
Universidade Federal da Bahia
Instituto de Matemática

Programa de Pós-Graduação em Ciência da Computação

BASIC NOTIONS OF REPLICATION
CHALLENGES: A VIEW ON MULTIPLE

REPLICATIONS OF A
HIGHLY-CONFIGURABLE SYSTEMS

EXPERIMENT

Daniel Amador dos Santos

DISSERTAÇÃO DE MESTRADO

Salvador
September 2, 2020

DANIEL AMADOR DOS SANTOS

BASIC NOTIONS OF REPLICATION CHALLENGES: A VIEW ON
MULTIPLE REPLICATIONS OF A HIGHLY-CONFIGURABLE

SYSTEMS EXPERIMENT

Esta Dissertação de Mestrado foi
apresentada ao Programa de Pós-
Graduação em Ciência da Com-
putação da Universidade Federal da
Bahia, como requisito parcial para
obtenção do grau de Mestre em
Ciência da Computação.

Advisor: Eduardo Santana de Almeida

Salvador
September 2, 2020

Sistema de Bibliotecas - UFBA

Amador dos Santos, Daniel.
Basic Notions of Replication Challenges: A view on Multiple Replica-

tions of a Highly-Configurable Systems Experiment / Daniel Amador dos
Santos – Salvador, 2020.

75p.: il.

Advisor: Prof. Dr. Eduardo Santana de Almeida.
Dissertação (Mestrado) – Universidade Federal da Bahia, Instituto de

Matemática, 2020.

1. Replication. 2. Highly-Configurable Systems. 3. Constant Compar-
ison, 4. Empirical Software Engineering. I. Santana de Almeida, Eduardo.
II. Universidade Federal da Bahia. Instituto de Matemática. III T́ıtulo.

CDD – XXX.XX

CDU – XXX.XX.XXX

TERMO DE APROVAÇÃO

DANIEL AMADOR DOS SANTOS

BASIC NOTIONS OF REPLICATION
CHALLENGES: A VIEW ON MULTIPLE

REPLICATIONS OF A
HIGHLY-CONFIGURABLE SYSTEMS

EXPERIMENT

Esta Dissertação de Mestrado foi julgada
adequada à obtenção do t́ıtulo de Mestre em
Ciência da Computação e aprovada em sua
forma final pelo Programa de Pós-Graduação
em Ciência da Computação da Universidade
Federal da Bahia.

Salvador, 02 de Setembro de 2020

Prof. Dr. Eduardo Santana de Almeida
Universidade Federal da Bahia

Prof. Dr. Manoel Gomes de Mendonça Neto
Universidade Federal da Bahia

Prof. Dr. Rafael Prikladnicki
Pontif́ıcia Universidade Católica do Rio Grande do

Sul

ACKNOWLEDGEMENTS

There is a proverb saying that “a journey of a thousand miles begins with a single step”.
I would rather say that the journey begins way before than any step is given. I would
like to thank God for bringing me to the starting point of this road and making me living
unmatching experiences throughout the path. I am sure those experiences will be useful
for the future challenges coming and now are a part of the person I became.

Along the road, I met a wonderful person, who has been immensely special since then.
Thank you, my dear Brenda Martins, who has been so patient and understanding, for
always motivating me.

I would like to thank my advisor, Professor Eduardo Almeida, who had given the
vision for this research and accepting me as a master’s student. Thanks for being my
guide on this journey.

I thank my loyal friends who have been with me all the way: Denivan Campos, Beatriz
Rêgo, Filipe Adeodato, Edilton Santos, and Lucineia Batista. All the help, support, and
remarkable moments we have shared together made all the difference. Surely, I owe part
of my success to you.

Thanks to my family for believing this dream could be true a long time ago before I
came to UFBA and Salvador. Thanks for all the support, my mother Salma Rodrigues,
my father Dinamar Amador Junior, my brother Dinamar Amador Neto (who provided a
brand new laptop for working on this dissertation).

I could not forget to express my gratitude to the members of the RiSE group and the
participants of the empirical study. You were quite sympathetic in participating in such
a long replication.

This story is finally coming to an end. Others will come. Once again, I thank all the
people aforementioned and a thousand more which I would not be able to list here. May
the everlasting God bless you all the way he blessed me.

v

If you want to change the world, you must be your very best in the

darkest moment.

—ADMIRAL WILLIAM H. MCRAVEN

RESUMO

À medida em que a Engenharia de Software Experimental cresce em maturidade e número
de publicações, mais replicações são necessárias para fornecer um fundamento sólido para
as evidências encontradas em pesquisas anteriores. No entanto, em geral, estudos de
replicação são escassos, e alguns tópicos sofrem mais que outros. Além disso, os desafios
associados à replicação de estudos experimentais não são bem compreendidos. Neste
estudo, pretende-se preencher esta lacuna investigando as dificuldades que surgem ao
se replicar um experimento. Faz-se uso de uma metodologia inovadora, no qual par-
ticipantes com experiências distintas desempenham o papel de um grupo de pesquisa
tentando replicar um estudo experimental. No total, foram feitas oito replicações. É uti-
lizado o método da comparação constante de teoria fundamentada para análise qualita-
tiva. Observou-se nas replicações que a maioria dos resultados se sustenta ao se comparar
com os experimentos originais. Entretanto, os participantes relataram diversas dificul-
dades, a maioria delas relacionadas à clareza das instruções e à qualidade dos artefatos
de replicação. Baseado em nossa experiência, também são fornecidas recomendações, que
podem ajudar a mitigar problemas relacionados à replicação de estudos experimentais.

Palavras-chave: Replicação, Sistemas Altamente Configuráveis, Comparação Con-
stante, Engenharia de Software Experimental

ix

ABSTRACT

As Empirical Software Engineering grows in maturity and number of publications, more
replications are needed to provide a solid grounding to the evidence found through prior
research. However, replication studies are scarce in general and some topics suffer more
than others with such scarcity. On top, the challenges associated with replicating empir-
ical studies are not well understood. In this study, we aim to fill this gap by investigating
difficulties emerging when replicating an experiment. We used an innovative method in
which participants with distinct backgrounds play the role of a research group attempt-
ing to replicate an experimental study. Eight replications in total were performed. We
used the grounded theory’s constant comparison method for qualitative analysis. We
have seen in our replications that most results hold comparing with the original experi-
ments. However, the participants reported many difficulties, mostly related to the clarity
of the instructions and the quality of the replication artifacts. Based on our experience,
we also provide recommendations that can help mitigating issues related to experiment
replication.

Keywords: Replication, Highly-Configurable Systems, Constant Comparison, Empiri-
cal Software Engineering

xi

CONTENTS

Chapter 1—Introduction 1

1.1 Motivation . 1
1.2 Objective . 2
1.3 Research Method . 2
1.4 Statement of the Contributions . 2
1.5 Structure . 3

Chapter 2—Background 5

2.1 Empirical Software Engineering . 5
2.1.1 Quantitative and Qualitative Research 6
2.1.2 Replications . 6
2.1.3 Replication types . 7
2.1.4 Overview of Replications in Software Engineering 8

2.2 Highly-Configurable Systems . 9
2.2.1 Example . 10
2.2.2 Testing in Highly-Configurable Systems 10

2.3 Chapter Summary . 12

Chapter 3—Empirical study design 13

3.1 Research questions . 13
3.2 Experiment Replication Phase . 14
3.3 Focus Group . 14

3.3.1 Session Structure . 15
3.4 Artifacts . 15
3.5 Data Analysis . 16

3.5.1 Constant Comparison Method . 16
3.6 Chapter Summary . 18

Chapter 4—Original Study 19

4.1 Replication Selection Process . 19
4.1.1 Replication Selection Criteria . 19
4.1.2 Candidate Papers . 20

4.2 Goal and Research Questions of the Original Study 21
4.3 Results . 22
4.4 Chapter Summary . 24

xiii

xiv CONTENTS

Chapter 5—Empirical Study Operations 25

5.1 First Operation . 25

5.1.1 Participants Selection . 25

5.1.2 Experiment Replications and Focus Group 26

5.2 Second Operation . 27

5.2.1 Participants Selection . 27

5.2.2 Experiment Replications and Focus Group 27

5.3 Data Analysis Operation . 28

5.4 Chapter Summary . 29

Chapter 6—Results 31

6.1 Quantitative Analysis . 31

6.1.1 Study 1 results - Ignoring limiting assumptions 31

6.1.2 Study 2 results - Lifting limiting assumptions 32

6.2 Qualitative analysis . 36

6.2.1 Open coding . 36

6.2.2 Axial coding . 37

6.2.2.1 Setting up the Environment 37

6.2.2.2 Algorithms Execution 38

6.2.2.3 Interpreting the paper 39

6.2.3 Qualitative Analysis Summary . 40

6.3 Additional Investigation about ESE teaching 40

6.4 Recommendations . 41

6.4.1 Researchers . 41

6.4.2 Practitioners . 42

6.4.3 Educators . 42

6.5 Threats to validity . 43

6.5.1 Internal Validity . 43

6.5.2 External Validity . 44

6.5.3 Conclusion Validity . 44

6.5.4 Construct Validity . 44

6.5.5 Chapter Summary . 44

Chapter 7—Conclusion 47

7.1 Summary of Research Contributions . 47

7.1.1 Evidence about replication difficulties 47

7.1.2 A double-check on sampling algorithms evidence 48

7.1.3 Research methodology . 48

7.2 Research Outcomes . 48

7.3 Future Work . 49

7.4 Concluding remarks . 49

CONTENTS xv

Appendix A—Appendix A: Focus Group Questions 55

Appendix B—Appendix B: Artifacts 57

B.1 Consent Term (in Portuguese) . 57
B.2 Extraction Spreadsheet . 58
B.3 Forms . 60

Appendix C—Appendix C: Full List of Candidate Papers 71

LIST OF FIGURES

2.1 Evolution of the number replication studies. SOURCE: (SILVA et al., 2014) 9
2.2 Example of a feature model . 11

3.1 Empirical study input/output . 14
3.2 Simplified version of the paradigm . 18

5.1 Participants activities . 26
5.2 Open coding example as seen in QDA Miner 29
5.3 Axial coding example . 30

6.1 Axial coding paradigm branches . 37

xvii

LIST OF TABLES

3.1 Artifacts Provided to the participants . 16

4.1 Candidate Papers for replication . 21
4.2 Results of Study 1. SOURCE: (MEDEIROS et al., 2016) 23
4.3 Results of Study 2. SOURCE: (MEDEIROS et al., 2016) 23

5.1 Participants Characterization - First Operation 26
5.2 Participants Characterization - Second Operation 28

6.1 Study 1 Replication Results - Bugs . 33
6.2 Study 2 Replication Results - Samples per File 33
6.3 Study 2 Replication Results - Constraints 34
6.4 Study 2 Replication Results - Global Analysis 35
6.5 Study 2 Replication Results - Header Files 35
6.6 Study 2 Replication Results - Build System 36

A.1 Questions of focus group session . 55

C.1 Full List of Candidate Papers . 71

xix

LIST OF ACRONYMS

ESE Empirical Software Engineering

HCS Highly-configurable System

SPL Software Product Line

RQ Research Question

VM Virtual Machine

UFBA Federal University of Bahia

xxi

Chapter

1
INTRODUCTION

1.1 MOTIVATION

In empirical sciences, it is not enough that a phenomenon be only reasonable and logically
consistent, it is also important to have evidence for that. Moreover, for a knowledge to
be considered valid, it is necessary that a phenomenon can be replicated and observed.
(JURISTO; MORENO, 2001).

Over the years, many guidelines, frameworks, and techniques have been developed to
guide researchers to perform replications in Software Engineering (MAGALHAES et al.,
2015). Furthermore, to a limited extent, experiment papers have been published provid-
ing their assets for replication in the form of a replication package (SOLARI; VEGAS,
2006). However, many questions remain unanswered, such as: If a researcher selects an
experiment paper to perform a replication, does that mean they would be able to execute
that replication seamlessly? If not, what problems and difficulties that researcher would
face when conducting the replication? Would it be possible to obtain the same results
the authors from the original paper obtained? Those questions have motivated our study.

In general, replication studies are scarce in Software Engineering, and some sub-areas
suffer more than others. Highly-configurable Systems (HCSs), an established and popular
area in Software Engineering, is one such area suffering from a lack of replication studies
even with recent efforts to conduct more empirical studies in the area (BAGHERI et
al., 2016; SPLC, 2019). We know some of the challenges related to replicating studies of
non-HCS experiments (MENDE, 2010), however, HCSs are perceived to be more complex
compared to non-HCS (BASTOS et al., 2017) and challenges associated with replicating
an HCSs study are yet to be investigated. Is replicating HCSs studies more difficult?
Which unique challenges does that impose on the researchers? Do scientists with different
level of research experience face different replication difficulties? These are some of the
questions that are also unanswered.

1

2 INTRODUCTION

1.2 OBJECTIVE

In summary, this research aims to investigate the possible problems that may happen in an
Software Engineering replication and more specifically, in an HCS experiment replication.

Additionally, this research intends to investigate the original experiment on the fol-
lowing aspects: if the experiment replication is viable, and if the replication outcome
matches the baseline results. Thus, while we designed a group of replications to observe
possible replication difficulties, we were also interested in the results of the experiment
itself.

1.3 RESEARCH METHOD

To fulfill the mentioned gaps and answer the questions, we conducted a multi-method
study. This research consists of a set of experiment replications, focus group sessions with
the participants, and constant comparison analysis over the data collected. The study
was conducted with eight groups, with each group performing a replication (i.e., eight
replications in total). The groups were formed by three participants playing the role of
researchers. We selected participants having at least a minimum background on Software
Engineering research and/or HCS. However, we purposely gathered teams with distinct
levels of research expertise in order to capture different perceptions about replication dif-
ficulties. After a paper selection process involving inclusion criteria (listed in Subsection
4.1.1), we chose an experiment that investigated sampling algorithms’ performance for
detecting variability bugs. (MEDEIROS et al., 2016)

After replicating the experiment, we conducted a focus group session with every team,
so that we could gather information regarding the difficulties they experienced during the
replication.

Based on the focus groups transcripts and other artifacts obtained from the experiment
replications, we conducted a qualitative analysis using the constant comparison method
(STRAUSS; CORBIN, 1998). We then defined a set of phenomena and explanations for
replication problems collected from the participants, as well as other phenomena involving
their experience about the study. From those explanations, a set of recommendations was
extracted for practitioners, researchers and educators.

1.4 STATEMENT OF THE CONTRIBUTIONS

This dissertation makes the following contributions:

1. Introduce an empirical study where we bring together experiment replications, ap-
plied focus group sessions to assess the difficulties the participants experienced, and
used the constant comparison method to analyze the qualitative data obtained from
the focus group sessions.

2. Perform eight replications of the study A Comparison of 10 Sampling Algorithms
for Configurable Systems (MEDEIROS et al., 2016). We aimed at verifying if the
original study results hold under a group of external replications.

1.5 STRUCTURE 3

3. Document challenges and difficulties when replicating an experiment in Software
Engineering, taking into account different levels of expertise of the participants.
Based on the evidence found, we provide recommendations for researchers, educa-
tors, and practitioners.

1.5 STRUCTURE

The remainder of this dissertation is structured as follows:
Chapter 2 discusses the background of this dissertation, which provides foundation

for comprehending the subjects addressed in this work.
Chapter 3 shows the empirical study’s design.
Chapter 4 describes the original experiment, from the selection process to the ex-

planation of its design and results.
Chapter 5 describes the operations of the empirical study.
Chapter 6 describes the empirical study’s results, recommendations, and threats

to validity. This chapter also presents an additional ad hoc investigation we performed
about teaching practices in Empirical Software Engineering.

Chapter 7 presents the conclusions of the empirical study and directions for future
research.

