
Universidade Federal da Bahia
Instituto de Matemática e Estat́ıstica

Programa de Pós-Graduação em Ciência da Computação

HIGHLY-CONFIGURABLE SYSTEMS IN
SOFTWARE STARTUPS: UNVEILING THE

WHITE LABEL MODEL

Franklin de Jesus Silva

DISSERTAÇÃO DE MESTRADO

Salvador
25 de Fevereiro de 2021

FRANKLIN DE JESUS SILVA

HIGHLY-CONFIGURABLE SYSTEMS IN SOFTWARE STARTUPS:
UNVEILING THE WHITE LABEL MODEL

Esta Dissertação de Mestrado foi
apresentada ao Programa de Pós-
Graduação em Ciência da Com-
putação da Universidade Federal da
Bahia, como requisito parcial para
obtenção do grau de Mestre em
Ciência da Computação.

Orientador: Ivan do Carmo Machado

Salvador
25 de Fevereiro de 2021

A minha faḿılia, em especial a minha avó Vanda (in memo-

riam) e meu avô Manga Rosa (in memoriam), que me en-

sinaram a importância do estudo e da perseverança.

ACKNOWLEDGEMENTS

Em tempos onde a educação mostra ser tão libertadora. Agradeço à toda a minha
famı́lia, que de perto ou de longe estiveram presentes na minha jornada de aprendizado.
Nas entrelinhas das minhas conquistas estão os nomes de vocês. Agradecimentos em
especial a minha mãe Rose Ane Oliveira de Jesus e meu pai Franklin Lima da Silva, que
foram fundamentais na escolha da minha formação e por me moldarem ao que sou hoje.
Agradeço aos meus primos Savio Albuquerque e José Ricardo Almeida pela ajuda no dia-
a-dia, só vocês sabem quantas garrafas de café e madrugadas sem dormir foram necessárias
para chegar até aqui. Agradeço aos meus avôs paternos e maternos Fernando Pereira da
Silva (in memoriam), Eliete Gomes Rabelo, Eduvanda Oliveira de Jesus (in memoriam),
e Adilson Oliveira de Jesus por me permitirem compartilhar esse sonho com eles. Ao
meu irmão Caio de Jesus Rios por me acompanhar nas noites de escrita jogando Freefire.
Aos meus amigos de mestrado, verdadeiros companheiros de jornada, Railana Santana,
Sara Lima, Tassio Virǵınio, Nildo Silva, obrigado por me ajudarem nos momentos de
dificuldade que aconteciam quando o trabalho atrapalhava o meu rendimento, obrigado
também Renata Souza, minha parceira de artigos e com quem compartilho a área de
estudo, por me ajudar a filtrar minhas ideias malucas. Por fim, gostaria de expressar
minha gratidão ao meu orientador Ivan Machado, suas palavras de apoio e sabedoria
enriqueceram a minha jornada, muito obrigado por não desistir de mim.

v

Faça a sua fé maior que seus medos e seus sonhos maiores que suas

dúvidas

—ROBIN SHARMA

RESUMO

Startups são empresas que buscam explorar novos negócios incorporando novas tecnolo-
gias a diferentes mercados por meio da inovação. Os ecossistemas de startups existem
para fornecer um ambiente de suporte para essas empresas, sendo uma fonte valiosa
de networking e conhecimento. Projetos de software white label são desenvolvidos por
startups e conhecidos nos ecossistemas por serem altamente adaptáveis, capazes de gerar
novos produtos com mais rapidez quando comparados com formas clássicas de desenvolvi-
mento de aplicações, garantindo o melhor custo x benef́ıcio. As startups são divididas em
estágios (geramente dividios Startup, Stabilization e Growth) e enfrentam desafios difer-
entes dependendo do estágio atual. No estágio inicial, elas mal planejam suas atividades
de desenvolvimento, apenas avaliam as necessidades do mercado e encontram usuários
para seu produto inicial. Os projetos de software White Label sofrem mais com esses
problemas, pois não utilizam técnicas avançadas de reutilização de código que são ampla-
mente conhecidas pela academia e perfeitamente aplicáveis na indústria de software. Nos
demais estágios, as startups necessitam implementar processos ainda mais escaláveis de
forma a expandir seus negócios. Este trabalho busca introduzir o conceito de projetos de
software White Label e sua viabilidade para startups de software; investigar como técnicas
avançadas de reutilização de código, como Sistemas Altamente Configuráveis, podem ser
utilizadas como alavanca de oportunidade para startups de software; construir um frame-
work para software White Label móvel que seja adaptável a qualquer estágio em que a
startup esteja, e que facilite que estas empresas encarem os desafios que surgem como
caracteŕıstica de projetos white label. Para cumprir os objetivos mencionados, aplicamos
três estudos emṕıricos sob diferentes perspectivas. Uma entrevista semi-estruturada com
startups que desenvolvem projetos de software White Label, um questionário aplicado a
stakeholders de ecossistemas de inovação a condução de uma Multivocal Literature Re-
view sobre projetos de software White Label. Os resultados obtidos apresentaram um
panorama de como as startups de software têm lidado com a reutilização de software
em suas práticas diárias, com particular atenção em como o desenvolvimento de software
White Label tem sido explorado em seus projetos. Além disso, este trabalho apresenta
um estudo de caso conduzido em um projeto White Label em ambiente real, onde foi
aplicado o framework criado a partir de um sistema h́ıbrido de desenvolvimento, o react-
native. Por fim, direcionamos um caminho de melhoria que pode ser aplicado a startups
que trabalham com projetos de software White Label em diferentes estágios, além de ofer-
ecer aos pesquisadores um conjunto de desafios abertos a serem estudados em trabalhos
futuros.

Palavras-chave: Sistemas Altamente Configuráveis, Startups, Projetos White Label,
Engenharia de Software

ix

ABSTRACT

Startups are small companies that seek to explore new businesses by embodying new tech-
nologies to different markets through innovation. Startups’ Ecosystems exist to provide
a supportive environment for these companies, being a valuable source of networking and
knowledge to them. White label software projects are developed by Startups and known
in Ecosystems as highly adaptable products, capable of generating new products faster
than stand-alone applications, ensuring the best cost x benefit. Startups are divided into
stages, and they face different challenges depending on the current stage. In the early
stages, they barely plan their development activities but rather assess the market’s needs
and find users for their initial product, which leaves technical debt. White Label soft-
ware projects suffer more from these issues since Startups do not address advanced code
reuse techniques widely known by the academy. In the late stages, startups need to solve
the technical debt managed in the early stages and need even more scalable processes
to grow their business that involves White Label Software projects. This work seeks to
unveil the concept of White Label software projects and their feasibility for software star-
tups; investigate if and how advanced code reuse techniques, such as highly-configurable
systems, could be used as opportunity-lever for software startups; build an adaptable
framework for helping White Label software projects manage technical debt and face its
challenges. In order to accomplish the aforementioned goals, we applied three empirical
studies under different public. A semi-structured interview with startups using White
Label software projects, an online questionnaire applied for stakeholders from ecosystems
of innovation, and a Multivocal Literature Review with gray literature articles over the
internet about White Label software projects. The yielded results presented a compelling
portrait of how software startups have dealt with software reuse in their daily practices,
with particular attention on how White Label software development has been explored in
their projects. The data gathered allowed the creation of the framework above for mobile
White Label software projects using a hybrid development approach, the react-native. In
addition, this work gives a path of improvement that can be applied for startups working
with White Label software projects under different stages, besides giving researchers a
set of open challenges to be studied in future work.

Keywords: Highly-Configurable Systems, Startups, White Label Software Projects,
Software Engineering

xi

CONTENTS

List of Figures xvii

List of Tables xix

List of Acronyms xxi

Chapter 1—Introduction 1

1.1 Context . 1
1.2 Problem Statement . 3
1.3 Objective . 7
1.4 Methodology . 7
1.5 Summary of Contributions . 9
1.6 Dissertation Structure . 10

Chapter 2—Background 11

2.1 Startups . 11
2.1.1 Software Startup . 11
2.1.2 Software Startup Stages . 12
2.1.3 Effectuation . 13
2.1.4 Business Models . 13
2.1.5 Lean Startup . 14

2.2 Technical Debt in Software Startups . 15
2.3 Software Engineering for Startups . 16
2.4 White Label and Private Label Products 19
2.5 Highly Configurable Systems . 20

2.5.1 Feature Binding . 22
2.5.2 Quality criteria for SPL Engineering 23

2.6 Chapter summary . 24

Chapter 3—Interview Study 27

3.1 Introduction . 27
3.2 Conducting Semistructured Interviews 29
3.3 Research Design . 29

3.3.1 Research Questions . 29

xiii

xiv CONTENTS

3.3.2 Characterization of subjects . 30
3.3.3 Data Collection . 32
3.3.4 Data Analysis . 33

3.4 Results . 34
3.5 Discussion . 35
3.6 Implications for research and practice . 36
3.7 Threats to validity . 36
3.8 Chapter summary . 37

Chapter 4—Survey Study 39

4.1 Introduction . 39
4.2 Conducting the Survey . 40
4.3 Research Design . 40

4.3.1 Survey objective . 41
4.3.2 Survey Instrument . 41
4.3.3 Respondents Recruitment . 43
4.3.4 Pilot Survey . 43
4.3.5 Data Collection . 44
4.3.6 Data Analysis . 44

4.4 Results . 44
4.5 discussion . 46
4.6 implications for research and practice . 47
4.7 threats to validity . 48
4.8 chapter summary . 48

Chapter 5—Multivocal Literature Review 49

5.1 Motivation . 49
5.2 Why to conduct a Multivocal Literature Review (MLR)? 49
5.3 MLR Goal . 50
5.4 Search Methods . 50
5.5 Data Collection and Analysis . 51
5.6 Data Extraction and results . 52
5.7 MLR results compared between interview and survey 55
5.8 Threats to validity . 56
5.9 chapter summary . 57

Chapter 6—Adaptable Framework for Mobile White Label Software application 59

6.1 Context . 61
6.2 The Approach . 62

6.2.1 Brainstorming the solution 63
6.2.2 Hierarchy Tree . 65

6.2.2.1 Product structure . 65

CONTENTS xv

6.2.2.2 Script Structure . 65
6.2.2.3 Documentation . 67

6.3 Discussion . 69
6.4 A guide for Applying the created Framework to White Label Software

Projects in Startups . 70
6.4.1 Mapping Variation . 71
6.4.2 Enabling Variability . 71

6.5 Conclusion . 71
6.6 Chapter summary . 73

Chapter 7—White Label Software Projects 75

7.1 White label software characteristics . 75
7.2 White label software creation and project specificity 76
7.3 White Label Software Challenges and Future Path 77

7.3.1 Facing White Label software challenges 78
7.3.1.1 Classic Variability Management for White Label Software

Projects . 78
7.3.1.2 Define project’s domain limit 79
7.3.1.3 Documentation . 79

7.3.2 Tools for White Label software projects 80
7.3.2.1 Git tools . 80
7.3.2.2 Build systems and preprocessors 81
7.3.2.3 Feature oriented programming and advanced techniques 82

7.4 chapter summary . 82

Chapter 8—Conclusion 83

8.1 Related Work . 84
8.2 Future Work . 85

Appendix A—Semi-structured Interviews Transcription 93

A.1 Questions asked to the interviewees . 93
A.2 Interview transcript . 95

A.2.1 Company K . 95
A.2.2 Company M . 97
A.2.3 Company E . 99
A.2.4 Company L . 101

Appendix B—Selected resources for conducting the MLR 103

B.1 Resource List . 103

LIST OF FIGURES

1.1 An example of White Label Keyboard 3
1.2 Startup’s Stages by Berg et al. (2018) . 4
1.3 Overall Research Design. 8

2.1 Example of Business Model Canvas extracted from Dahle et al. (2020) . . 14
2.2 Cynefin Framework Diagram, adapted from Snowden and Boone (SNOW-

DEN; BOONE, 2007) . 18
2.3 Example of a Private Label, adapted from Geyskens et al. (2018) 20
2.4 Feature model example developed by author 21
2.5 Annotation and Composition based approaches, adapted from Apel et al.

(2016) . 24

3.1 Interview Study Design developed by the author 30

4.1 Survey Study Design . 42
4.2 Survey Level . 44
4.3 Answers from the question: Have you heard of the term Startup White

Label? . 45
4.4 Answers for the question: What is your experience in Startups? 47
4.5 Answers for the question: Do you work or have you ever worked at a White

Label Startup? . 47
4.6 Answers for the question: Where did you first heard about White Label

Startups? . 48

5.1 MLR Study Design. 50
5.2 Quality Assessment Spreadsheet. 52

6.1 Project’s feature model V1. 63
6.2 Project’s feature model V2. 63
6.3 Product hierarchy tree . 65
6.4 Script Files hierarchy tree . 66
6.5 Preprocessor Comments Examples . 67
6.6 An example output for a product build run 68

7.1 Git approaches adapted from (APEL et al., 2016) 81

xvii

LIST OF TABLES

2.1 Techinical Debt Types (APA et al., 2020) 17

3.1 Characteristics of the Startups Cases and Interviews 31
3.2 Interview Questions . 33

4.1 Survey Questions . 43

5.1 Quality assessment criteria. Based on Garousi, Felderer and Mantyla (2019) 53

6.1 Products available in the SPL . 62
6.2 Product configurations . 64

xix

LIST OF ACRONYMS

BML build-measure-learn

CEO Chief Executive Officer

CD Continuous Delivery

CI Continuous Integration

GSM Greenfield Startup Model

HCS Highly-configurable Systems

IT Information Technology

MLR Multivocal Literature Review

MVP Minimum Viable Product

SaaS Software-as-a-service

SPL Software Product Lines

TD Technical Debt

xxi

Chapter

1
INTRODUCTION

1.1 CONTEXT

Entrepreneurship has become an effective economy-saving tool (FELDMAN, 2001), where
society’s restrictions and needs are transformed into innovative projects. The Startup
movement embodies innovation, especially for technologies that existing organizations do
not easily absorb (LUNDGREN, 1991). In this sense, software Startups are companies
focused on creating innovative and high-tech software products or services, with little or
no prior experience in the market and an urge to increase its performance through new
business models aggressively (GIARDINO et al., 2016).

Decker et al. (2014) discuss the role of entrepreneurship in the US job creation and
economic dynamism. The study points out that startups have created an average of 18%
of the US workforce annually, between the years 1980 and 2010. While this number can
be considered high, startups are very volatile, some die faster than born, and the job
creation cannot be simply understood from the immediate contribution upon Startup’s
ascend. Still, the study shows that startups have the potential to contribute to the local
economy. When it comes to the Brazilian scenario, in 2020, there are over 13 thousand
Startups and 78 communities, indicating excellent potential for this market.1

Communities are “clusters” of companies that can be called Entrepreneurial Systems,
Business Ecosystems, or simply Ecosystems (MOTOYAMA; KNOWLTON, 2017). Moore
(2016) defines a business ecosystem as “an economic community supported by a foundation
of interacting organizations and individuals organisms of the business world”. Moreover,
“in the business ecosystems, companies occupy niches, just as species do in a biological
ecosystem, and the various members co-evolve and tend to align themselves”. Mack and
Mayer (2016) exemplify six domains present in an entrepreneurial system: human capital,
markets, politics, finance, culture and support. Motoyama and Knowlton (2017) indicated
the nature of the connections between people in the same ecosystem. They realize the
importance of not only having pioneering entrepreneurs within an ecosystem but rather

1Source of extracted data: 〈https://startupbase.com.br/home〉, accessed in September 2020.

1

2 INTRODUCTION

a mix of entrepreneurs with and without previous experience to favor cooperation in a
non-competitive way.

Motoyama and Knowlton (2017) applied a theoretical model of interaction that,
through the perspective of social networks in entrepreneurial systems, aims to discover
how the relationships between people and organizations were created and maintained.
In their investigation, the researchers used a bottom-up approach (from individuals to
organizations), starting from entrepreneurs, followed by entrepreneurship support or-
ganizations and the connections between them. The researchers state that the most
influential elements and the degree of interaction between users in a Startup ecosystem
are applicable in decreasing order of influence: entrepreneurs, supportive individuals, and
organizations, events on entrepreneurship and academy. They also pointed out how sup-
port organizations interact with entrepreneurs, which has a high impact on how and why
they connect.

In the scenario defined by Motoyama and Knowlton (2017), the academy has a
marginal influence on the ecosystem’s interactions. However, it is noteworthy that there
are thriving ecosystems due to universities’ presence in their surroundings, in which dif-
ferent regions facing innovation share one or more academic anchors. For example, the
city of Austin is home to the University of Texas; the city of Bangalore, India, harbors
the Indian Institute of Technology; Silicon Valley was created from initiatives originated
at Stanford University (ADAMS, 2005).

Etzkowitz, Mello, and Almeida (2005) pointed out the Brazilian history of build-
ing hybrid organizations called “incubators”. These organizations apply the so-called
Triple Helix innovation model: university-industry-government, which aims to support
the startup process (ETZKOWITZ; ZHOU, 2017). They stated that the movement of
creating incubators started after the collapse of the Brazilian military government when
the universities achieved more autonomy. For example, the Federal University of Santa
Catarina (UFSC) and the Government of Santa Catarina State founded the Technological
Business Incubator of the Florianópolis Science Park in 19862. Similarly, a technologi-
cal incubator was founded in the same year in São Paulo, more precisely at the Federal
University of São Carlos (UFSCar). Since then, technological incubators have been es-
tablished at universities and research centers around the Brazilian country, attracting
professors and students to participate in the formation of new businesses (ETZKOWITZ
et al., 2005).

For ecosystems that do not have universities nearby acting as academic anchors, events
focused on entrepreneurship are essential sources of knowledge and connection between
individuals, opening different views and implementations in startups. On the other hand,
knowledge exchange between startups and universities can improve Startup’s processes
and provide exciting findings for researchers to disseminate in applied studies.

One of the many concepts discussed in Entrepreneurship Events and known in Star-
tups Ecosystems is White Label. A White Label consists of a software product that can be
easily adapted to different companies, that in turn, can deliver it to final customers as if
they had built it. This approach benefits from code reuse to deliver customized solutions

2http://www.celta.org.br/

1.2 PROBLEM STATEMENT 3

quickly and with a better cost-benefit when compared to stand-alone applications made
from scratch.

White Label has been originated in the development of physical products and comes
together with another widely-used term, Private Label. A Private Label is a product
manufactured on demand, which meets the precise specifications from a partner com-
pany, which in turn sells it to the end customer. Examples for Private Label are products
from supermarket chain brands. White Label physical products refer to goods manufac-
tured and sold on a large scale to companies that, without due concern with customiza-
tion, only apply their brand and sell the product to the end customer. An example of
aWhite Label product is a computer keyboard production line, where all keyboards will
be identical except for the company’s brand stamped on the product, as seen in Figure
1.1 (GEYSKENS et al., 2018; KAISER, 2017).

Figure 1.1 An example of White Label Keyboard

White Label software projects inherit characteristics from both Private and White
Label physical products, i.e., although they enable large-scale customization from a base
of common artifacts, each company partner could have a specific version of the product
in the market.

The White Label approach applied to Software development has been discussed lately,
with both pros and cons points of view (MACLEOD, 2012). The White Label approach
can determine the business entirely, from marketing strategies to product delivery. This
approach mainly defines how the software will be engineered and developed. However, few
studies explore the White Label’s potential as a software engineering technique, leaving
a gap between what startups face in the industry and what the academy can assist.

1.2 PROBLEM STATEMENT

The theme Startups have been growing in interest by the Software Engineering research
community in the last years. Recent empirical studies have overviewed the best practices,
and current challenges presented (UNTERKALMSTEINER et al., 2016; BERG et al.,
2018). Quite a few studies consider the differences that come according to the stages
of maturity that startups should cross, which can be, according to Berg et al. (2018)

4 INTRODUCTION

Startup, Stabilization, Growth, and Mature Organization, as illustrated in Figure 1.2.
In addition, the methods used for software development in Startups are mostly ad-hoc
and/or opportunistic (BERG et al., 2018). However, none of the following software
engineering studies applied for startups take into account White Label software projects
(OLSSON et al., 2012; NGUYEN-DUC et al., 2015; GIARDINO et al., 2016; NGUYEN-
DUC et al., 2020).

Figure 1.2 Startup’s Stages by Berg et al. (2018)

In their earliest stage, startups barely plan their development activities but rather
assess the market’s needs and find users for their initial product. The way of developing
a Minimum Viable Product (MVP) requires the team to take shortcuts and workarounds3.
The absence of structure hinders essential activities, such as the following: a well-defined
development process, tracking software requirements, and documenting information to
share knowledge (BERG et al., 2018). When startups prepare for the growth stage,
they should plan for scalable processes that require strategies they can benefit from, like
reusable components and a shared architecture (NJIMA; DEMEYER, 2017).

The literature presents the results of several investigations on the causes of failures
in Startups (CROWNE, 2002; MARMER et al., 2011; UNTERKALMSTEINER et al.,
2016). Several symptoms are responsible for the failure in Startups, divided according to
the Startup’s maturity level. Many of them are directly related to the applied Software
Engineering processes (CROWNE, 2002). Marmer et al. (2011) highlight the importance
of avoiding premature scaling, which would be making the wrong decisions when scaling
the product. We highlighted some of the symptoms as follows:

3MVP is a product version that collects the customer’s needs with the least effort, based on a pre-
defined thesis (RIES, 2011)

1.2 PROBLEM STATEMENT 5

• Startup: There is no strategic plan for product development, meaning that the
company’s business plan does not establish objectives and goals for product devel-
opment. The Startups in this stage make decisions on an ad-hoc basis.

• Stabilization: Requirements become unmanageable, meaning that the market
requests more features than product development can deliver, and there is no sat-
isfactory way of deciding between them.

• Growth: There is no process for product introduction, meaning that creating new
products takes longer than expected. Activities take place serially rather than in
parallel, and there is no coordination between teams.

• Mature Organization: Is where the aforementioned symptoms will not affect the
product development. Software Engineering processes at this stage are robust and
predictable.

Crowne (2002) claims that using ad-hoc Software Engineering practices commonly
leads to project failures in startups. Equally, White Label software projects in startups
suffer from it as well. They need mature Software Engineering practices to enable the
creation of potentially cohesive, scalable, and consistent products (PATERNOSTER et
al., 2014; BERG et al., 2018).

Startups face many common challenges, like market and financial factors, Software
Engineering bad practices, resource and time scarcity. Additionally, White Label software
projects have their specific struggles like maintaining many products without taking the
team’s overhead, making the generation of new products cost-efficient, and evolving the
product without losing its identity.

In order to face the above problems for White Label software projects, startups can
take benefit of advanced code reuse techniques adapted to them. As a result, Startup’s
experiences in adopting such techniques can be used to lever the White Label software
approach in the academy.

When it comes to Software Engineering practices related to code reuse techniques,
there is a paradigm that refers to the creation of software families through the systematic
reuse of artifacts defined as Software Product Lines (SPL). A SPL is built through a
common base of reusable artifacts and enables the generation of products with common
and variable characteristics, in less time and cost, when compared to the individual con-
struction of products at an acceptable quality level (APEL et al., 2016). This paradigm
enables the delivery of a range of products, meeting different customers’ expectations
while maintaining a common base that can be reused and customized to meet one or
another potential customer’s particular needs. A SPL can be considered as a Highly-
configurable Systems (HCS) (COHEN et al., 2008), which is a broader concept which
encompasses software that adjusts to a determined context.

This chapter presents the White Label Software projects in Software Startups, which
is one highly reuse-oriented approach in the entrepreneur environment. The Software
Engineering area that discusses systematic reuse is called HCS, a concept associated with
software systems that can adapt to a specific context. SPL comes as a one of the context

6 INTRODUCTION

reuse handling, which this dissertation investigates because of its similarity with White
Label software projects.

For better understanding, we scoped boundaries between the aforementioned topics.
This work assumes that HCS is a high-level concept that involves both White Label
Software projects and SPL since they fit in the definition of HCS plus they are capable
of generating many products with commonalities and differences. White label software
projects may be able to absorb not only SPL practices but other context reuse-related
techniques from HCS as well.

