
Universidade Federal da Bahia

Instituto de Matemática e Estat́ıstica

Programa de Pós-Graduação em Ciência da Computação

IDENTIFYING AND ANALYZING

SOFTWARE CONCERNS FROM

THIRD-PARTY COMPONENTS’ METADATA

Luis Paulo da Silva Carvalho

DOCTORATE THESIS

Salvador

2020, November, the 16th

LUIS PAULO DA SILVA CARVALHO

IDENTIFYING AND ANALYZING SOFTWARE CONCERNS

FROM THIRD-PARTY COMPONENTS’ METADATA

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Advisor: Manoel Gomes de Mendonça Neto

Co-advisor: Renato Lima Novais

Salvador

2020, November, the 16th

Sistema de Bibliotecas - UFBA

Carvalho, Luis Paulo da Silva.
Identifying and Analyzing Software Concerns from Third-Party Compo-

nents’ Metadata / Luis Paulo da Silva Carvalho – Salvador, 2020.
181p.: il.

Advisor: Prof. Dr. Manoel Gomes de Mendonça Neto.
Co-advisor: Prof. Dr. Renato Lima Novais.
Tese (Doutorado) – Universidade Federal da Bahia, Instituto de

Matemática e Estat́ıstica, 2020.

1. Mining. 2. Concerns. 3. Components. 4. Static Analysis. I.
Mendonça, Manoel Gomes. II. Novais, Renato Lima. III. Universidade
Federal da Bahia. Instituto de Matemática e Estat́ıstica. IV. T́ıtulo.

CDD – XXX.XX

CDU – XXX.XX.XXX

LUIS PAULO DA SILVA CARVALHO

IDENTIFYING AND ANALYZING SOFTWARE CONCERNS FROM THIRD-
PARTY COMPONENTS' METADATA

Esta tese foi julgada adequada à obtenção
do título de Doutor em Ciência da
Computação e aprovada em sua forma
final pelo Programa de Pós-Graduação
em Ciência da Computação da UFBA.

Salvador, 16 de novembro de 2020

Prof. Dr. Manoel Gomes de Mendonça Neto (Orientador - PGCOMP/UFBA)

__
Profª. Drª.Laís do Nascimento Salvador (UFBA)

__
Prof. Dr. Claúdio Nogueira Sant'Anna (UFBA)

__
Prof. Dr.Sergio Castelo Branco Soares (UFPE)

Prof. Dr.Paulo Caetano da Silva (UNIFACS)

SergioSoares
Sergio color

Stamp

Para Luiz Fernando Cardeal

ACKNOWLEDGEMENTS

Agradeço a Lilian, Elaine e Edvaldo, pelo incentivo.
A João, Let́ıcia e Gabriel pela doçura.
A Vanessa e Arthur pelo apoio.
Agradeço a meus colegas do IFBA, especialmente Djan e Crescêncio, pela cumplicidade
e ao saudośıssimo, Cardeal, pela amizade (e memes) enquanto esteve entre a gente.
Aos meus orientadores, Manoel e Renato, pela parceria, conselhos e paciência.
Aos colegas de PGCOMP, Ederson, Tiago Mendes, Thiago Miranda, Jorge e Felipe, pela
cooperação.

vii

I think that it’s extraordinarily important that we in computer science

keep fun in computing. When it started out, it was an awful lot of fun.

Of course, the paying customers got shafted every now and then, and

after a while we began to take their complaints seriously. We began to

feel as if we really were responsible for the successful, error-free perfect

use of these machines. I don’t think we are. I think we’re responsible for

stretching them, setting them off in new directions and keeping fun in

the house. I hope the field of computer science never loses its sense of

fun. Above all, I hope we don’t become missionaries. Don’t feel as if

you’re Bible sales-men. The world has too many of those already. What

you know about computing other people will learn. Don’t feel as if the

key to successful computing is only in your hands. What’s in your hands,

I think and hope, is intelligence: the ability to see the machine as more

than when you were first led up to it, that you can make it more.

—ALAN J. PERLIS

RESUMO

Sistemas bem modularizados são mais fáceis de manter e evoluir. No entanto, não é
fácil atingir uma boa modularidade. Sistemas devem ser modularizados sob diversas
perspectivas e, frequentemente, existem interesses importantes que ficam espalhados ou
entrelaçados entre vários módulos, os chamados interesses transversais. Logging, Acesso
a Banco de Dados e Automação de Testes são exemplos de interesses transversais.

Os estudos sobre interesses frequentemente recorrem à identificação manual dos mes-
mos. Infelizmente, a identificação manual tende a ser subjetiva e imprecisa, além de
exigir muito esforço. Documentos de Requisitos de Software (DRSs) e Documentos de
Arquitetura de Software (DASs) podem ser usados como recursos auxiliares na análise
de interesses, mas eles não são comuns. Idealmente, os desenvolvedores precisam confiar
em abordagens automáticas para identificar e processar informações sobre interesses a
partir de código fonte. Nesse contexto, este trabalho utiliza a injeção de componentes em
projetos de software para definir um método de localização de interesses.

Em sistemas modernos, os desenvolvedores implementam módulos para lidar com as
regras de negócios centrais, mas geralmente injetam componentes de terceiros na base de
código para materializar interesses relacionados aos aspectos secundários do sistema. Por
serem estes os tipos de interesse que mais se dispersam e se entrelaçam nos módulos dos
sistemas, vimos a oportunidade de propor um método para apoiar a sua identificação e
análise.

Nosso método identifica interesses a partir dos metadados que os desenvolvedores
usam para injetar componentes. Em seguida, ele avalia como estes interesses se espal-
ham e evoluem ao longo do tempo na base de código. Desenvolvemos uma ferramenta
chamada Architectural Knowledge Suite (AKS) para automatizar o método. Usamos essa
ferramenta para conduzir um estudo de pesquisa-ação com a ajuda de especialistas em
desenvolvimento de software para avaliar e refinar o método. Executamos três outros
estudos para caracterizar e entender como os desenvolvedores implementam interesses no
mundo real.

Entre os resultados obtidos, destacamos que o método correspondeu moderadamente
às expectativas dos especialistas. Notamos que é posśıvel otimizar a captura de interesses
a partir do código fonte de sistemas, se eles forem agrupados considerando similaridades
entre seus contextos de uso. Percebemos que, durante a evolução dos sistemas, artefatos
de código tendem a não se dedicar à implementação de interesses espećıficos. Identi-
ficamos oportunidades de adaptação do método para tornar posśıvel sua aplicação sob
diferentes cenários de utilização de tecnologias de desenvolvimento.

Palavras-chave: Mineração de Repositórios de Software, Interesses, Componentes,
Análise Estática de Código.

xi

ABSTRACT

Well-modularized systems are easier to maintain and evolve. However, it is difficult
to achieve good modularity in software systems, because developers must keep systems
modular with respect to several perspectives. This involves dealing with concerns that
scatter and tangle through several modules, the crosscutting concerns. Logging, Database
Access, and Testing Automation are examples of crosscutting concerns.

Studies on concerns often resort to manual identification of interests. Unfortunately,
manual identification tends to be subjective, imprecise, and effort-intensive. Software
Requirement Documents (SRDs) and Software Architecture Documents (SADs) can be
used as auxiliary resources to identify and analyze concerns, but they are not common
assets. When they are available, there is no guarantee that they contain relevant infor-
mation about concerns of particular interest. As consequence, ideally, developers should
rely on automation to identify and process information about concerns over the source
code. In this context, this work takes advantage of the injection of components in soft-
ware projects to define a method for locating information about crosscutting concerns in
software projects.

On modern systems, developers implement modules to address central business rules,
but they usually inject third-party components in the codebase to materialize concerns
related to secondary aspects of the system. As these are the types of concern that tend
to scatter and interrelate through systems’ modules, we saw an opportunity to propose
a method to identify and analyzed them using injection data and metadata.

Our method first identifies concerns from the metadata that developers use to inject
third-party components in their systems. Then, it evaluates how those concerns spreads,
and evolve through time, over the codebase. We developed a tool named Architectural
Knowledge Suite (AKS) to automate the method. We used this tool to conduct an
action research study with the help of software development specialists to evaluate the
reliability of our method and to refine it. We also ran three other studies using our
method to process real information systems’ source code, characterizing and analyzing
how developers implement concerns in the real world.

Among our findings, we highlight that our method met the expectations of the spe-
cialists to a moderate degree. We perceived that grouping software projects according
to their contexts of use can optimize the identification and analyses of concerns. We no-
ticed that developers tend to mix concerns by joining references to different components
through the lines of source code artifacts, but we spotted some exceptional cases. We also
saw opportunities to adapt our method to expand the identification of concerns toward
varied contexts of adopted software development technologies.

Keywords: Software Repository Mining, Concerns, Components, Static Analysis.

xiii

CONTENTS

Chapter 1—Introduction 1

1.1 Objectives and Working Methodology . 4
1.2 Studies . 5
1.3 Results and Contributions . 8
1.4 Organization . 8

Chapter 2—Theoretical and Technical Background 9

2.1 Concerns . 9
2.2 Third-Party Components’ Metadata . 11
2.3 Third-Party Components’ Repositories 13
2.4 Data Mining . 14

2.4.1 Software Repository Mining . 15
2.4.2 Concerns Mining . 15

2.5 Static Analysis . 16
2.6 Source Code Metrics . 16
2.7 Action Research Studies . 18
2.8 Cohen’s Kappa Agreement Coefficient . 20
2.9 Conclusion . 21

Chapter 3—A Method to Extract Concerns from Third-Party Components 23

3.1 Our Method . 23
3.1.1 Abstraction . 23
3.1.2 Realization . 25
3.1.3 Instantiating . 27

3.1.3.1 Identifying Java Projects’ Concerns 29
3.1.4 Dedication to Concern . 31

3.1.4.1 Measuring Object-Oriented Projects’ Dedication to Concern 32
3.2 Applying our DtC Metric (A Worked Example) 35

3.2.1 Measuring a High DtC . 35
3.2.2 Measuring a Moderate DtC . 37
3.2.3 Measuring a Slight DtC . 39

3.3 Discussion . 44
3.4 Related Work . 45
3.5 Conclusion . 47

xv

xvi CONTENTS

Chapter 4—Study I – An Action Research Study To Evaluate our Method 49

4.1 Diagnostic . 49
4.2 Planning . 50
4.3 Actions . 50

4.3.1 Generating the Study’s Dataset 51
4.3.2 Dataset Analysis Process . 53
4.3.3 The Raters . 55

4.4 Rounds of Action Research . 56
4.4.1 Round 1 . 57

4.4.1.1 Evaluation and Analysis 58
4.4.1.2 Reflections and Learning 58

4.4.2 Round 2 . 63
4.4.2.1 Evaluation and Analysis 64
4.4.2.2 Reflections and Learning 64

4.4.3 Round 3 . 66
4.4.3.1 Evaluation and Analysis 66
4.4.3.2 Reflections and Learning 67

4.4.4 A Semi-structured Interview . 74
4.5 Threats to Validity . 76
4.6 Discussion . 77
4.7 Studies that Used a Similar Approach to Validate their Methods 80
4.8 Conclusion . 81

Chapter 5—Study II – Analyzing The Evolution of the Dedication to Concern 83

5.1 Study Definition . 83
5.2 Results . 86
5.3 Threats to Validity . 101
5.4 Discussion . 102
5.5 Conclusion . 103

Chapter 6—Dissemination of Our Research 105

6.1 Reuse of our tool – AKS . 105
6.2 Replication Packages . 108

6.2.1 Study I’s Replication Package . 108
6.2.2 Study II and III’s Replication Package 109

6.3 Our Publications . 112
6.4 Conclusion . 113

Chapter 7—Conclusion 115

7.1 The Way We Fulfilled our Research’s Goal 116
7.2 Future Work . 116

CONTENTS xvii

Appendix A—Concerns Identified during Study I 131

Appendix B—Concerns Identified during Study II 133

Appendix C—Study III – Analyzing Types and Domains of Software as Trans-
verse Dimensions 137

C.1 Study Definition . 139
C.1.1 Transverse Dimension . 139
C.1.2 Agglomerations . 139
C.1.3 Code Complexity Agglomerations 143
C.1.4 Research Questions . 145

C.2 Results . 148
C.3 Threats to Validity . 155
C.4 Discussion . 158
C.5 Related Work . 160
C.6 Conclusion . 161

Appendix D—Concerns Identified during Study III 163

Appendix E—Study IV – Instantiating our Method under a Different Develop-
ment Contexts 165

E.1 Mining Concerns from NPMJS Software Projects 166
E.2 Study Definition . 168
E.3 Results . 169
E.4 Discussion . 170
E.5 Conclusion . 173

Appendix F—Concerns Identified during Study IV 175

Appendix G—Datasets’ Spreadsheets Format 179

G.1 Study II’s Spreadsheets Format . 179
G.2 Study III’s Spreadsheets’ Format . 180
G.3 Study IV’s Spreadsheets’ Format . 181

LIST OF FIGURES

1.1 Distribution of Concerns over 19 KLOC (BRUNTINK et al., 2004) . . . 2
1.2 Working Methodology . 6
1.3 Studies Interconnections . 7

2.1 Our Use of the Concepts . 10
2.2 Data Mining Pipeline (AGGARWAL, 2015) 14
2.3 Source Code to AST – Adapted from (Baojiang Cui et al., 2010) 17
2.4 Action Research Studies Canonical Template (SUSMAN; EVERED, 1978)(DAVI-

SON; MARTINSONS; KOCK, 2004) . 19
2.5 Imprecision of a Simple Percent Agreement 20

3.1 Abstraction . 24
3.2 Realization – Adapted from (CARVALHO; NOVAIS; MENDONÇA, 2020) 26
3.3 Method’s Instances . 28
3.4 Mining of Concerns (CARVALHO; NOVAIS; MENDONÇA, 2020) 30
3.5 Dedication To Concern (DtC) . 31

4.1 Actions of our Action Research Study . 51
4.2 Dataset Reduction . 55
4.3 Heroic’s Tree of POM Files . 67
4.4 Comments by Rater and Round . 74

5.1 Summary of this Study . 85
5.2 DtC Agglomerations . 86
5.3 Graph Databases’ Evolution of DtC . 88
5.4 Time Series Databases’ Evolution of DtC 95

6.1 Reuse of our tool, Architectural Knowledge Suite 107
6.2 Reuse of our Action Research Replication Package 110
6.3 Reuse of our Studies II and III Replication Package 111
6.4 Reuse of our Study IV Replication Package 112

7.1 Toward a Unified Concerns Identification Heuristic (UCIH) 119
7.2 From DtC to Technical Debt . 120

C.1 Agglomerations of Project “P” (CARVALHO; NOVAIS; MENDONÇA,
2020) . 140

C.2 Types of Similarities . 141

xix

xx LIST OF FIGURES

C.3 Similarities between Software Types and Concerns (Density by God Class)
(CARVALHO; NOVAIS; MENDONÇA, 2018) 142

C.4 Partial Similarities between Distributed and Mobile Software Projects (Den-
sity by God Class) (CARVALHO; NOVAIS; MENDONÇA, 2018) 143

C.5 Complexity-based Density of Agglomerations of Project “P” 144
C.6 Summary of this Study . 148
C.7 Uniformity of Full Similarities – Transverse Dimension: Types of Software

(CARVALHO; NOVAIS; MENDONÇA, 2020) 150
C.8 Uniformity of Partial Similarities: Distributed X Service-Oriented – Trans-

verse Dimension: Types of Software (CARVALHO; NOVAIS; MENDONÇA,
2020) . 151

C.9 Uniformity of Partial Similarities: Mobile X Service-Oriented – Transverse
Dimension: Types of Software (CARVALHO; NOVAIS; MENDONÇA, 2020)152

C.10 Uniformity of Partial Similarities: Distributed X Mobile – Transverse Di-
mension: Types of Software (CARVALHO; NOVAIS; MENDONÇA, 2020) 153

C.11 Uniformity of Full Similarities – Transverse Dimension: Domains of Soft-
ware (CARVALHO; NOVAIS; MENDONÇA, 2020) 154

E.1 Mining of Javascript Systems’ Concerns 167
E.2 Chat Applications’ Concerns Cloud . 169
E.3 RPG Applications’ Concerns Cloud . 170

LIST OF TABLES

2.1 Third-Party Components’ Repositories 13
2.2 Kappa’s Strength of Agreement(LANDIS; KOCH, 1977) 21

3.1 Dedication to Concern’s Metrics . 34
3.2 Non-relational Databases . 35
3.3 Measuring a Highly Dedicated Artifact 37
3.4 Measuring a Moderately Dedicated Artifact 40
3.5 Measuring a Slightly Dedicated Artifact 45

4.1 Non-relational Databases (CARVALHO; NOVAIS; MENDONÇA, 2020) . 52
4.2 Format of our Agreement Dataset . 54
4.3 Evolution of our Action Research Study 73
4.4 Tendencies regarding Raters’ Contributions 74
4.5 Impact of Raters’ Opinions and Reactions 78

5.1 Analyzed Projects – Adapted from (CARVALHO; NOVAIS; MENDONÇA,
2020) . 84

6.1 Our Publications . 114

C.1 Types and Domains of Software (CARVALHO; NOVAIS; MENDONÇA,
2020) . 139

C.2 Analyzed Projects (Transverse Dimension: Types of Software) (CAR-
VALHO; NOVAIS; MENDONÇA, 2018) 146

C.3 Analyzed Projects (Transverse Dimension: Domains of Software) (CAR-
VALHO; NOVAIS; MENDONÇA, 2020) 147

C.4 Concern-Based Correlations between Projects (CARVALHO; NOVAIS; MENDONÇA,
2020) . 156

C.5 Concern-Based Correlations between Projects (Continuation) (CARVALHO;
NOVAIS; MENDONÇA, 2020) . 157

E.1 Analyzed Projects . 168
E.2 SSBio’s Concerns . 172
E.3 Sylius’s Concerns . 173
E.4 PopHealth’s Concerns . 174

xxi

LISTA DE SIGLAS

SAD Software Architecture Document

AKS Architectural Knowledge Suite

CSV Comma-Separated Values

NOI Number of Imports

NOIC Number of Imported Concerns

NOM Number of Methods

NOR Number of References

ICD Imported Components’ Dedication

MD Methods’ Dedication

DtC Dedication to Concern

LOC Lines of Code (metric)

POM Project Object Model (metric)

VCS Version Control System

WMC Weighted Methods per Class (metric)

xxiii

Chapter

1
Einstein repeatedly argued that there must be simplified explanations of nature, because God is not capri-

cious or arbitrary. No such faith comforts the software engineer – Frederick P. Brooks Jr.

INTRODUCTION

Software development approaches often depend on modularity as a key concept to create
applications. For instance, Object-Orientated Programming (OOP) promotes ideas that
favor modularity (MEYER, 1988)(MUNOZ et al., 2009). Ideally, a modular unit should
encapsulate the behavior of a single concern. Concerns can be defined as anything that
stakeholders consider as a conceptual unit (ROBILLARD; MURPHY, 2002)(SANT’ANNA
et al., 2007). Logging of systems’ routines, Database Access, and Test Automation are
examples of concerns. Specializing software modules to implement specific responsibilities
is advantageous. It has the potential to guarantee that the maintenance and evolution
of each concern may require modifying a single module. This can result in improvements
in comparison to non-modular design (MUNOZ et al., 2009).

The tangling and scattering of concerns through source code are phenomena that af-
fect the modularity of systems. As a consequence, they can make the developers’ work
more difficult. Tangling is a state where lines of code related to different concerns are
interwoven (HANNEMANN; KICZALES, 2001). Scattering means situations where the
code related to a single concern spreads throughout multiple places of a system’s codebase
(JUHÁR; VOKOROKOS, 2015). Crosscutting concerns are concerns that tend to scatter
and tangle. As concerns crosscut, locating code fragments that implement a system’s fea-
tures becomes hard because developers usually need to locate them throughout multiple
code units (HE; YE, 2015). This can impact important tasks in software projects. For
instance, requirements analysis that involves refining and separating concerns to under-
stand their interrelationships (BELLOMO et al., 2014).

Keeping track of scattered and tangled concerns through development is valuable, but
time and effort consuming. Depending on the size of the codebase and how impacting
the scattering and tangling of concerns are, dealing with them can become counter-
productive. Take Figure 1.1, for instance. It shows the distribution of concerns (Error
Handling, Dynamic Execution Tracing, Function Parameter Checking and Memory Allo-
cation Handling, in the colored lines) over 19.000 lines of code of a software component

1

2 INTRODUCTION

(BRUNTINK et al., 2004). Spotting them would require developers to either remember
where they placed each concern or be able to (re-)read the source code to identify them.
In a worst case scenario, considering the example in the figure, developers would have to
skim through many of the component’s 19.000 lines of code to finish the task.

Figure 1.1 Distribution of Concerns over 19 KLOC (BRUNTINK et al., 2004)

Hence, it is important to define methods to identify, process and analyze applications’
concerns. Available methods include the use of:

1. Manual identification/mapping of concerns. It includes techniques that rely on
concerns-related information manually gathered from software projects and devel-
opment teams;

2. Automation based on static and dynamic analyses of software projects (DIT et al.,
2013)(BERNARDI; CIMITILE; LUCCA, 2016). Static analysis refers to the use
of graphs and models extracted from the source code, e.g., Abstract Syntax Tree.
Dynamic analysis refers to approaches that trace the execution of programs to find
concerns (more details in Section 2.4.2);

3. Information stored in software documents, i.e., Software Requirements Documents
(SRDs) and Software Architecture Documents (SADs). In the context of require-
ments engineering, the concerns of central interest are requirements. In other words,

INTRODUCTION 3

a requirement can be seen as a special kind of concern (ROSENHAINER, 2004).
SADs must be clear in explaining (DÍAZ-PACE et al., 2016): (i) how functional
requirements are fulfilled by responsibilities assigned to systems’ modules; and (ii)
how component structures satisfy desired quality attributes. So, we consider that
developers can use SRDs and SADs to identify and analyze the impact of concerns.

We believe that the aforementioned methods are relevant and can help to locate and
evaluate concerns, but they may fall short from being precise and adequate under the
following unfavorable circumstances (discussed in next paragraphs).

Many studies have attempted to identify concerns manually. However, even when
the identification is done with the help of developers, it can lead to imprecision and
discrepancies. For example, Oizumi et al. (2016) counted on developers to provide a
list of methods and classes that implemented some software projects’ concerns. Given
the large size of some of the systems, they feared that the developers would not be
able to completely map the concerns. Consequently, they used a tool to perform extra
identification. Later, they compared the dataset produced by the tool with another
one filled by developers. Compared to the concerns identified by developers, the tool
generated a longer list of data. The list was then used to increase the identification of
design problems.

Developers often face the challenge of creating and updating documents because (RO-
BILLARD et al., 2017): (i) it is costly to write and maintain them, and (ii) considering
that they are non-executable artifacts, their presence and correctness are not critical to
the construction of software systems. This leads to the absence of SRDs and SADs in
many software projects. Even when they are available, they may not be designed in a way
to provide useful information about crosscutting concerns. There is also the possibility
that they have not been updated to correctly reflect the current status of the source code.

We trust that using both static and dynamic analyses to identify concerns are good
approaches. Out of the two, we favor static analysis. This comes from perceiving that
source code and commits data are the two main objects of analysis when it comes to
studying software repositories (FARIAS et al., 2016). Additionally, as developers store
the majority of source code artifacts in Version Control Systems (VCS), static analysis of
concerns can also benefit from investigating the evolution of software projects. Consider-
ing that identifying concerns through dynamic analysis requires the execution of systems,
examining the evolution would require executing older versions of software projects, which
can become cumbersome.

Lately, an increasing number of third-party components have become available and
are being used as part of both open source and closed source developments. Third-
party components (or components) can be seen as external modules which development
communities make available for reuse. Developers usually implement modules to deal with
core business rules, but they often inject components in the source code to materialize
concerns related to secondary concerns (e.g., Logging, Database Access).

In 2014 alone, Sonatype1, a repository for java components (more about repositories
in Section 2.3), responded to over 17.2 billion requests for open source java-based compo-

1https://www.sonatype.com/

4 INTRODUCTION

nents from over 106.000 organizations (PALYART; MURPHY; MASRANI, 2017). Such
numbers encourage us to affirm that component-based development has became a solid
standard in the software industry. This comes from the fact that injecting components
in the source code of systems is a way to reduce development and maintenance effort
(AGüERO; BALLEJOS, 2017)(PALYART; MURPHY; MASRANI, 2017). As a conse-
quence, information about the nature and purpose of components have became plentiful.
From an academic point of view, publications about component-oriented development
increasingly attracted the attention of researchers through the 1990s and 2000s, and a
lower but stable interest in the 2010s (VALE et al., 2016).

Considering that both practical and academic perspectives favor the reuse (and the
study) of components, this work proposes a new way to track the occurrence of concerns.
It relies on the data and metadata that developers add to software projects when they
embed third-party components in software systems.

We want to support the use of this data and metadata to provide a way to extract
and analyze information about concerns through the historical data of software projects.
We value the identification of concerns through software projects’ evolution as a way to
support future studies. For instance, researchers may associate crosscutting concerns with
the wealth of information residing in versioning repositories about (GÎRBA; DUCASSE,
2006): reverse engineering, cost prediction, software aging, code styling and architectural
decay.

1.1 OBJECTIVES AND WORKING METHODOLOGY

Figure 1.2 outlines our working methodology. The yellow boxes identify our objectives
and the blue boxes describe how we have tackled them. Our results and findings are
shown in the green boxes. Our objectives are:

1. Develop a method to identify and analyze concerns: we conceived our method
to comprise a set of activities regarding the manipulation of data and metadata
about third-party components (CARVALHO; NOVAIS; MENDONÇA, 2018)(CAR-
VALHO; NOVAIS; MENDONÇA, 2020);

2. Automate our method: we instantiated our method as a tool, Architectural Knowl-
edge Suite (AKS), to automate concerns identification activities;

3. Prepare for evaluation: after creating AKS, we used it to mine the evolution of
concerns from the source code of software projects. As a result, AKS generated a
comprehensive dataset which we used to conduct studies;

4. Evaluate our method: we counted on the assistance of software development spe-
cialists to evaluate our method using the dataset generated by AKS. We conducted
an action research study to determine whether our method can identify and process
concerns adequately;

5. Enhanced our method: we refined our method and tool to better reflect development
specialists’ opinions regarding the identification of concerns;

1.2 STUDIES 5

6. Evaluate the impact of concerns: we used our method and tool in studies to inves-
tigate the occurrence of crosscutting concerns in real-world software projects. We
briefly describe those studies in the next section.

1.2 STUDIES

We ran a set of four studies during the development of this thesis. The rational behind the
studies are twofold: (i) to answer research questions about our method implementation
and evolution, this is done through Studies I and II; and, (ii) to showcase the application
of our method in the identification and analysis of concerns, this is done through Studies
III and IV. Studies I and II are described in the main body of this thesis, as they deal
with the developed of our method and its metrics. Studies III and IV are described in
the appendix of this thesis, as they deal with the use of our method and its metrics to
mine real-world software repositories. The studies are as follows:

1. Study I – An Action Research Study to Evaluate our Method and AKS (Chapter 4):
we conducted a study to evaluate our method. We based the study on a template of
activities proposed by Santos and Travassos (2011) and we counted on the assistance
of software development specialists to evaluate and enhance our method. In it, the
specialists evaluated their perception on the relationships automatically identified
by our method, among source code artifacts and crosscutting concerns;

2. Study II – The Evolution of Dedication to Concern (Chapter 5): our work introduces
and evaluates a new software metric, called Dedication to Concern (DtC). DtC can
be seen as the degree to which a module uses/implements a single concern. We use it
to contrast the different situations in which developers embed concerns in software
projects. Artifacts containing a single or few concerns may reveal development
strategies that are different from others that mix different concerns. We explain
and exemplify how we measure DtC in Section 3.2;

3. Study III – Types and Domains of Software as Transverse Dimensions (Appendix
C): this study dates back to the initial conceptualization of our method, associating
concerns with components of several types of software systems. It is a large scale
software repository mining study that examines how to group software projects to
extract information about concerns (CARVALHO; NOVAIS; MENDONÇA, 2018)(CAR-
VALHO; NOVAIS; MENDONÇA, 2020);

4. Study IV – Instantiating our Method to Process Javascript Applications (Appendix
E): All our studies were conducted over software systems developed using the Java
language. This a small scale repository mining study in which we demonstrate the
use of our method under a different context of software development. Our intention
is to show the versatility of our approach by identifying and analyzing concerns
from Javascript applications.

6 INTRODUCTION

Figure 1.2 Working Methodology

1.2 STUDIES 7

It is important to point out that Study III precedes Study I and II. This means that
we had not yet refined our method, with the help of software development specialists,
when we conducted Study III. This implies that this thesis numbers the studies by their
objectives, and not by their chronological order.

Figure 1.3 shows how the studies interconnect to each other. By defining our method’
activities and automating them as much as possible, we have enabled the mining of
concerns from third-party components’ metadata. During Study I, we refined our method
with the help of software development specialists. Study II has the purpose of examining
how our metric, DtC, evolves through time. In Study III, we analyzed the association
between concerns and a design problem (code complexity). Our decision to examine a
specific domain of java-based systems (non-relational databases) in studies I and II comes
from Study III. Study IV shows that our method is generic enough to embrace a different
context of development: javascript projects.

Figure 1.3 Studies Interconnections

One important remark about our studies is that we rely heavily on visualizations to
present our findings. Visualizations are useful to explored and gain insights over large
amounts of information (MAGNAVITA; NOVAIS; MENDONÇA, 2015)(FRANCESE;
RISI; SCANNIELLO, 2015)(MENDES et al., 2015)(NOVAIS; SANTOS; MENDONÇA,
2017). By extracting evolutionary data, AKS produces an extensive quantity of data
during its crosscutting concerns analyses. We use visualization to explore the information
that AKS mines from the software projects analyzed throughout this work. We apply
visualizations to present our results in a concise and intuitive way.

8 INTRODUCTION

1.3 RESULTS AND CONTRIBUTIONS

The main contribution of this thesis is the development of a scalable method to iden-
tify and analyze crosscutting concerns in software development projects. Our studies
have shown that our method can support the identification and analysis of concerns by
taking advantage of third-party components’ metadata. Our classification of concerns
and measurement of DtC were considered acceptable, as perceived by the specialists that
participated in our action research study. The following are other contributions of this
thesis:

1. We developed a tool, AKS, to automate our method. The tool is readily available
for reuse. AKS can help researchers to perform further studies. We also believe
that it can already be used by practitioners to run useful analysis of crosscutting
concerns, during software development activities;

2. We produced a comprehensive dataset which comprises: (i) a detailed classification
of concerns which we extracted from software projects; and (ii) a categorization of
concerns regarding their relationship with systems’ source code artifacts (Dedication
to Concern). Researchers may reuse our dataset to replicate our studies and/or
conduct investigations other than the ones we address in this thesis.

We emphasize other potential contributions of our method and this thesis’s stud-
ies findings. We believe that our research can support developers to carry important
software-related activities, such as: (i) understanding the causes and effects of crosscut-
ting concerns as their presence can hinder the modularization of systems (KICZALES,
1996)(HE; YE, 2015); (ii) refactoring of systems regarding the occurrence of concerns,
which has been deemed as an important task in software maintenance (SILVA et al.,
2009)(NUÑEZ-VARELA et al., 2017a); and (iii) addressing software architecture issues
that are associated with the definition of concerns, e.g., mapping the currently imple-
mented concerns to the reference architecture to verify conformance while avoiding ar-
chitecture erosion (ADAMS; JIANG; HASSAN, 2010).

1.4 ORGANIZATION

This remainder of this text is organized as follows. Chapter 2 discusses the theoretical
and technical foundations of our research. Chapter 3 describes our method. Chapters 4
and 5 present the results of the studies that we conducted to evaluate the applicability
of our method and to answer some of its research questions. Chapter 6 explains our
strategies to disseminate our method, tool, datasets, and the results of our studies. Our
final remarks can be found in Chapter 7. Appendixes C and E describe, respectively,
Studies III and IV, showing the identification and analysis of crosscutting concerns in the
large, in real world projects.

Chapter

2
The computing scientist’s main challenge is not to get confused by the complexities of his own making –

Edsger Dijkstra

THEORETICAL AND TECHNICAL BACKGROUND

This chapter introduces the main concepts associated with our research. Figure 2.1
depicts the use of those concepts in our work and provides a visualization of what we
discuss in the next sections.

Our work starts by extracting concerns from third-party components’ metadata
and associating them with source code artifacts – those topics are discussed in Section
2.1 and Section 2.2. To achieve this, our work apply techniques from a specific branch
of data mining, called software repository mining – this topic is discussed in Section
2.4.1. In this theme, we combine static analysis of source code and concerns mining –
those topics are discussed in Section 2.5 and in Section 2.4.2, respectively. This results in
a mapping between Abstract Syntax Trees and concerns – this topic is explained in
Section 2.5 as well. Usually, we combine this mapping with software metrics extracted
from the static analysis – this is discussed in Section 2.6. As we are introducing a new way
to recover information about concerns, we also needed to evaluate and refine our method,
tool, and dataset. For this, we conducted an Action Research Study – this topic
is explained in Section 2.7. Through the phases of our study, we applied the Cohen’s
Kappa Agreement Coefficient to assure the alignment among the specialists’ opinions
– this topic is explained in Section 2.8.

2.1 CONCERNS

Concerns can be defined as anything that stakeholders consider as a conceptual unit in a
software system (ROBILLARD; MURPHY, 2002)(SANT’ANNA et al., 2007). In other
words, concerns refer to each constituent part of a software system that comprises a set of
interrelated functionalities. Adding pieces of code to automate logging, database access,
security, encryption, user interface and data streaming are examples of how developers
implement concerns.

The creation of software systems can be seen as a constant addition and evolution of
concerns that developers must implement in response to stakeholders’ needs (JUHÁR;

9

10 THEORETICAL AND TECHNICAL BACKGROUND

Figure 2.1 Our Use of the Concepts

VOKOROKOS, 2015). During maintenance and re-engineering cycles, developers may
need to locate concerns in the source code to perform important tasks. For instance, they
may use this information to propagate bug fixes to the whole implementation of a concern
(EADDY et al., 2008). If done manually, the location of concerns can be tedious and

2.2 THIRD-PARTY COMPONENTS’ METADATA 11

subjective. Preferably, developers should apply mining techniques to find and analyze
concerns with precision and efficiency (ADAMS; JIANG; HASSAN, 2010).

One important applicability of concerns is related to their use in splitting the com-
plexity of a system into smaller and more manageable modules. If well done, separation
of concerns can impact the overall quality of the system in a positive way by reducing the
complexity, increasing the intelligibility, and facilitating reuse, evolution and customiza-
tion (HE; YE, 2015). Separation of concerns can be seen as something that developers
should pursuit to guarantee modularity. However, this is often neglected. For instance,
many object-oriented systems suffer from the scattering and tangling of concerns (HAN-
NEMANN; KICZALES, 2001)(NUÑEZ-VARELA et al., 2017a). Some concerns cannot
be neatly separated in objects and, hence, they spread (or scatter) across several modules
(JUHÁR; VOKOROKOS, 2015). Tangling is related to situations in which lines related
to different concerns are interwoven through source code (HANNEMANN; KICZALES,
2001). Crosscutting concerns are concerns that tend to scatter and tangle. “Logging”,
for example, affects every logged part of a system. Thus, “Logging” can crosscut through
many software modules (BERNARDI; CIMITILE; LUCCA, 2016). Maintaining a cross-
cutting concern means modifying each fragment of the scattered/tangled code realizing
that concern. Eventually, this may increase the coding time, error proneness, and the
maintenance cost (MUNOZ et al., 2009). Developers must be aware of and manage
crosscutting concerns with attention.

2.2 THIRD-PARTY COMPONENTS’ METADATA

According to Merriam-Webster dictionary, “metadata” is data that provides information
about other data1. Developers often depend on metadata to store important informa-
tion about varied aspects of their software projects (e.g., classpaths, integration with
other projects) or to automate the execution of important tasks (e.g., tests, deployment).
Among such metadata, we have focused on the ones that developers use to inform which
components must be embedded in their systems. Common advantages achieved by reusing
components are related to the addition of previously implemented and previously tested
functionalities. Consequently, they can reduce effort and improve quality during software
development (SHATNAWI et al., 2017).

We are interested in Project Object Model (POM) and Gradle files that developers use
to inject components in java-based software projects (AGüERO; BALLEJOS, 2017)(PAL-
YART; MURPHY; MASRANI, 2017). This comes the fact that such files have became
plentiful because many java developers have adopted them to encapsulate information
about components used in their projects. Listing 2.1 contains some lines extracted from
a POM file2:

Listing 2.1 Example of a POM file

1 <pro j e c t>
2 . . .
3 <prope r t i e s>

1https://www.merriam-webster.com/dictionary/metadata
2Adapted from https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

12 THEORETICAL AND TECHNICAL BACKGROUND

4 <mavenVersion>2.1</mavenVersion>
5 </p rope r t i e s>
6 <dependencies>
7 <dependency>
8 <groupId>org . dbunit</groupId>
9 <a r t i f a c t I d>dbunit</a r t i f a c t I d>

10 <vers ion >2.6.0</ vers ion>
11 </dependency>
12 <dependency>
13 <groupId>org . springframework</groupId>
14 <a r t i f a c t I d>spr ing−t e s t </a r t i f a c t I d>

15 <vers ion >5 . 1 . 3 .RELEASE</vers ion>
16 </dependency>
17 </dependencies>
18 . . .
19 </pro j e c t>

Components stored in POM and Gradle files are uniquely identified by their (HERNáNDEZ;
COSTA, 2015): (i) group id : company, team, organization; (ii) artifact id : unique id,
one for each component; and (iii) version: version of the component. For instance, in
the POM file shown in Listing 2.1, a component used for test automation, dbunit, is
identified by its group id, “org.dbunit” (line 8), artifact id, “dbunit” (line 9), and version,
“2.6.0” (line 10). The file also encapsulates information about a second test component,
spring-test, which has a different group id, “org.springframework” (line 13), artifact id,
“spring-test” (line 14), and version, “5.1.3.RELEASE” (line 15). Modern development
environments (e.g., Eclipse Platform3) are capable of parsing the POM to download and
insert both components as dependencies in software projects.

Alternatively, developers may store metadata about components in Gradle files. List-
ing 2.2 exemplifies how developers can add the same aforementioned components (dbunit
and spring-test) to this type of file (lines 8 and 9). It is important to notice that both
POM and Gradle require the unambiguous identification of components by inserting their
respective ids.

Listing 2.2 Example of a Gradle file

1 p lug in s {
2 id ’ java−l i b r a r y ’
3 }
4 r e p o s i t o r i e s {
5 j c e n t e r ()
6 }
7 dependenc ies {
8 test Implementat ion ’ org . dbunit : dbunit : 2 . 6 . 0 ’
9 tes t Implementat ion ’ org . spr ingframework : spr ing−t e s t : 5 . 1 . 3 .

RELEASE’
10 }

We emphasize that files containing third-party components’ metadata are not re-
stricted to java-based systems. As the injection of components has become a widespread

3https://www.eclipse.org/

2.3 THIRD-PARTY COMPONENTS’ REPOSITORIES 13

practice, it is possible to find them in many other types of software projects. In Ap-
pendix E we cover examples of similar metadata files that we found in systems written
in javascript, PHP, python and ruby. In Chapter 3, we explain how the unambiguity of
components’ ids enabled us to precisely associate concerns with components.

2.3 THIRD-PARTY COMPONENTS’ REPOSITORIES

We can fit the origins of third-party components into four categories (BADAMPUDI;
WOHLIN; PETERSEN, 2016): (i) in-house developed components: components are
developed within the companies, (ii) Components Off-The-Shelf (COTS): commercial
components that are bought from external vendors, (iii) Open Source Software (OSS):
components obtained from OSS communities, and (iv) outsourced components: the de-
velopment of components is outsourced (or subcontracted). Regarding OSS, we focus on
the MAVEN community4 in this thesis. MAVEN is very popular in supporting developers
who want to reuse java-based components (PALYART; MURPHY; MASRANI, 2017).

The MAVEN community created an on-line repository to provide information about
components: the MVNRepository5. In other words, MVNRepository is a web portal
responsible for indexing useful information about java-based OSS-oriented components.
It has attracted the attention of developers because of the popularity of the languages
supported by the Java Virtual Machine (JVM), which includes not only java, but scala,
kotlin and clojure(VELÁZQUEZ-RODRÍGUEZ; ROOVER, 2020).

The combination of programming languages and the reuse of components has spawned
several other communities and repositories. This means: creating and maintaining on-line
information about components has became a standard because the reuse of components
is a common procedure regardless the programming language. In Table 2.1 we highlight
other repositories and their respective languages.

Table 2.1 Third-Party Components’ Repositories

Programming Language Repository Details and Examples
of Use in...

Javascript https://www.npmjs.com/ Appendix E

Python https://pypi.org/ Section E.4

PHP https://packagist.org/ Section E.4

Ruby https://rubygems.org/ Section E.4

R https://www.rdocumentation.org -

Dart https://pub.dev/ -

C++ https://conan.io/center/ -

Lua https://luarocks.org/ -

Rust https://crates.io/ -

4https://maven.apache.org/
5https://mvnrepository.com/

14 THEORETICAL AND TECHNICAL BACKGROUND

By consulting MVNRepository developers can get access to a precise set of infor-
mation about third-party components: their categories, descriptions, tags/keywords, list
of versions/releases, known bugs, limitations, developers, etc. In Chapter 3, we describe
how we associate the metadata about components (as described in Section 2.2) with some
extra information collected from a repository (MVNRepository) to create our method.

2.4 DATA MINING

According to Hand and Adams (2014), Data mining can be defined as the “science of
extracting useful information from large datasets or databases”. It comprises studies and
methods related to collecting, cleaning, processing, analyzing and gaining insights from
data (AGGARWAL, 2015). This is usually achieved via a pipeline of processing, where
raw data is collected, cleaned and transformed into a standardized format. The pipeline is
conceptually similar to that of an actual mining process from a mineral ore to the refined
end product. The term “mining” derives its roots from this analogy (AGGARWAL,
2015). Figure 2.2 illustrates how the data mining pipeline works.