Chapter

2
BACKGROUND

In this chapter, we lay the foundation of our work: we give an introduction about Em-
pirical Software Engineering (ESE) (Section 2.1), in which we explain quantitative and
qualitative research (Subsection 2.1.1), underline the definitions of replication (Subsection
2.1.2) and their types (Subsection 2.1.3), and present the current state of replication in
Software Engineering research (Subsection 2.1.4). We also introduce the theme of Highly-
configurable System (HCS) (Section 2.2), present an example to illustrate its concepts
(Subsection 2.2.1), and we address testing on HCSs (Subsection 2.2.2).

2.1 EMPIRICAL SOFTWARE ENGINEERING

Software is an integral part of our world. Practically almost every human activity is
aided by computing nowadays. From the most basic to the critical ones, there is constant
need for reliable, safe, and user-friendly software. Software Engineering is defined as
“the engineering discipline that is concerned with all aspects of software production”
(SOMMERVILLE, 2011).

Since software holds such importance in the world economy, it would be reasonable
thinking that Software Engineering relies heavily on science to deliver the best products
and practice. Unfortunately, not that much. Although industry and research offer a
multitude of methods, tools, and technologies, there is little evidence to support the
decision of practitioners who need to choose a particular one (JURISTO; MORENO,
2001).

Software Engineering intersects with various other computer science areas. Therefore,
it is a multidisciplinary subject. However, Software Engineering is relatively young if
compared to other engineering disciplines. Several practices used in the current state
have no grounding on scientific methods (JURISTO; MORENO, 2001). So, many of the
widely dominant methodologies and tools employed have their efficiency attested only by
empiricism. It is needed to generate a body of knowledge about the phenomena that are
unique to Software Engineering.

5

6 BACKGROUND

Usually, the experimental methods show themselves fruitful for investigating people
and their work. It does not mean no other method can be used when inquiring about Soft-
ware Engineering, but social and psychological aspects might get in the way. Moreover,
for those themes, empirical methods have a large history of usage and knowledge-yielding
(WOHLIN et al., 2012). The application of empirical methods on the research of Software
Engineering is known as Empirical Software Engineering.

2.1.1 Quantitative and Qualitative Research

The reality surrounding us can be observed in different manners. As science intends
to understand the phenomena surrounding a certain aspect of the study, there may be
different paths to get into the knowledge. Let us say, for instance, for physical phenomena,
it might be interesting to establish numeric relations and formula to describe the several
events that can be observed; a quantitative way to perceive the phenomena. On the other
hand. For other kinds of knowledge, such as psychology, it might be interesting to rely
on interpretation and explanation of the subjects; a qualitative way to comprehend the
phenomena.

Empirical sciences had split both strategies to acquire knowledge in quantitative and
qualitative research methods. Quantitative research focuses on drawing cause and con-
clusions between variables involved in a study and their outcome. Qualitative research
relies on people perceptions (which in this case, people are the participants of a research)
about the phenomena, and their description of how the events happen. (WOHLIN et al.,
2012)

In many occasions, Software Engineering is highly influenced by human behavior. As
Wohlin et al. (2012) state, “we cannot expect to find any formal rules or laws in soft-
ware engineering except perhaps when focusing on specific technical aspects”. Therefore,
qualitative data is fundamental for understanding Software Engineering in an empirical
way. In other situations, technical aspects makes quantitative data to be reasonable
for investigate a certain phenomenon. For instance, a research might intend to assess a
certain algorithm’s performance. Another example would be assessing metrics from an
agile-development team.

On top of that, we can observe that, due the multidisciplinary nature of Software
Engineering, research can work with two or more research methods. The combined use
of different methods for data collection and analysis is called multi-method or mixed-
method. About this approach, Seaman (1999) defends that “in software engineering, the
blend of technical and human behavioral aspects lends itself to combining qualitative
and quantitative methods, in order to take advantage of the strengths of both”. In
this direction, Easterbrook et al. (2008), synthesizing Creswell (2002), declare that “all
methods have limitations, and the weaknesses of one method can be compensated by the
strengths of other methods”.

2.1.2 Replications

La Sorte defines that “replication refers to a conscious and systematic repeat of the origi-
nal study” (SORTE, 1972). According to Juristo and Vegas, replication is “the repetition

2.1 EMPIRICAL SOFTWARE ENGINEERING 7

of an experiment to double-check its results” (JURISTO; VEGAS, 2009). Although La
Sorte’s definition is wider in terms of not restricting replications to experiments only, in
both definitions there is a mention of repeating a previous study. Most of the definitions
about replication agree that it is mandatory to repeat a previous study (MAGALHAES
et al., 2015), also called original or baseline study. That is why these authors do not
consider approaches that attempt to validate a past study under a completely different
methodology, like happens in conceptual replications (BALDASSARRE et al., 2014) and
independent replications (KREIN; KNUTSON, 2010).

Hardly ever, findings from a single study can be generalized to all possible contexts.
Subjects and the environment might impact the results even when the methodology is
strictly designed and followed. In other cases, there might be bias of the research group
even when not intended. Therefore, empirical studies should be replicated in order to
make evidence valid outside the context of the original study.

Sometimes, a replication might refute an existing study and the authors of the original
study might disagree with the refutation, refining their arguments and reaffirming the
findings of their study (BERGER et al., 2019). By having another team analyzing the
results of a research, there is a double-check on the methodology and findings of an
empirical study, which is beneficial for science, in general.

In order to be able to replicate studies in an external context, it is necessary to
transmit knowledge from the original group to the replicating one. A useful tool for that
are the laboratory packages. Laboratory packages or replication packages are the packed
set of information and materials to use in a replication (SOLARI; VEGAS; JURISTO,
2018). Ideally, they should contain every artifact used in the original empirical study so
replicating researchers could recreate the original setting as much as possible. Tips and
explanations about the original studies procedures are also expected to be found in a
replication package. Thus, tacit knowledge transfer problems can be minimized (SHULL
et al., 2002).

2.1.3 Replication types

In the Software Engineering literature there are several classifications mentioned based
on involvement of the original researchers with the replication and how much a study
design is changed. Magalhaes et al. (2015) point out that their naming is not consistent
throughout, i.e., sometimes a same term has different meaning depending on the author,
while in others different names refer to a same idea.

In terms of involvement of the original researchers, we will use the definitions from
Brooks et al. (1996). They classify replications as internal (when the replication is per-
formed at least by one of the researchers from the original study) and external (when
none of the researchers leading the replication were present at the original instance).

A study can be replicated as similar as possible to the baseline or can have design
changes. The former case is useful to validate findings under different circumstances while
the latter attempts to extend the results. Both ways are valid but they have different roles
depending on the goals of researchers replicating the study (JURISTO; VEGAS, 2011).
Many authors express that it is difficult to make exact replicas in Software Engineering

8 BACKGROUND

the way it is made in other science fields such as physics, chemistry, and biology. Human
factors have a strong influence on Software Engineering studies. Thus, it is rarely possible
to perfectly recreate the same settings of the original study.

Concerning the similarity of baseline and replications, hereafter we will be using clas-
sifications from Baldassarre et al. (2014). In their classification, a close replication is the
one which is as similar as the original study, while a differentiated replication is the one
which have intentional significant design modifications.

There might emerge the belief that only replication papers which confirm the baseline
results are valid. On the other hand, there is a movement in the research community to
stimulate the performing and publishing of studies that refute the original ones (BERGER
et al., 2019). Those papers are useful in a way they show the findings of some study are
not valid or have some effects due to unmanaged validity threats. They may indicate
also a research tendency the community should not follow or steps to avoid in a certain
experiment. Basili, Shull and Lanubile (1999) state that if the community is willing
to build a complete and unbiased body of knowledge, it must publish non-confirmatory
studies.

2.1.4 Overview of Replications in Software Engineering

In the last years, Silva et al. (2014), Magalhaes et al. (2015), and Bezerra et al. (2015) have
been performing tertiary studies about replication in Software Engineering, which are still
the most recent with regards to the topic of this dissertation. These tertiary studies were
in general aiming to understand which topics are most addressed in replications. They
also have cataloged papers containing definitions and frameworks about replication. Thus,
those studies can give a view of which research direction the community is investigating
and how researchers perceive concepts, techniques and tools concerning the subject.

In these mappings, the following gaps were identified to improve replications, both in
number and quality:

1. The number of replications must grow;

2. Researchers must achieve a common ground on classifications and definitions;

3. Over 60% of the replications studies do not cite any papers with guidance about
replication. If the community is willing to produce more high quality replications,
it should pay more attention to papers about replications.

Although the number of replications still must grow, an increase of publications of this
kind is already in course (MAGALHAES et al., 2015). The evolution in replications until
2012 can be seen in Figure 2.1. The creation of the RESER (Workshop on Replication
in Empirical Software Engineering Research) also helped in this improvement. Unfortu-
nately, this workshop’s last happened in the year of 2013 and it is not active anymore.
While there is a growing recognition on the Software Engineering community that pro-
viding good quality artifacts (manifest for instance in ICSE’s ROSE initiative to award

2.2 HIGHLY-CONFIGURABLE SYSTEMS 9

the best conference’s artifacts1), we are not aware if this resonates directly in increasing
the amount of replications the way RESER did.

Figure 2.1 Evolution of the number replication studies. SOURCE: (SILVA et al., 2014)

Another study highlights the importance of performing group replications in Software
Engineering (SANTOS et al., 2019). This area usually suffers from small samples on their
empirical studies and restricted results generalization. Group replications are an effective
way to obtain greater sample sizes. The authors of the mentioned paper claim that, while
more mature empirical sciences, such as medicine and pharmacology, has sophisticated
mechanisms to aggregate evidence from multiple replications, Software Engineering is
still scarce of such efficient methods. Thus, we can state that using aggregation methods
well suited for Software Engineering (such as the one the mentioned study proposes) is
additionally a challenge to overcome.

2.2 HIGHLY-CONFIGURABLE SYSTEMS

A computer system can be designed to adapt itself to different circumstances. Those
adaptations can happen on several levels, ranging from modeling level to implementation
details in the source code (Berger et al., 2013). The same software may be tailored
to run in different platforms, operating systems, and even to suit different user needs
(SPENCER; COLLYER, 1992). We refer to those systems as HCSs. Han and Yu (2016)
states that HCSs allows “users to customize a large number of configuration options while
retaining a core set of functionality”.

In a similar direction, Software Product Lines (SPLs) is a related approach (ABAL;
BRABRAND; WASOWSKI, 2014), referring also as a set of systems sharing a common
core offering variations to specialize software for different needs (POHL; BÖCKLE; LIN-
DEN, 2005). SPL has been a relevant topic in the research community, with an extensive
set of definitions and methodologies used for understanding and developing systems with
configuration in focus. Therefore, in this dissertation we are assuming SPLs and HCSs

1〈https://2020.icse-conferences.org/track/icse-2020-rose〉

10 BACKGROUND

can be treated as correspondent, relying on Sincero et al. (2007) affirmation that HCSs
are able to achieve “the same technical goals that the SPL guidelines aim at.”

In HCSs and SPLs, the software construction is conceptualized around features. A
feature can be described as “a unit of functionality of a software system that satisfies a
requirement” (APEL; KÄSTNER, 2009). Thus, each unit of functionality (a.k.a feature)
will be identified to develop the software system. A set of features will be present in every
configuration of the software (mandatory features), and other features will be present only
in specific cases (optional features). Each combination of features forming a working
software system is called a configuration.

In addition to the HCSs, Software Product Lines area has conceived a development
methodology, known as Software Product Line Engineering (SPLE) (POHL; BÖCKLE;
LINDEN, 2005). From requirements elicitation to testing and delivery, all the software
development is conceived around generating products from the same set of artifacts.

2.2.1 Example

We present here an example of a Software Product Line to depict the concepts presented
so far and introduce new ones. The example’s feature model can be seen in Figure 2.2.
The diagram presents a family of software that can sell tickets for bus rides, flights, and
boat trips. The mandatory features are indicated by rectangles solid circles, and the
optional features are indicated by rectangles with empty circles. In the lower part of the
Figure, further relations between features are listed using the following notation: an arrow
indicates dependency and a caret means “AND”. Thus, for instance, the first line could
be read as “Plane depends on Multiple Segments AND Stop Over AND Connection”.

Besides mandatory and optional features, there is the concept of alternative features.
They can be defined as a set of features that only one of the set can be present in a given
configuration. In the model presented, the family will be able to generate a product
selling tickets for plane, boat, or bus (represented by the homonym features), but only
one transportation method will be available at a time.

Some features can be enabled only if other specific ones are present. These are called
dependent features. In the example, Luggage Registration can be enabled only if Register
Passenger is present. On the other hand, Plane feature depends on Multiple Segments,
Stop Over, and Connection. Dependent features do not necessarily need to be children
of the same parent. However, a child feature necessarily is dependent of its parent node.

2.2.2 Testing in Highly-Configurable Systems

In Quality Assurance, Software bugs are considered faults and defects existing in software.
A fault is an incorrect instruction in the computer program. It does not necessarily
manifest itself in program execution. When it does manifest, then that defect caused an
error, which is an incorrect program state. One of the challenges of quality assurance in
software is that a fault can be silent for a long time, but can induce an error in a very
specific circumstance, making it then difficult to reproduce the bug.

The referred situation can often happen in an HCS. Defects can be introduced,
but might appear as an error only in specific configurations. This is an example of

2.2 HIGHLY-CONFIGURABLE SYSTEMS 11

Figure 2.2 Example of a feature model

12 BACKGROUND

variability bug. The ideal solution for preventing those bugs would be testing all the
features combinations possible. However, depending on how much optional features a
configurable system offers, it might infeasible to test all the possible products generated,
even with automated approaches. Since the early 1990s, it is known that it might be
difficult to test all the configuration combinations in a configurable system (SPENCER;
COLLYER, 1992). For instance, a statement in this research field mention the Linux
kernel, a large HCS, can yield more combinations than atoms existing in the universe
(MEDEIROS et al., 2016).

The research community has been actively producing research addressing development
and testing in HCS to bring answers to the challenges that this kind of software imposes.
Since testing all configuration combinations in many cases is infeasible, one strategy
is using sampling algorithms for testing (PERROUIN et al., 2010). Those algorithms
select subsets of configurations that are representative of the complete set. The different
algorithms can aim different strategies, sometimes aiming for better computation time
and others for the size of the samples (increasing the test coverage).

2.3 CHAPTER SUMMARY

We presented in this chapter the foundation themes of this dissertation. We introduced
replication definitions and a brief overview of replication research in Empirical Software
Engineering. We also addressed HCSs, which is an object of study of the replications
proposed. The next chapter presents the design of our empirical study proposed.

Chapter

3
EMPIRICAL STUDY DESIGN

In this chapter, we describe the design of our empirical study. We start from the research
questions elicitation (Section 3.1). After that, we explain the experiment replication phase
(Section 3.2), the focus group session strategy to gather feedback from the participants
(Section 3.3), and list the artifacts used in this empirical study (Section 3.4). At last,
we explain the data analysis planned for this study (Section 3.5), showcasing the usage
of the constant comparison method for qualitative feedback obtained primarily from the
focus group sessions.

3.1 RESEARCH QUESTIONS

The main objective of this work is to investigate possible replication difficulties of a
Software Engineering experiment. While it is important to verify if the results of the
baseline study confirms under a different context, we are also interested in identifying
which experiment phase presents the most challenges, if there are problems specific to
HCSs, and so on. In this study, we answer the following research questions:

RQ1 Are there problems or difficulties experienced in a Software Engineering experiment
replication?

RQ1.1 In case there are problems, which experiment phases present more difficulties?

RQ2 Are there problems specific to a Highly-configurable Systems experiment replica-
tion?

RQ3 Does the experiment confirm the baseline study results?