Given the similarities between White Label software projects and HCS, there is a
need to understand how these concepts are related to each other. In this sense, we have
established the following research question to address in this investigation:

Given the similarities between White Label software projects and HCS, there is a
need to understand how these concepts are related to each other. In this sense, we have
established the following research question to address in this investigation:

How could White Label software projects benefit from the Software
Engineering techniques applicable to HCS in Startups?

Based on the main research question, we have established the following specific re-
search questions:

RQ1 - What is a White Label Software Project in a startup context? This
question aims to gather general concepts of White Label software projects.
This question would evaluate the similarities between White Label software
projects and HCS.

RQ2 - What are the professional’s perspective, characteristics, and chal-
lenges involved in White Label Software Projects? This question
aims to gather from professionals their experience-based knowledge in de-
veloping White Label software projects. This data will be essential to un-
derstand how the advanced code reuse techniques such as HCS can benefit
this type of project.

RQ3 - How do startups develop White Label software projects? This ques-
tion aims to leverage the techniques used to make viable the development of
this kind of project in startups. In addition, we seek to understand whether
the Startups use to adapt widely accepted approaches to meet their partic-
ularities.

RQ4 - Which Software Engineering techniques applicable to HCS can be
adapted into White Label software projects ? This question seeks to
identify Software Engineering Techniques that can be adjusted from the aca-
demic literature to the startup context, specifically for White Label software
projects, taking into account the specificities of this type of project.

1.3 OBJECTIVE 7

1.3 OBJECTIVE

This dissertation’s overall objective is to investigate White Label software projects in
startups and innovative companies, leveraging its main characteristics, main challenges,
and practical evidence of its usage. Obtaining from the practitioners’ voices how they
implement this approach and investigate how HCS could enhance those projects.

The aforementioned objective has been refined in the following specific ones:

O1: Gathering from both practitioners and the gray literature, knowledge referring
to White Label Software, characteristics, open challenges, whether and how
startups commonly implement this approach.

O2: Understanding how White Label software in startups correlates with HCS.

O3: Building a framework for developing White Label software projects, applying
the knowledge gathered from the empirical studies, that should be adaptable to
meet Startups’ particularities.

O4: Highlight key points that can enhance White Label software projects in startups
based on the experience obtained after applying the framework to real-world
projects.

1.4 METHODOLOGY

The research design we followed in this investigation encompassed three main parts:
(1) Literature analysis and review, (2) Performing three research methods to gather
information from White Label software projects under different perspectives, and (3)
Creating a framework to be applied to startups and discuss a path of enhancements that
startups can do to manage this type of project. Figure 1.3 shows the research design of
this work.

We carried out each part by employing a set of research methods in order to reach
particular goals. They are detailed next:

1. Background, Related Work and Literature Review

• In the first phase, We carried out a secondary literature review by analyzing
systematic literature reviews on Startups and Software Engineering concepts
combined. We also gathered the state-of-the-art on HCS and White Label
physical products definitions and usage.

• With the data acquired in the review, it was checked whether the literature
already discusses White Label software projects in startups.

2. White Label Software Project Research

• In this phase, three research methods were performed. First, semi-structured
interviews were executed (HOVE; ANDA, 2005). We conducted interviews

8 INTRODUCTION

Figure 1.3 Overall Research Design.

with four software startups, with the intention to capture the initial percep-
tion from professionals working in White Label software projects about the
practical day-to-day activities.

• Secondly, it was performed a descriptive survey to present more findings follow-
ing the guidelines of Kitchenham and Pfleeger (KITCHENHAM; PFLEEGER,
2008). The first study’s feedback served to guide the construction of the survey
instrument, which targeted stakeholders connected to Innovation Ecosystems.
The results from the two first studies were published in the SEAA 2020 con-
ference (SILVA et al., 2020b).

• Lastly, it was performed a Multivocal Literature Review (MLR) following the
guidelines of Garousi et al. (2019). We made an empirical search on Web

1.5 SUMMARY OF CONTRIBUTIONS 9

forums, articles across the internet about White Label software projects’ origin,
definition, use cases, challenges, and benefits.

3. White Label Software Projects in Startups

• The collected data from the interview, survey, and MLR studies were ana-
lyzed using descriptive statistics and correlation of variables. The first part of
this study is to understand White Label software projects and identify how
empirical software engineering would help them.

• This study defined the White Label software project concept, its characteris-
tics, main challenges and explained the apparent correlation with HCS in the
startup context.

• Once this work has understood the necessities of White Label software projects.
The next step involved adapting HCS techniques to the startup context.

4. HCS Industrial Application

• With the definition, characteristics, and correlation with empirical software
engineering defined, we proposed a framework targeting White Label software
projects using hybrid technologies for developing mobile apps. This framework
has been developed and tested in a real industrial environment. As a result,
it provides flexibility to the Startup when performing changes, being easy to
understand and maintain.

• Our proposal is based on whether HCS is related to White Label software
projects. We obtained the approval after gathering data from the multiple
empirical studies applied and whether the framework built helped or not real-
world White Label software projects.

1.5 SUMMARY OF CONTRIBUTIONS

Through this work, we claim the following contributions:

• Introduced the concept of White Label software projects in Startups as application
sources for HCS in an Entrepreneurial context.

• Built a White Label mobile framework that follows HCS concepts that should be
easy to reproduce and evolvable by startups. We have tested and validated the
framework in an industrial environment.

• Created a reference of enhancements for existing White Label Software projects.

10 INTRODUCTION

1.6 DISSERTATION STRUCTURE

The following chapters of this work are structured as follows:

• Chapter 2. Literature Review: Presents the state-of-the-art about Startups, Soft-
ware Engineering for Startups, HCS, and White Label products, which are funda-
mental concepts necessary for a complete understanding of this work.

• Chapter 3. Semi-structured Interview Study: It presents the study applied, with
its specific research methods and particularities. It describes the startups inter-
viewed and their White Label Projects and shows the results obtained.

• Chapter 4. Survey Study: It presents the guidelines that we have followed for
conducting the survey, the strategies, and how we planned a three-level survey that
would gather respondents’ experience with White Label Software projects. This
chapter has also presented the results obtained for the survey.

• Chapter 5. Multivocal Literature Review: It presents the guidelines for conducting
a MLR in Software Engineering, the step-by-step for scavaging the technical articles
over the internet, and performing the quality assessment to find the chosen ones.
This chapter has also presented the results obtained for the MLR conducted.

• Chapter 6. Adaptable Framework for Mobile White Label Software application:
It presents a case study performed in a real-world scenario, where it a framework
was built to develop, maintain and evolve a White Label software project. The
framework was created over the learnings from previous studies and target mobile
hybrid projects with react-native.

• Chapter 7. White Label Software Projects: It presents the discussion combined
with the results of each empirical study previously explained. This chapter shows
the definition, characteristics, and challenges involved in White Label software
projects. This chapter also seeks to elucidate HCS techniques that White Label
projects can benefit from, setting up a path for future work, and answer the third
question of this work.

• Chapter 8. Final Considerations: This Chapter contains the final considerations
of this work, as well as limitations, next steps, related work, and final contributions.

Chapter

2
BACKGROUND

This Chapter introduces the underlying concepts necessary to the understanding of this
dissertation. We discuss fundamentals about Software Startups, their stages, and the
methodologies employed to develop innovative products, specifically Software Engineering
for Startups. Next, this Chapter introduces the concept of White Label physical products
in which entrepreneurs have adapted it to the Startup context. Finally, we discuss Highly-
configurable Systems (HCS) concept and its ideas that this work uses as a basis for
understanding White Label software projects.

sed.

2.1 STARTUPS

2.1.1 Software Startup

Carmel (1994) first mentioned software startups when he analyzed the completion time of
these projects and their accelerating elements. The author refers to Startups as innovative
companies that are new to the market, working under new business models. Startups
can be classified into different stages, from an immature organization, which does not
have well-defined processes, to mature stages. Based on these characteristics, Carmel
(1994) established that the development team is a crucial element for startups in order to
deliver high-quality products. The team should be small, having involved and motivated
stakeholders that usually have different skills and experience levels. Notwithstanding,
startups have improved in several respects in the last years, and they cannot be compared
to those as mentioned by Carmel (1994). For example, current startups range from three
up to thousands of employees in terms of involved personnel.

Startups are generally small companies that seek to explore new business areas and
commonly work on problems whose solutions are not well known yet (GIARDINO et
al., 2014). They are willing to propose innovative solutions to existing problems using
cutting-edge technologies available on the market. According to Coleman and O’Connor
(2008), usually, the founders of Software Startups have few resources available and often

11

12 BACKGROUND

no business model established1. From the perspective of software development processes,
startups are more concerned with the business’s survival than with the application of
Software Engineering practices. Instead of developing software for a specific customer,
Software Startups develop systems that contain features defined by the market, symbol-
izing that they sometimes have no customers before their product is launched (BERG et
al., 2018).

In the following sections, we detail the core concepts of startups. They are relevant
to understand the goals of this work, explain the decision-making of the Chief Executive
Officer (CEO) when developing software products in startups, and understand the origins
of the challenges faced.

2.1.2 Software Startup Stages

There are many definitions of the stages present in a startup’s life cycle. Crowne (2002)
and Marmer et al. (2011) similarly explain the life cycle of Software Startups. The
latter shares a startup’s life cycle as discovery, validation, efficiency, scale, support, and
conservation, while the former divides into startup, stabilization, and growth. Besides,
technical articles over the internet usually present the following phases in the life cycle
of a Startup: ideation, operation, traction, and scaleUp 2.

Berg et al. (2018) described four stages present in a startup’s life cycle: Startup,
stabilization, growth, and mature organization, as follows:

• startup: This stage is defined as the time from the idea conceptualization to the
first sale. A small executive team with the necessary skills is required to develop
and deliver the product;

• Stabilization: It begins when the team starts to sell the product developed for
more customers and begins to face escalation problems. This stage lasts until the
product is stable enough to be commissioned to a new customer without causing
any overhead on the product development;

• Growth: It begins with a stable product development process and lasts until the
startup has achieved market size, share, and a high growth rate.

• Mature organization: The last stage starts when the startup has evolved into a
mature organization. The product development is robust and easy to predict, with
proven processes for new product inventions;

We have chosen the stages explained by Berg et al. (2018) to follow in this work
because it covers a broad range of concepts, is easy to understand, and more meaningful
when compared with the other sources found.

1Business models are ways to monetize the services and products offered by organizations
2Source of data extracted: 〈https://startupbase.com.br/home/stats〉, visited in September 2020.

2.1 STARTUPS 13

2.1.3 Effectuation

Effectuation is a theory centered on the understanding of opportunity-seeking entrepreneur-
ship, commonly associated with early-stage startups, which are startups facing the Startup
stage. Shane and Venkataraman (2000) defined entrepreneurial opportunities as ”situa-
tions in which new goods, services, raw materials, markets, and organizing methods can
be introduced through the formation of new means, ends, or means-ends relationships”.

Effectuation claims that an entrepreneur’s journey starts without clear objectives but
with the desire to do the best which the resources he has at hand. Sarasvathy (2001)
described the five principles of effectuation as follows:

• Bird in hand: Entrepreneurs start with what they are and what they already
know.

• Affordable loss: Entreperneus invest only in what they afford to lose.

• Lemonade: Entrepreneurs are open to surprises and leverage them; they turn
setbacks into opportunities.

• Crazy quilt: Build strong stakeholder partnerships with players in the ecosystem.

• Pilote in the plane: Entrepreneurs should focus on actions where they directly
influence the outcome.

This theory is considered a useful framework to explain many engineering activities
that occurred in early-stage startups. Decisions must not be influenced only by technolo-
gies and processes, but also from situations and business (DAHLE et al., 2020).

2.1.4 Business Models

Business models are the core communication between the entrepreneurs and their different
advisors. It is a tool where divides an entire business into activities commonly defined
(DAHLE et al., 2020). Osterwalder and Pigneur (2020) define a business model as a
conceptual tool containing a set of objects, concepts, and relationships with the objective
to express the business logic of a specific firm. Therefore, we must consider which concepts
and relationships allow a simplified description and representation of what value the
business provides to customers and the financial consequences.

There are some approaches to build business models with different structures, but
the most widely used is the version proposed by Osterwalder and Pigneur (2020) called
Business Model Canvas. With nine elements, the canvas highlights the Target Customer
within the following aspects:

• The Value that the company creates;

• The key channels that describes how the company will contact the customer.

• Customer Relations describe the type of relationship obtained through the channels.

14 BACKGROUND

Figure 2.1 Example of Business Model Canvas extracted from Dahle et al. (2020)

• Revenue Streams that describe how the company will profit.

• Key Resources that addresses what type of resources the company needs to create
in order to add value as proposed.

• Key Partners, which are the allies whose act helps make the value proposition
possible.

• Core Structures which addresses the cost drivers to operate the business.

Figure 2.1 shows a canvas example. Dahle et al. (2020) explained that the business
model was essential at the beginning of their project used as an example. Each element
has evolved over time, as the team has gained experience with what works and what does
not.

2.1.5 Lean Startup

Ries (2011) introduced the concept of Lean Startup in 2011, based on the principles
discussed by Toyota (BERG et al., 2018). This method proposes a way to create and
manage startups in order to deliver products or services to customers as quickly as pos-
sible. build-measure-learn (BML) is the process applied to achieve the Lean Startup
objective, which aims to transform ideas into products in an interactive way, measure

2.2 TECHNICAL DEBT IN SOFTWARE STARTUPS 15

customer satisfaction and product change through customer feedback. BML is an inter-
active process where the construction of the project takes place, measurement of results,
and learning for the next cycle.

The key to applying the BML process lies in Hypothesis testing, from building a
Minimum Viable Product (MVP), which is the purest form of an idea, product, or service
that can respond to the hypothesis. Any functionality, process, or effort that is not
directly related to the belief is removed (BERG et al., 2018). The unit of progress for
Lean Startups is called Validated Learning. Therefore, it must be understood that a
Startup is an experiment to be validated through incremental growth plans, carried out
only by efforts that are necessary (RIES, 2011).

In the Lean Startup everything that is done, each product launch, each feature, each
marketing campaign, everything is considered as an experiment designed to search for
Validated Learning. In this way, it is possible to systematically obtain what customers
want and what they will crave to pay to obtain (RIES, 2011).

Ries (2011) emphasizes that a Lean Startup must also be prepared for failure, as this
is where entrepreneurs learn the most. There are two general hypotheses for experimen-
tation in Lean Startups :

• The value hypothesis: Seeks to test whether a product or service is delivering
the value due to consumers who are using it.

• The growth hypothesis: Seeks to test new ways to get new users for a product
or service.

The Lean Startup method proposes that the organization understands which product
to develop through the above hypothesis tests, emphasizing the importance of delivering
products to customers more quickly. Startups tend to focus on delivery speed rather than
quality by eliminating formal Project Management processes, documentation, testing,
and applying faster feedback forms such as customer satisfaction with the product. It is
correct to say that Startups need specific development practices to solve the challenges
proposed by the Lean methodology (BERG et al., 2018).

2.2 TECHNICAL DEBT IN SOFTWARE STARTUPS

Technical Debt (TD) refers to issues related to the quality of source code. It is associated
with technical decisions in software development that can bring benefits in the short term,
like savings of time and cost reduction. However, these decisions may bring some risks to
internal software quality, hindering software products’ maintenance and evolution. As far
as the academy has studied this topic, it discusses whether, if not all, software projects
face TD (TOM et al., 2013; AVGERIOU et al., 2016).

Nowadays, the Software Engineering community states TD as ”a collection of design
or implementation constructs that are expedient in the short term but set up a technical
context that can make future changes more costly or impossible. Technical debt presents
an actual or contingent liability whose impact is limited to internal system qualities,
primarily maintainability and evolvability”.

16 BACKGROUND

Apa et al. (2020) reference an exploratory study done in startups in Brazil. The re-
sults show that after the initial stage, the management of TD is claimed as essential in
the software development life cycle for startups. Furthermore, the perception of software
product quality tends to change over time. At first, the study considered usability a
significant characteristic since the main goals are related to the software product’s accep-
tance and success in the market. When the product has a high probability of success or
changes occur in the team or the number of clients/users increases, the quality concerns
are associated with other characteristics such as maintainability and evolvability to meet
the required changes and product scalability. Once the perception of software products
evolves in startup organizations, their adopted software engineering practices also need
to evolve (APA et al., 2020).

TD results can have a positive influence, if intentional and managed, or negatively, if
unintentional and not managed, on the software projects and the quality of their software
products. The perception and management of TD activities should be a continuous
activity to mitigate internal software quality risks. Apa et al. (2020) point out fourteen
types of TD, in table 2.1 shows ten types extracted to be used as reference is this work.

Startups intentionally gain some of the debts listed in Table 2.1 in the early stages.
They tend to avoid engineering practices that consume time because their initial software
solution is delivered as an MVP to experiment with new ideas and get fast feedback. Apa
et al. (2020) made a replication to the Brazilian study above mentioned in Uruguayan
software organizations.

First, the study has found no consensus about managing the TD types described in
Table 2.1. Instead, the participants stated that TD identification and prevention are the
essential activities to their projects, followed by TD communication and measurement
(APA et al., 2020).

To support TD Management activities, the startups reported using tools such as JIRA
and Trello. However, Apa et al. (2020) claim that the effectiveness of such technologies
for managing TD activities needs further investigation.

Generally, TD awareness is more present in senior (experienced) software engineers
and more mature startups. Since no consensus was found, more studies about handling
specific TD activities in startups should be done to mitigate the problems in more ad-
vanced stages (APA et al., 2020).

2.3 SOFTWARE ENGINEERING FOR STARTUPS

Startups are flexible. The use of rigid processes does not serve this type of organization,
which focuses on the rapid delivery of features to customers. Due to its limited resources,
there is a greater focus on product delivery than following rigid processes (BERG et al.,
2018).

Berg et al. (2018) carried out a systematic literature review about Software Startups.
The authors found that early-stage Startups prefer not to follow systematic Software
Engineering processes but instead use light and ad-hoc ones. The study noticed that
startups need an engineering model based on innovation, which fits in complex and chaotic
situations in which a startup goes through.

2.3 SOFTWARE ENGINEERING FOR STARTUPS 17

Table 2.1 Techinical Debt Types (APA et al., 2020)

TD Type Description

Architecture Debt
Refers to suboptimal architecture solutions, impacting the internal qual-
ity (e.g., violations of the adequate and adopted architectural)

Build Debt
Refers to issues in the build process that may make this process harder
(e.g., files of build containing code source that does not add value to this
task and software products and manual build)

Code Debt
Refers to the issues in the source code that may hamper the modularity,
reusability, analyzability, and modifiability of the software products (e.g.,
code source that does not meet the required coding standards)

Documentation Debt
Refers to the issues found in the documentation (e.g., lack, insufficient,
outdated, or inadequate documentation of the artifacts’ software)

Design Debt
Refers to technical shortcuts taken in the detailed design and may be
found by analyzing the source code or design models (e.g., violations of
the principles of good object-oriented design, code smells, and grimes)

Requirement Debt

Refers to the distance between the optimal requirements implemented
and the actual software products implementation, under domain assump-
tions and constraints (e.g., an implemented requirement which, in a way,
does not fully satisfy all the nonfunctional requirements)

Service Debt

Refers to the inadequate use of software services (e.g., poor selection
and use of software services). Services refer to independent technolo-
gies that offer specific business functionality. These are described in a
standardized way, having published interfaces and communicating with
other services through remote calls

Test Debt
Refers to issues related to testing activities (e.g., lack, insufficient or
inadequate tests; low tests coverage; and deferring testing)

Versioning Debt
Refers to issues related to source code versioning (e.g., unnecessary code
forks)

Process Debt
Refers to issues related to the adopted software process that may con-
tribute to the incurrence of TD (e.g., an inadequate process not providing
proper support to the development activities)

One of the models presented is the Hunter-gatherer cycle, which Snowden and Boone
(2007) proposed to assist startups in all organization phases, from the evolution of ideas to
commercial products. The model is divided between the hunting cycle and the gathering
cycle, focusing on growth activities in Software Startups over time (NGUYEN-DUC et
al., 2015). The cycles happen at different times and can last from one day to a month,
depending on the current order/disorder stage of the startup and the solution domain,
from the unknown to the known. Hunger Gathering specifically assists decision-making
in different scenarios from the chaos to complete organization (SNOWDEN; BOONE,
2007). As a result, correct choices are made based on each domain presented and defined
in Figure 2.2.

Each domain requires different actions. The contexts simple and complicated are part
of an ordered universe, where the transmission of cause and effect is noticeable, and the

18 BACKGROUND

correct answers are facts determined. In the contexts complex and chaotic, they are part
of a disorderly environment, where there is no apparent relationship between cause and
effect, and the way of driving is through emerging standards of management. While
the fact management is the base of the ordered world, the disordered world represents
standards-based management (SNOWDEN; BOONE, 2007).

Figure 2.2 Cynefin Framework Diagram, adapted from Snowden and Boone (SNOWDEN;
BOONE, 2007)

The context of disorder defines that it is particularly challenging to understand when
the organization is in this domain. The way to break this barrier is to divide the situation
into small parts, assigning each one to one of the four domains discussed above. From
that, leaders can make decisions and intervene appropriately.

Another model of Software Engineering for Startups is called Stairway to Heaven,
where it also focuses according to the current startup stage through the implementation
of different Engineering concepts. At first, Olsson, Alahyari, and Bosch (2012) state that
startups use traditional and agile engineering methods altogether, so this model aims
to get the best of each method. Traditional engineering methods are waterfall-based,
which means that one phase (requirements, design, implementation, verification, and
maintenance) performs after the other in either a strict or flexible way. On the other
hand, small deliveries under short development cycles with pre-established achievements
are the base of Agile engineering methods (BECK et al., 2001).

The Stairway to Heaven model is based on five steps that a Startup should perform
until it reaches the mature organization state. For example, one of the steps expected
to achieve is the Continuous Integration (CI) through the establishment of practices
that allow automated testing and delivery. Continuous integration is an automation
process for developers. Successful CI means new code changes to an app are regularly
built, tested, and merged to a shared repository. After implementing this practice, the
startup should move on to the Continuous Delivery (CD) stage, which usually means

2.4 WHITE LABEL AND PRIVATE LABEL PRODUCTS 19

a developer’s changes to an application are automatically bug tested and uploaded to
a repository, where they can then be deployed to a live production environment by the
operations team. It is an answer to the problem of poor visibility and communication
between dev and business teams. To that end, the purpose of CD is to ensure that it takes
minimal effort to deploy new code. Then, the startup is ready to develop the Software as
Experiment stage, where the engineers will add more software value according to the user
input, similar to the aforementioned Lean Startup. Software delivery focus on improving
the existing product rather than creating the new product (OLSSON et al., 2012).

A more recent Engineering model is called Greenfield Startup, which explains the
priority that Startups have to launch their products on the market immediately. This
strategy allows Startups to check if the product is suitable for the market, allowing a
faster adjustment according to users’ first feedback. Giardino et al. (2016) explain that
it is necessary to reduce the time of delivery of the product to the market by accelerating
its development by using low-precision engineering practices. Still, its adverse effects are
offset by the fact that restructuring is mandatory before focusing on the growth stage of
the business (GIARDINO et al., 2016).

The above models follow the same core concepts inherited from any startups and
discussed previously. Such fundamental similarities do not make them generic. In fact,
it is the opposite, where each model applies those fundamentals differently, to be used
by Startups in specifics contexts. Similarly, a model specially designed for White Label
software projects in startups would help mitigate the risks, reduce the technical debt,
and face the challenges involved.

2.4 WHITE LABEL AND PRIVATE LABEL PRODUCTS

The term White Label for physical products is accompanied by another term, called
Private Label, both refer to the model in which a company purchases products to apply
its branding before selling to the final consumer. In this way, several brands buy the same
product to resell as if they have made it (KAISER, 2017). There is a clear difference
between the two terms mentioned above. However, Private Labels did not appear in the
Software environment since no mention of it was found in the technical literature. In
sum, White Label and Private Label are very complementary concepts treated simply as
White Label Products by the authors from gray literature referenced in Appendix B.1.

A Private label is a product manufactured especially for a reseller, who adds his brand
to the product and sells it to the final consumer. This product can follow specifications
requested exclusively by the dealer, which can be concerning the type of packaging, recipe
modifications, and others (GEYSKENS et al., 2018). The difference between Private
Label and White label is that unlike the first that fulfills a specific order, White Label
physical products are made on a large scale and moved to several reseller companies,
which in turn add their brand to the product. There is no customization between brands
in this case.