Figure 2.2 Data Mining Pipeline (AGGARWAL, 2015)

Data collection is the process of finding reliable datasources and capturing data
from them. When data are collected, they may not be in a form that is suitable for anal-
ysis, so Data Preprocessing comprises activities (Feature Extraction and Cleaning
and Integration) that reshape the gathered information into insightful datasets. The
last activity, Analytical Processing, concerns itself with designing effective analytical
methods from the processed data, i.e., the data mining specialist must decide about the
best strategies to concisely and coherently arrange, measure and present the data.

One noticeable aspect of the pipeline is that it is a cyclical mechanism. While data
mining specialists collect and process the data, they can refine their work with the help
of feedback from researchers and practitioners. This is crucial for our research. For
instance, as we mined data to support our action research study (described in Section 4),
we benefited from software development specialists’ comments and recommendations to
enhance our concerns identification method and dataset through rounds of evaluation.

2.4 DATA MINING 15

2.4.1 Software Repository Mining

In the context of our work, we deal with a specific type of data mining: the mining of
software repositories (MSR). MSR focuses on uncovering interesting and useful informa-
tion about software projects while extracting and analyzing available data from software
repositories (HASSAN, 2008). Repositories, such as Github6 and Gitlab7, contain large
amount of software historical data that can include valuable information about infor-
mation systems’ source code, defects and issues (FARIAS et al., 2016). As third-party
components are vital part of software projects, metadata about them is also frequently
added to the historical data of software repositories.

Mainly, this thesis focuses on the mining of one specific information from software
projects’ repositories: concerns. This is achieved by associating third-party components’
metadata with other useful information extracted from system’s source code artifacts,
for example, software metrics like Number of Lines of Code (more details in Section 2.6)
that are added, changed or deleted during the evolution of software projects (CANFORA;
CERULO, 2005).

2.4.2 Concerns Mining

Software mining techniques have explored both static and dynamic analysis of software
projects to extract useful information on concerns (DIT et al., 2013)(BERNARDI; CIMI-
TILE; LUCCA, 2016). Static analysis comprises the use of parsing and lexical analysis to
extract information, graphs, and models, such as Abstract Syntax Trees, directly from the
source code. Dynamic analysis uses approaches that trace the execution of the software
programs to gather information its workings. The following are examples of static and dy-
namic analysis applications that can support concern mining (DIT et al., 2013)(MARÇAL
et al., 2016):

1. Clone detection techniques: clones are generally defined as a code fragment identical
or similar to another code fragment. This technique uses the identification of code
cloning to spot concerns;

2. Fan-in analysis: the fan-in value is computed as the number of calls to a method.
Methods with high fan-in value have considerable chances of being classified as
concerns;

3. Graph-based techniques: graphs allow the representation of elements of code as
a set of nodes and edges. The edges link nodes to each other. The links can be
considered as relationships between nodes. An approach can extract information
about concerns from the relationships;

4. Clustering analysis: clustering analysis groups data with similar characteristics.
The resulting clusters can be analyzed to determine which ones are part of concerns;

6https://github.com/
7https://about.gitlab.com/

16 THEORETICAL AND TECHNICAL BACKGROUND

5. Textual Feature Location: approaches based on the use of textual search and Nat-
ural Language Processing (NLP) link textual descriptions of features given by de-
velopers to parts of the source code where the features are implemented;

6. Techniques based on development history: software version control systems provide
a rich collection of historical data related to changes in software artifacts.

It is important to point out that the mentioned methods are not mutually exclusive.
Actually, the combination of static and dynamic approaches is a powerful strategy in
many situations (DIT et al., 2013). In this thesis, however, we focus on static analysis of
code. Section 2.5, below, discusses it in greater detail. Chapter 3 introduces our concerns
identification and analysis method, which applies static analysis of source code artifacts
retrieved from the development history of software projects.

2.5 STATIC ANALYSIS

Static analysis can be defined as any process of assessing source code without executing
it (DELEV; GJORGJEVIKJ, 2017). The information reported from static analysis can
be used to improve code quality, security, robustness, and to mitigate problems. It
is often applied in finding flaws in programs logic that can be potential causes of bugs.
Developers can also use it to learn about hidden features of a programming language that
may lead to unusual behavior of systems (EMANUELSSON; NILSSON, 2008)(DELEV;
GJORGJEVIKJ, 2017).

One way to automate static analysis is to process programs’ source code as Abstract
Syntax Trees (AST). Rather than resorting to text-oriented processing, AST enable stor-
ing information about source code elements in a high level structure (Baojiang Cui et
al., 2010). Figure 2.3 illustrates the representation of a piece of code (on left side of the
figure) as an AST (on the right side). Software tools can statically parse a program’s
source code to produce an AST. When a specific sequence of tokens match a particular
rule (e.g., function definition, parameters and variables declarations), they generate a
syntax tree node (the circles in the figure) and record the corresponding node type, as
well as its position in the source code.

We rely on Repository Miner (RM) (MENDES et al., 2017) to extract AST from
software projects. RM has been mentioned and used in studies that seek to perform
static analysis and to identify and investigate phenomena related to source code compre-
hension, design problems and technical debt (MENDES et al., 2015)(IBIAPINA et al.,
2018)(GOMES et al., 2019)(DIAS et al., 2019)(KHOMYAKOV et al., 2019)(MENDES
et al., 2019)(FARIAS et al., 2020).

2.6 SOURCE CODE METRICS

Nunez et. al. (2017b) consider that source code metrics (or software metrics) are central
to aid software measurement processes. Software measurement is a task often carried
out when it is necessary to assess the quality of systems. In general, metrics support
a wide range of activities concerned with producing numbers and conceptualizations

2.6 SOURCE CODE METRICS 17

Figure 2.3 Source Code to AST – Adapted from (Baojiang Cui et al., 2010)

that characterise properties of software code. The properties include quantitative and
qualitative aspects of software development and quality control (FENTON; NEIL, 2000).

According to Fentom and Neil (2000), it is possible to summarize the motivation
behind most software metrics into two main categories: (i) the desire to assess or predict
effort/cost of development processes, and (ii) the desire to assess or predict quality of
software. The key in both cases has been the assumption that “software size” should
drive predictive models. The first metric used to do this was the Lines of Code (LOC)
metric. We exemplify LOC in Listing 2.3 by measuring it from the same source code
excerpt exhibited in Figure 2.3. Supposing the two functions, fun1 and fun2, reside in
the same artifact “A”, the total LOC of “A” is 9.

Listing 2.3 Measuring Lines of Code (LOC)

1 void fun1 ()
2 {
3 int a = 2 ;
4 fun2 (a) ;
5 }
6 int fun2 ()
7 {
8 p r i n t f (”%d” , x) ;
9 }

Other metrics can be obtained from systems’ AST. For instance, the Number of Local
Variables (LVAR) (NUÑEZ-VARELA et al., 2017b) is a metric that can be calculated
with the help of the AST. Regarding the AST in Figure 2.3, the LVAR of fun1 is 1
because its syntax tree has only one node that points to a variable declaration (“Variable
define (a)”). The LVAR of fun2 is 0 because its tree does not contain a reference to the
declaration of a variable.

18 THEORETICAL AND TECHNICAL BACKGROUND

2.7 ACTION RESEARCH STUDIES

Action research studies stem from the principle of cyclical field intervention, which allows
the testing and refinement of theories in practice (BASKERVILLE, 1999)(PUHAKAINEN;
SIPONEN, 2010). It is a clinical method, aimed at creating change and solving practical
problems through research (BASKERVILLE; MYERS, 2004). Action Research has its
origins associated with the early interventionist practices in the course of social–technical
experiments. The initial stimulus for the rise and design of action research objectives
came from a generalized difficulty in translating the results of social research into prac-
tical actions (SUSMAN; EVERED, 1978)(SANTOS; TRAVASSOS, 2011).

Regarding the use of action research in software engineering, Santos and Travassos
(2011) ran a survey that covered 5 years of publications, from 2005 to 2010, and noticed
a smooth increase of studies that reported the application of action research methods.
They see it as an alternative to run investigations that depend on direct access to the
know-how of practitioners, which is not often achieved by surveys and controlled studies.
The survey also revealed the two main domains of use of action research in software
engineering: (i) a more socially-oriented application (e.g., Management and Software
Engineering Processes) and (ii) a technical applicability (e.g., Software Construction and
Programming Environments).

Action research methods focus on: (i) improvement of the practice, (ii) on learning
and (iii) emphasis on what practitioners do. Compared to other research methodologies,
action research places more attention on intervention and learning (STARON, 2020).
This becomes evident in the template of action research activities proposed by Susman
and Evered (1978) (in Figure 2.4). The template has been considered canonical8 and
reflects the dual intention of action research: learning and adapting through observation
and intervention.

One first noticeable aspect is the cyclical execution of its activities/stages, i.e., from
its starting point (the Diagnostic stage) the study can be restarted as many times as it
is necessary to fulfill its goals. The following are descriptions of the template’s activities
(SANTOS; TRAVASSOS, 2011)(STARON, 2020):

1. Diagnostic: consists of exploring the research field, stakeholders, and their expec-
tations. In this stage, researchers define the research’s theme which is represented
by the designation of the practical problem and knowledge area to be addressed;

2. Planning: stage where actions are defined to the faced circumstances. The defini-
tions are guided by hypotheses portraying the researchers’ formulated assumptions
about possible solutions and results;

3. Intervention: corresponds to the planned actions implementation. Examining, dis-
cussing, and making decisions about the investigation process are central elements
of the intervention phase;

8Merriam-Webster dictionary defines “canonical” as: “conforming to a general rule or acceptable
procedure”

2.7 ACTION RESEARCH STUDIES 19

Figure 2.4 Action Research Studies Canonical Template (SUSMAN; EVERED, 1978)(DAVI-
SON; MARTINSONS; KOCK, 2004)

4. Evaluation: stage where the intervention effects are analyzed considering the theo-
retical background used as basis to the actions definition;

5. Reflection: involves the dissemination of acquired knowledge among participants
and other organization departments. The learning experience is facilitated by the
previous collaboration among participants and researchers in the technical topics.

Baskerville (1999) exemplifies an action research that had the intention to complete a
system’s analysis. Early development efforts failed to finish the task because of a compli-
cated database design and requirements. These failures complicated further analysis as
the users had grown hostile and suspicious of analysts and designers. An action research
team was formed to solve the problem. From the diagnostic perspective, they found out
that the project was defeated mainly by (i) a set of large data classes and volume of data,
and (ii) the high volatility in the organizational environment. Then, in the planning
phase, they decided to adopt prototyping as a method to conduct the system’s analysis.
Intervention took place in the form of rapid, brief interviews with the users, and fast
prototyping cycles of the database design. With each intervention users assessed the
prototypes and researchers took advantage of their feedback, i.e. from user’s evaluation
of the prototypes researchers enhanced the system’s analysis based on their opinions.
After the last evaluation, researchers ended up with the following reflection: the use of
prototypes proved significant to solving the immediate problem setting and the analysis
was completed.

In Chapter 4, we report an action research study that we conducted with the purpose
of evaluating and refining our method.

20 THEORETICAL AND TECHNICAL BACKGROUND

2.8 COHEN’S KAPPA AGREEMENT COEFFICIENT

The Cohen’s Kappa Coefficient is useful when it is necessary to use descriptive statistics
to summarize the agreement between two assigners (or judges, or raters) across a number
of objects (e.g., things, statements, calculations) (COHEN, 1960)(BRENNAN; PREDI-
GER, 1981). Kappa can calculate the proportion of the agreement while correcting it for
chance (COHEN, 1960). We further illustrate a fictitious example to show how kappa
works and to explain its concepts.

Suppose it is necessary to determine, out of a list of 100 people, which ones are
electable for financing a new car. Two finance specialists (specialist “SPEC-A” and
“SPEC-B”) are hired to perform the selection by tagging the list after examining a
dataset about the candidates. At the end of the selection, each person must be tagged
as either SUITABLE or NOT-SUITABLE. In addition, to increase the confidence on the
results, the specialists are not allowed to pair-tag the dataset. In other words, “SPEC-A”
and “SPEC-B” must tag the same dataset independently, while avoiding consulting each
other.

After tagging the dataset, the specialists must return it to finish the selection process.
Considering that “SPEC-A” approved (i.e., tagged as SUITABLE) 70 people and “SPEC-
B” also found 70 SUITABLE people, a simple percent agreement calculation would state
that the specialists tagged 70% of the candidates as SUITABLE. However, this type of
calculation can lead to imprecise results, which can cause the approval of financing plans
for non-suitable people. Figure 2.5 depicts this situation.

Assuming that “SPEC-A” approved the first 70 candidates of the dataset and “SPEC-
B” the last 70 ones, the actual agreement would comprise the intersection of these two
groups, with only 40 candidates (or 40% of them) being considered SUITABLE by “SPEC-
A” and “SPEC-B” simultaneously.

Figure 2.5 Imprecision of a Simple Percent Agreement

Kappa corrects the imprecision of agreements (as the one exhibited in Figure 2.5) by
considering all possible combinations of tags provided by the two raters: (i) all candi-
dates who “SPEC-A” tagged as SUITABLE and “SPEC-B” as NOT-SUITABLE; (ii) all
candidates who “SPEC-A” tagged as NOT-SUITABLE and “SPEC-B” as SUITABLE;
(iii) all candidates who “SPEC-A” and “SPEC-B” tagged as SUITABLE; and (iv) all

2.9 CONCLUSION 21

candidates who “SPEC-A” and “SPEC-B” tagged as NOT-SUITABLE.
The R-language9 script shown in Listing 2.4 can be used to replicate this illustrative

example. The script is capable of loading the set of agreements and disagreements shown
in Listing 2.5 (lines from 1 to 4) before processing it through kappa (line 7).

Listing 2.4 A R-language Script to Calculate Kappa

1 r a t e r 1 data <− r e p l i c a t e (70 , 1)
2 r a t e r 1 data <− append(r a t e r 1 data , r e p l i c a t e (30 , 0))
3 r a t e r 2 data <− r e p l i c a t e (30 , 0)
4 r a t e r 2 data <− append(r a t e r 2 data , r e p l i c a t e (70 , 1))
5
6 agreement <− cbind (r a t e r 1 data , r a t e r 2 data)
7 kappa2 (agreement)

Executing the script outputs the lines below (in Listing 2.5). Acquiring a negative
value as result (line 3) means that “SPEC-A” and “SPEC-B” disagreed about the selec-
tion of candidates.

Listing 2.5 Kappa’s Agreement Coefficient

1 Sub jec t s = 100
2 Raters = 2
3 Kappa = −0.429

A perfect result would be any value near to 1.0 (in a 0.0 to 1.0 range), as described
in Table 2.2.

Table 2.2 Kappa’s Strength of Agreement(LANDIS; KOCH, 1977)

Kappa Strength of Agreement

<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

Our work uses the Cohen’s Kappa Coefficient to check the agreement among the
experts and our method on the identification of concern, and on software artifacts’ dedi-
cation to concerns, in our action research study.

2.9 CONCLUSION

Our work focus on the identification and analysis of concerns on third-party compo-
nents’ metadata. We fulfill our goal by mining software repositories and extracting
software metrics from abstract syntax trees. We evaluate our method through an

9https://www.r-project.org/

22 THEORETICAL AND TECHNICAL BACKGROUND

action research study that uses the kappa coefficient to quantify the agreement
among the method and software professionals.

This chapter introduced those concepts, as the the main theoretical and technical
aspects that we refer to throughout the remainder of this dissertation. We must emphasize
that the list of concepts presented here is not exhaustive and we mention some others in
the next sections.

Next Chapter introduces and describes our method of extracting concerns from third
party components.

Chapter

3
Computer Science is a science of abstraction: creating the right model for a problem and devising the

appropriate mechanizable techniques to solve it – Alfred Aho

A METHOD TO EXTRACT CONCERNS FROM

THIRD-PARTY COMPONENTS

Our work seeks to mine a large quantity of data to assertively base our findings, conclu-
sions, and discussions regarding software concerns. For this end, we developed a method
to semi-automatically identify and analyze concerns in the large, using third party com-
ponents injection in modern software systems (CARVALHO; NOVAIS; MENDONÇA,
2018)(CARVALHO; NOVAIS; MENDONÇA, 2020).

Our method takes advantage of concerns-related metadata found in Open Source Sys-
tems (OSS). We favor the analysis of OSS because they have been consistently used to
(FARIAS et al., 2016): (i) examine important characteristics related to development pro-
cesses, (ii) extract metrics, and (iii) assess the quality of software artifacts. Additionally,
many open source systems have large repositories of historical data, comprising several
changes, releases, and information about third-party components.

Next sections explain our method and exemplify its use.

3.1 OUR METHOD

Our method comprises of a set of activities that we designed to take advantage of
third-party components’ metadata. We have split the activities into abstract and semi-
automated ones. We present them through the next sections.

3.1.1 Abstraction

Figure 3.1 shows our method’s abstract activities. They are not tied to any particular
technology and can be instantiated to meet varied software development contexts.

The intention behind the first activity – identify concerns – is to encapsulate all steps
needed to find information about the implementation of concerns. This includes locating
reliable datasources and defining strategies to mine them. In the context of our research,

23

24 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

Figure 3.1 Abstraction

we see third-party components’ metadata as a valuable datasource because developers
are usually cautious and attentive when they inject components in their systems.

The second activity – associate concerns with source code artifacts – has the intention
to determine which and how source code artifacts are linked to concerns. This is a
necessary step to make further investigations possible (e.g., the ones described in Chapter
5 and Appendix C).

The third activity of our method – Export dataset for specialized analysis – has the
intention to support varied analysis scenarios. It must specialize our dataset to address
specific traits regarding the association between concerns and source code artifacts. By
executing this activity, we expect that researchers and practitioners end up with subsets
of data to examine features and problems that they are interested in.

The fourth activity – perform specialized analysis – represents the processing of the
subset of data produced by the third activity. This activity complements the previous
one by including specific data manipulation routines to support different investigations.

The first and second activities include the steps that are necessary to mine concerns
and associate them with source code artifacts. We complement these activities by adding
two other ones (the third and the fourth activities) because we want our method to
enable varied applications of the identification and analysis of concerns. For instance,
(i) evaluating how deeply crosscutting concerns impact the modularization of systems
(KICZALES, 1996)(HE; YE, 2015), and (ii) analyzing software architecture issues that
are associated with concerns, e.g., architecture erosion (ADAMS; JIANG; HASSAN,
2010). As we do not address any of these specific problems in this thesis, we are, at least,
indicating that our method can support investigating them via exporting and analysis of
concerns-related datasets.

3.1 OUR METHOD 25

3.1.2 Realization

The activities depicted in Figure 3.1 are the backbone of our method. They are indepen-
dent of adopted software development approaches and technologies and can be specialized
to address specific contexts. Figure 3.2 exhibits an example of realization of our method,
i.e., it shows how we derive our method’s realization from its abstract activities.

“Abstraction” encapsulates the same perspective shown in Figure 3.1. “Realization”
comprises middle/low-level activities to automate the abstraction. We seek to automate
the activities as much as possible to reduce the effort required by concerns identification.
Next, we explain how we realized our method’s abstraction to make use of systems’ third-
party components:

Identify concerns : the fulfillment of this activity relies on information that developers
embed third-party components’ metadata. Mining metadata about components (Activ-
ity 1.1) enables the recovering of developers’ decisions regarding the implementation of
concerns. We complement the mining of the metadata by retrieving extra information
about components (Activity 1.2) from components’ repositories (explained in Section 2.3).
We recommend that software development specialists review any dataset produced by the
method and reach a consensus about concerns (Activity 1.3) to assure that the mined
information is correct and precise. As a result, the method outputs a categorized dataset
containing the association between concerns and the third-party components injected in
systems;

Associate concerns with source code artifacts : we believe that conclusions about how
concerns are implemented can be refined by analyzing their evolution through develop-
ment. Consequently, we have defined an activity to mine source historical data (Activity
2.1) from projects’ Version Control Systems (VCS). It is also necessary to find a way
to associate the concerns extracted from components’ metadata with source code arti-
facts (Activity 2.2). The association is vital to make causal investigations possible, e.g.,
comprehending if the occurrence of a design problem can be traced back to the imple-
mentation of concerns. The method also calculates concern-related metrics (Activity 2.3)
by processing Abstract Syntax Trees (AST) generated from systems’ source code. After
this last activity, our method produces a database into which evolutionary information
about concerns is stored;

Export dataset for specialized analysis : by mining concerns through the evolution of
software projects, our method has the potential to generate a large dataset. We believe
that it is advantageous to split the data into subsets to support specific studies. So,
defining export strategies (Activity 3.1) represents the mental effort required to identify
ways to extract such subsets and to develop strategies to export them as a specialized
dataset (Activity 3.2);

Perform specialized analysis : we think that scripts are the best way to deal with the
data mined from software projects. So, we added another activity to our method, write

26 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

F
ig
u
re

3
.2

R
ealization

–
A
d
ap

ted
fro

m
(C

A
R
V
A
L
H
O
;
N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
20
2
0)

3.1 OUR METHOD 27

analysis scripts (Activity 4.1). This activity must load the specialized dataset (Activity
4.2) and perform analysis regarding: (i) the presence of concerns in source code artifacts,
(ii) their evolution through systems’ development history and (iii) relationship with other
software development phenomena (Activity 4.3).

It is important to emphasize that the first activity, identify concerns, is highly depen-
dent on the availability of third-party components’ metadata in software projects. There-
fore, the more a project’s developers rely on components-based programming the more
our method is able to extract information about concerns. Conversely, other projects’ de-
velopers may not inject many components into their source code. Such situations include
developers failing to find adequate components to automatize systems’ functionalities and
having to code them themselves. In this case, our method will be less likely to spot and
analyze the presence of concerns. However, we trust that there is always a certain level of
dependability toward the use of third-party components in the making of every modern
software. So, there will always be an opportunity for the use of our method.

3.1.3 Instantiating

We developed a tool, called Architectural Knowledge Suite (AKS), to instantiate our
method. AKS mines software projects’ concerns and their association with source code
artifacts. It automates all activities that Figure 3.2 presents as “Automatic Activity”.
Few others are dependent on manual processing and analysis of data. They are identified
in Figure 3.2 as “Manual Activity”.

Figure 3.3 exhibits two possible ways to instantiate our method depending on the
adopted development technology: java and javascript. In this chapter, we focus on how
to instantiate our method through the perspective of java-oriented software projects.
Appendix E showcases a different scenario in which we re-instantiate our method after
replacing java with javascript. We suggest the following activities to process java-based
systems’ concerns:

Identify concerns : the fulfillment of this activity relies on information that developers
embed in POM and Gradle files. Mining metadata about components from POM/Gradle
files enables recovering developers’ decisions regarding the implementation of concerns
(Activity 1.1). We complement the mining of the metadata by retrieving information
about components from MVNRepository (described in Section 2.3). The method uses
MVNRepository to mine categories of components found in projects’ POM/Gradle files
(Activity 1.2). As MVNRepository does not provide a category for all components (i.e.,
many components remain uncategorized) a manual classification of concerns is required
(Activity 1.3). The execution of this last task generates a comprehensive dataset of
categorized concerns. Section 3.1.3.1 contains more details about the identification and
categorization of concerns;

Associate concerns with source code artifacts : the main goal of this activity is to de-
termine which source code artifacts are affected by the implementation of concerns. For

28 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

Figure 3.3 Method’s Instances

3.1 OUR METHOD 29

instance, in java projects, this activity can associate the component, dbunit, with the
“.java” files that inject it via import declarations (import org.dbunit) to automate tests.
AKS uses mining routines implemented by Repository Miner (RM) to automate this ac-
tivity. Calculating our metric, Dedication to Concern (DtC), is another important step
carried out during the execution of this activity. In Section 3.1.4 we present more details
about the characteristics and our use of DtC;

We want our method to support future studies that need to process the evolution
of concerns. For instance, different analyses may require associating concerns with in-
formation found in source code repositories about (GÎRBA; DUCASSE, 2006): reverse
engineering, cost prediction, software aging, code styling and decaying. Thus, our method
benefits from RM’s capability of mining historical data obtained from GIT repositories
(Activities 2.1 and 2.2). After mining the historical data, our method determines the
degree of association between concerns and artifacts using our DtC metric (Activity 2.3).
Considering that the mining of concerns produces a large amount of data, we rely on
MongoDb non-relational database1 for storage;

Export dataset for specialized analysis : our tool can expose the information mined from
software projects in a more concise and reusable way: as a comma-separated-value (CSV)
dataset. We believe that exporting the dataset as CSV files maximizes reusability. This
type of file can be processed by different tools (e.g., spreadsheet editors) to automate in-
vestigations. This task requires the configuration of exporting strategies (Activity 3.1) to
select data from the mined information and to generate and export a specialized dataset
(Activity 3.2), i.e., as the mining of concerns produces a large comprehensive database,
it is necessary to extract excerpts of data to support specific studies;

Perform specialized analysis : we count on the use of R-language2-based scripts to load
(Activity 4.2) and run the analysis (Activity 4.3) on the dataset generated by Activity
3. Externalizing the analysis as scripts favors the expansion of our approach to consider
investigations other than the ones described in this work. This means other researcher-
s/practitioners can reuse our dataset by writing their own scripts.

3.1.3.1 Identifying Java Projects’ Concerns

Figure 3.4 contains an example that shows how our tool, AKS, automates the mining
of concerns from third-party components metadata. Suppose that developers added the
components, dbunit and spring-test, to the POM files of two software projects. AKS
is capable of processing the POM files to mine the components’ ids: groupId and ar-
tifactId. As the ids ensure each component is uniquely and unambiguously identified,
AKS uses them to retrieve metadata from MVNRepository. The tool navigates to two
distinct URLs obtained from the combination of components’ group and artifact ids:
https://mvnrepository.com/artifact/org.dbunit/dbunit and https://mvnrepository.com/

1https://www.mongodb.com/
2https://www.r-project.org/

30 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

artifact/org.springframework/spring-test. By parsing the response from MVNRepository,
AKS finds out that “Testing Frameworks” is how the repository has categorized the
components. Then, we manually fill the most adequate concern to represent “Testing
Frameworks”: “Test”.

Figure 3.4 Mining of Concerns (CARVALHO; NOVAIS; MENDONÇA, 2020)

The manual classification of concerns can be seen as detrimental to the quality and

3.1 OUR METHOD 31

applicability of our method. However, we have prepared AKS to minimize the impact of
this limitation by extracting as much extra data about components fromMVNRespository
as possible. The data (components’ descriptions, categories and keywords) can help
researchers to precisely identify concerns. We have made the dataset of our studies
available for reuse and replication after two reviewers assured their correctness (more
information in Section 6.2). Both reviewers have academic and professional experience
and consensually filled the missing categories and concerns after consulting the data
obtained from MVNRespository and checking each component’s web sites, wikis, and
other sources of information.

AKS associates source code artifacts with concerns by examining the list of import
declarations in “.java” files. In Figure 3.4, file “a.java” imports dbunit and “b.java”
imports spring-test. Then, AKS associates the “Test” concern with both artifacts.

3.1.4 Dedication to Concern

Dedication to Concern (DtC) is a metric we created in this thesis. We define DtC as the
degree to which a source code artifact represents the implementation of a concern. This
section presents an illustrative example to showcase how we conceptualized it.

DtC materializes the following rationale: given an artifact (e.g., a “.java” file of a
java-based program), the fewer concerns it contains the more dedicated to implement a
specific system’s feature or requirement it is. On the other hand, more concerns decreases
its dedication. Figure 3.5 illustrates how our method takes advantage of DtC to determine
the strength of association between concerns and source code artifacts.

Figure 3.5 Dedication To Concern (DtC)

32 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

Two source code artifacts of a java-based program, “class1.java” and “class2.java”,
have the same amount of Lines of Code (100 LOC). Developers embedded the “Test”
concern in the two of them. However, “class1.java” is not entirely dedicated to implement
test routines. In “class1.java”, “Test” spreads over relatively few lines of code (20 LOC).
Oppositely, developers decided to focus “class2.java” on automating tests through many
of its lines of code (80 LOC). Thus, comparatively, we can say that “class2.java” is more
dedicated to the implementation of “Test” than “class1.java”.

Among potential benefits of DtC, we can mention the possibility of developers focus-
ing on slight associations between artifacts and concerns, e.g., the association between
“class1.java” and the “Test” concern exhibited in Figure 3.5. They may feel like applying
refactoring strategies to revert the situation and isolate concerns in dedicated artifacts to
achieve better modularity (MARCUS; POSHYVANYK; FERENC, 2008). In this case,
changing “class1.java” to make it more dedicated to perform tests.

Next, we describe how to instantiate our method to identify concerns from java-based
software projects. We also explain how we calculate DtC and associate it with source
code artifacts.

3.1.4.1 Measuring Object-Oriented Projects’ Dedication to Concern

Using import declarations to associate concerns with source artifacts does not suffice
for a deeper analysis of how concerns impact information systems. The main problem
is: importing a component does not guarantee that the component’s modules/classes
are extensively used by an artifact’s class(es) and methods. We soon found situations in
which the use of certain components was too diluted through artifacts’ lines of source code.
We also found extreme cases in which no line of code referred to imported components.
Developers may consider these situations uninteresting and having too little effect on the
implementation of concerns. As a consequence, they might avoid analyzing them or rank
them down to a low-priority category of impact. We then decided to measure the DtC
of concerns to manage these situations.

We defined metrics and developed measurement strategies to make the categorization
of DtC possible. We based the metrics on the elements that we can extract from object-
oriented source code artifacts: import declarations, the use of parameters and variables
by classes’ methods, and their relationship with concerns extracted from third-party com-
ponents’ metadata. We defined the metrics, their thresholds and measurement approach
based on our observations of source code snippets. After we reached a consensus about
how to calculate DtC, we empowered AKS with routines to automate the processing of
systems’ source code artifacts. We propose measuring DtC against a three-factor quali-
tative scale. By manually analyzing the source code of software projects, we noticed that
we could group source code artifacts under three distinct categories of DtC regarding
their relationships with concerns: slight, moderate, and high.

We consulted related literature to reuse metrics, but not all available ones suited us.
For instance, the Number of Components (NOC) metric (ABILIO et al., 2015)(NUÑEZ-
VARELA et al., 2017b) looked applicable, but its definition does not completely reflect
our intention (ABILIO et al., 2016): NOC counts how many components (constants/re-

3.1 OUR METHOD 33

finements) are necessary to implement a feature. We are not sure if we can apply both
concepts, “concern” and “feature”, interchangeably.

The Program Element Contribution (CONT) metric counts a program’s number of
lines of code associated with concerns, but its definition (EADDY et al., 2008) does not
include lines outside classes, e.g., package declarations and imports. However, import
declarations are vital for our method as they are used to find the artifacts that use/im-
plement concerns.

Concern Diffusion over Components (CDC) and Concern Diffusion over Operations
(CDO) (SANT’ANNA et al., 2003) look suitable. CDC counts the number of primary
components whose main purpose is to contribute to the implementation of a concern.
CDO counts the number of primary operations whose main purpose is to contribute to
the implementation of a concern. According to their definitions, respectively, the metrics
seem to accumulate the total number of components (classes or aspects3) and operations
(e.g., constructors, methods) related to a concern throughout a codebase. The problem
is: we need to determine the dedication of one source code artifact to a concern per
measurement. In other words, our measurement strategy must take an artifact “A” and
a concern “C” as inputs and determine the strength of the association between the two.
CDC and CDO take a concern “C” as input and return to total number of components
and operations that refer to “C”. So, CDC and CDO does not completely fit in what we
need to measure and how to measure it.

As we could not find an adequate set of metrics to take full advantage of the source
code elements that we wanted to measure, we defined the metrics described in Table 3.1.

We applied a simple percentage ratio (DAWSON; O’NEILL, 2003) to calculate ICD
and MD. This enabled us to fit both metrics’ numeric values into the three categories
of dedication to concern that our method can measure (slightly/moderately/highly dedi-
cated). We embedded functionalities in our tool to automate the execution of the follow-
ing rule, which represents our rationale regarding the measurement of DtC:

DtC(A, C)4 =

SLIGHT ICD(A,C) = SLIGHT ∨ (ICD(A,C) ⋐

(MODERATE,HIGH)

∧MD(A,C) = SLIGHT)

MODERATE ICD(A,C) ⋐ (MODERATE,HIGH)∧

MD(A,C) = MODERATE

HIGH ICD(A,C) ⋐ (MODERATE,HIGH)∧

MD(A,C) = HIGH,

where the DtC of an artifact A as it implements a concern C can be categorized as:
(i) slight if the imported components’ dedication ICD is slight; (ii) slight if ICD is ei-
ther moderate or high, and the methods’ dedication MD is slight; (iii) moderate if ICD
is either moderate or high, and MD is moderate; and (iv) high if ICD is either moderate

3In the context of Aspect-Oriented Software Engineering/Development
4
⋐= contained(in),∨ = or,∧ = and

34 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

Table 3.1 Dedication to Concern’s Metrics

Metric Description Purpose

NOI Number Of Imports NOI counts a source code artifact’s
total number of imports

NOIC Number Of Imported Concerns NOIC counts the total number of
imported components that are
associated with a concern

NOMa Number of Methods Total number of methods
of a source code artifact

NORb Number Of References NOR counts the total number of
methods that reference a
component/concern

ICD Imported Components’ Dedication ICD is an indirect metric obtained
from simple percentage ratio between
NOI and NOIC (NOIC/NOI) and
has the purpose of measuring
how strong/weak is the relationship
between an artifact and a
concern considering the
imported components

MD Methods’ Dedication MD measures methods’ dedication
regarding a specific concern.
We calculate MD as a simple
percentage ratio between
NOM and NOR (NOR/NOM)

DtCb Dedication to Concern DtC outputs the dedication of
a source code artifact from values
obtained from ICD and MD

a from (OLIVEIRA; VALENTE; LIMA, 2014)(NUÑEZ-VARELA et al., 2017a)
b similar to Concern Diffusion over Operations (CDO) (SANT’ANNA et al., 2003), except that
our metric applies to methods of only one class per measurement c similar to Concern Diffusion over
Components (CDC) (SANT’ANNA et al., 2003), except that
our metric applies to only one class per measurement

or high, and MD is high.

We adopted the following as the thresholds for slight, moderate, and high: (i) slight
is any value equal or below 0.3; (ii) moderate is any value greater than 0.3 and equal or
below 0.6; and (iii) high is any value from 0.6 to 1.0. We obtained the mentioned values
from a principle related to the definition of interval scales where the distance between
adjacent elements (of a scale) must be constant and equidistant (BÖHME; FREILING,
2008)(AINI; ZULIANA; SANTOSO, 2018). Additionally, interval scales can be converted

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE) 35

to nominal by being cut at breakpoints and assigning the resulting slices of data to
categories (BÖHME; FREILING, 2008), as the ones that we associated with DtC (slight,
moderate and high).

We believe that the rule, metrics and thresholds that we presented through this section
suffice for measuring DtC. However, we recognize that we may have introduced a bias in
our research by not conducting side-studies to validate them. We include ourselves in the
group of authors that defined metrics according to their experience. As a consequence,
it may be difficult to reproduce or generalize our results (ALVES; YPMA; VISSER,
2010)(OLIVEIRA; VALENTE; LIMA, 2014). While we do not discard the evaluation of
our metrics and their thresholds as mandatory, we tried our best to reduce the bias of our
guesswork. At least, we followed the recommendation that defining metrics’ thresholds
should be achieved by measuring data from a representative set of systems (ALVES;
YPMA; VISSER, 2010). We accomplished this by investigating the evolution of software
projects, as described in Chapters 4 and 5, and Appendixes C and E. Additionally,
we took measures to ensure that our method, tool, dataset, and analysis scripts can be
reviewed and modified to accept metrics and thresholds other than the ones that we have
currently defined and applied.

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE)

Now, we exemplify how our tool uses our method’s metrics and rule to measure DtC. We
base our explanations on examples taken from real software projects’ POM and source
code files. We selected the projects from a specific domain of software: non-relational
databases. Table 3.2 describes the databases.

Table 3.2 Non-relational Databases

Database Description

JanusGrapha Highly scalable graph database

Neo4Jb High-performance graph store with the features
expected from a robust database

KairosDbc Fast distributed scalable time series database
written on top of Cassandra

a https://github.com/JanusGraph/janusgraph
b https://github.com/neo4j/neo4j
c https://github.com/kairosdb/kairosdb

3.2.1 Measuring a High DtC

The first category of DtC, high, includes cases as the one exemplified in Listing 3.1.
By adding junit’s import declarations (line 3 to 7, highlighted in yellow), developers
connected the artifact to a test component. Consequently, the imports tie the artifact with
a concern: “Test”. Additionally, we consider that the artifact is extensively dedicated

36 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

to the implementation of this concern because the DataCacheTest class encapsulates 2
methods (in gray), test isCached (line 13) and test uniqueCache (line 29), and each
method encloses references to classes imported from junit (Test, TestCase, Assert).
Therefore, we consider that the artifact is highly dedicated to implement the “Test”
concern.

Listing 3.1 Highly Dedicated Artifact

1 package org . ka i rosdb . da ta s to r e . cassandra ;
2

3 import static import org.junit.Test;

4

5 import static junit.framework.TestCase.assertTrue;

6 import static org.junit.Assert.assertNotNull;

7 import static org.junit.Assert.assertNull;

8
9 public class DataCacheTest {

10 . . .
11
12 @Test

13 public void test isCached() {

14 DataCache<Str ing> cache = \ t e x tb f {new} DataCache<Str ing >(3) ;
15
16 a s s e r tNu l l (cache . cacheItem (”one”)) ;
17 a s s e r tNu l l (cache . cacheItem (”two”)) ;
18 a s s e r tNu l l (cache . cacheItem (” three ”)) ;
19
20 as se r tNotNul l (cache . cacheItem (”one”)) ; // This puts ’ one ’ as the

newest
21 a s s e r tNu l l (cache . cacheItem (” four ”)) ; // This shou ld boot out ’

two ’
22 a s s e r tNu l l (cache . cacheItem (”two”)) ; // Should have booted ’ t h r e e

’
23 as se r tNotNul l (cache . cacheItem (”one”)) ;
24 a s s e r tNu l l (cache . cacheItem (” three ”)) ; // Should have booted ’

four ’
25 as se r tNotNul l (cache . cacheItem (”one”)) ;
26 }
27
28 @Test

29 public void test uniqueCache() {

30 TestObject td1 = new TestObject (” td1”) ;
31 TestObject td2 = new TestObject (” td2”) ;
32 TestObject td3 = new TestObject (” td3”) ;
33
34 DataCache<TestObject> cache = new DataCache<TestObject >(10) ;
35
36 cache . cacheItem (td1) ;
37 cache . cacheItem (td2) ;
38 cache . cacheItem (td3) ;
39

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE) 37

40 TestObject r e t = cache . cacheItem (new TestObject (” td1”)) ;
41 asse r tTrue (td1 == re t) ;
42
43 r e t = cache . cacheItem (new TestObject (” td2”)) ;
44 asse r tTrue (td2 == re t) ;
45
46 r e t = cache . cacheItem (new TestObject (” td3”)) ;
47 asse r tTrue (td3 == re t) ;
48 }
49 }

Table 3.3 describes how AKS calculates the metrics for the artifact exhibited in Listing
3.1 and determine its DtC considering the “Test” concern.

Table 3.3 Measuring a Highly Dedicated Artifact

Metric Value Measurement Strategy

NOI 4 Extracted from the artifact’s list of imports
NOIC 4 Calculated from the imports that implement the “Test”

concern
NOM 2 As the total number of methods
NOR 2 Because two methods refer to classes imported

from the “Test” component
ICD 1.0 We obtain 100% of dedication, as all imported classes

are associated with the ‘Test” concern
MD 1.0 Another 100% of dedication because all methods declare

at least one class associated with the ‘Test” concern
DtC High Processing ICD and MD through the rule reveals that the

artifact is highly dedicated to implement ‘Test”

3.2.2 Measuring a Moderate DtC

Other artifacts do not focus on the implementation of a single concern. They tend to
comprise import declarations which insert a relatively small set of components. For
example, the source code in Listing 3.2 reveals that two different concerns are in play:
“Test”, as it imports junit (line 3 to 5) and “Logging”, from the importing of slf4j
(lines 7 and 8). Regarding the “Test” concern, developers associated 3 out of 9 artifact’s
methods with the implementation of testing routines (lines 64, 77, and 90). We categorize
the artifact as being moderately dedicated to implement “Test”.