In order to maximize the feedback from researchers attempting to replicate an ex-
periment, we designed an empirical study where several participants replicate a study,
essentially playing the role of researchers. We assign them a task to replicate the original

13

14 EMPIRICAL STUDY DESIGN

study, and then we collect their feedback at every step of the experiment. The partic-
ipants are split into groups, each one independent from the other, thus every team is
emulating a team of researchers. Since we have several independent groups obtaining
their own replication results, we consider that independent replications are performed
with this design.

We selected the paper “A Comparison of 10 Sampling Algorithms for Configurable
Systems” (MEDEIROS et al., 2016) as our final choice for the experiment replication
(Chapter 4). This study has five authors. Since in our observatory study the participants
are not expected to report the findings themselves to any kind of scientific publication
and the design is already provided to them, we divide the participants into groups of
three. Figure 3.1 shows the high level overview of inputs and outputs of our study.

Figure 3.1 Empirical study input/output

3.2 EXPERIMENT REPLICATION PHASE

Before designing how the replication activity would be set up, we tested the replication
package provided on the paper’s website. It was performed in order to guarantee that
the experiment is doable from the beginning until the end (even if problems occur, but
none of them preventing the replication to happen).

Each team is given the task of replicating the experiments described by Medeiros et
al. (2016) The participants are expected to complete the task of executing the algorithms
on the subject systems, as described in the original paper. Therefore, they have to use the
assets provided with the replication package. In order to collect the results they obtain,
a spreadsheet is given to them. The estimated time for them to execute the algorithm
and collect the results is one week (counting only the execution part).

3.3 FOCUS GROUP

After the participants finish the study, we perform a focus group session with each team.
The goal is to extend the feedback provided by them from the forms. The sessions are
designed to be approximately 45-minute long. The sessions have audio (two sources) and
video recordings, according to the participants’ consent.

The approach of the sessions was planned to be somewhere between a conversation and
a non-structured interview. We have a set of questions asked to the participants (which

3.4 ARTIFACTS 15

we provide in Appendix A). However, the participants are allowed to interact with the
other ones, in a way they can complement each other’s answers or disagree about some
comment said by the others. The order of the questions can be changed during the focus
group session, if for example, a subject pertaining to a subsequent question is mentioned
beforehand. After all sessions are complete, we transcribe the focus group instances to
text.

3.3.1 Session Structure

The focus group session is divided in four sections, each one containing questions about
the activities conducted by the participants: environment set up, algorithms execution,
paper interpretation and questions about the participant’s view on the replication expe-
rience.

Environment set up refers to the phase in which the participants install the appro-
priate software necessary for running the replication. This involves installing the virtual
machine and Operating System (in case participants wish to do so), installing the libraries
and Integrated Development Environment (IDE). This phase also involves running one
sampling algorithm so that participants can assure all dependencies were correctly in-
stalled.

The algorithms execution phase contains questions about the core experiment execu-
tion, once the environment is properly set up. This also involves how the participants
perceive instructions related to running the sampling algorithms.

As the name suggests, paper interpretation questions refer to gauging participant’s
perception about understanding the paper. Among other things, this involves their per-
ception about the language of the paper, if it is easy to understand and if there are some
parts that were not clear.

Finally, we introduce questions about participants overall impressions about partici-
pating in the experimental study. Our intention is to perceive how motivated participants
are and general feedback about the whole study itself. The intention behind this session
is to enrich the other sessions results, whenever possible.

3.4 ARTIFACTS

In this section, the artifacts of this exploratory study are described. All assets are listed
on Table 3.1.1.

The exploratory study has three forms: a participant characterization form, a form
gathering feedback from the environment set up phase, and another one extracting feed-
back from the algorithms execution.

The participant characterization form is used to investigate the participants’ back-
grounds and skills. The teams are assembled based on participants profiles. Our goal is
that teams have at least one member familiar with programming.

The form about setting up the environment intends to extract possible difficulties

1The assets produced in this study are available in 〈https://github.com/danielamador/ese replication
assets〉

16 EMPIRICAL STUDY DESIGN

Table 3.1 Artifacts Provided to the participants

Artifacts
participant characterization form (Form 1)
Environment setting up form (Form 2)
Algorithms execution form (Form 3)
Experiment data extraction spreadsheets
Virtual Machines with Ubuntu 14.04
Paper and link with replication assets

experienced in that phase. Similarly, the form about algorithms execution intends to
capture the adversities faced.

A spreadsheet is given to the participants. Thus, they can run the algorithms in the
replication package and fill the cells with the execution results for each algorithm. This
asset is useful to verify whether the participants achieve the same results as the baseline
study or the outputs are divergent.

Virtual Machines (VMs) with default Ubuntu 14.04 installations can provided. The
reason for that is, due to the short available time to perform the replication, the partici-
pants might get stuck, since the dependencies work preferably on this Linux distribution.
We assumed that figuring out how to install the dependencies on Windows or Mac can
cost the participants too much time. However, using the VMs is not mandatory, but a
commodity provided to participants who do not desire to install Ubuntu 14.04 directly
on their computers.

3.5 DATA ANALYSIS

In order to enrich and look for explanations about the data obtained in the replication, we
use qualitative data analysis techniques to synthesize evidence primarily from focus group
transcriptions. Additionally, we use the other artifacts to triangulate data obtained from
the focus group sessions: the spreadsheets and the forms answered by the participants.

We might be watchful to detect patterns present on the groups feedback and also
divergences in the groups answers. Thus, our intention with that is to form a solid expla-
nation of the difficulties faced by participants when replicating the proposed experiment.

3.5.1 Constant Comparison Method

We apply the constant comparison method for analysis. We believe this method is suitable
because we primarily rely on qualitative data: the transcripts from the focus group
sessions. We have other artifacts, which were also taken into consideration when applying
this grounded theory technique, like feedback forms applied after the experiment and
explanatory notes written by the participants on the extraction spreadsheets.

The process, as described by Strauss and Corbin (1998), is composed of open coding,
axial coding and selective coding. Although the authors argue that those phases are not
necessarily sequential, we are describing them as if they were, for simplification purposes.

3.5 DATA ANALYSIS 17

As Strauss and Corbin (1998) proceeds on their explanation, they define coding as “the
analytic process through which data are fractured, conceptualized and integrated to form
theory”. They also state that each code represents a phenomenon.

The open coding is performed per line. Each line might be describing phenomena
besides the subject of the question. The line, then is labeled according to the participant
it is talking about. A line can receive none, one or more labels, depending on how many
topics the participant addresses in a single sentence. The labels generated must be always
in the positive form. So, if for example a participant complains the paper is not written
in a clear language, the code can be named as “clarity on the paper” instead of “absence
of clarity on the paper”. This is aligned with Seaman’s point of view (SEAMAN, 1999),
that states: ”none of the codes relates a value, just a concept.”

Sometimes, the participants might mention a subject of some question asked in a
different moment. For example, it might be mentioned a difficulty of setting the envi-
ronment during a question concerning algorithms execution. Addressing that, each focus
group session is expected to be coded twice: one for verifying the emerging codes and
other for tagging those “displaced” answers.

There can be no line without a code. For the cases some line or group of lines is
not related to any code, there is the “no code” tag. That is performed to make text
search easier on the analysis tool, so we can differentiate uncoded responses from text
that is not useful to the data analysis. Unintelligible answers and questions asking for
clarifications about some misheard words are not taken into consideration; therefore, they
are ignored. Random chatting about themes not related to the experiment, computer
science or scientific research are ignored as well.

Axial code refers to ensemble the excerpts extracted from the data sources and re-
arranging them in order to understand phenomena and their variations. It consists of
establishing logical links between the codes created in the open code phase so one can
understand the variation of each phenomena and how categories are related.

Strauss and Corbin (1998) have developed a tool for performing axial coding called
“paradigm”. This tool helps the analyst to visualize the conditions of a phenomenon, the
actions/interactions in which the participants use in response to that phenomenon, and
the outcomes of those actions/interactions, called consequences. In this work, we use a
simplified form of the paradigm, which comprises the classifications mentioned above and
others more as showed in Figure 3.2.

During axial coding, we start by arranging the coded sentences from the open coding
step according to the phases of the paradigm, indicating the cause of a phenomenon,
a phenomenon itself, action/interaction strategies the participant took when facing the
phenomenon, and the consequences of the phenomenon. Next, we synthesize explanations
from each coded sentence and established the links between the codes.

It is important to highlight that this dissertation did not aim to generate a full-fledged
theory about difficulties in replicating experiments. So, in this study there are no iterative
rounds of focus group sessions, refining the codes until reaching a saturation point as the
grounded theory literature advocates. The goal of using constant comparison method is to
provide an initial glimpse of difficulties in replicating a Software Engineering experiment
and to provide explanations about divergences on the quantitative results obtained in

18 EMPIRICAL STUDY DESIGN

Figure 3.2 Simplified version of the paradigm

case they exist.

3.6 CHAPTER SUMMARY

This chapter presented our empirical study’s design. This design comprises the following
elements: research questions, experiment replication, focus group sessions, and the use of
constant comparison for qualitative data analysis. We have listed the artifacts needed to
operate the study as well. The next chapter presents the original experiment’s selection
process, design, and results.

Chapter

4
ORIGINAL STUDY

In this chapter, we describe the original study used for the replications. The following
sections present the process for the paper’s selection (Section 4.1), its experimental design
comprising the study’s goal and research questions (Section 4.2), and its results (Section
4.3).

4.1 REPLICATION SELECTION PROCESS

In this section, we explain how we proceeded to select the replication paper, starting from
the set of criteria determined. Then, we show the list of candidate studies.

4.1.1 Replication Selection Criteria

We defined the following criteria for selecting experiments for replication. CR1 stands
for criterion 1, CR2 means criterion 2, and so on:

CR1: Papers published in conferences/journals about Software Engineering and HCSs.

CR2: Studies that can be replicated in an academic setting.

CR3: Studies that have at least 15 subjects or are executed in an environment without
humans subjects.

CR4: Papers published after year 2000.

CR5: Papers that contain a clear description of subjects allocation and data analysis.

CR6: Papers with the replication package available (embedded in the paper or with a
link to an external repository).

19

20 ORIGINAL STUDY

For CR1, a paper must have been published in Software Engineering conferences and
journals which have HCSs studies as well. Specific conferences about HCSs, variability
and related themes are also valid for this criterion. A reason for the usefulness of aiming
at already published studies is because papers submitted in those conferences/journals
have been extensively reviewed. Thus, we can expect experiments with good quality in
terms of research design and reporting. The journals considered were: ACM Transac-
tions on Software Engineering and Methodology (TOSEM), Automated Software Engi-
neering (ASE), and Empirical Software Engineering (ESE). The considered conferences
were: Systems and Software Product Line Conference (SPLC), International Confer-
ence on Software Engineering (ICSE), Empirical Software Engineering and Measurement
(ESEM), Foundations of Software Engineering(FSE), International Conference on Soft-
ware Reuse (ICSR), and Variability Modelling of Software-Intensive Systems (VaMoS),
and Generative Programming and Component Engineering (GPCE).

CR2 considers that the study must be replicable in an academic environment. This
criterion does not exclude experiments performed in the industry, but the candidate study
must be replicable in an academic setting.

In the third criterion, CR3, we are aiming for experiments with a minimum of 15
subjects, since this is the number we initially estimated we would have in our operations
(Chapter 5). An alternative situation is the experiment being executed in a computing
environment (no humans subjects). In this case, we do not set a minimum subject
number.

Also, we do not intend to replicate experiments originally performed before 2000
(CR4). For example, two of the reference books for Software Product Lines were pub-
lished in 2001 (CLEMENTS; NORTHROP, 2002) and 2005 (POHL; BÖCKLE; LINDEN,
2005). If we consider that as a milestone for maturity of the concept of HCSs, it would
be a sensible decision to not attempt to replicate experiments much earlier than that.

The fifth criterion, CR5, considers that the paper must contain a clear description
of data analysis and subjects allocation. Although it may seem redundant, since the
studies are taken from conferences and journals with a strong review phase, sometimes
the empirical description is not the main focus of the paper.

Furthermore, it is highly desirable that an experiment has a published replication
package (CR6). Having a replication package shows that the researchers of a baseline
study wish that their experiment be replicated and provide means to perform it.

4.1.2 Candidate Papers

Using the criteria mentioned above, we started to search for a replication candidate in
the journals and conferences described in the previous section. Our filtering started by
inspecting manually each venue’s proceedings starting from the year 2000 (criterion CR4)
to 2018. Afterward, a search was performed on the papers’ titles. We selected studies
containing the terms Highly-configurable Systems, and replication (with their variations).
From this phase, we obtained 68 papers (see Appendix 2).

After that, we read all 68 papers to elaborate on a final list. In that phase, we were able
to identify which papers fit all criteria mentioned. We identified seven candidates with

4.2 GOAL AND RESEARCH QUESTIONS OF THE ORIGINAL STUDY 21

Table 4.1 Candidate Papers for replication

Subjects Type Venue Paper Reason For Declining

Computer

ESEC/FSE Scalable Analysis of Variable Software
Replication assets not reachable
due broken links.

ESEC/FSE
Counterexample Guided Abstraction Refinement
of Product-Line Behavioural Models

Replication assets not reachable
due broken links.

ESEC/FSE
Performance-Influence Models for Highly
Configurable Systems

It might require up to 2 months
to be executed. Our subjects
would not have this time availability.

ICSE A Comparison of 10 sampling algorithms -

ICSE
Scalable prediction of non-functional properties
in software product lines

It requires skilled subjects for
interpretation of results.

Human
ESE

Do background colors improve program
comprehension in the #ifdef hell?

Experiment requires skilled
subjects.

ESE
Comprehensibility of UML-based software
product line specifications

Original study uses 116 subjects.
We were not able to gather a similar
amount of subjects.

ICSE
How Does the Degree of Variability Affect
Bug Finding?

Original study uses 96 subjects.
We were not able to gather a
similar amount of subjects.

accessible replication packages. We then grouped them based on the type of subjects
involved with the experiments. The final candidate papers can be seen in Table 4.1,
together with the issue that leads to excluding a paper from the candidate list. Finally, we
ended up with one study from ICSE, named: “A Comparison of 10 sampling algorithms”
(MEDEIROS et al., 2016).

4.2 GOAL AND RESEARCH QUESTIONS OF THE ORIGINAL STUDY

The objective of the original study was to compare 10 sampling algorithms for testing
configurable systems. When a configurable system is developed, there is often the need
to conduct test, similar to any other software. Testing HCSs adds an extra layer of
complexity since many variations of an HCS can exist (NETO et al., 2011; MACHADO
et al., 2014). Unique combinations of features might trigger some bugs that normally
would not appear in an HCS with all variants present. However, it might be unfeasible
to check every possible combination in a configurable system due to limited resources like
time and computation power. Therefore, instead of testing all possible combinations, one
can rely on sampling techniques which can then be used for performing software testing
with satisfactory coverage.

Medeiros et al. (2016) investigated 10 state-of-the-art sampling algorithms and ana-
lyzed them in terms of fault-detection coverage and size of the sample sets. They also
performed analyses on combinations of algorithms in order to find if applying one algo-
rithm after another produces interesting results. This investigation was guided by the
following group of Research Questions (RQs) (referred as Study 1 in the original paper):

RQ1: What is the number of configuration-related faults detected by each sampling
algorithm?

22 ORIGINAL STUDY

RQ2: What is the size of the sample set selected by each sampling algorithm?

RQ3: What combinations of sampling algorithms maximize the number of faults de-
tected by each sampling algorithm?