The Private Labels was created to be the cheapest products, but over time, they have
been improving their quality, being today comparable to products of mainstream brands
(GEYSKENS et al., 2018). Geyskens et al. (2018) brought an example of different Private

20 BACKGROUND

Label based on the type of final consumer, as Figure 2.3 illustrates. The economy jelly
has both a more modest design and less fruit for every hundred grams of the product. In
this way, the quality increases for Standard and Premium versions. This structure is an
example of a Private Label’s architecture.

Figure 2.3 Example of a Private Label, adapted from Geyskens et al. (2018)

White Label or Private Label products tend to follow an application planning based
on the market, based on a definition of variable points. The three types of gelly defined
in Image 2.3 could be represented in White Label software projects as software for three
types of users. A more expensive version would have the finest features implemented. In
contrast, the cheapest one would have ads.

2.5 HIGHLY CONFIGURABLE SYSTEMS

Software development has been changing over time. What used to be based on the pro-
duction of individual programs is created to conceive families of systems from a common
set of artifacts, also known as core assets. A HCS proposes to adapt a software system
to a particular context, which may vary in terms of the platform used, interfaces hosted,
or the optional features it can provide to users. In a HCS, planning the variable and
non-variable points from design to implementation is essential to apply systematic reuse
to the code. With systematic reuse, the product will enable multiple configurations and
serve as its purpose (COHEN et al., 2008).

Software variability is the ability of a software system or artifact to be changed,
customized, or configured for use in a particular context (GURP et al., 2001). According
to Bosch (2004), a high degree of variability allows the use of software in a broad range
of contexts.

Before continuing the discussion of HCS concepts, we need to clarify what the liter-
ature says about features, which can be considered as the high-level artifacts needed to

2.5 HIGHLY CONFIGURABLE SYSTEMS 21

design a HCS. Features are intentions of stakeholders about the business, or design and
implementation artifacts, used to make the variability in HCS happen.

Kang et al. (1990) define feature as “an important or distinct aspect visible to the
user, which represents a quality and/or characteristic of a software system”. On the
other hand, Batory (2005) defines feature as “an addition to a program’s functionality”,
representing feature within the project’s implementation level and being an important
part in the construction of software.

The definition used in this work is from Apel et al. (2016), which state features as ”a
characteristic or behavior visible to a system user”. They are used in HCS to specify and
communicate differences and similarities between stakeholders to guide the structure,
reuse, and variation in the software development and configuration phases of a HCS
project. Features in HCS projects can be optional or mandatory, and they can have
relationships where an optional feature is only available when another one is selected.

Kang et al. (1990) describes a widely-accepted representation of features in a Software
Product Lines (SPL). The feature model encompasses a high-level representation of
mandatory and optional features as well as their relationships. Within a feature model,
the software engineer can visually analyze the current state of a product and what are
the missing points where it can evolve. Figure shows an example of a feature model,
displaying many relationships between mandatory and optional features.

Figure 2.4 Feature model example developed by author

22 BACKGROUND

2.5.1 Feature Binding

Feature binding is a process inside HCS systems where the optional features defined in
the product configuration are bound. A product configuration is where the characteristics
of the product hold. Apel et al. (2016) describe three moments in which feature binding
occurs during product derivation, also called variation pattern: compile-time, load-time,
and runtime binding. In the former, developers should decide what feature will be in-
cluded in a product or not during the product’s build time. Next, the load-time binding
is when a product configures itself before it loads to the user, usually after startup. In
the latter, the runtime binding allows for changes in the product while it is running.

The SPL paradigm is an example of HCS where feature biding can occur in the
product compilation or load stage. We can define a SPL as an architectural model that
establishes a family of products from a code base and are customized through common
points (variability) previously defined. SPL projects are usually stand-alone products
that have their specificities, but when beside their family, displays many commonalities.
The variability points help the developer allocate different variants in features while
maintaining the system’s architectural pattern.

Some systems dynamically reconfigure themselves. It is when feature biding happens
at the moment of execution (runtime). Cohen, Dwyer, and Shi (2008) cites, as an exam-
ple, a NASA system that uses online planning to either enable or disable modules based
on the state of the mission and the aircraft. The configuration is done dynamically, on
execution time, and without human interference.

A typical class of user-configurable systems could also fit in HCS project. These
programs, which can be desktop applications, web servers or databases, allow users to
modify them from a series of pre-defined options, through parameters configured via the
command line, or configuration files (COHEN et al., 2008).

At the beginning of a project, to assist developers in choosing the most suitable
variation pattern, Metzger and Pohl (2007) proposed questions to be asked:

• What will vary? The answer to this question leads to establish the variable features
in the project. Ex: The artificial gravity module in the NASA system.

• How will it vary? To answer this question, the engineers must identify all possible
instances of a given feature, which are called variants. Ex: Variations of the ”arti-
ficial gravity module” variation point can be ”enabled,” ”disabled,” and ”enabled
in certain areas of the aircraft.”

• Why should this vary? This question takes a more rational view of the defined
variation point and variant. From the examples shown, keeping gravity in certain
situations can consume unnecessary energy.

• For whom is this variation point documented? This question identifies the target
group for the variation point where the engineering team will document the software
variability and define who will have access to it.

2.5 HIGHLY CONFIGURABLE SYSTEMS 23

Planning a HCS is challenging because it is necessary to use methods that make
the variability and systematic reuse feasible in practice. In addition to the definition of
binding time, Apel et al. (2016) present two more dimensions of the variability application
in HCS to consider:

• Technology. The first dimension is related to the technology used. There are
two mechanisms in programming languages that help variability management. The
first is called language-based approach, which allows variability to happen within
the code. Another application of technology-based variability is called tool-based
approach, which are automation tools responsible for applying variability. While
the first mechanism focuses on direct modifications to the code, making it easy for
developers to understand, in the second, the management of variability is completely
separate from the code to simplify its structure.

In the language-based approach, the conditional code is responsible for activating
or not optional features. A system where configuration variables decide more than
just the database connection, but the entire system’s behavior is a perfect example
of HCS using the language-based approach.

In the tool-based approach, specific programs are responsible for applying optional
features to the product. Gradle is an example of an automation tool that inserts
variability when deploying a new product3.

• Exhibition. The second dimension delimits how the code used will be exposed
after the variability is bound. There are two common methods for implementing
variability, the Annotation-based approaches and Composition-based approaches. In
Annotation-based approaches, a mark in the code is responsible for each variable
requirement, which disables unused functions after applying the variability. In
the Composition-based approaches, software tools do the product configuration by
attaching code blocks during the binding time, creating a final product based on
the requested features. In the Figure 2.5 there is an example of each approach.

On the Annotation-based approach, Figure 2.5 shows that every feature presented
in the feature model is present in many software component parts, and enabling or
not a feature would disable it in every part.

Figure 2.5 shows that features are more isolated for each software component, which
is the main characteristic of the component-based approach. Large blocks of code
are enabled or not in the product generation.

2.5.2 Quality criteria for SPL Engineering

SPL is a multidimensional engineering process that software engineers should consider
from different perspectives. First, it is necessary to consider both the problem space
and solution space. While the problem space takes the perspective of stakeholders and

3Available at https://docs.gradle.org/current/userguide/whatisgradle.html

24 BACKGROUND

Figure 2.5 Annotation and Composition based approaches, adapted from Apel et al. (2016)

their expectations, the solution space represents the developer’s perspectives capable of
handling the former (APEL et al., 2016). Second, there are two engineering processes
to consider, namely domain engineering and application engineering. While the former
involves analyzing the target domain for the SPL and developing its artifacts, the latter
is responsible for using the artifacts created in the domain analysis to create the target
product.

An SPL implementation should meet the following criteria (APEL et al., 2016):

• Low preplanning effort: Which means ease the anticipation of changes and
sources of reuse; this quality criteria indicates that an SPL should have a low effort
on planning new products;

• Feature traceability: It is the ability to trace a feature from problem space to
solution space;

• Separation of concerns: It is the capacity of code separation by features from
other code parts, decomposing them into semantically cohesive code fractions;

• Information hiding: It means hiding the key aspects of a feature that is split
into external and internal parts;

• Granularity: Disrespects the level of change that features would impact on others.
They can be either fine-grained, like adding a new statement to a given method
body, or coarse-grained, whenever a large number of modifications in the software;

• Uniformity: Gives the idea that all software artifacts should be encoded and
synthesized in a similar manner.

The above criteria help ensure success in SPL projects. By learning them, we can
adapt the White Label software projects and mitigate technical debt in startups that
work with it.

2.6 CHAPTER SUMMARY

This Chapter introduced the fundamental concepts that are relevant to this work. First,
we introduced the startup context and its core concepts. Software Engineering for star-

2.6 CHAPTER SUMMARY 25

tups was also covered in this Chapter, where we introduced three software engineering
techniques.

With the startup core items covered, this Chapter introduced the origin of White
Label software projects. They come from physical products and are present in everyone’s
life.

HCS was the next topic explained in this Chapter. It makes the software adaptable
to a particular context. A type of HCS is called SPL, which are software families created
from a common code base.

HCS and more particularly SPL, can bring more quality over White Label software
projects. The correlation between them served as the foundation of this work.

Chapter

3
INTERVIEW STUDY

To understand White Label projects in startups and answer the first question in this work,
we conducted semi-structured interviews with CEOs/CTOs from four software startups
that develop White Label software. This chapter will introduce the semi-structured
interview study definition, how we performed it, and an analysis of the yielded results.
The audio transcription from the interviews is available in Table 3.2.

3.1 INTRODUCTION

The use of interviews in empirical research aims to collect data on phenomena that
cannot be measured using quantitative metrics (HOVE; ANDA, 2005). Interviewing
people directly related to the studied context ensures that their opinions, thoughts, and
feelings are fully transcribed.

According to Hove and Anda (2005), there are two classic types of interviews: struc-
tured and unstructured. Structured interviews have a clear and specific objective for the
type of information required in the interview, meaning that questions must be precise,
allowing the answers to be quantified. In unstructured interviews is the opposite of the
first. Semi-structured interviews combine the best of the two previously mentioned types
of interviews. Therefore, Hove and Anda (2005) suggest combining two types of questions,
specific (with a clear objective) and open questions (to obtain unexpected information).
The following activities are necessary to conduct semi-structured interviews:

• Schedule: It is necessary to make appointments with the interviewees. In this
stage, there is also a sub-selection to decide whether an analysis of the best candi-
dates is necessary.

• Collection of Specific Information: It is necessary to know the study’s object
and its interviewees. It is essential to collect available information on the topic and
the interviewees before conducting the interview (Curriculum’s, about the company
to be interviewed).

27

28 INTERVIEW STUDY

• Preparation of the Interview Guides: Interview guides are necessary to keep
the conversation around the topic. The amount of time needed to prepare the guide
varies depending on the study or whether adaptation would be required for each
candidate (HOVE; ANDA, 2005).

• Discussions/meetings: It is necessary to have meetings between the researchers
involved in the study before, after, or between interviews.

• Audio Transcript and summary: In this phase, we transcribed the audio of the
interviews and summarized it for the study documentation. The literature states
that it takes 3 hours to summarize 1 hour of audio material.

All these steps were applied in our study, which encompassed the following steps:
search the subject, leverage a set of qualified startups for the initial survey, schedule the
interviews, organize the guide, conduct the pilot, reorganize guides for the next interviews,
conduct interviews, transcribe audio, analyze the transcriptions and interview notes, and
write results.

Hove and Anda (2005) displays the skills required for conducting interviews by the
researcher:

• Encourage the interviewee to speak freely, without judgment;

• Ability to ask relevant questions that do not deviate from the interview’s focus but
explore interesting topics;

• Good interpersonal skills;

• Excellent conversational skills.

Hove and Anda (2005) state that one of the pilot’s functions is to train the inter-
viewer, who must be prepared to obtain information from motivated and non-motivated
respondents.

There are six types of questions to be used in semi-structured interviews:

• Those of behavior/experience that describe experiences, behavior in situations, and
actions.

• Questions about opinion that investigate what the interviewee feels about specific
questions.

• Sentimental questions that serve to understand emotional responses about experi-
ences.

• Knowledge questions that seek to identify what information the interviewer has.

• Sensory questions that seek to obtain experiences of the senses.

• Demographic questions of the interviewee, which seek to understand their prior
knowledge on the topic in general.

3.2 CONDUCTING SEMISTRUCTURED INTERVIEWS 29

Hove and Anda (2005) make it clear that in all cases, questions that require only a
yes or a no as an answer should be left out.

For correctly conducting the interviews, researchers should have specific tools and
artifacts. The first highly recommended tool is the use of a an audio recording instrument
that allows the complete apposition of the content of the interview, allowing a smoother
execution of the interview without having to pause it for the complete annotation of the
answer. Popular tools for analyzing qualitative research like Atlas.ti1 or NVivo2 can also
help the interviewer after transcribing the interviews.

Especially in interviews about software development, it can sometimes be challenging
to understand the interviewee’s questions. For this, researchers use Visual support arti-
facts to help understand the question asked and clarify the answer. Usually, it serves as
a mental trigger for the interviewee to answer the question more objectively.

We used the above concepts as the basis for creating the study defined below.

3.2 CONDUCTING SEMISTRUCTURED INTERVIEWS

In our study, We carried out the interviews in the All Saints Bay Ecosystem3, located in
Salvador - Bahia, Brazil, at the end of 2018. For each startup interviewed, it was manda-
tory that the CEOs and the CTOs needed to be involved in the software development
and its planning process of the White Label projects.

The questions asked intended to understand how the interviewees defined White Label
projects, how they managed these projects’ product generation and the definition of
variation points between products.

3.3 RESEARCH DESIGN

We used the Hove and Anda (2005) survey’s design in this work, which involved the
following steps for data collection and analysis: (1) define the protocol for the interview4;
(2) define the questionnaires; (3) conduct the interview; (4) transcript the interviews;
and, (5) perform qualitative analysis. Figure 3.1 shows an overview of the Interview
Study’s research design.

3.3.1 Research Questions

With the interviews, we sought to begin to unveil the White Label software concept
and its feasibility, investigate how software startups used to apply it, and investigate if
advanced code reuse techniques, such as Highly-configurable Systems (HCS), could be
used as an opportunity lever for software startups.

Therefore, we planned to answer the following research questions (RQ):

1https://atlasti.com/
2https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
3http://allsaintsbay.com.br/
4Supplementary material are available at (SILVA et al., 2020a), the audio transcriptions summarized

is available at Appendix A.1

30 INTERVIEW STUDY

Figure 3.1 Interview Study Design developed by the author

RQ1 - To what extent is the industry professional’s perception of White La-
bel software products’? This RQ aims to unveil the concept of White Label
software and its feasibility for software startups by practitioners.

RQ2 - What are the main White Label software characteristics? This RQ aims
to identify the White Label software characteristics.

RQ3 - What are the software development strategies used to implement White
Label software? This RQ aims to gather the techniques in developing White
Label software.

RQ4 - What are the main challenges in the development of White Label soft-
ware? This RQ aims to investigate the challenge in the process of developing a
White Label software.

In addition, both RQ3 and RQ4 aim to shed light on if software startups could use
HCS as an opportunity lever.

3.3.2 Characterization of subjects

We have defined some criteria for selecting startups: (i) they must belong to the All
Saints Bay Ecosystem (SEBRAE/BA, 2016) because the interviews were carried out in
the startups’ workplace; and (ii) the startups must be involved in the development of
White Label software.

The All Saints Bay is a Brazilian Ecosystem of startups from Salvador-BA. First, a
search was done on the ecosystem’s official website to find Startups with White Label

3.3 RESEARCH DESIGN 31

characteristics. We validated the data obtained and selected ten companies that could
be unduly linked to the study and possess stable products.

The selected startups were contacted by email, and four have responded positively to
the interview invitation. Table 3.1 presents the list of startups interviewed for this study.
We will refer to the startups studied with the SX label, where X is the letters from A to
D for confidentiality reasons.

Table 3.1 Characteristics of the Startups Cases and Interviews

Case Operating Market Year Size NIP IR

SA AgroTech 7 Small 1 CTO

SB EduTech 5 Small 1 CEO/CTO

SC Fintech 3 Small 1 CEO/CTO

SD Urban Mobility 2 Small 1 CEO/CTO

NIP: Number of interviewed people

IR: Interviewees roles

• Startup A: Startup focused on animal production. It creates personal stores
for producers to sell high-performance animals (horses, swine, and cattle) all over
Brazil. It offers online stores White Label so that partners can sell their products
to end-users. It has been on the market for five years and has fifty stores online.
Startup A is between the end of the stabilization stage and the beginning of the
growth stage.

Startup A has a very mature Software Engineering process but also owns some gaps
in software variability management. Since their White Label software is simple, they
were not facing scaling problems. Engineering is unaware of the many variations
available and does not track its changes. However, they possess a successful product
with partners from over Brazil.

• Startup B: White Label education startup. It licenses technology to book editors,
so they can have a mobile app store for selling and consuming their e-books and
courses. Startup B has over five years of existence, has more than 12 products
generated, and it was the most complex project among the studied. We considered
this startup in the stabilization stage.

This startup has the most complex White Label software implementation, encom-
passing small optional features and design tweaks and a business model for the gen-
erated product. It was under the stabilization stage because the partner’s demands
were overloading the engineering team. The startup was not ready for growth be-
cause it lacked some structure, but its products were well-stabilized in the partners.

• Startup C: Financial startup in the stock exchange market. This startup type is
commonly called fintech by individuals belonging to the Entrepreneurial Ecosystem.
The White Label product in startup C works by allowing stock consultants to have
its platform for client management and manipulate its stock portfolio. This startup

32 INTERVIEW STUDY

is in the startup stage for the White Label software product developed. Startup C
was finishing up its White Label product. It had one partner waiting for delivery,
but the software was under the first MVP. For this reason, we evaluated Startup C
in the startup phase besides its mature software engineering process.

• Startup D: Work by providing personalized apps for urban mobility, so groups of
drivers can have their Uber-like app for transporting passengers. It has a total of
thirty apps running and has the shortest lifetime on the market among all respon-
dents. This startup is at the growth stage. We evaluated Startup D in the growth
stage because they have many partners over Brazil, are well known in the market,
and are aware of their software variability.

3.3.3 Data Collection

We built a questionnaire with 26 questions and conducted the interviews by following a
protocol summarized in the list of questions (see Table 3.2). The protocol was created
and tested in the pilot interview with Company C, and the result obtained was entirely
satisfactory, enabling replication with other companies. During the pilot, it was necessary
to induce questions not initially contained in the protocol, signaling a deviation from the
original plan. The questions asked unexpectedly in the pilot were added to the protocol
of the other interviews. Under this condition, we could add startup C to the results.

The interview questions were sent out to the participants 24 hours before the interview
so that they could prepare themselves for the interview. We conducted the interviews
at the startups’ workplace and lasted an average of ten minutes. Since the interviewees
knew the questions before, their answers were compact.

In the first part of the interview process, the interviewer gave a consent form to the
interviewee, where he agreed to participate in the research. The first three questions were
about the interviewee, where we asked about his role in the startup, his experience on it,
and asked whether it was the first innovation project he participates in.

The following three questions referred to the startup’s age and the dependency on
external investors. This type of question would give the study insights about which stage
the startup interviewed would be. The next question asked the respondent to explain,
in their own words, the definition of White Label software. Then, we asked about their
White Label software project developed and the idea behind it. Therefore, the following
18 questions in the interview were about the startup’s White Label software project, its
characteristics, development techniques, technologies used, supportive systems developed,
and challenges the startups commonly face. The complete list of questions is available in
Table 3.2.

The interviewer asked the questions in a way that looked like a conversation between
business partners, meaning that we tried not to lock the interviewee at the end of the
answer to each question in order to let him follow his line of reasoning. The interview
was voice recorded, and the interviewer took notes. The rationale behind each question
is available in Appendix A.1.

3.3 RESEARCH DESIGN 33

Table 3.2 Interview Questions

Questions

Respondent Characterization

Q1 What is your position in the company?

Q2 What is your experience time in years?

Q3 Have you worked on innovation projects? If so, how much experience do you have?

Startup Current Stage

Q4 How long has your startup been around?

Q5
Is your startup self-sustainable, that is, does it have enough financial resources to support
itself?

Q6 How much dependence on investors?

White Label Product

Q7 What do you mean by white label?

Q8 Describe your white label product

Q9
How the generation/derivation process for a new product is done? how do you manage
product versions?

Q10 Are mobile applications developed in a native or hybrid way?

Q11 If native, does it have an iOS and Android version?

Q12 If hybrid, which framework do you use?

Q13 How many days does it take to generate a product?

Q14 How much financial resources is spent during the process of generating a product?

Q15 How much does each resource cost?

Q16 How do you define the variability points?

Q17 What is the variation pattern?

Q18 How many optional features do you have?

Q19 How many products do you have launched and are available today?

Q20 How many products have you made?

Q21 Describe the system architecture.

Q22 How many databases do you use?

Q23 How many web services do you use?

Q24 What are the support management systems?

Q25 What is the cost of server today in the company monthly?

Q26 Do you perform software testing?

3.3.4 Data Analysis

After gathering the data, we transcribed the interviews’ recordings, which can are avail-
able in Appendix A.2. The data obtained were analyzed qualitatively. Even though the
startups were from very different fields, they presented the same issues regarding White
Label software projects and were at the stabilization stage. We present the results and
discussions in the next section.

34 INTERVIEW STUDY

3.4 RESULTS

(RQ1) - To what extent is the industry professional’s perception of White
Label software products’? The interviewed startups presented complementary defi-
nitions for White Label software projects. SA claimed that White Label software is like
“selling a product to multiple customers to sell their products to the end-user”. SB defined
White Label software as “a business model that focuses on component-based architecture
and product adaptation to create customized, low-cost applications”. SC stated White La-
bel as “a product that you can give other faces and other features as needed”. SD defined
“a White Label software product as a product that you license the technology, customizing
some features, making it available for use by third parties - exploring the product to sell
different versions”.

(RQ2) - What are the main White Label software characteristics? We observed
that the startups interviewed believe that developing a White Label is quicker when
compared to stand-alone projects.

The main characteristic that we observed was that a White Label software is (i) one
system that can hold many products, and (ii) scripts, configuration files, global variables,
customizes the product by using customers personal information contained in folders. SA
stated the benefits of this approach, “we were able to quickly generate custom applications
for customers already operating in the same niche market”. SB stated that “A folder is
created with more customizable information from the clients. All products follow the same
code version”.

SC stated, “the system has been parameterized to understand what the customer needs.
A manager controls all optional features. The version is the same”. SD presented the
same pattern for software customization, “flavors are made on android, as a settings
folder for each client, with logos, colors, and specific information. For each client, we
modify these assets”.

(RQ3) - What are the software development strategies used to implement
White Label software? The startups use a mix of configuration files, global variables,
automated scripts, and control panel parameters. The process of generating a White
Label software version, if not manual, uses low-level scripts to move files through project
folders and build the release. SA claims that “uploading versions are manual activity”
and complements “the application and the server have the same code that is the basis
of the products. There is already a deployment process on the server, and the product
is automatically generated for each customer. However, for applications, everything is
manual”. SB states that they use scripts to automate the software generation, “lastly,
the generation scripts are modified to include a new app. All products follow the same
version of the project code”. For SC and SD, the build process is also manual, following
platform specifications.

Reuse artifacts are built and never updated. There is no specific assessment for man-
aging variability. Furthermore, the traceability of code changes can only be made visually
by experts. They made use of some agile methodologies to develop these applications

3.5 DISCUSSION 35

(SOUZA et al., 2019). However, the interviewers were unable to answer how the software
engineering process differs from a typical SCRUM implementation due to the different
nature of White Label software.

The system architecture is based on components as much as possible in order to speed
up code reuse. They use version control software tools like Git to support this activity.
Each customer application is released individually. Most of the applications developed by
the reported startups use hybrid frameworks (cordova5, react-native6, Xamarin7). The
client drives the application’s development, informing which behavior he expects. In
addition, optional features are either created or adjusted as needed.