Listing 3.2 Moderately Dedicated Artifact

1 package org . janusgraph . t e s t u t i l ;
2

3 import org.junit.Test;

38 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

4 import static org.junit.Assert.assertEquals;

5 import static org.junit.Assert.assertTrue;

6

7 import org.slf4j.Logger;

8 import org.slf4j.LoggerFactory;

9
10 public class RandomGenerator {
11
12 private stat ic f ina l Logger l og = LoggerFactory . getLogger (

RandomGenerator . class) ;
13
14 private stat ic f ina l int standardLower = 7 ;
15 private stat ic f ina l int standardUpper = 21 ;
16
17 public stat ic St r ing [] randomStrings (int number) {
18 return randomStrings (number , standardLower , standardUpper) ;
19 }
20
21 public stat ic St r ing [] randomStrings (int number , int lowerLen , int

upperLen) {
22 St r ing [] r e t = new St r ing [number] ;
23 for (int i = 0 ; i < number ; i++) r e t [i] = randomString (lowerLen ,

upperLen) ;
24 return r e t ;
25 }
26
27 public stat ic St r ing randomString () {
28 return randomString (standardLower , standardUpper) ;
29 }
30
31 public stat ic St r ing randomString (int lowerLen , int upperLen) {
32 a s s e r t lowerLen > 0 && upperLen >= lowerLen ;
33 int l ength = randomInt (lowerLen , upperLen) ;
34 S t r i ngBu i l d e r s = new St r i ngBu i l d e r () ;
35 for (int i = 0 ; i < l ength ; i++) {
36 s . append ((char) randomInt (97 , 120)) ;
37 }
38 return s . t oS t r i ng () ;
39 }
40
41 public stat ic int randomInt (int lower , int upper) {
42 a s s e r t upper > lower ;
43 int i n t e r v a l = upper − lower ;
44 // Generate a random in t on [lower , upper)
45 double rand = Math . f l o o r (Math . random () ∗ i n t e r v a l) + lower ;
46 // Shouldn ’ t happen
47 i f (rand >= upper) rand = upper − 1 ;
48 // Cast and re turn
49 return (int) rand ;
50 }
51

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE) 39

52 public stat ic long randomLong (long lower , long upper) {
53 a s s e r t upper > lower ;
54 long i n t e r v a l = upper − lower ;
55 // Generate a random in t on [lower , upper)
56 double rand = Math . f l o o r (Math . random () ∗ i n t e r v a l) + lower ;
57 // Shouldn ’ t happen
58 i f (rand >= upper) rand = upper − 1 ;
59 // Cast and re turn
60 return (long) rand ;
61 }
62
63 @Test

64 public void testRandomInt() {

65 long sum = 0 ;
66 int t r i a l s = 100000;
67 for (int i = 0 ; i < t r i a l s ; i++) {
68 sum += randomInt (1 , 101) ;
69 }
70 double avg = sum ∗ 1 .0 / t r i a l s ;
71 double e r r o r = (5 / Math . pow(t r i a l s , 0 . 3)) ;
72 // l o g . debug (error) ;
73 asse r tTrue (Math . abs (avg − 50 . 5) < e r r o r) ;
74 }
75
76 @Test

77 public void testRandomLong() {

78 long sum = 0 ;
79 int t r i a l s = 100000;
80 for (int i = 0 ; i < t r i a l s ; i++) {
81 sum += randomLong (1 , 101) ;
82 }
83 double avg = sum ∗ 1 .0 / t r i a l s ;
84 double e r r o r = (5 / Math . pow(t r i a l s , 0 . 3)) ;
85 // l o g . debug (error) ;
86 as s e r tEqua l s (5 0 . 5 , avg , e r r o r) ;
87 }
88
89 @Test

90 public void testRandomString() {

91 for (int i = 0 ; i < 20 ; i++) log . debug (randomString (5 , 20)) ;
92 }
93 }

Table 3.4 demonstrates how AKS calculates the metrics to classify the source code
artifact in Listing 3.2 as moderately dedicated to implement the “Test” concern.

3.2.3 Measuring a Slight DtC

Listing 3.3 shows lines of code extracted from an artifact which imports too many different
components. Considering the import declarations, only junit is associated with the
“Test” concern (line 3 to 7), and 4 out of its 23 methods contain references to test classes

40 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

Table 3.4 Measuring a Moderately Dedicated Artifact

Metric Value Measurement Strategy

NOI 5 Extracted from the artifact’s list of imports
NOIC 3 Calculated from the imports that implement

the “Test” concern
NOM 9 As the total number of methods
NOR 3 Because three methods refer use classes

imported from the “Test” component
ICD 0.6 A ratio between NOIC and NOI
MD 0.38 A ration between NOR and NOM
DtC Moderate Processing ICD and MD through the rule indicates

that the artifact is moderately dedicated
to implement ‘Test”

imported from junit5 (lines 65, 74, 81, and 93). Consequently, regarding the “Test”
concern, we determine that the artifact is slightly dedicate to implement it.

Listing 3.3 slightly Dedicated Artifact

1 package org . neo4j . index . populat ion ;
2

3 import org.junit.After;

4 import org.junit.Before;

5 import org.junit.Test;

6 import static org.junit.Assert.assertEquals;

7 import static org.junit.Assert.assertNotNull;

8
9 import java . i o . F i l e ;
10 import java . i o . IOException ;
11 import java . n io . f i l e . Path ;
12 import java . n io . f i l e . Paths ;
13 import java . u t i l . ArrayList ;
14 import java . u t i l . L i s t ;
15 import java . u t i l . concurrent . Ca l l ab l e ;
16 import java . u t i l . concurrent . Execut ionException ;
17 import java . u t i l . concurrent . ExecutorServ i ce ;
18 import java . u t i l . concurrent . Executors ;
19 import java . u t i l . concurrent . Future ;
20 import java . u t i l . concurrent . TimeUnit ;
21 import java . u t i l . concurrent . atomic . AtomicLong ;
22 import java . u t i l . f unc t i on . LongSuppl ier ;
23 import java . u t i l . f unc t i on . Supp l i e r ;

5We omitted the source code of all methods which are not related to the “Test” concern because the
class is a large one and its exhibition was spreading over too many pages.

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE) 41

24
25 import org . neo4j . graphdb . GraphDatabaseService ;
26 import org . neo4j . graphdb . Label ;
27 import org . neo4j . graphdb . Node ;
28 import org . neo4j . graphdb . Transact ion ;
29 import org . neo4j . graphdb . schema . Con s t r a i n tDe f i n i t i on ;
30 import org . neo4j . graphdb . schema . IndexDe f i n i t i on ;
31 import org . neo4j . graphdb . schema . Schema ;
32 import org . neo4j . i o . f s . F i l eU t i l s ;
33 import org . neo4j . t e s t . TestGraphDatabaseFactory ;
34
35 import stat ic org . apache . commons . lang3 . SystemUti l s . JAVA IO TMPDIR;
36 import stat ic org . neo4j . h e lpe r . S t r e s sTe s t ingHe lpe r . fromEnv ;
37
38 public class LucenePar t i t i onedIndexSt re s sTes t ing {
39 private stat ic f ina l St r ing LABEL = ” l a b e l ” ;
40 private stat ic f ina l St r ing PROPERTY PREFIX = ”property ” ;
41 private stat ic f ina l St r ing UNIQUE PROPERTY PREFIX = ”

uniqueProperty ” ;
42
43 private stat ic f ina l int NUMBER OF PROPERTIES = 2 ;
44
45 private stat ic f ina l int NUMBEROFPOPULATORS =
46 In t eg e r . valueOf (
47 fromEnv (
48 ”LUCENE INDEX NUMBER OF POPULATORS” ,
49 St r ing . valueOf (Runtime . getRuntime () .

a v a i l a b l eP r o c e s s o r s () − 1))) ;
50 private stat ic f ina l int BATCH SIZE =
51 In t eg e r . valueOf (fromEnv (”LUCENE INDEX POPULATION BATCH SIZE” ,

S t r ing . valueOf (10000))) ;
52
53 private stat ic f ina l long NUMBEROFNODES =
54 Long . valueOf (fromEnv (”LUCENE PARTITIONED INDEX NUMBER OF NODES

” , S t r ing . valueOf (100000))) ;
55 private stat ic f ina l St r ing WORKDIRECTORY =
56 fromEnv (”LUCENE PARTITIONED INDEXWORKING DIRECTORY” ,

JAVA IO TMPDIR) ;
57 private stat ic f ina l int WAIT DURATIONMINUTES =
58 In t eg e r . valueOf (fromEnv (”

LUCENE PARTITIONED INDEX WAIT TILL ONLINE” , S t r ing . valueOf
(30))) ;

59
60 private ExecutorServ i ce popu lator s ;
61 private GraphDatabaseService db ;
62 private F i l e s t o r eD i r ;
63
64 @Before

65 public void setUp() throws IOException {

66 s t o r eD i r = prepareStoreDi r () ;
67 System . out . p r i n t l n (S t r ing . format (” S ta r t i ng database at : %s ” ,

s t o r eD i r)) ;

42 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

68
69 popu lator s = Executors . newFixedThreadPool (NUMBEROFPOPULATORS) ;
70 db = new TestGraphDatabaseFactory () . newEmbeddedDatabaseBuilder (

s t o r eD i r) . newGraphDatabase () ;
71 }
72
73 @After

74 public void tearDown() throws IOException {

75 db . shutdown () ;
76 popu lator s . shutdown () ;
77 F i l eU t i l s . d e l e t eRe cu r s i v e l y (s t o r eD i r) ;
78 }
79
80 @Test

81 public void indexCreationStressTest() throws Exception {

82 c r ea t e Indexe s () ;
83 createUniqueIndexes () ;
84 Populat ionResu l t popu lat ionResu l t = populateDatabase () ;
85 f indLastTrackedNodesByLabelAndProperties (db , popu lat ionResu l t) ;
86 dropAl l Indexes () ;
87
88 createUniqueIndexes () ;
89 c r ea t e Indexe s () ;
90 f indLastTrackedNodesByLabelAndProperties (db , popu lat ionResu l t) ;
91 }
92

93 private void findLastTrackedNodesByLabelAndProperties(

94 GraphDatabaseService db, PopulationResult populationResult) {

95 try (Transact ion ignored = db . beginTx ()) {
96 Node nodeByUniqueStringProperty =
97 db . f indNode (
98 Label . label (LABEL) , getUniqueStr ingProperty () ,

popu lat ionResu l t . maxPropertyId + ””) ;
99 Node nodeByStringProperty =
100 db . f indNode (Label . label (LABEL) , ge tSt r ingProper ty () ,

popu lat ionResu l t . maxPropertyId + ””) ;
101 as se r tNotNul l (”Should f i nd l a s t i n s e r t e d node” ,

nodeByStringProperty) ;
102 a s s e r tEqua l s (
103 ”Both nodes should be the same l a s t i n s e r t e d node” ,
104 nodeByStringProperty ,
105 nodeByUniqueStringProperty) ;
106
107 Node nodeByUniqueLongProperty =
108 db . f indNode (Label . label (LABEL) , getUniqueLongProperty () ,

popu lat ionResu l t . maxPropertyId) ;
109 Node nodeByLongProperty =
110 db . f indNode (Label . label (LABEL) , getLongProperty () ,

popu lat ionResu l t . maxPropertyId) ;
111 as se r tNotNul l (”Should f i nd l a s t i n s e r t e d node” ,

nodeByLongProperty) ;

3.2 APPLYING OUR DTC METRIC (A WORKED EXAMPLE) 43

112 as s e r tEqua l s (
113 ”Both nodes should be the same l a s t i n s e r t e d node” ,
114 nodeByLongProperty ,
115 nodeByUniqueLongProperty) ;
116 }
117 }
118
119 private void dropAl l Indexes () {
120 . . .
121 }
122
123 private void c r ea t e Indexe s () {
124 . . .
125 }
126
127 private void createUniqueIndexes () {
128 c r ea t e Indexe s (true) ;
129 }
130
131 private void c r ea t e Indexe s (boolean unique) {
132 . . .
133 }
134
135 private Populat ionResu l t populateDatabase () throws

ExecutionException , Inte r ruptedExcept ion {
136 . . .
137 }
138
139 private F i l e prepareStoreDi r () throws IOException {
140 . . .
141 }
142
143 private Populat ionResu l t populateDb (GraphDatabaseService db)
144 throws ExecutionException , Inte r ruptedExcept ion {
145 . . .
146 }
147
148 private void createAndWaitForIndexes (boolean unique) {
149 . . .
150 }
151
152 private void createUniqueConstra int (int index) {
153 . . .
154 }
155
156 private void c reate Index (int index) {
157 . . .
158 }
159
160 private void await IndexesOnl ine (GraphDatabaseService db) {
161 . . .
162 }
163

44 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

164 private stat ic St r ing getLongProperty () {
165 . . .
166 }
167
168 private stat ic St r ing ge tSt r ingProper ty () {
169 . . .
170 }
171
172 private stat ic St r ing getUniqueLongProperty () {
173 . . .
174 }
175
176 private stat ic St r ing getUniqueStr ingProperty () {
177 . . .
178 }
179
180 private stat ic class Sequen t i a l S t r i n gSupp l i e r implements Suppl i e r<

Str ing> {
181 . . .
182 }
183
184 private stat ic class Sequent ia lLongSupp l i e r implements

LongSuppl ier {
185 . . .
186 }
187
188 private stat ic class Populator implements Cal lab l e<Long> {
189 . . .
190 }
191
192 private class Populat ionResu l t {
193 . . .
194 }
195 }

In Table 3.5 we show how our method calculates the metrics to determine the dedica-
tion of the source code artifact exhibited in Listing 3.3. Considering the “Test” concern,
AKS determines that the artifact is slightly dedicated.

In summary, our method and AKS have the ability to classify the DtC between
concerns and source code artifacts in one of the following categories: highly dedicated,
moderately dedicated, and slightly dedicated.

3.3 DISCUSSION

In this chapter, we described our method to support the identification and analysis of
concerns. We designed it as a way to circumvent some limitations: (i) the tendency of
the manual identification of concerns to be fatiguing and error-prone, (ii) the inadequacy
of available automated approaches, and (iii) the lack and imprecision of Software Re-
quirement Documents (SRDs) and Software Architecture Documents (SADs). We do not
discredit any of these strategies as approaches to enable the analysis of the impact of con-
cerns. However, we saw a gap in the way how they spot concerns and allow the mining of

3.4 RELATED WORK 45

Table 3.5 Measuring a Slightly Dedicated Artifact

Metric Value Measurement Strategy

NOI 16 Extracted from the artifact’s list of imports
NOIC 5 Calculated from the imports that implement

the “Test” concern
NOM 23 As the total number of methods
NOR 4 As four methods refer to at least one class

imported from the “Test” component
ICD 0.31 A ratio between NOIC and NOI
MD 0.17 A ration between NOR and NOM
DtC Slight a result obtained from the processing of

ICD and MD through the rule

evolutionary data regarding their implementation. So, we based our method on the use
of POM and Gradle files as sources of concern-related information. Another key aspect
of our method is that it can determine the strength of association between concerns and
source code artifacts (DtC). A varying DtC can impact the way how developers evaluate
concerns.

Although we assure that our method is adequate enough to analyze the impact of
concerns on software projects, we must point out some limitations. Ideally, the method
should grant the full automation of the analysis process because we aim it at evaluating
the impact of concerns through the history of software projects. This can generate a
dataset so extensive that its manual processing can become burdensome. As an example
of a limitation, we can mention the need for filling missing components’ categories and
concerns after the mining of software projects.

We recognize another limitation in our use of components’ metadata: not all concerns
are implemented with the help of third-party components. Taking the source code exhib-
ited in Listing 3.3 as an example, it is possible to notice that some of the imports (line 25
to 33) links the artifact with internal classes of Neo4j. This indicates that Neo4j’s de-
velopers implemented some concerns with no help of components. Consequently, Neo4j’s
POM files may not contain a full set of information about its concerns. Considering that
our method relies on POM/Gradle files, it cannot identify all Neo4j’s concerns.

3.4 RELATED WORK

We highlight the following as studies that describe techniques related to the automatic/semi-
automatic identification concerns:

Robillard and Murphy (2002) proposed a way to generate graphs from key abstract
structures used to implement concerns. They believe that this is more effective in docu-
menting and analyzing concerns in comparison to lines of source code. They even created
a tool to support their method: Feature Exploration and Analysis Tool (FEAT). FEAT

46 A METHOD TO EXTRACT CONCERNS FROM THIRD-PARTY COMPONENTS

has the purpose of supporting maintenance tasks by visualizing concern-based graphs
and querying some metrics, e.g., fan-in, fan-out. Similarly to our method, they rely on
structural aspects mined from the source code to find concerns.

Poruban and Nasal (2014) saw an opportunity in projecting multiple concerns over the
same pieces of source code. Projections can help developers to perceive which concerns
overlap with each other regarding a system’s module (e.g., a class in an object-oriented
system). The Sieve Source Code Editor (SSCE) is the tool that the authors of the study
developed to support the visualization of overlapped concerns. Our method also allows
the analysis of multiple associations between source code artifacts and concerns. This
comes from our approach to link artifacts’ import declarations with concerns, i.e., one
artifact may contain more than one import declaration and this can link the artifact with
many concerns.

Juhar and Vokorokos (2015) devised a way to determine which level of granularity
most developers consider useful when dealing with concerns. With the help of their tool,
Code Tagger (CT), they enabled software specialists to tag/mark source code fragments as
concerns. Compared to AKS, CT provides a more fine-grained approach: it is capable of
isolating fractions of methods’ bodies of code (statements) to represent concerns, while
AKS is limited to count the number of references to a component/concern found in
methods. Although more precise, CT requires developers to manually associate concerns
with a corresponding scope of statements. As the approach shown in Figure 3.3 is the
most that our method can do to extract concerns from the source code of systems, favoring
either CT or AKS means deciding on the level of mechanization that is desired from this
type of tool.

He and Ye (2015) investigated if it is possible to identify concerns during requirements
definition phases. They conceived a method based on goal models and on a two-state
algorithm. The goal model is responsible for extracting relationships between different re-
quirements’ goals and the algorithm is used to automate the analysis of the relationships.
The study focuses on applying the method to identify concerns from modeled aspects of
systems.

Shaikh and Lee (2016) applied Aspect-Oriented Re-Engineering (AORE) to mine
concerns from legacy systems to transform them into Aspect-Oriented applications. Their
method requires the identification of concerns before refactoring systems’ source code.
Specifically, the authors targeted code smells (FOWLER; BECK, 1999) as elements to
be turned into aspects. To achieve this, they applied a set of tools to find instances of
code smells and to exploit Formal Concept Analysis (FCA) to group smelly modules that
belong to the same concerns.

Nunez-Varela et al. (2017a) based a concern identification method on specialized
information retrieval techniques. The techniques allow finding relevant information from
a collection of documents containing unstructured text, i.e., the source code is seen as
unstructured text and the method can identify classes that contain core concerns by
finding a Content Similarity Score (CSS) between modules. The paper does not state if
a tool was created to automate the method.

Considering the aforementioned studies, we are the first ones to have ever addressed
the possibility of extracting concerns from third-party components’ metadata. We em-

3.5 CONCLUSION 47

phasize other advantages of our methods: (i) third-party components’ metadata are fre-
quently added to systems. This is a widespread good practice that makes several software
projects available for investigating concerns; (ii) developers pay close attention to the in-
jection of components, so the metadata tends to be precise; and (iii) as POM and Gradle
files are important source code assets, they are often added to version control systems.
This is advantageous as it enables examining the evolution of concerns.

3.5 CONCLUSION

In this chapter, we presented our method. It is composed of a set of activities from
abstract to middle/low level ones. The decision to design it this way came from our per-
ception that taking advantage of third-party components’ metadata could be materialized
to address different software development contexts. To showcase our method’s flexibility,
we describe a proof of concept in Appendix E. In Chapters 4 and 5, we identify and
analyze concerns from java-oriented software projects, but in Appendix E we extend our
method to deal with javascript applications. Additionally, we exemplify other types of
software projects and programming languages (e.g., python, PHP, ruby) that also contain
third-party components’ metadata, which may enable expanding the applicability of our
method.

We did not find references about all metrics that we need to calculate the strength
of the association between concerns and source code artifacts, or Dedication to Concern
(DtC) as we call it. Therefore, we had to combine some few available metrics with new
ones. This made us perceive that we had to count on the help of software development
specialists to validate and refine our DtC’s detection rule. Chapter 4 describes how we
conducted an action research study (an approach that we presented in Section 2.7) with
the purpose of validating and improving our method.

Chapter

4
In a room full of top software designers, if two agree on the same thing, that’s a majority – Bill Curtis

STUDY I – AN ACTION RESEARCH STUDY TO

EVALUATE OUR METHOD

In Chapter 3 we presented our method to support the identification and analyses of
concerns. In order to validate and enhance the proposed method, we conducted an
action research study.

From our perspective, we consider that action research studies are a good practical
way of acquiring knowledge from software development specialists on how to adequately
identify concerns and measure DtC. Thus, we must emphasize the following purpose
behind this study: as we have unveiled a new way to extract concerns from software
projects, we could not find answers for all questions that we had in related technical
and theoretical literature. For instance, we associate the processing of Abstract Syntax
Trees (AST) with the extraction of data from components’ metadata. Does it suffice
to spot concerns? To which degree does our method reflect developers’ perception when
they need to identify and process information about concerns? Consequently, we resorted
to software developers’ suggestions and opinions to enhance our method, tool, dataset
and analysis scripts. This resonates with one of the purposes of action research studies:
technology conception and tailoring with intense collaboration and changing through
cyclical intervention (SANTOS; TRAVASSOS, 2011).

Santos and Travassos (2011) defined a template to report action research studies.
Their template reflects the activities of the canonical template shown in Figure 2.4 (in
Section 2.7). They proposed reporting action research studies as a sequence of stages:
Diagnostic, Planning, Actions, Evaluation and Analysis and Reflections and
Learning. Through next sub-sections, we describe how we instantiated the template.

4.1 DIAGNOSTIC

Diagnostic is composed of three sub-phases: Problem Description (PD), Project Con-
text (PC) and Research Theme (RT). PD describes the problem faced. PC informs where
the problem happens. RT summarizes the study to limit its scope. We presented our PD

49

50 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

through Chapter 1 and we summarize it here as:

Software Documents, e.g., Software Requirements Documents (SRDs) and Software Ar-
chitecture Documents (SADs), and available manual/automated approaches do not suffice
for identifying and analyzing concerns

We highlight the following as our study’s PC:

We focus on Open Source Systems (OSS) as our main source of information about con-
cerns. As the open source community has made many open source projects available in
public repositories, we find it easier to base our studies on OSS. As any other type of
software, OSS also lack adequate ways to spot concerns in their codebase

We outline the following about our action research study’s RT:

We want to identify concerns with the help of metadata, which developers add to software
projects when they need to embed third-party components in their applications

4.2 PLANNING

Planning is crucial to support research execution. It must include information about: (i)
the technical aspects and literature surveys to ground the study (P1), (ii) controlled/pilot
studies to determine the risks of using software technologies (P2) and (iii) the operational
elements that are necessary to execute the research (P3). The set of theoretical and
technical topics that we discussed in Chapter 2 stands for our P1. We already applied
our method and tool in two previous studies (CARVALHO; NOVAIS; MENDONÇA,
2018)(CARVALHO; NOVAIS; MENDONÇA, 2020). Thus, we are confident AKS is ro-
bust enough to support new investigations (P2) and can provide us with a precise dataset
to interact with software development specialists (P3).

4.3 ACTIONS

Actions are concerned with arranging study’s tasks and interventions in chronological
order. Figure 4.1 shows how we organized our study’s actions.

The first action comprises all activities that we performed to prepare the study (1),
e.g., producing a dataset which should contain all the necessary information to help the
raters to tag their agreement and disagreement. AKS is responsible for generating the
dataset after mining and analyzing software projects. We sent the dataset to raters after
instructing them about how to manipulate it. We processed the raters’ tagged datasets
(2) using kappa coefficient to calculate the strength of agreement/disagreement (3). In
case we reached no agreement, we took the opportunity to collect raters’ opinions about
why they disagreed. We then used their opinions to enhance out method and tool (4).
After this, we restarted the study. Otherwise, reaching an adequate strength of agreement
finalized our evaluation and we conducted a semi-structured interview with the raters (5).

4.3 ACTIONS 51

The interview had the purpose of discussing the results of the study and clarifying certain
questions. Through the next sub-sections, we describe how we fulfilled these activities.

Figure 4.1 Actions of our Action Research Study

4.3.1 Generating the Study’s Dataset

The dataset should comprise a collection of samples to illustrate how our method finds
and processes concerns. To achieve this, we used AKS to mine historical data from source
code of open source software projects. Specifically, we focused on projects which were
developed with the help of third-party components and the use of POM/Gradle files. We
also decided to adopt “domain of software” as an inclusion strategy to select software
projects1. Considering the two criteria, the second one (selecting projects according to
their domains) is more restrictive. While POM and Gradle files have became a common
presence in java projects, finding software projects related to specific areas of expertise
and application is not always granted. Luckily, we were able to find interesting active
projects under a domain we targeted: non-relational databases.

1Choosing “domain of software” as a strategy to select software projects is a consequence of one of
our previous studies’ findings. More information in Appendix C.

52 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

Table 4.1 contains the list of the software projects we analyzed. We extracted concerns
from the source code of two types of non-relational databases domain: graph and time se-
ries databases. We mined 6 versions/releases from each database. JanusGraph, Neo4j,
and Titan are graph-oriented Databases. OpenTSDB, KairosDb, and Timely are
time series databases. The Period column informs the interval of historical data that
AKS processed from the projects (six versions of each project are contained within the
mentioned period). The File column informs the total number of source code files that
AKS analyzed. After mining the software projects, AKS filled a database with historical
information about concerns. The complete list of concerns can be found in Appendix A.

Table 4.1 Non-relational Databases (CARVALHO; NOVAIS; MENDONÇA, 2020)

Domain Project Description Period Files

Graph JanusGrapha Highly scalable graph database 2017-04 - 2018-10 5657
Neo4Jb High performance graph store 2018-09 - 2018-12 26497

with all the features expected
from a robust database

Titanc Database optimized for 2012-06 - 2015-09 3570
storing and querying
large graphs

Time Series OpenTSDBd Distributed, scalable TS 2015-11 - 2018-12 1440
database

KairosDbe Fast distributed scalable TS 2015-11 - 2018-11 1884
database written on top
of Cassandra

Heroicf A scalable time series database 2016-06 - 2017-08 4258
based on Bigtable, Cassandra,
and Elasticsearch

a https://github.com/JanusGraph/janusgraph
b https://github.com/neo4j/neo4j
c https://github.com/thinkaurelius/titan
d https://github.com/OpenTSDB/opentsdb
e https://github.com/kairosdb/kairosdb
f https://github.com/spotify/heroic

Running this study required that we (i) instantiated our method to process java-based
software projects and (ii) identified concerns implemented by such projects’ developers.
We filled all missing concerns from the categories of components that ASK retrieved from
MVNRepository. As explained in Section 3.1, our method and AKS are capable of gen-
erating a dataset for specialized analyses. We then implemented an exporting strategy
to externalize concerns-related information in the form of a CSV dataset. We ensured
that the dataset:

Contained a variety of concerns mined from all the aforementioned databases :
the agreement dataset2 should include at least one concern found in each database. We

2From now on, we will use the terms “dataset” and “agreement dataset” interchangeably

4.3 ACTIONS 53

wanted the raters to have a broad view of all possible combinations between source code
artifacts and concerns;

Included randomly selected samples from the variety of concerns-related in-

formation : this step is mandatory to increase the confidence of our findings while
avoiding the bias of manual selection of the data;

Granted a way to verify the relationship between concerns and source code

artifacts : the exporting strategy linked the dataset with samples of source code. This
means: at any moment, raters could check the projects’ original source code files from
which we mined concerns.

During each round of the study, the raters tagged a dataset in the format illustrated in
Table 4.23. The Project columns informs the name of the software project. The Concern
column indicates one specific concern to be analyzed. The list of imports that implement
the concern is shown in the Imports column. The Link to File column allows the raters
to verify the source code associated with the concern. The DtC column encapsulates
the categorization of our Dedication to Concern metric. Raters could use the Confirm?
column to either agree or disagree with our identification and categorization of concerns.
We encouraged the raters to add their comments to the Comment column to inform us
why they disagreed.

We populated the agreement dataset with 230 random samples from the historical
data of the projects listed in Table 4.1. We calculated this number as a manner to
guarantee a 5% error margin considering the total amount of selected samples: ∼=1500.
The actual original dataset produced by AKS comprised a total of ∼=61500 records.

Figure 4.2 shows how we produced the agreement dataset. As our method enables
AKS to extract concerns from the source code of systems, we ended up with an extensive
dataset (∼=61500 records). Then, we wrote a script to select random samples from it.
We designed the script in a way that it could find a set of samples considering the most
common concerns, i.e., concerns that usually occur in all analyzed versions of the database
software projects. This made the first reduction of the dataset possible. We reduced it
down to ∼=1500 records. To avoid fatiguing the raters we wrote a second script to select
∼=230 items from the ∼=1500 records.

4.3.2 Dataset Analysis Process

We recommended the following evaluation workflow to the raters: (i) the rater should
check which concern he/she must evaluate, as informed in the Concern column; (ii) he/she
should visualize the content of the source code as supplied by the Link to File column;
(iii) he/she should verify the list of imported components that implement the concern
(in the Imports column); (iv) by locating the concern’s imported classes in the source
code, he/she could either agree or disagree and enter YES (agree) or NO (disagree) in
the Confirm? column after checking the categorization in the DtC column.

3We are showing actual values from one of our agreement spreadsheets.

54 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

T
a
b
le

4
.2

F
orm

at
of

ou
r
A
greem

en
t
D
ataset

P
ro

je
c
t

C
o
n
c
e
rn

Im
p
o
rts

L
in
k
to

F
ile

D
tC

C
o
n
fi
rm

?
C
o
m
m
e
n
t

O
p
en
T
S
D
B

D
ata

F
orm

at
com

.fa
sterx

m
l...

src/co
re/S

im
p
leH

istogra
m
.java

S
ligh

t
Y
E
S
/N

O
...

P
ro
cessin

g

T
itan

T
est

org.ju
n
it...

src/.../...A
stya

n
ax

G
rap

h
T
est.java

H
igh

Y
E
S
/N

O
...

N
eo4j

T
ex
t
P
ro
cess.

org.ap
ach

e.lu
cen

e...
com

m
u
n
ity

/.../
T
estL

u
cen

eIn
d
ex
.java

S
lig

h
t

Y
E
S
/N

O
...

K
airosD

b
L
og
gin

g
ch
.q
os.logb

ack
...

src/.../L
oggin

g
U
tils.java

M
o
d
era

te
Y
E
S
/
N
O

...

H
eroic

D
atab

ase
com

.sp
otify.h

eroic...
aggreg

ation
/.../

M
ax

.java
H
igh

Y
E
S
/
N
O

...

O
p
en
T
S
D
B

W
eb

A
p
p

com
.g
o
ogle.gw

t...
src/.../E

v
en
tsH

an
d
ler.java

H
ig
h

Y
E
S
/N

O
...

S
u
p
p
ort

...
...

...
...

...
...

...

4.3 ACTIONS 55

Figure 4.2 Dataset Reduction

We instructed the raters about the three categories of DtC and asked them to fit their
opinions within our scale of slight, moderate, and high (as we discussed in Section 3.2).
In other words, they were not free to fill their own categorization of DtC in the DtC
column. However, they could add comments (in the Comments column) to inform how
they would categorize the concerns in case they disagreed.

We did not impose a deadline for raters to tag and return the dataset. We saw this
as a way to give them all time they needed to evaluate the dataset with attention.

4.3.3 The Raters

As a way to count on precise technical/theoretical opinions from specialists, we selected
raters who met the following requirements:

1. The specialists should have experience in the development of software projects: this
was important because we wanted to collect their opinions regarding our method
in general and not only about the identified concerns. They could empower us with
reliable opinions about different aspects of our method and help us to identify new
ways to identify and analyze concerns;

2. Although we needed the specialists to have experience in software development, we
did not limit the choice of candidates to ones with professional experience only:
in other words, we also regarded having academic experience as a valuable aspect
to select raters. We saw this as a way to complement specialists’ practical opin-
ions with theoretical viewpoints. Santos and Travasso (2011) consider that mixing
professional and academic experience is vital for the relevance of scientific results.
Ideally, the results must be useful and applicable in both industrial and academic
environments.

56 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

One of the raters has been working as software developer for 14 years and he/she has
a specialization in software engineering (lato sensu) and is currently enrolled in a master
degree program (computer science).

The second rater worked for 10 years as a system analyst and has been teaching
software engineering and development in a Brazilian public educational institute. He/she
has a specialization in information systems engineering (lato sensu) and is also engaged
in a master degree program.

We needed an extra rater during the third round of dataset tagging (more details
in Section 4.4.3). He/she has a master degree in computer science and has professional
experience too. For the last 8 years, the rater has been participating in software projects
as a programmer and software architect and engineer.

All raters have experience in developing java-based software projects. This is impor-
tant because all projects mentioned in Table 4.1 were written in Java.

We selected the raters via “convenience sampling” (KITCHENHAM; PFLEEGER,
2002). We invited the three raters from the same post-graduation program4. As the
author of this work is also attending the program, it was convenient to select raters from
a local group of students. According to Kitchenham and Pfleeger (2002), a problem may
arise from this approach: people who are available and willing to participate may differ
in important ways from those who are not willing. For instance, as being colleagues,
they may tend to favor our method. However, throughout the phases of our study, we
constantly reinforced to raters that their impartial opinions would be very important to
enhance our method and tool. They should stick to their beliefs regarding the identifica-
tion and analysis of concerns.

4.4 ROUNDS OF ACTION RESEARCH

We designed our study to evolve through rounds of interaction with the raters. With
each round, we took the opportunity to enhance our method and tool according to raters’
opinions and suggestions. Through the next sections (1 section per round, in a total of
3 rounds), we discuss how we materialized the two last phases of the reporting template
proposed by Santos and Travassos (2011):

1. Evaluation and Analysis: it must describe the data analysis process and its findings.
Santos and Travassos (2011) emphasizes that the data analysis must keep an explicit
link between the results obtained from the collected data (the tagged dataset from
raters, in our case) and the study’s goal(s). This preserves the traceability of the
outcomes to the diagnosed problem and assists in giving rigor to the research;

2. Reflections and Learning: it is responsible for exploring the results of the study in
comparison to the state of art. Additionally, study’s results must depict the learning
experience of the participants. We highlight that we also learned as researchers
as we gradually became aware of the problems and suggestions reported by the
specialists through the rounds of evaluation. As stated by Staron (2020), through

4http://wiki.dcc.ufba.br/PGComp/

4.4 ROUNDS OF ACTION RESEARCH 57

co-development, researchers and practitioners learn from each other, and thus they
develop findings which contribute to both the practice and academic theories, tools,
methods, and knowledge development.

Action research studies allow researchers to return to the Diagnostic phase after
going through “Evaluation and Analysis” and “Reflections and Learning”. According to
Santos and Travassos (2011) this is not mandatory and researchers may decide to return
to the template’s early phases only if they think it is necessary, as in face of circumstance
that require redesigning the study. As an example, they mention the following situation:
“the researcher can return to the diagnosis stage after an initial attempt to plan the
study has not been completed because of a lack of better problem description”. Except
for lowering the number of records of the agreement spreadsheets (more information
in Section 4.4.1.2), we did not need to modify our study’s initial settings drastically.
Therefore, through the next sub-sections, we describe a sequence of evaluation/learning
cycles without revisiting Diagnostic, Planning and Actions stages between rounds.

Lastly, as shown in Figure 4.1, we conduct an extra round of investigation by con-
ducting an semi-structured interview with the raters. The following contextualizes the
use of semi-structured interviews (LONGHURST, 2003):

Structured interviews follow a predetermined and standardised list of questions. The ques-
tions are always asked in almost the same way and in the same order. At the other end
of the continuum are unstructured forms of interviewing such as oral histories... The
conversation in these interviews is actually directed by the informant rather than by the
set questions. In the middle of this continuum are semi-structured interviews. This form
of interviewing has some degree of predetermined order but still ensures flexibility in the
way issues are addressed by the informant

We opted for semi-structured interviews because, although the interviewer prepares a list
of predetermined questions, semi-structured interviews are also conversational and they
offer to participants the chance to explore issues they feel are important (LONGHURST,
2003). We believe that this aspect has potential to gather more knowledge from the raters
as it allows them to elaborate more about their considerations and provide suggestions
regarding our method. We also take the opportunity to elucidate some controversial
questions that emerged during the rounds of evaluation.

4.4.1 Round 1

Running our study’s rounds required sending evaluation packages to raters. The packages
exposed some information concerning our rationale to take advantage of raters’ know-
how. For instance, they received a copy of one of our papers (CARVALHO; NOVAIS;
MENDONÇA, 2018). The paper contains some details about how our method works. We
wanted the specialists to grow more familiarized with our method and tool, so that, with
each round of evaluation, they could provide us with deeper insights and suggestions.
We also sent to them: (i) a spreadsheet written in the format exhibited in Table 4.2 and

58 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

(ii) systems’ source code files from which we extracted concerns. Explicitly exposing our
line of reasoning regarding concerns identification sides with one of the primary goals of
action research (SANTOS; TRAVASSOS, 2011): reaching a self-changing process that
is not only observed by researchers but it is also influenced by them. Plus, researchers
must be able to interpret the field under investigation, plan and conduct interventions,
formulate concepts and theories, and prepare explanations. We explored many of these
dimensions through the rounds of our study.

4.4.1.1 Evaluation and Analysis

After both raters sent us the tagged datasets, we ran them through the kappa co-
efficient. Considering a simple percentage calculation, they agreed with 74.2% of the
concerns identified by AKS. We reached 0.28 in the kappa’s agreement scale, i.e., a
“Fair” strength of agreement, as exhibited in Table 2.2 (in Section 2.8). This means:
although the raters agreed with the majority of the identified concerns (74.2%), their
opinions did not align enough to grant us a higher level agreement. We then consulted
the information they inserted in the Comment column of the dataset. In next sections,
we provide further details about their comments and how we used them to adapt and
improve our method and tool.

4.4.1.2 Reflections and Learning

Skipping the analysis of annotations was one of the first problems that raters identified.
Annotations are constructs for declaratively associating additional metadata information
to program elements. The extra metadata can be used for different purposes, such as:
guidance for the compiler, compile-time or deployment-time processing, and runtime
processing (YU et al., 2018). For instance, the following source code fragment (in Listing
4.1) shows one of the classes that the raters analyzed. Developers added test related
annotations throughout the source code of the WebServerTest class (lines highlighted
in green): @After (line 27) and @Test (e.g., lines 32, 37, 43). According to raters, this
class’ DtC should be categorized as high considering the “Test” concern. However, AKS
classified it as slight because it did not process the annotations. We found several other
examples of annotations being used to implement concerns in the source code of the
analyzed projects.

Listing 4.1 Test Annotations

1 package org . ka i rosdb . core . http ;
2
3 import com . goog l e . common . i o . Resources ;
4 import org . apache . http . conn . HttpHostConnectException ;
5 import org . j u n i t . After ;
6 import org . j u n i t . Test ;
7 import org . ka i rosdb . core . except ion . KairosDBException ;
8 import org . ka i rosdb . t e s t i n g . C l i en t ;
9 import org . ka i rosdb . t e s t i n g . JsonResponse ;

4.4 ROUNDS OF ACTION RESEARCH 59

10
11 import java . i o . IOException ;
12 import java . net . UnknownHostException ;
13 import java . s e c u r i t y . KeyManagementException ;
14 import java . s e c u r i t y . KeyStoreException ;
15 import java . s e c u r i t y . NoSuchAlgorithmException ;
16 import java . s e c u r i t y . UnrecoverableKeyException ;
17 import java . s e c u r i t y . c e r t . Ce r t i f i c a t eExc ep t i on ;
18
19 import stat ic org . hamcrest . CoreMatchers . equalTo ;
20 import stat ic org . hamcrest . Matchers . greaterThan ;
21 import stat ic org . j u n i t . Assert . asser tThat ;
22
23 public class WebServerTest {
24 private WebServer s e r v e r ;
25 private Cl i en t c l i e n t ;
26

27 @After
28 public void tearDown () {
29 i f (s e r v e r != null) s e r v e r . stop () ;
30 }
31

32 @Test(expected = NullPointerException.class)

33 public void t e s t cons t ructorNul lWebRoot Inva l id () throws
UnknownHostException {

34 new WebServer (0 , null) ;
35 }
36

37 @Test(expected = NullPointerException.class)

38 public void t e s t s e t SSLSe t t i n g s nu l lKeyS to r ePa th i nva l i d () throws
UnknownHostException {

39 s e r v e r = new WebServer (0 , ” . ”) ;
40 s e r v e r . s e tSSLSet t ings (443 , null , ”password”) ;
41 }
42

43 @Test(expected = IllegalArgumentException.class)

44 public void t e s t s e tSSLSet t ings emptyKeyStorePath inva l id () throws
UnknownHostException {

45 s e r v e r = new WebServer (0 , ” . ”) ;
46 s e r v e r . s e tSSLSet t ings (443 , ”” , ”password”) ;
47 }
48

49 @Test(expected = NullPointerException.class)

50 public void t e s t s e tSSLSe t t i ng s nu l lKeyS to r ePa s sword inva l i d ()
throws UnknownHostException {

51 s e r v e r = new WebServer (0 , ” . ”) ;
52 s e r v e r . s e tSSLSet t ings (443 , ”path” , null) ;
53 }
54

55 @Test(expected = IllegalArgumentException.class)

60 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

56 public void t e s t s e tSSLSet t ings emptyKeyStorePassword inva l id ()
throws UnknownHostException {

57 s e r v e r = new WebServer (0 , ” . ”) ;
58 s e r v e r . s e tSSLSet t ings (443 , ”path” , ””) ;
59 }
60

61 @Test
62 public void t e s t s e tSSLCiphe rSu i t e s emptyC iphe rSu i t e s va l i d ()

throws UnknownHostException {
63 s e r v e r = new WebServer (0 , ” . ”) ;
64 s e r v e r . se tSSLCipherSu i tes (””) ;
65 }
66

67 @Test(expected = NullPointerException.class)

68 public void t e s t s e t SSLC iph e r Su i t e s nu l lC i ph e r Su i t e s i n v a l i d ()
throws UnknownHostException {

69 s e r v e r = new WebServer (0 , ” . ”) ;
70 s e r v e r . se tSSLCipherSu i tes (null) ;
71 }
72

73 @Test
74 public void t e s t s e tSSLPro t o co l s emptyPro to co l s va l i d () throws

UnknownHostException {
75 s e r v e r = new WebServer (0 , ” . ”) ;
76 s e r v e r . s e tSSLProtoco l s (””) ;
77 }
78

79 @Test(expected = NullPointerException.class)

80 public void t e s t s e t S SLP r o t o c o l s n u l l P r o c o t o l i n v a l i d () throws
UnknownHostException {

81 s e r v e r = new WebServer (0 , ” . ”) ;
82 s e r v e r . s e tSSLProtoco l s (null) ;
83 }
84

85 @Test
86 public void t e s t con s t ru c t o rNu l lAddr e s sVa l i d () throws

UnknownHostException {
87 WebServer webServer = new WebServer (null , 0 , ” . ”) ;
88
89 asser tThat (webServer . getAddress () . getHostName () , equalTo (”

l o c a l h o s t ”)) ;
90 }
91

92 @Test
93 public void tes t constructorEmptyAddressVal id () throws

UnknownHostException {
94 WebServer webServer = new WebServer (”” , 0 , ” . ”) ;
95
96 asser tThat (webServer . getAddress () . getHostName () , equalTo (”

l o c a l h o s t ”)) ;
97 }

4.4 ROUNDS OF ACTION RESEARCH 61

98

99 @Test
100 public void t e s t SSL su c c e s s ()
101 throws KairosDBException , IOException ,

UnrecoverableKeyException , Ce r t i f i c a t eExcep t i on ,
102 NoSuchAlgorithmException , KeyStoreException ,

KeyManagementException ,
103 Inter ruptedExcept ion {
104 St r ing keyStorePath = Resources . getResource (” keys to r e . j k s ”) .

getPath () ;
105 St r ing keyStorePassword = ” t e s t i n g ” ;
106 s e r v e r = new WebServer (0 , ” . ”) ;
107 s e r v e r . s e tSSLSet t ings (8443 , keyStorePath , keyStorePassword) ;
108 . . .
109 }
110

111 @Test(expected = HttpHostConnectException.class)

112 public void test noSSL ()
113 throws KairosDBException , IOException ,

UnrecoverableKeyException , Ce r t i f i c a t eExcep t i on ,
114 NoSuchAlgorithmException , KeyStoreException ,

KeyManagementException ,
115 Inter ruptedExcept ion {
116 St r ing keyStorePath = Resources . getResource (” keys to r e . j k s ”) .

getPath () ;
117 St r ing keyStorePassword = ” t e s t i n g ” ;
118 s e r v e r = new WebServer (0 , ” . ”) ;
119 . . .
120 }
121

122 @Test
123 public void test SSL and HTTP success ()
124 throws KairosDBException , IOException ,

UnrecoverableKeyException , Ce r t i f i c a t eExcep t i on ,
125 NoSuchAlgorithmException , KeyStoreException ,

KeyManagementException ,
126 Inter ruptedExcept ion {
127 St r ing keyStorePath = Resources . getResource (” keys to r e . j k s ”) .

getPath () ;
128 St r ing keyStorePassword = ” t e s t i n g ” ;
129 s e r v e r = new WebServer (9001 , ” . ”) ;
130 s e r v e r . s e tSSLSet t ings (8443 , keyStorePath , keyStorePassword) ;
131 . . .
132 }
133

134 @Test
135 public void t e s t bas i cAuth unauthor i z ed ()
136 throws KairosDBException , IOException , Inter ruptedExcept ion {
137 s e r v e r = new WebServer (9001 , ” . ”) ;
138 s e r v e r . s e tAuthCredent ia l s (”bob” , ”bobPassword”) ;
139 . . .
140 }

62 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

141

142 @Test
143 public void t e s t ba s i cAuth au tho r i z ed ()
144 throws KairosDBException , IOException , Inter ruptedExcept ion {
145 s e r v e r = new WebServer (9001 , ” . ”) ;
146 s e r v e r . s e tAuthCredent ia l s (”bob” , ”bobPassword”) ;
147 . . .
148 }
149 }

Even though we reduced the agreement dataset down to 230 records, raters complained
about the excess of effort required by the manual verification of source code samples.
Consequently, we decided to reduce the dataset even more after a brief discussion with
the raters. Basically, we asked them what number of records they thought would be
enough to tag comfortably. We ended up with 120 records. Such a smaller amount of
records did not jeopardize the precision of our evaluation as we noticed that there are not
so many possibilities about how to analyze the relationship between source code artifacts
and concerns. As a consequence, our initial 230-records-long agreement dataset contained
several repeated cases of association between artifacts and concerns. We concluded that a
120 records-long dataset would suffice for evaluating our approach while avoiding fatiguing
the raters.