However, as Medeiros et al. (2016) state, most of the papers concerning sampling
algorithms in C/C++ do not consider: (1) header files, (2) configuration constraints, (3)
build systems, (4) and global analysis when assessing the performance of the algorithms.
Those studies make the assumption that ignoring those four factors does not impact
bug detection and the size of the sample set. Considering each ignored factor as an
assumption, the following group of research questions (referred as Study 2 in the original
study) investigate if those assumptions are valid:

RQ4: What is the influence of the four assumptions on the feasibility to perform the
analysis for each sampling algorithm?

RQ5: What is the influence of the four assumptions on the number of faults detected by
each sampling algorithm?

RQ6: What is the influence of the four assumptions on the size of the sample set selected
by each sampling algorithm?

The algorithms under investigation were T-wise: (with T ranging from two to six),
most-enabled-disabled, one-enabled, one-disabled, random, and statement-
coverage. To assess how they performed, in the first part of the study (RQ1, RQ2,
RQ3), the algorithms were applied on 24 C/C++ open source projects. On the second
part (RQ4, RQ5, RQ6), only two subject systems were feasible to the algorithms. That
happened because, in order to verify the influence that configuration constraints impose
on the algorithms performance, it is necessary to have some sort of feature model or other
asset that contains information about constraints. It was the case only for Linux and
BusyBox.

4.3 RESULTS

The results for Study 1 are summarized in Table 4.2. RQ1 corresponds to the number of
faults each algorithm is able to detect, while RQ2 corresponds to samples per file (which
is the size of the sample set). The performance for selected algorithms combinations,
which was under investigation of RQ3, is displayed on the last four rows.

Table 4.3 exhibits the results for Study 2. The empty cells shows which sampling
algorithms could not be executed under a particular assumption lifted, thus answering
RQ4. RQ5 corresponds to the number of faults detected and, lastly, and RQ6 is answered
by the “Configs” columns for each assumption.

The authors published a replication package, containing the assets used on the exper-
iment for replication purposes.1.

1〈http://www.dsc.ufcg.edu.br/∼spg/sampling/〉

4.3 RESULTS 23

Table 4.2 Results of Study 1. SOURCE: (MEDEIROS et al., 2016)

Sampling Algorithm Faults Samples/File
Statement-coverage 90 1.3
Most-enabled-disabled 105 1.3
One-enabled 107 1.7
One-disabled 108 1.7
Random 124 2.6
Pair-wise 125 1.8
Three-wise 129 2.5
Four-wise 132 3.7
Five-wise 135 6.0
Six-wise 135 10.0
Pair-wise and one-disabled (C1) 131 3.5
One-enabled, one-disabled, and statement-coverage (C2) 132 4.8
One-enabled, one-disabled, and most-enabled-disable (C3) 133 4.8
One-enabled, one-disabled, and pair-wise (C4) 134 5.4

Table 4.3 Results of Study 2. SOURCE: (MEDEIROS et al., 2016)
Algorithms Constraints Global analysis Header Files Build System

Faults Configs Rank Faults Configs Rank Faults Configs Rank Faults Configs Rank
Pair-wise 33 ↓ 30 5 — — — 39 = 936 4 33 ↓ 2.8 ↑ 4
Three-wise — 2 — — — — 43 = 1,218 5 42 ↓ 3.9 ↑ 5
Four-wise — — — — — — 45 = 1,639 7 45 = 5.7 ↑ 8
Five-wise — — — — — — — — — 47 = 8.3 ↑ 9
Six-wise — — — — — — — — — 47 = 12 ↑ 10
Most-enabled-disabled 23 ↓ 1.4 = 1 27 = 1.4 1 27 = 1.4 = 1 26 ↓ 1.4 ↑ 2
One-enabled 30 ↑ 1.1 ↓ 3 31 7,943 3 31 890 6 20 ↓ 2.3 ↑ 7
One-disabled 38 ↓ 1.1 ↓ 4 39 = 7,943 2 39 = 890 3 39 = 2.3 ↑ 3
Random 39 ↓ 4.1 = 6 29 8,123 4 40 17.2 2 41 = 4.2 ↑ 6
Stmt-coverage 32 ↑ 4.1 ↑ 2 — — — — — — 25 = 1.3 ↑ 1
Some algorithms do not scale, indicated using dashes (-). We use, and to represent small changes in the number of faults and

Size of sample set, as compared to our first study and we use an arrow to represent larger changes.

24 ORIGINAL STUDY

4.4 CHAPTER SUMMARY

In this chapter, we have presented the baseline study used for replication in our empirical
study. We unveiled the process of selecting the paper from a list of candidates, based
on specific selection criteria. Then, we described the original study design, research
questions, and results. In the next chapter, we present the operations of our study, which
includes multiple replications of the experiment shown above.

Chapter

5
EMPIRICAL STUDY OPERATIONS

This chapter describes the two operations of this dissertation’s empirical study (Section
5.1 and Section 5.2). These operations follow the design established on Chapter 3. In
each one, we explain the participant selection process and outline their profile. Further
on, we describe the experiment replications and the focus groups sessions applications.
Later, we show how data analysis was applied (Section 5.3).

5.1 FIRST OPERATION

The first operation was applied within a post-graduate course of Empirical Software
Engineering. The course is offered every semester at Federal University of Bahia (UFBA),
Brazil. The syllabus of this course include various topics related to Empirical Software
Engineering, such as designing a Systematic Review, performing statistics analysis and
developing experiments in Software Engineering. Fifteen students participated in this
operation within a time period of three weeks.

5.1.1 Participants Selection

In the first instance, the students enrolled in the course of Empirical Software Engineering
participated acting as researchers. This mentioned course is composed of students with
different levels of expertise in Software Engineering. On the one hand, we have skilled
and experienced software engineers, and on the other, we have alumni recently introduced
to the Software Engineering topic. We consider these participants to be suitable because
they were having close contact with Empirical Software Engineering, where they were
just introduced to experiment design.

Regarding arranging participants in groups, a characterization form was developed
(Form 1), so the participants would answer it and later they would be allocated in
groups. This form intended to gather information such as, but not restricted to: partici-
pants’ academic degree, experience with programming, experience with experiments, and
knowledge about HCSs. The participant’s distribution then was designed in a manner

25

26 EMPIRICAL STUDY OPERATIONS

Table 5.1 Participants Characterization - First Operation
Group Name Degree Exp. with programming Experience with Experiments Knowledge with HCS

Odin Masters Student More than 5 years Participant Has only basic notions about HCS
Thor Masters Student More than 5 years None Has only basic notions about HCSGroup 1
Ymir Graduate Between 1 and 2 years Participant Has theorical knowledge
Saturn Graduate More than 5 years Participant Has theorical knowledge
Mercury Masters Student More than 5 years Participant Has theorical knowledgeGroup 2
Helios Graduate Between 1 and 2 years None Never heard before
Venus Masters Student No experience None Has only basic notions about HCS
Mars Master Between 1 and 2 years None Only heard aboutGroup 3
Jupiter Ph.D Student More than 5 years None Has only basic notions about HCS
Neptune Undergrad Student Between 2 and 5 years None Theoretical and practical experience
Pluto Graduate More than 5 years Participant Has only basic notions about HCSGroup 4
Minerva Masters Student No experience Participant Has only basic notions about HCS
Vulcan Masters Student Between 2 and 5 years None Only heard about
Diana Masters Student Between 2 and 5 years Participant Theoretical and practical experienceGroup 5
Bacchus Masters Student Less than 1 year None Has only basic notions about HCS

that researchers with different expertise could be placed across the groups. For instance,
we allocated, in the same team, a participant with reasonable experience in program-
ming together with an experienced researcher. Contrasting with that, there was another
group formed entirely by seasoned developers. By distributing researchers with differ-
ent expertise, we intended to bring diverse points of view regarding each phenomenon.
This diversity is highly desirable for performing axial coding in the constant comparison
method (used in this study for qualitative analysis, Subsection 3.5.1), in which the most
diverse variations of a phenomenon are found, the better description of a phenomenon
there will be (STRAUSS; CORBIN, 1998).

The participants characterization can be seen on Table 5.1. The real names were
omitted for confidentiality reasons. The activities performed by the participants can be
seen in Figure 5.1. Groups 1 to 5 correspond solely to the first operation of the study.

Figure 5.1 Participants activities

5.1.2 Experiment Replications and Focus Group

After the participants’ allocation, on the first encounter between the author of this dis-
sertation and the participants, there was an explanation of the basic concepts necessary
to understanding the experiment. Since on this operation many participants were not

5.2 SECOND OPERATION 27

familiar with HCSs, and the time given to read the paper was relatively short, we con-
sidered being important to lecture them on this topic. The participants were given one
week to read the original experiment paper.

On the second encounter, after all the participants read the paper, the author clarified
questions regarding the original study. Although this might have introduced bias (see
Threats to Validity), we judged this to be useful due to the lack of familiarity some
participants had with the themes addressed in the study. Later, the author gave students
one week to set up the environment and to answer Form 2.

On the next week, there was an additional encounter. Considering that the partic-
ipants had configured their environments to replicate the experiment, the author gave
instructions on how the experiment results would be documented. Thus, the participants
would have one week to execute the experiment and insert their obtained results on the
extraction spreadsheet. At the end of the activity, the participants would respond to
Form 3, which had high-level questions about replication difficulties.

After all the groups finished performing the replications, the focus group sessions were
performed at UFBA, with each team alternately. We reserved rooms to provide a quiet
place for the sessions. Thus, we were able to produce audio recordings with as much
intelligible sound as possible. Another action to minimize the amount of unintelligible
audio was placing one of the audio recorders close to the moderator and the other one
close to the participants.

5.2 SECOND OPERATION

In the same university, there is a research lab focused on Software Reuse named RiSE
(Reuse in Software Engineering). The second operation was performed six months after
the first iteration with nine masters and Ph.D. students from this laboratory. In total,
each group had 2 weeks to perform the replications.

5.2.1 Participants Selection

Contrasting with the first operation, in the second instance of the study, we had access
to researchers familiar with research in Empirical Software Engineering and HCSs. Thus,
this time we have selected a more experienced group of participants to collect a different
view on replication difficulties. The participants characterization can be seen on Table
5.2. Groups 6 to 8 represent teams participating on the second operation.

Although all participants from the second operation were members of the RiSE re-
search group, in Group 8 the participants were not in Salvador, Brazil, at the period
the empirical study was applied. Poseidon (names depicted here are fictional) was in
England, Persephone was in the United States, while Zeus was in another Brazilian city.
Therefore, their group was allowed to perform the study remotely.

5.2.2 Experiment Replications and Focus Group

As mentioned before, the second operation was applied within a time frame of two weeks.
Since on this operation the participants were experienced with the themes addressed, we

28 EMPIRICAL STUDY OPERATIONS

Table 5.2 Participants Characterization - Second Operation
Group Name Degree Exp. with programming Experience with Experiments Knowledge with HCS

Athena Masters Student Between 2 and 5 years Designed 3 to 5 experiments Theoretical and practical experience
Artemis Masters Student Between 2 and 5 years Participant Theoretical and practical experienceGroup 6
Dionysus Ph.D Student Between 2 and 5 years Designed 3 to 5 experiments Theoretical and practical experience
Cronus Ph.D Student Less than 1 year Designed 2 experiments Theoretical and practical experience
Apollo Masters Student More than 5 years Participant Theoretical and practical experienceGroup 7
Hestia Ph.D Student Between 1 and 2 years Designed 2 experiments Has only basic notions about HCS
Zeus Ph.D More than 5 years Designed above 5 experiments Theoretical and practical experience
Poseidon Ph.D Student More than 5 years Designed 2 experiments Theoretical and practical experienceGroup 8
Persephone Ph.D Student More than 5 years Designed 2 experiments Theoretical and practical experience

judged that it would not be necessary to provide training on that matter. Therefore,
the operation could be shortened by one week. In this operation, there was only one
encounter between the author of this dissertation and the participants (excluding the
focus group session that would happen later).

From email, the author explained the activity the participants would perform on
the following week: read the paper. After one week, the author and participants had
their encounter. The author of this dissertation answered questions about the paper
and explained the further steps of the empirical study. The participants had one week
to set up the environment and replicate the experiment. After executing the baseline
experiment, the participants filled the extraction spreadsheets and returned them to the
author.

Similar to the first instance, on the second operation of the study, after each team
performed the activities related to the replication, the focus group sessions were conducted
to gather feedback from the participants. Groups 6 and 7 had their sessions at UFBAs
rooms scheduled for this purpose, with the same approach used in Groups 1 to 5. For
Group 8, the focus group was conducted through a virtual meeting. Fortunately, the
online session happened without major difficulties.

5.3 DATA ANALYSIS OPERATION

After all sessions were conducted and recorded, they were transcribed into text format.
On top of those transcriptions, we applied the qualitative data analysis, as described in
Section 3.5. We have used the tool QDA Miner Lite1 for labeling the text. An example
of a text excerpt in QDA Miner can be seen in Figure 5.2 (in Portuguese).

In the open coding process, we split the codes into two sets: the ones describing
replication problems (which we name here as central codes) and the ones related to
other phenomena that help explaining replication problems (called periphery codes). For
instance, we have a code called “Difficulty in setting the environment up”. In that code,
we have a description of the difficulties the user experienced in setting up the environment.
One reason that might be linked to that difficulty is the lack of ability with Linux (to set
the environment, a participant has to install and configure a Linux distribution). So, the
periphery code helps to explain the central code.

After collecting all text excerpts, in the axial coding we synthesized the explanations
regarding the phenomena identified. In other words, after reading all the testimonials

1Available in 〈https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/〉

5.4 CHAPTER SUMMARY 29

Figure 5.2 Open coding example as seen in QDA Miner

about each code, we structured them logically into flowing text. Our idea was to use the
concepts from the paradigm and then elaborating on extensive explanations. An example
of a synthesized explanation coming from the axial coding can be seen in Figure 5.3 (in
Portuguese, the participant’s citations, and in English, the code synthesis).

5.4 CHAPTER SUMMARY

In this chapter, we explained how we performed the two operations of the empirical
study: the participants’ selection, experiment replication, and focus group. Additionally,
we explained the data analysis operation as well. In the next chapter, we present the
results emerged from the operations performed.

Figure 5.3 Axial coding example

Chapter

6
RESULTS

We present in this chapter the quantitative (Section 6.1) and qualitative analysis results
(Section 6.2). The qualitative analysis results describe mainly the replication problems
found and additionally other phenomena surrounding the replications. The quantitative
analysis results refers to the numbers obtained the in the replications.

We also describe an additional investigation we performed about teaching in Empirical
Software Engineering (Section 6.3). On top of the results and the additional investigation,
we provide recommendations (Section 6.4) and list threats to validity (Section 6.5).

6.1 QUANTITATIVE ANALYSIS

In this section, we present and discuss the results obtained from the sampling algorithms
executed by the teams on the replication.

6.1.1 Study 1 results - Ignoring limiting assumptions

This subsection contains the algorithms execution replication results. The results can be
seen in Table 6.1 (for bugs) and Table 6.2 (for configuration per file). The results of the
baseline study are on the first column (Baseline).

For Statement-coverage algorithm, only Groups 5 and 6 were able to obtain
results. According to Jupiter1 from Group 2, the reason is that the algorithm took a long
time to execute without giving any progress information. The few teams which found
results got converging numbers compared to the baseline for this algorithm.

Regarding Most-enabled-disabled algorithm, except for Group 3, all teams were
able to find the same result as the baseline. Group 5 said this algorithm was not present
in the replication artifacts. We assume that they were not confident enough to associate
all-enabled-disabled (which was the name used in Java implementation) to most disabled.

1Table 5.1 and Table 5.2 show the participants allocation. Actual names are omitted for confidentiality
issues.