The partner validates the software development process. Startup SC defined the
product’s scope as follows: “we involved three consultants to validate the platform and
checked whether or not they agreed with the day-to-day activities, planned activities, and
changes in the process”. SB was not supposed to be White Label and used a reactive
approach, as it states “This project was made to be stand-alone, but other companies
requested our solution. We created basic points of variability that were increasing as new
partners entered and presented their needs”. SA and SD defined their scope inside their
team, as they had prior knowledge in the field as SD stated, “because I already had a basic
product from another business that I had failed, so by the time I started this business,
I already had a certain range of customers to sell, and as for the technology I made
adaptations”.

(RQ4) - What are the main challenges in the development of White Label
software? The interviewees exposed challenges when answering software-related ques-
tions, and our findings bases on the general understanding from them. The first challenge
was to improve the process of generating new products taking into account the cost and
benefit. While SA spends two days to generate a new product, SB spends half of it.
The second challenge is related to trace code changes and how software engineers can
add more optional features without affecting the old code. As an example, SD stated its
strategy for controlling changes “what change is the feature’s visibility, we face problems
maintaining old features and managing new ones” The third challenge was to write down
documentation and have it updated to support the product’s development. The fourth
challenge was to find the best scenario to launch the product and present it to new clients
since the loss of this time-to-market might imply the loss of clients. SD states that if they
are too slow on development, the possible partners can get ahead and build the product
with their resources or get it from another White Label company.

3.5 DISCUSSION

When asked, the interviewed startups presented similar definitions for White Label soft-
ware projects. Even though their products are from very different niches, they share
common characteristics. For example, they follow the same pattern when creating a new

5〈https://cordova.apache.org/〉
6〈https://github.com/facebook/react-native〉
7〈https://dotnet.microsoft.com/apps/xamarin〉

36 INTERVIEW STUDY

product. First, they get the information needed to build the product, like its colors, logo,
images, privacy policy, and other specific information. Then, they present an estimate
for the product to be finished, which is very different from one startup to the other, and
deliver the product to the partner having the startup’s servers as host.

When speaking about software engineering techniques, they essentially use common
startup practices (SOUZA et al., 2019) with almost no adaptation for the White Label
Project scenario. What one startup does differently from the other is generating a new
product, which encompasses both manual and automatic practices. The automation level
depends on specific factors, like the number of people working on the project, the engi-
neering team’s seniority, the amount of feature development left, and the chief engineer’s
personal experience.

The challenges gathered from the interviews are also very similar. For example, con-
trolling the many possible configurations is a challenge that is still somehow open by
today’s advanced techniques. Incorporating HCS to startups and adapting to their need
could mitigate some risks and level down the challenges involved in developing White
Label software projects.

Since no indication of usage of advanced code reuse techniques, such as HCS, has been
identified in the interviews, it motivates further studies to identify possible use cases that
handle the challenges gathered by applying the aforementioned techniques.

3.6 IMPLICATIONS FOR RESEARCH AND PRACTICE

The interview study has opened the possibilities for identifying gaps of knowledge, the
common technical debt, on White Label Software Projects in Startups. Further studies
should gather experience from different gray literature sources and personal experience
in software startups, as shown in Chapter 4 and 5.

3.7 THREATS TO VALIDITY

Three threat types are present in this study. In the following paragraphs, we will explain
what we made to mitigate the threats identified.

Construct validity threats were first identified. The coverage of the research ques-
tions could not have been well defined. We mitigated this threat by applying a pilot
test. Another threat was related to the respondents’ understanding of the questions.
The interview questions were sent to the subjects 24 hours before the interview, and we
answered any doubts that the subjects could have during the meeting.

An internal validity threat is related to data extraction bias. This thesis’s author
could add his bias to the research based on single data extraction and his experience. We
have been able to mitigate this threat by discussing the data obtained during the data
recording with a group of researchers.

The third threat group is related to external validity. The subjects interviewed
may not know or provide the needed information for the interview; we interviewed CTOs
and CEOs, which are high-importance positions in startups. Another external threat is
related to the capacity of the generalizability of the achieved results. We believe that

3.8 CHAPTER SUMMARY 37

further replications, in other scenarios, could be useful in the sense that we could have
the opportunity to compare the observations. This threat has motivated the other two
studies related to White Label software projects.

3.8 CHAPTER SUMMARY

This chapter presented an interview study applied for startups that work with White
Label software projects. The questions asked in the interviews aimed to understand
this type of project, its characteristics, identify if and which are the software engineering
techniques explicitly applied to White Label software projects, and the current challenges
faced.

The result gives powerful insights about technical debts that software startups apply-
ing White Label projects face and indicates that HCS could be used to fill the current
challenges if applied according to the specific needs present in the startup.

Chapter

4
SURVEY STUDY

The interviews with startups have shown that White Label projects are known not only
by those who apply them but also by people inside innovation ecosystems. The applied
survey aimed to understand the similarities between what was exposed by stakeholders
working with White Label software projects in startups and what the ecosystem members
know about the subject. This chapter will introduce the concepts of personal surveys,
how we managed to conduct them, and this study’s results.

By conducting the surveys, we confirmed the first findings from the interviews, vali-
dated the object of this work, and shared the White Label software projects concept in
the academy by publishing a paper in SEAA 2020 (SILVA et al., 2020b).

4.1 INTRODUCTION

A survey is a comprehensive method of collecting information that seeks to describe,
compare, or explain knowledge, attitudes, or behaviors. For the application of a survey,
it is necessary to follow a set of steps (KITCHENHAM; PFLEEGER, 2008):

• Establish an objective: The first step in a survey concerns the process of defining
research objectives. Each objective refers to an expected result or a question to be
answered by analyzing the data obtained. With an established objective, it will
be possible to define the hypothesis to be tested, what possible explanations to be
investigated or excluded, and what resources are needed to reach the objectives
found.

• Survey’s Design: There are two types of design for a survey: the cross sectional
and the longitudinal. While the former focuses on information over a specific time,
the latter seeks to explore a population’s information.

• development of the study’s instrument: Survey instruments are generally
applied questionnaires, which need to be constructed based on the population cho-
sen. There are two types of questions: open and closed. Researchers should build

39

40 SURVEY STUDY

open-ended questions to let the respondent answer the question by reviewing his
experience; they should avoid questions that can be answered simply by a “yes”
or “no.” Respondents answer closed-ended questions rapidly, but the choices pre-
sented should be designed to cover what the respondent will expect. In sum, an
excellent survey instrument should have a mix of both types of questions.

• Evaluation of the instrument: Once the researchers have created the study
instrument, they should evaluate it. Also called a pre-test, it aims to check various
topics, like validate that all questions are understandable, evaluate the instrument’s
reliability and validity, ensure that data analysis techniques match the expected
responses, and check if there is research bias hidden in the instrument.

• Obtaining valid data: For data validation, it is necessary to define the total
number of responses based on the study population, called sample. After validating
the data obtained, the analysis begins.

• Data analysis: In this step, data analysis is performed and checked for integrity,
consistency, and completeness. Kitchenham and Pfleeger (2008) say that it is rather
important to have a policy for handling inconsistent and or incomplete question-
naires. In our example, the data gathered was divided into three parts. Each
part contained specific questions that were revealed to the respondent based on his
answers.

4.2 CONDUCTING THE SURVEY

In the following sections, we will describe the steps performed to design and conduct the
survey and the results obtained after data analysis. We carried out the survey during the
second semester of 2019.

4.3 RESEARCH DESIGN

We conducted the survey targeting stakeholders from the All Saints Bay Ecosystem. Like
with the interviews, we sought to unveil the white label software concept and its feasibility,
investigate how software startups used to apply the white label concept, investigate if
advanced code reuse techniques, such as HCS, could be used as an opportunity lever for
software startups.

Therefore, we planned to answer the following research questions (RQ):

RQ1 - To what extent is the industry professional’s perception of White Label
software products’? This RQ aims to unveil the concept of white label software
and its feasibility for software startups by practitioners.

RQ2 - What are the main white label software characteristics? This RQ aims
to identify the white label software characteristics.

4.3 RESEARCH DESIGN 41

RQ3 - What are the software development strategies used to implement white
label software? This RQ aims to gather the techniques in developing White
Label software.

RQ4 - What are the main challenges in the development of White Label soft-
ware? This RQ aims to investigate the challenge in the process of developing a
White Label software.

In addition, both RQ3 and RQ4 aim to shed light on if software startups could use
HCS as an opportunity lever.

We have chosen the longitudinal survey type because we wanted the respondents
to answer everything they knew about White Label software products (KITCHENHAM;
PFLEEGER, 2008). First, in the data collection phase, the survey protocol was created1,
where the purpose of this study was defined. After defining the objective, we created the
survey questions. Moreover, the survey instrument was built.

We carried out a pilot with five respondents, three from the target audience and two
survey experts. With the pilot, we learned that a three-level depth survey would better
serve this study since we would obtain richer data if the respondent that worked with
White Label software products presented his experience. After these adjustments, we
invited professionals via developer groups from the All Saints Bay Ecosystem, Instagram
Story posts on pages related to startups, and individual emails. In the data analysis
phase, we first analyzed the data collected in the survey. Then, we crossed with the
information included in the semi-structured interviews, as Figure 4.1 shows.

The research design of the survey study involved the following steps: (1) define survey
objective; (2) create the questionnaire; (3) construct the survey instrument; (4) recruit
participants; (5) validate the instrument; and (6) collect data.

4.3.1 Survey objective

The survey study’s primary objective is to understand White Label software projects
from the practitioners’ perspective in innovation ecosystems. Moreover, find whether
their answers were similar to what has been exposed by stakeholders working with this
project type. Comparing the results obtained previously with the interviews consolidates
the understanding of White Label software products, characteristics, challenges, and
software development approaches.

4.3.2 Survey Instrument

We prepared an online questionnaire encompassing 19 questions, a mix of six open and
thirteen closed questions, which can are available in Table 4.1). We prepared the ques-
tionnaire in the Google Forms platform.

We divided the survey into three levels, i.e., a sequence of questions. Depending on
the participant’s characterization and their knowledge and involvement with White Label
software development, the survey could either enable or disable a certain level/group of

1Supplementary material is available in Table 4.1

42 SURVEY STUDY

Figure 4.1 Survey Study Design

questions. Therefore, those who knew more about the subject of study would collaborate
more. If the respondent did not know about the prerequisite, the survey would send it
to the end, otherwise present a new level. With this approach, we could make the survey
experience short and objective for the respondent. Figure 4.2 shows at a higher level the
survey design.

We explain each survey’s step below:

• level 0 - Cover Page: The survey’s cover page brings an agreement where the
respondent agrees to participate in the survey.

• Level 1 - Respondent Characterization: The first level’s objective was to
identify whether the respondent belongs to an innovation ecosystem and what role
he fits into (e.g., developer, designer, entrepreneur), and if he has heard about
White Label software, the survey will open a new level.

• Level 2 - White Label Software Definition At the second level, respondents
were asked to choose an answer or fill a new one for designating the best meaning of
White Label software for them. The default definitions were obtained in the inter-
view study by the respondents. Next, the survey would ask where the respondent
has heard about this term if he is aware of startups that work with White Label
software projects. If a respondent had previously experienced White Label software
products, the survey would open the third and last level.

• Level 3 - Respondent Personal Experience: The third level asked the respon-
dent about his personal experience of working with White Label software projects.
The survey asked about the benefits and challenges involved in the development

4.3 RESEARCH DESIGN 43

Table 4.1 Survey Questions

Questions

Level 1

Q1 In which state do you live?

Q2 What is your profession?

Q3 What is your experience in Startups?

Q4 What is the business domain of Startup in which you worked / work?

Q5 What ecosystem of Startups your company / are you closest to / linked to?

Q6 Have you heard of the term Startup White Label?

Level 2

Q7 Where did you first hear about White Label Startups?

Q8 Do you know any Startup that uses this concept?

Q9
Choose from the alternatives the phrase that best represents the meaning of white label
software to you

Q10 Do you work or have you ever worked at a White Label Startup?

Level 3

Q11 How long has the white label startup you work in exist?

Q12 In your view, what are the main advantages that a White Label Startup has?

Q13 In your view, what are the main challenges that a White Label Startup has?

Q14 What are the Software Engineering methods used by your Startup?

Q15 How many employees?

Q16 Describe your White Label product

Q17 How many products have you generated?

Q18 Which of these strategies do you use in generating a product?

Q19 How many days does it take to generate a customized product?

of White Label software products. It also asked the development strategies used
according to the respondent’s experience and if any particular technique was ap-
plied to generate new products. Also, the survey asked more particular questions
in order to identify the startups’ size.

4.3.3 Respondents Recruitment

The survey instrument was sent to professionals working in software startups in the All
Saints Bay startup ecosystem, earlier introduced in Chapter 3. Since we carried out the
semi-structured interview study in this ecosystem, we kept the survey respondents from
the same context, including respondents from other ecosystems.

4.3.4 Pilot Survey

We conducted a pilot trial using the same artifacts and procedures designed for the survey,
including the survey questionnaire and the execution method. We discussed the survey
instrument among experts in survey studies. We conducted a pilot with a small number
of participants from the target population and survey experts to obtain feedback on the

44 SURVEY STUDY

Figure 4.2 Survey Level

materials.

4.3.5 Data Collection

The invitation to the survey was sent to email lists and social media groups, where
the invitation comprised the main instructions and the URL for accessing the online
questionnaire. The survey received 22 responses and remained open for sixty days. After
incomplete submissions removal, our sample result had 20 responses.

4.3.6 Data Analysis

From Google Forms, we exported the data to an electronic spreadsheet. The respondents’
answers were all tabulated, which enabled us to identify similarities and differences in
answers and perform qualitative data analysis.

4.4 RESULTS

This section describes how each research question was answered and adds evidence by
respondents’ quotations.

4.4 RESULTS 45

(RQ1) To what extent is the industry professional’s perception of White Label
software products’?

The data obtained in the survey showed that almost 55% of respondents knew or heard
the definition of White Label and startup White Label software products. However, the
Q6 revealed that roughly 5% of them did not know how to explain its meaning, as Figure
4.3 shows.

Figure 4.3 Answers from the question: Have you heard of the term Startup White Label?

From the interview, we obtained five definitions of White label Software Products, and
those definitions placed as answers in the survey’s Q9, so the respondents that were aware
of the concept of White Label Software would select the best meaning of this concept.
The most chosen answer was the one stated by SD: “White Label Software is a product in
which technology is licensed, customizing some features, making available for third parties
to use and explore the product, selling it to an end-user.” This answer is very near to
the proper concept of White Label Physical Products (KAISER, 2017).
We also observed that the answers from the interviews were complementary, and the
answer chosen by more respondents in the survey was the full-reaching one. We believe
that because the survey respondents had to choose only one option, their choice was
toward the most meaningful answer.

RQ2) What are the main White Label software characteristics? Besides the
inherited characteristics from White Label physical products, we observed four additional
properties regarding White Label software products.

The first characteristic was the ease of scaling the product, meaning that it is only
necessary to set up configuration files to either activate or deactivate features and load
customization files for each client.
The customer is more likely to be involved with the product development process since
several products will be generated using the same “core” set of features.
The White Label software products make it possible to expand the customer base without
generating more effort or generating minimal effort for the development team.
Moreover, adopting a White Label approach facilitates and speed-up the software product
customization process. It allows companies to have their software at a lower cost and
development time, with the same benefits as they have been made from scratch.

46 SURVEY STUDY

RQ3) What are the software development strategies used to implement White
Label software? When asked about software development strategies of respondents who
work or worked at startups with White Label software, the survey results have pointed out
that they use global configuration files, which aligns with the interviews’ results. They
also presented answers related to Agile Software Engineering, like Scrum and Sprints, as
beneficial techniques when developing White Label software projects.

RQ4) What are the main challenges in the development of White Label soft-
ware? Due to the innovative nature of White Label projects, survey’s respondents pre-
sented challenges related to the business of commercializing this type of software:

• The need to demonstrate to clients that a White Label solution is the best for their
scenario, convincing partners to have a White Label product instead of developing
its product from scratch.

• Position the startup as a brand. Since the startup works producing White La-
bel software for other companies, it is complicated for the startup to launch new
products since existing partners can interpret it as competition.

• Develop a complete solution for the target audience.

Different products have different needs, how a startup can develop a White Label software
that meets specifics user’s requirements from partners.

4.5 DISCUSSION

In this section, on top of the discussion related to the four research questions above,
we will describe observations not related to the main questions, which confirms initial
thoughts and helps us understand the next steps for this work. The survey received an-
swers from very heterogenic profiles, like developers, CEOs, investors, students, product
owners, product managers, founders, mentors, and consultants. Despite that, the re-
spondents have presented a very similar experience in years, as Figure 4.4 shows. These
two characteristics give us the certainty to affirm that stakeholders inside ecosystems
recognize White Label software projects.

For those who knew about White Label software projects, over 60 % of them did not
work in this type of project, as Figure ?? shows. In fact, respondents first heard about
this concept mainly from the internet, as Figure ?? shows. We can highlight that not
only people with previous experience in White Label software projects know about this
type of project.

For the respondents who have experience working in White Label software projects,
the advantages highlighted are that these projects are easy to scale, very customizable,
and enable market expansion in the startup through the client’s commercial strength.
The challenges are yet related to the benefits, signing the existing technical debt among
the projects.

4.6 IMPLICATIONS FOR RESEARCH AND PRACTICE 47

Figure 4.4 Answers for the question: What is your experience in Startups?

Figure 4.5 Answers for the question: Do you work or have you ever worked at a White Label
Startup?

4.6 IMPLICATIONS FOR RESEARCH AND PRACTICE

The survey study has validated our initial thoughts about the similarities between White
Label software projects and Highly-configurable Systems (HCS) and showed that the
challenges present by respondents are connected to this approach’s benefits. Respondents
also have some knowledge from the internet about White Label software projects; this
result has motivated this work to go through gray literature for the next empirical study.

48 SURVEY STUDY

Figure 4.6 Answers for the question: Where did you first heard about White Label Startups?

4.7 THREATS TO VALIDITY

First, the coverage of the research questions could not have been well defined. The
survey went through a pilot test with survey experts and the target audience. Another
threat was the respondents’ understanding of the questions. To help ensure the survey’s
understandability, we asked professionals and researchers to review it to ensure that the
questions were clear and complete.

The respondents of the survey may not adequately represent all software practitioners.
We believe that the 22 responses we analyzed provide a rich qualitative data source to
reveal promising insights.

4.8 CHAPTER SUMMARY

This chapter presented a survey study applied to stakeholders inside innovation Ecosys-
tems. The survey asked about their background, general understanding, and specific
understanding of White Label software projects. The questions were unlocked or not by
the previously given answer.

The results have given the direction for the next step in this work, agreed with the
author’s initial thoughts, and firm that startups applying White Label software projects
need specific software engineering techniques to take the lead of their advantages.

Chapter

5
MULTIVOCAL LITERATURE REVIEW

By reviewing the surveys’ results, where respondents indicated that the Internet was the
primary source of knowledge about White Label software projects in startups, we decided
to analyze the gray literature as an additional information source.

Articles that are not formally-published are called gray literature, and they encompass
a large body of knowledge available. A Multivocal Literature Review (MLR) is used in
emerging research topics to gather evidence from “multiples” voices, which are not related
to academic bounds (GAROUSI et al., 2019).

Garousi, Felderer, and Mantyla (2019) presented guidelines for conducting MLR in
Software Engineering, which consisted of three phases.: (1) planning the review, (2)
conducting the review, and (3) reporting the review results. Figure 5.1 shows an overview
of the Research Design.

This Chapter reports on the MLR on White Label Software project we carried out in
the context of this investigation. Figure 5.1 shows the MLR design.

5.1 MOTIVATION

A MLR needs a solid motivation to make its conduction pertinent. As we already men-
tioned, we decided to carry out such a study after analyzing the survey study’s results as
a means to compare findings from both sources. We intend to gather from the Internet
information about White Label software in startups and “listen” from the voices that
could not be part of the first two empirical studies presented.

5.2 WHY TO CONDUCT A MLR?

MLR is an unconventional empirical study. We have chosen to perform a MLR because
our previous research did not found an academic link between White Label startups1

and Highly-configurable Systems (HCS) concepts. Considering that Web forums, blogs,

1White Label Startup is a short-term encountered for startups that work with White Label software
projects, which is broader known in the technical literature

49

50 MULTIVOCAL LITERATURE REVIEW

Figure 5.1 MLR Study Design.

events, and research companies are the primary sources of startup knowledge, performing
an MLR could be considered a good strategy to leverage practical concepts about While
Label and HCS combined.

5.3 MLR GOAL

The study’s goal was to unveil the White Label startup concepts from what is said and
discussed over the Internet, being an abundant resource of knowledge for searching the
main topic. To achieve this goal, we proposed the following research questions derived
from the main research questions of this study:

MLRQ1 - How could White Label Startups be defined?

MLRQ2 - What are the characteristics and benefits of this approach?

MLRQ3 - What are the differences between White Label Startups and regular Star-
tups?

MLRQ4 - Which HCS techniques are used by White Label Startups?

MLRQ5 - Where does the White Label name comes from?

MLRQ6 - What are the challenges in White Label Software Projects?

5.4 SEARCH METHODS

To perform the MLR, we defined three search strings constructed from 2 keyword groups.
Garousi, Felderer, and Mantyla (2019) indicate that the researcher should first identify

5.5 DATA COLLECTION AND ANALYSIS 51

the keywords related to the theme and then define the search strings. For the articles that
presented references, we performed snowballing as well. We further present the keywords
and research questions used in this study as follows:

Keywords:

• Population: “startup” OR “start-up” OR “early-stage firm” OR “early stage
firm” OR “early-stage company” OR “early stage company”

• Intervention: “White label” OR “White-Label” OR “White Labelling” OR “White-
Labelling”

Search Strings:

• What is “White Label” OR “white-label” AND “startup” OR “start-up” (What is
White Label OR What is white-label OR What is White Label startup OR What is
White Label start-up OR What is White-Label start-up OR What is White-Label
startup)

• “Difference” AND “whitelabel startup” OR “white-label startup” OR “whitelabel
start-up” OR “white-label start-up” AND “regular Startup” OR “regular start-up”
OR “conventional startup” OR “conventional start-up”

• “startup” OR “start-up” OR “early-stage firm” OR “early stage firm” OR “early-
stage company” OR “early stage company” AND “White label” OR “White-Label”
OR “White Labelling” OR “White-Labelling”

5.5 DATA COLLECTION AND ANALYSIS

After defining the search strings, we used Bajwa et al. (2017) study as a basis for finding
the best tool for data collection. We explain the performing steps as follows:

1. Search method: We used the Google search engine through the google chrome
browser. We performed the search by accessing the www.google.com website, which
guarantees not location-based results. Before starting the search, the researcher
cleaned his browser data (websites historic, caches, and cookies) and logged out
from his google account. The google predictions were disabled in the search config-
urations, and the option to show 100 results per page was enabled. We conducted
the search in three days, October 01st, 12th, and 19th from 2019. That were 300
results, being 100 for each search string. If the results did not consistently point in
one direction, we would gather the next 300 results.

2. Exporting search results: We reported the articles obtained to an excel spread-
sheet with the help of a chrome extension, the SEOQuake2. The tool created three
spreadsheets, one for each research question containing 100 links.

2www.seoquake.com

52 MULTIVOCAL LITERATURE REVIEW

3. Quality assessment, inclusion, and exclusion criteria: Targeting the first 300
links, we made a new spreadsheet for applying the quality assessment, as Table 5.1
shows. If an article passed five out of seven criteria (we considered each criterion
one point), we have elected it for later analysis. Figure 5.2 shows a sample of the
Quality Assessment Form. The complete spreadsheet can is available at (SILVA;
MACHADO, 2020).

Figure 5.2 Quality Assessment Spreadsheet.

Before applying the quality assessment, we have defined a set of exclusion criteria
for articles that were too personal, one-sided for the question, only presenting one
view of the subject, extremely publicity, or more influential than informative.

4. Quality Assessment Results: From 300 items, our quality assessment found
275 unique links that had at least five out seven points approved. We marked two
hundred forty resources as invalid, being 181 discarded after applying the exclusion
criteria (news, pure marketing articles, articles related to other fields), and 59 re-
jected after applying the quality assessment seen in Table 5.1. Thirty-five articles
were selected to be analyzed and have their data extracted.