As another way to help the raters to analyze source code samples, we took the op-
portunity to expand ASK’ concerns manipulation capabilities. To help raters to visually
identify the implementation of concerns, we added annotating routines to AKS. We made
it possible for AKS to add annotations to locate pieces of the source code that implement
a concern. For example, in Listing 4.2, the import of “javax.validation.Valid” is asso-
ciated with the “Validation” concern. AKS adds the @Concern annotation to indicate
the elements of the source code (highlighted in green) that are used to implement this
concern (lines 5, 13, and 19).

Listing 4.2 @Concern Annotation

1 package org . ka i rosdb . core . http . r e s t . j s on ;
2
3 import org . codehaus . jackson . annotate . JsonCreator ;
4

5 @Concern(name=”Validation”)

6 import javax . v a l i d a t i o n . Val id ;
7 import java . u t i l . Co l l e c t i o n s ;
8 import java . u t i l . L i s t ;
9

10 public class Metr icRequestL i s t {
11 @Valid Lis t<NewMetricRequest> metr icsRequest ;
12

13 @Concern(name = ”Validation”)

14 @JsonCreator
15 public Metr icRequestL i s t (L i s t<NewMetricRequest> metr icsRequest) {
16 this . metr icsRequest = metr icsRequest ;
17 }

4.4 ROUNDS OF ACTION RESEARCH 63

18

19 @Concern(name = ”Validation”)

20 public List<NewMetricRequest> getMetr icsRequest () {
21 return Co l l e c t i o n s . unmod i f i ab l eL i s t (metr icsRequest) ;
22 }
23 }

The addition of concerns-related annotations might help us to expand the use of
our method in the future. It can be used by developers to indicate concerns that AKS
cannot detect. For instance, the annotations can enable the mapping of concerns that
are implemented without the injection of third-party components.

Arguably, embedding annotations in the source could persuade the raters to focus
only on the annotated parts during the tagging. Being aware of this threat, we instructed
them to consider the annotations merely as indicators of the items that AKS processes
to spot concerns and their opinions should always prevail above this. In other words, we
stressed to raters that they could use the annotations to track the elements which AKS
analyzes while it evaluates the association between source code artifacts and concerns.
They should keep on criticizing our categorization of concerns according to their own
point of view.

One of the raters did not agree with categorizing java interfaces ’ DtC. This means:
he/she agreed about the fact that the interfaces were actually linked to some concerns
through imported components, but he/she could not determine the value of DtC without
the methods’ bodies of code. We had two options to manage this situation: (i) perform
the evaluation only on artifacts whose classes have methods with body of code (and ex-
clude interfaces); or (ii) try to persuade the rater to evaluate the DtC of interfaces. We
opted for the second and confronted him/her with the following rationale:

Although the lack of methods’ body of code can make the categorization of DtC difficult,
there is still a possibility if the interface’s methods’ declarations are taken into account.
For instance, someone can categorize DtC by considering the types of parameters and re-
turn declarations. The resulting relationship between the interface and such types reflects
the actual desire of developers to determine which concerns the interface’s children classes
must implement. In this moment, a relationship is conceptually established between the
interface and the concerns.

4.4.2 Round 2

We carried out the aforementioned improvements and adaptations. We also asked the
rater who refused to analyze interfaces to reconsider his/her opinion. We randomly
(re)selected new source code samples and generated a new agreement spreadsheet. This
means: the source code snippets that raters analyzed in the second round differed from
those that we sent to them in the first round. We checked the new samples to assure
that they contained examples related to the problems that the raters identified in the
first round before sending the new evaluation package. Doing this is important because
we wanted them to re-evaluate the same cases and provide new opinions about them.

64 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

4.4.2.1 Evaluation and Analysis

This time, the processing of kappa gave us 0.26 (strength of agreement = “Fair”). They
agreed with 83.2% of the concerns that AKS identified and categorized according to our
DtC metric. As we were not satisfied with the strength of agreement, once again, we
counted on the raters’ comments to refine our method and AKS.

4.4.2.2 Reflections and Learning

Unfortunately, the rater who did not want to evaluate interfaces did not agree with
our argument. His/her decision impacted our action research study. We decided to: (i)
not remove the processing of interfaces from our method and tool. As the other rater did
not complain about tagging interfaces, we want to make our method available to anyone
interested in analyzing this type of class5; (ii) exclude interfaces from the agreement
dataset. The raters would not agree about the categorization of concerns because one of
them would never give his/her opinion about interfaces.

Our method classified the source code exhibited in Listing 4.3 as moderately dedi-
cated to implement the “Database” concern (a moderate DtC), but one the raters did
not agree. He/She pointed out that DtC should be categorized as high because all
non-empty methods of the class focus on the implementation of the concern. Then, we
modified AKS to skip processing empty methods like NoopSuggestBackendReporter
and reportWriteDroppedByRateLimit (lines 9 and 18, in gray). Actually, the in-
clusion of empty methods dilutes DtC, as the MD metric calculates a ratio between the
number of methods that reference a concern (NOR) and the total number of artifacts’
methods (NOM). As the rater pointed out that it is not possible the determine the DtC
of methods that have no body of code, they should not take part in the measurement.

Listing 4.3 Moderate DtC from empty methods

1 package com . s p o t i f y . h e r o i c . s t a t i s t i c s . noop ;
2
3 @Concern (name=”Database”)
4 import com . s p o t i f y . h e r o i c . s t a t i s t i c s . SuggestBackendReporter ;
5 @Concern (name=”Database”)
6 import com . s p o t i f y . h e r o i c . sugges t . SuggestBackend ;
7
8 public class NoopSuggestBackendReporter implements

SuggestBackendReporter {

9 private NoopSuggestBackendReporter() {}

10
11 @Concern (name = ”Database”)
12 @Override
13 public SuggestBackend decorate (f ina l SuggestBackend backend) {
14 return backend ;
15 }
16

5The processing or exclusion of interfaces can be parameterized during the execution of AKS.

4.4 ROUNDS OF ACTION RESEARCH 65

17 @Override

18 public void reportWriteDroppedByRateLimit() {}

19
20 private stat ic f ina l NoopSuggestBackendReporter i n s t ance = new

NoopSuggestBackendReporter () ;
21
22 @Concern (name = ”Database”)
23 public stat ic NoopSuggestBackendReporter get () {
24 return i n s t anc e ;
25 }
26 }

The raters mentioned cases in which our method failed to associate components with
concerns. The source code excerpt in Listing 4.4 illustrates this situation. From line 16 to
29, OpenCensusApplicationEventListener class imports several components (high-
lighted in yellow) to implement the “Web App Support” concern (in green). However,
one of the raters argued that the “javax.ws.rs.*” (lines 14 and 15, in yellow) should also
be associated with this concern. In other words, we associated all components identified
as “javax.ws.rs.*” with the “Service-Orientation” concern because they are often used
to implement restful web services. The rater noticed that the DtC would be different
if we also associated “javax.ws.rs.*” with the “Web App Support” concern. According
to his/her opinion: implementing restful web services is a way to add “web app sup-
port” to a system. We accepted this observation and modified our method and AKS to
allow the overlapping of associations between concerns and imported components, e.g.,
associating both “Service-Orientation” and “Web App Support” with the import of the
“javax.ws.rs.*” component.

Listing 4.4 Overlapping of Concerns

1 package com . s p o t i f y . h e r o i c . http . t r a c i n g ;
2
3 import stat ic java . t ex t . MessageFormat . format ;
4
5 import i o . opencensus . t r a c e . Attr ibuteValue ;
6 import i o . opencensus . t r a c e . Span ;
7 import i o . opencensus . t r a c e . Status ;
8 import i o . opencensus . t r a c e . Tracer ;
9 import i o . opencensus . t r a c e . Tracing ;

10 import java . u t i l . ArrayList ;
11 import java . u t i l . L i s t ;
12 import java . u t i l .Map;
13 import java . u t i l . stream . Co l l e c t o r s ;

14 import javax.ws.rs.container.ContainerRequestFilter;

15 import javax.ws.rs.container.ContainerResponseFilter;

16 @Concern(name=”Web App Support”)

17 import org.glassfish.jersey.server.ContainerRequest;

18 @Concern(name=”Web App Support”)

19 import org.glassfish.jersey.server.ContainerResponse;

20 @Concern(name=”Web App Support”)

66 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

21 import org.glassfish.jersey.server.model.Invocable;

22 @Concern(name=”Web App Support”)

23 import org.glassfish.jersey.server.monitoring.ApplicationEvent;

24 @Concern(name=”Web App Support”)

25 import org.glassfish.jersey.server.monitoring.ApplicationEventListener;

26 @Concern(name=”Web App Support”)

27 import org.glassfish.jersey.server.monitoring.RequestEvent;

28 @Concern(name=”Web App Support”)

29 import org.glassfish.jersey.server.monitoring.RequestEventListener;

30
31 class OpenCensusAppl icat ionEventListener implements

Appl i ca t i onEventL i s t ener {
32 private f ina l Tracer g l oba lTrace r = Tracing . getTracer () ;
33 private f ina l OpenCensusFeature . Verbos i ty v e rbo s i t y ;
34
35 . . .

The following are other concerns whose categories we overlapped following the same
suggestion: (i) “Encryption” and “Security”: as encryption is often used to implement
security; (ii) “Tracing” and “Monitoring”: a tracing operation can serve as a way to
monitor a system; and (iii) “Graph Computing” and “Mathematical Processing”: we
noticed that routines used to support graph computing are often based on mathematical
processing of data. So, we added special structures and routines to AKS to support the
overlapping of concerns.

One of the raters warned us that we were missing some concerns. He/she noticed that
we were not parsing all POM/Gradle files of the projects because developers may scatter
the information about third-party components. Figure 4.3 exemplifies this situation.
Developers of Heroic embedded many POM files in its source code. First versions of
AKS was capable of parsing only the main POM file stored in the root folder of projects,
which is the usual location of POMs (highlighted in red). We then enabled AKS to mine
concerns from several scattered POM/Gradle files (in blue).

4.4.3 Round 3

We restarted the study after implementing the aforementioned modifications and addi-
tions. We sent a new agreement dataset to raters after selecting new random samples
of code snippets. Unfortunately, one of the raters stopped replying to our requests to
participate in the third round of evaluation. So, we had to replace him/her.

4.4.3.1 Evaluation and Analysis

We obtained 0.55 from kappa (strength of agreement = “Moderate”) after the raters
tagged the dataset. Considering a simple percentage calculation, they agreed with 84.2%
of AKS’ diagnoses. We then decided to end the study. We discuss more details about
this decision through the next sub-sections.

4.4 ROUNDS OF ACTION RESEARCH 67

Figure 4.3 Heroic’s Tree of POM Files

4.4.3.2 Reflections and Learning

It is debatable that replacing one of the raters could break the succession of contributions
to our study as, with each round, raters grew more knowledgeable about our method and
could keep on raising insightful questions and suggestions. However, we replaced only
one of them while keeping the other, and we assured that the new rater had the necessary
academic and professional experience to help us conducting our study.

Our method applies static analysis on source code artifacts to find concerns and
categorize the DtC between them. Thus, it is restrained to what we can achieve from
the Abstract Syntax Trees (AST) extracted from the artifacts. As a consequence, our
method may lack a precision that semantically-enriched approaches can accomplish. For
instance, we categorized as slightly dedicated the relationship between the source code
excerpt exhibited in Listing 4.5 and the “Geospatial Processing” concern (lines 6, 8,
47, and 68, in green). One of the raters disagreed because he took other aspects into
account: many occurrences of the word “spatial” (from line 17 to 22, in gray) suggests
that the artifact focus on demonstrating how a spatial search is performed. AKS did
not process these pieces of information because MVNRepository categorize “lucene” as a

68 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

“Full-Text Indexing Library”6 and, accordingly, we chose the “Text Processing” concern
to represent it. If we had enabled AKS to process keywords and associate them with
concerns via semantic processing mechanisms, we would have an additional resource to
refine the identification of concerns: associating the “spatial” keyword of lucene import
declarations with “geospatial processing”.

Listing 4.5 Using Parts of Other Imports to Refine DtC

1 package org . janusgraph . d i s k s t o r ag e . lucene ;
2
3 import com . goog l e . common . base . Precond i t i ons ;
4 import com . goog l e . common . c o l l e c t . ImmutableMap ;
5 import com . goog l e . common . c o l l e c t . Set s ;

6 @Concern(name=”Geospatial Processing”)

7 import org . l o c a t i on t e ch . s p a t i a l 4 j . context . Spat ia lContext ;

8 @Concern(name=”Geospatial Processing”)

9 import org . l o c a t i on t e ch . s p a t i a l 4 j . shape . Shape ;
10 import org . janusgraph . core . a t t r i b u t e . Geoshape ;
11 import org . janusgraph . u t i l . system . IOUt i l s ;
12 import org . apache . lucene . a n a l y s i s . Analyzer ;
13 import org . apache . lucene . a n a l y s i s . standard . StandardAnalyzer ;
14 import org . apache . lucene . document . ∗ ;
15 import org . apache . lucene . index . ∗ ;
16 import org . apache . lucene . s earch . ∗ ;

17 import org . apache . lucene . spatial . Spa t i a l S t r a t e gy ;

18 import org . apache . lucene . spatial . p r e f i x . Recur s ivePre f i xTreeSt ra t egy ;

19 import org . apache . lucene . spatial . p r e f i x . t r e e . GeohashPref ixTree ;

20 import org . apache . lucene . spatial . p r e f i x . t r e e . Spa t i a lP r e f i xTr e e ;

21 import org . apache . lucene . spatial . query . Spat ia lArgs ;

22 import org . apache . lucene . spatial . query . Spat ia lOperat ion ;

23 import org . apache . lucene . s t o r e . D i r ec to ry ;
24 import org . apache . lucene . s t o r e . FSDirectory ;
25 import org . j u n i t . Before ;
26 import org . j u n i t . Test ;
27
28 . . .
29
30 /∗∗ @author Matthias Broeche ler (me@matthiasb . com) ∗/
31 public abstract class LuceneExample {
32
33 public stat ic f ina l F i l e path = new F i l e (”/tmp/ lucene ”) ;
34 private stat ic f ina l St r ing STR SUFFIX = ” s t r ” ;
35 private stat ic f ina l St r ing TXT SUFFIX = ” tx t ” ;
36
37 private stat ic f ina l int MAXRESULT = 10000 ;
38
39 private f ina l Map<Str ing , Spat i a lS t ra t egy> s p a t i a l = new HashMap

6Apache describes it as a “full-featured text search engine library written entirely in Java”
(https://lucene.apache.org/core/

4.4 ROUNDS OF ACTION RESEARCH 69

<>() ;
40 private f ina l Spat ia lContext ctx = Spat ia lContext .GEO;
41
42 @Before
43 public void setup () {
44 . . .
45 }
46

47 @Concern(name = ”Geospatial Processing”)

48 private Spa t i a l S t r a t e gy g e tSpa t i a l S t r a t e gy (St r ing key) {
49 Spa t i a l S t r a t e gy s t r a t e gy = s p a t i a l . get (key) ;
50 i f (s t r a t e gy == null) {
51 f ina l int maxLevels = 11 ;
52 Spa t i a lP r e f i xTr e e g r id = new GeohashPref ixTree (ctx , maxLevels)

;
53 s t r a t e gy = new Recur s i vePre f i xTreeSt ra t egy (gr id , key) ;
54 s p a t i a l . put (key , s t r a t e gy) ;
55 }
56 return s t r a t e gy ;
57 }
58
59 @Test
60 public void example1 () throws Exception {
61 . . .
62 }
63
64 private Set<Str ing> ge tResu l t s (IndexSearcher searcher , TopDocs

docs) throws IOException {
65 . . .
66 }
67

68 @Concern(name = ”Geospatial Processing”)

69 void indexDocs (IndexWriter wr i te r , S t r ing documentId , Map<Str ing ,
Object> docMap)

70 throws IOException {
71 Document doc = new Document () ;
72
73 F i e ld documentIdField = new S t r i n gF i e l d (” docid ” , documentId ,

F i e ld . Store .YES) ;
74 doc . add (documentIdField) ;
75
76 for (Map. Entry<Str ing , Object> kv : docMap . entrySet ()) {
77 St r ing key = kv . getKey () ;
78 Object va lue = kv . getValue () ;
79
80 i f (va lue instanceof Number) {
81 f ina l Fie ld f i e l d ;
82 i f (va lue instanceof I n t eg e r | | value instanceof Long) {
83 f i e l d = new LongPoint (key , ((Number) va lue) . longValue ()) ;
84 } else { // doub le or f l o a t
85 f i e l d = new DoublePoint (key , ((Number) va lue) . doubleValue

()) ;

70 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

86 }
87 doc . add (f i e l d) ;
88 } else i f (va lue instanceof St r ing) {
89 St r ing s t r = (St r ing) va lue ;
90 F i e ld f i e l d = new TextFie ld (key + TXT SUFFIX, s t r , F i e ld .

Store .NO) ;
91 doc . add (f i e l d) ;
92 i f (s t r . l ength () < 256) f i e l d = new S t r i n gF i e l d (key +

STR SUFFIX , s t r , F i e ld . Store .NO) ;
93 doc . add (f i e l d) ;
94 } else i f (va lue instanceof Geoshape) {
95 Shape shape = ((Geoshape) va lue) . getShape () ;
96 for (Indexab l eF i e ld f : g e tSpa t i a l S t r a t e gy (key) .

c r e a t e I nd exab l eF i e l d s (shape)) {
97 doc . add (f) ;
98 }
99 } else throw new I l l ega lArgumentExcept ion (”Unsupported type : ”

+ value) ;
100 }
101
102 wr i t e r . updateDocument (new Term(” docid ” , documentId) , doc) ;
103 }
104 }

AKS determined that the source code in Listing 4.6 is highly dedicated to implement
the “Validation” concern (in green, in lines 3, 8, 15, 24, 30, 51, and 61) because of the
use of components responsible for performing validations (lines 4, 9, and 16, in yellow).
There is actually a strong relationship between the artifact and “Validation” throughout
lines of code, but we could refine our method and AKS if we considered some of its
semantic elements. For instance, the description provided in line 18 (in gray). It is
a clear statement about the purpose of the class: “groups data points by tag names”.
The statement convinced one of the raters to disagree with the categorization of DtC as
high because it points to a purpose other than “Validation”. He/she categorized it as
moderate.

Listing 4.6 Using Descriptions to Refine DtC

1 package org . ka i rosdb . core . groupby ;
2

3 @Concern(name=”Validation”)

4 import org.apache.bval.constraints.NotEmpty;

5 import org . ka i rosdb . core . DataPoint ;
6 import org . ka i rosdb . core . aggregator . annotat ion .GroupByName ;
7

8 @Concern(name=”Validation”)

9 import javax.validation.constraints.NotNull;

10 import java . u t i l . ArrayList ;
11 import java . u t i l . Co l l e c t i o n s ;
12 import java . u t i l . L i s t ;
13 import java . u t i l .Map;
14

4.4 ROUNDS OF ACTION RESEARCH 71

15 @Concern(name=”Validation”)

16 import static com.google.common.base.Preconditions.checkNotNull;

17

18 @GroupByName(name = ”tag”, description = ”Groups data points by tag names”)

19 public class TagGroupBy implements GroupBy {
20 @NotNull @NotEmpty private List<Str ing> tags ;
21
22 public TagGroupBy () {}
23

24 @Concern(name = ”Validation”)

25 public TagGroupBy(Lis t<Str ing> tagNames) {
26 checkNotNull (tagNames) ;
27 this . t ags = new ArrayList<Str ing >(tagNames) ;
28 }
29

30 @Concern(name = ”Validation”)

31 public TagGroupBy(St r ing . . . tagNames) {
32 this . t ags = new ArrayList<Str ing >() ;
33 Co l l e c t i o n s . addAll (this . tags , tagNames) ;
34 }
35
36 @Override
37 public int getGroupId (DataPoint dataPoint , Map<Str ing , Str ing>

tags) {
38 // Never used . Grouping by t ag s are done d i f f e r e n t l y f o r

performance reasons .
39 return 0 ;
40 }
41
42 @Override
43 public GroupByResult getGroupByResult (int id) {
44 // Never used . Grouping by t ag s are done d i f f e r e n t l y f o r

performance reasons .
45 return null ;
46 }
47
48 @Override
49 public void s e tStar tDate (long s tar tDate) {}
50

51 @Concern(name = ”Validation”)

52 /∗∗

53 ∗ Returns the l i s t o f tag names to group by .
54 ∗

55 ∗ @return l i s t o f tag names to group by
56 ∗/
57 public List<Str ing> getTagNames () {
58 return Co l l e c t i o n s . unmod i f i ab l eL i s t (tags) ;
59 }
60

61 @Concern(name = ”Validation”)

72 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

62 public void setTags (Li s t<Str ing> tags) {
63 this . t ags = tags ;
64 }
65 }

We determined that the code snippet in Listing 4.7 is highly associated with the
“Database” concern. AKS processed the imports in lines 6, 8 and 10 (highlighted in
yellow) and methods in line 15 and 21, and ended up with a high DtC. One of the raters
disagreed and pointed out that developers designed the artifact to perform tests. He/She
pointed out that the name of the class (in grey, in line 13) is more related to “Test”
than to the “Database” concern. According to him/her, DtC should be slight regarding
“Database”.

Listing 4.7 Using Class Names to Refine DtC

1 package org . janusgraph . graphdb . embedded ;
2
3 import org . j u n i t . Be fo reClas s ;
4

5 @Concern(name=”Database”)

6 import org.janusgraph.CassandraStorageSetup;

7 @Concern(name=”Database”)

8 import org.janusgraph.diskstorage.configuration.WriteConfiguration;

9 @Concern(name=”Database”)

10 import org.janusgraph.graphdb.JanusGraphPerformanceMemoryTest;

11
12 /∗∗ @author Matthias Broeche ler (me@matthiasb . com) ∗/

13 public class EmbeddedGraphMemoryPerformance Test extends

JanusGraphPerformanceMemory Test {
14

15 @Concern(name = ”Database”)

16 @BeforeClass
17 public stat ic void s tar tCassandra () {
18 CassandraStorageSetup . startCleanEmbedded () ;
19 }
20

21 @Concern(name = ”Database”)

22 @Override
23 public WriteConf igurat ion ge tCon f i gura t i on () {
24 return CassandraStorageSetup .

getEmbeddedCassandraPartit ionGraphConfiguration (
25 ge tC la s s () . getSimpleName ()) ;
26 }
27 }

The aforementioned examples made us perceive that there is a limit to how the pro-
cessing of AST can replicate raters’ comprehension about the association between source
code and concerns. We believe that refining our method and tool require combining
AST-based analysis with others that can take advantage of semantic elements found in

4.4 ROUNDS OF ACTION RESEARCH 73

the artifacts: names and keywords extracted from packages, fields, classes, methods and
descriptive annotations. We define “semantic elements” as a facet of concerns identifica-
tion and analysis that is related to the meaning of words (as “Test” in the name of class
in Listing 4.7) and sentences (as in the description of the annotation in Listing 4.6).

In Table 4.3 we summarize the evolution of our action research study. The Round col-
umn identifies each of the three rounds of the study. The second column, Confirmations,
displays a simple percentage calculation based on the number of positive answers (“YES”)
provided by the raters when they agreed with the analysis performed by AKS. The third
column shows the evolution of the Strength of Agreement. It is important to notice that
a high percentage of confirmations does not always indicate an adequate agreement (as
in round 1 and 2). The Cohen’s kappa strength of agreement complements and reinforces
the percentage-based evaluation by ensuring the alignment of raters’ opinions.

Table 4.3 Evolution of our Action Research Study

Round Confirmations % Strength of Agreement

1 74.2 0.28 (Fair)
2 83.2 0.26 (Fair)
3 84.2 0.55 (Moderate)

Figure 4.4 shows a distribution of raters’ comments per round. The bars’ heights
correspond to a simple percentage obtained from the number of comments added to
agreement dataset by raters. Rater1 (on the left side of the figure) was responsible for the
highest number of comments. This comes partially, for instance, from him/her refusing
to analyze the DtC of interfaces and methods of abstract classes, which we were still
adding to the dataset up until the second round. Therefore, he/she would complain (in
the comments) about having to tag them. Rater2’s comments peaked in the first round
and reduced during the second and third ones. As he/she became satisfied, his/her later
opinions (in second and third rounds) grew more dispersed and sporadic. We must point
out that we replaced rater1 before running the third round. He/she stopped responding
to our invitations to participate in the study. The “new rater1” tended to agree with the
third round’s spreadsheet’s data because we had already refined our method and tool to
a satisfactory point after the first two rounds.

Table 4.4 summarizes some other few general aspects that we observed from what the
raters filled in the study’s spreadsheets.

We decided to end our action research study after its third round because: (i) reaching
a strength of agreement beyond 0.40 (strength of agreement = “Moderate”) is considered a
good agreement (DONKER; HASMAN; GEIJN, 1993)(MUNOZ; BANGDIWALA, 1997),
which gave us enough precision to conduct other studies (e.g., Study II in Chapter 5);
and (ii) we must evolve our method to consider the processing of source code’s semantic
elements. This is a complex new aspect of our research and it deserves a deeper study
with its own scope of goals and investigation approaches.

74 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

Figure 4.4 Comments by Rater and Round

Table 4.4 Tendencies regarding Raters’ Contributions

Aspect Tendency

Identification of They usually agreed with the identification,
Concerns but we spotted some exceptions
Measurement of When they disagreed with how we measured the
DtC DtC they would preferably point out HIGH

(High Dedication) as the correct value
List of imports Raters did not usually comment about the list

of imports (that we used to identify concerns).
However, we noticed some few exceptions
in raters’ responses during round 2

Details in the One of the raters declined from adding more
Comments details to comments after the first rounda

a As we pointed in Figure 4.4 rater2 became satisfied after the first round. This
contributed for his/her comments’ lack of details later on.

4.4.4 A Semi-structured Interview

After finishing the third round of evaluation, we conducted a semi-structured interview
with the raters. We presented the results of the study and took the opportunity to clarify
some questions and gather some extra feedback from them. We divided the interview
into two parts. In the first part, we presented the results and collected some impressions
and opinions. We took manual notes of what the raters said and arranged them in a new

4.4 ROUNDS OF ACTION RESEARCH 75

presentation. During the second part of the interview, we re-presented the results and
discussed their opinions once again. Splitting the interview gave us a time to think about
raters’ feedback and to compile the body of knowledge that we acquired from them. This
proved to be an advantageous maneuver as it enabled us to better absorb raters’ feedback
and discuss study’s findings in a more systematic manner during the second part of the
interview.

One important result that we discussed with the raters was the fact one of them did
not want to evaluate the DtC of interfaces and methods of abstract classes. The rater
who refused to evaluate the DtC did not participate in the interview because he/she was
the one who stopped responding to our invitations to take part in the third round. The
raters agreed that methods’ declarations and their list of parameters and result types
are good indicators of which concerns are being implemented, but this is subject to the
impact that the interfaces have on the development of systems. If a particular system
relies on the definition of many abstract modules (e.g., interfaces and abstract classes),
it might be insightful to process these types of artifacts. The raters see an advantage in
perceiving how concerns are firstly introduced in software projects at an abstract level
before their realization (as concrete classes).

One of the raters mentioned examples of concerns that are implemented exclusively
with the help of interfaces. For instance, Java Persistence API (JPA)7 is a standard
for connecting applications to databases. Some of its extensions8 relies on annotated
interfaces and developers rarely need to add extra lines of code. According to him/her,
it is important to associate the “Database” concern with JPA-annotated interfaces. In
this case, the processing of interfaces is highly desirable.

The raters agreed that parameterizing our method and AKS to either process or skip
interfaces and abstract methods is a good maneuver. Users of AKS will have how to
adapt the tool to their needs.

We revealed to raters that we would like to enable our method and AKS to process se-
mantic aspects of software projects. They both agreed that in many occasions they could
not agree with the results listed in the agreement dataset because of the non-processing
of artifacts’ semantic elements. They also questioned whether the definition of a “glos-
sary” (or a taxonomy, or an ontology) would have to precede the semantic analysis of
source code. For example, the “Test” concern may appear in different forms. Not rarely,
developers do not follow naming conventions and they may call “Test” as: “Verifica-
tion”/“Verify”, “Evaluation”/“Evaluate”, “AssertThat”, and other similar expressions.
In other words, providing our method and tool with semantic-oriented processing mecha-
nisms depends on knowing the different ways on how developers name concerns through
the codebase.

Although the raters recognized that the semantic processing of concerns is valuable,
one of them stressed that the static analysis is more important. According to him/her, the
source code elements that AKS processes to identify concerns (import declarations, at-
tributes/parameters types, variable declarations) tend to be “constant” assets in software

7https://www.oracle.com/java/technologies/persistence-jsp.html
8The rater mentioned the Spring Data JPA (https://spring.io/projects/spring-data-jpa)

76 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

making. They are intrinsic parts of many programming languages and software systems
cannot be easily made without them. Moreover, developers may fail to adequately ad-
d/describe/comment/annotate source code’s semantic information. So, the processing of
software projects’ semantic elements must be seen as a complementary step to refine the
static analysis, not the other way around.

We also presented the results of our next study to the raters. In Section 5.4, we discuss
their comments about DtC. Additionally, they proposed some practical applications of
our method and tool, which we discuss in Section 7.2.

4.5 THREATS TO VALIDITY

Now, we discuss the threats to validity of our action research study:

Construct validity : this type of threat questions if we succeeded in measuring the
attributes that we needed to measure. We based our method on information about third-
party components which developers add to POM and Gradle files. When MVNRepository
failed to categorize components, we manually filled this information. We consider that
manually filling our own opinions on how to categorize third-part can cause imprecision.
However, we circumvent this impact after we manually and attentively reviewed our
classification of components/concerns.

We reduced the dataset to enable the raters to tag it easier. We wanted to avoid
fatiguing them. The reduction can be seen as detrimental to evaluating our method.
However, we soon noticed that there were not many variations in the way how developers
use third-party components to implement concerns. Consequently, there are not many
ways on how AKS can measure their association with source code artifacts and we are sure
that the agreement spreadsheets that we sent to raters contain examples of all possible
cases.

Internal validity : internal validity is the extent to which evidences support a claim
about cause-effect relationships. Categorizing DtC as any value within our scale (slight,
moderate and high) may have limited raters’ perception. We wonder if inserting other
sub-categories would allow a broader variability of raters’ opinions. Splitting the scale
into more qualitative values would cause more variability in the agreement dataset after
each tagging. However, the raters did not complain about having to use our scale the
same way as they complained about other aspects of our study (e.g., fatigue from having
to read too many source code samples).

External validity : this threat is related to the degree to which our findings can be
generalized. They are restrained to the collection of concerns that we extracted from the
projects listed in Table 4.1. We examined real software projects which have counted on
the contribution of many developers over a (relatively) long history of releases. However,
we did not cover software domains other than the one that we adopted while conducting
the evaluation: non-relational databases. It is desirable to consider a broader context of
domains, applications, and concerns to generalize our conclusions.

We are positive that having only two raters tagging the dataset granted us with some
advantages: (i) two raters suffice for achieving a high evaluation precision via kappa, (ii) it
helped to reduce our workload as we did not have to deal with several study’s participants

4.6 DISCUSSION 77

at the same time, and (iii) a more controlled flow of insights and suggestions that we used
to improve our method and tool. However, we must admit that we could have designed
our action-research study to include a greater number of specialists to help us generalize
our findings even more. Among other effects, it would have forced us to go through more
cycles of interactions. In this case, applying Cohen’s Kappa to deal with multiple (more
than two) raters (CONGER, 1980)(BERRY; JR, 1988) can help replicating this study to
solve this threat.

Conclusion validity : conclusion validity comprises reasons why conclusions based
on an analysis may be incorrect. Although the raters who participated in our study have
expertise in software development, they did not have any previous contact with the source
code samples that we sent to them. The imprecision resides in raters failing to understand
how the samples implement concerns. This is something that only the original developers
can do with more accuracy. Therefore, extra studies must refine our dataset and findings
with the help of actual systems’ development teams. Such deficiency does not discredit
our action research’s achievements though. We trust that the raters’ recommendations
and suggestions are beneficial to the application of our method and to future studies.

4.6 DISCUSSION

We recommend action research studies as a way to avoid misdirection and promote out-
of-box thinking as it enables researchers to count on different viewpoints. As in the
following quote (BAETJER, 1997)(PRESSMAN, 2005):

Software, like all capital, is embodied knowledge and because that knowledge is initially
dispersed, tacit, latent, and incomplete in large measure, software development is a social
learning process. The process is a dialogue in which the knowledge that must become the
software is brought together and embodied in the software. The process provides interac-
tion between users and designers, between users and evolving tools, and between designers
and evolving tools [technology]. It is an iterative process in which the evolving tool itself
serves as the medium for communication, with each new round of the dialogue eliciting
more useful knowledge from the people involved.

AKS is the evolving tool whose output (the agreement dataset) we used as medium
for communicating with stakeholders (the raters). The usefulness of the knowledge which
we acquired from interacting with them empowered our method and AKS with ways
to: (i) extract consistent concern-related information from the use of third-party compo-
nents; and (ii) determine the degree of the association between concerns and source code
artifacts (DtC).

It took us three rounds of evaluation to reach a good strength of agreement. As
informed in Table 4.3 (Section 4.4.3), we achieved a moderate agreement (0.55) and 84%
of confirmations after the third round. In other words, apart from reaching a satisfactory
agreement, a simple percentage calculation showed that raters agreed that AKS correctly
identified the concerns and measured the DtC of 84% of the source code artifacts.

Table 4.5 summarizes raters’ opinions and how they impacted our action research

78 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

study. We believe that our findings can guide other future studies in determining re-
quirements for dealing with the association between concerns and source code artifacts.

Table 4.5 Impact of Raters’ Opinions and Reactions

Opinion/Reaction Rationale Impact

Inclusion of Annotated code is also an Parsing of annotations
annotations indication of associations found in the source code

between concerns and
source code

Fatigue As performing the analysis Addition of annotations
tend to produce a large (@concern) as visual clues
dataset, verification to locate concerns and
becomes tiresome if reducing the size of
done manually the agreement dataset

Processing of Some developers Identification and
multiple POM split the information processing of
and Gradle about components in scattered POM/Gradle
files sub-projects or modules files
Analysis of Interfaces lack methods’ Filtering of interfaces
interfaces body of code. This hinders the out of the dataset when

identification/verification of they are not regarded
concerns and measurement as valuable for concern
of DtC analysis

Analysis of Lacking methods’ body of Skipping the processing
empty methods code disables the of empty methods of

identification/verification of classes
concerns and measurement
of DtC

Overlapping of Some components can refer to Enabling the configuration
concerns more than just one concern of overlapped concerns
Processing of Reaching higher strengths Running future studies to
source code’s of agreement may require advance our method and
semantic elements combining the processing tool into the processing of

of AST with semantic artifacts’ semantic elements
aspects of the source code

Fatiguing the raters seems a natural consequence of investigating concerns because the
manual identification of concerns in large datasets/databases can be tiresome. Therefore,
we consider that developers should be helped whenever they need to perform this kind
of activity. We did our best to automate the classification of concerns with the help of
MVNRepository, as described in Section 3.1.3, but our method still lacks some capabilities

4.6 DISCUSSION 79

to prevent this task from depending on some manual intervention.

Not all concerns which developers implement depend on the injection of components.
Thus, our method can grant only a partial view of the collection of concerns that sys-
tems implement. On the other hand, it enables a consistent analysis of all the concerns
that can be mined from POM/Gradle files’ metadata. This comes from the fact that
the information these files enclose represents developers’ decisions when they need to
implement concerns. In a few words, our method cannot track all concerns that an ap-
plication contain, but it can guarantee certainty regarding the ones which are extracted
from POM/Gradle files.

We did not reveal to the raters the rule and the metrics we used to measure DtC. We
wanted them to freely tag the agreement dataset. A variation of our study can do the
opposite and present the rule and the metrics with the intention to evaluate them. This
may uncover findings that can differ from the ones that we presented in this chapter. By
proposing improvements to the rule and metrics, the specialists would have a chance to
directly influence the way on how our method processes concerns.

Some of the comments that the raters filled in the agreement spreadsheets are not
particular to a specific round of evaluation. For instance, the non-processing of semantic
aspects that we discussed in the third round (Section 4.4.3) was already being notified
by raters since the first rounds (Sections 4.4.1 and 4.4.2). However, during rounds 1
and 2, raters’ suggestions about the processing of static elements of the source code
overwhelmed us. After we adapted our method to address such aspects, we began to
perceive the semantic facets of concerns mining and analysis.

We decided to end the study after its third round. From our interactions with the
raters, we learned that static analysis can replicate the way how they identify concerns
to a moderate degree. Therefore, we believe that we can improve our method by joining
the processing of AST and semantic elements together. For instance, messages of com-
mits that have historically affected artifacts may encapsulate useful information about
concerns. The following is a message found in one of the commits that once updated the
source code exhibited in Listing 4.5 (we highlighted some relevant keywords in yellow):

Add support for indexing line and polygon geometries , querying by polygon geometries ,

and support for geoIntersect , geoContains and geoDisjoint predicates. Support for

indexing multi-point/line/polygon properties is implemented but untested.

Signed-off-by: sjudeng sjudeng@users.noreply.github.com

The message supports the rater’s decision to strongly associate the artifact’s class, “Luce-
neExample”, with the “Geospatial Processing” concern. Thus, enabling our method to
mine and analyze semantic elements of commits’ messages is another good approach.

80 STUDY I – AN ACTION RESEARCH STUDY TO EVALUATE OUR METHOD

4.7 STUDIES THAT USED A SIMILAR APPROACH TO VALIDATE THEIR
METHODS

We recommend the work of Santos and Travassos (2011) to understand the use of action
research methods. We also highlight a paper published by Staron (2020) who delved into
the utilization of action research methods as a potential way to unite computer science
researchers and practitioners from the software industry.

As we trust that the work of Santos and Travassos (2011) and Staron (2020) are good
sources of information about action research studies, here we focus on investigations that
have explored the use of kappa. We want to know more about the application of agreement
coefficients in computer science. Specifically, we are interested in the different contexts
in which researchers conducted tagging of agreement datasets to evaluate methods and
tools: how did they take advantage of raters’ expertise and opinions? How many times
did the raters have to tag a dataset before reaching a relevant strength of agreement?