31

32 RESULTS

In comparison with Statement-coverage algorithm, Random algorithm first yields
actual output shown on the console, but it was not considered meaningful enough for the
participants. Once again, the lack of feedback might have discouraged participants to
keep waiting until the algorithm was ran successfully. From all the teams, Group 3, 5
and 6 were able to execute this algorithm until the end. Group 3 only found number of
bugs, and Group 5 and 6 found results for bugs and configurations per file for Random.
Due the nature of this particular algorithm, we should not expect to find the same result
as the baseline. However, the value for Configuration per File of Group 5 (Table 6.2)
seems to be way too dissonant from all the other values found for the other algorithms.
We believe that something went wrong in the execution of this algorithm for this team
and therefore this result should not be considered. Another unique case was the fact that
Group 6 found matching results compared to the original study.

Apart from Group 3, all the teams were able to find converging results compared
to the original paper for the remaining algorithms: One-enabled, One-disabled and
T-wise sampling algorithms.

For algorithms combinations, teams were able to find similar numbers for the bugs
and completely different numbers for Configurations per Sample. The results can be seen
in Tables 6.1 and 6.2. For combinations C1, C2 and C4, in general, the teams found
the number of bugs being added of one compared to the baseline. So, for C1, while the
baseline’s result was 131 bugs, teams found 132, except for Groups 3, 6, and 8, which
found 128. In C2, the baseline amount of bugs was 132, while the teams found 133,
except group 7, which found 112 bugs. C4, on the baseline contained 134 bugs, while the
groups found 135 as a result, except Group 7 which found 129.

Regarding algorithms combinations results for Configurations per Sample, none of
the teams were able to find similar results compared to the baseline. When running
Java classes responsible for retrieving these numbers, the output actually does not have
results for Configurations per File (although the original paper has results for that.)
Groups 2, 3, 4, and 8 did not deliver any results for Configurations per Sample for the
algorithms combination. Groups 1, 5 and 7 inserted on the table the configurations
number instead (the Java implementation only gave results for bugs and configurations,
but not Configuration per File). Group 6 attempted to calculate the results (since the
total number of project files was 50078). For instance, taking the combination C1 if 2803
(number of configurations given by the algorithms) is divided by 50078 (total number of
files) the answer is approximately 0.06, which was the number Group 6 placed on the
Table. However, this number does not confirm the baseline. In the end, we can state
that for configuration per file, none of the groups were able to replicate the baseline.

6.1.2 Study 2 results - Lifting limiting assumptions

In this subsection, we discuss the results for the Study 2, where the assumptions are lifted
in order to perform a more realistic bugs calculation. The following assumptions were
lifted: Configuration Constraints, Global Analysis, Header files, and Build System. The
results can be seen respectively in Table 6.3, Table 6.4, Table 6.5, and Table 6.6. A dash
in the cell indicates that the algorithm execution is not feasible for that assumption lifted

6.1 QUANTITATIVE ANALYSIS 33

Table 6.1 Study 1 Replication Results - Bugs

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage 90 - - - - 90 90 - -
Most-enabled-disabled 105 105 105 - 105 105 105 105 105
One-enabled 107 107 107 107 107 107 107 107 107
One-disabled 108 108 108 108 108 108 108 108 108
Random 124 - - 81 - 134 124 - -
Pair-wise 125 125 125 125 125 125 125 125 125
Three-wise 129 129 129 129 129 129 129 129 129
Four-wise 132 132 132 132 132 132 132 132 132
Five-wise 135 135 135 135 135 135 135 135 135
Six-wise 135 135 135 135 135 135 135 135 135
C1 131 132 132 128 132 132 128 132 128
C2 132 133 133 133 133 133 133 112 133
C3 133 133 133 - 133 133 133 133 -
C4 132 135 135 135 135 135 135 129 135

Table 6.2 Study 2 Replication Results - Samples per File

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage 1.3 - - - - 1.3 1.3 - -
Most-enabled-disabled 1.3 1.3 1.3 - 1.3 1.3 1.3 1.2 1.3
One-enabled 1.7 1.7 1.7 2.71 ×1015 1.7 1.7 1.7 1.7 1.7
One-disabled 1.7 1.7 1.7 .71 ×1015 1.7 1.7 1.7 1.7 1.7
Random 2.6 - - - - 186578 2.6 - -
Pair-wise 1.8 1.8 1.8 2.75 ×1016 1.8 1.8 1.8 1.7 1.8
Three-wise 2.5 2.5 2.5 3.43 ×1015 2.5 2.5 2.5 2.4 2,5
Four-wise 3.7 3.7 3.7 4.71 ×1015 3.7 3.7 3.7 3.7 3.7
Five-wise 6.0 6 6 6.94 ×1015 6 6 6 5,9 6
Six-wise 10.0 10.0 10.0 ×1016 10.0 10.0 10.0 10.0 10.0
C1 131 2803 - - - 2.8 0.06 2803 2803
C2 132 4662 - - - 4662 0.09 907 4662
C3 133 4126 - - - 4731 0.08 4126 -
C4 132 4731 - - - 4731 0.09 1145 4731

34 RESULTS

Table 6.3 Study 2 Replication Results - Constraints

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage 32 32 32 - - 32 32 - 32
Most-enabled-disabled 23 23 23 - 23 23 23 23 23
One-enabled 30 7 7 7 7 7 7 7 7
One-disabled 38 6 6 6 6 6 6 6 6
Random 39 - - - - 42 44 - -
Pair-wise 33 - - - - - - - -
Three-wise - - - - - - - - -
Four-wise - - - - - - - - -
Five-wise - - - - - - - - -
Six-wise - - - - - - - - -

or the group left the field empty for any other reason.

For the Constraint-enabled scenarios, among the feasible algorithms, pair-wise was
the only one in which no team was able to retrieve any results. In most-enabled-
disabled, all teams except Group 3 confirmed the baseline, with 23 bugs. For one-
enable and one-disabled algorithms, all the teams found the same result for each
algorithm: 7 bugs for one-enabled and 6 bugs for one-disabled, while the baseline
yields 30 bugs for one-enabled and 38-bugs for one-disabled (which can be considered
a significant discrepancy). In statement-coverage case, the four groups which filled
the cells for this lifted assumption found 32 bugs, confirming the original result of 32
bugs. Only two groups were able to run random: while the baseline result was 39 bugs,
Group 5 found 42 and Group 6 found 44, which still can be considered an expected result
due the nature of random sampling.

Regarding the results for Global Analysis, T-wise and statement-coverage were
not supposed to be executable. However, all teams but Group 3 were able to retrieve
results (being 23 bugs). For the feasible algorithms, one-enable presented the same
value as the original paper, 31 bugs. For one-disabled, while the baseline found 39
bugs, all teams could get close to that, which was 38. A similar situation occurred
in one-disabled, where all teams found 38 bugs, almost reaching the 39 bugs of the
reference value. The other algorithms showed discrepancy: most-enabled-disabled
yielded 35 bugs on the replication for all groups but Group 3 (which could not run the
algorithm) contrasting with 27 bugs from the baseline; and random replicated values
orbited around 38.

In terms of the Header Files constraint, statement-coverage, five and six-wise
did not scale. We saw a similar situation in Global Analysis. Most-enabled-disabled
baseline was 27 bugs, against 35 which all groups except Group 3 and 8 obtained. Three-
wise and four-wise followed closely the baseline values: for the former 45 bugs against
43 bugs from the baseline; for the latter 46 bugs against 45 bugs. Random orbited

6.1 QUANTITATIVE ANALYSIS 35

Table 6.4 Study 2 Replication Results - Global Analysis

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage - 0 0 0 0 0 - 0 0
Most-enabled-disabled 27 35 35 - 35 35 35 35 35
One-enabled 31 31 31 31 31 31 31 31 31
One-disabled 39 38 38 38 38 38 38 38 38
Random 29 36 39 37 40 39 38 38 38
Pair-wise - 23 23 - 23 23 23 23 23
Three-wise - - - - - - - - -
Four-wise - - - - - - - - -
Five-wise - - - - - - - - -
Six-wise - - - - - - - - -

Table 6.5 Study 2 Replication Results - Header Files

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage - 0 0 - 0 0 31 31 0
Most-enabled-disabled 27 35 35 - 35 35 35 35 -
One-enabled 31 31 31 31 31 31 31 31 -
One-disabled 39 39 39 39 39 39 39 39 -
Random 40 47 43 46 44 44 42 46 45
Pair-wise 39 39 39 39 39 39 39 39 39
Three-wise 43 45 45 45 45 45 45 45 45
Four-wise 45 46 46 46 46 46 46 46 46
Five-wise - - - - - - - - -
Six-wise - - - - - - - - -

36 RESULTS

Table 6.6 Study 2 Replication Results - Build System

Sampling Algorithm Baseline G1 G2 G3 G4 G5 G6 G7 G8

Statement-coverage 25 31 31 31 31 0 31 31 0
Most-enabled-disabled 26 28 28 - 28 28 28 28 35
One-enabled 20 20 20 20 20 20 20 20 31
One-disabled 39 39 39 39 39 39 39 39 38
Random 41 42 45 41 40 38 41 42 38
Pair-wise 33 33 33 33 36 33 33 33 33
Three-wise 42 46 46 46 46 46 46 46 -
Four-wise 45 45 45 45 45 45 45 45 -
Five-wise 47 47 47 47 47 47 47 47 -
Six-wise 47 47 47 47 47 47 47 47 -

around 45 bugs, against 40 bugs in the original. The other algorithms matched the
baseline, excluding Group 8 in one-enabled and one-disabled which did not get any
results.

Considering Build System constraint, results matched the baseline for the following al-
gorithms: one-enable; one-disabled; pair, four, five and six-wise, and random
(taking the average from all groups results). Statement-coverage original’s number
of bugs was 25, against 31 bugs found by most of the groups. Most-enabled-disabled
result on the baseline was 26, closely followed 28 bugs which the majority of the teams
found. For three-wise, while most of the teams found 46 bugs, the original value was
42. It is important to notice that all group obtained similar values in all algorithms,
except Group 8 which got diverging results for all algorithms but random.

6.2 QUALITATIVE ANALYSIS

After the focus group sessions, the audio files were transcribed in order to perform qual-
itative analysis (constant comparison) on them. In this section, we present the outcomes
of this step.

6.2.1 Open coding

During the open coding, a total of 96 codes were generated. Later, the codes were grouped
in higher-level categories, such as: environment set up, algorithms execution, paper in-
terpretation, participants replication experience (which are the questions sections of the
Focus Group), comments on the virtual machine, participants’ attitude, participants’
complaints, and miscellaneous (codes not related to any of the previous categories). Af-
ter the individual labeling, two researchers calculate the inter-rater reliability and found
a Cohen’s Kappa of 0.88. Cohen’s kappa is a statistic that assess the degree of agree-
ment between the codes assigned by two researchers working independently on the same

6.2 QUALITATIVE ANALYSIS 37

sample (NOLL; BEECHAM; SEICHTER, 2011). Values of Cohen’s kappa fall between
0 and 1, where 0 indicates poor agreement, and 1 perfect agreement. According to the
thresholds proposed by Landis and Koch (1977), our kappa value of 0.88 indicate almost
perfect agreement among raters.

6.2.2 Axial coding

During the Axial coding phase, we set “Replication Difficulties” as a central phenomenon
(explained in Section 3.5.1). Then, we reallocated the codes under three branches, on
which we perform the paradigm. It means that for each branch, we proceed to find: the
causal events, the actions participants execute on those events, and the consequences of
those actions. The branches, showed in Figure 6.1, are the following: difficulties in setting
up the environment, difficulties in algorithms execution, and difficulties in interpreting
the paper (which match the correspondent categories created during open coding).

Figure 6.1 Axial coding paradigm branches

6.2.2.1 Setting up the Environment Throughout the coding, twelve difficulties
emerged related to the phase of setting up the environment. Those problems can be
grouped into the following groups: Projects extraction, Dependency problems and Prob-
lems with software versions.

Projects extraction difficulties involve placing the projects to be analyzed by the
sampling algorithm on the appropriate location. It includes downloading the projects
from the supplementary website, extracting the compressed folder and importing them
into the Java project.

Group 1 judged this task of placing the projects folder on the appropriate location
to be straightforward (Odin: “And there was the detail that it was required to put the
folder code.zip within the [eclipse] project and that was not complicated”). However,
other teams missed having more descriptive instructions, like where the folder should be
placed or imported to the eclipse project containing the algorithms. On the other hand,
Group 2, in particular, mentioned a trial-and-error approach until they could find the
appropriate location. (Saturn: “I think the author could detail more specifically to which
folder to put the C projects. Then sometimes I put the projects in a place which gave

38 RESULTS

me an error. Then later, as Mercury was able to execute the algorithms, he said: ’No,
it’s the other folder here’.”)

Dependency problems are formed by replication difficulties related to dependencies
necessary to run the algorithms. In general, the teams complained that the libraries ver-
sions were not described on the supplementary website. Another cited problem is that
there was a dependency which was not included on the instructions (named “flex”), so
whether the participants figured out themselves or required assistance to this disserta-
tions’ author to overcome this difficulty.

One dependency, called “undertaker”, was often cited by the participants as being
troublesome. The baseline paper used a modified version of this library, so in order to
install this modified version it was required to install this package from the sources (which
was how it was described on the supplementary website). However, many participants
were not proficient in compiling packages from scratch in Linux. So when they faced
compilation problems, they installed the version present in Ubuntu’s repository. But this
version was not the modified one provided by the paper. Thus, the teams which did
not install from the source code should not be able to obtain results on statement-
coverage algorithm on the second study, constraints part (see Section 6.1.2).

At last, there were difficulties concerning software versions. Although the supplemen-
tary website contained instructions for setting up the environment and required software
to install in order to execute the sampling algorithms, the participants stated in many
occasions that their version was not described. The most cited required software missing
a version were eclipse (since the algorithms were embedded in an eclipse project), Java
and the Linux distribution. One team expressed the feeling, if those information were
present, it would be easier to recreate the conditions for replications similar to the origi-
nal. This team also proposed that it would be convenient to have a complete replication
environment already set by the authors, with the OS, libraries and algorithms already
configured and packed for running without further complications.

One team reported the difficulty of finding old working versions of dependencies re-
quired to run the experiment. Sometimes it’s required to have old versions since they
used Ubuntu 14.04 and the newer dependencies are not compatible with older versions of
Ubuntu (unless you update a huge range of dependencies which is not the most elegant
solution).

6.2.2.2 Algorithms Execution The difficulties found in the sampling algorithms
execution phase were clustered in two categories: inconsistencies and abnormalities in
execution. Inconsistencies refer to name in consistences happening around the terminol-
ogy used around the paper itself, the supplementary website and the replication artifacts.
Abnormalities refer to errors and failures found while executing the algorithms. There
were also further comments made by the participants which do not fit in any category
listed.

Group 1 reported that it was easy to identify the algorithms by the output, match-
ing the results described on the paper in terms of algorithms name. However there
were instances of differences of the algorithms names on the paper and the execution
outputs/names on the source code. For instance, the algorithm on the baseline called

6.2 QUALITATIVE ANALYSIS 39

most-enabled-disabled is shown on the algorithm’s output as all-enabled-disabled. Group
8 (which was composed by experienced researchers) recommended consistency between
the names on the artifacts an on the paper (Zeus: “In summary, the nomenclature he [the
author] has to use in the experiment is the same he uses on the [supplementary] website;
it’s the same that the paper uses. Therefore, that is the recommendation: use the same
terms.”)

Among the abnormalities, a couple stood out: execution failures and long wait time
for some algorithms. Execution failures were mainly caused by a specific issue: at one line
code there was a folder path making reference to the baseline’s first author computer.
Groups 1, 2, 6, and 8 mentioned this defect. Regarding the algorithms that took a
long time to be executed, they were statement-coverage on the first experiment and
random, on first and second experiments. For statement-coverage in the first study,
Group 3 gave up on running the algorithm after wait for around one and a half hours. A
common problem on that situation is that there was not feedback of the time estimated
to run the algorithm or a progress indicator, which made the participants to wonder if
the execution was running appropriately or not.

