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ABSTRACT

The inversion of vertical electrical sounding (VES) is normally performed considering a stratified medium formed by homogeneous, isotropic and horizontal layers.
The simplicity of this geophysical model makes the inversion simple and computationally fast, and together with the main characteristics of the electroresistivity
method, it was greatly responsible to make VES one of the most popular geophysical method for groundwater exploration and engineering geophysics. However,
even in a sedimentary basin where the geology is more conform, the assumption of horizontal and homogeneous layers is not necessarily valid, limiting the
reliability of the inversion results.

In this paper we present a fast and robust 2D resistivity modeling and inversion algorithm for the interpretation of sets of VES. We consider three inversion
algorithms: the Gauss-Newton method of linearized inversion (LI), the genetic algorithm (GA), and a hybrid approach (GA-LI) that uses LI to improve the best model
at the end of each step of the GA. The medium parametrization consists of the partition of the domain into fixed homogeneous rectangular blocks such that their
resistivities are the only free parameters. The apparent resistivity is evaluated by an iterative scheme that is derived from a finite-difference discretization of the
potential differential equation. We enhance the convergence rate of the scheme by adopting an incomplete Cholesky preconditioner.

Numerical results using synthetic and real 2D apparent resistivity data formed by sets of VES for the Schlumberger configuration illustrate the performance of the
hybrid GA-LI algorithm. The VES field data were acquired near Conceição do Coité, state of Bahia, Brazil. We compare the performance of the LI, GA and GA-LI
algorithms.

Keywords: Incomplete Cholesky, 2D resistivity modeling, geophysical inversion, genetic algorithms, linearized inversion, hybrid optimization.

RESUMO

A inversão de uma sondagem elétrica vertical (SEV) normalmente assume que o meio é estratifcado e formado por camadas horizontais homogêneas e isotrópicas.
A simplicidade deste modelo geofísico torna a inversão simples e com reduzido custo computacional. Esta simplicidade, junto às principais qualidades do método
de eletroresistividade, foi responsável por tornar a SEV um dos métodos geofísicos mais populares nos trabalhos de exploração de águas subterrâneas e geofísica
aplicada à engenharia. Porém, mesmo em bacias sedimentares, onde a geologia é mais conforme, a hipótese de camadas planas e homogêneas não é válida, o
que limita a confiabilidade dos resultados da inversão.

Apresentamos neste artigo um algoritmo rápido e robusto de modelagem e inversão eletroresistiva para a interpretação de conjuntos de SEVs. Consideramos três
algoritmos de inversão: o método de inversão linearizada de Gauss-Newton (LI), o algorítmo genético (GA), e uma abordagem híbrida (GA-LI) que usa a inversão
linearizada para aprimorar o melhor modelo obtido ao final de cada geração do algoritmo genético. A parametrização do meio consiste na partição do dommínio
em blocos retangulares e homogêneos, de modo que a resistividade de cada bloco é um parâmetro do modelo. A resistividade aparente é calculada com um método
iterativo baseado numa aproximação por diferenças finitas da equação do potencial elétrico. Um precondicionamento do tipo Cholesky incompleto é utilizado para
acelerar a convergência do método.

Avaliamos a performance do método híbrido por meio de experimentos numéricos com perfis de eletroresistividades reais e sintéticos, formados por conjuntos de
SEVs obtidas com o arranjo Schlumberger. Os dados de campo foram coletados nas proximidades de Conceição do Coité, estado da Bahia, Brasil.

Palavras-chave: fatoração incompleta de Cholesky, modelagem bidimensional de resistividade, inversão geofísica, algoritmos genéticos, inversão linearizada,
otimização híbrida.
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INTRODUCTION

Inversion of resistivity sounding is a non-linear problem that
estimates the spatial distribution of resistivities of the subsoil materials
from apparent resistivity data measurements. Local and global optimi-
zation algorithms have been reported in geophysical data inversion by
many authors (TARANTOLA; VALETTE, 1982; ROTHMAN, 1985; SEN;
BHATTACHARYA; STOFFA, 1993; CHUNDURU et al., 1997). In case we
begin the inversion using a starting model located near to a local or a
global minimum, gradient methods can be very useful to find an opti-
mal solution. Otherwise, global optimization algorithms such as simu-
lated annealing or genetic algorithms can be used. The major draw-
backs associated with local and global algorithms are the requirement
for a priori information and the computational cost, respectively. Several
different hybrid optimization approaches can be proposed to overcome
these drawbacks (CHUNDURU et al., 1997; PORSANI et al., 2000).

To develop an efficient hybrid optimization scheme, it is impor-
tant to choose efficient global and local algorithms. For geophysical in-
version, successful attempts were made by several authors (CARY;
CHAPMAN, 1988; PORSANI et al., 1993; LIU; HARTZELL; STEPHENSON,
1995). A very good explanation about the advantages and drawbacks of
local, global and hybrid algorithms was presented by Chunduru and
others (1997). Also to develop an efficient hybrid inversion algorithm
for 2D resistivity inversion, a  fast forward modeling algorithm is re-
quired. For the 2D inversion of field resistivity sounding data we have
implemented a 2D finite-difference algorithm for computation of the
forward modeling that uses an incomplete Cholesky factorization scheme
(MEIJERINK; VAN DER VORST, 1977) coupled with the preconditioned
conjugate gradient method (GREENBAUM, 1997).

Electrical resistivity inversion methods aim to determine the dis-
tribution of subsurface resistivity by measuring the distribution of electri-
cal potential from a set of current electrodes at the earth surface. For a
Schlumberger configuration of electrodes, the apparent resistivity satis-
fies the equation

ρ π
φ

a

AB

MN

MN

I
= −










2

4 4

∆
, (1)

where ∆φ is the electrical potential difference between two electrodes
located at M and N, and I is the current generated by two electrodes
located at A and B. The axis x is set along the electrodes.