Mockus and Votta (2000) looked forward to classify reasons for changes from textual
descriptions informed by developers. They compared the classification performed auto-
matically by their tool with the manual classification made by a human agent. Both
should fit each change in one distinct category: corrective, adaptive, perfective, and in-
spection. They reached a high strength of agreement after running the study only once.

Oza and Hall (2005) used kappa to evaluate transcriptions from interviews with soft-
ware specialists. The interviews had the purpose of eliciting the difficulties in managing
offshore software outsourcing. The researchers wanted to extract the major emergent
themes from a dataset of keywords. So they conducted an agreement evaluation to avoid
the bias of having only one rater to categorize the dataset. They ran the evaluation twice
before reaching a significant strength of agreement. In other words, they had to review
their classification of themes according to rater’s opinions at least once.

While exploring different development processes for creating games, O’Hagan, Cole-
man, and O’Connor (2014) conducted a study selection pilot to either exclude or include
papers in a systematic literature review. Two raters, a researcher and a supervisor, filled
their opinions in a dataset about included and excluded studies. It took them only one
single interaction to reach a reliable consensus through kappa.

Ma et al. (2016) evaluated if the relationship between code smells and fault prediction
could be applied to improve the quality of applications. They generated a dataset with
information about different types of smells (e.g., blob classes, complex classes, lazy classes,
anti-singleton) and conducted an action research study with specialists to determine
which smells are more likely to be associated with faults. The study revealed that, in
general, smells have little influence on faults. They had to re-run the study because they
chose four different software projects to take part in the study, i.e., they ran the study
once for each project.

Nayebi et al. (2018) tagged a collection of commits as either trivial or non-trivial.
They wanted to investigate the impact of commits related to the deletion of source code
fragments from mobile applications. They had to run their study only once to reach a
significant strength of agreement.

Saikia and Singh (2018) studied a new way to reduce the ambiguity of requirements

4.8 CONCLUSION 81

elicitation: the use of semantic information contained in requirement documents. Their
method benefits from kappa to classify requirements descriptions as either ambiguous
or unambiguous. Two annotators (or raters) tagged descriptions obtained from real
documents and they reached a considerable strength of agreement after running their
agreement study for the first time.

In general, applying an agreement coefficient is useful when it is necessary to rate
the categorization of a collection of data while avoiding the bias of having one single
specialist to execute the task. Only one of the aforementioned papers ran a study more
than once to achieve an agreement. So, we believe that our decision to reboot evaluations
in response to raters’ opinions is exceptional. We do not see this as a limitation because
going through consecutive cycles of evaluations and interactions is one of the expected
consequences of conducting action research studies (STARON, 2020).

4.8 CONCLUSION

We wanted to validate our method and determine whether it can identify and analyze
concerns from third-party components’ metadata. Additionally, we needed to reduce the
bias of our guesswork regarding the metrics and the rule which we defined to measure
DtC.

We are positive that our decision to combine action research with the kappa granted
our research the necessary rigor while guaranteeing a certain degree of flexibility. The
flexibility resided in going through different rounds of evaluation and having a chance
to adapt our method and tool after each round. Kappa helped us to achieve rigor as it
prevented us from stopping the evaluation after reaching a high (simple) percentage of
approval from raters at the end of the first two rounds.

Conducting a semi-structured interview after the final round of evaluation proved to
be very fruitful. We were able to discuss some controversial opinions that we collected
from raters. For instance, refusal of one of them to evaluate concerns extracted from
interfaces and empty methods of abstract classes. The interview also provided us with
access to specialists’ points of view with respect to the findings of our next study (in
Chapter 4) and some potential applications of our method and tool (in Section 7.2).

Chapter

5
Truth can only be found in one place: the code – Robert “Uncle Bob” C. Martin

STUDY II – ANALYZING THE EVOLUTION OF THE

DEDICATION TO CONCERN

In the previous chapter, we evaluated our method and its strategies to measure our metric,
Dedication to Concern (DtC). Now, we want to take advantage of DtC to look into how
concerns evolve. We want to know which category of DtC (slight, moderate and high) is
more common through the history of software systems.

We conjecture that the following are potential advantages of analyzing the evolution
of DtC:

1. As our method enables maximizing the mining of concerns, researchers and prac-
titioners may end up with massive datasets. So, it is valuable to consider ways to
refine them, e.g., filtering out samples of data whose association between concerns
and source code lacks a significant DtC;

2. Enabling the definition of strategies to refactor source code. Developers may con-
sider it relevant to increase the dedication of artifacts to concerns if AKS detects
the relationship as being slight. For instance, they can modify the way how artifacts
import and use third-party components to reach a higher DtC.

5.1 STUDY DEFINITION

Now, we describe how we conducted this study. We discuss the mining-analysis strategy
which we applied to observe the evolution of DtC. We focus on the mining of concerns from
a particular domain: non-relational database projects. Table 5.1 contains information
about the systems that we mined to generate the study’s dataset. We used AKS to
analyze 43369 files collected from the historical data of the systems.

Figure 5.1 summarizes the study’s activities. To fulfill the first activity we mined
concerns and DtC following our method (described in Chapter 3), and produced a dataset
that contains information about the non-relational databases. We split the dataset into

83

84 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

Table 5.1 Analyzed Projects – Adapted from (CARVALHO; NOVAIS; MENDONÇA, 2020)

Domain Project Description Period Files

Graph JanusGrapha Highly scalable graph database 2017-04 - 2018-10 5668
Neo4Jb High performance graph store 2018-09 - 2018-12 26543

with all the features expected
from a robust database

Titanc Database optimized for 2012-06 - 2015-09 3576
storing and querying
large graphs

Time Series OpenTSDBd Distributed, scalable TS 2015-11 - 2018-12 1440
database

KairosDbe Fast distributed scalable TS 2015-11 - 2018-11 1884
database written on top
of Cassandra

Heroicf A scalable TS database 2014-04 - 2019-02 4258
based on Bigtable, Cassandra
and Elasticsearch

a https://github.com/JanusGraph/janusgraph
b https://github.com/neo4j/neo4j
c https://github.com/thinkaurelius/titan
d https://github.com/OpenTSDB/opentsdb
e https://github.com/kairosdb/kairosdb
f https://github.com/spotify/heroic

two subsets of data to observe the evolution of graph and time series databases separately.
With each subset, we created charts to visualize and analyze the evolution of concerns
and DtC. Then, we gathered insights from visualizations.

We dissociated the analysis of the graph databases from the analysis of the time series
databases. The following is our rationale behind this decision:

1. Despite the fact that we can group graph and time series databases under the same
domain (non-relational databases), their developers might still have different needs
regarding the implementation of concerns;

2. Variations in the way on how developers implement concerns can be seen as a
strategy to enhance our analyses: isolating each of the two types of database as
top-level independent domains can empower us with extracting more concerns being
shared by systems grouped as either graph or time series databases.

We used the mean Lines of Code (m-LOC) metric (KOCH, 2004) to compare the
evolution of DtC as agglomerations1. Considering the fictitious example illustrated in
Figure 5.2, AKS obtains the normalized value for “Test” and “Serialization” agglom-
erations (the circles of the figure) by calculating the mean-LOC (m-LOC) of artifacts

1More information about agglomerations can be found in Appendix C – Section C.1.2

5.1 STUDY DEFINITION 85

Figure 5.1 Summary of this Study

associated with the concerns through the software projects’ evolution. For instance, AKS
normalized the density of the “Test” agglomeration by dividing the sum of LOC mea-
sured from all instances of “class1.java” by the number of times the artifact appeared

86 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

during the evolution. As “class1.java” appeared twice, AKS sums the LOCs of the two
versions of the artifact (50 and 100) and divides the result by two. Doing this adds 75
of m-LOC to “Test”. Similarly, AKS determines the density of “Serialization” (100) by
summing the m-LOC of “class1.java” (75) and the m-LOC of “class2.java”(25). In the
example, “class1.java” imports test-related components and “class2.java” executes test
and serialization routines.

Figure 5.2 DtC Agglomerations

We covered a number of six versions of each system. We selected two versions from
the initial phases of the projects’ history, and two others from recent phases. We chose
the last two ones from somewhere in between the initial and recent phases. This selection
strategy allowed us to observe the evolution of concerns considering different moments of
the software projects’ lifecycles.

5.2 RESULTS

Now, we present the results of our analysis about the evolution of DtC. Figures 5.3 and
5.4 follow the same pattern. They are made of a composition of charts. Each chart shows

5.2 RESULTS 87

the evolution of one particular concern through a series of six versions of the software
projects listed in Table 5.1. The figures exhibit the number of version along the x-axis of
the charts. The y-axis displays the m-LOC of agglomerations associated with the three
categories of DtC: slight, moderate, and high.

Considering the agglomerations exhibited in Figure 5.3, it is possible to notice that
they tend to remain slight through time. “Logging” is an example of this tendency. This
is logical because developers often log several scattered routines of their systems, i.e.,
“Logging” is not self-contained and is less likely to be tiddly separated from other concerns
throughout the codebase. It serves other concerns when it is necessary to register their
execution steps and states.The source code snippet exhibited in Listing 5.1 exemplifies
the auxiliary role of “Logging”.

AKS detected the “Logging” concern in Listing 5.1 because the artifact imports log-
related components (lines 17 and 19, in yellow) and use them in the mutateMany
method (line 61, in gray). Although logging is an important feature, its presence and
use through many source code lines is not mandatory, i.e., even if a developer embeds a
logging component into a source code artifact, he/she may not need to log all routines
performed by the artifact’s methods.

Like “Logging”, other concerns tend to remain slightly associated with artifacts be-
cause they often perform secondary roles during the development of the systems. For
instance, “Service-Orientation” is added to software projects to externalize some func-
tionalities which are served to client applications.

The source code excerpt exhibited in Listing 5.2 exemplifies how “Service-Orientation”
is used in combination with other concerns to respond to client application’s requests.
An import declaration (in line 7, in yellow) ties the source code with the “Service-
Orientation” concern (in line 6, in green). Method shouldRedirectToWebadminOn-
HtmlRequest (in line 64, in gray) uses the imported component. The role of “Service-
Orientation” is auxiliary to the central concern of the artifact: “Test” (specifically, testing
of a Neo4j’s service discovery feature). The artifact is nearly entirely dedicated to per-
form testing routines because of the many test-related annotations preceding its methods
(lines 21, 26, 33, 40, 47, and 64, in gray). As a result, AKS categorized the relationship
between the artifact and “Service-Orientation” as slight.

Listing 5.1 An artifact slightly dedicated to implement “Logging”

1 package org . janusgraph . d i s k s t o r ag e . l o ck i ng . c on s i s t en tk ey ;
2
3 import org . janusgraph . d i s k s t o r ag e . BackendException ;
4 import org . janusgraph . d i s k s t o r ag e . S t a t i cBu f f e r ;
5 import org . janusgraph . d i s k s t o r ag e . BaseTransact ionConf ig ;
6 import org . janusgraph . d i s k s t o r ag e . c on f i g u r a t i on . Con f i gurat i on ;
7 import org . janusgraph . d i s k s t o r ag e . c on f i g u r a t i on . MergedConfigurat ion ;
8 import org . janusgraph . d i s k s t o r ag e . keycolumnvalue . ∗ ;
9 import org . janusgraph . d i s k s t o r ag e . l o ck i ng . LockerProvider ;
10 import org . janusgraph . d i s k s t o r ag e . u t i l . StandardBaseTransact ionConf ig

;
11
12 import java . time . Duration ;
13 import java . u t i l . HashMap ;

88 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

F
ig
u
re

5
.3

G
rap

h
D
atab

ases’
E
v
olu

tion
of

D
tC

5.2 RESULTS 89

14 import java . u t i l .Map;
15

16 @Concern(name=”Logging”)

17 import org.slf4j.Logger;

18 @Concern(name=”Logging”)

19 import org.slf4j.LoggerFactory;

20
21 /∗∗ @author Matthias Broeche ler (me@matthiasb . com) ∗/
22 public class ExpectedValueCheckingStoreManager extends

KCVSManagerProxy {
23
24 private f ina l St r ing l o c kS t o r e Su f f i x ;
25 private f ina l LockerProvider l o cke rProv ide r ;
26 private f ina l Duration maxReadTime ;
27 private f ina l StoreFeatures s t o r eFea tu r e s ;
28
29 private f ina l Map<Str ing , ExpectedValueCheckingStore> s t o r e s ;
30
31 private stat ic f ina l Logger l og =
32 LoggerFactory . getLogger (ExpectedValueCheckingStoreManager .

class) ;
33
34 public ExpectedValueCheckingStoreManager (
35 KeyColumnValueStoreManager storeManager ,
36 St r ing l o ckS t o r eSu f f i x ,
37 LockerProvider l ockerProv ide r ,
38 Duration maxReadTime) {
39 super (storeManager) ;
40 this . l o c kS t o r e Su f f i x = l o c kS t o r e Su f f i x ;
41 this . l o ck e rProv ide r = locke rProv id e r ;
42 this . maxReadTime = maxReadTime ;
43 this . s t o r eFea tu r e s =
44 new StandardStoreFeatures . Bu i lder (storeManager . ge tFeatures ()

) . l o ck i ng (true) . bu i ld () ;
45 this . s t o r e s = new HashMap<Str ing , ExpectedValueCheckingStore >(6)

;
46 }
47
48 @Override
49 public synchronized KeyColumnValueStore openDatabase (S t r ing name)

throws BackendException {
50 i f (s t o r e s . containsKey (name)) return s t o r e s . get (name) ;
51 KeyColumnValueStore s t o r e = manager . openDatabase (name) ;
52 f ina l St r ing lockerName = s t o r e . getName () + l o c kS t o r e Su f f i x ;
53 ExpectedValueCheckingStore wrappedStore =
54 new ExpectedValueCheckingStore (s to re , l o cke rProv ide r .

getLocker (lockerName)) ;
55 s t o r e s . put (name , wrappedStore) ;
56 return wrappedStore ;
57 }
58

90 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

59 @Concern (name = ”Logging”)
60 @Override

61 public void mutateMany(

62 Map¡String, Map¡StaticBuffer, KCVMutation¿¿ mutations, StoreTransaction txh)

63 throws BackendException {

64 ExpectedValueCheckingTransaction etx = (
ExpectedValueCheckingTransaction) txh ;

65 boolean hasAtLeastOneLock = etx . prepareForMutations () ;
66 i f (hasAtLeastOneLock) {
67 // Force a l l mutat ions on t h i s t r an sac t i on to use s t rong

cons i s t ency
68 log . debug (
69 ”Transact ion {} holds one or more l o ck s : wr i t i ng us ing

c on s i s t e n t t r an sa c t i on {} due to held l o ck s ” ,
70 etx ,
71 etx . getCons istentTx ()) ;
72 manager . mutateMany (mutations , etx . getCons istentTx ()) ;
73 } else {
74 log . debug (
75 ”Transact ion {} holds no l o ck s : wr i t i ng mutations us ing

s t o r e t r an sa c t i on {}” ,
76 etx ,
77 etx . ge t Incons i s t entTx ()) ;
78 manager . mutateMany (mutations , etx . ge t Incons i s t en tTx ()) ;
79 }
80 }
81
82 @Override
83 public ExpectedValueCheckingTransaction beg inTransact ion (

BaseTransact ionConf ig c on f i gu r a t i on)
84 throws BackendException {
85 // Get a t r an sac t i on wi thout any guarantees about s t rong

cons i s t ency
86 StoreTransact ion incons i s t en tTx = manager . beg inTransact ion (

c on f i gu r a t i on) ;
87
88 // Get a t r an sac t i on t ha t p rov i de s g l o b a l s t rong cons i s t ency
89 Conf igurat i on customOptions =
90 new MergedConfigurat ion (
91 s to r eFea tu r e s . getKeyConsistentTxConfig () , c on f i gu r a t i on .

getCustomOptions ()) ;
92 BaseTransact ionConf ig cons i s tentTxCfg =
93 new StandardBaseTransact ionConf ig . Bu i lder (c on f i gu r a t i on)
94 . customOptions (customOptions)
95 . bu i ld () ;
96 StoreTransact ion strongCons i stentTx = manager . beg inTransact ion (

cons i s tentTxCfg) ;
97
98 // Return a wrapper around both the i n c on s i s t e n t and c on s i s t e n t

s t o r e t r an sa c t i on s
99 ExpectedValueCheckingTransaction wrappedTx =

5.2 RESULTS 91

100 new ExpectedValueCheckingTransaction (incons i s tentTx ,
strongConsistentTx , maxReadTime) ;

101 return wrappedTx ;
102 }
103
104 @Override
105 public StoreFeatures getFeature s () {
106 return s t o r eFea tu r e s ;
107 }
108 }

Listing 5.2 An artifact slightly dedicated to implement “Service-Orientation”

1 package org . neo4j . s e r v e r . r e s t ;
2
3 import java . u t i l .Map;
4 import javax . ws . r s . core . MediaType ;
5

6 @Concern(name=”Service-Orientation”)

7 import com.sun.jersey.api.client.Client;

8 import org . j u n i t . Before ;
9 import org . j u n i t . Test ;
10
11 import org . neo4j . s e r v e r . r e s t . domain . JsonHelper ;
12
13 import stat ic org . hamcrest . MatcherAssert . as ser tThat ;
14 import stat ic org . hamcrest . Matchers . c on t a i n sS t r i ng ;
15 import stat ic org . j u n i t . Assert . a s s e r tEqua l s ;
16 import stat ic org . j u n i t . Assert . a s s e r tNotNu l l ;
17 import stat ic org . j u n i t . Assert . a s se r tTrue ;
18
19 public class DiscoveryServiceDocIT extends

AbstractRestFunct ionalTestBase {
20 @Before

21 public void cleanTheDatabase() {

22 cleanDatabase () ;
23 }
24
25 @Test

26 public void shouldRespondWith200WhenRetrievingDiscoveryDocument() throws Exception {

27 JaxRsResponse response = getDiscoveryDocument () ;
28 a s s e r tEqua l s (200 , re sponse . ge tSta tus ()) ;
29 response . c l o s e () ;
30 }
31
32 @Test

33 public void shouldGetContentLengthHeaderWhenRetrievingDiscoveryDocument() throws Exception {

34 JaxRsResponse response = getDiscoveryDocument () ;
35 as se r tNotNul l (r e sponse . getHeaders () . get (”Content−Length”)) ;
36 response . c l o s e () ;
37 }

92 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

38
39 @Test

40 public void shouldHaveJsonMediaTypeWhenRetrievingDiscoveryDocument() throws Exception {

41 JaxRsResponse response = getDiscoveryDocument () ;
42 asser tThat (re sponse . getType () . t oS t r i ng () , c on t a i n sS t r i ng (

MediaType .APPLICATION JSON)) ;
43 response . c l o s e () ;
44 }
45
46 @Test

47 public void shouldHaveJsonDataInResponse() throws Exception {

48 JaxRsResponse response = getDiscoveryDocument () ;
49
50 Map<Str ing , Object> map = JsonHelper . jsonToMap (response .

ge tEnt i ty ()) ;
51
52 St r ing managementKey = ”management” ;
53 asse r tTrue (map . containsKey (managementKey)) ;
54 as se r tNotNul l (map . get (managementKey)) ;
55
56 St r ing dataKey = ”data” ;
57 asse r tTrue (map . containsKey (dataKey)) ;
58 as se r tNotNul l (map . get (dataKey)) ;
59 response . c l o s e () ;
60 }
61

62 @Concern(name = ”Service-Orientation”)

63 @Test

64 public void shouldRedirectToWebadminOnHtmlRequest() throws Exception {

65 C l i en t nonRed i r ec t ingCl i ent = Cl i en t . c r e a t e () ;
66 nonRed i r ec t ingCl i en t . s e tFo l l owRed i r e c t s (fa l se) ;
67
68 JaxRsResponse c l i en tResponse =
69 new RestRequest (null , nonRed i r ec t ingCl i en t)
70 . get (s e r v e r () . baseUri () . t oS t r i ng () , MediaType .

TEXT HTML TYPE) ;
71
72 a s s e r tEqua l s (303 , c l i en tResponse . ge tStatus ()) ;
73 }
74
75 private JaxRsResponse getDiscoveryDocument () throws Exception {
76 return new RestRequest (s e r v e r () . baseUri ()) . get () ;
77 }
78 }

We could argue that “Test” is not self-contained because developers add tests com-
ponents to evaluate and validate distinct features of the systems. Thus, “Test” should
always appear in combination with other concerns. However, in Figure 5.3 we show that
AKS detected situations in which the DtC of “Test” evolves as moderate and high. This
comes from developers frequently specializing test routines to deal with specific sets of

5.2 RESULTS 93

functionalities. The specialization stems from a good practice related to tests automa-
tion: single responsibility. This principle is better achieved when test routines focus on
either very few or on one single behavior of a system (RUNESON, 2006)(BOWES et al.,
2017). Listing 5.3 exemplifies this principle.

The import declarations (lines 4, 6, 8, 10, and 16, in yellow) link the artifact with the
“Test” concern. The two methods of the source code, shouldBeAbleToAddCauses
(line 21, in gray) and stackTraceShouldContainAllCauses (line 34, in gray), focus
on testing one single behavior of Neo4j: processing the content of exception messages.
Importing and using many test-related components to evaluate this specific behavior
caused AKS to detect that the artifact is highly dedicated to implement “Test”.

Listing 5.3 An artifact slightly dedicated to implement “Test”

1 package org . neo4j . k e rne l . impl . u t i l ;
2

3 @Concern(name=”Test”)

4 import static org.hamcrest.CoreMatchers.is;

5 @Concern(name=”Test”)

6 import static org.hamcrest.CoreMatchers.not;

7 @Concern(name=”Test”)

8 import static org.hamcrest.CoreMatchers.nullValue;

9 @Concern(name=”Test”)

10 import static org.junit.Assert.assertThat;

11
12 import java . i o . ByteArrayOutputStream ;
13 import java . i o . Pr intWriter ;
14

15 @Concern(name=”Test”)

16 import org.junit.Test;

17
18 public class TestMult ip leCauseExcept ion {

19 @Concern(name=”Test”)

20 @Test

21 public void shouldBeAbleToAddCauses() {

22 Throwable cause = new Throwable () ;
23 Mult ipleCauseExcept ion except ion = new Mult ip leCauseExcept ion (”

He l l o ” , cause) ;
24
25 asser tThat (except ion . getMessage () , i s (”He l l o ”)) ;
26 asser tThat (except ion . getCause () , i s (cause)) ;
27 asser tThat (except ion . getCauses () , i s (not (nu l lVa lue ()))) ;
28 asser tThat (except ion . getCauses () . s i z e () , i s (1)) ;
29 asser tThat (except ion . getCauses () . get (0) , i s (cause)) ;
30 }
31

32 @Concern(name=”Test”)

33 @Test

94 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

34 public void stackTraceShouldContainAllCauses() {

35 Throwable cause1 = new Throwable (”Message 1”) ;
36 Mult ipleCauseExcept ion except ion = new Mult ip leCauseExcept ion (”

He l l o ” , cause1) ;
37
38 Throwable cause2 = new Throwable (”Message 2”) ;
39 except ion . addCause (cause2) ;
40
41 ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
42 Pr intWriter out = new PrintWriter (baos) ;
43
44 // When
45 except ion . pr intStackTrace (out) ;
46 out . f l u s h () ;
47 St r ing stackTrace = baos . t oS t r i ng () ;
48
49 // Then
50 asser tThat (
51 ”Stack t r a c e conta in s except ion one as cause . ” ,
52 stackTrace . conta in s (”Caused by : java . lang . Throwable : Message

1”) ,
53 i s (true)) ;
54 asser tThat (
55 ”Stack t r a c e conta in s except ion one as cause . ” ,
56 stackTrace . conta in s (”Also caused by : java . lang . Throwable :

Message 2”) ,
57 i s (true)) ;
58 }
59 }

Figure 5.4 exhibits the evolution of time series databases’ DtC. It shows some resem-
blances with the graph databases: (i) some concerns tend to remain slightly associated
with artifacts (e.g., “Logging”, “Dependency Injection”, “Process Execution”) as they
tend to play auxiliary roles; and (ii) some concerns, like “Test”, are exceptions because
developers of time series databases specialize some artifacts to run tests.

In a way similar to “Test”, “Database” is another concern that developers separate
in specialized artifacts. The source code snippet exhibited in Listing 5.4 illustrates this
situation. The import declarations (lines 4, 6, and 8, highlighted in yellow) associate
the artifact with the “Database” concern. The majority of the methods (in gray) is
dedicate to execute database-related tasks: runQuery (line 44), runQuery’s overload
(line 79), close (line 134), getArrayList (line 148), getArrayList’s overload (line 179),
getRecord (line 198), getOnlyRecord (line 214), and next (line 234).

Listing 5.4 An artifact moderately dedicated to implement “Database”

1 package org . ka i rosdb . da ta s to r e . h2 . orm ;
2

3 @Concern(name=”Database”)

4 import org.agileclick.genorm.runtime.GenOrmException;

5 @Concern(name=”Database”)

5.2 RESULTS 95

F
ig
u
re

5
.4

T
im

e
S
er
ie
s
D
at
ab

as
es
’
E
vo
lu
ti
on

of
D
tC

96 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

6 import org.agileclick.genorm.runtime.GenOrmQueryRecord;

7 @Concern(name=”Database”)

8 import org.agileclick.genorm.runtime.GenOrmQueryResultSet;

9 import org . s l f 4 j . Logger ;
10 import org . s l f 4 j . LoggerFactory ;
11 import org . xml . sax . At t r ibu t e s ;
12 import org . xml . sax . ContentHandler ;
13
14 import java . u t i l . ArrayList ;
15 import java . u t i l . HashMap ;
16 import java . u t i l . L i s t ;
17 import java . u t i l .Map;
18
19 /∗∗ ∗/
20 public class MetricNamesPrefixQuery extends org . a g i l e c l i c k . genorm .

runtime . SQLQuery {
21 private stat ic f ina l Logger s l o g g e r =
22 LoggerFactory . getLogger (MetricNamesPrefixQuery . class . getName ()

) ;
23
24 public stat ic f ina l St r ing QUERYNAME = ”met r i c names pre f i x ” ;
25 public stat ic f ina l St r ing QUERY = ” s e l e c t d i s t i n c t \”name\” from

metr ic where \”name\” l i k e ?” ;
26 private stat ic f ina l int ATTRIBUTECOUNT = 1 ;
27 private stat ic Map<Str ing , Integer> s a t t r i bu t e I nd ex ;
28 private stat ic St r ing [] s at t r ibuteNames = {”name” } ;
29
30 stat ic {
31 s a t t r i bu t e I nd ex = new HashMap<Str ing , Integer >() ;
32 for (int I = 0 ; I < ATTRIBUTECOUNT; I++) s a t t r i bu t e I nd ex . put (

s att r ibuteNames [I] , I) ;
33 }
34
35 private boolean m s e r i a l i z a b l e ;
36
37 . . .
38
39 public void s e r i a l i z eQue r y (ContentHandler ch , S t r ing tagName)

throws org . xml . sax . SAXException {
40 . . .
41 }
42

43 @Concern(name=”Database”)

44 public ResultSet runQuery(String prefix) {

45 java . s q l . PreparedStatement genorm statement = null ;
46 try {
47 St r ing genorm query = QUERY;
48
49 genorm statement =
50 org . ka i rosdb . da ta s to r e . h2 . orm . GenOrmDataSource .

prepareStatement (genorm query) ;

5.2 RESULTS 97

51 genorm statement . s e t S t r i n g (1 , p r e f i x) ;
52
53 long genorm queryTimeStart = 0L ;
54 i f (s l o g g e r . i s In foEnab l ed ()) {
55 genorm queryTimeStart = System . cur r entT imeMi l l i s () ;
56 }
57
58 java . s q l . Resu l tSet genorm resu l tSe t = genorm statement .

executeQuery () ;
59
60 i f (genorm queryTimeStart != 0L) {
61 long genorm quryTime = System . cur r entT imeMi l l i s () −

genorm queryTimeStart ;
62 s l o g g e r . i n f o (S t r ing . valueOf (genorm quryTime)) ;
63 }
64
65 Resu l tSet genorm ret = new SQLResultSet (genorm resu l tSet ,

genorm statement , genorm query) ;
66
67 return (genorm ret) ;
68 } catch (java . s q l . SQLException s q l e) {
69 try {
70 i f (genorm statement != null) genorm statement . c l o s e () ;
71 } catch (java . s q l . SQLException sq l e 2) {
72 }
73
74 throw new GenOrmException (s q l e) ;
75 }
76 }
77

78 @Concern(name=”Database”)

79 public ResultSet runQuery() {

80 java . s q l . PreparedStatement genorm statement = null ;
81 try {
82 St r ing genorm query = QUERY;
83
84 genorm statement =
85 org . ka i rosdb . da ta s to r e . h2 . orm . GenOrmDataSource .

prepareStatement (genorm query) ;
86 genorm statement . s e t S t r i n g (1 , m pre f ix) ;
87
88 long genorm queryTimeStart = 0L ;
89 i f (s l o g g e r . i s In foEnab l ed ()) {
90 genorm queryTimeStart = System . cur r entT imeMi l l i s () ;
91 }
92
93 java . s q l . Resu l tSet genorm resu l tSe t = genorm statement .

executeQuery () ;
94
95 i f (genorm queryTimeStart != 0L) {
96 long genorm quryTime = System . cur r entT imeMi l l i s () −

genorm queryTimeStart ;

98 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

97 s l o g g e r . i n f o (S t r ing . valueOf (genorm quryTime)) ;
98 }
99
100 Resu l tSet genorm ret = new SQLResultSet (genorm resu l tSet ,

genorm statement , genorm query) ;
101
102 return (genorm ret) ;
103 } catch (java . s q l . SQLException s q l e) {
104 try {
105 i f (genorm statement != null) genorm statement . c l o s e () ;
106 } catch (java . s q l . SQLException sq l e 2) {
107 }
108
109 throw new GenOrmException (s q l e) ;
110 }
111 }
112
113 public interface Resu l tSet extends GenOrmQueryResultSet<

MetricNamesPrefixData> {
114 . . .
115 }
116
117 private class SQLResultSet implements Resu l tSet {
118 private java . s q l . Resu l tSet m re su l tSe t ;
119 private java . s q l . Statement m statement ;
120 private St r ing m query ;
121 private boolean m onFirstResu lt ;
122
123 // need to pass in the s ta tement so i t can be c l o s ed a f t e r the

r e s u l t s e t
124 protected SQLResultSet (
125 java . s q l . Resu l tSet r e su l t S e t , java . s q l . Statement statement ,

S t r ing query) {
126 . . .
127 }
128
129 /∗∗

130 ∗ Closes any under l y ing java . s q l . Resu l t s e t and java . s q l .
Statement t ha t was used to c r ea t e t h i s

131 ∗ r e s u l t s s e t .
132 ∗/

133 @Concern(name=”Database”)

134 public void close() {

135 try {
136 m resu l tSe t . c l o s e () ;
137 m statement . c l o s e () ;
138 } catch (java . s q l . SQLException s q l e) {
139 throw new GenOrmException (s q l e) ;
140 }
141 }
142
143 /∗∗

5.2 RESULTS 99

144 ∗ Returns the r e u l t s as an ArrayLis t o f Record o b j e c t s . The
Resu l t s e t i s c l o s ed w i th in t h i s

145 ∗ c a l l
146 ∗/

147 @Concern(name=”Database”)

148 public List¡MetricNamesPrefixData¿ getArrayList(int maxRows) {

149 ArrayList<MetricNamesPrefixData> r e s u l t s = new ArrayList<
MetricNamesPrefixData >() ;

150 int count = 0 ;
151
152 try {
153 i f (m onFirstResu lt) {
154 count++;
155 r e s u l t s . add (new MetricNamesPrefixData (

MetricNamesPrefixQuery . this , m re su l tSe t)) ;
156 }
157
158 while (m re su l tSe t . next () && (count < maxRows)) {
159 count++;
160 r e s u l t s . add (new MetricNamesPrefixData (

MetricNamesPrefixQuery . this , m re su l tSe t)) ;
161 }
162
163 i f (m re su l tSe t . next ())
164 throw new GenOrmException (
165 ”Bound o f ” + maxRows + ” i s too smal l f o r query [” +

m query + ”] ”) ;
166 } catch (java . s q l . SQLException s q l e) {
167 throw new GenOrmException (s q l e) ;
168 }
169
170 c l o s e () ;
171 return (r e s u l t s) ;
172 }
173
174 /∗∗

175 ∗ Returns the r e u l t s as an ArrayLis t o f Record o b j e c t s . The
Resu l t s e t i s c l o s ed w i th in t h i s

176 ∗ c a l l
177 ∗/

178 @Concern(name=”Database”)

179 public List¡MetricNamesPrefixData¿ getArrayList() {

180 ArrayList<MetricNamesPrefixData> r e s u l t s = new ArrayList<
MetricNamesPrefixData >() ;

181
182 try {
183 i f (m onFirstResu lt)
184 r e s u l t s . add (new MetricNamesPrefixData (

MetricNamesPrefixQuery . this , m re su l tSe t)) ;
185
186 while (m re su l tSe t . next ())

100 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

187 r e s u l t s . add (new MetricNamesPrefixData (
MetricNamesPrefixQuery . this , m re su l tSe t)) ;

188 } catch (java . s q l . SQLException s q l e) {
189 throw new GenOrmException (s q l e) ;
190 }
191
192 c l o s e () ;
193 return (r e s u l t s) ;
194 }
195
196 /∗∗ Returns the curren t record in the r e s u l t s e t ∗/

197 @Concern(name=”Database”)

198 public MetricNamesPrefixData getRecord() {

199 MetricNamesPrefixData r e t = null ;
200 try {
201 r e t = new MetricNamesPrefixData (MetricNamesPrefixQuery . this ,

m re su l tSe t) ;
202 } catch (java . s q l . SQLException s q l e) {
203 throw new GenOrmException (s q l e) ;
204 }
205
206 return (r e t) ;
207 }
208
209 /∗∗

210 ∗ This c a l l e xpec t s on ly one record in the r e s u l t s e t . I f
mu l t i p l e records are found an

211 ∗ excpe t i on i s thrown . The Resu l tSe t o b j e c t i s au t oma t i c a l l y
c l o s ed by t h i s c a l l .

212 ∗/

213 @Concern(name=”Database”)

214 public MetricNamesPrefixData getOnlyRecord() {

215 MetricNamesPrefixData r e t = null ;
216
217 try {
218 i f (m re su l tSe t . next ())
219 r e t = new MetricNamesPrefixData (MetricNamesPrefixQuery .

this , m re su l tSe t) ;
220
221 i f (m re su l tSe t . next ())
222 throw new GenOrmException (
223 ”Mult ip l e rows returned in c a l l from

MetricNamesPrefixQuery . Resu l tSet . getOnlyRecord”) ;
224 } catch (java . s q l . SQLException s q l e) {
225 throw new GenOrmException (s q l e) ;
226 }
227
228 c l o s e () ;
229 return (r e t) ;
230 }
231

5.3 THREATS TO VALIDITY 101

232 /∗∗ Returns t rue i f t h e r e i s another record in the r e s u l t s e t .
∗/

233 @Concern(name=”Database”)

234 public boolean next() {

235 boolean r e t = fa l se ;
236 m onFirstResu lt = true ;
237 try {
238 r e t = m resu l tSe t . next () ;
239 } catch (java . s q l . SQLException s q l e) {
240 throw new GenOrmException (s q l e) ;
241 }
242
243 return (r e t) ;
244 }
245 }
246
247 public class Record implements GenOrmQueryRecord , At t r ibut e s {
248 . . .
249 }
250 }

From our observations, we conjecture that there are concerns which are natural acces-
sories to others, like “Service-Orientation” and “Logging”, but there are other concerns
that developers may decide to isolate within specialized artifacts. “Test” and “Database”
fits in this category.

Some of the charts in Figures 5.3 show non-uniform patterns. For example, the evolu-
tion of “ElasticSearch Processing” displays an abrupt decline in the number of moderate
DtC from the third to fourth versions. Similar cases of non-uniformity can be seen in
“Distributed Computing” and “Mathematical Processing” charts. This is mainly caused
by our decision of choosing versions from the databases’ historical data that are not per-
fectly sequential through time. As a consequence, we may not have covered some intervals
of time during which highly impacting refactorings happened. Sudden raises and drops
in the charts can be caused by refactorings influencing how we measure DtC. The same
can be said about some concerns exhibited in 5.4, e.g., “Database”.

5.3 THREATS TO VALIDITY

We recognize the following as threats that can affect this study:

Construct validity : we decided to analyze graph and time series databases in iso-
lation as a way to observe how DtC evolves after grouping systems according to their
respective domains. However, we wonder if advancing in splitting the databases fur-
ther would impact our analysis even more. Perhaps, among the time series and graph
databases there is a set of projects that share more similar characteristics and concerns
with each other. Thus, separating the historical data of systems through deeper branches
of software domains would give us more variations in the way how each group of software
implements concerns;

Internal validity : we see another limitation in not having selected sequential ver-

102 STUDY II – ANALYZING THE EVOLUTION OF THE DEDICATION TO CONCERN

sions of the database projects. While we trust that the results which we presented in
Section 5.2 are correct, we believe that we could end up with more smooth distributions
of data if we mined/analyzed systems’ versions that are continuous through time. Addi-
tionally, mining older versions of the systems may have filled our dataset with unstable
data, i.e., mining information from software projects’ initial versions can reveal associa-
tions between source code artifacts and concerns from a time when developers were not
sure about which concerns to implement and/or how to implement them;

External validity : we cannot condition a generic evaluation of DtC to the cases
that we examined here. This means: we cannot guarantee that our findings regarding
how DtC evolves can embrace the totality of software projects that exist. Our findings
are constrained to the non-relational database projects that we inspected. Fortunately,
we designed our method and ASK to be expandable, so they can be used to process other
software projects and domains.

Conclusion validity : with this study we gathered some extra insights about the
evolution of concerns via the analysis of our metric, DtC. Nonetheless, we believe that we
still have much more to uncover regarding the relationship between source code artifacts
and concerns through systems’ historical data. This requires defining a set of research
questions and using the mining and analysis capabilities of AKS to answer them. Only
then we will be able to assert the veracity of our insights regarding how DtC evolves with
more precision.

5.4 DISCUSSION

With this study, we expand the initial ones which we presented in Chapter 4 and Appendix
C. We chose software projects from one specific domain, non-relational databases, and
examined them separately, as graph and time series databases. Then, we observed how
our metric, DtC, evolved.

We noticed a tendency of DtC to remain slight through the historical data of the
databases. Our results point to a general concept about concerns obtained from third-
party components: they are likely to play secondary/auxiliary roles in the making of
software projects. This is the case of the “Logging” concern that we exemplified in Section
5.2. Logging all of an artifact’s routines is not mandatory. Consequently, “Logging” is
not prone to branch deep through many lines of source code.

The aforementioned tendency is not free from exceptions though. We found ex-
amples of source code artifacts moderately/highly dedicated to implement “Test” and
“Database”. Such examples reveal that developers may specialize artifacts to deal with
few features sometimes. Thus, although the separation of concerns is desirable, it is not
always achievable. This is not entirely reprehensible if the particular nature of each con-
cern is considered. While developers specialize artifacts to perform tests, they do not feel
like doing the same when they need to log the activity of routines.

In Section 4.4.4, we described an unstructured interview that we conducted with the
specialists that participated in our action research study. We took the opportunity to
show the results of this study to them. They see as natural that concerns obtained from
third-party components’ metadata tend to play auxiliary roles in the making of systems.

5.5 CONCLUSION 103

They also agreed with our observations that the relationship between some concerns
and source code artifacts tend to be exceptional sometimes, and artifacts may focus on
implementing a single or few concerns to address a need, e.g, dedicating an artifact to
test specific features.

5.5 CONCLUSION

Soon after we saw the possibility of identifying and processing concerns from the metadata
of third-party components, we perceived that it was crucial to address some unfavorable
circumstances. Specifically, our method is dependant on the import declarations that
developers add to source code to inject components. As AKS uses the declarations to
associate concerns with systems’ artifacts, it is important to differentiate the distinct
situations in which concerns relate to software projects at code level. In Section 3.2,
we described how these situations made us define a new metric: Dedication to Concern
(DtC).

After we evaluated and refined our method and reached a moderate agreement between
raters, we took the opportunity to understand how DtC evolves through time (the main
purpose of this chapter). As a result, we found out that some concerns are not finely
separated/isolated in source code artifacts. This is logical regarding the characteristics
of some concerns, i.e., “Logging”.

It is necessary to expand this study in determining which concerns obtained from
third-party components are either more or less inclined to be separated in specialized
artifacts. This can shed a light on the different strategies that developers follow when
they either join or separate concerns.

Chapter

6
People think that computer science is the art of geniuses but the actual reality is the opposite, just many

people doing things that build on each other, like a wall of mini stones – Donald Knuth

DISSEMINATION OF OUR RESEARCH

Research dissemination can be defined as “the communication or spread of new or ex-
isting knowledge through a planned or systematic process and implies that information
is tailored for an intended target audience” (LOMAS, 1993)(LAWRENCE, 2006). “Dis-
semination” requires an intense flow of refined information from its source (the results of
a research, for instance) to an identifiable public. Plus, if the information is adequately
presented, it can raise awareness about concepts and consensus (LOMAS, 1993). As we
desire that our method becomes a standard in the field of concerns identification, we have
taken measures to format, organize and publicize the body of knowledge that we achieved
from our studies.

Disseminating our results and contributions relies on three main actions: (i) making
our tool’s source code available for reuse in a public repository (explained in Section
6.1), (ii) publicizing our studies’ datasets (more information in Section 6.2), and (iii)
writing and publishing papers (listed in Section 6.3). We provide further details about
the dissemination of our work through the next sub-sections.

6.1 REUSE OF OUR TOOL – AKS

Reuse is a way to capitalize on existing systems while increasing the quality of the final
software product (BARROS-JUSTO et al., 2018). Regarding our tool, Architectural
Knowledge Suite (AKS), we envision two types of reuse: (i) reuse by researchers and
practitioners who want to analyze the presence of concerns in software projects and (ii)
reuse by other developers who desire to either adapt AKS according to their needs or
embed our mining and analysis routines into their own tools.