Another problem mentioned was that the algorithms execution output was not clear
enough. Groups 5, 6 ,7 and 8 mentioned issues related to execution’s output clarity. In
Dionysus’s (Group 6) opinion, the verbosity level was not adequate for the random al-
gorithm (which, differently from most algorithms, showed additional information besides
the execution that wasn’t useful for a replication context). Zeus (Group 8) expressed
a similar feeling towards this (Zeus: “On the last executions there, for instance, on the
output we saw there were paths with configurations there were simply intermediary stuff,
which he only used to make sure that the final configuration was the sum of the paths
configurations. For whom is executing, it’s just disturbing.”)

6.2.2.3 Interpreting the paper On the phase of interpreting the paper, there were
two major groups of difficulties: difficulties caused by the lack of familiarity with the
themes addressed on the paper by the participants and difficulties regarding the conver-
gence of results from the baseline. Problems with the convergence of results have been
extensively discussed in Section 6.1. Therefore, the focus of discussion in this subsection
will revolve around the lack of familiarity.

Regarding the difficulties caused by the lack of familiarity with the themes, there were
mainly the following ones: understanding about replications, and insufficient academic
background.

Concerning participants’ understanding about replications, Group 2 reported that
they were unsure about how much intervention on the source code they were allowed to
do to not invalidate the replication. One participant stated that the Java projects should
not be modified at all since the experiment should be reproduced exactly like the original.
However, this statement is not precisely aligned with replication definitions established
by existing studies (BALDASSARRE et al., 2014). This indicates that not being familiar
with the definitions can impact the way these studies are conducted.

40 RESULTS

6.2.3 Qualitative Analysis Summary

Using the constant comparison method, we analyzed the focus groups sessions’ transcrip-
tions. This constitutes the qualitative analysis phase. We applied open and axial coding
to discover relevant phenomena surrounding the replications performed.

From the codes obtained, we identified two categories embracing most of the codes:
imprecision on replication instructions (grouping projects extraction, dependency prob-
lems, name inconsistencies, long wait time, and execution output) and defects on the
software (grouping dependency problems, and execution abnormalities). This indicates
that the majority of problems found by the participants are related to information about
steps to execute the replication being absent or unclear and replication assets not being
seamlessly working. Also, insufficient background with replications and the themes ad-
dressed in the experiment put some participants into difficulties (tagged in code lack of
familiarity). This indicates that experience with replications and the area under study
might contribute positively to the replication success.

6.3 ADDITIONAL INVESTIGATION ABOUT ESE TEACHING

We present in this section an investigation about education practices in Empirical Soft-
ware Engineering and replications.

During the qualitative analysis, we could observe that many participants were not
familiar with replications. This brought them difficulties when replicating the experiment
(Subsection 6.2.2.3). Since most of them were graduate students taking their Masters or
Ph.D., one might wonder if courses addressing Empirical Software Engineering include
replications as a lecturing topic. This way, future researchers would have a more solid
background when attempting to perform replications. Being introduced in this matter is
useful also to bring replication awareness when designing empirical studies.

In this sense, we proceeded to perform an ad-hoc investigation to get a glimpse of
Empirical Software Engineering teaching regarding replication. We sent emails to the
Program Committee members of the International Symposium on Empirical Software
Engineering and Measurement (ESEM 2020)2, technical papers track. Our intention with
that was to reach professors involved in impacting ESE research. We asked them if 1)
they were teaching empirical software engineering currently and; 2) if they could provide
their ESE course syllabus (for the professors which responded affirmatively the previous
question). In fact, with the second question, we intended to know if the professors’ ESE
courses addressed the topic of replications. Instead of asking them directly, we requested
their courses’ syllabus to inspect if the theme was addressed.

In total, we mailed 70 researchers. From the emails sent, we received responses from
41 people. Whereas 15 professors teach Empirical Software Engineering, only 6 of them
include the topic of replication.

Out of the 6 courses teaching replication, the approach took in each of them was fol-
lowing: two presented this matter within experiment design theme, one course dedicated
replication as a topic on its own, one presented the subject in the statistical analysis of

2〈https://eseiw2020.di.uniba.it/esem conf/technical-papers/〉

6.4 RECOMMENDATIONS 41

an experiment, and the remaining case we had to rely on the contacting professor which
said they addressed this topic. It is important to highlight that in two courses, there
was also a special topic about replication packages, which is an essential tool to develop
trustworthy replications (SOLARI; VEGAS; JURISTO, 2018).

Therefore, we identified from this ad-hoc inquiring that, in education terms, even
with active and proficient professors performing research in empirical software engineering
obtained from our set of responding teachers, this discipline is not widespread lectured.
This topic is addressed by only 36%. Regarding replications, only 14% includes replication
in their syllabi.

6.4 RECOMMENDATIONS

In the previous sections, we discussed our findings. On top of those findings and our
experience with the empirical study, agreeing also with existing research, we provide the
following recommendations for researchers (Subsection 6.4.1), practitioners (Subsection
6.4.2), and educators (Subsection 6.4.3).

6.4.1 Researchers

For the researchers replicating an experiment, it is highly beneficial to communicate
with the original research team (MAGALHAES et al., 2015). This communication can
minimize failures in replication results (GILES, 2006) but it must be done diligently
to not introduce bias. We recommend that this communication be performed only in
cases where the replication team feels important information is omitted (for example, a
instruction step is not clear for the reader). Still, the independence between the original
team and the researchers replicating the experiment must be preserved.

In the testimonials provided by the participants during the focus group sessions, there
were several mentions of instructions not being clear enough (Thor: “I think it was
missing a bit of detail about the environment he [the original study’s author] ran [the
algorithms].”) This agrees with the existing literature, which mentions difficulties in
transferring tacit knowledge (SHULL et al., 2002). We recommend to researchers de-
veloping experiments to be aware of the communicability of their instructions. These
instructions can be made available in the form of an external website or even a video on
a streaming platform. Nevertheless, following replication guidelines (KITCHENHAM et
al., 2006; CARVER, 2010) is advisable to minimize communication issues.

Additionally, existing research in Empirical Software Engineering has been supporting
the idea that experimental studies should provide replication packages (Basili; Shull;
Lanubile, 1999). We suggest using, for instance, Solari, Vegas and Juristo (2018) proposal
to structure a replication package, which, on their research, have shown that using a well-
structured replication package can be beneficial in this direction. Similarly, following
ACM standards3 for artifacts is encouraged.

Furthermore, in case there is need to execute additional software on the replication,
based on the evidence found in this research, we consider it is essential to list the hardware

3〈https://www.acm.org/publications/policies/artifact-review-badging#available〉

42 RESULTS

specifications and operating system configuration in which the experiment was originally
executed. If there is no space on the paper, we advocate that this information is made
available in the supplemental material.

6.4.2 Practitioners

In the original paper, Medeiros et al. (2016) have included guidance for practitioners.
They state that there is no optimal sampling algorithm for every software project. They
recommend using sampling algorithms with small sample sets when dealing with projects
on their initial phases, so one could retrieve configuration faults quickly while the project
is under deep changes and fast growth. When the software is larger and coming closer
to release date, they recommend using algorithms with more comprehensive sample sets.
However, under realistic scenarios (taking constraints, global analysis, header files and
build system into consideration), many algorithms do not scale. Therefore, it is advisable
using simple algorithms (like most-enabled-disabled) on those situations. In our
replication, although we have seen numeric differences, most groups were able to execute
the same algorithms which the original authors were able to. The algorithms which did
not scale on the baseline were not able to be executed on the replication either. Thus,
we agree with the recommendations given by the original paper.

Experiment replications are useful to test a technology in-house before applying it
on the company (WOHLIN et al., 2012). A company interested in a replication paper
can double-check their results in order to verify if the evidence holds under the company
context.

We believe that achieving efficient communication with original authors applies not
only to academia but also to industry. A pilot might be useful to test the instructions and
the quality of the replication package as well before performing a full replication. These
instructions should be more practical than theoretical since the former usually is more
relevant for companies. Furthermore, it might be preferable to use papers from venues
that test the quality of their assets (usually indicated by a badge or a marking on the
header of the paper’s first page).

6.4.3 Educators

The first operation of the exploratory study was applied with students enrolled in a course
of Empirical Software Engineering. Some participants in this round were having the first
contact with experiment design. On the focus group, a participant reported they had
difficulties to recognize the elements composing the design of an experiment, such as
subjects, input and output variables, and problem statement (Minerva: “No, no. I did
not think it was the way the professor explained. I was not able to see them there [the
experiment design elements]”). Not always scientific papers have all these elements in
a dedicated section. Somehow, the student was expecting to see all the items explicitly
described in the literature.

Therefore, based on the findings of the qualitative analysis, we recommend to Em-
pirical Software Engineering educators, when lecturing on courses regarding experiment
design, that they provide practical training to their students, and not stay focused only

6.5 THREATS TO VALIDITY 43

on the theoretical part. Many students we collected testimonials from expressed the wish
to design an experiment themselves (which they did not have the chance on the course
they were enrolled). This suggests that by allowing the students to have contact with
empirical studies from the beginning can be more meaningful to students, and therefore,
might bring better learning on this subject.

Additionally, we developed an ad-hoc investigation to prospect if Empirical Software
Engineering and replication topics are being taught in post-graduate courses (Section
6.3). We mailed 70 active professors developing impacting research asking if they address
this discipline on their universities. From the responding authors (41 researchers), 36%
teach ESE and 14% include replication as a topic. Probably, those numbers might be way
lower if we consider all professors working with Software Engineering in general, which
would be a more realistic scenario.

In light of those findings, we incentive that Empirical Software Engineering is more
widespread taught. We believe this movement must go along with the rise of empirical
research in Software Engineering, and it consequently can foster the development of
Software Engineering research to be more evidence-driven. We recommend also inserting
the topic of empirical studies replication on the syllabus of Empirical Software Engineering
courses. Since we have observed one of the difficulties our participants reported was
related to their insufficient background on that matter, those courses should be able to
educate students about replications. As a growing topic in academia, a researcher will
likely have to deal with replications on their career, whether replicating a paper whether
designing an easily replicable study.

6.5 THREATS TO VALIDITY

Although we designed our study aiming minimizing threats to validity, some are still
present. In this section, we present the internal, external, conclusion, and validity threats
we were not able to mitigate.

6.5.1 Internal Validity

One issue that might have influenced how the participants performed the replication is
their motivation. Since they were performing this task as part of a post-graduation course
and conducting research was not their primary goal, it is likely that the participants were
not vested as much as the researchers of the original paper. This motivation might have
led the participants to spend less effort. In order to minimize that, we added additional
cells to the extraction spreadsheets, which correspond to the data algorithms do not
provide. This forces the participants to reason about what the algorithms’ output mean,
instead of only “copying and paste” the results onto the cells.

Additionally, participants tend to spend minimal effort to get the activities done.
The participants performed the empirical study activities within the context of a post-
graduation course. Neither the experiment or any of its related activities may be part of
their research. Then, their motivation to be part of the replication is expected to be lesser
than the motivation of a researcher interested in Software Engineering or Configurable

44 RESULTS

Systems.

Another threat to internal validity is communication between teams. On training ses-
sions, it was explicitly stated that the teams should not communicate between themselves
about the replication. When teams exchange such information, one group can teach the
other how to avoid specific difficulties in replication. However, ensuring complete pre-
vention of teams information sharing was not possible.

6.5.2 External Validity

The replication difficulties found in this dissertation might not extend to other replica-
tions. However, we still consider the lessons and recommendations found based on the
testimonials of participants in this study to be valuable. Most of the replication diffi-
culties are related to the replication artifacts and instructions. Researchers intending
to replicate an experiment might take the lessons learned from this study to prepare
their replication package in a way that minimizes replication difficulties and increases the
communicability of replication instructions.

6.5.3 Conclusion Validity

Since this study relies heavily on the grounded theory’s constant comparison method,
the testimonials interpretation relies on a certain degree of subjectivity. The mapping
from evidence sources to conclusions might be not perfectly drawn. However, this can be
considered something expected when using this technique. We also use quantitative data
to triangulate.

Furthermore, the replication does not cover the task of generating the covering arrays.
This part could not be replicated and we had to rely on the arrays provided with the
Java project. In the end, we are not able to verify the trustworthiness of the arrays or
how the authors constructed them.

6.5.4 Construct Validity

The participants had a short time period - 2 to 3 - to perform the replication. Besides,
most participants were not researchers of the specific topic of the baseline paper. Those
two factors might impact the participants’ comprehensibility and how they performed
the replications. In order to mitigate those, this dissertation’s author provided assistance
whenever the participants faced problem. This assistance was provided in the least in-
trusive way as possible to avoid introducing unintentional bias. The exact response given
by the author was written down to make sure that same answer is given to all groups in
case they had similar questions.

6.5.5 Chapter Summary

In this chapter, we presented the results for our empirical study. Both quantitative and
qualitative results are shown, the former being the numbers obtained in the replications,
and the latter being the coding descriptions obtained from open and axial coding. Fol-

6.5 THREATS TO VALIDITY 45

lowing that, we presented an additional investigation we performed concerning teaching
practices in Software Engineering. Based on the results found, we provided recommenda-
tions for researchers, practitioners, and educators. Furthermore, we addressed the threats
to validity: internal, external, conclusion, and validity. In the final chapter, we present
the conclusions, contributions, and future work of this dissertation.

Chapter

7
CONCLUSION

As Empirical Software Engineering (ESE) has been providing evidence for phenomena
surrounding Software Engineering, this evidence should be validated by different indepen-
dent researchers, and under different circumstances. However, there might be difficulties
in the replication process which may discourage researchers or even impact the results.
In the following sections, we present the summary of research contributions, the research
outcomes, future work, and the conclusions of this dissertation.

7.1 SUMMARY OF RESEARCH CONTRIBUTIONS

In general, the research presented in this dissertation makes the following contributions to
the area of ESE: it provides evidence about replication difficulties of experiment replica-
tions; it functions providing a double-check on sampling algorithms evidence for Highly-
configurable Systems (HCSs) found from previous research; and introduces a research
methodology where researchers are put as the subjects while they perform a replication.
Each contribution is summarized as follows:

7.1.1 Evidence about replication difficulties

While there is a need for increasing replications in Empirical Software Engineering, few
papers address directly this issue. This dissertation provides light on that matter. We
collected reports from the researchers, which performed the replications and provided
their point of view regarding the experience of replicating as a whole. There is evidence
of difficulties through the entire replication process, from reading and understanding an
original study, passing through the experiment replication, and then the interpretation
of the results found. Therefore, this dissertation offers contributions to the research com-
munity, with rich evidence about replication difficulties in Software Engineering, which
is currently scarce.

47

48 CONCLUSION

7.1.2 A double-check on sampling algorithms evidence

Testing on HCS is challenging due to the variable nature of these kinds of systems. One
strategy to mitigate complexity in testing HCS is using sampling algorithms. The study
developed by Medeiros et al. (2016) present a comparison of 10 sampling algorithms
for configurable-systems. With this study, an interested reader can select which of the
assessed algorithms is more appropriate for their needs based on evidence. Our study
provides a double-check on the results found on the baseline. In the end, we verified
which of the algorithm’s execution could be reproduced, and then we give back to the
community an additional verification of the results exhibited on the original paper.

7.1.3 Research methodology

In the ESE community, we often find surveys targeting researchers. Thus, it is possible
to investigate how researchers think and what they experience when developing empirical
studies. However, different from that, in our study, we present a methodology in which
researchers are on focus. Treating the researchers as subjects enables us to gather abun-
dant feedback from them. Throughout the experiment replications, the application of the
focus group sessions, and analysis using the constant comparison method, the empirical
study orbits around the outputs provided by the participant researchers.

