the case of multi-valued annotations, the RCC do not distinguish the importance of
video segments marked by the users when assessing the relevance scores predicted by video
summarizers. As a consequence, RCC do not meet the criterion of conciseness of user
annotation. In contrast, CLUSA weighs video summaries according to their compression
rates. In other words, the CLUSA’s adaptive nature allows to evaluate the conciseness
criterion, unlike any other metric.

On TVSum50 data set, some video summarizers do not generate summaries with com-
pression rates other than those used to train the method, as happens to dppLSTM. In
this case, both metrics have opposite behaviors. While RCC overestimate dppLSTM for
approaching annotations without distinguishing the importance of each video segment,
CLUSA penalizes dppLSTM for having generated video summaries only on compres-
sion rates which span user annotations. In summary, although CLUSA is suitable for
video summarization, its weighting approach leads to issues when evaluating some video
summarizers. For future work, an alternative solution would be to set weights only for
compression ranges available in the video summarization data sets.



44 DISCUSSION AND CONCLUSIONS

5.4 FUTURE WORK

Our study and the previous studies introduced herein assumed that all video segments
are annotated from a single relevance perception, measuring all objects’ relevance in the
scene together into a single relevance score. However, the relevance could be attached
to a collection of visual elements in the video segment. So, in an alternative scenario,
users should also describe these representative elements (e.g., objects, places). For in-
stance, regarding a video depicting images of surfing, beaches and surfers could be split
between (i) landscape and (ii) bonds among surfers so that some users could place more
emphasis on the environment (i), whereas others would consider relationships (ii) as the
most important characteristic of the video. Video summarization studies might incorpo-
rate video captioning techniques, which already approach this on several collections of
videos. In that case, metrics for video summarization must be custom also to perform
text matching, similar to matching metrics in the field of natural language processing.

While previous studies summarize all videos in a single compression rate, our study
showed that this does not satisfy all users. Considering this, an alternative might be to
devise video summarizers aiming at the compression ranges whose variances are low. In
this way, the video summary generated by summarizers would satisfy most users.
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