As a way to address reuse while fulfilling dissemination, we took another concept into
account: Open Source Software (OSS). OSS can be defined as the source code that is
shared to enable learning, modifying, and extending other software projects under some
licensing guidelines (ELLIS; BELLE, 2009)(GANDHI; GONDWAL; TANDON, 2017).

105

106 DISSEMINATION OF OUR RESEARCH

By disclosing AKS source code, we aim at achieving a common advantage expected from
OSS (FRANCO-BEDOYA et al., 2017): spreading of technologies, allowing users to use
freely publicly available software and to incorporate third-party source code into their
implementations. We have made the source code of ASK open and available for reuse at:

https://gitlab.com/luispscarvalho/AKS

Usually, OSS projects are initiated by an individual or a small group of people who
want to fill a technological gap (FRANCO-BEDOYA et al., 2017), but, as the develop-
ment evolves, the involvement of other people is desirable. Ideally, rather than a single
corporate entity owning the software, a broad community of volunteers should determine
which contributions are accepted into the codebase and where the OSS project must head
to (RIEHLE, 2007). Investing in knowledge sharing is a way to attract the attention of
potential contributors. This can be (partially) achieved by building up and organizing the
memory and content related to OSS systems (HEMETSBERGER; REINHARDT, 2004).
We have materialized such approach by adding some informative/descriptive artifacts to
AKS’ repository:

1. Tutorials: in the form of documents (PDF) and videos. We included a README
file1 in AKS’ repository to indicate the location of our tutorials;

2. Advertising about our tool in our publications: we have added sections dedicated
to describing our tool to each of our papers (listed in Section 6.3);

3. Presenting our tool: whenever we are given a chance, we present our tool. For
instance, during events that we participate in.

We suggest the workflow shown in Figure 6.1 to reuse AKS. Firstly, AKS must be
cloned/downloaded from the its repository (Activity 1). Second step involves choosing
and downloading software projects which AKS will mine concerns from (Activity 2). AKS
must be executed in the “examination” mode (Activity 3) to parse and analyze systems’
third-party components’ metadata before performing the actual mining of concerns. It
will also fetch extra information about components (e.g., categories, tags) from online
repositories (e.g., MVNRepository). As explained in Section 3.1.2, our method is depen-
dant on manual interventions to associate components with fitting concerns. So, it is
necessary to define them after checking the information that AKS acquires from com-
ponents’ metadata and from online repositories (Activity 4). After reaching consensus
about the concerns, AKS can finally run in the “concern mining” mode to generate its
database (Activity 5).

We adopted the GNU General Public License v3.0 or GPL32 to ensure a permissive
ruse of AKS. GPL has flourished as an OSS license for three reasons (TSAI, 2008): (i)
it appeals to many software developers and users as a guideline to support collaboration
over large geographical distances, (ii) software licensed under GPL is usually provided

1https://gitlab.com/luispscarvalho/AKS/-/blob/master/README.md
2https://gitlab.com/luispscarvalho/AKS/-/blob/master/LICENSE

6.1 REUSE OF OUR TOOL – AKS 107

Figure 6.1 Reuse of our tool, Architectural Knowledge Suite

with no cost, and (iii) its reciprocal requirement that any distributed modifications must
themselves be licensed under the GPL helps to perpetuate both the license and the
licensed software.

108 DISSEMINATION OF OUR RESEARCH

6.2 REPLICATION PACKAGES

Making replication packages available for other researchers and practitioners is another
way to accomplish research dissemination. Reuse of replication packages has emerged
as a good research practice mainly due to (GÓMEZ; JURISTO; VEGAS, 2014)(CAMP-
BELL; STANLEY, 2015)(ALVAREZ; KEY; NÚÑEZ, 2018): (i) cloud-based computing
making data and code sharing trivial, (ii) graduate programs training students to con-
sider replications packages in their workflows, (iii) researchers perceiving that providing
data, source code and other materials can boost their visibility and increase citations,
(iv) journals and funding agencies requiring that research material be made available via
publications, (v) a highly publicized number of issues regarding research transparency,
and (vi) the need of replicating studies at other times and under different conditions
before they can produce an established piece of knowledge.

As a way to organize and publicize our datasets, we created another repository in
gitlab to accomodate them3. As we did with AKS, we decided to license our datasets
under GLP3.

Next sub-sections describe our studies’ replication packages. In general, each package
contains: (i) spreadsheets which we filled with concerns-related data that ASK mined
from software projects’ repositories, (ii) analysis scripts that can be used to process
the spreadsheets and generate visualizations, and (iii) extra documents/files that we
considered important to contextualize the application of our method and the reuse of the
packages (i.e., tutorials, guides).

6.2.1 Study I’s Replication Package

Our first replication package encapsulates a dataset about our action research study
(Chapter 4). With this package, it is possible to reproduce/reevaluate the study’s rounds
of agreement (discussed through Section 4.4). Its spreadsheets also contain data about
the measurement of our metric, Dedication to Concern (DtC). The package is located
here:

https://gitlab.com/luispscarvalho/datasets/-/tree/UFBA2020 Thesis/study I

We further describe the package’s items:

1. The agreement dataset: it comprises a series of spreadsheets corresponding to each
of our action research study’s rounds of evaluation. As we counted on the help
of two software development specialists, the dataset contains two spreadsheets per
round, in the format that we presented in Section 4.3.1 (Table 4.2);

2. A copy of one of our papers: as we explained in Section 4.4.1, we wanted to take ad-
vantage of raters’ know-how to refine our method. As a way to instruct them about
it, we added a copy of one of our papers (CARVALHO; NOVAIS; MENDONÇA,
2018). We expected that the paper would enlightened the raters about our approach

3https://gitlab.com/luispscarvalho/datasets

6.2 REPLICATION PACKAGES 109

and provided them with the necessary knowledge regarding concerns identification
and analyses, so they would be able to suggest corrections and improvements;

3. Scripts: in Section 3.1.2, we pointed out that we rely on scripts to automate our
studies’ selection and analysis of data. We added three scripts to the package: (i)
“aks.R” encapsulates some generic R-language routines to filter, organize, split, join,
agglomerate and visualize the concerns-related information kept in our datasets, (ii)
“preparation.R” is capable of selecting random samples of artifacts to create the
agreement dataset (the one that we sent to raters), and (iii) “evaluation.R” that
processes raters’ tagged spreadsheets through the Kappa Agreement Coefficient
(described in Section 2.8)

To reuse this replication package, we recommend the workflow exhibited in Figure 6.2.
First step comprises downloading the package from the aforementioned url (Activity 1)
and executing AKS to mine concerns from software projects. Second step requires run-
ning the “aks.R” script to load a collection of routines that we developed to support the
processing of concerns (Activity 2). Then, it is necessary to execute the “preparation.R”
script to produce an agreement dataset (Activity 3). Raters must tag the dataset (Ac-
tivity 4) before the execution of the “evaluation.R” script (Activity 5) that determines
the strength of their agreement.

6.2.2 Study II and III’s Replication Package

We decided to join Study II’s (Chapter 5) and Study III’s (Appendix C) replication pack-
ages as one because: (i) we used the same software projects, non-relational databases,
to create both studies’ datasets and (ii) Study II is influenced by Study III’s finding and
conclusions, e.g., we applied the same mining strategies that we developed during Study
III to extract the evolution of our metric, DtC, from the databases. The following is the
location of the studies’ replication package:

https://gitlab.com/luispscarvalho/datasets/-/tree/UFBA2020 Thesis/studies II and III

The package contains the following items:

1. Studies’ dataset: the dataset is composed of two subsets, one that contains data
about the evolution of DtC (the focus of Study I) and another one with data about
source code complexity (the purpose of Study III). This means: we based both
studies one the evolution of non-relational databases’ concerns, but we specialized
the subsets to address two distinct aspects related to systems’ historical data.

2. Scripts: the package includes three scripts: (i) “aks.R” encloses our library of
routines to support analysis and visualization of concerns, (ii) “complexity.R” is
a specialized script that uses “aks.R” to investigate the evolution of source code
complexity, and (iii) “dtc.R”, which also specializes “aks.R” routines to process and
visualize the evolution of DtC.

110 DISSEMINATION OF OUR RESEARCH

Figure 6.2 Reuse of our Action Research Replication Package

We propose the workflow in Figure 6.3 as a guide to reuse the replication package.
Fist step requires cloning the package from gitlab (Activity 1). As our analysis scripts
depend on the generic routines that we placed in “aks.R”, it is necessary to execute it
first (Activity 2). Then, it is possible to replicate either Study II by running the “dtc.R”
script (Activity 3.1) or Study III by executing the ”complexity.R” script (Activity 3.2).

We placed the descriptions of Studies II’s and III’s datasets in Appendix G. Section
G.1 shows the format of Study II’s spreadsheets. Section G.2 describes the columns of
Study III’s spreadsheets.

6.2 REPLICATION PACKAGES 111

Figure 6.3 Reuse of our Studies II and III Replication Package

Study IV (in Appendix E) has the purpose of knowing if it is possible to apply our
method to mine concerns from systems that are developed under different technological
contexts. Its dataset contains information about concerns identified from javascript ap-
plications. As it is a very preliminary investigation, the dataset is not as precise and
complete as previous studies’ datasets. However, we believe that Study IV’s replica-
tion package is a good starting point to gather a basic knowledge about how javascript
developers implement concerns. The following package can be used to replicate the study:

https://gitlab.com/luispscarvalho/datasets/-/tree/UFBA2020 Thesis/study IV

This content of the replication package comprises the following elements:

1. Study’s dataset: it shows a simple association between concerns and source code
artifacts mined from two domains of software: role-playing games and chats. As

112 DISSEMINATION OF OUR RESEARCH

we have not defined routines to calculate javascript systems’ DtC yet, in Study IV
we rely on the Lines of Code (LOC) metric to examine and visualize concerns. It
is also important to point out that the dataset refers to one single snapshot of the
software projects’ source code;

2. Script: the package has only one script: “concerns.R” has all the necessary routines
to replicate Study IV.

We suggest the workflow shown in Figure 6.4 to replicate Study IV. The replica-
tion package must be downloaded/cloned from its repository (Activity 1). Then, the
“concerns.R” script must be executed to visualize the relationship between concerns and
javascript applications (Activity 2).

Figure 6.4 Reuse of our Study IV Replication Package

Section G.3 in Appendix G describes all columns of Study IV’s spreadsheets.

6.3 OUR PUBLICATIONS

As another measure to advertise our method and promote the replication of our studies,
we did our best to publish our findings. In Table 6.1, we mention the works that we
published as a result of the studies described in this work. The table also describes other
publications that are out of the scope of our research, but are related to some theoretical
and technical concepts which we have made use of: software repositories mining, static
processing of source code artifacts, software evolution and visualization. The Contribution
column informs how the author of this thesis contributed for the publication: as a Co-
author or Main Author. Category identifies the scope of the contribution: Primary
(the publication is in the scope of this work) and Secondary (the publication is not in

6.4 CONCLUSION 113

the scope of this work). Type refers to the type of the publication: Conference, Book
Chapter, Workshop and Journal.

We highlight that our paper, Investigating the Relationships between Code Smell
Agglomerations and Architectural Concerns: Similarities and Dissimilarities from Dis-
tributed, Service-Oriented and Mobile Systems (CARVALHO; NOVAIS; MENDONÇA,
2018), was awarded as one of the best papers (second place) during 2018’s Brazilian
Symposium on Components, Architectures and Software Reuse (SBCARS).

6.4 CONCLUSION

We believe that our method and tool can become important assets in the area of concerns
identification and evaluation of how they impact software development. Achieving this
requires disseminating the findings of our studies, method, tool and datasets.

As a practical dimension of our actions regarding dissemination, we have made our
datasets and the source code of our tool available for reuse via online repositories. We
also licensed them under a permissive version of GLP (GLP3). Hopefully, this will attract
researchers’ and practitioners’ attention and they will feel motivated to reuse our method
and propose/contribute-with improvements.

We have also published our studies’ results whenever we are given a chance, but we
have not presented some content of this thesis to the academic community yet. We intend
to publish the results of Studies I (Chapter 4) and II (Chapter 5) as soon as possible.

114 DISSEMINATION OF OUR RESEARCH

T
a
b
le

6
.1

O
u
r
P
u
b
licatio

n
s

T
itle

C
o
n
trib

u
tio

n
C
a
te
g
o
ry

T
y
p
e

R
e
fe
re
n
c
e

A
sy
stem

atic
m
ap

p
in
g
stu

d
y
o
n
m
in
in
g

C
o-au

th
or

P
rim

ary
C
on

feren
ce

(F
A
R
IA

S
et

a
l.,

2
0
16
)

softw
are

rep
o
sitories

R
ep

ository
M
in
er

-
u
m
a
ferram

en
ta

C
o-au

th
or

P
rim

ary
W
ork

sh
op

(M
E
N
D
E
S
et

a
l.,

20
1
7)

ex
ten

siv
el

d
e
m
in
eração

d
e
rep

ositorios
d
e
softw

are
p
ara

id
en
tifi

cacao
au

tom
atica

d
e
D
iv
id
a
T
ecn

ica

In
vestigatin

g
th
e
R
elation

sh
ip

b
etw

een
M
ain

A
u
th
or

P
rim

ary
C
on

feren
ce

(C
A
R
V
A
L
H
O
;
N
O
V
A
IS
;

C
o
d
e
S
m
ell

A
gglom

eration
s
an

d
M
E
N
D
O
N
Ç
A
,
2
01
8
)

A
rch

itectu
ra
l
C
on

cern
s:

S
im

ila
rities

an
d
D
issim

ilarities
from

D
istrib

u
ted

,
S
erv

ice-O
rien

ted
an

d
M
ob

ile
S
y
stem

s

R
elation

sh
ip
s
b
etw

een
D
esign

P
rob

lem
M
ain

A
u
th
or

P
rim

ary
J
o
u
rn
al

(C
A
R
V
A
L
H
O
;
N
O
V
A
IS
;

A
gglom

eratio
n
s
an

d
C
on

cern
s
H
av
in
g

M
E
N
D
O
N
Ç
A
,
2
02
0)

T
y
p
es

an
d
D
om

ain
s
of

S
oftw

are
as

T
ran

sv
erse

D
im

en
sion

s

A
n
O
n
tology

-b
ased

A
p
p
roach

for
M
ain

A
u
th
or

S
econ

d
ary

C
on

feren
ce

(C
A
R
V
A
L
H
O
;
N
O
V
A
IS
;

A
n
aly

zin
g
th
e
O
ccu

rren
ce

of
M
E
N
D
O
N
Ç
A
,
20
1
7)

C
o
d
e
S
m
ells

in
S
oftw

are

A
n
A
p
p
roach

for
S
em

an
tically

-E
n
rich

ed
M
ain

A
u
th
or

S
econ

d
ary

B
o
o
k
C
h
ap

ter
(C

A
R
V
A
L
H
O

et
a
l.,

20
1
7)

R
ecom

m
en
d
a
tion

of
R
efactorin

gs
B
ased

on
th
e
In
cid

en
ce

of
C
o
d
e
S
m
ells

V
IS
M
E
L
L
S
:
A
n
In
teractiv

e
V
isu

alization
C
o-au

th
or

S
econ

d
ary

C
on

feren
ce

(S
IL
V
A

et
a
l.,

20
1
8)

for
Id
en
tify

in
g
an

d
E
valu

atin
g
th
e

E
ff
ects

of
C
o
d
e
S
m
ells

on
S
oftw

are
P
ro
jects

V
isM

in
erS

erv
ice

A
R
E
S
T

W
eb

S
erv

ice
M
ain

A
u
th
or

S
econ

d
ary

C
on

feren
ce

(C
A
R
V
A
L
H
O
;
N
O
V
A
IS
;

for
S
ou

rce
M
in
in
g

M
E
N
D
O
N
Ç
A
,
2
0
15
)

Chapter

7
The purpose of computing is insight, not numbers – Richard Hamming

CONCLUSION

We described our effort in automating the mining and processing of concerns with the help
of information that developers store in third-party components’ metadata. We believe
that we have been able to circumvent some limitations we initially identified: (i) the lack-
ing and inadequacies of Software Requirements Documents (SRDs) and Software Archi-
tecture Documents (SADs) and available automatic approaches; and (ii) error-proneness
of approaches that focus on the manual identification and analyses of concerns. As a
result, we created and evaluated a new method.

Customarily, developers add metadata files to software projects as a way to automate
the injection of components in the source code. As this has turned into a widespread good
practice, projects that contain metadata about components became abundant and we saw
this as an opportunity to locate and process information about concerns. Developers also
often synchronize the metadata files with Version Control Systems (VCS). This ensures
that they are updated frequently and evolve together with other source code artifacts.
So, they can enable the investigation of historical data about how developers integrate
components in systems’ source code to implement concerns.

We counted on the help of software development specialists (Chapter 4) to enhance our
method and tool. We regard our action research study as a valuable experience because
it helped us to reduce the bias of our initial guesswork, during which we defined the
layout of our method and the strategies behind the mining of concerns (Chapter 3). We
met the specialists’ opinions on how to identify concerns and measuring the Dedication
to Concern (DtC) to a moderate degree. To the best of our knowledge, we took one
step ahead in using static analysis of source code to emulate how developers perceive the
relationship between software projects and concerns.

Spotting cases in which third-party components are scarcely used to implement con-
cerns was one important limitation that we identified and managed to solve. We wrapped
this problem within a broader concept: the evolution of DtC (Chapter 5). We found out
that the implementation of some concerns tends to avoid the principle of separation of
concerns. We believe that choosing between separating and combining concerns in source

115

116 CONCLUSION

code artifacts is subject to the use that developers can make of each third-party com-
ponent. Hence, some cases in which developers do not promote the separation are not
entirely unacceptable.

7.1 THE WAY WE FULFILLED OUR RESEARCH’S GOAL

Now, we summarize our conclusions regarding the fulfillment of our research’s goal. As
defined in Chapter 1, we have the following purpose: taking advantage of third-party
components’ metadata as a way to extract and analyze information about the
implementation of concerns through the historical data of systems. We believe
that we have achieved the goal by allowing:

1. The mining of several software projects: as many developers have adhered to the
use of metadata files to store information about third-party components (e.g., POM
and Gradle files), this type of information has become plentiful. This allowed us to
analyze concerns extracted from a multitude of software projects;

2. Keeping track of the evolution of third-party components’ metadata: developers
store the metadata files in VCS. This means: as we mined the historical data
of software projects, we were able to recover information about the evolution of
components. This enabled us to propagate the analysis of concerns through many
versions of systems.

Apart from the aforementioned main achievements, we also highlight that we fulfilled
the following:

1. Grouping systems under transverse dimensions: we sought to understand the effects
of grouping software projects before analyzing concerns (Appendix C). Doing this
enhanced our investigations because it allowed us to find concerns being shared by
projects that have either the same context of use (domains of software) or target
the same development platform (types of software);

2. Demonstrating that our method is capable of supporting the analysis of concerns un-
der varied contexts of software development: we perceived resemblances in the way
how java and javascript developers keep track of third-party components (Appendix
E). Both rely on special files to indicate which components must be integrated into
their systems: POM/Gradle files (java) and package.json files (javascript). As a
result, we showcased different scenarios in which we were able to instantiate our
method to deal with different development technologies.

7.2 FUTURE WORK

Future work includes improvements and new evaluations concerning the threats to validity
and proposed enhancements that we discussed throughout the studies that we conducted
(Chapters 4 and 5 – Appendixes C and E). In the next paragraphs, we highlight some
of them.

7.2 FUTURE WORK 117

In Study I (Chapter 4) and II (Chapter 5), we focused on identifying concerns and
measuring one specific metric, DtC, and its evolution. However, as described in Section
3.1.2, our method is not particularly limited to calculate DtC. It can be adapted to include
other metrics and to combine them with DtC. For instance, we must rerun Study III
(Appendix C) to associate our investigations about source code complexity and transverse
dimensions with DtC.

Learning about the patterns that developers follow when they have to implement
concerns is another promising future study. Tracking the way how the “Security” concerns
is added to the source code may reveal specific standards an strategies that software
security experts tend to follow. Perhaps, such strategies differ from other ones adopted
by developers when they need to implement, for instance, “Test” “Geospatial Processing”.
In other words, we think that it is possible to use our method to gather insights about
tendencies in the way how developers materialize different aspects of software systems.
Then, we might be able to create a corpus of good usual practices to serve as a guide for
future concerns implementations.

We unveiled a broader set of scenarios to apply our method by conducting Study
IV (Appendix E). Injecting metadata in software projects to keep track of third-party
components is a common practice and it is independent of programming technologies.
We see this as another chance to advance our research. There is plenty to investigate
on how to make our approach available to support developers that work with languages
other than java, e.g., javascript, python, PHP and ruby.

An important evolution of our research resides in varying the thresholds of our DtC
measurement rule (Section 3.2). The thresholds that we embedded in AKS and used
to produce our studies’ dataset were determined by guesswork after we examined some
software projects’ source code artifacts. By the time we evaluated our method (in Chapter
3), we did not take advantage of the raters to fine-tune the thresholds. Our focus on
applying raters’ comments to define and improve strategies to mine the source code
deviated our attention from adjusting our DtC measurement rule. We must conduct new
studies to observe how changing the rule’s thresholds values impacts our method and
findings.

Our action research study (described in Chapter 4) provided us with many insights.
For example, enhancing our method and tool by processing semantic information found
in software projects is an important next step. We did our best to approximate the static
analysis of source code to software specialists’ points of view. However, we believe that we
can advance our approach by extracting conceptual/semantic information from elements
that our method (and AKS) currently discard: keywords from the name of packages,
classes, methods, the comments that developers add to the source code, and Software
Architecture Documents (if available). We must also investigate if commits’ messages
can become a source of semantically enriched data about concerns.

In Figure 7.1, we propose a sequence of studies toward the definition of a Unified
Concerns Identification Heuristic (UCIH). The scope of this thesis is limited to the static
processing of source code artifacts, e.g., java files and components’ metadata. We conjec-
ture that a new series of investigations about the semantic processing of systems’ source
code is necessary to enhance our method and tool, and to complement our findings. We

118 CONCLUSION

believe that we can better reflect the way how developers manage concerns if we merge
static and semantic analyses to create a heuristic. Basing a new action research study
on the template proposed by Santos and Travassos (2011) is highly desirable to validate
and refine the UCIH. It would also be interesting to generalize it to deal with other
development technologies/contexts, e.g., javascript, python, PHP, and ruby.

As a result of the interview that we described in Section 4.4.4, we collected some ideas
for future practical applications of our method from raters. For example, although raters
said that parameterizing the analysis of interfaces to either include or exclude them is
a good decision, but they also said that this requires a deeper investigation. They even
pointed out that processing interfaces’ children classes would be a good indirect approach
to measure the DtC of this type of class.

Raters suggested that DtC can be used to validate layered software architectures.
For instance, layers of projects that follow the Model-View-Controller (MVC) pattern
have distinct purposes (DEACON, 2009). It is undesirable to notice a moderate/high
DtC of the “Database” concern in the “View” layer. Oppositely, concerns that deal with
user interface features (e.g., “UI”, “Visualization”) are welcomed in the “View”. So,
depending on how concerns and layers pair with each other, different DtC’s thresholds
should be expected. As an extension, they also proposed associating different levels of
“warning” to the undesired presence of concerns in software layers.

According to one of the raters, it is not always possible to fully eliminate unexpected
concerns from a particular layer. This comes from developers having to deal with tight
schedules and aggressive deadlines. Consequently, they are often unable to refine software
source code. Even though, they cannot release a new software version if some concerns
appear in the wrong layer. The presence of the “Database” concern in the “View” layer
fits in this category. The rater sees it as a security problem because it may enable hacking
via SQL injection. potentially allowing attackers to obtain unrestricted access to sensitive
information (HALFOND et al., 2006). This goes against one of the MVC’s advantages
(NYSTROM, 2007): applying processing rules to data received from users to ensure it is
normalized and safe, which can guard applications from malicious inputs, such as SQL
injections. On the other hand, developers may misplace other concerns in the “View”,
but they are still able to release a new version if the concerns are less impacting, i.e.,
executing data “Validation” routines in the “View” while they should better happen in
the “Control” and “Model” layers.

We believe that analyzing the relationship between concerns and layered software ar-
chitecture (like MVC) demands incorporating Technical Debt (TD) theoretical/technical
aspects into our method. As TD refers to delayed tasks that may require extra effort in the
future (CUNNINGHAM, 1992)(FARIAS et al., 2020), releasing systems with misplaced
concerns can be seen as developers postponing a necessary refactoring. In this context,
according to raters’ point of view, some concerns can lead to a higher debt than others.
Delaying the removal of the “Database” concern from the “View” layer accumulates more
debt than other less critical ones, as “Validation”.

Figure 7.2 depicts DtC’s potential to spot and calculate TD. Our DtC measurement
rule (described in Section 3.1.4.1) would have to consider one extra parameter to process
TD: layers of layered system. Finding a high DtC regarding the “Database” concern in

7.2 FUTURE WORK 119

Figure 7.1 Toward a Unified Concerns Identification Heuristic (UCIH)

120 CONCLUSION

artifacts of the “View” layer would cause AKS to report a high TD. On the other hand,
detecting a high DtC from the artifacts that implement “Database” in the “Model” layer
would indicate a low (or a nonexistent) TD.

Figure 7.2 From DtC to Technical Debt

Applying DtC to support the detection/measurement of TD adds another challenge
to the limitation that we aforementioned: determining an adequate set of thresholds for
our metrics and DtC measurement rule. The thresholds would depend not only on the
relationship between concerns and artifacts. We would have to tailor them to suit every
single association between concerns and layers as well.

Raters see another opportunity in applying the evolution of DtC to manage the making
of software. Phases of development can be planned in a way to consider the gradual
appearance of concerns through time. “Security”, “Test”, “Database” are examples of
concerns that may be expected to occur since early cycles of development and keep
on growing until later phases. Scheduling the release of systems’ versions would be
determined by concerns’ DtC reaching specific thresholds through time.

BIBLIOGRAPHY

ABILIO, R. et al. Detecting code smells in software product lines – an exploratory study.
In: 2015 12th International Conference on Information Technology - New Generations.
[S.l.: s.n.], 2015. p. 433–438.

ABILIO, R. et al. Metrics for feature-oriented programming. In: IEEE. 2016 IEEE/ACM
7th International Workshop on Emerging Trends in Software Metrics (WETSoM). [S.l.],
2016. p. 36–42.

ADAMS, B.; JIANG, Z. M.; HASSAN, A. E. Identifying crosscutting concerns using
historical code changes. In: ACM. Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. [S.l.], 2010. p. 305–314.

AGGARWAL, C. C. Data mining: the textbook. [S.l.]: Springer, 2015.

AGüERO, M.; BALLEJOS, L. Dependency management in the cloud: An efficient pro-
posal for java. In: 2017 XLIII Latin American Computer Conference (CLEI). [S.l.: s.n.],
2017. p. 1–9.

AINI, Q.; ZULIANA, S. R.; SANTOSO, N. P. L. Management measurement scale as
a reference to determine interval in a variable. Aptisi Transactions On Management,
Asosiasi Perguruan Tinggi Swasta Indonesia, v. 2, n. 1, p. 45–54, 2018.

ALVAREZ, R. M.; KEY, E. M.; NÚÑEZ, L. Research replication: Practical consid-
erations. PS: Political Science & Politics, Cambridge University Press, v. 51, n. 2, p.
422–426, 2018.

ALVES, T. L.; YPMA, C.; VISSER, J. Deriving metric thresholds from benchmark data.
In: IEEE. 2010 IEEE International Conference on Software Maintenance. [S.l.], 2010. p.
1–10.

BADAMPUDI, D.; WOHLIN, C.; PETERSEN, K. Software component decision-making:
In-house, oss, cots or outsourcing-a systematic literature review. Journal of Systems and
Software, Elsevier, v. 121, p. 105–124, 2016.

BAETJER, H. Software as capital: An economic perspective on software engineering.
[S.l.]: IEEE Computer Society Press, 1997.

BAJAJ, K.; PATEL, H.; PATEL, J. Evolutionary software development using test driven
approach. In: IEEE. Computing and Communication (IEMCON), 2015 International
Conference and Workshop on. [S.l.], 2015. p. 1–6.

121

122 BIBLIOGRAPHY

Baojiang Cui et al. Code comparison system based on abstract syntax tree. In: 2010
3rd IEEE International Conference on Broadband Network and Multimedia Technology
(IC-BNMT). [S.l.: s.n.], 2010. p. 668–673.

BARROS-JUSTO, J. L. et al. What software reuse benefits have been transferred to the
industry? a systematic mapping study. Information and Software Technology, Elsevier,
v. 103, p. 1–21, 2018.

BARRY, E. J.; KEMERER, C. F.; SLAUGHTER, S. A. On the uniformity of software
evolution patterns. In: IEEE COMPUTER SOCIETY. Proceedings of the 25th Interna-
tional Conference on Software Engineering. [S.l.], 2003. p. 106–113.

BASKERVILLE, R.; MYERS, M. D. Special issue on action research in information
systems: Making is research relevant to practice: Foreword. MIS quarterly, JSTOR, p.
329–335, 2004.

BASKERVILLE, R. L. Investigating information systems with action research. Commu-
nications of the association for information systems, v. 2, n. 1, p. 19, 1999.

BELLOMO, S. et al. Evolutionary improvements of cross-cutting concerns: Performance
in practice. In: IEEE. 2014 IEEE International Conference on Software Maintenance and
Evolution. [S.l.], 2014. p. 545–548.

BERNARDI, M. L.; CIMITILE, M.; LUCCA, G. D. Mining static and dynamic crosscut-
ting concerns: a role-based approach. Journal of Software: Evolution and Process, Wiley
Online Library, v. 28, n. 5, p. 306–339, 2016.

BERRY, K. J.; JR, P. W. M. A generalization of cohen’s kappa agreement measure to
interval measurement and multiple raters. Educational and Psychological Measurement,
Sage Publications Sage CA: Thousand Oaks, CA, v. 48, n. 4, p. 921–933, 1988.

BÖHME, R.; FREILING, F. C. On metrics and measurements. In: Dependability metrics.
[S.l.]: Springer, 2008. p. 7–13.

BORGES, H. et al. On the popularity of github applications: A preliminary note. arXiv
preprint arXiv:1507.00604, 2015.

BOWES, D. et al. How good are my tests? In: 2017 IEEE/ACM 8th Workshop on
Emerging Trends in Software Metrics (WETSoM). [S.l.: s.n.], 2017. p. 9–14. ISSN 2327-
0969.

BRENNAN, R. L.; PREDIGER, D. J. Coefficient kappa: Some uses, misuses, and alterna-
tives. Educational and psychological measurement, Sage Publications Sage CA: Thousand
Oaks, CA, v. 41, n. 3, p. 687–699, 1981.

BRUNTINK, M. et al. An evaluation of clone detection techniques for crosscutting con-
cerns. In: IEEE. 20th IEEE International Conference on Software Maintenance, 2004.
Proceedings. [S.l.], 2004. p. 200–209.

BIBLIOGRAPHY 123

BUSCH, A. et al. Assessing the quality impact of features in component-based software ar-
chitectures. In: SPRINGER. European Conference on Software Architecture. [S.l.], 2019.
p. 211–219.

CAMPBELL, D. T.; STANLEY, J. C. Experimental and quasi-experimental designs for
research. [S.l.]: Ravenio Books, 2015.

CANFORA, G.; CERULO, L. How crosscutting concerns evolve in jhotdraw. In: IEEE.
13th IEEE International Workshop on Software Technology and Engineering Practice
(STEP’05). [S.l.], 2005. p. 65–73.

CARVALHO, L. P.; NOVAIS, R.; MENDONÇA, M. Investigating the relationship be-
tween code smell agglomerations and architectural concerns: Similarities and dissimi-
larities from distributed, service-oriented, and mobile systems. In: 2018 XII Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS). [S.l.: s.n.],
2018.

CARVALHO, L. P. da S.; NOVAIS, R. L.; MENDONÇA, M. Relationships between
design problem agglomerations and concerns having types and domains of software as
transverse dimensions. Journal of the Brazilian Computer Society, v. 26, n. 1, p. 5, Jul
2020. ISSN 1678-4804. Dispońıvel em: 〈https://doi.org/10.1186/s13173-020-00099-y〉.

CARVALHO, L. P. da S. et al. An approach for semantically-enriched recommendation
of refactorings based on the incidence of code smells. In: SPRINGER. International
Conference on Enterprise Information Systems. [S.l.], 2017. p. 313–335.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46,
1960.

CONGER, A. J. Integration and generalization of kappas for multiple raters. Psychological
Bulletin, American Psychological Association, v. 88, n. 2, p. 322, 1980.

CUNNINGHAM, W. The wycash portfolio management system. ACM SIGPLAN OOPS
Messenger, ACM New York, NY, USA, v. 4, n. 2, p. 29–30, 1992.

DAVISON, R.; MARTINSONS, M. G.; KOCK, N. Principles of canonical action research.
Information systems journal, Wiley Online Library, v. 14, n. 1, p. 65–86, 2004.

DAWSON, R.; O’NEILL, B. Simple metrics for improving software process performance
and capability: a case study. Software Quality Journal, Springer, v. 11, n. 3, p. 243–258,
2003.

DEACON, J. Model-view-controller (mvc) architecture. Online][Citado em: 10 de março
de 2006.] http://www. jdl. co. uk/briefings/MVC. pdf, 2009.

DELEV, T.; GJORGJEVIKJ, D. Static analysis of source code written by novice pro-
grammers. In: IEEE. 2017 IEEE Global Engineering Education Conference (EDUCON).
[S.l.], 2017. p. 825–830.

124 BIBLIOGRAPHY

DIAS, R. S. et al. Effects of visualizing technical debts on a software maintenance project.
In: Proceedings of the XVIII Brazilian Symposium on Software Quality. [S.l.: s.n.], 2019.
p. 39–48.

DÍAZ-PACE, J. A. et al. Producing just enough documentation: An optimization ap-
proach applied to the software architecture domain. Journal on Data Semantics, Springer,
p. 37–53, 2016.

DIT, B. et al. Feature location in source code: a taxonomy and survey. Journal of soft-
ware: Evolution and Process, Wiley Online Library, v. 25, n. 1, p. 53–95, 2013.

DONKER, D.; HASMAN, A.; GEIJN, H. V. Interpretation of low kappa values. Inter-
national journal of bio-medical computing, Elsevier, v. 33, n. 1, p. 55–64, 1993.

DÓSEA, M.; SANT’ANNA, C.; SILVA, B. C. da. How do design decisions affect the
distribution of software metrics? 2018.

EADDY, M. et al. Do crosscutting concerns cause defects? IEEE transactions on Software
Engineering, IEEE, v. 34, n. 4, p. 497–515, 2008.

ELLIS, J.; BELLE, J.-P. V. Open source software adoption by south african mses: barriers
and enablers. In: Proceedings of the 2009 Annual Conference of the Southern African
Computer Lecturers’ Association. [S.l.: s.n.], 2009. p. 41–49.

EMANUELSSON, P.; NILSSON, U. A comparative study of industrial static analysis
tools. Electronic notes in theoretical computer science, Elsevier, v. 217, p. 5–21, 2008.

FARIAS, M. A. de F. et al. Identifying self-admitted technical debt through code comment
analysis with a contextualized vocabulary. Information and Software Technology, Elsevier,
v. 121, p. 106270, 2020.

FARIAS, M. A. de F. et al. A systematic mapping study on mining software repositories.
In: ACM. Proceedings of the 31st Annual ACM Symposium on Applied Computing. [S.l.],
2016. p. 1472–1479.

FENTON, N. E.; NEIL, M. Software metrics: roadmap. In: Proceedings of the Conference
on the Future of Software Engineering. [S.l.: s.n.], 2000. p. 357–370.

FONTANA, F. A. et al. Investigating the impact of code smells on system’s quality: An
empirical study on systems of different application domains. In: 2013 IEEE International
Conference on Software Maintenance. [S.l.: s.n.], 2013. p. 260–269. ISSN 1063-6773.

FOWLER, M.; BECK, K. Refactoring: improving the design of existing code. [S.l.: s.n.],
1999.

FRANCESE, R.; RISI, M.; SCANNIELLO, G. Enhancing software visualization with in-
formation retrieval. In: 2015 19th International Conference on Information Visualisation.
[S.l.: s.n.], 2015. p. 189–194. ISSN 1550-6037.

BIBLIOGRAPHY 125

FRANCO-BEDOYA, O. et al. Open source software ecosystems: A systematic mapping.
Information and software technology, Elsevier, v. 91, p. 160–185, 2017.

GANDHI, N.; GONDWAL, N.; TANDON, A. Reliability modeling of oss systems based
on innovation-diffusion theory and imperfect debugging. In: ICITKM. [S.l.: s.n.], 2017.
p. 53–58.

GÎRBA, T.; DUCASSE, S. Modeling history to analyze software evolution. Journal of
Software Maintenance and Evolution: Research and Practice, Wiley Online Library, v. 18,
n. 3, p. 207–236, 2006.

GOMES, F. et al. Uma análise da relação entre code smells e d́ıvida técnica auto-admitida.
In: . [S.l.: s.n.], 2019. p. 37–44.

GÓMEZ, O. S.; JURISTO, N.; VEGAS, S. Understanding replication of experiments
in software engineering: A classification. Information and Software Technology, Elsevier,
v. 56, n. 8, p. 1033–1048, 2014.

GOULAO, M. et al. Software evolution prediction using seasonal time analysis: A com-
parative study. In: 2012 16th European Conference on Software Maintenance and Reengi-
neering. [S.l.: s.n.], 2012. p. 213–222. ISSN 1534-5351.

HALFOND, W. G. et al. A classification of sql-injection attacks and countermeasures. In:
IEEE. Proceedings of the IEEE international symposium on secure software engineering.
[S.l.], 2006. v. 1, p. 13–15.

HAND, D. J.; ADAMS, N. M. Data mining. Wiley StatsRef: Statistics Reference Online,
Wiley Online Library, p. 1–7, 2014.

HANNEMANN, J.; KICZALES, G. Overcoming the prevalent decomposition of legacy
code. In: Workshop on Advanced Separation of Concerns. [S.l.: s.n.], 2001. v. 167.

HASSAN, A. E. The road ahead for mining software repositories. In: IEEE. 2008 Fron-
tiers of Software Maintenance. [S.l.], 2008. p. 48–57.

HE, C.; YE, S. A method for identification of crosscutting concerns based on goal model
and two-state algorithm. In: IEEE. 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT). [S.l.], 2015. v. 1, p. 431–435.

HEMETSBERGER, A.; REINHARDT, C. Sharing and creating knowledge in open-
source communities: The case of kde. In: Paper for Fifth European Conference on Orga-
nizational Knowledge, Learning, and Capabilities, Innsbruck. [S.l.: s.n.], 2004.

HERNáNDEZ, L.; COSTA, H. Identifying similarity of software in apache ecosystem –
an exploratory study. In: 2015 12th International Conference on Information Technology
- New Generations. [S.l.: s.n.], 2015. p. 397–402.

126 BIBLIOGRAPHY

IBIAPINA, I. et al. Tdvision: Um módulo computacional para visualização de dıvidas
técnicas. In: SBC. Anais da IV Escola Regional de Informática do Piaúı. [S.l.], 2018. p.
103–108.

JUHÁR, J.; VOKOROKOS, L. Separation of concerns and concern granularity in source
code. In: IEEE. 2015 IEEE 13th International Scientific Conference on Informatics. [S.l.],
2015. p. 139–144.

KAVALER, D. et al. Tool choice matters: Javascript quality assurance tools and usage
outcomes in github projects. In: IEEE PRESS. Proceedings of the 41st International
Conference on Software Engineering. [S.l.], 2019. p. 476–487.

KAZMAN, R. et al. A case study in locating the architectural roots of technical debt. In:
IEEE. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
[S.l.], 2015. v. 2, p. 179–188.

KHOMYAKOV, I. et al. An analysis of automated technical debt measurement. In:
SPRINGER. International Conference on Enterprise Information Systems. [S.l.], 2019.
p. 250–273.

KICZALES, G. Aspect-oriented programming. ACM Computing Surveys (CSUR), ACM
New York, NY, USA, v. 28, n. 4es, p. 154–es, 1996.

KITCHENHAM, B.; PFLEEGER, S. L. Principles of survey research: part 5: populations
and samples. ACM SIGSOFT Software Engineering Notes, ACM New York, NY, USA,
v. 27, n. 5, p. 17–20, 2002.

KOCH, S. Profiling an open source project ecology and its programmers. Electronic Mar-
kets, Routledge, v. 14, n. 2, p. 77–88, 2004.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical
data. biometrics, JSTOR, p. 159–174, 1977.

LANZA, M.; MARINESCU, R. Object-Oriented Metrics in Practice. [S.l.]: Springer Pub-
lishing Company, Incorporated, 2010.

LAWRENCE, R. Research dissemination: actively bringing the research and policy
worlds together. Evidence & Policy: A Journal of Research, Debate and Practice, Policy
Press, v. 2, n. 3, p. 373–384, 2006.

LE, D. M. et al. Relating architectural decay and sustainability of software systems.
In: 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). [S.l.:
s.n.], 2016. p. 178–181.

LOMAS, J. Diffusion, dissemination, and implementation: who should do what? Annals
of the New York Academy of Sciences, v. 703, p. 226–35, 1993.

LONGHURST, R. Semi-structured interviews and focus groups. Key methods in geogra-
phy, v. 3, n. 2, p. 143–156, 2003.

BIBLIOGRAPHY 127

MA, W. et al. Do we have a chance to fix bugs when refactoring code smells? In: IEEE.
2016 International Conference on Software Analysis, Testing and Evolution (SATE).
[S.l.], 2016. p. 24–29.

MAGNAVITA, R. C.; NOVAIS, R. L.; MENDONÇA, M. G. Using evowave to analyze
software evolution. In: ICEIS (2). [S.l.: s.n.], 2015. p. 126–136.

MARÇAL, I. et al. Techniques for the identification of crosscutting concerns: A system-
atic literature review. Springer, p. 569–579, 2016.