7.2 RESEARCH OUTCOMES

Besides the dissertation, there were other outcomes from the study. These are the research
products coming from the empirical study:

• Replication Package - The importance of having a replication package has been
emphasized on many occasions throughout the dissertation. The artifacts for this
empirical study can be obtained in the GitHub’s repository. There can be found
the forms applied, the training material, and links to the original paper (and its
respective replication package), virtual machine, and the operating system used.

• Research Paper - A paper with the research described in this dissertation has
been produced and submitted to the journal Empirical Software Engineering, a
high-impact venue. Until the closing of this dissertation, the article was under
evaluation.

• Positive Influence on the participants - On the focus group sessions, the
participants expressed to have experienced several difficulties, and even sometimes,
showed discontent in participating in the study. However, in the end, many par-
ticipants reported that participating in the replications was positive because: 1) it
raises awareness of the importance of replication studies; and 2) the participants
were proven that it is essential to have clear instructions and working artifacts for a
replication to be successful. Thus, although it is difficult to guarantee that the par-
ticipants are going to apply those experiences to future studies, it is likely that the
researchers will be more conscious when designing and applying empirical studies.

7.3 FUTURE WORK 49

7.3 FUTURE WORK

We can consider research focusing on replication difficulties in Software Engineering to
be scarce. While this dissertation contributes with a study report replication difficulties
from the researchers themselves, there is opportunity to further enrich the findings from
this dissertation with the following future work:

• Replicate Papers with the ACM Badge - As future work, we intend to perform
external replications on papers possessing the ACM badge (meaning that their
assets have been tested and certified to be working). We could evaluate if, by
receiving the certification the artifacts are reusable, this will necessarily translate
in replication with fewer replication problems and difficulties.

• Replications with Human Subjects - We intend to perform also experiment
replications with human subjects to investigate difficulties in this matter. We as-
sume that empirical studies that use human participants on their design can exhibit
different challenges. As a matter of comparison, in our study, we used human par-
ticipants only in the upper empirical study, but the experiment itself was executed
entirely on the computer.

• Survey with Researchers Performing Replications - Another possibility for
future work would be conducting a survey with researchers who perform replications
in Software Engineering. This way we could capture challenges and difficulties the
research community actually experience, and then we could map issues impacting
current replications in empirical research.

7.4 CONCLUDING REMARKS

We conducted an exploratory study aiming to understand which replication difficulties
might emerge when replicating a Software Engineering experiment, and more specific, a
study involving HCSs.

We have developed a research methodology in which the participants emulated re-
searchers replicating the experiment. We had in total eight replications, performed by
groups of three people each, obtaining results and providing testimonies concerning the
replication. On top of that, we collected quantitative data (numeric results from the
replications) and qualitative data (codes coming from constant comparison method ap-
plication).

Our results show that there are four categories of challenges pertaining to replication:
Setting Up the Environment, Algorithms Execution, Paper Interpretation and Repli-
cation Experience (which intersects with all categories before). From the participants’
testimonials we found that most of the difficulties can be traced back to lack of prepared-
ness of the replication artifacts and clarity of the instructions. Additionally, during the
axial coding, we could observe that most codes describing difficulties overlapped codes
related to those two issues. Previous research already mentioned how communication
between replication teams is important when preparing a replication package. In the
end, our findings confirm problems already known by previous research.

50 CONCLUSION

Regarding the validation of the original paper, the execution results were converging
with the baseline when running one algorithm per time. In the execution of algorithms
combinations, we have seen divergent numbers between the replication and the baseline,
but similar numbers across the teams. This indicates that the quality of the artifacts
played a greater influence on the results than who is the researcher replicating the exper-
iment.

Therefore, we once again emphasize the need for having clear instructions when
preparing material for other researchers to use, being the most descriptive as possible.
Similarly, it is essential to test all replication assets before releasing it to the public when
an empirical paper is published.

BIBLIOGRAPHY

ABAL, I.; BRABRAND, C.; WASOWSKI, A. 42 variability bugs in the linux kernel: a
qualitative analysis. In: Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. [S.l.: s.n.], 2014. p. 421–432.

APEL, S.; KÄSTNER, C. An overview of feature-oriented software development. J. Ob-
ject Technol., v. 8, n. 5, p. 49–84, 2009.

BAGHERI, E. et al. Foreword to the special issue on empirical evidence on software
product line engineering. [S.l.]: Springer, 2016.

BALDASSARRE, M. T. et al. Replication types: Towards a shared taxonomy. In: Pro-
ceedings of the 18th International Conference on Evaluation and Assessment in Software
Engineering. New York, NY, USA: ACM, 2014. (EASE ’14), p. 18:1–18:4. ISBN 978-1-
4503-2476-2.

BASILI, V. R.; SHULL, F.; LANUBILE, F. Building knowledge through families of
experiments. IEEE Transactions on Software Engineering, v. 25, n. 4, p. 456–473, Jul
1999. ISSN 0098-5589.

Basili, V. R.; Shull, F.; Lanubile, F. Building knowledge through families of experiments.
IEEE Transactions on Software Engineering, v. 25, n. 4, p. 456–473, 1999.

BASTOS, J. F. et al. Software product lines adoption in small organizations. Journal
of Systems and Software, v. 131, p. 112 – 128, 2017. ISSN 0164-1212. Dispońıvel em:
〈http://www.sciencedirect.com/science/article/pii/S0164121217300997〉.

BERGER, E. D. et al. FSE/CACM Rebuttal2: Correcting A Large-Scale Study of Pro-
gramming Languages and Code Quality in GitHub. 2019.

Berger, T. et al. A study of variability models and languages in the systems software
domain. IEEE Transactions on Software Engineering, v. 39, n. 12, p. 1611–1640, 2013.

BEZERRA, R. M. M. et al. Replication of empirical studies in software engineering: An
update of a systematic mapping study. In: 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). [S.l.: s.n.], 2015. p. 1–4.
ISSN 1949-3770.

BROOKS, A. et al. Replication of experimental results in software engineering. Interna-
tional Software Engineering Research Network (ISERN) Technical Report ISERN-96-10,
University of Strathclyde, 1996.

51

52 BIBLIOGRAPHY

CARVER, J. C. Towards reporting guidelines for experimental replications: A proposal.
In: CITESEER. 1st international workshop on replication in empirical software engineer-
ing. [S.l.], 2010. p. 2–5.

CLEMENTS, P.; NORTHROP, L. Software product lines : practices and patterns. Boston:
Addison-Wesley, 2002. ISBN 0-201-70332-7.

CRESWELL, J. W. Research design: Qualitative, quantitative, and mixed methods ap-
proaches. SAGE Publications, 2002.

EASTERBROOK, S. et al. Selecting empirical methods for software engineering research.
In: Guide to advanced empirical software engineering. [S.l.]: Springer, 2008. p. 285–311.

GILES, J. The trouble with replication. Nature, v. 442, p. 344–347, 2006.

HAN, X.; YU, T. An empirical study on performance bugs for highly configurable software
systems. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. New York, NY, USA: ACM, 2016. (ESEM ’16),
p. 23:1–23:10. ISBN 978-1-4503-4427-2.

JURISTO, N.; MORENO, A. M. Basics of Software Engineering Experimentation.
Boston: Kluwer Academic Publishers, 2001. ISBN 0-7923-7990-X.

JURISTO, N.; VEGAS, S. Using differences among replications of software engineering
experiments to gain knowledge. In: Proceedings of the 2009 3rd International Sympo-
sium on Empirical Software Engineering and Measurement. Washington, DC, USA: IEEE
Computer Society, 2009. (ESEM ’09), p. 356–366. ISBN 978-1-4244-4842-5.

JURISTO, N.; VEGAS, S. The role of non-exact replications in software engineering
experiments. Empirical Software Engineering, v. 16, n. 3, p. 295–324, 2011.

KITCHENHAM, B. et al. Evaluating guidelines for empirical software engineering stud-
ies. In: Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Soft-
ware Engineering. New York, NY, USA: Association for Computing Machinery, 2006. (IS-
ESE ’06), p. 38–47. ISBN 1595932186. Dispońıvel em: 〈https://doi.org/10.1145/1159733.
1159742〉.

KREIN, J. L.; KNUTSON, C. D. A case for replication: Synthesizing research method-
ologies in software engineering. In: RESER2010: proceedings of the 1st international
workshop on replication in empirical software engineering research. [S.l.: s.n.], 2010.

LANDIS, J. R.; KOCH, G. G. An application of hierarchical kappa-type statistics in
the assessment of majority agreement among multiple observers. Biometrics, JSTOR, p.
363–374, 1977.

MACHADO, I. do C. et al. On strategies for testing software product lines: A systematic
literature review. Information and Software Technology, v. 56, n. 10, p. 1183 – 1199,
2014. ISSN 0950-5849. Dispońıvel em: 〈http://www.sciencedirect.com/science/article/
pii/S0950584914000834〉.

BIBLIOGRAPHY 53

MAGALHAES, C. V. de et al. Investigations about replication of empirical studies in
software engineering: A systematic mapping study. Information and Software Technology,
v. 64, p. 76 – 101, 2015. ISSN 0950-5849.

MEDEIROS, F. et al. A comparison of 10 sampling algorithms for configurable systems.
In: Proceedings of the 38th International Conference on Software Engineering. New York,
NY, USA: ACM, 2016. (ICSE ’16), p. 643–654. ISBN 978-1-4503-3900-1.

MENDE, T. Replication of defect prediction studies: Problems, pitfalls and recommen-
dations. In: Proceedings of the 6th International Conference on Predictive Models in
Software Engineering. New York, NY, USA: ACM, 2010. (PROMISE ’10), p. 5:1–5:10.
ISBN 978-1-4503-0404-7.

NETO, P. A. da M. S. et al. A systematic mapping study of software product lines testing.
Information and Software Technology, v. 53, n. 5, p. 407 – 423, 2011. ISSN 0950-5849.
Special Section on Best Papers from XP2010. Dispońıvel em: 〈http://www.sciencedirect.
com/science/article/pii/S0950584910002193〉.

NOLL, J.; BEECHAM, S.; SEICHTER, D. A qualitative study of open source software
development: The open emr project. In: IEEE. 2011 International Symposium on Em-
pirical Software Engineering and Measurement. [S.l.], 2011. p. 30–39.

PERROUIN, G. et al. Automated and scalable t-wise test case generation strategies for
software product lines. In: IEEE. 2010 Third international conference on software testing,
verification and validation. [S.l.], 2010. p. 459–468.

POHL, K.; BÖCKLE, G.; LINDEN, F. J. van D. Software product line engineering :
foundations, principles, and techniques. New York, NY: Springer, 2005. ISBN 978-3-540-
24372-4.

SANTOS, A. et al. A procedure and guidelines for analyzing groups of software engineer-
ing replications. IEEE Transactions on Software Engineering, IEEE, 2019.

SEAMAN, C. B. Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering, v. 25, p. 557–572, 07 1999. ISSN 0098-5589.
Dispońıvel em: 〈doi.ieeecomputersociety.org/10.1109/32.799955〉.

SHULL, F. et al. Replicating software engineering experiments: addressing the tacit
knowledge problem. In: Proceedings International Symposium on Empirical Software En-
gineering. [S.l.: s.n.], 2002. p. 7–16.

SILVA, F. Q. B. da et al. Replication of empirical studies in software engineering research:
a systematic mapping study. Empirical Software Engineering, Springer, v. 19, n. 3, p.
501–557, 2014. ISSN 1573-7616.

SINCERO, J. et al. Is the linux kernel a software product line. In: Proc. SPLC Workshop
on Open Source Software and Product Lines. [S.l.: s.n.], 2007.

54 BIBLIOGRAPHY

SOLARI, M.; VEGAS, S. Classifying and analysing replication packages for software en-
gineering experimentation. In: 7th International Conference on Product Focused Software
Process Improvement (PROFES 2006)-Workshop Series in Empirical Software Engineer-
ing (WSESE). Amsterdam, Paises Bajos. [S.l.: s.n.], 2006.

SOLARI, M.; VEGAS, S.; JURISTO, N. Content and structure of laboratory packages
for software engineering experiments. Information and Software Technology, v. 97, p.
64 – 79, 2018. ISSN 0950-5849. Dispońıvel em: 〈http://www.sciencedirect.com/science/
article/pii/S0950584916304220〉.

SOMMERVILLE, I. Software engineering. Boston: Pearson, 2011. ISBN 978-0-13-703515-
1.

SORTE, M. A. L. Replication as a verification technique in survey research: A paradigm.
Sociological Quarterly, Blackwell Publishing Ltd, v. 13, n. 2, p. 218–227, 1972. ISSN
1533-8525.

SPENCER, H.; COLLYER, G. # ifdef considered harmful, or portability experience with
c news. Citeseer, 1992.

SPLC. Call for Empirical Software Engineering Journal: special issue on “Con-
figurable Systems”. 2019. Dispońıvel em: 〈https://splc2019.net/call-for-papers/
call-for-empirical-software-engineering-special-issue/〉.

STRAUSS, A.; CORBIN, J. Basics of qualitative research techniques. [S.l.]: Sage publi-
cations, 1998.

WOHLIN, C. et al. Experimentation in software engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012.

Appendix

A
APPENDIX A: FOCUS GROUP QUESTIONS

In the empirical study, we have structured and applied a focus group session with each
group replicating the experiment. In this appendix, in Table A.1, we show the list of
questions used in the sessions.

Table A.1: Questions of focus group session

Code Question
C1 In the environment setting phase, which were the major difficulties?
C2 Some participants said the instructions were clear. Others said they here

not clear. After all, in your opinion, the instructions were clear or not?
Why do you think that there was this discrepancy?

C3 In your opinion, is it possible that the authors could have thought that
people with a degree in computing would have at least a notion of how
to install an Integrated Development Environment and that is why they
did not took took up much space explaining that on the web site?

C4 Explain how you installed undertaker. Did you try to run the algorithms
without undertaker installed simply to see what would happen?

E1 Was it difficult to run the algorithms? Why? List some hardships.
E2 By the forms answers, most of the people agreed that the algorithms

execution tutorial (from the study’s website) could be better. But do
you think that a more descriptive tutorial would be only something that
would be better or would it be fundamental for the replication success?

E3 During the activity I have noticed that for some teams was strange to
perceive that samples/file and configurations per file were the same thing.
Why do you think that, even though these concepts are defined on the
paper, many people had this difficulty?

E4 Did you managed to check the algorithms’ source code? Did that helped
the task somehow? In what exactly?

55

56 APPENDIX A: FOCUS GROUP QUESTIONS

I1 What was your overall impression about the paper (in terms of structure,
writing, etc)? Do you think that the way the study was reported was
appropriate for a replication? Why?

I2 In general was the paper reasonable to understand (even you not having
a wide domain of its subject?)

I3 Can you recall some specific part that was not so clear?
I4 When I asked you in the form ”do the results diverge”, what was your

comprehension about the divergence or not divergence of the results?
ER1 Was there any point on the training session you think could be better

explained? How exactly? What do you think I could have done to make
the concepts and the activity more clear?

ER2 Do you think my intervention was essential for you to be able to replicate
the experiment? Did it help on your comprehension about the paper?

ER3 How the experiment could be better detailed in order to facilitate the
replication?

ER4 Do you think this activity was useful for your academic background for-
mation? (Please be honest; you do not have to please me at all).

ER5 Ranging from 1 to 5, what score would you give to describe how inter-
esting the experiment was to you?

ER6 Do you think if the activity would have been applied in the beginning
of the course would it change something on the experiment execution in
terms of subject’s motivation and time availability?

ER7 How was the task division among you (being in mind that no one will
be humiliated or punished by the content of any answer given). Was it
straightforward to synchronize tasks and meetings?

ER8 Do you think the lack of experience with scientific research (not restricted
to Software Engineering) was something that played against you when
executing the experiment’s task? Why?