5. Extraction form: In the same spreadsheet, we added a new group of columns, one
for each research question. We read the 35 selected articles and extracted fragments
of text that could answer the study questions, the extraction of each question for
each article is also present in (SILVA; MACHADO, 2020).

5.6 DATA EXTRACTION AND RESULTS

In general, we did not need to analyze more articles due to evidence exhaustion, which
means there is no more consolidated information to add. In Appendix B.1, is presented
the list with the 35 articles where we extracted the results for this study. Below is a
summary containing answers from the selected articles divided by the research question.

5.6 DATA EXTRACTION AND RESULTS 53

Table 5.1 Quality assessment criteria. Based on Garousi, Felderer and Mantyla (2019)

Criteria Questions

Authority of the producer
Is the publishing organization reputable?

Is an individual author associated with a reputable organization?

Has the author published other work in the field?

Does the author have expertise in the area? (e.g. Job title)

Methodology

Does the source have a clearly stated aim?

Does the source have a stated methodology?

Is the source supported by authoritative, contemporary references?

Are any limits clearly stated?

Does the work cover a specific question?

Does the work refer to a particular population or case?

Objectivity
Does the work seem to be balanced in the presentation?

Is the statement in the sources as objective as possible?

Are the conclusions supported by the data?

Date Does the item have a clearly stated date?

Position w.r.t. related
sources

Have key-related gray literature or formal sources been linked to/discussed?

Novelty Does it enrich or add something unique to the research?

Does it strengthen or refute a current position?

Impact Does the item has online metrics that proves quality?

Number of citations, comments, likes, social media shares, etc.

At the end of each answer, we placed the article(s) reference, labeled as RSx, where X is
the number of the URL available in Appendix B.1.

• MLRQ1 - How could White Label Startups be defined?

– It develops customized apps for partner companies (RS1).

– A company builds up a product, that can be used for their clients as their own,
being fully customizable. This process should be invisible for the end clients
(RS2)(RS7)(RS8)(RS9)RS13)(RS14)(RS22)(RS28)(RS29)(RS34).

– Whenever a company uses an existing company’s brand as a framework to
develop its software (RS7).

– A partner that develops technology personalized for new startups (RS6).

– It is a business-to-business model involving manufacturers and resellers. Essen-
tially, a software manufacturer sells an unbranded piece of software or service
to a reseller who then places their branding on the offering and resells it to
their business clients (RS10)(RS11).

• MLRQ2 - What are the characteristics and benefits of this approach?

54 MULTIVOCAL LITERATURE REVIEW

– Building on-demand products could provide customers with particular (and
needed) features. (RS1).

– Connecting with many companies, increasing networking, and opening more
opportunities to the startup (RS5).

– From the outside, it looks like a third-party partnership, since the product
comes from another company. The following list presents the benefits that a
partner company seek to have when signing a contract with a White Label Soft-
ware Startup: (RS6) (RS16) (RS18)(RS23)(RS33) (RS34)(RS8)(RS14)(RS22)

1. Low development cost.

2. No technical knowledge is needed since every development will be on the
startup’s side.

3. No implementation risk.

4. Quickly product build and market insertion.

– Characteristics to have in mind while creating a White Label startup (technical
as strategy) (RS29).

– It allows the startup to obtain cash, recognition, and/or a strategic partner
(RS34).

• MLRQ3 - What are the differences between White Label Startups and regular
Startups?

– Other companies will operate the product (RS33).

– Agreement terms are very much different from those signed with a regular
startup (RS35).

• MLRQ4 - Which HCS techniques are used by White Label Startups?

– The articles presented two types of building White Label software products:
One of them being by creating a multi-tenant app, which means that the
application instance will be the same, but each of the tenants will be getting
an app with a bit different features set. Software-as-a-service (SaaS) is the
most commonly used model in this context.

The other way is by reusing the back-end code, but this requires changing the
app’s front-end to give a unique appearance to the app, so it will not be an
exact copy of the same app. In comparison, the multi-tenant approach is quite
complex to build and further maintain (RS18).

• MLRQ5 - Where does the White Label name comes from??

– The use of White Label software started in the music industry when record
companies offered their musical bases for DJs. In the current digital industry,
the idea is very similar, since the company that uses the finished platform is
not the same as the one that developed it (RS6)(RS7)(RS12)(RS32).

5.7 MLR RESULTS COMPARED BETWEEN INTERVIEW AND SURVEY 55

• MLRQ6 - What are the challenges in White Label Software Projects?

– Communication Problems between the client’s feedback and advanced features,
leaving for misunderstanding (RS16).

– Customer needs in the second plan: The development team needs to know
more about the business strategy, including its vision and marketing. In this
way, startups can keep current clients’ needs as a second plan (RS16);

– Over-the-budget pricing and deadline prolongation. Miscommunication, un-
wanted features, and delays can lead the client to be unsatisfied and become
a competitor (RS16).

– White labeling may kill the future customer base: If the startup wants to serve
as a White Label and create its labeled software, it may be killing its future
customer base (RS17).

– Issues with customers data: Since most projects are cloud-based, the White
Label business clients let the White Label company knows everything about
their clients (RS18)(RS21).

– Code Quality: The White Label client does not have any control over code
quality, which is necessary to sign any non-disclosure agreements between both
parties, so the client will always have to trust in the White Label software
product (RS18).

– Possible rejection of White Label apps: Apple changed the app store guide-
lines, and now it prohibited apps that are pure clone (RS18).

5.7 MLR RESULTS COMPARED BETWEEN INTERVIEW AND SURVEY

The results provide a link between what was obtained in the previous empirical studies
and add more key factors not presented before. We present the discussion for each
research question below:

• MLRQ1 - Extractions for this research question agreed with the two studies pre-
sented in this work. The findings revealed that White Label Software could be
either stand-alone products or services.

• MLRQ2 - Characteristics and benefits presented do not fall from what we are
discussing in this work. The articles encourage the reader to trust White Label
startups as a partner.

• MLRQ3 - The differences between a typical startup and a White Label startup are
related to the type of contract made between partner and startup. The agreements
must set data confidentiality between corporations, which opens a new question
about how White Label startups’ engineering team should handle user’s data.

• MLRQ4 - Our search was not able to find HCS techniques used by White Label
startups. However, the extraction from internet articles has bought an interesting

56 MULTIVOCAL LITERATURE REVIEW

addition to this work. When the article presents two types of White Label software
products, it shows that SaaS can be considered a multi-tenant type of White Label
software project. Linking SaaS with HCS has already been discussed in the academy
(PATERNOSTER et al., 2014).

• MLRQ5 - For this answer, the results were different from past studies. While
in the academy, a White Label product comes from physical products that follow
the same philosophy used in software projects, technical literature shows a different
origin for the term. All the articles pointed out the use in the music industry for
helping DJs to produce music. Knowing that White Label also comes from reusable
music bases shows how flexible this approach is.

• MLRQ6 - For challenges, this study has brought more business-related challenges
than proper software ones. Besides, customer data is a topic that needs to be
concerned when developing White Label software projects. One challenge presented
in this study is related to the possibility of rejection when submitting to store apps.
There is an app’s category called “cloned,” which are template-based apps that
offer no difference besides small details in colors and logo. The app store usually
bans them from the store. While this seems to be a block from the app store to the
White Label apps, what happens is the opposite; apple is only concerned with the
same app account handling identical apps3.

With the amount of information gathered from the previous studies, we have been
able to explain White Label software projects in deep and look forward to the next steps
of this work.

5.8 THREATS TO VALIDITY

The Construct validity threat of this study refers to the search strings used. Since
we restricted the search for “White Label”, other articles that we did not gather may
explain White Label without using this term. As a result, this work may have missed
some key information about White Label Software in startups. However, “White Label”
is a trendy and common term used in startup communities.

An internal validity threat is related to making inference on the data. A weak basis
for data analysis could result from our search since we have no control over the data’s
quality and accuracy. We have mitigated this internal validity threat by reviewing a high
number of articles reviewed and the proximity between what we found in this study with
the relevant discoveries in the other studies applied for this work.

Another internal validity threat is related to the personal bias in the selected cases. To
mitigate that, we defined quality assessment criteria with a review protocol applied to all
articles. To ensure the study’s replicability, we provided as many details as possible about
how we conducted the search, and the review table is available at (SILVA; MACHADO,
2020).

3https://developer.apple.com/app-store/review/guidelines/

5.9 CHAPTER SUMMARY 57

The last threat group covered is related to external validity. The 300 used articles
may not represent all data available over the Internet. Besides, the extracted links were
top-ranked by the Google search engine.

5.9 CHAPTER SUMMARY

This Chapter presented a MLR done to unveil White Label Software over the Internet.
We extracted the results to a spreadsheet where the quality assessment was performed in
order to select more trusting information.

From 275 out of 300 original Web links, 185 were discarded by applying the exclusion
criteria, and 59 rejected after carrying out the quality assessment. Thirty-five articles
were selected to be analyzed and had their data extracted.

The results confirm the other two research studies’ findings and add new character-
istics, challenges, particular care for customer data, and a new origin other than the
previously mentioned in this work.

Chapter

6
ADAPTABLE FRAMEWORK FOR MOBILE WHITE

LABEL SOFTWARE APPLICATION

Knowing that White Label software projects can benefit from Highly-configurable Sys-
tems (HCS) techniques, we started to ask ourselves how would be a real-world scenario
would be, where Software Product Lines (SPL) concepts used to build White Label mo-
bile projects. In this Chapter, we will be looking into a report for creating cross-platform
highly-configurable mobile apps. This application was created by applying the knowledge
acquired from the previous studies.

Software development practices have evolved to accommodate the ever-increasing
needs posed by the market. Researchers have been proposing novel approaches as new
features deployed if we look at some particular domains, such as mobile applications (mo-
bile apps, for short) development. Nowadays, mobile phones are even more potent than
ordinary personal computers and develop tons of new features so that the end-user could
enjoy such devices’ potential. Also, software development processes should be adapted
to guarantee high quality at a low cost in a universe of various mobile devices.

We report an experience of developing highly configurable cross-platform mobile apps
by employing the concepts of SPL engineering. SPL engineering enables building software
products from reusable parts, and it provides a form of mass customization by construct-
ing individual solutions based on a portfolio of reusable software components (APEL et
al., 2016). Therefore, we seek to present all the challenges, benefits, and downsides a real-
world company could face when attempting to implement the SPL engineering approach
in practice for a poorly reported domain.

This work reports on a case study conducted at BRISA1, a Brazilian innovation center
that, since 1989, has been at the forefront of multiple innovative Information Technol-
ogy (IT) projects, including software design, testing, and integration for major Telecom
carriers in Brazil, a highly-competitive market, which poses several challenges to their

1Brisa’s vice President authorized the presentation of this case study in this dissertation. However,
due to business confidentiality, we will not provide any project’s details. The list of features developed
and project’s specialties are at a high level of abstraction

59

60 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

partners. Since 2016, BRISA provides solutions for hotels and vacation homes. The
Brisa USA branch is a startup-like company that has its fundings from the Brazilian
headquarters. In 2017, the University of Central Florida Business accepted Brisa into
the award-winning Incubation Program as a Soft Landing client2. Brisa’s long-term ob-
jective is to grow in the USA by introducing themselves in new markets with innovative
solutions.

In a particular project, a legacy message system needs to be available for mobile de-
vices in the USA, providing a new way to communicate between the target user/company
and its clients. A core system served three different websites. Each one of them had its
specific characteristics. For example, their assets (logo, colors, and other images) differ
from one version to another, and particular features were added, modified, or removed
based on the running version. The distinct versions were maintained using three sepa-
rate code repositories, and developers made improvements by employing a clone-and-own
approach. The rationale behind choosing this project to perform the case study was
because it has characteristics inherent to White Label software, and Brisa USA shares
many commonalities with software startups.

The initial proposal was to find a way to translate the portals into three standalone
mobile apps. After a brief analysis, we have discovered many downsides with this ap-
proach. In particular, every bug or implementation particularities would need to be fixed
in six different locations (three mobile apps and three Web portals), making it hard to
maintain and evolve the code. The project for the mobile app would be three as many
times bigger for each new feature added. The Brisa USA has some characteristics present
in both early and mid-stage Startups. They were unaware of advanced code reuse tech-
niques, such as HCS. Even though their software engineering process was solid, the Brisa
engineering team was not prepared for White Label software projects’ specificities.

The team understood that they would spend more time if the same strategy employed
to develop Web systems were also applied to create mobile apps. The team’s engineering
chief noted that this project was perceived to share key SPL characteristics. The products
have a clear scope, which represents the software domain. Also, they share commonalities,
which are the common software aspects that every product in a line should have, and
vary in elements that make them unique (APEL et al., 2016).

Therefore, we attempted to create an SPL to handle mobile apps that should run
on different platforms. The first challenge was implementing tool support, given that
existing ones are not ready to handle mobile apps development yet. We then decided
to implement a set of scripts that could enable the generation of products that could
straightforwardly accommodate different product configurations. A primary document
was created, being the base for explaining how to generate and configure a product and
manage features.

Our solution enabled the configuration of both android and iOS projects, and engi-
neering teams can apply to any project made with react-native for mobile apps. The
scripts used are called shell scripts 3 that automate product derivation and generation.

2〈https://incubator.ucf.edu/soft-landing/〉
3https://www.shellscript.sh/

6.1 CONTEXT 61

An advantage of these scripts is that they are compatible with any operational system.
After an initial configuration, the resulting scripts enable generating products in less

than 10 minutes. The main output is an apk 4 file for android apps and a solution ready
to be published for iOS apps. Apple puts some limitations on what can be automated
using scripts or not. As a result, some processes are still manual after the script ran for
the iOS version, a known limitation of our proposed approach.

In the following sections, we present the context in which we build our proposal,
the problems faced, and the proposed solution. We will describe how our approach has
been able to configure projects with files in five languages (javascript, XCodesproj, XML,
Gradle, Java), presenting the technique in detail as well as its limitations and future
work.

6.1 CONTEXT

There are three main approaches for introducing SPL engineering practices (APEL et
al., 2016): (i) proactive: develops a product line from scratch, the concept and the code
for the products are build in a planned way; (ii) extractive: starts by a collection of
existing products that are refactored to be part of the SPL; (iii) reactive: starts with a
small and easy to handle SPL, usually with only one product available, and it is extended
incrementally with new products, features, and added variability.

We employed a reactive approach. Due to the demand was for a specific product, we
would not have time to build the SPL using a proactive approach. Building a mobile
app from scratch would give developers the necessary domain knowledge because the
project’s documentation was not available. Brisa’s engineering team created the app,
taking the legacy code from the Web-based version as a basis, and the product resulted
was improved according to the users’ feedback.

Three products were requested to be transformed into mobile apps, as shown in 6.1:
PA, PB, and PC. Their main feature is to send messages for multiple contacts in a list,
and each one does it in a particular manner by adding more specificity based on the
target niche. PA was the first developed product. Brisa has requested this product to
be the kickoff because of market needs. They developed PA from scratch without using
reused components.

Next, PB was developed by Brisa. It targets a more general public and encompasses
the default features, likewise in PA, and no particularities for a given product niche. PB
was the first app made using the approach described in this study. The third product,
PC, also targets a niche public. PC contains more specificities than his other brothers,
as will be seen later in this Chapter.

The products respected a line of development in the company. Table 6.1 show that
PC is queued for production but is estimated to be ready in less than a month, sooner
than his predecessor.

The source code was developed by following the concepts of component-based and
feature-oriented software development, as discussed by Prehofer (PREHOFER, 1997),
which means to build reusable and standalone components across the project. Once the

4.apk files are executable in any Android environment. It represents the running app

62 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

Table 6.1 Products available in the SPL

Product Public Creation Order Time for Production

PA niche First 3 months

PB general Second 1 month

PC niche Third ¡1 month(queued)

Public: Is the target public in which the app was created for

first product (PA) was developed, tested, and considered stable, the development team
started the variability implementation and management to build the next product, PB.
Bosch (2004) explains that a high degree of variability allows the use of software in a
broad range of contexts.

In our project, variability management was enabled by employing preprocessor direc-
tives in the source code, allowing it to configure itself while compiling (HUNSEN et al.,
2016). This compile-time based method matches with the technology used for developing
mobile apps in this scenario.

React-native 5 was chosen as the central technology to have the SPL constructed
around. It is a hybrid mobile development framework that enables usage of the same code
for building apps to android and iOS platforms. It saves implementation time by writing
a single code type (javascript) that any platform can interpret. Although engineers write
the code in javascript, native configuration and coding (Swift programming languages for
iOS and Kotlin for Android) are necessary to build the mobile app.

Deciding to use this specific mobile framework has brought some issues when imple-
menting the SPL. There was no tooling available in the market for variability manage-
ment in a mobile platform that worked for iOS and Android apps. The existing tools are
available for web and desktop apps only (BASTOS et al., 2017). Although reports for SPL
use in industrial-scale is well studied (BENAVIDES; GALINDO, 2014; CLEMENTS et
al., 2005; MACHADO et al., 2014; HANSSEN; FÆGRI, 2008; SOZEN; MERLO, 2012),
few work has been done for applying techniques for mobile apps in real-world scenario.

The mobile apps had to achieve two main goals, create a better experience than the
one obtained on the web and improve features that include media information through
the use of native components available on mobile apps. These goals were the motivation
for creating the first app from scratch, thus spending more time and not taking advantage
of the old code written for the web.

6.2 THE APPROACH

This section introduces the proposed approach and discusses the decision-making process
involved in each part of the solution.

5https://reactnative.dev/docs/getting-started

6.2 THE APPROACH 63

6.2.1 Brainstorming the solution

Having the PA made from scratch allowed the team to have a faster analysis of the
differences from the other two products that would be part of this SPL. At first, we
made an initial feature model for mapping the features available at PA, as 6.1 shows.

Figure 6.1 Project’s feature model V1.

The feature model was built in the FeatureIDE tool (KASTNER et al., 2009). Fea-
tureIDE allows the configuration of products according to a pre-defined set of features
from a feature model. Because our SPL is both multiplatform and multilanguage, we
used the featureIDE to construct the data tree view for high-level feature visualization,
as Figure 6.2 shows. Due to the company’s privacy policy, we omitted the actual feature
names in this work.

With the first set of features visible, the team could analyze the other products and
establish the differences. The team included the differences in a new version of the
feature model. Figure 6.2 shows the updated model. In order to explain the differences,
we divided into three variation groups called specific assets, platform-dependent changes,
and available features, as listed next:

Figure 6.2 Project’s feature model V2.

• Specific assets: Every product has a different set of colors, supported languages,
logo, app images, Store Screenshots, Banners, and icons for iOS/Android. To gen-
erate a product, every needed asset from this group must be created following the
same namespace and specifications. The lead designer has its patterns for fast
creation of these assets;

64 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

• Platform-dependent changes: It is related to modifying Gradle properties, key
security files, and scheme properties. Both Android and iOS apps have platform-
specific configurations. This variation group is responsible for holding these config-
urations for every product available before building;

• Available features: These are the optional features derived in each product, as
Figure 6.2 shows. They were either disabled (in a particular product) or enabled.
For example, the feature ContactsC was mandatory in the first product. However,
it becomes optional since it is not present in the other products. Table 6.2 shows
a reduced view of possible product configurations, emphasizing the selection of
optional features by each product (P).

Apel et al. (2016) presented a formula for obtaining the number of possible configu-
rations for a SPL family. It is 2 to the power of N where N is the number of optional
features.

2n

Following the same formula, this White Label project can have 1024 possible config-
urations (210).

After being aware of what had to vary between products, we looked for tool support
to implement the SPL project. As earlier mentioned, the available tools are platform-
dependent and not built for developing cross-platform (or hybrid) apps. Support tools
must be executable in any OS environment since programmers could develop in different
platforms, such as Windows, Linux, or/and MacOS.

Table 6.2 Product configurations

Optional Feature Product PA Product PB Product PC

1 ContactsC X x x
2 MASubsets x x X
3 MBSubsets x x X
4 MCSubsets x x X
5 Finantial Mode A X X x
6 Finantial Mode B x x X
7 Specific Assets X X X
8 Platform changes X X X
9 Message (Create campaigns) X X X
10 MessageD X X X

Therefore, we implemented a set of modules of shell scripts files 6, to configure the
products for both iOS and Android platforms, on both development and production sides.
We further discuss the scripts in Section 6.2.2.2.

6a group of commands that serve to automate processes

6.2 THE APPROACH 65

6.2.2 Hierarchy Tree

The SPL project hierarchy tree is divided into two child trees, one that corresponds to
every product’s folder structure and another for the scripts module. We will explain this
structure next.

6.2.2.1 Product structure
Figure 6.3 shows the hierarchy tree (structure of files and directories) for a sample

product. The Android and iOS subfolders hold platform-specific configuration files. For
example, the androidProperties is responsible for having android’s app version, Gradle
properties, and API connection addresses.

Figure 6.3 Product hierarchy tree

Inside the img folder, there are the general images used for the specific product. Styles
hold the product’s color palette and default metrics used in the application, which are
base paddings, margins, font sizes, and border styles.

Terms and translations are both folders for holding specific text for the app. Inside
translations, there are files available for each supported language. This project has English
(EN) and Portuguese (PT-BR).

The static assets refers to files related to the product, not required for the building
process. It is likely to include external documents, prototypes, and others.

The output folder is where the android file will be placed after the product’s creation
on the production side with the target version.

The feature list.txt file shows what features are enabled and disabled for the target
product. We use a flag to represent what is enabled or not and manually manage con-
straints.

6.2.2.2 Script Structure
We have created the scripts to have minimal changes through the project’s develop-

ment time. As Figure 6.4 shows, the scripts have been modularized according to each

66 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

particular function. The main script is the build version.sh, which is responsible for in-
terpreting what the user prompted and run the initial configuration depending on the
chosen platform, held on configure platformName.sh. Another key variable when running
the script is the build mode, set as either development or production. The develop-
ment mode sets the app to run in a simulator or USB-connected device. The production
mode sets the app ready to be published.

Figure 6.4 Script Files hierarchy tree

Releasing a product is made differently on each supported platform. For android,
the script will place inside the output folder the .apk file. For the iOS platform, if
the script runs on macOS, the final output opens the XCode app. It is where the iOS
apps are submitted. Otherwise, the script would ask to be executed in an iOS-friendly
environment.

The features folder holds the scripts for optional features. The manage features.sh file
attaches every feature available for either enabling or disabling a product. Besides, each
file holds one optional feature, having controllers that comment and uncomment code
bound to the feature.

The Javascript language does not handle preprocessor directives natively. As a result,
we developed a pattern that worked like the C-native #ifdef preprocessor directive,
but with comments in javascript. Santos et al. (SANTOS et al., 2016) created an
approach for adding this annotation-based variability in javascript-based systems. React-
native applications are more complex, a simple #ifdef featureName was not enough
to generate different products.

In this approach, we developed two patterns of comments that would either enable or
disable the code during compilation time. The first one is related to default javascript
code, like the structure introduced in (SANTOS et al., 2016). The second one is called
JSX and is an XML-like syntax used by react-native to enable tags in javascript files.
The scripts would identify the type of code to be changed when configuring a product by
looking for the signature, as seen in Figure 6.5 and toggling as requested. The comments
are self-explainable, which might help developers to be guided by this annotation type
when maintaining the code.

For code not written in Javascript, the scripts mapped the platform-specific informa-
tion to be changed, in order to output a different product. We used the sed command,

6.2 THE APPROACH 67

Figure 6.5 Preprocessor Comments Examples

which seeks a text pattern and replaces the line found with the desired information. Ac-
cording to the content present in the platform-specific .txt files, the scripts search and
change variables, shown in Figure 6.4. The changeable variables are mandatory on any
mobile app. In this sense, the scripts for modifying the specific platform code are ready
to be used in different projects, with no need for modification.

6.2.2.3 Documentation
This approach has generated a small number of documents. The main one explains

the process of creating new products, building existing ones, and attaching features to the
project. A ’common problems’ section has been added and encouraged to be continuously
updated by Brisa’s engineering team with new information about issues and challenging
times during the SPL development and evolution. The major problem found during the
development was due to writing permissions. Since an automated script does the change
inside the files, the person responsible for running the scripts needs to set permissions in
some operating systems environments.