MARCUS, A.; POSHYVANYK, D.; FERENC, R. Using the conceptual cohesion of
classes for fault prediction in object-oriented systems. IEEE Transactions on Software
Engineering, IEEE, v. 34, n. 2, p. 287–300, 2008.

MENDES, T. et al. Repositoryminer - uma ferramenta extensivel de mineração de repos-
itorios de software para identificacao automatica de divida tecnica. In: CBSoft 2017 -
Sessao de Ferramentas. [S.l.: s.n.], 2017.

MENDES, T. S. et al. Visminertd: a tool for automatic identification and interactive
monitoring of the evolution of technical debt items. Journal of the Brazilian Computer
Society, Springer, v. 25, n. 1, p. 2, 2019.

MENDES, T. S. et al. Visminertd: Uma ferramenta para identificação automática e
monitoramento interativo de dıvida técnica. 2015.

MEYER, B. Object-oriented software construction. [S.l.]: Prentice hall New York, 1988.

MO, R. et al. Hotspot patterns: The formal definition and automatic detection of ar-
chitecture smells. In: IEEE. 2015 12th Working IEEE/IFIP Conference on Software
Architecture. [S.l.], 2015. p. 51–60.

MOCKUS, A.; VOTTA, L. G. Identifying reasons for software changes using historic
databases. In: icsm. [S.l.: s.n.], 2000. p. 120–130.

MUNOZ, F. et al. Inquiring the usage of aspect-oriented programming: An empirical
study. In: 2009 IEEE International Conference on Software Maintenance. [S.l.: s.n.],
2009. p. 137–146. ISSN 1063-6773.

MUNOZ, S. R.; BANGDIWALA, S. I. Interpretation of kappa and b statistics measures
of agreement. Journal of Applied Statistics, Taylor & Francis, v. 24, n. 1, p. 105–112,
1997.

NAYEBI, M. et al. Anatomy of functionality deletion. In: Proceedings of the Conference
on Mining Software Repositories (MSR’18), Gothenburg, Sweden. [S.l.: s.n.], 2018.

NOVAIS, R.; SANTOS, J. A.; MENDONÇA, M. Experimentally assessing the combina-
tion of multiple visualization strategies for software evolution analysis. Journal of Systems
and Software, Elsevier, v. 128, p. 56–71, 2017.

128 BIBLIOGRAPHY

NUÑEZ-VARELA, A. S. et al. Finding core crosscutting concerns from object oriented
systems using information retrieval. In: 2017 5th International Conference in Software
Engineering Research and Innovation (CONISOFT). [S.l.: s.n.], 2017. p. 18–24.

NUÑEZ-VARELA, A. S. et al. Source code metrics: A systematic mapping study. Journal
of Systems and Software, Elsevier, v. 128, p. 164–197, 2017.

NYSTROM, M. SQL injection defenses. [S.l.]: ” O’Reilly Media, Inc.”, 2007.

O’BRIEN, M. P.; BUCKLEY, J.; SHAFT, T. M. Expectation-based, inference-based,
and bottom-up software comprehension. Journal of Software Maintenance and Evolution:
Research and Practice, Wiley Online Library, v. 16, n. 6, p. 427–447, 2004.

OIZUMI, W. et al. Code anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In: Proceedings of the 38th International Conference
on Software Engineering. [S.l.: s.n.], 2016. (ICSE ’16), p. 440–451.

OIZUMI, W. N. et al. When code-anomaly agglomerations represent architectural prob-
lems? an exploratory study. In: 2014 Brazilian Symposium on Software Engineering.
[S.l.: s.n.], 2014. p. 91–100.

OIZUMI, W. N. et al. On the relationship of code-anomaly agglomerations and architec-
tural problems. Journal of Software Engineering Research and Development, 2015.

OLIVEIRA, P.; VALENTE, M. T.; LIMA, F. P. Extracting relative thresholds for source
code metrics. In: IEEE. 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). [S.l.], 2014. p.
254–263.

OZA, N. V.; HALL, T. Difficulties in managing offshore software outsourcing relation-
ships: An empirical analysis of 18 high maturity indian software companies. Journal of
Information Technology Case and Application Research, Taylor & Francis, v. 7, n. 3, p.
25–41, 2005.

O’HAGAN, A. O.; COLEMAN, G.; O’CONNOR, R. V. Software development processes
for games: a systematic literature review. In: SPRINGER. European Conference on
Software Process Improvement. [S.l.], 2014. p. 182–193.

PALYART, M.; MURPHY, G. C.; MASRANI, V. A study of social interactions in open
source component use. IEEE Transactions on Software Engineering, 2017.

PORUBÄN, J.; NOSÁL, M. Leveraging program comprehension with concern-oriented
source code projections. In: SCHLOSS DAGSTUHL-LEIBNIZ-ZENTRUM FUER IN-
FORMATIK. 3rd Symposium on Languages, Applications and Technologies. [S.l.], 2014.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. [S.l.]: Palgrave
Macmillan, 2005.

BIBLIOGRAPHY 129

PUHAKAINEN, P.; SIPONEN, M. Improving employees’ compliance through informa-
tion systems security training: an action research study. MIS quarterly, JSTOR, p. 757–
778, 2010.

RIEHLE, D. The economic motivation of open source software: Stakeholder perspectives.
Computer, IEEE, v. 40, n. 4, p. 25–32, 2007.

ROBILLARD, M. P. et al. On-demand developer documentation. In: IEEE. 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). [S.l.], 2017.
p. 479–483.

ROBILLARD, M. R.; MURPHY, G. C. Concern graphs: finding and describing con-
cerns using structural program dependencies. In: Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. [S.l.: s.n.], 2002. p. 406–416.

ROSENHAINER, L. Identifying crosscutting concerns in requirements specifications. In:
CITESEER. Proceedings of OOPSLA Early Aspects. [S.l.], 2004.

RUNESON, P. A survey of unit testing practices. IEEE software, IEEE, v. 23, n. 4, p.
22–29, 2006.

SAIKIA, L.; SINGH, S. Feature extraction and performance measure of requirement
engineering (re) document using text classification technique. In: IEEE. 2018 4th Inter-
national Conference on Recent Advances in Information Technology (RAIT). [S.l.], 2018.
p. 1–6.

SANTOS, P. S. M. D.; TRAVASSOS, G. H. Action research can swing the balance in
experimental software engineering. In: Advances in computers. [S.l.]: Elsevier, 2011. v. 83,
p. 205–276.

SANT’ANNA, C. et al. On the modularity assessment of software architectures: Do my
architectural concerns count? In: Proc. International Workshop on Aspects in Architec-
ture Descriptions (AARCH. 07), AOSD. [S.l.: s.n.], 2007. v. 7.

SANT’ANNA, C. et al. On the reuse and maintenance of aspect-oriented software: An
assessment framework. In: Proceedings XVII Brazilian Symposium on Software Engineer-
ing. [S.l.: s.n.], 2003. v. 26.

SHAIKH, M.; LEE, C.-G. Aspect oriented re-engineering of legacy software using cross-
cutting concern characterization and significant code smells detection. International Jour-
nal of Software Engineering and Knowledge Engineering, World Scientific, v. 26, n. 03,
p. 513–536, 2016.

SHATNAWI, A. et al. Reverse engineering reusable software components from object-
oriented apis. Journal of Systems and Software, p. 442–460, 2017.

SILVA, B. C. da et al. Refactoring of crosscutting concerns with metaphor-based heuris-
tics. Electronic Notes in Theoretical Computer Science, Elsevier, v. 233, p. 105–125, 2009.

130 BIBLIOGRAPHY

SILVA, I. de J. et al. Vismells: An interactive visualization for identifying and evaluating
the effects of code smells on software projects. In: IEEE. 2018 XLIV Latin American
Computer Conference (CLEI). [S.l.], 2018. p. 40–49.

SOMMERVILLE, I. Software Engineering. 9th. ed. USA: Addison-Wesley Publishing
Company, 2010. ISBN 0137035152, 9780137035151.

STARON, M. Reporting action research studies. In: Action Research in Software Engi-
neering. [S.l.]: Springer, 2020. p. 191–213.

SUSMAN, G. I.; EVERED, R. D. An assessment of the scientific merits of action research.
Administrative science quarterly, JSTOR, p. 582–603, 1978.

TRIFU, A.; MARINESCU, R. Diagnosing design problems in object oriented systems.
In: IEEE. 12th Working Conference on Reverse Engineering (WCRE’05). [S.l.], 2005.

TSAI, J. For better or worse: Introducing the gnu general public license version 3. Berke-
ley Tech. LJ, HeinOnline, v. 23, p. 547, 2008.

TUFANO, M. et al. When and why your code starts to smell bad. In: IEEE PRESS. Pro-
ceedings of the 37th International Conference on Software Engineering-Volume 1. [S.l.],
2015. p. 403–414.

VALE, T. et al. Twenty-eight years of component-based software engineering. Journal of
Systems and Software, Elsevier, v. 111, p. 128–148, 2016.

VELÁZQUEZ-RODRÍGUEZ, C.; ROOVER, C. D. Automatic library categorization. In:
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops. [S.l.: s.n.], 2020. p. 733–734.

VELIOGLU, S.; SELCUK, Y. E. An automated code smell and anti-pattern detection ap-
proach. In: 2017 IEEE 15th International Conference on Software Engineering Research,
Management and Applications (SERA). [S.l.: s.n.], 2017. p. 271–275.

VIDAL, S. et al. Identifying architectural problems through prioritization of code smells.
In: 2016 X Brazilian Symposium on Software Components, Architectures and Reuse (SB-
CARS). [S.l.: s.n.], 2016. p. 41–50.

YU, Z. et al. Characterizing the usage and impact of java annotations over 1000+ projects.
arXiv preprint arXiv:1805.01965, 2018.

Appendix

A
CONCERNS IDENTIFIED DURING STUDY I

Concern Purpose

Service-Orientation allows communication with (web)services
Compression supports data compression
Configuration performs automatic configuration of systems’

modules and functionalities
Metrics and Measurement measures systems’ metrical/quality attributes
Web App Support enables embedding of server-client protocols
Graph Computing supports mathematical processing of graphs
Stream Processing enables data streaming
Caching supports definition of caching strategies
Text Processing processes data in form of text
Encryption supports data encryption
Directory Management supports directory management, e.g., LDAP
Geospatial Processing supports processing of geospatial data
Test automates self-testing of programs
Data Processing processes basic data formats, e.g., date, string
I/O Processing processes information obtained from I/O devices
Logging allows logging of programs’ routines
Data Format Processing imports-exports to-from data formats, e.g., xml
Process Execution executes external processes, e.g., OS programs
Bytecode Processing processes bytecodee.g., from ASM compilers
Report enables previewing and printing of reports
Database enables communication between client

applications and databases

131

Concern Purpose

Serialization supports serialization of data
Benchmark enables benchmark tests in applications
Distributed Computing adds distributed-computing features to software systems
ElasticSearch Processing supports processing of document-based information
Visualization allows visualization of data
Java Parsing/Compiling enable parsing and compiling of java source code
Ruby Parsing/Compiling enable parsing and compiling of ruby source code
Scala Parsing/Compiling makes parsing and compiling of scala source code
Security adds features to automate security, e.g., encryption
Dependency Injection makes injection of components during

runtime possible (hotplug)
Command Line Parsing makes parsing of command line strings possible
Monitoring enables monitoring of a program’s execution
Caching supports definition of caching strategies
Tracing allows processing of tracing stacks
Documentation adds support for source code documentation
Authentication enables authentication of users
Cloud Computing allows communication with cloud services
Mailing enables sending/receiving of eletronic messages
Messaging supports implementation of message queues
Validation automates validation of data structures

e.g., j-beans validation
Programming Utilities provides special data structures, e.g., list, map, set
Sample/Example source code samples to exemplify use of

functionalities
Behaviour-Driven Programming supports adoption of BDP principles
Transaction enables management of transactions
Source Code Versioning allows versioning of source code artifacts
Mathematical Processing provides support for complex mathematical calculations

Appendix

B
CONCERNS IDENTIFIED DURING STUDY II

Concern Purpose Found in...(*)
J N T H K O

Service-Orientation allows communication with services X X X X X
or enables a system to provide services

Compression supports data compression X X X X

Configuration automatic configuration of systems’ X X X X
modules and functionalities

Web App Support enables embedding of service-client X X X X X X
protocols

Graph Computing supports mathematical processing X X X
of graphs

Text Processing processes data in the form of text X X X X

Geospatial Processing processes geospatial data X X

Test automates self-tests of programs X X X X X X

I/O Processing accesses/processes information X X X X X
obtained from I/O devices

Logging allows logging of routines executed X X X X X X
by programs

Data Format Processing imports-exports from-to data formats, X X X X X X
e.g., xml, json

Process Execution executes external processes, X X X X X X
e.g., OS programs

Database enables communication between client X X X X X X
applications and databases

(*) J – JanusGraph, N – Neo4j, T – Titan, H – Heroic, K – KairosDb, O – OpenTSDB

133

Concern Purpose Found in...(*)
J N T H K O

Metrics and measures systems’ metrical/quality X X X X X
Measurement attributes

Stream Processing enables data streaming X

Serialization supports serialization of data X X X X X

Benchmark enables benchmark tests X X

Distributed Computing adds distributed-computing features X X X
software systems

ElasticSearch Processing supports processing of X X X
document-based information

Data Processing enables processing of dataset X X X X X
formats, e.g., CSV

Security adds features related to security, X
e.g., encryption

Dependency Injection makes injection of components X X X
during runtime possible (hotplug)

Tracing allows processing of tracing stacks X

Documentation supports documentation X
of source code artifacts

Command-line automates interpretation of X X X X X
Parsing command lines

Authentication enables authentication of users X X

Cloud Computing allows communication with X X
cloud services

Mailing enables sending/receiving of X
electronic messages

Messaging implements message queues X

Validation automates validation of data structures X X
during runtime, e.g., j-beans validation

Programming Utilities provides special data structures, X X X X X X
e.g., lists

Bytecode Processing allows interpretation of bytecode, X X
e.g., java bytecode

Samples/Examples lessons about how to X
use APIs and systems

Behavioural-Driven enables adoption of BDD X

Transaction allows management of transactions X

Mathematical provides support for complex X X X
Processing mathematical calculations

(*) J – JanusGraph, N – Neo4j, T – Titan, H – Heroic, K – KairosDb, O – OpenTSDB

Concern Purpose Found in...(*)
J N T H K O

Visualization enables visualization of data X X X

Caching supports adoption of caching X X
strategies

Encryption enables data encryption X

Source Code Versioning allows integration with VCS X

Java Parsing/Compiling enables parsing and X
compiling of java programs

Ruby Parsing/Compiling enables parsing and X
compiling of ruby programs

Scala Parsing/Compiling enables parsing and X
compiling of scala programs

Directory Management supports processing of X
directory structures, e.g., LDAP

Web Server Support allows embedding of web servers X X X

Monitoring enables monitoring of X X
programs’ execution

(*) J – JanusGraph, N – Neo4j, T – Titan, H – Heroic, K – KairosDb, O – OpenTSDB

Appendix

C
STUDY III – ANALYZING TYPES AND DOMAINS OF

SOFTWARE AS TRANSVERSE DIMENSIONS

Developers usually attempt to guarantee the quality of software projects as they evolve.
For instance, they may try to find and manage the occurrence of design problems in the
making of systems (VIDAL et al., 2016)(LE et al., 2016). Trifu and Marinescu (2005)
define design problems as flaws in the making of software projects that impact their
maintainability negatively. For instance, code smells (or smells) are potential indication of
problems in the source code of information systems (FOWLER; BECK, 1999). Therefore,
it is important to define strategies to spot and mitigate them whenever possible.

An example of strategy can be found in the work of Oizumi et al. (2016): they noticed
that when smells interconnect as agglomerations they show more potential to compromise
the quality of systems. Now, we examine the relationship between the code complexity
caused by code smells agglomerations and concerns. IEEE defines code complexity1

as “the degree to which a system or component has a design or implementation that is
difficult to understand and verify”. To the best of our knowledge, the association between
smells-related complexity and concerns obtained from third-party components’ metadata
is a valuable investigation that has not been addressed yet.

Additionally, we believe that analyzing the association between complexity and con-
cerns can be influenced to the way how we group software projects. In other words, we
conjecture that it is important to define strategies to arrange software projects together as
a way to optimize the mining of concerns. The strategies can rely on similarities between
the concerns embedded into projects that are of the same type/domain. For instance,
the following rationale exemplifies the applicability of types of software as a method to
group systems to evaluate their complexity:

1. Different types of software may require the implementation of common concerns.
For instance, regardless the type of software, developers may always add “Test”
routines to validate systems’ functionalities;

1https://standards.ieee.org/standard/610-1990.html

137

138STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

2. In opposition, other concerns remain particular to specific types of software. User
Interface (“UI”) is not typically implemented by web services, but it is a feature
generally found in other types of software, e.g., mobile and web applications;

3. If a certain design problem affects concerns that are common to different software
projects, it may be advantageous to define global strategies to mitigate the prob-
lem. For example, complexity increases in source code artifacts that host code
smells (LANZA; MARINESCU, 2010)(FONTANA et al., 2013)(VELIOGLU; SEL-
CUK, 2017). If “Test” is the main concern implemented by many smelly artifacts
of systems “M” (a mobile system), “S” (a service-oriented system), and “D” (a
distributed system), developers may find it interesting to define a global/general
strategy to jointly remove smells from the test-related artifacts of “M”, “S”, and
“D”. This can reduce their complexity and developers would have a chance to unify
each system’s design problems mitigation approaches regardless their distinct types.

With this study, we seek to examine the association between concerns and agglomera-
tions of code complexity caused by smells. Another aspect of our investigation: we want
to observe how grouping software projects according to their types (distributed, service-
oriented, and mobile systems) and domains (graph and time series databases) impact our
analyses.

We compare the strategies (grouping systems regarding their types X grouping sys-
tems regarding their domains) by evaluating them according to two criteria: (i) the
number of concerns shared by the grouped projects and (ii) if/how each group produces
agglomerations of code complexity that are uniform through time. Evaluating the uni-
formity of agglomerations comes from perceiving that some systems are modified and
stay productive for many years, while others are soon replaced or discontinued. Some
systems suffer few changes and others undergo constant changes. As a consequence, it
is possible to affirm that software projects do not follow uniform patterns during their
lifecycle (BARRY; KEMERER; SLAUGHTER, 2003)(GOULAO et al., 2012). This can
impact the use of concerns to agglomerate and analyze design problems. For instance,
perhaps not all versions of the software projects agglomerate instances of code complex-
ity. As well, it may not be the case that the agglomerations follow a successive, uniformly
spaced pattern through time. If so, our method is less likely to help developers to de-
fine approaches to manage systems’ complexity, e.g., the creation of prediction models
(GOULAO et al., 2012).

Making this study possible requires the following tasks: (i) mine concerns and code
complexity associated with code smells from the history of software projects; (ii) agglom-
erate artifacts’ code complexity around concerns; (iii) analyze combinations between con-
cerns and agglomerations of complexity through the evolution of three types of software
project; and (iv) present a variation of our investigation in which we substitute types for
domains of software as a way to group systems.

Our findings show that agglomerations of code complexity follow a non-uniform pat-
tern through the evolution of projects when types of software are adopted as transverse
dimension. They also reveal that domains of software are partially better suited to spot
more uniform agglomerations.

C.1 STUDY DEFINITION 139

C.1 STUDY DEFINITION

In this section, we present the definition of this study. We explain two key concepts
behind it, transverse dimensions and agglomerations, and the research questions that
guided us.

C.1.1 Transverse Dimension

We believe that there is an optimal way to arrange software projects to favor the iden-
tification of concerns. Specifically, we conjecture that it is possible to enhance our in-
vestigations and findings after choosing a transverse dimension. We define “transverse
dimension” as a classification schema which we use to mine concerns by joining sys-
tems’ historical data together. In the context of our research, we cover two transverse
dimensions: Types and Domains of Software.

Table C.1 explains how we differentiate types and domains of software. We fol-
low a strategy that distinguishes “application domain” from “programming domain”
(O’BRIEN; BUCKLEY; SHAFT, 2004). “Application domain” (or “domains of soft-
ware”, as we call it) refers to the context of the problem that is addressed by a piece of
software, while “programming domain” (or “types of software”, as we refer to) concerns
itself with technical details of implementing applications.

Table C.1 Types and Domains of Software (CARVALHO; NOVAIS; MENDONÇA, 2020)

Dimension Definition Examples

Types Systems which are similar to each other Android Mobile
regarding targeted development platforms Apps, Client-Server
and architecture Applications

Domains Systems that either share the same E-commerce Systems,
context of use or fulfil analogous Graph Databases,
sets of features Chatbots

As we conducted our research, we carefully analyzed contexts in which the use of either
types or domains of software was more/less adequate to mine concerns. This means: not
only we take advantage of the metadata about components that developers embed in
systems, but we also consider different strategies to group projects according to their
types and domains while seeking to maximize the extraction and analysis of concerns.

C.1.2 Agglomerations

We resorted to agglomerations to organize our dataset before performing analyses. Our
definition of agglomerations stems from Oizumi et.al.’s concept of “semantic agglomera-
tions” (OIZUMI et al., 2016): agglomerations are situations in which different source code
artifacts affected by design problems address a particular concern. We are interested in
the pieces of information systems (e.g., *.java files in java-oriented software projects) that
contains design problems (e.g., code complexity caused by the presence of code smells)

140STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

and, at the same time, implement a concern (e.g., “Logging”). Next, we exemplify our
use of agglomerations.

Figure C.1 illustrates three agglomerations. They are named after concerns found in
a software project (project “P”). This means: by mining “P”, we find out that its devel-
opers automated “Test”, “Security”, and “Logging”. The figure shows the relationship
between the agglomerations and three artifacts of “P”: “A.java”, “B.java”, and “C.java”.
“A.java” takes part in the “Test” agglomeration (in red) because it automates tests and
hosts a design problem. “A.java” logs some of its routines, so we also add it to the
“Logging” agglomeration (in blue). As “B.java” implements “Logging” and contains a
design problem, we add it to the “Logging” agglomeration as well. Developers inserted
some routines related to “Security” in “B.java”, so we associate it with the “Security”
agglomeration (in green). We are not interested in “C.java” as it either does not imple-
ment any of the three concerns or it does not contain a design problem. Consequently,
“C.java” is not part of any agglomeration.

Figure C.1 Agglomerations of Project “P” (CARVALHO; NOVAIS; MENDONÇA, 2020)

In (CARVALHO; NOVAIS; MENDONÇA, 2018), we examined the combinations be-
tween different types of software and agglomerations. We based our analysis on previous
work (OIZUMI et al., 2014)(OIZUMI et al., 2015)(OIZUMI et al., 2016)(VIDAL et al.,

C.1 STUDY DEFINITION 141

2016)(DÓSEA; SANT’ANNA; SILVA, 2018) which studied agglomerations of code smells.
As a result, we found out that one possible way to visualize and analyze agglomerations is
to stratify them as cases of similarities. Similarities comprise concerns which are shared
by different types of software. Similarities can be divided into full similarities and
partial similarities. Next, we explain and exemplify these types of agglomerations.

Figure C.2 exhibits the relationship between concerns and software projects grouped
according to their types: distributed, service and mobile. Full similarities include
cases in which common concerns agglomerate design problems for all of the mentioned
types. “Test” is one example of this type of agglomeration. This means: we found
out that the “Test” concern is associated with instances of code smells in the projects
categorized as services. We also spotted the same association in the distributed and
mobile systems. “Serialization”, “Database Connectivity”, “Network Access”, “Service-
Orientation”, “Data Format Processing”, and “Stream Processing” are other examples of
full similarities. Partial similarities agglomerate design problems for only a subset
of the types. “Code Optimization” and “Mocking” are examples of this type of similarity
because we found both concerns in distributed and mobile projects, but we did not find
them in the services.

Figure C.2 Types of Similarities

We need to measure the size of the agglomerations as a way to compare them. We
have resorted to the use of density. Density is an indirect metric that we calculate to
compare the agglomerations and to produce visual clues (charts) about how strong/weak

142STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

is the association between design problems and agglomerations. Figure C.3 shows how we
use the density of god classes (y-axis) to mine full similarities (x-axis) from systems2.
In the figure, we used the Lines of Code (LOC) metric to measure the density of the
agglomerations. Considering, for instance, the “Test” concern, we found cases of source
code artifacts that implement “Test” in all three types of software, and some of these
artifacts encapsulate god classes. Specifically, we agglomerated 1185 LOC from god
classes of mobile applications, 1099 LOC from god classes of service-oriented projects,
and 612 LOC from god classes found in distributed systems (the y-axis shows the total
amount of LOC for the entire set of god classes). In other words, the developers of all
the three types of software which we examined implemented tests in some source code
artifacts, and the first vertical bar in the figure shows the density (or the strength) of the
association between the test concern and the code smell that these artifacts host: god
class. The same happens for other concerns presented in Figures C.3 and C.4. In Section
we explain how we specialized the density metric to measure code complexity.

Figure C.3 Similarities between Software Types and Concerns (Density by God Class) (CAR-
VALHO; NOVAIS; MENDONÇA, 2018)

Figure C.4 shows partial similarities for distributed and mobile software projects.
It has the same agglomerations presented in previous example (Figure C.3) and two
new ones which are particular to these two types of software: “Code Optimization” and
“Moking”. These two concerns are particular to this subset of software projects. This

2Table C.2 informs the name of the systems, the interval of time during their evolution and the
number of source code artifacts that we mined from them

C.1 STUDY DEFINITION 143

means: the service-oriented projects did not contain any artifact that implemented either
“Code Optimization” or “Moking” and hosted god classes.

Figure C.4 Partial Similarities between Distributed and Mobile Software Projects (Density
by God Class) (CARVALHO; NOVAIS; MENDONÇA, 2018)

The charts exhibited in Figures C.3 and C.4 show a top-level view of how software
projects agglomerate design problems around concerns. As a consequence, they do not
show details about the evolution of the agglomerations. By not displaying the complete
history of how similarities evolve through time, the graphics may lead observers into
perceiving the agglomerations as uniform, or perfectly seasonal. We see this as a risk
for our analysis: a top-level view of the data may hide discrepancies and cases of non-
uniformity that only a detailed analysis of the evolution can reveal.

C.1.3 Code Complexity Agglomerations

We have added routines to AKS to measure the degree to which each concern agglomerates
design problems. As a result, AKS is capable of calculating the density of code complexity
agglomerations from the Weighted Methods per Class (WMC) metric. In the context of
this study, WMC’s value is obtained from the sum of the cyclomatic complexity of all
methods within smelly classes (LANZA; MARINESCU, 2010). We took this decision after
analyzing related researches which affirm that code complexity increases significantly in
software artifacts that are affected by smells (LANZA; MARINESCU, 2010)(FONTANA
et al., 2013)(VELIOGLU; SELCUK, 2017). As AKS depends on RM to mine software
projects, we are restrained to the set of code smells that it can detect: god and brain

144STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

classes. Considering that RM’s god and brain classes detection rules naturally test the
values of WMC against thresholds 3, we guarantee that our study’s findings are based on
relevant cases of code complexity.

The fictitious example in Figure C.5 illustrates how AKS calculates the density of code
complexity agglomerations. AKS finds two instances of god classes in “god class1.java”
and “god class2.java” and one instance of brain class in “brain class1.java”. These are
artifacts of project “P”. “God class1.java” is associated with both “Test” and “Seri-
alization” concerns. “God class2.java” and “brain class1.java” are associated with the
“Serialization” concern only. For each concern, AKS obtains the normalized value of the
density by calculating the mean-WMC (m-WMC) of classes. For example, AKS normal-
izes the density of “Test” by dividing the sum of WMC of all instances of “god class1.java”
by the number of times the artifact appeared in the evolution of “P”. Then, AKS adds
the m-WMC of “god class1.java” (50) to the density of “Test”. Similarly, AKS sums the
m-WMC of “god class2.java” (25), “god class1.java” (50), and “brain class1.java” (25)
to determine the density of “Serialization” (100).

Figure C.5 Complexity-based Density of Agglomerations of Project “P”

3More information about RM’s code smells detection rules can be found in 〈https://github.com/
visminer/repositoryminer/wiki/Available-Code-Smells〉

C.1 STUDY DEFINITION 145

C.1.4 Research Questions

We looked forward to answer the following research questions:

RQ1: Does source code complexity follow a uniform pattern as it agglomerates around
concerns through the evolution of different types of software?

RQ1 is the main question and seeks to understand if non-uniformity of agglomerations
is either the norm or the exception during the evolution of software projects. We used
AKS to mine 30921 source code snippets from the projects described in Table C.2 to
answer this question.

RQ2: Is there any other transverse dimension that can produce cases of more uniformly
distributed agglomerations of complexity through the evolution of software projects?

By answering RQ1, we examine the effects of a particular transverse dimension on
the agglomerations of code complexity: types of software, but there is a possibility that
domains of software is another fit candidate to agglomerate design problems.

We used the projects described in Table C.3 to answer RQ2. AKS analyzed 39485
artifacts through the historical data of the database systems. We also ran a statistical
analysis on the dataset to find correlative associations between the agglomerations mined
from the database projects. The statistical examination is another attempt to observe
cases of uniformity through the evolution of the grouped systems. If the agglomerations
of two (or more) databases correlate around the same concerns, this can be seen as an
opportunity for defining common strategies to manage both projects’ complexity. The
opposite might indicate that assembling software projects under a transverse dimension
is not fully advantageous. In other words, the use of transverse dimensions is more
beneficial to developers if they are able to perceive a uniform pattern in the way how a
design problem affects grouped projects through time. As another example, developers
may try to understand problems of systems being currently developed after revisiting the
past of grouped software projects. Again, this is only beneficial, if they can perceive a
uniformity through the historical data.

Figure C.6 summarizes the activities of this study. In the first phase, we agglomerate
instances of code complexity. As a result, we end up with agglomerations stratified
as similarities and dissimilarities. We then divide the similarities into time series of
systems’ releases/versions to analyze how the agglomerations evolve. Answering RQ1
has the purpose of knowing if splitting the dataset along a progression of releases/versions
reveals that the agglomerations are uniformly distributed through time. If not, we want
to test if the adoption of a different transverse dimension (domains of software) tend to
produce more uniform agglomerations (this being the purpose of RQ2).

We highlight that the software projects that we group as either “types” or “domains”,
and which we used in our analyses are not mutually exclusive in terms of the concerns
they host. This means: it was not part of our selection criteria to fully dissociate projects
regarding the concerns that developers embedded in them. Consequently, a distributed
system may include some concerns which service-oriented systems also have.

We evaluated the Titan project as both a type (distributed) and a domain (graph
database) of software. So, isolating a system within a particular transverse dimension
was not part of our selection strategy either.

146STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

T
a
b
le

C
.2

A
n
aly

zed
P
ro
jects

(T
ran

sv
erse

D
im

en
sion

:
T
y
p
es

of
S
oftw

are)
(C

A
R
V
A
L
H
O
;
N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
2
01
8
)

T
y
p
e

P
ro

je
c
t

D
e
sc
rip

tio
n

P
e
rio

d
A
rtifa

c
ts

D
istrib

u
ted

G
en
ie
a

F
ed
erated

job
orch

estra
tion

en
gin

e
2
0
17
-04

-
201

8
-01

2
01
2

d
ev
elop

ed
b
y
N
et
fl
ix

P
in
ot

b
A

realtim
e
d
istrib

u
ted

O
L
A
P

d
a
tastore

20
1
6-0

1
-
2
01
7
-12

75
86

S
h
ard

in
gS

p
h
ere

c
A
n
op

en
-sou

rced
d
istrib

u
ted

d
atab

ase
m
id
d
lew

are
solu

tion
2
016

-0
5
-
20
1
8-02

2
69
3

su
ite

T
itan

d
A

d
atab

ase
op

tim
ized

for
storin

g
an

d
q
u
ery

in
g

201
2
-06

-
2
01
5-0

9
26
9
8

la
rge

grap
h
s

Z
ip
k
in

e
A

d
istrib

u
ted

tracin
g
sy
stem

20
1
7-0

6
-
2
01
8
-01

15
77

S
erv

ice
C
ellb

ase
f

N
oS

Q
L
D
B

an
d
W
eb

S
erv

ices
to

access
20
1
6-0

9
-
2
01
7
-11

11
93

b
iological

d
ata

G
eoA

p
i g

N
ew

Y
ork

S
en
ate

G
eop

olitical
S
erv

ice
A
P
I

2
013

-0
3
-
2
01
8
-03

1
0
76

O
H
D
S
IW

eb
h

S
erv

ices
for

th
e
O
b
serva

tion
al

H
ealth

2
016

-0
9
-
20
1
7-1

0
14
50

H
ealth

D
ata

S
cien

ces
a
n
d
In
form

atics
O
p
en
L
egislation

i
N
ew

Y
ork

S
en
ate

L
egislation

S
erv

ice
A
P
I

201
3
-02

-
20
18
-0
4

2
8
12

O
p
en
M
R
S
j

O
p
en
M
R
S
R
E
S
T

W
eb

S
erv

ices
M
o
d
u
le

2
017

-0
2
-
2
01
7-1

0
20
6
8

M
ob

ile
IrcC

lou
d
k

A
C
h
at

on
IR

C
for

A
n
d
roid

201
3
-09

-
2
0
18
-05

52
8

O
k
H
ttp

l
A
n
d
roid

clien
t
for

th
e
O
k
H
ttp

2
013

-0
6
-
20
1
8-0

2
96
5

n
etw

ork
op

tim
ization

su
ite

N
ex
tC

lou
d
m

A
n
d
roid

versio
n
of

th
e
N
ex
t
C
lo
u
d
A
p
p
lication

20
1
7-1

0
-
20
18
-0
1

1
3
31

R
etro

fi
t
n

T
y
p
e-safe

H
T
T
P

clien
t
for

A
n
d
roid

an
d
J
ava

20
1
3-0

9
-
2
01
6
-01

39
2

S
ig
n
al o

A
m
essagin

g
a
p
p
for

sim
p
le

p
rivate

com
m
u
n
icatio

n
201

4
-12

-
2
01
8-0

4
25
40

w
ith

frien
d
s

a
h
ttp

s://gith
u
b
.com

/N
et
fl
ix
/gen

ie,
b
h
ttp

s://gith
u
b
.com

/lin
k
ed
in
/p

in
ot,

ch
ttp

s://g
ith

u
b
.co

m
/
sh
a
rd
in
g-sp

h
ere/sh

a
rd
in
g-sp

h
ere

d
h
ttp

s://gith
u
b
.com

/th
in
kau

reliu
s/tita

n
, e

h
ttp

s://gith
u
b
.com

/o
p
en
zip

k
in
/zip

k
in
,
f
h
ttp

s://
gith

u
b
.co

m
/
o
p
en
cb
/cellb

a
se

g
h
ttp

s://gith
u
b
.com

/n
y
sen

ate/G
eoA

p
i,

h
h
ttp

s://gith
u
b
.com

/O
H
D
S
I,

i
h
ttp

s://gith
u
b
.com

/
n
y
sen

ate/
O
p
en
L
egislatio

n
j
h
ttp

s://gith
u
b
.com

/op
en
m
rs/op

en
m
rs-m

o
d
u
le-w

eb
serv

ices.rest,
k
h
ttp

s://gith
u
b
.com

/ircclo
u
d
/an

d
ro
id

l
h
ttp

s://gith
u
b
.com

/sq
u
are/ok

h
ttp

,
m

h
ttp

s://gith
u
b
.com

/n
ex
tclou

d
,
n
h
ttp

s://gith
u
b
.com

/
sq
u
are/

retro
fi
t

o
h
ttp

s://gith
u
b
.com

/sign
alap

p
/S

ign
al-A

n
d
roid

C.1 STUDY DEFINITION 147

Table C.3 Analyzed Projects (Transverse Dimension: Domains of Software) (CARVALHO;
NOVAIS; MENDONÇA, 2020)

Domain Project Description Period Artifacts

Graph JanusGrapha Highly scalable graph 2017-04 - 2018-10 5657
database

Neo4Jb High performance graph store 2018-09 - 2018-12 26497
with all the features expected
from a robust database

Titanc Database optimized for 2012-06 - 2015-09 3570
storing and querying
large graphs

Time Series OpenTSDBd Distributed, scalable TS 2015-11 - 2018-12 1440
database

KairosDbe Fast distributed scalable TS 2015-11 - 2018-11 1884
database written on top
of Cassandra

Timelyf Time series database that 2016-06 - 2017-08 827
provides secure access to
time series data

a https://github.com/JanusGraph/janusgraph
b https://github.com/neo4j/neo4j
c https://github.com/thinkaurelius/titan
d https://github.com/OpenTSDB/opentsdb
e https://github.com/kairosdb/kairosdb
f https://github.com/NationalSecurityAgency/timely

Figure C.2 shows three types of software: service, distributed, and mobile. We spotted
the presence of “Service-Orientation” (the concern) in all of them. So, it is arguable that
we could have categorized the distributed and mobile systems as services as well because
they externalize some of their functionalities as services. We regard this type of concern
as an attempt to add a composition of concerns to software projects. Developers often
benefit from libraries that provide many features at once, i.e., function compositions
that fulfill several concerns (BUSCH et al., 2019). Including “Service-Orientation” (i.e.,
a subsystem of services) in distributed and mobile systems is an example of this. In our
analysis, we have not differentiated more complex concerns (e.g., “Service-Orientation”,
“Test”) from others that provide simpler functionalities (e.g., “Logging”). We decided to
stick to the way how their developers explicitly classified them according to descriptions
that we found in the projects’ github repositories (footnotes in Tables C.2 and C.3).

148STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

Figure C.6 Summary of this Study

C.2 RESULTS

All visualizations shown in this section (from Figure C.7 to Figure C.11) follow the same
pattern. They show a composition of charts and each chart displays evolutionary data
extracted from one software project of one specific type or domain of software. The x-
axis is divided in versions which AKS mined from the software projects. Every single
chart shows a number of five versions per project. The y-axis quantifies the density of

C.2 RESULTS 149

the agglomerations shown in the bar plots. In this case, we used a complexity metric
(m-WMC) to calculate the density (as explained in Section C.1.3).

Figure C.7 exhibits the evolution of code complexity agglomerations considering the
concerns which are common to three types of software: distributed, service-oriented, and
mobile systems. The chart displays sources of non-uniformity: some projects do not
contribute for increasing the density of the agglomerations. For instance, genie, signal,
and openmrs do not amount density for any of the concerns: “Data Format Processing”,
“Database Connectivity”, “Network Access”, “Service-Orientation”, “Serialization”, and
“Test” (the complete list of concerns can be found in Appendix D). Other projects pro-
duce agglomerations whose densities are not constant through evolution. Shardingsphere,
titan, irccloud, and geoapi are examples of inconstant projects. We consider that the dis-
tributions of agglomerations through the evolution of these project are non-uniform. On
the other hand, the evolution of pinot, zipkin, nextcloud, okhttp, retrofit, cellbase, ohdsi-
web, and openlegislation agglomerate densities throughout their evolution. We call these
cases uniform agglomerations.

Next, we present the results of the analysis we performed on partial similarities. Figure
C.8 shows the evolution of agglomerations mined from distributed and service-oriented
software projects. “Dataset Processing”, “Logging”, “Messaging”, “Process Execution”,
and “Programming Utilities” are concerns which are common to these two types of soft-
ware. The non-uniformity resides in the fact that genie and openmrs do not show any
density for these concerns through their evolution. Additionally, the density is not de-
tected considering some specific versions of other projects. This is the situation of shard-
ingsphere, titan, and geoapi. However, projects like pinot, zipkin, cellbase, ohdsiweb, and
openlegislation show a more constant flow of agglomerations as they evolve.

Figure C.9 exhibits the partial similarities between mobile and service-oriented soft-
ware projects. The list of concerns includes the ones exhibited in Figure C.7 and two
others that are particular to these two types of software: “Security” and “Stream Process-
ing”. Openmrs shows no agglomeration through its evolution. Agglomerations obtained
from irccloud, signal, geoapi, and openlegislation are non-uniform. Nextcloud, ohdsiweb,
okhttp, retrofit, and cellbase show more uniform distributions.

Figure C.10 shows partial similarities obtained from the comparison between dis-
tributed and mobile software projects. The projects share only one concern: “Mocking”.
Genie and Signal do no agglomerate any density through their evolution. Shardingsphere,
titan, and irccloud do not show a uniform distribution of agglomerations as they evolve.
Pinot, zipkin, nextcloud, and retrofit are more uniform in terms of how the densities are
distributed through the historical data.

Now, we present the results of our analysis of the non-relational database systems.
Figure C.11 shows the collection of full similarities mined from the projects described in
Table C.3. One noticeable aspect of the figure is that the projects share more common
concerns if compared to our previous analysis regarding types of software (as seen in
Figure C.7). A visual inspection of the figure indicates that the agglomerations are more
uniformly distributed through the evolution of the software projects.

We further examined the data statistically to confirm the uniformity. Considering our
main goal of helping developers to manage design problems, we consider that it is desirable

150STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

F
ig
u
re

C
.7

U
n
iform

ity
of

F
u
ll
S
im

ilarities
–
T
ran

sv
erse

D
im

en
sion

:
T
y
p
es

of
S
oftw

are
(C

A
R
V
A
L
H
O
;
N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
2
02
0)

C.2 RESULTS 151

F
ig
u
re

C
.8

U
n
if
or
m
it
y
o
f
P
a
rt
ia
l
S
im

il
ar
it
ie
s:

D
is
tr
ib
u
te
d
X

S
er
v
ic
e-
O
ri
en
te
d
–
T
ra
n
sv
er
se

D
im

en
si
on

:
T
y
p
es

of
S
of
tw

ar
e
(C

A
R
-

V
A
L
H
O
;
N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
20
20
)

152STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

F
ig
u
re

C
.9

U
n
iform

ity
of

P
artial

S
im

ilarities:
M
ob

ile
X

S
erv

ice-O
rien

ted
–
T
ran

sv
erse

D
im

en
sio

n
:
T
y
p
es

of
S
oftw

a
re

(C
A
R
V
A
L
H
O
;

N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
2020)

C.2 RESULTS 153

F
ig
u
re

C
.1
0

U
n
if
or
m
it
y
of

P
ar
ti
al

S
im

il
ar
it
ie
s:

D
is
tr
ib
u
te
d
X

M
ob

il
e
–
T
ra
n
sv
er
se

D
im

en
si
on

:
T
y
p
es

of
S
of
tw

ar
e
(C

A
R
V
A
L
H
O
;

N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,
2
0
20
)

154STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

F
ig
u
re

C
.1
1

U
n
iform

ity
of

F
u
ll
S
im

ilarities
–
T
ran

sv
erse

D
im

en
sion

:
D
om

ain
s
of

S
o
ftw

a
re

(C
A
R
V
A
L
H
O
;
N
O
V
A
IS
;
M
E
N
D
O
N
Ç
A
,

202
0)

C.3 THREATS TO VALIDITY 155

that the agglomerations are uniformly distributed through evolution. For instance, “Test”
is uniformly distributed, as it affects many versions of the projects according to a visual
analysis of Figure C.11, but it is important to know if the “Test” agglomerations can
correlate with each other through a time series of versions/releases.