Appendix

B
APPENDIX B: ARTIFACTS

In this appendix, we present the artifacts produced and used for the empirical study
designed. In Section B.1, there is the Consent Term in Portuguese language (all the
participants spoke Portuguese as their primary language). The extraction spreadsheet
used for collecting the algorithms executions comes in Section B.2. The forms used in
the study are on Section B.3, namely: Participant Characterization form, Feedback form
Setting up the Environment phase, and Post-experiment form. These artifacts can also be
obtained in 〈https://github.com/danielamador/ese\ replication\ assets〉. The artifacts
related to the original experiment replicated can be obtained in 〈http://www.dsc.ufcg.
edu.br/∼spg/sampling/〉.

B.1 CONSENT TERM (IN PORTUGUESE)

Abaixo seguem os termos de consentimento de participação do estudo. Ao clicar em
”Próximo/Next” você estará sinalizando concordância com os termos descritos:

1. Caracterização: O estudo emṕırico será conduzido por Daniel Amador dos Santos,
mestrando sob orientação de Eduardo Santana de Almeida, como parte do estudo
“Replicating Experiments in Software Product Lines: An Empirical Study”.

Você está sendo convidado(a) a participar deste estudo emṕırico, que tem como
finalidade investigar o processo de replicação em um experimento de engenharia de
software.

2. Atividades: Estão previstas as seguintes atividades:

(a) Preenchimento de formulários de caracterização e feedback das atividades de-
sempenhadas.

(b) Leitura e discussão de artigo.

(c) Instalação de ambientes de desenvolvimento.

57

58 APPENDIX B: ARTIFACTS

(d) Execução de algoritmos.

(e) Participação em Focus Group.

3. Sigilo: Em eventuais publicações cient́ıficas decorrentes do estudo atual, será preser-
vado o anonimato do(a) participante, bem como quaisquer informações que possam
identificá-lo(a).

4. Esclarecimento: O(A) participante pode requisitar a qualquer momento as finali-
dades do estudo, bem como seu papel em cada atividade.

5. Contato do Pesquisador (email): danielsegundoemail@gmail.com

6. Distribuição prevista das atividades:

(a) Semana 1:

i. Preencher Formulário 1.

ii. Ler paper.

(b) Semana 2:

i. Preencher Formulários 2 e 3.

ii. Rodar algoritmos.

iii. Preencher planilhas de extração.

(c) Semana 3 (Um dia apenas. A ser negociado):

i. Sessão de Focus Group.

B.2 EXTRACTION SPREADSHEET

T
ea

m
:

1
 f

ile
 p

e
r

ti
m

e
R

e
s

tr
iç

õ
e

s
G

lo
b

a
l

H
e

a
d

e
rs

B
u

ild
 s

y
s

te
m

A
lg

o
ri

tm
o

B
u

g
s

S
a

m
p

le
s

p
e

r
F

ile
B

u
g

s
S

a
m

p
le

s
p

e
r

F
ile

B
u

g
s

S
a

m
p

le
s

p
e

r
F

ile
B

ug
s

S
a

m
p

le
s

p
e

r
F

ile
B

u
g

s
S

am
pl

es
 p

e
r

F
ile

S
ta

te
m

e
nt

-c
o

ve
ra

g
e

M
os

t-
e

na
b

le
d

-d
is

a
b

le
d

O
n

e
-e

n
a

bl
e

d
O

n
e

-d
is

a
bl

e
d

R
a

n
do

m
P

a
ir

-w
is

e
T

hr
e

e
-w

is
e

F
ou

r-
w

is
e

F
iv

e
-w

is
e

S
ix

-w
is

e

C
1

 P
a

ir-
w

is
e

 e
 o

n
e

-d
is

a
bl

e
d

C
2

 O
n

e-
e

n
ab

le
d,

 o
n

e-
d

is
ab

le
d

 e
 s

ta
te

m
en

t-
co

ve
ra

g
e

C
3

 O
n

e-
e

na
b

le
d,

 o
n

e-
d

is
ab

le
d

 e
 m

os
t-

e
na

b
le

d
-d

is
a

b
le

d
C

4
 O

n
e-

e
n

ab
le

d
, o

n
e-

d
is

ab
le

d
 e

 p
ai

r-
w

is
e

60 APPENDIX B: ARTIFACTS

B.3 FORMS

Who are you?

1.

2.

3.

Mark only one oval.

Special student/Undergraduate student

Special student/Graduate student

Masters

Ph.D

Post-Doc

4.

Participant Characterization
* Required

Name *

Age:

Instruction: *

Graduation Course *

B.3 FORMS 61

5.

Mark only one oval.

No

Yes, as a participant (subject)

Yes, as a researcher

6.

Mark only one oval.

I didn't answer "Yes, as a researcher" on the previous question

1 experiment

2 experiments

3 to 5 experiments

Above 5 experiments

7.

Mark only one oval per row.

Have you ever participated in a controlled experiment before? *

How many experiments have you applied or designed before? *

Experience on the Market *
In activities related to Software Engineering (ex.: programming, tests, etc.)

No
Experience

Below
1 year

Between 1
year

(inclusive)
e 2 years

(exclusive)

Between 2
years

(inclusive)
e 5 years

(exclusive)

5 years
or

more

Experience
in years
Experience
in years

62 APPENDIX B: ARTIFACTS

8.

Mark only one oval per row.

9.

Mark only one oval per row.

Knowledge about the following technologies *

I've had
never
heard
about

(before
training
session)

I've heard
about, but

I didn't
have

knowledge
about

(before
training
session)

I have
basic

notions

I have
theorical

knowledge

Theorical and
practical

experiencence

Configurable
Systems

Preprocessor
Directives in
C/C++

Algorithm
Complexity

Configurable
Systems

Preprocessor
Directives in
C/C++

Algorithm
Complexity

Experience in programming languages: *

No
Experience

Below
1 year

Between 1
year

(inclusive)
e 2 years

(exclusive)

Between 2
years

(inclusive)
e 5 years

(exclusive)

5 years
or

more

Computer
Programming
(Any
language)

C

Java

Computer
Programming
(Any
language)

C

Java

B.3 FORMS 63

10.

Mark only one oval.

I've never used Linux before

I use Linux from the GUI with difficulties

I use Linux from the GUI without difficulties but I don't use the CLI

I use Linux from the GUI without difficulties and I have a basic domain of
the CLI

I use Linux from the GUI without difficulties and I have a good domain of
the CLI

This content is neither created nor endorsed by Google.

Skills in Linux usage *

Forms

64 APPENDIX B: ARTIFACTS

Feedback Setting up the Environment
* Required

1. Name: *

2. 1 - List the difficulties you experienced while setting up the environment. *

3. 2a - Was it possible to understand clearly what was needed to set up the
environment from the paper and experiment website? *

Mark only one oval.

Yes

No

4. 2b - Why? *

5. 2c - What exactly was not that clear, in case the answer for the question 2a is
negative. *

B.3 FORMS 65

Powered by

6. 3 - Did you find broken links. If so, from
which artifacts? *

7. 4a - So far, do you think that the replication artifacts were satisfactory? *

Mark only one oval.

Yes, they were perfectly satisfactory.

Yes, with regards.

No

8. 4b - Justify *

66 APPENDIX B: ARTIFACTS

1.

Feedback of Algorithms Execution

2.

3.

Post-experiment
* Required

Group: *

Please mention difficulties regarding algorithms execution after
setting up the environment, in case you have experienced any. *

Taking the definitions presented on the paper, was the algorithm
output information clear? Why? *

B.3 FORMS 67

4.

Mark only one oval per row.

5.

Mark only one oval.

Reading and understanding the paper

Setting up the environment

Execution and understanding the algorithms results

6.

Represented an obstacle in understanding the paper: *

I Fully
agree

I
partially

agree

I
disagree

Lack of domain
in English
language

Lack of
familiarity in
SPL/Configurable
Systems

Explanation of
basic concepts
of the paper

Lack of domain
in English
language

Lack of
familiarity in
SPL/Configurable
Systems

Explanation of
basic concepts
of the paper

From your point of view, what was the most laborious phase: *

What do you think the original authors could have done in order to
make the replication easier or more clear? *

68 APPENDIX B: ARTIFACTS

Interpretation of the Results

7.

8.

This content is neither created nor endorsed by Google.

Are the experiment results aligned with the original experiment or
do they diverge? In case they have diverged, why do you think this
divergence happened (assuming the execution environment is
already set)? *

Based on the results you obtained, which algorithm would you
recommend for a case in which someone intends to use the
minimum amount of RAM space.? Why? *

Forms

B.3 FORMS 69

Appendix

C
APPENDIX C: FULL LIST OF CANDIDATE PAPERS

In Table C.1, we present the list of candidate papers after inspecting the venues’ pro-
ceedings. The following column headers were synthesized to save space width. Therefore,
we present each abbreviation or acronym in boldface letters, with its full header title in
the parenthesis: HCS (is this paper addressing highly-configurable systems?), Exp. (is
it an experiment?), Pack. (Does the paper contain a replication package or a link to the
artifacts used?), and H.S. (Does the experiment use human subjects?).

Table C.1: Full List of Candidate Papers

Venue Paper HCS Exp. Pack. H.S.

ASE

Self-repair Through Reconfiguration: A
Requirements Engineering Approach

Yes Yes No No

Flexible and Scalable Consistency
Checking on Product Line Variability
Models

Yes No - -

Automated Variability Analysis and
Testing of an E-Commerce Site. An Ex-
perience Report

Yes No - -

Visualization-based Analysis of Quality
for Large-scale Software Systems

No - - -

Model-Driven Derivation of Product
Architectures

Yes No - -

ESE
Do background colors improve program
comprehension in the #ifdef hell?

Yes Yes Yes 70

Comprehensibility of UML-based soft-
ware product line specifications

Yes Yes Partial 116

The effects of visualization and interac-
tion techniques on feature model config-
uration

Yes Yes Partial 20

71

72 APPENDIX C: FULL LIST OF CANDIDATE PAPERS

Table C.1 continued from previous page

ESEC
FSE

Can Developer-Module Networks Pre-
dict Failures?

No - - -

Utilizing Recommender Systems to
Support Software Requirements Elicita-
tion

Yes No - -

An Empirical Comparison between Di-
rect and Indirect Test Result Checking
Approaches

No - - -

Experience Report on Software Product
Line Evolution due to Market Reposi-
tion

Yes No Yes Yes

Memories of Bug Fixes No - - -
Which Warnings Should I Fix First? No - - -
Scalable Analysis of Variable Software Yes Yes Yes No
Cross-project Defect Prediction No - - -
Counterexample Guided Abstrac-
tion Refinement of Product-Line
Behavioural Models

Yes Yes Yes No

A Discrete-Time Feedback Controller-
for Containerized Cloud Applications

No - - -

Performance-Influence Models for
Highly Configurable Systems

Yes Yes Yes No

Industrial Experience with Building
a Web Portal Product Line using a
Lightweight, Reactive Approach

Yes No - -

Fundamental Concepts for Practical
Software Architecture

No - - -

Improving Trace Accuracy through
Data-Driven Configuration and Compo-
sition of Tracing Features

Yes Yes No No

Training on Errors Experiment to De-
tect Fault-ProneSoftware Modules by
Spam Filter

Yes No - -

GPCE
Does the Discipline of Preprocessor An-
notations Matter? A Controlled Exper-
iment

Yes Yes Yes 18

A Comparison of Product-based,
Feature-based, and Family-based Type
Checking

Yes Yes Yes No

ICSE

On the Value of Learning From Defect
Dense Components for Software Defect
Prediction

No - - -

APPENDIX C: FULL LIST OF CANDIDATE PAPERS 73

Table C.1 continued from previous page
Do External Feedback Loops Improve
the Design of Self-Adaptive Systems? A
Controlled Experiment

Yes Yes Yes 24

Designing Search Based Adaptive Sys-
tems: A Quantitative Approach

Yes Yes No No

FAVE - Factor Analysis Based Ap-
proach for Detecting Product Line Vari-
ability from Change History

Yes Yes No No

An Evaluation of Argument Patterns to
Reduce Pitfalls of Applying Assurance
Case

No - - -

Evolving an Adaptive Industrial Soft-
ware System to Use Architecture-Based
Self-Adaptation

Yes Yes No No

The Effect of Code Coverage on Fault
Detection under Different Testing Pro-
files

No - - -

Towards More Reliable Configurators:
A Re-engineering Perspective

No - - -

Software Product Line Evolution: The
Selecta System

Yes No - -

On the Relationship between Func-
tional Size and Software

No - - -

A Tale of Migration to Cloud Comput-
ing for Sharing Experiences and Obser-
vations

No - - -

QoS-Aware Fully Decentralized Service
Assembly

No - - -

Coordination of Distributed Systems
through Self-Organizing Group Topolo-
gies

No - - -

An Extension of Fault-Prone Filtering
Using Precise Training and a Dynamic
Threshold

No - - -

Engineering Adaptation with Zanshin:
An Experience Report

No - - -

Efficient Runtime Quantitative Verifi-
cation using Caching, Lookahead, and
Nearly-Optimal Reconfiguration

Yes Yes Yes No

Lifting Model Transformations to Prod-
uct Lines

Yes Yes Yes No

74 APPENDIX C: FULL LIST OF CANDIDATE PAPERS

Table C.1 continued from previous page
Can Software Engineering Students
Program Defect-free? An Educational
Approach

Yes Yes No 70

Data Flow Testing of Service-Oriented
Workflow Applications

No - - -

Experiments on Quality Evaluation of
Embedded Software in Japan Robot
Software Design Contest

No - - -

On Architectural Diversity of Dynamic
Adaptive

Yes Yes No No

Research Journey Towards Industrial
Application of Reuse Technique

Yes Yes No No

A Comparison of 10 Sampling Algo-
rithms for Configurable Systems

Yes Yes Yes No

How Does the Degree of Variability Af-
fect Bug Finding?

Yes Yes Yes 70

JSS

Dynamic adaptation of service compo-
sitions with variability models

Yes Yes No No

A method to optimize the scope of
a software product platform based on
end-user features

Yes Yes No No

From integration to composition: On
the impact of software product lines,
global development and ecosystems

Yes No - -

A feature-driven crossover operator for
multi-objective and evolutionary opti-
mization of product line architectures

Yes Yes No No

ScapeGoat: Spotting abnormal re-
source usage in component-based recon-
figurable software systems

Yes No - -

A genetic algorithm for optimized fea-
ture selection with resource constraints
in software product lines

Yes Yes No No

Handling variant requirements in do-
main modeling

Yes No - -

DRAMA: A framework for domain re-
quirements analysis and modeling archi-
tectures in software product lines

Yes No - -

An approach for optimized feature se-
lection in large-scale software product
lines

Yes Yes Partial No

APPENDIX C: FULL LIST OF CANDIDATE PAPERS 75

Table C.1 continued from previous page
An assessment of search-based tech-
niques for reverse engineering feature
models

Yes Yes Yes No

Analyzing inconsistencies in software
product lines using an ontological rule-
based approach

Yes Yes Partial No

Automated extraction of product com-
parison matrices from informal product
descriptions

Yes Yes Partial No

Applying multiobjective evolutionary
algorithms to dynamic software prod-
uct lines for reconfiguring mobile appli-
cations

Yes Yes Yes No

Improving feature location using struc-
tural similarity and iterative graph
mapping

Yes Yes No No

Model-driven support for product line
evolution on feature level

Yes Yes No No

A mixed-method approach for the em-
pirical evaluation of the issue-based
variability modeling

Yes Yes No 258

Automated diagnosis of feature model
configurations

Yes Yes No No

Evolving feature model configurations
in software product lines

Yes Yes No No

SPLC Product-Line Maintenance with Emer-
gent Contract Interfaces

Yes Yes Yes No