Another method of communicating with whom is building a product is through console
when executing scripts. Figure 6.6 illustrates this communication for an iOS build for
production mode.

The starter command has three mandatory variables, productName , buildMode ,
platform choice . The final script command for our example would be ./build ver-
sion.sh productA production ios’ .

The first information displayed on the screen is the confirmation of the product name,
the folder location of the specific information, the build mode, and the target platform.

The code changes started with Images, Colors, General Metrics, Translations files, and
specific Terms. The engineering team should create the static files under a pre-defined
pattern for every customer.

Next, the script installs third-party libraries that can differ from one product to
another. Then, it adds the static assets, icons, and splash arts according to the platform’s
choice.

68 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

Platform-specific changes are the following topic to be configured, as Figure 6.6 shows.
The console logs the availability of optional features, and if any error occurs, the page
where it happened is displayed. It is important to list everything that is changing because
if any error occurs, the engineer will have a lead to begin his work through the execution
logs.

The set of changes is related to the optional features, displayed in pink, where con-
tactsC is disabled. Then, the script logs every optional feature that is either disabled or
enabled in this step.

After the product’s configuration finishes, the scripts will begin to build the product
according to its platform and type. If the chosen platform was iOS and the user is on a
macOS computer, the build system will open de XCode for finishing up the publishing
process.

Figure 6.6 An example output for a product build run

With the help of meaningful script logs, we can explain the product generation’s

6.3 DISCUSSION 69

process without maintaining extensive documents. This approach needs to be intelli-
gent to help the developers quickly find errors and not make mistakes while building or
developing.

6.3 DISCUSSION

We tested different methods to handle variability in this study, but they are all at the
compile-time level. First, we attempted to allow code from entire pages to be changed
while building a product, which was accomplished by storing the software code in its
three. As a result, while maintaining the project, a developer would still have to change
the code in three different places, one for each product, the code was going to be tripled.

Another attempt encompassed creating a new software folder from a default base.
In this approach, the products would have only the desired features, and the app’s size
would be smaller. We did not follow this approach because it had development issues.
A less skilled developer would face problems developing and maintaining the code, the
scripts would have been a lot bigger, and every change would request the developer to
recompile the product to see the update. From this point, we started developing the
pattern shown in Figure 6.5.

It took about three months to develop and test PA. The team expected at least
two months to develop PB as a separate product, with code duplication. Instead, the
team finished converting the code to support variability and build PB before the initial
deadline, as Table 6.1 shows.

As a result, we observed several gains in terms of time spent. It took about four
weeks to release the SPL, add the new functionalities, and build PB. A reduction of three
times developing PB compared to the PA development, and two times less confronted
with PB’s original time if built from scratch on its standalone version. Since a mobile
app is constantly evolving, we noted that Brisa’s development team saved much time by
applying improvements that benefit both PA and PB.

Next, the quality team had saved time as well since they were oriented to use the same
test cases of PA for PB, excluding the ones based on the disabled features. Letting the
quality team know our approach allowed them to find issues not found in the previous
testing. A code that is multiple times tested is more reliable.

A surprising benefit of this approach was that it enables a feature that is not na-
tively available on Android projects. When the script stores the generated version in the
product’s output folder, it creates a version control outside the play store. The product’s
output includes its name, version, and build number, following a specific pattern defined
in the scripts.

According to five of six quality criteria proposed by (APEL et al., 2016), this approach
achieved the benefits of an SPL implementation on mobile:

• A reduced preplanning effort is achieved by reading the required documentation
and understanding the graphical data, code implemented, and scripts used;

• For each optional feature, the created script should trace the code changes that
disables/enables the target feature. Figure 6.5 shows the meaningful comments

70 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

pattern example that delimits the code for the optional feature

• We achieve the separation of concerns by the comments that are around the code
for an optional feature;

• The granularity used is either medium-granted or fine-grained, not impacting other
features;

• We also achieve uniformity in this framework. The modularized scripts were divided
by code type that they change, meaning that variations in the product configura-
tion scripts were separated from changes in the platform and build type, causing
uniformity.

We could not guarantee the information hiding quality criteria by using this approach
since more guided development is necessary. We would assume that using conventional
code techniques for hiding essential secrets in apps would be enough.

This approach inherits the facility of creating new products in a SPL without im-
pacting the code. The sales team can take advantage of an easy configuration process
when selling new apps for specific customers. The development team can meet their
expectations in a much faster way.

When speaking about challenges, the most difficult was involved in finding the right
comments pattern that would be explicit to the developers that should maintain the code
in the future but not too descriptive. Maturing the scripts was also a challenging task.
They started as one file and were retouched by the engineering team until the scripts
had six mandatory files plus X, being X the number of optional features available in the
project.

The Product Manager noticed one downside of applying the proposed approach. The
reported drawbacks refer to what he came across after building the products. First, the
bundled apps’ size was almost identical, no matter the product generated, even though
PB has fewer features than PA. The ideal environment includes extracting the features
not used by the target product, not disabling it by using comments.

A skilled engineer is required when modifying the generation scripts because it presents
a hazardous activity. It represents another drawback of this approach, how fragile the
scripts are for supporting modifications without impacting the process. The script’s
modularization comes helping to mitigate this drawback.

Besides these drawbacks, we can replicate this approach at any react-native project
by following the specifications provided in section 5.1, allowing White Label software
projects for mobile hybrid apps to be part of an SPL with the same benefits mentioned
above.

6.4 A GUIDE FOR APPLYING THE CREATED FRAMEWORK TO WHITE LA-
BEL SOFTWARE PROJECTS IN STARTUPS

This section will show how to apply the framework created and tested for either new or
existing White Label software projects in startups. There are two main steps for applying

6.5 CONCLUSION 71

it, mapping variation and enabling it systematically, adapting to the current startup’s
stage. We show these steps next.

6.4.1 Mapping Variation

First, the startup should map the variable points generating a Feature Model to show the
current variation options. We have used FeatureIDE to generate the case study model
presented, but any software diagram maker can be used to generate the document.

Startups should create the model showing all interactions between features if required,
optional, whether one feature can block the other, and whether one must be selected to
have the other. White Label software early products should not have all this kind of
complex interactions, but instead, standalone components that can be isolated if not
present in a product version. Figure 6.2 shows what the startup should expect after
producing a simple Feature Model. Because the Feature Model is in a higher level of
abstraction, software engineers can use it to make the project’s stakeholders conscious of
the software capabilities.

6.4.2 Enabling Variability

The framework created in this work uses a build system to generate new products. A
startup may or may not have time to build a tool like this. Early-stage startups should
keep the comments pattern in the code and manually swipe if a feature is active or not,
since for them, what matters most is how to fast deliver software. Keep the comments
under a pattern will mitigate the technical debt of not building a system for generating
products.

Startups in the stabilization and growth stages should build a reliable tool to generate
new products. In this framework, our build system targets mobile apps built with react-
native. The core scripts explained in this Chapter are available at (SILVA, 2020).

Engineers should separate every product specificity from the whole software code.
Colors used, special text, logo and images, the product’s specificities should be can placed
in distinct folders.

6.5 CONCLUSION

This Chapter reports on the real-world experience of implementing cross-platform mobile
apps using SPL engineering concepts in White Label projects.

The study discussed the challenges, benefits, and drawbacks of employing a novel
approach to support the development of SPL systems in the mobile apps domain.

SPL engineering can be suitable for developing mobile apps, particularly when tool
support is available. In our experience, we employed an adaptation in an existing frame-
work to support the development of both iOS and android platforms. This framework
is available to be used by any project built with reactive-native. The strongness of our
approach are listed as follows:

• This framework aims to work following the concept of hybrid mobile development,

72 ADAPTABLE FRAMEWORK FOR MOBILE WHITE LABEL SOFTWARE APPLICATION

more precisely to react-native projects. Other frameworks can also apply the same
strategy, like Flutter, Cordova Phonegap, and Ionic.

• Build a framework for SPL using native mobile programming languages is future
work. This work’s platform configuration represents the first step to build SPL
under native apps.

• Running a single command that outputs the executable file encapsulates the com-
plexity of building an app. Our approach makes it viable for engineers to make
code changes and build up the project at any seniority level.

• For android, this approach enables a version history for the generated apps, which
is not enabled by default locally in this platform. iOS apps already have this
advantage.

• Building time is fast for new versions when compared to the build of standalone
products in a non-automated environment.

• The code maturity provided by this approach. The built products derive from the
same code base, meaning that they were tested multiple times in diverse circum-
stances.

We have found these strengths by solving the challenges presented when developing
this framework. Below are some challenging points observed during the development:

• Establishing a culture of understanding inside the company. Since SPL is a new
software engineering approach, many stakeholders would have to understand its key
points and build trust on the platform before presented enough real evidence.

• Choosing the best supporting architecture for creating the scripts. The team has
modified the scripts have uncountable times because the generation process would
always need more retouches, and some changes were not possible initially through
scripts.

• Choosing the best comments pattern that would be descriptive enough, but very
modular

Some challenges are still opened, as well as room for future work, based on this study’s
materials. Down are the opened opportunities seen after this study:

• An opened challenge is related to improving the scripts’ error handling. Some errors
are not related to the code but due to the framework’s specifies. The scripts need
to be more intelligent in order to be ready for unexpected exists and provide a
user-friendly message.

• The replication of this approach from researchers in industrial or academic environ-
ments. Enabling further development of this model by applying it in more advanced
families from different domains.

6.6 CHAPTER SUMMARY 73

• Future work should also encompass the creation of more conclusive documentation
to unify the documents generated for each product in a solution, in one archive that
can serve the whole family.

• Since there are other mobile-hybrid development frameworks like react-native, fu-
ture work would make this approach adaptable.

6.6 CHAPTER SUMMARY

This Chapter presented a framework for developing White Label software projects in
startups. We developed this framework following HCS methods and implements prepro-
cessors in a flexible and adaptive build system.

We have validated this framework in a real-world mobile application. The SPL created
has three products derived and over 18 variation points.

Startups can apply this framework to their mobile White Label projects, no matter
the level of software maturity or startup’s stage.

Chapter

7
WHITE LABEL SOFTWARE PROJECTS

This Chapter presents and discusses this study’s main findings by analyzing data from
the three empirical studies we carried out, synthesizing the results. Startups use this
approach to create multiple products from the same code base, and these products differ
in terms of features available and static assets, such as colors, images, and others. We
also discuss how challenges can be solved and problems to be mitigated with the help of
Highly-configurable Systems (HCS) projects.

In the interview, we obtained a definition for White Label software. Then the survey
confirmed the first findings, and the ac MLR added more fundamental points to the
research. Hence, we synthesize the definition for White Label software as follows:

“White Label Software is a product in which technology is licensed, customizing some
features, making available for third parties to use and explore the product, selling it to an
end-user”

Startups working with White Label software projects bring a concept analogous to
the Software Product Lines (SPL), they can quickly generate a customized product for
the partner, from a predetermined basis. The final product contains all the partner’s
inherent characteristics (visual identity, additional requirements) and is distributed to the
end-user. Therefore, this practice is very similar to build White Label physical products
(GEYSKENS et al., 2018).

White label projects could apply the processes that involve HCS in their daily activ-
ities to fade current ad-hoc processes used.

7.1 WHITE LABEL SOFTWARE CHARACTERISTICS

White Label software projects have inherited many characteristics from HCS. This sec-
tion will highlight the additional characteristics observed in the empirical studies applied,
which are related to the entrepreneurship context where startups are inserted.

• A family of software from the same code base in the same context. White label
software projects can generate many different applications on different platforms
(web, mobile, or desktop) within the same context.

75

76 WHITE LABEL SOFTWARE PROJECTS

• Business Flexibility. White label software projects enable flexibility also at the
business level. Every potential partner has a different need, and startups can benefit
from the software flexibility to enable different partnerships. For example, in the
startup SB, they have a different contract of partnership for every product. While
a product uses a custom API integrated with the partner for user management,
other partners may need the product to be stand-alone.

• Customer-driven development. White label software is generated to meet customer
needs, and it is vital for the project’s success since startups make extensive and valu-
able contracts with partners. Startups developing White Label software projects
need to focus their software evolution to be following the end customer’s needs.

• Treat customer data carefully. Startups are very careful in their relationships with
partner companies. Data gathered from one partner must not be accessible by
other partners, although competitors may use the same White Label base. The
information must be both transparent to the partner who owns the product and
confidential to everyone else.

• Opportunities for information exchange. The primary source of knowledge for
White Label software could be given in the following order: search for material
and concepts over the Internet, attending related events as meetups, hackathons,
and previous team experience. We observed that software engineers usually base
their implementations on their personal experience without following any formal
documentation. It implies that startups share common challenges.

7.2 WHITE LABEL SOFTWARE CREATION AND PROJECT SPECIFICITY

White Label software projects have differences in their life cycle. The studies first gath-
ered how the projects have been born and how they plan to evolve. Next, the build of
new products and how they plan to increase their performance, not so ever, testing this
kind of project demands extra attention. Discussing how White Label software projects
implement variability allows the engineering team to define the product’s scope. Next,
we discuss more topics about software engineering for White Label projects:

• Software project. There have been two patterns of creation for White Label Projects
in startups. Ou analysis observed the first one in SC, SA, and SD. Their projects
counted on either external consulting or previous experience to establish the features
incorporated into the product. For the project SB, we noted the second pattern
of White Label creation, where projects did not bear to be a White Label. They
were transformed into a White Label by an emerging need, and its features were
modified to accommodate variations, as requested by their consumers. As opposed
to what we had initially thought, the number of variable features does not increase
over time, only until the product has achieved a status of stabilization. In SB, they
offer an unlimited number of new features for a partner, as long as it pays for the
development.

7.3 WHITE LABEL SOFTWARE CHALLENGES AND FUTURE PATH 77

• Software build. Companies range from 24 business hours in SA to 4 business hours
on average in SD to generate a new product version. According to a survey respon-
dent, it can go up to 5 working days, which is directly related to the automation
level presented in the process, project complexity, and team expertise. For startups
with more time in the market, they spend less time when generating new products.

• Software testing. During the interview, a question was asked about which software
testing techniques startups used and if they have any particular approach for White
Label software. They either say that no coordinated tests are done, only exploratory
tests after creating the product. Result’s analysis identified that testing White
Label software is a new area of study which has not been fully explored yet.

• Handling variability. It was not possible to gather any feedback about the usage of
HCS as a software reuse practice among the studied startups, besides the bond that
this work has found between White Label projects and HCS. The observed lack of
awareness about these concepts may explain why they struggle when getting into
advanced software reuse methods, affecting the startup’s capacity to hold many
customers, evolve its products, and improve the build mechanism used. However,
startups with more time in the market have improved their processes through cre-
ativity. One of the acceptable practices found is how they make use of the variation
pattern. A variation pattern is how the product would either enable or not a fea-
ture. The interview has presented several ways of applying the variation pattern on
different binding times, i.e., the moment in the project development (or execution),
where the variable feature is bound. White Label Software uses methods in at least
two of the binding times presented by Apel et al. (2016).

For example, they could use configuration files to define global variables to make
variability happen under compile-time and use control panels on the web to make
changes at run-time. These are the most used variation patterns. Although the
difference of generation time was considered significant between the projects known,
we could infer that every startup is evolving their process in an ad-hoc way, without
knowing about HCS or sharing knowledge between other White Label projects. It
was interesting to perceive that even though startups present these characteristics,
they are not far from what is suggested by the academy (APEL et al., 2016), but
having the right consulting could improve their process of generating and evolving
a White Label product.

White Label software projects correlate with HCS concepts in many ways. Because
startups are unaware of systematic ways to work with variable systems, their ad-hoc
practices will not fit in a long-term scenario.

7.3 WHITE LABEL SOFTWARE CHALLENGES AND FUTURE PATH

In the first part of this study, we have evidenced that White Label software projects are
analogous to HCS projects by gathering information from technical articles and “listen-

78 WHITE LABEL SOFTWARE PROJECTS

ing” to practitioners’ “voices”. Then, we built a White Label software framework by
applying the discoveries from the empirical studies done and concepts from SPL.

The project developed presents more evidence that the two terms are analogous. As
a result, we cannot separate from the project what is White Label software is and what
SPL is. This work assumes that White Label software projects are a particular type of
HCS for entrepreneur context with SPL characteristics.

When looking at the development challenges announced from the empirical studies
done in this work, the academy could have answered already for HCS, meaning that
White Label software Projects can take advantage of HCS techniques. Startups in this
context can solve their challenges faced when they become aware of systematic software
reuse techniques. For example, tracking all the changes is an open challenge obtained
in both interviews and surveys. However, Svahnberg et al. (2005) shows techniques for
tracking changes, in the same way, we found out that adding more variability to the code
with new features was an open challenge but is covered in (APEL et al., 2016). Last,
defining the product as complete regarding the general understanding of the project’s
domain limit is also explained in (APEL et al., 2016).

The studies also unveiled challenges directed to business issues in White Label software
projects. Due to business complexity, an option to mitigate these challenges could be
events, meetups, and special presentations hosted by Ecosystems of Innovation. This
study does not cover startups’ business aspects with White Label Projects, but as many
other challenges are faced by startups, sharing information is always the best choice.

From the aforementioned analysis, White Label software projects should consider the
HCS concepts and adjust them to the entrepreneur context, solve the challenges, and
improve the processes seen in our first studies.

Mainly, an excellent White Label software implementation should be lightweight and
built on top of harmonious concepts. Startups should not spend too much time estab-
lishing patterns for their White Label software, but instead, use a process that can let
them take advantage of every strongness involved in building HCS apps. In Chapters 3,
4, and 5, we summarized the challenges faced by startups. As our work continues, we
will be further discussing how HCS techniques can be adapted to White label software
projects in the entrepreneur context by facing the challenges presented.

7.3.1 Facing White Label software challenges

7.3.1.1 Classic Variability Management for White Label Software Projects
Apel et al. (2016) cite two types of variability implementation and management, the
classic and the advanced. The classic language variability implementation was the most
used agent in the startups interviewed, in the survey’s respondents, and in the technical
literature gathered. Startups developing White Label software use parameters to apply
variability, but the never-used product’s features can negatively impact the code. What
should be the best options for evolving variability implementation in White Label software
projects?

Another classic approach for variability implementation is making use of design pat-
terns. Design patterns are beneficial when a pre-planning time is available, and the

7.3 WHITE LABEL SOFTWARE CHALLENGES AND FUTURE PATH 79

engineers know its definitions and best application. Startups are not known for pre-
planning activities; they operate in an unorganized manner, facing a lack of guidance for
adopting software engineering practices (BERG et al., 2018). This characteristic makes
design patterns complicated for startups to follow when implementing variability.

Apel et al. (2016) considers frameworks and components as classic approaches for vari-
ability implementation. Frameworks are widely used in software startups of any kind.
They are third-party software parts used in many projects under a creative commons li-
cense, and startups make use of them to speed up development. The data gathered could
not find any frameworks targeting this type of project. On the other hand, components
are the software parts created to be embedded in the software exclusively. Componentiza-
tion is a common-sense approach for developing software in startups. The best advanced
coding technique takes componentization as practice, from Object-Oriented Program-
ming to Atomic Design. The advantages are related to the specific code parts that are
easier to understand, better to maintain, and easy to track changes.

Startups use classic variability implementation available in the field of software engi-
neering in White Label software projects. However, these projects do not have a specific
framework to be used in this context because HCS for White Label projects are not in
common sense by the Startup Community.

Advanced techniques and tools for White Label software projects can improve their
variability management and code quality. The following sections will be overviewing the
advanced methods used for variability adapted to this context and aim to solve the most
relevant challenges that this study has brought.

7.3.1.2 Define project’s domain limit The customer drives the product’s evolu-
tion in White Label software projects. Still, a challenge presented from the interviews
regards when the product manager has to interfere in how the product is evolving. How
a manager has to delimit the scope of their solution?

A White Label product scope is the set of applications in a market segment, with the
software artifacts reused. The project manager needs to keep the external boundaries
clear so the project will evolve under the market segment’s possibilities.

Surprisingly, keeping the SPL under a domain limit is an open challenge presented
by Metzger and Pohl, which declares that if the scope of a SPL is defined too broadly,
domain artifacts may become too generic, and the effort of realizing them may become
too high (METZGER; POHL, 2014). Scope optimization is a challenge open for SPL and
White Label projects.

7.3.1.3 Documentation Specific documentation has been a missing point for the
startups interviewed and also forgotten by the survey respondents. The industrial ap-
plication referred to in this work only documents the product’s creation and derivation.
How should variability in White Label software projects be handled?

Metzger and Pohl present two types of documentation from SPL Engineering, the
integrated and the orthogonal, and they are presented as follows (METZGER; POHL,
2014):

80 WHITE LABEL SOFTWARE PROJECTS

• Integrated Documentation: It is a documentation for converging the informa-
tion from a SPL in a dedicated or specialized model.

• Orthogonal Documentation: It separates the documentation from product line
variability from the other software development artifacts, even though the variabil-
ity of the product line is treated as a first-class product line artifact (METZGER;
POHL, 2014).

The most used model for representing the integrated documentation is the feature
model, introduced by Kang et al. (1990). It has today, over 40 different implementations
are divided into three categories (METZGER; POHL, 2014). A feature model was es-
sential for making the framework understandable to new practitioners in the real-world
experiment. The number of varying feature models makes it exciting to understand and
adapt to White Label software Startups. Still, at the same time, it is hard to analyze the
effectiveness of the scenario.

Metzger and Pohl point out that feature models that only present a high-level docu-
ment variability of a product line, like mandatory and common features, are considered
orthogonal documentation as well (METZGER; POHL, 2014).

In this way, we can infer that the project designed and developed in Chapter six used
orthogonal documentation. The feature model only represented the common and optional
components, and more appropriate places held additional documentation. Metzger and
Pohl agreed that orthogonal documentation is better for handling variability in SPL
because it keeps the documentation simple to change and more comfortable to understand
(METZGER; POHL, 2014).

Starting from the point that our implementation followed the orthogonal context,
what would be the output if a startup previously interviewed experienced that amount
of documentation for handling variability? Does teaching HCS concepts are enough to
support this application?

Variability documentation in startups is unknown. A start point would be applying
an orthogonal type and wait until it gets adapted to the startup’s needs.

7.3.2 Tools for White Label software projects

The startups interviewed were affirmative about the importance of supporting tools in
their work. Generally, they use Git for code versioning, Trello for software management,
Slack for team communication, and many others.

7.3.2.1 Git tools White label software projects in startups can benefit from specific
plugins inside tools already used by startups, like those we mentioned before. For exam-
ple, the startup’s developer responsible for Continuous Integration (CI) and Continuous
Delivery (CD) can make Git aware of the software variability by mapping added features.

Apel et al. (2016) demonstrate how to promote variability using Git, the two ap-
proaches presented are called a-branch-per-product and per-features-branch. Before de-
scribing these concepts, an explanation for Git and its elements is necessary.

7.3 WHITE LABEL SOFTWARE CHALLENGES AND FUTURE PATH 81

A Git source repository is divided into modules, and each module holds the software’s
developed state, called branches. Code is “pushed” or sent to branches through commits,
which should describe its evolution. On top of branches and commits, developers can add
tags for specific software evolution points, which they will use for declaring new software
releases.

The first technique for managing variability using Git is called A-branch-per-product.
It is based on having one branch as a base for the solution and N branches where N is
the number of products available to generate. General improvements would be done in
the base branch and merged with the others before producing new releases using tags.
Specific product branches would hold specific features for the product and follow its
development path. Figure 7.1 shows an example of this approach, where Product A, tag
version 1.8, would be built from a specific branch after bug fixes.

Another technique similar to the former is called Per-features-branch. For making a
new version, the engineering team would be by converging branches from each desired fea-
ture. Figure 7.1 shows two optional features that would be evolved on different branches
and merged when creating a new release for product A.

Figure 7.1 Git approaches adapted from (APEL et al., 2016)

While these strategies have been widely studied and their strongness and weaknesses
presented in Apel et al. (2016), they can be improved for White Label software projects
since Git usage is widespread on startups.

Additionally, T¨ernava, Mortara, and Collet presented a tool to identify and visualize
variability in object-oriented variability-rich systems automatically. It helps developers to
understand the variant points across the project (TËRNAVA et al., 2019). Visualization
artifacts are essential to startups since they are easier to understand and quicker to
review.