Tables C.4 and C.5 contain a series of correlational tests pertaining all associations
between the agglomerations shown in Figure C.11. For each concern shared by two
distinct projects we tested if the evolution of the code complexity agglomerations occurred
in concomitance. The data is not normally distributed,x so we relied on a non-parametric
analysis method (spearman).

The tests exhibited in Table C.4 and in its continuation (Table C.5) revealed a mul-
titude of results in which high correlations are mixed with low ones. For example,
“Test” produced significant correlations between certain pairs of software projects (e.g.,
janusgraph–titan, janusgraph–opentsdb), but no significant correlation between others
(e.g., janusgraph–neo4j, titan–timely). As the latter are not exceptional cases, we cannot
assume that comparing the evolution of code complexity from any two paired software
projects reveals a uniform pattern.

C.3 THREATS TO VALIDITY

We now discuss the threats to validity which we identified in this study:

Construct validity : as illustrated in Figure 3.4, we mined concerns from third-party
components injected in software projects. Later on, our approach used the “import”
directive to associate source code artifacts with concerns. However, we cannot guarantee
the imported components are extensively used by the artifacts they are injected in. We
have not empowered AKS with features to reject cases in which the imported components
are scarcely used to implement a concern. Such features would also have to favor cases
in which the bound between components and artifacts spreads over many lines of code
or causes a more significant impact. Therefore, using components injection to implement
the concept of agglomerations is a potential source of inconsistencies regarding precision
in our data. One way to circumvent this limitation requires embedding the mentioned
routines in AKS. This will help us to precisely spot situations in which the influence of
components (and the association between concerns and agglomerations) is too diluted to
be taken in account. Consequently, this might refine our dataset and observations.

Internal validity : even though developers may use a given concern extensively
through an artifact, it may be the case that the concern is not alone. Developers may feel
like importing several components to support the implementation of many concerns. This
imposes a problem: uncertainty regarding the degree to which we can relate the occur-
rence of code complexity (or any other design problem) to a concern. For instance, source
code artifacts are not likely to focus on the use/implementation of the “Logging” concern
in isolation. “Logging” tends to play an auxiliary role as developers often implement it
as a way to register the activities of other concerns (e.g., logging of steps while accessing
a database and the subsequent processing of resultsets). On the other hand, they may
specialize other artifacts in performing “Test” routines. This comes from the fact that
developers frequently create tests to deal with specific sets of a system’s functionalities.

156STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

Table C.4 Concern-Based Correlations between Projects (CARVALHO; NOVAIS;
MENDONÇA, 2020)

Project Project Concern Correlation

janusgraph neo4j Database 0.44
neo4j Mathematical Processing 0.23
neo4j Test 0.28
titan Database 0.45
titan Logging 0.04
titan Mathematical Processing 0.51
titan Distributed Computing 0.37
titan Test 0.64
kairosdb Database 0.04
kairosdb Logging 0.22
kairosdb Mathematical Processing 0.55
opentsdb Database 0.31
opentsdb Logging 0.45
opentsdb Test 0.67
timely Database 0.45
timely Logging 0.56
timely Distributed Computing 0.09
timely Test 0.70

neo4j titan Database 0.01
titan Mathematical Processing 0.18
titan Test 0.80
kairosdb Data Format Processing 0.01
kairosdb Database 0.24
kairosdb Mathematical Processing 0.17
opentsdb Data Format Processing 0.60
opentsdb Database 0.01
opentsdb Test 0.36
opentsdb Web App Support 0.71
timely Database 0.01
timely Test 0.80
timely Web App Support 0.05

kairosdb opentsdb Data Format Processing 0.68
opentsdb Database 0.22
opentsdb Logging 0.08
timely Database 0.25
timely Logging 0.25

opentsdb timely Database 0.05
timely Logging 0.11
timely Test 0.25
timely Web App Support 0.24

Continue in the next page...

C.3 THREATS TO VALIDITY 157

Table C.5 Concern-Based Correlations between Projects (Continuation) (CARVALHO; NO-
VAIS; MENDONÇA, 2020)

Project Project Concern Correlation

titan kairosdb Database 0.25
kairosdb Logging 0.08
kairosdb Mathematical Processing 0.17
opentsdb Database 0.00
opentsdb Logging 0.13
opentsdb Test 0.09
timely Database 0.04
timely Logging 0.25
timely Distributed Computing 0.04
timely Test 0.11

The specialization stems from a good practice related to the automation of tests: single
responsibility. This principle is better achieved when tests focus on either very few or
on one single behavior of a system (RUNESON, 2006)(BOWES et al., 2017). Therefore,
it is more likely that a given design problem can be associated with an artifact that im-
plements “Test” (to test one feature of systems) than with one that hosts “Logging” (in
combination with other concerns). We must comprehend the use that developers make
of different concerns (in isolation vs in combination) to refine our findings.

We have investigated the impact of types of software as transverse dimension (CAR-
VALHO; NOVAIS; MENDONÇA, 2018). We are now studying the effects of a new pos-
sible categorization of agglomerations: domains of software. We claim that our findings
can be trusted, but we still have work to do before we are able to fully testify that a vari-
ation from types of software to domains of software grants uniformity. We can achieve
this by finding and analyzing other related projects (e.g., other graph and time series
databases) or adding new sub-domains to our investigations (e.g., relational databases,
mathematical applications, health care systems).

It is also important to find ways to enhance the results of correlational tests as the
one that we performed on pairs of database projects (Table C.4). This may require re-
analyzing our dataset via statistical methods that favor non-seasonal/non-uniform data.
Additionally, it is imperative to define strategies to pair the versions of different projects
adequately. The versions of the databases that we tried to correlate may represent dif-
ferent development stages or levels of maturity. We must find a way to match projects’
versions to avoid comparing a system’s immature versions with another system’s more
mature ones.

External validity : surely, the number of types and domains of software abounds
beyond the ones we examined here. While we believe that our conclusions are assertive,
we cannot say that they can embrace other projects or a different set of transverse dimen-
sions. A generalization would require expanding our studies to consider other scenarios.
With this purpose in mind, we have been improving our approach, automatizing AKS,
and expanding our dataset. This can contribute for advancing and generalizing our stud-

158STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

ies toward other associations between software projects, design problems and transverse
dimensions.

Conclusion validity : we have conjectured about the applicability of agglomerations
to define strategies to manage the incidence of design problems in software projects. We
have also cogitated that such applicability is more advantageous if the agglomerations
are uniformly distributed through the evolution of projects. However, we must evaluate
these conclusions in real (or near to real) situations. This must include gaining more
knowledge about: (i) the actual degree to which developers would value an approach to
analyze the association between design problems and concerns through the evolution of
software projects; (ii) the impact of uniformity and non-uniformity in their analysis as
they manage the incidence of design problems.

C.4 DISCUSSION

With this study, we address the association between the code complexity caused by code
smells and the evolution of concerns. We applied types and domains of software as trans-
verse dimensions attempting to favor the uniformity of our dataset. We see uniformity as
an important requirement to enable the use our method to develop strategies to mitigate
design problems. Considering the results that we presented in Section C.2, we provide
the following answers for our research questions:

RQ1: Does source code complexity follow a uniform pattern as it agglomerates around
concerns through the evolution of different types of software?

By observing the distribution of agglomerations through the evolution of different types
of software, non-uniformity is the pattern that full and partial similarities tend to follow.
For instance, projects like Genie, OpenMRS, and Signal do not contribute for increas-
ing the density of agglomerated instances of code complexity and the distribution of
agglomerations obtained from projects like ShardingSphere and GeoApi is non-uniform.

Alternatively, we can also say that revealing projects like Genie, OpenMRS, and Sig-
nal do not concentrate densities for agglomerations of design problems may actually be
a positive finding. This means: AKS found no instance of god and brain classes in these
projects to associate code complexity with. This can be an indicator of the good quality
of their source code. The same can be said about ShardingSphere and GeoApi, as they
did not contribute for the density of agglomerations. An approach to manage design
problems may skip the analysis of these projects or relegate them to a less important
rank of problematic systems. Meanwhile, developers can focus on the most significant
cases, e.g., Pinot and Celbase.

RQ2: Is there any other transverse dimension that can produce cases of more uniformly
distributed agglomerations through the evolution of software projects?

Domains of software like the ones we analyzed (graph and time series databases) seem

C.4 DISCUSSION 159

prone to share more concerns. Most probably, this comes from the fact that a common
context of use can lead developers to implement similar functionalities. The similarity
can even cause the injection of the same (or nearly the same) third-party components.

Domains are also more inclined to produce cases in which agglomerations are uni-
formly distributed through the evolution of software projects. While this affirmation is
assertive considering the visual inspection of projects’ evolution (shown in Figure C.7),
it fails under statistical analysis (Table C.4), i.e., adopting domains of software as trans-
verse dimension can show which shared concerns agglomerate instances of design problems
when different software projects are in play, but it may not provide a statistical base for
a fully advantageous application of our approach.

We believe that using domains of software as transverse dimension can grant a partial
but important advantage in comparison to types of software. Domains are advantageous
as they reveal more cases of concerns being shared by software projects. Additionally,
the resulting agglomerations of design problems have a tendency to distribute themselves
more uniformly through systems’ evolution. Although failing to correlate under a sta-
tistical analysis can be seen as unfavorable, we do not regard this as so impacting that
it may prevent developers from using our approach. This finding influenced us to group
software projects according to their domains to conduct the studies described in Chapters
4 and 5.

Among future studies, we have the intention to circumvent the problems and limi-
tations elicited in Section C.3. As well, we intend to perform other investigations. For
instance, we would like to broaden the variability of transverse dimensions. We won-
der if other transverse dimensions have potential to reveal more variations related to
the way how design problems agglomerate around concerns. For instance, development
methods might be a good addition to our studies. How are agglomerations distributed
through the evolution of software projects which have adopted Test-Driven Development
(TDD)(BAJAJ; PATEL; PATEL, 2015) as method? Compared to standardized classic
methods, we expect to see TDD-based projects agglomerating more density for test-
related concerns right from the beginning of software evolution. Perhaps, projects that
follow classical methods (e.g., cascade) (SOMMERVILLE, 2010) may have a tendency to
cluster design problems around this concern only during later development phases. If this
is the case, design problems which frequently plague test artifacts will tend to appear at
different moments depending on the chosen method. Developers can use this information
to manage test-related design problems when the time is right.

In Section C.1.4 (last paragraph) we highlighted the possibility that embedding third-
party components in software projects can lead to composition of concerns (BUSCH et al.,
2019). We even mentioned the case of “Service-Orientation” being found in distributed
and mobile systems as a way to implement subsystems of services. It seems possible
to contrast the effects of using third-party components to inject simpler libraries (e.g.,
to implement “Logging”) from the embedding of more complex ones (e.g., “Geospatial
Processing”, “Bioinformatics”). We can categorize the later as frameworks and associate
them with attempts to add collections of features and concerns that are common to
specific domains of software (VALE et al., 2016). As another future work, it is important
to evaluate if our approach is adequate to spot developers’ strategies to use frameworks

160STUDY III – ANALYZING TYPES ANDDOMAINS OF SOFTWARE AS TRANSVERSE DIMENSIONS

to compose interrelated concerns.

We must also focus on making our dataset more reactive to developers’ actions. We
are not sure that developers usually look around through the evolution of systems to find
and manage code smells and the complexity caused by them. Thus, we are less likely
to see a steady increase/decrease in the number of smells through time. Consequently,
a pattern in the way how the complexity of smelly artifacts evolve may not be observed
either. By not reacting to smells, developers may have other motivations to change the
source code and, perhaps, the motivations reside in the concerns. Developers of graph
databases may tend to focus on improving concerns that are important to this type
of software: “graph computing”, “mathematical processing”, “distributed computing”
(here, we are assuming these ones as examples of most important concerns for the sake
of argument). As well, they may consider other concerns as less significant or some con-
cerns will not demand many attention through time. We can raise a new hypothesis then:

To systems grouped under a given transverse dimension there is a subset of concerns
which most development effort centrepoint to. Tracking the evolution of such concerns
can reveal the actual problems that developers deal with in a daily basis.

Investigating the hypothesis may provide a more refined approach to help developers:
instead of (firstly) selecting design problems and agglomerating problematic artifacts
around concerns, we should better try to find artifacts that implement concerns which
attract developers’ attention more often (e.g., the number of commits affecting artifacts
that implement “graph computing”, “mathematical processing”, and “distributed com-
puting” may indicate this) and then identify the design problems that habitually affect
these artifacts. This can be optimal as it might provide a reactive dataset about con-
cerns that developers care the most while discarding/deprioritizing others which are of
less impact.

C.5 RELATED WORK

We highlight the following related work that has investigated agglomerations of design
problems:

In a series of papers, Oizumi et al. (OIZUMI et al., 2014)(OIZUMI et al., 2015)(OIZUMI
et al., 2016) investigated how to use code anomalies as the main design problem to ad-
dress architectural and design problems in software projects. In their analyses, they
have even chosen some software projects based on their types (e.g., web frameworks and
middlewares) and design styles (e.g., N-layers and MVC);

Kazman et al. (2015) and Mo et al. (2015) interrelated software artifacts to address
architectural design flaws through the evolution of analyzed projects. They point out that
clustering source code files into special structures called Design Rule Hierarchy (DRS)
can help developers to spot parts of systems that are more error and/or change-prone.
However, they did not show any results regarding the analysis of concerns and their
relationship with transverse dimensions;

Tufano et al. (2015) investigated when and why instances of code smells are introduced

C.6 CONCLUSION 161

in software projects. Their research resembles our own as both seek to understand how the
appearance of code smells fluctuates through the evolution of software projects. Tufano
et al. (2015) provided a broad study about the phenomenon with no focus on grouping
the analyzed data around concerns or any specific transverse dimension;

Vidal et al. (2016) explored the use of agglomerations to prioritize the management
of damaging smells. They also emphasize the applicability of architecturally-relevant
concerns and the use of different design styles (e.g., N-layers and MVC) as transverse
dimensions to evaluate the effects of design problems on the quality of software projects.
Both this and the previous work contributed to shape many of the concepts we have
applied in our studies, but they did not analyze their results considering the impact of
transverse dimensions as deeply as we have;

Dósea, Sant’anna and Silva (2018) evaluated the impact of design decisions on the
definition of metrics for the analysis of source code. They also relied on concerns (or
design roles, as they call it) from different types of software (e.g., eclipse’s plugins, android
applications, web-based systems) to base their studies;

Our study either differs-from or expands the aforementioned ones by bringing the
association between software evolution, concerns, agglomerations, and transverse dimen-
sions into focus. We have made another contribution by stratifying the agglomerations
as similarities and dissimilarities.

C.6 CONCLUSION

After we defined the activities of our method, we looked forward to evaluate its applica-
bility in answering some research questions, as the two ones that we presented in Section
C.1.4. The questions seek to determine which strategy is more adequate when it comes
to select software projects to extract concerns from. As we wanted to evaluate two possi-
bilities, grouping systems according to their types or domains (or transverse dimensions
as we call them – Section C.1.1), we agglomerated the association between source code
artifacts and concerns as cases of full and partial similarities (as explained in Section
C.1.2).

Combining transverse dimensions and the stratification of full and partial similarities
is beneficial. Grouping software projects under a chosen transverse dimension can reveal
the similitude of systems regarding their concerns. We trust that this is a better strategy
compared to lacking of criteria in selecting and joining projects to inspect their evolution.
As a result, we focused the studies discussed in Chapters 4 and 5 on the mining of
concerns from the source code of systems selected from a particular domain of software:
non-relational databases.

Appendix

D
CONCERNS IDENTIFIED DURING STUDY III

Concern Purpose Found in...(*)
D S M G T

Service-Orientation allows communication with services X X X X X
or enables a system to provide services

Data Compression supports data compression X X

Configuration performs automatic configuration of systems’ X X X
modules and functionalities

Web App Support enables embedding of service-client X X X X X
protocols

Graph Computing supports mathematical processing X X X
of graphs

Text Indexing processes data in form of text X X

Geospatial Processing supports processing of geospatial data X X

Test automates self-tests of systems’ modules X X X X X

I/O Processing accesses/processes information X
obtained from I/O devices

Logging allows logging of routines executed by X X X X X
programs

Data Format Processing imports-exports from-to data formats, X X X X X
e.g., xml, json

Process Execution executes external processes, X X X X
e.g., OS programs

Database enables the communication between client X X X X X
applications and databases

(*) D – Distributed, S – Services, M – Mobile, G – Graph, T – Time Series

163

Concern Purpose Found in...(*)
D S M G T

Metrics and measures systems’ metrical/quality X X X
Measurement attributes

Stream Processing enables data streaming X X

Report enables preview and printing of reports X

Serialization supports serialization of data X X X X X

Benchmark enables benchmark tests in applications X X

Distributed Computing adds distributed-computing features X X X
to systems

ElasticSearch Processing supports processing of X
document-based information

Parsing makes parsing and compiling of source X X X X
code possible during runtime

Dataset Processing enables processing of dataset X X
formats, e.g., CSV

Security adds features related to data security, X X X X X
e.g., encryption

Dependency Injection makes injection of components X
during runtime possible (hotplug)

Caching supports defining caching strategies X X

Encryption enables data encryption X X X

Tracing allows processing of tracing stacks X

Geometry adds functionalities to process/calculate X
geometric shapes

Bulding/Deploy supports building and deploying X
programs’ releases

Authentication enables authentication of users or X
client applications

Cloud Computing allows communication with X
cloud services

Mailing enables sending/receiving of X
electronic messages

Messaging implements message queues X X

Validation automates validation of data structures X
during runtime, e.g., j-beans validation

Programming Utilities provides special data structures, e.g., lists X X X X X

Barcode Reading allows reading of barcodes X

Multimedia enables integration with multimedia X
resources

Bioinformatics allows processing of biological data X

UI allows creation of user interfaces X X X X

Cluster Management manages clustered data X

Mathematical provides support for complex X X X
Processing mathematical calculations

(*) D – Distributed, S – Services, M – Mobile, G – Graph, T – Time Series

Appendix

E
STUDY IV – INSTANTIATING OUR METHOD UNDER

A DIFFERENT DEVELOPMENT CONTEXTS

Our method is not limited to a specific type of programming language and development
platform. As we explained in Section 3.1.3 (Figure 3.3), we designed it as a stack of
interrelated activities. We also predicted that it is possible to instantiate our method to
meet different contexts of development. This study has the intention to showcase this
feature.

Javascript is the most popular language in github and npm1 (hereafter, NPMReg-
istry) is the most popular online registry for javascript packages (KAVALER et al.,
2019)(BORGES et al., 2015). The packages enclose third-party components and npm is
responsible for distributing them and making information about them available. Javascript
developers benefit from npm packages when they need to automate the injection of com-
ponents in their applications. We see this as an opportunity to demonstrate the capability
of our method to analyze javascript applications’ concerns.

The main goal of this study is to expand the applicability of our method and AKS to
support a different context of software development. Specifically, we have the intention
to mine and visualize concerns of npm-enabled javascript applications (hereafter, npmjs
systems/applications/projects).

Conducting this study requires: (i) automating our method’s abstraction to allow the
mining of npmjs applications; (ii) mining concerns from npmjs systems grouped under
two domains: online chats and Role-Playing Games (RPG); (iii) visualizing the concerns
mined from each domain.

We were able to use our method to identify npmjs systems’ concerns. We also provide
a preliminary analysis of how javascript applications’ concerns agglomerate around the
two aforementioned domains.

1https://www.npmjs.com/

165

166STUDY IV – INSTANTIATINGOURMETHODUNDER ADIFFERENT DEVELOPMENT CONTEXTS

E.1 MINING CONCERNS FROM NPMJS SOFTWARE PROJECTS

Similar to java projects, npmjs developers have devised a way to automate the injection of
third-party components. They usually fill information about components as dependencies
in package.json files. This means: package.json files have the same responsibility of java’s
POM and Gradle files. Listing E.1 shows some lines extracted from a package.json file.
Developers of an online chat application, Rocket.Chat, created a package.json to automate
the embedding of a set of components (from line 11 to 17, highlighted in yellow). As each
component focuses on fulfilling a specific purpose, we consider that they are suitable for
revealing developers’ intentions regarding the implementation of concerns.

Listing E.1 Example of a package.json file

1 {
2 ”name” : ”Rocket . Chat ” ,
3 ” d e s c r i p t i o n ” : ”The Ult imate Open Source WebChat Platform ” ,
4 ” ve r s i on ” : ”2.0.0− develop ” ,
5 ” author ” : {
6 ”name” : ”Rocket . Chat ” ,
7 ” u r l ” : ” https : // rocke t . chat /”
8 } ,
9 . . .

10 ” dependenc ies ” : {

11 ”apollo-server-express”: ”ˆ1.3.6” ,

12 ”archiver”: ”ˆ3.0.0” ,

13 ”arraybuffer-to-string”: ”ˆ1.0.2” ,

14 ”atlassian-crowd”: ”ˆ0.5.0” ,

15 ”autolinker”: ”ˆ1.8.1” ,

16 ”aws-sdk”: ”ˆ2.368.0” ,

17 ”bad-words”: ”ˆ3.0.2” ,
18 . . .
19 }
20 . . .
21 }

Package.json files are crucial during many deployment phases because they automate
the downloading and configuration of components in the machines and environments
where javascript systems must run. Consequently, developers pay very close attention to
the names and versions of components that they add to package.json files. So, given their
importance, package.json files are often part of javascript projects and the information
that they contain tends to be correct and precise.

The name of components is a unique id which can be used to unambiguously identify
them. Figure E.1 illustrates how our method uses components’ names to spot concerns
in npmjs applications.

Package.json files of two distinct software projects determine that they are dependant
on a component called moment. We have empowered AKS with routines to retrieve mo-
ment’s metadata from NPMRegistry. Navigating to https://www.npmjs.com/package/
moment reveals a collection of keywords: “moment”, “datetime”, “parse”, “format”, and

E.1 MINING CONCERNS FROM NPMJS SOFTWARE PROJECTS 167

Figure E.1 Mining of Javascript Systems’ Concerns

“validate”. AKS is capable of extracting keywords from NPMRegistry’s metadata. As
NPMRegistry does not offer a direct information about any specific concern that can be
associated with moment, our method relies on the keywords to support the manual def-

168STUDY IV – INSTANTIATINGOURMETHODUNDER ADIFFERENT DEVELOPMENT CONTEXTS

inition of concerns. For instance, considering the aforementioned keywords, we associate
moment with “Datetime Processing”.

The last step of our mining strategy requires finding npmjs applications’ source code
artifacts that import moment. In Figure E.1, we exemplify two possible ways by which
moment can be integrated into javascript artifacts: (i) using an import directive (as in
“a.js” file), and (ii) adding a require directive (as in “b.js” file).

E.2 STUDY DEFINITION

We rely on one of our previous findings to determine how to select and group npmjs
software projects: domains of software are a more adequate way to group systems (as
discussed in Chapter 4). Table E.1 describes the javascript applications that we chose to
analyze. We gathered them from two domains: online chats and RPG. One important
remark about the projects: they are npm-based and make use of package.json files to
store information about components.

Table E.1 Analyzed Projects

Domain Project Description

Chat Lets-Chata A chat app for small teams
Rocket-Chatb An open source webchat platform

RPG Adventurer’s Codexc An open source tool for tabletop RPG
Delafordd A javascript 2D medieval RPG

a https://github.com/sdelements/lets-chat
b https://github.com/RocketChat
c https://github.com/adventurerscodex
d https://github.com/delaford/game

Compared to the previous studies, this one has some limitations. First of all, we
do not examine the evolution of concerns. Package.json files are often stored in Version
Control Systems (VCS). Therefore, as POM/Gradle files, they can enable the tracking of
information about components (and concerns) through the evolution of npmjs software
projects. Unfortunately, we have not added the capability of mining multiple versions
of npmjs systems to AKS yet. As a consequence, the analysis described in this chapter
refers to one single snapshot obtained from the latest versions of the applications.

The results that we present in the next section are based on a rudimentary strategy
that we used to associate concerns with npmjs applications’ artifacts: being “C” a con-
cern, “C” is linked to artifact “A” (a .js file) if “A” imports components which implement
“C”. Moreover, the results do not address the Dedication to Concern (DtC) between “A”
and “C”.

As in Studies I (Chapter 4), II (Chapter 5) and III (Appendix C), we rely on visual-
izations to exhibit our findings. The visualizations shown in Section E.3 use the Number
Of Artifacts (NOA) and Lines Of Code (LOC) metrics. NOA refers to the number of
distinct javascript artifacts that import a component associated with each concern. We
use LOC to count the number of lines of code of the associated artifacts.

E.3 RESULTS 169

E.3 RESULTS

The word-clouds exhibited in Figures E.2 and E.3 represent the union of concerns gathered
from the two aforementioned domains (the complete list of concerns and their descriptions
can be found in Appendix F). Both figures use the NOA metric to differentiate the
concerns.

Figure E.2 exhibits chat applications’ cloud of concerns. The cloud reveals that some
concerns are implemented by more artifacts than others: “Javascript Programming Sup-
port”, “String Processing”, and “Notification”.

Figure E.2 Chat Applications’ Concerns Cloud

Figure E.3 presents the concerns that AKS mined from the RPG domain. We high-
light “Front-end Development”, “Mobile Programming”, “Hashing”, and “Data Format
Processing” as the concerns that are associated with a significant number of source code
artifacts.

170STUDY IV – INSTANTIATINGOURMETHODUNDER ADIFFERENT DEVELOPMENT CONTEXTS

Figure E.3 RPG Applications’ Concerns Cloud

E.4 DISCUSSION

We briefly explored the use of our method and tool to address a different software de-
velopment context. We replaced java software projects with javascript applications to
demonstrate one of our method’s features which we described in Section 3.1: enabling
different realizations and instances of its abstraction.

Javascript is a programming language that has received considerable attention from
developers. It has been used in the making of many modern applications and it counts
on an extensive number of third-party components to support the implementation of
concerns. This motivated us to enhanced AKS and reproduce the mining and analysis
steps which we applied to investigate java-based software projects to examine npmjs
applications too. As a result, we ended up with a preliminary view on the concerns that
javascript developers embedded in four npmjs systems.

As future work, we must reshape this preliminary study as a full study, as the ones
we presented in Chapters 4 and 5. However, we must enhance our method and AKS to
parse and analyze javascript applications’ source code elements more properly. We also
think it is highly desirable to measure the DtC between concerns and artifacts of npmjs
systems.

It is possible to replicate this study to address another relevant programming language:

E.4 DISCUSSION 171

python2. According to stackoverflow’s 2019 developers survey3, Python is the second most
preferred programming language and it is the top one that developers want to learn. As
python has become a developers’ favorite, it is important to support the analysis of
concerns embedded in this type of application.

Python developers also rely on third-party components as a way to reduce effort while
implementing applications. Like java and javascript developers, they usually indicate the
components that must be downloaded and integrated into their programs. For instance,
developers of SSBio, a bioinformatics framework written in python, added a require-
ments.txt file to its codebase4. The file lists all components that SSBio depends on.
Listing E.2 displays some lines extracted from SSBio’s requirements.txt.

Listing E.2 Example of a requirements.txt file

1 . . .
2 r eques t s >=2.13.0
3 cobra >=0.6.1
4 biopython>=1.69
5 b i o s e r v i c e s
6 xmltod ic t
7 mmtf−python
8 msgpack−python
9 awesome−s l u g i f y

10 ipywidget s ==7.0.0
11 lxml
12 json−t r i c k s >3.0
13 . . .

Each line exhibited in Listing E.2 corresponds to a distinct third-party component.
Same as using MVNRepository to retrieve metadata about java-based components and
NPMRegistry to gather metadata about npmjs components, python developers rely on the
Python Package Index5 (PyPi) to obtain details about python components. For instance,
navigating to https://pypi.org/project/biopython/ brings metadata about one component
mentioned in Listing E.2: biopython (line 4). The metadata contains a list of topics
associated with biopython: “Scientific/Engineering”, “Scientific/Engineering :: Bio-
Informatics”, and “Software Development :: Libraries :: Python Modules”. Considering
the topics, it seems logical that “Bioinformatic” is an adequate concern to represent
biopython. Table E.2 displays other concerns that we freely and manually defined
based on the content of SSBio’s requirements.txt file and the information found in PyPi.

PHP6 developers add a composer.json file to their software projects as a way to incor-
porate third-party components. Listing E.3 exhibits some lines from the composer.json of
Sylius7, an open source e-commerce platform. Packagist8 is an online platform that devel-
opers can consult to know more about PHP components. For instance, they can retrieve

2https://www.python.org/
3https://insights.stackoverflow.com/survey/2019
4https://github.com/SBRG/ssbio
5https://pypi.org
6https://www.php.net/
7https://github.com/Sylius
8https://packagist.org/

172STUDY IV – INSTANTIATINGOURMETHODUNDER ADIFFERENT DEVELOPMENT CONTEXTS

Table E.2 SSBio’s Concerns

Component Description Concern

requests http library Web App Support

cobra genome-scale modeling Bioinformatics

bioservices bioinformatics web services Service-Orientationa

xmltodict XML processing library XML Creation/Parsing

mmtf-python MacroMolecular Transmission Biological Structures
Format (MMTF) encoder Encodingb

msgpack-python binary serialization Serialization

awesome-slugify URL slugifyc library URL Processing

ipywidgets HTML widgets package UI

lxml XML processing library XML Creation/Parsing

json-tricks extra features for JSON JSON Creation/Parsing
a Perhaps, a more adequate decision would have to consider overlapping two concerns
to represent bioservices: “Service-Orientation” and “Bioinformatics”
b Naming this concern with precision would require the help of a bioinformatics
specialist
c “Slugify” is a process by which friendly URLs are generated from lengthy ones

details about egulias/email-validator (line 3) by browsing the component’s packagist’s
webpage: https://packagist.org/packages/egulias/email-validator. As a result, Packagist
returns its description and keywords, which can be used to associate a concern with
the component. The keywords “email”, “validator”, “validation”, “emailvalidation”, and
“emailvalidator” indicate that either “Validation” or “Email Validation” is a suitable
concern.

Listing E.3 Example of a composer.json file

1 ” r equ i r e ” : {
2 . . .
3 ” e g u l i a s / email−va l i d a t o r ” : ”˜2 .0” ,
4 . . .
5 ” f z an i no t t o / f ake r ” : ”ˆ1 .6” ,
6 ”gedmo/ doct r ine−ex t en s i on s ” : ”ˆ2 . 4 . 12” ,
7 ” jms/ s e r i a l i z e r −bundle ” : ”ˆ2 .0” ,
8 . . .
9 ” l i i p / imagine−bundle ” : ”ˆ2 .0” ,

10 ”payum/payum” : ”ˆ1 .4” ,
11 . . .

Based on the information fetched from Packagist, we determined a set of concerns
to represent the components shown in Listing E.3. In Table E.3 we summarize the
association between the chosen concerns and Sylius’ components.

Ruby 9 is another programming language that developers combine with third-party
components to create applications. Adding a Gemfile to software projects is a good prac-
tice that ruby developers follow. Gemfiles have the same responsibility of POM, Gradle,

9https://www.ruby-lang.org/en/

E.5 CONCLUSION 173

Table E.3 Sylius’s Concerns

Component Description Concern

egulias/email-validator library for validating emails Validation

fzaninotto/faker library that generates fake data Mocking

gedmo/doctrine- extensions for Doctrine Object- ORM Processing
extensions Relational Mapping (ORM)

jms/serializer-bundle library for serializing and deserializing Serialization
data

liip/imagine-bundle image manipulation abstraction Image Processing
toolkit

payum/payum integration with more than 50 Payment
payment services

package.json, composer.json, and requirements.txt files. They are meant to comprise in-
formation about the injection of components in ruby projects. PopHealth10, an open
source population health reporting application written in ruby, has a Gemfile. Listing
E.4 shows some of its lines.

Listing E.4 Example of a Gemfile

1 source ’ http : // rubygems . org ’
2
3 gem ’ r a i l s ’ , ’˜> 4 . 1 . 2 ’
4 gem ’ qua l i ty−measure−engine ’ , ’ 3 . 1 . 0 ’
5 gem ”hqmf2js ” , : g i t=> ” https : // github . com/pophealth /hqmf2js . g i t ”
6 gem ’ health−data−standards ’ , ’ 3 . 5 . 0 ’
7 gem ’ nokog i r i ’
8 gem ’ rubyzip ’
9 . . .

Ruby developers also count on a website to achieve information about components:
rubygems11. With its help we associated the concerns shown in Table E.4 with the
components listed in Listing E.4.

The concerns described in Tables E.2, E.3, and E.4 are not precise because defining
them adequately demands a thorough examination. So, it is necessary to determine
how to measure DtC according to the characteristics of each mentioned programming
language. Re-running our action research study while improving AKS to deal with a
multitude of languages and their respective components-related artifacts and websites is
necessary.

E.5 CONCLUSION

One key aspect of our method resides in the way how we split it into interrelated activ-
ities. We noticed that its abstraction (described in Section 3.1.1) could be instantiated

10https://github.com/pophealth/popHealth
11https://rubygems.org/

174STUDY IV – INSTANTIATINGOURMETHODUNDER ADIFFERENT DEVELOPMENT CONTEXTS

Table E.4 PopHealth’s Concerns

Component Description Concern

rails fullstack web framework Web App Support
quality-measure library for clinical quality Metrics and Measurement
-engine measurement
hqmf2js Health Quality Measure Format Health Data Processinga

(HQMF) conversion library
health-data-standards healthcare-related formats Health Data Processingb

processing library
nokogiri HTML, XML, SAX, and Data Formats Processing

Reader parser
rubyzip module for reading/writing Compression

zip files
a,b Defining an adequate concern would require the help of healthcare specialists

under varied contexts of software development and concerns analyses. In this chapter we
exemplified different types of applications and programming languages that have made
the use of third-party components to implement concerns. It is also usual that developers
add information about their components in projects’ metadata artifacts. Consequently,
our method can take advantage of such widespread practice to spot concerns regardless
adopted development technologies.

Appendix

F
CONCERNS IDENTIFIED DURING STUDY IV

Concern Purpose Found in...(*)
L R A D

Datetime Processing parses and formats date and time data X X X

Javascript Programming provides basic javascript data types, X X X X
Support structures, and functionalities

Database allows communication with databases X X

Authentication supports validation of users’ X X
credentials

Asynchronous Programming enables execution of asynchronous X
processes

Cookie Processing allows inserting/retrieving data X
into/from cookies

Socket-Based Communication supports socket-based communication X X
between modules and processes

XMPP Processing allows applying XMPP (a standard X
for messaging and presence)

File and Directory supports manipulation of files, file X X X
Processing types, and directories

User Input Processing enables collecting and parsing X X
users’ input

Express Programming Support allows development of web X X X
applications

YAML Creation/Parsing provides ways to create and parse X
YAML files

(*) L – Lets.Chat, R – Rocket.Chat, A – Adventurer’s Codex, D – Delaford

175

176 CONCERNS IDENTIFIED DURING STUDY IV

Concern Purpose Found in...(*)
L R A D

Callback Processing allows implementing and responding-to X
callbacks

Encryption enables encryption of data X X X

Hashing generates and processes hashed data X X

Templating enables creating, parsing, and validating X
data templates

Node Programming Support allows development of node-oriented X X X X
applications

Security supports the protection of systems’ data X X
and functionalities

Data Format Processing imports-exports from-to data formats, X X
e.g., xml, json

Compression supports data compression X X X X

Process Execution executes external/internal processes X

Test automates testing of routines X X

Chat supports development of chat applications X

Cloud Computing allows communication with X
cloud services

String Processing enables encoding/decoding and parsing X
of string-based data

Image Processing supports processing of image files X X

Version Control allows integration with VCS X

Front-end Development enables integration of front-end X X X
frameworks, e.g., React, Vuejs

Service-Orientation allows communication with services X
or enables a system to provide services

Data Format Processing imports-exports from-to data formats, X
e.g., xml, json

Notification automates notification routines X X

CSS Creation/Parsing/ automates processing of front-end’s X X
Transformation stylesheet

File Storage manages storage of data files X

Offline Storage manages offline storage of data X

Clipboard allows integration with OS clipboard X X

System Specs Parser support parsing of frameworks’ X
and programs’ specifications

HTML Creation/Parsing enables creating and parsing HTML X X
during runtime

Visualization allows visualization of data X

File Type Processing supports processing of file types X

URL Processing automates formatting and processing URLs X X

Stream Processing enables data streaming X

SMS Processing enables sending/receiving SMS X

Emojis supports visualization of emojis X X

(*) L – Lets.Chat, R – Rocket.Chat, A – Adventurer’s Codex, D – Delaford

CONCERNS IDENTIFIED DURING STUDY IV 177

Concern Purpose Found in...(*)
L R A D

Mathematical Processing provides support for complex X X

Caching allows definition of caching strategies X

Metrics and Measurement measures systems’ metrical/quality attributes X

Binary Data Processing processes binary/byte-coded data X

Blockchain Processing supports processing of blockchain structures X

Pretty Printing allows pretty-printing formatting of data X

PDF processing enables creating and exhibiting PDF X
documents

QRCode Processing automates recognition of QRCodes X

Mail Processing enables sending/receiving of electronic X
messages

Bugs Processing automates management of bugs X

Social Media Integration allows integration with social X
media platforms

LDAP Processing enables integration with LDAP servers X

Logging allows logging of routines executed X
by programs

Charset Encoding automates encoding/decoding of charsets X

Java Parsing/Compiling enables parsing and compiling javascript code X X

Validation automates validation of data structures, X X
e.g., json

Messaging allows sending/receiving text messages X X

Bundling and Deployment automates creation and deployment X
of executable packages

Web Gaming supports development of online web games X

Mobile Programming adds mobile features to web applications X

(*) L – Lets.Chat, R – Rocket.Chat, A – Adventurer’s Codex, D – Delaford

Appendix

G
DATASETS’ SPREADSHEETS FORMAT

All tables contained in this Appendix follow the same pattern: Column indicates the name
of the columns that can be found in our studies’ spreadsheets. Description describes the
purpose of each column. We exemplify a value of the column in Example.

G.1 STUDY II’S SPREADSHEETS FORMAT

Column Description Example

Project the name of the project that we analyzed Neo4j

Dimension project’s domain Graph Database

Reference commit’s hash of the snapshot under analysis -

Labela a label/name to represent the reference Neo4j

Concern a software concern Service-Orientation

Analysis mongodb’s hash that identifies where AKS -
stored the data about the concern

Imports components’ import declarations ...jersey.api.core.HttpContext
that AKS associates with concerns

File the original source code file which AKS .../neo4j/server/database
mined the concern from /DatabaseProvider.java

Sourcecodeb path to a copy of the source code file /aks/datasets/.../fdeb...java

LOC value of the Lines of Code metric calculated 43
from the source code file

NOCc value of the Number of Classes found 1
in the source code file

ICDd value of the Imported Components’ 0.5
Dedication metric

179

180 DATASETS’ SPREADSHEETS FORMAT

Column Description Example

NOMd value of the Number of Methods metric 2

NORd value of the Number of References metric 1

MDd value of the Method’s Dedication metric 0.5

DTCd value of the Dedication to Concern metric moderate
a In our scripts, we used the labels instead hashes, because the labels are more intuitive
b We add the copies to our replication packages as a way to provide other researchers with a
direct and easy access to the source code files that AKS processes
c Although we do not use this metric, we are making it available for future work
d We described this metric in Section 3.1.4.1 (Table 3.1)

G.2 STUDY III’S SPREADSHEETS’ FORMAT

Column Description Example

Project the name of the project that we analyzed Neo4j

Dimension project’s domain Graph Database

Reference commit’s hash of the snapshot under analysis -

Labela a label/name to represent the reference Neo4j

Concern a software concern Service-Orientation

Analysis mongodb’s hash that identifies where AKS -
stored the data about the concern

Imports components’ import declarations ...jersey.api.core.HttpContext
that AKS associates with concerns

File the original source code file which AKS .../neo4j/server/database
mined the concern from /DatabaseProvider.java

Sourcecodeb path to a copy of the source code file /aks/datasets/.../fdeb...java

AMWc value of the Average Method Weight 1
metric (LANZA; MARINESCU, 2010)

WMCd value of the Weighted Methods per Class metric 4
a In our scripts, we used the labels instead hashes, because the labels are more intuitive
b We add the copies to our replication packages as a way to provide other researchers with a direct
and easy access to the source code files that AKS processed
c Although we do not use this metric, we are making it available for future work
d We described our use of this metric in Section C.1.3

G.3 STUDY IV’S SPREADSHEETS’ FORMAT 181

G.3 STUDY IV’S SPREADSHEETS’ FORMAT

Column Description Example

Project the name of the project that we analyzed RocketChat

Dimension project’s domain Chat

Concern a software concern Cloud Computing

Imports components’ import declarations google-cloud/storage

File the original source code file which AKS .../app/google-vision/server
mined the concern from /googlevision.js

LOC value of the Lines of Code metric calculated 163
from the source code file