7.3.2.2 Build systems and preprocessors Build systems and preprocessors are
not exclusive in SPL applications. A react framework called gatsby needs to use a build
system to create static page websites. The java software uses the maven management
tool to download dependencies, and the C preprocessor provides directives to C/C++

82 WHITE LABEL SOFTWARE PROJECTS

projects before compilation.
Apel et al. (2016) present build systems and preprocessors as classics variability mech-

anisms. While the former is responsible for scheduling and performing all build-related
tasks, the latter is a tool that manipulates source code before compilation.

In the framework created for this work and specified in Chapter 6, we built a build
system for mobile development with react-native for White label software projects. A
preprocessor for a specific source code was used to enable high configuration capacity. As
a result, White label software projects in startups can take benefit from a build system
to enable and control variability in their products as they need.

7.3.2.3 Feature oriented programming and advanced techniques In the lit-
erature, FeatureIDE is a known tool for supporting SPL applications. It is a plugin
for eclipse that helps modular programming, and it is oriented to the development of
optional features attached to some software. More advanced techniques for variability
implementation includes aspect-oriented programming and other tools.

While a perfect scenario would be made by managing White Label software projects in
startups using a tool similar to FeatureIDE, startups usually use advanced and innovative
technologies that do not have this type of supporting tool available. As a result, we affirm
that it is best to have a lightweight, editable, and hybrid tool for configuring the many
files across a White Label software for startups, like an evolution of the scripts made for
the industrial application previously mentioned.

7.4 CHAPTER SUMMARY

This Chapter presented an explanation for White Label software projects based on the
past three studies’ results. It presents many characteristics similar to HCS but in the
entrepreneurship context, which provides flexibility and new opportunities for the startup.
This type of project has a customer-driven development approach, meaning that White
Label software projects benefit from the aforementioned techniques for startups that
enable continuous delivery.

White Label software projects can be born by emerging needs, pivoting an existing
startup, or by planning since the early stage. The software can be build using many
strategies like global variables or building systems with preprocessors, which leaves an
enormous difference between product generation time and effort from one startup to the
other, depending on the build strategy used. We did not observe any testing methods
adapted to White Label software projects in any of the studies done.

Challenges opened for White Label software projects are present, basically due to
the technical debt that startups have at this stage and because they are not aware of
advanced code reuse techniques.

This Chapter has also presented directions for future study in White Label software
projects and insights for startups to improve their ad-hoc processes. The knowledge from
HCS can be used for early-stage startups that will face technical debt and mid-stage
startups facing the challenges involved in these projects.

Chapter

8
CONCLUSION

This work investigated the nature of White Label software projects in startups. We
conducted three empirical studies to understand the specifics of this type of software
project in-depth. First, we conducted interviews with startups that work with White
Label software projects. The results provided an in-depth knowledge of how startups
define and handle this type of project, including its challenges. Next, we submitted a
survey to stakeholders from the same ecosystem where the previous study was done.
This study aimed to identify White Label software projects from the perspective of those
who do not work directly with this type of project. Last, our third study focused on
gray literature research, a Multivocal Literature Review (MLR), which helped us identify
the most relevant articles and add new information to this work. Our results combined
agreed that White Label is analogous to Software Product Lines (SPL), being a type of
Highly-configurable Systems (HCS) implementation focused in the entrepreneur context.

The central points that supported the definition of White Label projects as HCS in
an entrepreneur context are summarized below:

• The definition obtained in this work by the empirical studies applied to be very
close to SPL definition: “White Label Software is a product in which technology is
licensed, customizing some features, making available for third parties to use and
explore the product, selling it to an end-user”

• The characteristics presented in White Label software projects are present in HCS
projects as well, like enabling systematic variability over a determined context.

• Challenges faced by White Label startups are also faced by HCS projects, like
managing documentation.

Using the expertise learned from the empirical studies and the practices from HCS,
we made a framework for building White Label software projects. It takes advantage
of preprocessors, serving as a build system for these projects built with react-native, a
hybrid mobile development framework.

83

84 CONCLUSION

The created framework was tested in a real-world environment and used in a project
with three products deriving from the same code base. Its structure is meant to be
easily adaptable to the software based on its context, easily evolvable. Also, it benefits
the startup to face technical debt by encapsulating qualities needed to any HCS. The
project where we applied the framework is evolving without problems, meaning that the
engineering team added new optional features, and the software variability is still well
managed. The White Label software framework for mobile projects enabled variability
in different forms while kept the code quality and delivered generated products on time.

React-native supports native applications from the iOS and Android operational sys-
tems. The framework created could be easily adapted to a hybrid or native development
platform for mobile devices.

The framework’s usage is through a single command from the terminal that executes
a script file. This file encapsulates the complexity involved when building an app. As a
result, it is viable for engineers to make code changes and build up the project no matter
the seniority level.

Future work can be done by solving open improvements in the framework created.
First, error outputs in the scripts should be improved and commented code removed after
the product build. Moreover, the building system needs to be replicated in other White
Label mobile software projects.

This work investigated the concept, characteristics, and challenges of White Label
software projects, summarized a set of best practices for these projects based on HCS
and built a framework for applying systematic reuse in White Label mobile projects.
Considering HCS techniques and adapting to the entrepreneur context can potentially
solve challenges in early-stage startups or mid-stage startups that develop White Label
software projects.

8.1 RELATED WORK

We looked for studies in the literature addressing Software Engineering principles applied
to innovation projects in startups. We believe such issues are directly related to the core
of our investigation.

Much effort has been made to understand startups’ processes and create answers to
their struggles. Mapping studies serve to map the field of Software Engineering, and
startups (PATERNOSTER et al., 2014; BERG et al., 2018). This dissertation’s related
work are projects built for startups that aim to impact possibly unknown areas or different
perspectives.

The first work is the Hunter-gatherer cycle, which was proposed to assist startups in
all organization phases, from ideas to commercial products. This framework assumes that
startups have stages of order and disorder (NGUYEN-DUC et al., 2015). Nguyen-Duc et
al. (2015) assist the decision-making in different startup scenarios. To know startups that
develop White Label software projects, we had to dive into their processes and extract
their challenges using three separate studies, targeting different personal.

Another Software Engineering model for Startups is called Stairway to Heaven, where
it focuses according to the current startup stage by implementing different Engineering

8.2 FUTURE WORK 85

concepts. Olsson et al. (2012) had chosen four startups to perform a case study with
semi-structured interviews. As a result, their 5 step stairway begins with startups using
traditional development cycles to develop their first MVP. Next, they become more aware
of agile methodologies until they reach the stage of continuous integration. By doing the
semi-structured interviews, Olsson et al. (2012) found that the teams are often ahead
of the organization as a whole. They adopt agile practices at an organizational level
until they evolve into an institutionalized approach to software development. This study
also shows how unorganized early-stage startups are and highlights that the development
teams are often the nursery of innovation. HCS processes should start as well in the
development team. Once the software is ready to perform under different configurations,
the White Label Software project can evolve to be at an organizational level.

The Greenfield Startup Model (GSM) explains how development strategies and prac-
tices are engineered and used in startups. Giardino et al. (2016) created GSM after
performing semi-structured interviews with CEOs and CTOs from 13 startups. The
GSM synthesis agrees with what we found in the semi-structured interviews done in this
work. As we obtained intentional and unintentional technical debt, startups may payback
when achieving the stabilization stage. Early-stage startups do not implement standard
development strategies and need to execute fast prototypes using lightweight methodolo-
gies adaptable to their specificities. Similarly, Souza, Malta, and Almeida (2017) build
the Academic Startup Model by interviewing four software startups, and their findings
correlate with GSM and the results of this work. Startups with White Label software
projects were studied using a similar approach. This dissertation’s findings are similar to
the above studies and add more challenges to the target projects.

8.2 FUTURE WORK

This study has been able to go deep into White Label software startups. We have found
enough evidence to enlighten the future path of working with HCS in Innovative Ecosys-
tems by linking advanced code reuse techniques with White Label software startups.

Some business challenges for White Label software projects were found that are not
covered in this work. We believe that startups could mitigate these challenges with
events, meetups, and special presentations hosted by Ecosystems of Innovation. They
are summarized below and are open for future study:

• How to convince partners to have a White Label product instead of developing its
product from scratch.

• Position the startup as a brand. Since the startup works producing White La-
bel software for other companies, it is complicated for the startup to launch new
products since existing partners can interpret it as competition.

• How to find when the solution is complete to the target audience.

• Communication problems between partner companies and the Startup.

86 CONCLUSION

• How to find the best scenario to launch the product and present it to new clients
since the loss of this time-to-market might imply clients’ loss.

For software engineering, researchers can begin future work in White Label software
projects from three different perspectives:

• Investigating other ecosystems for White Label software projects in startups, and
understand their needs. Replicating the interview and survey study done in this
work. The replication of these studies is needed to corroborate with the analysis
that this work presents and contribute to the theme’s universalization.

• Understand how White Label software projects elucidate their software require-
ments and how startups with this type of project can adapt the Minimum Viable
Product (MVP) approach to their multiple configurations scenario, creating an
MVPWL.

• Disseminate about how HCS could help startups with White Label software projects
face its challenges.

• Apply the framework built in this work for enabling variability management in
more White label Software projects and get data directly from the engineers on
how startups’ can improve their used processes.

• Considering how valuable the number of articles across the internet about White
Label software and the information gathered by listening to the stakeholder’s voices,
we believe that this work should be shared across the same places where it helped
to be made.

REFERENCES

ADAMS, S. B. Stanford and silicon valley: Lessons on becoming a high-tech region.
California management review, SAGE Publications Sage CA: Los Angeles, CA, v. 48,
n. 1, p. 29–51, 2005.

APA, C.; JERONIMO, H.; NASCIMENTO, L. M.; VALLESPIR, D.; TRAVASSOS, G. H.
The perception and management of technical debt in software startups. In: Fundamentals
of Software Startups. [S.l.]: Springer, 2020. p. 61–78.

APEL, S.; BATORY, D.; KÄSTNER, C.; SAAKE, G. Feature-oriented software product
lines. https://link.springer.com/book/10.1007/978-3-642-37521-7: Springer, 2016.

AVGERIOU, P.; KRUCHTEN, P.; OZKAYA, I.; SEAMAN, C. Managing tech-
nical debt in software engineering (dagstuhl seminar 16162). In: SCHLOSS
DAGSTUHL-LEIBNIZ-ZENTRUM FUER INFORMATIK. Dagstuhl Reports.
https://drops.dagstuhl.de/opus/volltexte/2016/6693/, 2016. v. 6, n. 4.

BAJWA, S. S.; WANG, X.; DUC, A. N.; ABRAHAMSSON, P. “failures” to be cele-
brated: an analysis of major pivots of software startups. Empirical Software Engineering,
Springer, v. 22, n. 5, p. 2373–2408, 2017.

BASTOS, J. F.; NETO, P. A. d. M. S.; O’LEARY, P.; ALMEIDA, E. S. de; MEIRA,
S. R. de L. Software product lines adoption in small organizations. Journal of Systems
and Software, Elsevier, v. 131, p. 112–128, 2017.

BATORY, D. Feature models, grammars, and propositional formulas.
In: SPRINGER. International Conference on Software Product Lines.
https://link.springer.com/chapter/10.1007/115548443, 2005.p.7−−20.

BECK, K.; BEEDLE, M.; BENNEKUM, A. V.; COCKBURN, A.; CUNNINGHAM,
W.; FOWLER, M.; GRENNING, J.; HIGHSMITH, J.; HUNT, A.; JEFFRIES, R. et al.
Manifesto for agile software development. 2001.

BENAVIDES, D.; GALINDO, J. A. Variability management in an unaware soft-
ware product line company: an experience report. In: Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems.
https://dl.acm.org/doi/abs/10.1145/2556624.2556633: ACM, 2014. p. 1–6.

BERG, V.; BIRKELAND, J.; NGUYEN-DUC, A.; PAPPAS, I. O.; JACCHERI, L. Soft-
ware startup engineering: A systematic mapping study. Journal of Systems and Software,
Elsevier, v. 144, p. 255–274, 2018.

87

88 REFERENCES

BOSCH, J. Software variability management. In: IEEE. Pro-
ceedings. 26th International Conference on Software Engineering.
https://ieeexplore.ieee.org/abstract/document/1317504, 2004. p. 720–721.

CARMEL, E. Time-to-completion in software package startups. In: 1994 Proceed-
ings of the Twenty-Seventh Hawaii International Conference on System Sciences.
https://www.infona.pl/resource/bwmeta1.element.ieee-art-000000323468: IEEE Com-
put. Soc. Press, 1994.

CLEMENTS, P. C.; JONES, L. G.; NORTHROP, L. M.; MCGREGOR, J. D. Project
management in a software product line organization. IEEE software, IEEE, v. 22, n. 5,
p. 54–62, 2005.

COHEN, M. B.; DWYER, M. B.; SHI, J. Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE Transac-
tions on Software Engineering, IEEE, v. 34, n. 5, p. 633–650, 2008.

CROWNE, M. Why software product startups fail and what to do
about it. evolution of software product development in startup compa-
nies. In: IEEE. IEEE International Engineering Management Conference.
https://ieeexplore.ieee.org/abstract/document/1038454, 2002. v. 1, p. 338–343.

DAHLE, Y.; NGUYEN-DUC, A.; STEINERT, M.; REUTHER, K. Six pillars of modern
entrepreneurial theory and how to use them. In: Fundamentals of Software Startups.
https://link.springer.com/chapter/10.1007/978-3-030-35983-61 : Springer, 2020.p.3 −
−25.

DECKER, R.; HALTIWANGER, J.; JARMIN, R.; MIRANDA, J. The role of en-
trepreneurship in us job creation and economic dynamism. Journal of Economic Per-
spectives, v. 28, n. 3, p. 3–24, 2014.

ETZKOWITZ, H.; MELLO, J. M. C. de; ALMEIDA, M. Towards “meta-innovation”
in brazil: The evolution of the incubator and the emergence of a triple helix. Research
policy, Elsevier, v. 34, n. 4, p. 411–424, 2005.

ETZKOWITZ, H.; ZHOU, C. Hélice tŕıplice: inovação e empreendedorismo universidade-
indústria-governo. Scielo Estudos Avançados, scielo, v. 31, p. 23 – 48, 05 2017. ISSN
0103-4014. Dispońıvel em: 〈http://www.scielo.br/scielo.php?script=sci\ arttext&pid=
S0103-40142017000200023&nrm=iso〉.

FELDMAN, M. P. The entrepreneurial event revisited: firm formation in a regional
context. Industrial and corporate change, Oxford University press, v. 10, n. 4, p. 861–
891, 2001.

GAROUSI, V.; FELDERER, M.; MÄNTYLÄ, M. V. Guidelines for including grey liter-
ature and conducting multivocal literature reviews in software engineering. Information
and Software Technology, Elsevier, v. 106, p. 101–121, 2019.

REFERENCES 89

GEYSKENS, I.; KELLER, K. O.; DEKIMPE, M. G.; JONG, K. de. How to brand your
private labels. Business Horizons, Elsevier, v. 61, n. 3, p. 487–496, 2018.

GIARDINO, C.; PATERNOSTER, N.; UNTERKALMSTEINER, M.; GORSCHEK, T.;
ABRAHAMSSON, P. Software development in startup companies: the greenfield startup
model. IEEE Transactions on Software Engineering, IEEE, v. 42, n. 6, p. 585–604, 2016.

GIARDINO, C.; UNTERKALMSTEINER, M.; PATERNOSTER, N.; GORSCHEK, T.;
ABRAHAMSSON, P. What do we know about software development in startups? IEEE
software, IEEE, v. 31, n. 5, p. 28–32, 2014.

GURP, J. V.; BOSCH, J.; SVAHNBERG, M. On the notion of variability in software
product lines. In: IEEE. Proceedings Working IEEE/IFIP Conference on Software Ar-
chitecture. https://ieeexplore.ieee.org/abstract/document/948406, 2001. p. 45–54.

HANSSEN, G. K.; FÆGRI, T. E. Process fusion: An industrial case study on agile
software product line engineering. Journal of Systems and Software, Elsevier, v. 81, n. 6,
p. 843–854, 2008.

HOVE, S.; ANDA, B. Experiences from conducting semi-structured
interviews in empirical software engineering research. In: .
https://ieeexplore.ieee.org/abstract/document/1509301: IEEE, 2005. v. 2005, p.
10 pp.–. ISBN 0-7695-2371-4.

HUNSEN, C.; ZHANG, B.; SIEGMUND, J.; KÄSTNER, C.; LESSENICH, O.;
BECKER, M.; APEL, S. Preprocessor-based variability in open-source and industrial
software systems: An empirical study. Empirical Software Engineering, Springer, v. 21,
n. 2, p. 449–482, 2016.

KAISER, S. Difference between private label vs white label products. 2017. Dispońıvel
em 〈http://godirek.com/blog/2017/05/difference-private-label-vs-white-label-products/
〉. Acessado em Abril de 2019.

KANG, K. C.; COHEN, S. G.; HESS, J. A.; NOVAK, W. E.; PE-
TERSON, A. S. Feature-oriented domain analysis (FODA) feasibility study.
https://apps.dtic.mil/sti/citations/ADA235785, 1990.

KASTNER, C.; THUM, T.; SAAKE, G.; FEIGENSPAN, J.; LEICH, T.; WIELGORZ,
F.; APEL, S. Featureide: A tool framework for feature-oriented software develop-
ment. In: IEEE. 2009 IEEE 31st International Conference on Software Engineering.
https://ieeexplore.ieee.org/abstract/document/5070568, 2009. p. 611–614.

KITCHENHAM, B. A.; PFLEEGER, S. L. Personal opinion surveys. In: Guide to ad-
vanced empirical software engineering. https://link.springer.com/chapter/10.1007/978-1-
84800-044-53 : Springer, 2008.p.63−−92.

LUNDGREN, A. Technological innovation and industrial evolution. The Emergence of
Industrial Networks, Stockholm School of Economics, 1991.

90 REFERENCES

MACHADO, I. do C.; SANTOS, A. R.; CAVALCANTI, Y.; TRZAN, E.; SOUZA, M.;
ALMEIDA, E. Low-level variability support for web-based software product lines. In:
The Eighth International Workshop on Variability Modelling of Software-intensive System
(VaMoS). https://dl.acm.org/doi/abs/10.1145/2556624.2556637: ACM, 2014.

MACLEOD, M. Why I hate White Labeling for Startups. 2012. Dispońıvel em 〈https:
//www.startupcfo.ca/2012/06/why-i-hate-white-labeling-for-startups/〉. Acessado em
Abril de 2019.

MARMER, M.; HERRMANN, B. L.; DOGRULTAN, E.; BERMAN, R.; EESLEY, C.;
BLANK, S. Startup genome report extra: Premature scaling. Startup Genome, v. 10, p.
1–56, 2011.

METZGER, A.; POHL, K. Software product line engineering and variability manage-
ment: achievements and challenges. In: Future of Software Engineering Proceedings.
https://dl.acm.org/doi/abs/10.1145/2593882.2593888: ACM, 2014. p. 70–84.

MOORE, J. F. The death of competition: leadership and strategy in the age of busi-
ness ecosystems. https://www.amazon.com.br/Death-Competition-Leadership-Strategy-
Ecosystems/dp/0887308503: HarperCollins, 2016.

MOTOYAMA, Y.; KNOWLTON, K. Examining the connections within the startup
ecosystem: A case study of st. louis. Entrepreneurship Research Journal, De Gruyter,
v. 7, n. 1, 2017.

NGUYEN-DUC, A.; MÜNCH, J.; PRIKLADNICKI, R.; WANG, X.; ABRAHAMSSON,
P. Fundamentals of Software Startups. https://link.springer.com/book/10.1007%2F978-
3-030-35983-6: Springer, 2020.

NGUYEN-DUC, A.; SEPPÄNEN, P.; ABRAHAMSSON, P. Hunter-gatherer cy-
cle: a conceptual model of the evolution of software startups. In: ACM. Pro-
ceedings of the 2015 International Conference on Software and System Process.
https://dl.acm.org/doi/abs/10.1145/2785592.2795368, 2015. p. 199–203.

NJIMA, M.; DEMEYER, S. Evolution of software product development in
startup companies. In: CEUR workshop proceedings. http://ceur-ws.org/Vol-
2047/BENEVOL2017paper3.pdf : CEUR, 2017.

OLSSON, H. H.; ALAHYARI, H.; BOSCH, J. Climbing the” stairway to
heaven”–a mulitiple-case study exploring barriers in the transition from ag-
ile development towards continuous deployment of software. In: IEEE. 2012
38th euromicro conference on software engineering and advanced applications.
https://ieeexplore.ieee.org/abstract/document/6328180, 2012. p. 392–399.

PATERNOSTER, N.; GIARDINO, C.; UNTERKALMSTEINER, M.; GORSCHEK, T.;
ABRAHAMSSON, P. Software development in startup companies: A systematic mapping
study. Information and Software Technology, Elsevier, v. 56, n. 10, p. 1200–1218, 2014.

REFERENCES 91

PREHOFER, C. Feature-oriented programming: A fresh look at objects. In: SPRINGER.
European Conference on Object-Oriented Programming. [S.l.], 1997. p. 419–443.

RIES, E. The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. https://www.amazon.com.br/Lean-Startup-
Entrepreneurs-Continuous-Innovation/dp/0307887898: Crown Books, 2011.

SANTOS, A. R.; MACHADO, I. do C.; ALMEIDA, E. S. de. Riple-hc: javascript systems
meets spl composition. In: Proceedings of the 20th International Systems and Software
Product Line Conference. https://dl.acm.org/doi/abs/10.1145/2934466.2934486: [s.n.],
2016. p. 154–163.

SARASVATHY, S. D. Causation and effectuation: Toward a theoretical shift from eco-
nomic inevitability to entrepreneurial contingency. Academy of management Review,
Academy of Management Briarcliff Manor, NY 10510, v. 26, n. 2, p. 243–263, 2001.

SEBRAE/BA, S. B. de Apoio às Micro e Pequenas Empresas da B. Estudo sobre o Ecos-
sistema Baiano de Startups. 2016. Dispońıvel em 〈https://www.sebrae.com.br/Sebrae/
PortalSebrae/UFs/BA/Anexos/EstudosobreoEcossistemaBaianodeStartups.pdf〉. Aces-
sado em Fevereiro de 2020.

SILVA, F. Core Scripts for creating a build system to White Label Software Projects. 2020.
Dispońıvel em: 〈https://github.com/FranklinSilva/white\ label\ build\ system〉.

SILVA, F.; MACHADO, I. Multivocal Literature Review for White Lavel Software Projects
Supplementary Material. 2020. Dispońıvel em: 〈https://zenodo.org/record/4514936\#.
YB8em-hKhPY〉.

SILVA, F.; SOUZA, R.; MACHADO, I. Supplementary Material to ”Taming and Un-
veiling Software Reuse opportunities through White Label Software in Startups”. 2020.
Dispońıvel em: 〈https://zenodo.org/record/3673788〉.

SILVA, F.; SOUZA, R.; MACHADO, I. Taming and unveiling software reuse op-
portunities through white label software in startups. In: IEEE. 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA).
https://ieeexplore.ieee.org/abstract/document/9226291, 2020. p. 302–305.

SNOWDEN, D. J.; BOONE, M. E. A leader’s framework for decision making. Harvard
business review, v. 85, n. 11, p. 68, 2007.

SOUZA, R.; SOARES, L. R.; SILVA, F.; MACHADO, I. do C. Investigating agile prac-
tices in software startups. In: . https://dl.acm.org/doi/abs/10.1145/3350768.3350786:
ACM, 2019. p. 317–321.

SOZEN, N.; MERLO, E. Adapting software product lines for complex
certifiable avionics software. In: IEEE. 2012 Third International Work-
shop on Product LinE Approaches in Software Engineering (PLEASE).
https://ieeexplore.ieee.org/abstract/document/6229764, 2012. p. 21–24.

92 REFERENCES

SVAHNBERG, M.; GURP, J. V.; BOSCH, J. A taxonomy of variability realization tech-
niques. Software: Practice and experience, Wiley Online Library, v. 35, n. 8, p. 705–754,
2005.

TËRNAVA, X.; MORTARA, J.; COLLET, P. Identifying and visualizing
variability in object-oriented variability-rich systems. In: Proceedings of the
23rd International Systems and Software Product Line Conference-Volume A.
https://dl.acm.org/doi/abs/10.1145/3336294.3336311: ACM, 2019. p. 231–243.

TOM, E.; AURUM, A.; VIDGEN, R. An exploration of technical debt. Journal of Systems
and Software, Elsevier, v. 86, n. 6, p. 1498–1516, 2013.

UNTERKALMSTEINER, M.; ABRAHAMSSON, P.; WANG, X.; NGUYEN-DUC, A.;
SHAH, S.; BAJWA, S. S.; BALTES, G. H.; CONBOY, K.; CULLINA, E.; DENNEHY, D.
et al. Software startups–a research agenda. e-Informatica Software Engineering Journal,
v. 10, n. 1, 2016.

Appendix

A
SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

The following is a list of questions asked to each interviewee, whose answers served as
a basis to answer the questions asked to stabilize the concept of white label software
products.

After the description of the questions asked, the audios of the four interviews will be
transcribed.

A.1 QUESTIONS ASKED TO THE INTERVIEWEES

The questions to be asked to the interviewees, were elaborated following a logical order
based on the research questions of the study.

• What is your position in the company? This question was necessary to level
the information obtained according to the interviewee’s position;

• What is your experience time in years? Also a question related to the vali-
dation of the information obtained.

• Have you worked on innovation projects before? If so, how much expe-
rience do you have? This question aimed to understand a little more about the
interviewee’s background, if his understanding of White label Software was related
to his experience in innovation projects.

• How long has your startup been around? Question asked to establish a
relation between the Startups interviewed.

• Is your startup self-sustainable, that is, does it have enough financial
resources to support itself? This question sought to understand whether the
Startups in this micro context have financial independence from investors.

• How much dependence on investors? If the previous question was answered as
true, an approximate percentage of the dependency was asked, so we can understand
the stage the startup interviewed was in.

93

94 SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

• What do you mean by white label? Key question for establishing the rela-
tionship between Highly Configurable Software Systems and White Label Software.

• Describe your white label product Through this question, the interviewer can
put in his own words which product is sold, its differentials, points of variability,
etc.

• How the generation/derivation process for a new product is done? how
do you manage product versions? The purpose of this question was to let
the interviewee talk about the most interesting aspects of generating your product,
without proposing any method of support.

• Are mobile applications developed in a native or hybrid way? This question
was asked to understand if there is an implementation pattern for Startups White
Label.

• If native, does it have an iOS and Android version? Information about the
technology applied if the product is mobile.

• If hybrid, which framework do you use? Information about the technology
applied if the product is mobile.

• How many days does it take to generate a product? As well as the years
of experience of the company in the market, respondents were asked how long it
took to generate a product, in order to serve as a base value for the generation of
products based on the guidelines to be proposed.

• How much financial resources is spent during the process of generating
a product? Like the question above, the goal is to offer an average of the number
of people involved for later comparison.

• How much more or less does each resource cost? The final information to
define an average cost for product generation per company.

• How do you define the variability points? It was explained, if necessary,
what would be points of variability within this specific environment. After this
explanation, the interviewee then the answer could be done.

• What is the variation pattern? A specific question was asked, related to the
variation pattern of each startup.

• How many optional features do you have? It was asked how many optional
features there are in their project, that is, how many requirements are directly
configurable and adapted to the customer. This question served as a basis for
finding the results regarding the organization’s complexity.

• How many products do you have launched and are available today?

A.2 INTERVIEW TRANSCRIPT 95

• How many products have you made?

• Describe the system architecture With this question, we tried to understand if
there is a definition of standard architecture for the projects of White Label Software

• How many databases do you use?

• How many web services do you use?

• What are the support management systems?

• What is the cost of server today in the company monthly?

• Do you perform software testing?

A.2 INTERVIEW TRANSCRIPT

Below is the transcript of the interviews, the real names of the companies and respondents
were omitted:

A.2.1 Company K

Interviewer - Today 6/11/2018, beginning the pilot of the series of interviews aimed at
White Label Startups, with the representative Silvana Reis. - Let’s start, what is your
position in the company?

Interviewee - Software Analyst and Partner at the company
Interviewer - How much experience in years?
Interviewee - In the company or in the field?
Interviewer - in the field
Interviewee - 8 years of experience in the field
Interviewer - is this the first time you’ve dealt with innovation projects?
Interviewee - sim a primeira vez
Interviewer - yes the first time
Interviewee - 3 years
Interviewer - Startup is also 3 years old?
Interviewee - yes, I have been present in the project since the beginning
Interviewer - Has the company paid for itself, or does it still depend on investors?
Interviewee - No, we still depend on investors
Interviewer - what percentage?
Interviewee - 50% of our revenue comes from investments
Interviewer - What do you know as a White Label product?
Interviewee - It is a product that you can give other faces and other features to the

same product
Interviewer - Do you have a White Label product? Tell me a bit more about it
Interviewee - We call it K B2B, the idea is that financial market consultants who

are licensed by the market, which is the CVM, they can manage portfolios of people who
are within their business. For example, as a licensed consultant with CVM, I manage

96 SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

the portfolio of João, Fernando, Marcelo and four other people, so I will manage their
portfolio through K B2B, but they will see my brand as a consultant, my name, the name
of my company and my ID, but the K that will do this management. So the face is mine
in the case, but inside the product is K.

Interviewer - I see! So answer me one thing, how do you go about generating a new
product? For example, I am a consultant and I look for you to create my B2B K, how is
the derivation process for this product more or less?

Interviewee - An initial registration is made with the ID and after that it is all
customized, you put the logo you want, the name you want, you put the people you want
to fill that product. The first registration is done by us, but everything else the system
was parameterized to understand that the consultant will do what he wants inside.

Interviewer - So, all the things that vary are registered on your portal. And how
product versions are managed

Interviewee - The version of the product is the same, what changes is the visibility,
management of access to new features.

Interviewer - Is your product a mobile app?
Interviewee - yes, is a mobile app
Interviewer - Is the software a hybrid or native?
Interviewee - It is hybrid with react-native
Interviewer - How many days does it take to generate a product in your scenario?
Interviewee - 1 to 2 days
Interviewer How many resources are allocated in these two days for product gener-

ation?
Interviewee - 3 resources
Interviewer How much on average does a resource capable of generating generation

receive?
Interviewee - About 4 thousand months per resource
Interviewer How do you define what will vary?
Interviewee - It was when we wrote the project back there, we defined what would

be variable, the business premises, what should vary and what should not vary. A study
was done before, we took 3 consultants to validate the platform, where they checked if it
is in agreement or not with their day-to-day, what we had foreseen and some things were
changing during the process.

So there was a consultant who asked us to insert a feature that we didn’t have at the
time, which was to share the costs, what is that? So, it was not foreseen in our system, I
as a consultant, for example, when I indicate you, that you are not part of my investment
network, I do not manage your portfolio, but for some reason you want me to see your
portfolio . We didn’t have that, which was defined halfway.

We adjusted along the way until we reached a point where fixed things were fixed and
variables were well defined. So it varies to some extent.

Interviewer - Your variation pattern, as previously said, is everything to the run-
time of the application, configurable via the portal, nothing done in the compilation step,
right?

Interviewee - yes, all modified via the portal

A.2 INTERVIEW TRANSCRIPT 97

Interviewer - A base, how many optional features

Interviewee - I can’t say for sure, but I believe that around 12

Interviewer - How many products have already been made?

Interviewee - 4

Interviewer - Anyone in the air?

Interviewee - Yes, one currently on the air

Interviewer - How is your architecture made, an application, a bank and a web-
server?

Interviewee - Considering the production environment, we have a bank.

Interviewer - Do you do one web-service per product or one for all products?

Interviewee - It is a WS only for all products.

Interviewer - How many product support systems do you have?

Interviewee - Only 1 product support, alias, 2 if we consider the Business Intelligence
module, where we do monitoring.

Interviewer - How much does the server cost to keep this architecture on the air
today?

Interviewee - A lot, we already need to expand the database 3 times, we spend in
the range of 3 thousand reais per month

Interviewer - Would you mind if I went back for another test interview?

Interviewee - No, I’d love to.

Interviewer - Silvana, thank you very much, we have reached the end of the interview

A.2.2 Company M

Interviewer - Today 11/14/2018, starting the interview with Ricardo Junior, from the
company M. - Let’s start, what is your position in the company?

Interviewee - I’m a director

Interviewer - How much experience in years in computing

Interviewee - 8 years

Interviewer - How long have you been working on innovation projects

Interviewee - I have always worked on innovation projects

Interviewer - How long has your Startups been?

Interviewee - 2 years

Interviewer - Has your Startup paid for itself?

Interviewee - Yes

Interviewer - How long did it take to pay

Interviewee - It paid off from the first moment, because I already had a basic product
and another business that I had failed, so by the time I pivoted (technical term referring
to the total change of the business model) I already had a certain range of customers to
sell, and as for the technology I made adaptations, so I already started with a positive
box.

Interviewer - It is great that you are at this level, which is not common within the
interviewees for this study. Now tell me, what do you mean by White Label?

98 SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

Interviewee - It is a product in which you license technology, customizing some
features and made available for third parties to use, explore the product in order to sell.

Interviewer - Tell me about your White Label product
Interviewee - At M we offer a platform and customized applications for urban mo-

bility, we provide technology so that entrepreneurs can work with car, mototaxi and taxi
applications, similar to Uber. We provide the infrastructure, all the technology for the
customer to become the uber in their city.

Interviewer - For cooperatives too?
Interviewee - as well, cooperatives, associations of taxi drivers, groups of individual

drivers, who sometimes already run in an application and want to have their own. As
well as visionary people, who see in their city an opportunity to explore this service that
is not yet explored by other large companies.

Interviewer - How do you do to generate a product? Interviewee - It’s all man-
ual today, we generate the databases and servers for each client. After configuring the
environment, we create the applications with the parameters to communicate with the
servers and customize some things depending on the client.

Interviewer - About version control, how do you replicate an improvement for other
published applications?

Interviewee - This version upload is also manual
Interviewer - is it the same code or different codes between each application?
Interviewee - Both the application and the server have only the same code that is the

basis for the products. There is already a deploy process on the server, it automatically
generates for each client. However in the applications it is all manual.

Interviewer - How do you make the application A, have the characteristics A
Interviewee - flavors are made on android, as a settings folder for each client, with

logos, colors etc. For each client I modify these assets
Interviewer - Do you change anything through your management portal?
Interviewee - Some things do, we have a part of the code that the application

communicates with the manager. For example, it is possible to add the passenger’s cpf,
not showing the destination to the driver, some things are personalized by the panel.

Interviewer - is your application native or hybrid?
Interviewee - Native, for android we have passenger and driver app, but for iOS

only passenger.
Interviewer - When a customer of yours requires a product they are a website, a

panel ..
Interviewee - That, website, dashboard and driver and passenger apps
Interviewer - How many days do you take to generate a product?
Interviewee - Half a day
Interviewer - How many resources do you put in generating a product?
Interviewee - 1 person
Interviewer - How much does this resource on average earn in the month?
Interviewee - On average 5,000
Interviewer - How was it defined which were the variant points between one appli-

cation and another?

A.2 INTERVIEW TRANSCRIPT 99

Interviewee - Based on our competitor, we realized that he did not change the
client’s colors or brands to differentiate himself from others. Now we don’t have so many
variable features, what really changes is the color part, the brand etc.

Interviewer - How many optional features do you have?
Interviewee - about 15
Interviewer - How many products do you have on the air today?
Interviewee - About 30
Interviewer - How many have been made?
Interviewee - About 45
Interviewer - Tell me a little about your architecture to make it all work
Interviewee - We have a server in node.js, it runs on a separate infrastructure for

each client. It uses a separate mongoDb infra, we use the parse server as backend.
Our management panel is made in PHP, running on its own server. Each application
communicates with its own server. There are some other third-party services (email,
push notifications).

Interviewer - In this case there are 30 banks and their general
Interviewee - Perfect
Interviewer - Do you only have this management system for support? Something

related to Business Intelligence
Interviewee - Yes, we use third party tools for Business Intelligence, we are planning

to start using our clients’ data with more emphasis in 2019.
Interviewer - What is the cost of servers today?
Interviewee - The smallest 7 dollars, and the total about 1500 reais
Interviewer - Do you mind if I contact you in the near future about advances in

research?
Interviewee - Yes, you can contact me
Interviewer - Thank you very much Ricardo, this is the end of our interview.

A.2.3 Company E

Interviewer - Today is the 12/11 and I am starting the interview with Vinicius Oliveira
from Empresa E. What is your position in the company?

Interviewee - Software engineer
Interviewer - How much experience?
Interviewee - 2 years
Interviewer - Have you worked on any innovation project before?
Interviewee - This is the first
Interviewer defined - How long has this startup been around?
Interviewee - The startup turns 5
Interviewer - Has your startup paid for itself?
Interviewee - Unfortunately not, it depends on investors
Interviewer - How many percent dependency?
Interviewee - This end of the year has improved a lot, nowadays 70% dependency
Interviewer - What do you mean by White Label?

100 SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

Interviewee - White Label would be selling products to different companies and /
or people. We provide, for example, a store for each farm, a store for each representative,
our White Label is basically this, ours is a store, we deliver to several people.

Interviewer - So basically it is a product where you can sell customized stores to
rural producers who already do this without being on the web. Tell me how you do the
process of generating a new store?

Interviewee - From the marketing side?
Interviewer - You can focus on the software engineering part, assuming you have all

the necessary material
Interviewee - From that, we have a support system like an administrative panel,

where a resource that works with us can upload all photos and videos, playing directly
in the store.

Interviewer - Is he a computer person or not?
Interviewee - He’s an ordinary person, he can be anyone.
Interviewer - Do you have the platform available for Mobile or just web?
Interviewee - Only responsive, but we are in the implementation phase of our hybrid

solution
Interviewer - Nowadays, how many days does it take to generate a store?
Interviewee - Having video, photos, pdf, it takes about 3 days
Interviewer - How many resources are allocated for this task?
Interviewee - 2 to 3 people
Interviewer - How much more or less does each resource receive per month?
Interviewee - About 2 thousand reais
Interviewer - How do you define what varies
Interviewee - We already have some things defined, in the administrative panel all

this control is done. What types of animals are available for example.
Interviewer - Do you have any person in the area responsible for checking if your

system includes all features?
Interviewee - We have salespeople in the area, they know a lot, in addition to our

CEO. They are always validating all things
Interviewer - What pattern of variation is everything even via the portal?
Interviewee - Much of it is from the portal, sometimes new things are included in

the code to meet specific demands
Interviewer - How many optional features do you have?
Interviewee - About 4 to 5
Interviewer - How many products do you have on the air today?
Interviewee - About 50
Interviewer - How many products were made? that have been discontinued
Interviewee - About 60 in total
Interviewer - Tell me about the system architecture
Interviewee - Would you like to know how our service works? We use Amazon for

servers and databases.
Interviewer - How many web-services do you have?
Interviewee - Production server only

A.2 INTERVIEW TRANSCRIPT 101

Interviewer - Do you have other support systems?
Interviewee - Administration panel only. Customers are able to access their own

store’s dashboard, but only the company has access to the administrative panel.
Interviewer - What is your server cost?
Interviewee - About 600
Interviewer - Would you mind if I came back later with more questions with or

without testing?
Interviewee - We don’t have a well-defined testing process at the moment, just code

review
Interviewer - Thank you very much Vinicius, this is the end of the interview

A.2.4 Company L

Interviewer - Today 11/15/2018, starting the interview with Pablo Lima, from the
company L. - Let’s start, what is your position in the company?

Interviewee - I’m a Developer Analyst
Interviewer - Time of experience in years?
Interviewee - 5 years
Interviewer - If you have already worked on innovation projects, if you have experi-

ence in it
Interviewee - It was my first time, I’ve been on the project for 3 years
Interviewer - How long has your startup been around?
Interviewee - 5 years
Interviewer - Is your startup paying for itself?
Interviewee - no
Interviewer - How much dependence on investors?
Interviewee - 50 % dependency
Interviewer - What do you mean by white label?
Interviewee - White label is a business model that focuses on componentization and

adaptation of products to the customer’s needs, in order to create customized low cost
applications

Interviewer - Describe your white label product
Interviewee - It is a customizable education application that offers the possibility of

consuming ebooks, videos, courses and assessments based on the customer’s needs.
Interviewer - Tell me more about the generation / derivation process for a new

product. How do you manage product versions
Interviewee - A customer registration is made on the management portal, where

essential application parameters are added, such as means of payment, types of products
supported, etc. After that, a folder is created with more customizable information (icons,
splash arts, analytics settings, etc.) to be attached to other app version folders, lastly
the generation scripts are modified to include a new app. All products follow the same
version of the project code

Interviewer - Is your mobile part Native or hybrid?
Interviewee - Hybrid using the Ionic Framework

102 SEMI-STRUCTURED INTERVIEWS TRANSCRIPTION

Interviewer - How many days does it take to generate a product?
Interviewee - 1 day having all the necessary files
Interviewer - How many resources do you put in during the process of generating a

product?
Interviewee - 1 feature
Interviewer - How much more or less does each resource cost?
Interviewee - 2 thousand per month
Interviewer - How do you define the points of variability?
Interviewee - The project was built to serve only one project, but since there were

more sectors of the education environment that needed this solution, we created basic
points of variability that were increasing as new partners entered the project and pre-
sented their needs.

Interviewer - What is the variation pattern?
Interviewee - There is no standard to define the variation, some attributes are made

in the runtime, such as the available product tabs. Other features are defined in compile
time, such as the settings for push notifications.

Interviewer - How many optional features do you have? Say what points of vari-
ability are if people don’t know

Interviewee - I believe that some 25
Interviewer - How many products do you have on the air today?
Interviewee - Currently 7 on the air
Interviewer - How many products have you made?
Interviewee - 20 already done
Interviewer - Tell me a little about your architecture:
Interviewee - We use Azure to assist us in deploying and managing servers and

databases
Interviewer - How many databases and web services do you work with?
Interviewee - 1 database and 1 web-service
Interviewer - What are the support management systems?
Interviewee - We have two support systems for the project, the manager where some

features are configured only by the administrator and our BI system.
Interviewer - What is the cost of server today in the company monthly?
Interviewee - Thousand reais per month
Interviewer - Do you agree to receive the results and be available for a new conver-

sation, perhaps related to tests?
Interviewee - Yes you can
Interviewer - Thank you very much Pablo, this is the end of the interview

Appendix

B
SELECTED RESOURCES FOR CONDUCTING THE

MLR

B.1 RESOURCE LIST

The resource list of the Multivocal Literature Review (MLR) conducted are the following:

RS1 - Startup brasileira cria primeira plataforma white label para influ-
encers: 〈http://bit.ly/whitelabel-rs1〉. Last accessed: Feb 18th, 2021

RS2 - Can a White Label Bring You $20,000 per Month? Here is a Way
to Launch a Lucrative FinTech Business in 2 Weeks: 〈http://bit.ly/
whitelabel-rs2〉. Last accessed: Feb 18th, 2021

RS3 - How To White Label An Entire Company: 〈http://bit.ly/whitelabel-rs3〉.
Last accessed: Feb 18th, 2021

RS4 - Should you white-label your product?: 〈http://bit.ly/whitelabel-rs4〉. Last
accessed: Feb 18th, 2021

RS5 What startups have created successful white label products and ser-
vices?: 〈http://bit.ly/whitelabel-rs3〉. Last accessed: Feb 18th, 2021

RS6 Plataformas White Label, a chave do sucesso no investimento digital:
〈http://bit.ly/whitelabel-rs6〉. Last accessed: Feb 19th, 2019

RS7 What is White Label: 〈http://bit.ly/whitelabel-rs7〉. Last accessed: Feb 18th,
2021

RS8 White Label VS Private Label: What is the Difference: 〈http://bit.ly/
whitelabel-rs8〉. Last accessed: Feb 18th, 2021

RS9 What is White Labeling? How Does It Differ From Private Labeling?:
〈http://bit.ly/whitelabel-rs9〉. Last accessed: Feb 18th, 2021

103

104 SELECTED RESOURCES FOR CONDUCTING THE MLR

RS10 7 White-Label Business Opportunities for Entrepreneurs and Agencies:
〈http://bit.ly/whitelabel-rs10〉. Last accessed: Feb 18th, 2021

RS11 Why A White Label Solution Is Easier Than Building Your Own: 〈http:
//bit.ly/whitelabel-rs11〉. Last accessed: Feb 18th, 2021

RS12 White-label product: 〈http://bit.ly/whitelabel-rs12〉. Last accessed: Feb 18th,
2021

RS13 What is White Label? Products, Software, and More: 〈http://bit.ly/
whitelabel-rs13〉. Last accessed: Feb 18th, 2021

RS14 What are the 7 white labeling benefits: 〈http://bit.ly/whitelabel-rs14〉.
Last accessed: Feb 18th, 2021

RS15 The Ultimate Guide To White Label Services in 2020: 〈http://bit.ly/
whitelabel-rs15〉. Last accessed: Feb 18th, 2021

RS16 White Labeling, what are the pros and cons 〈http://bit.ly/whitelabel-rs16〉.
Last accessed: Feb 19th, 2019

RS17 What to Consider Before White Labeling Your App: 〈http://bit.ly/
whitelabel-rs17〉. Last accessed: Feb 18th, 2021

RS18 What are white label apps?: 〈http://bit.ly/whitelabel-rs18〉. Last accessed:
Feb 18th, 2021

RS19 How White Label Services Help Your Agency Grow: 〈http://bit.ly/
whitelabel-rs19〉. Last accessed: Feb 18th, 2021

RS20 White-labeling vs. co-branding, which one is right for your business?:
〈http://bit.ly/whitelabel-rs20〉. Last accessed: Feb 18th, 2021

RS21 Why I hate White Labeling for Startups: 〈http://bit.ly/whitelabel-rs21〉.
Last accessed: Feb 18th, 2021

RS22 7 Experts Weigh In on How to Build a Successful White Label Agency:
〈http://bit.ly/whitelabel-rs22〉. Last accessed: Feb 18th, 2021

RS23 Your very own bank, made to order: 〈http://bit.ly/whitelabel-rs23〉. Last
accessed: Feb 18th, 2021

RS24 AMAZON WHITE LABEL PRODUCTS 2020: HOW TO FIND PROF-
ITABLE IDEAS NICHES: 〈http://bit.ly/whitelabel-rs24〉. Last accessed:
Feb 18th, 2021

RS25 White Label Business Opportunities – Resell Products With Your
Brand: 〈http://bit.ly/whitelabel-rs25〉. Last accessed: Feb 18th, 2021

B.1 RESOURCE LIST 105

RS26 Trouble with colour: art directing a white label product is hard: 〈http:
//bit.ly/whitelabel-rs26〉. Last accessed: Feb 18th, 2021

RS27 The white labelling business model: 〈http://bit.ly/whitelabel-rs27〉. Last
accessed: Feb 18th, 2021

RS28 How to create a White Label website: 〈http://bit.ly/whitelabel-rs28〉. Last
accessed: Feb 18th, 2021

RS29 The ultimate white label development checklist: 〈http://bit.ly/whitelabel-rs29〉.
Last accessed: Feb 18th, 2021

RS30 White Labelling vs Co-branding – Which is Right for Your Business?:
〈http://bit.ly/whitelabel-rs30〉. Last accessed: Feb 18th, 2021

RS31 White Labeled Software Strategies for Startups: 〈http://bit.ly/whitelabel-rs31〉.
Last accessed: Feb 18th, 2021

RS32 So, You Wanna White Label?: 〈http://bit.ly/whitelabel-rs32〉. Last accessed:
Feb 18th, 2021

RS33 What startups have created successful white label products and ser-
vices?: 〈http://bit.ly/whitelabel-rs33〉. Last accessed: Feb 18th, 2021

RS34 White-Label is the New Black for Startups: 〈http://bit.ly/whitelabel-rs34〉.
Last accessed: Feb 18th, 2021

RS35 White Label Agreement in Simple Terms: 〈http://bit.ly/whitelabel-rs35〉.
Last accessed: Feb 18th, 2021