The one-dimensional method of Vertical Electrical Sounding (VES)
for horizontally layered media is well known4. The free parameters of

this model are the resistivity ρ
i
 (1 ≤ ι ≤ n) and the thickness

h
i
 (1 ≤ i ≤ n) of each layer, and are represented by the vector m.

The center of electrode configuration is fixed, and the spacing
s = AB/2 is the only independent variable. One can evaluate the
apparent resistivity ρ

a
(m, s)in closed form (KOEFOED, 1979).

The two-dimensional model accounts for both lateral and verti-
cal variations of resistivity. In this case, the apparent resistivity r

a
 also

depends on the position x where the VES is performed. We partition the
domain into N rectangular blocks. The components of the free param-
eter vector m are the resistivity of each block. Unlike the 1D model, the
apparent resistivities ρ

a
(m, x, s

i
) are approximated by a numerical

method. We employ a finite-difference method to evaluate the scalar
electrical potential φ, as described in the following section.

FINITE-DIFFERENCE MODELING

Assuming that the electric conductivity σ of the medium varies
only along the axis x and the depth z, the electrical potential generated
by a pointwise source at (x

f
, 0, 0) is a solution of the Poisson equation

−∇ ( )∇ ( )  = −( ) ( ) ( ). , , , ,σ φ δ δ δx z x y z I x x y zf (2)

where δ(•) is the Dirac delta and ∇ is the gradient vector operator. A
Fourier transform in the y direction yields
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Equation (3) is discretized using an NxM non-uniform rectangu-
lar grid. We evaluate the finite-difference solution � �φ φi j k i jx z, ,≈ ( )
in its interior domain of validity according to Dey and Morrison (1979):
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4 Cf. Porsani and others (2001) and the references therein
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The boundary condition at the top layer is
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i
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We stretch the grid in geometric progression near the lateral and
lower boundaries, imposing the following condition (DEY; MORRISON,
1979):
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where K
0,1

 are the modified Bessel functions (ABRAMOWITZ; STEGUN,
1970). We employed growth factors of 2.529 and 2.215 in the horizon-
tal and vertical directions, respectively (MEDEIROS, 1987).

Let x=( )� � � �φ φ φ φ11 1 21,..., , ,...,N MN

T
 and b=( )b bMN

T

11 , ... .
Equations (6)-(10) yield a linear system of the form Cx = b. The
capacitance matrix C is symmetric, positive definite, and satisfies
C

i,j
 = 0 if |i - j| ≠ 0,1, M.

The Cholesky factorization CCCCC = LLLLLLLLLLT leads to a lower triangular
matrix LLLLL such that L Mi j, ≠ ≤0  i-jif in general. However, the
observed values of Li j, are relatively small if  i-j ≠ 0 1, ,M . For
instance, Figure 1 displays the absolute values of the diagonals of LLLLL
resulting from the model with M = 10, N = 20, and a medium com-
posed of two homogeneous layers with the same thickness. The resistivities
of the upper and lower layers are ρ1 10= Ωm  and ρ2 500= Ωm ,
respectively.

We consider an incomplete Cholesky factorization C » HHT

where H  is a lower triangular matrix satisfying Hi j, = 0

≠ i -j ,if 0,1 M . Since H preserves the sparsity pattern of C, the
matrix HHT is a suitable preconditioner for iterative methods for solv-
ing Cx = b (MEIJERINK; VAN DER VORST, 1977).

Once �φk i jx z,( )  is approximated, the electrical potential
φ x zi j, ,0( )  is estimated by numerically integrating Equation (5)
according to Dey and Morrison (1979). We employ the following fre-
quency values: k = 0.001, 0.002, 0.004, 0.008, 0.015, 0.03, 0.06,
0.09, 0.12, 0.15m-1. To evaluate the apparent resistivity, we place the
potential electrodes at the surface nodes of the grid, so that the diffe-
rence of electrical potential needed in (1) can be computed from
φ x i Mi , ,0 0 1( ) ≤ ≤( )  and a prescribed spacing s.

A Preconditioned Conjugated Gradient Algorithm

The incomplete Cholesky factorization approximates the solution
xxxxx of CxCxCxCxCx = bbbbb by the solution xxxxx00000 of HHHHHT xxxxx00000, where HyHyHyHyHy = bbbbb. To further
improve this estimate solution we employ the preconditioned conjugated
gradient (PCG) method (GREENBAUM, 1997). In the following algo-
rithm, niter is the maximum number of iterations, r r rl l

T
l=( )1 2

,
and tol is the error tolerance.

Steps of the preconditioned conjugated
gradient algorithm

• calculate  r = b 0  – Cx0 ;

• solve H z = yT
0  for zzzzz00000, where Hy = r

0
, and set p

0
= z

0;

• for l n  iter l= … ≥( ) 0,1, , r tol

- calculate x l l ll 1+ = +x pα , where αl
l
T

l

l
T

=
r z

p CPl

;

- calculate r r CPl l l l+ = −1 α ;

- solve H z yT
l+ =1 for zl+1 , where Hy r= +l 1;

- calculate p z pl l l l+ += +1 1 β , where βl
l
T

l

l
T

l

= + +r z

r z
1 1 ;

A similar algorithm has been used in 3D electroresistivity modeling
(ZHANG; MACKIE; MADDEN, 1995). Figure 2 compares the CPU process-
ing time of the PCG method above and a direct method based on the
Cholesky factorization (CF). The computations were performed in a RISC
6000 IBM and the model problem is the same as in Figure 1, with N =
100 and M = 5, 10,…, 40. We set a tolerance, tol = 10-10, for
the PCG method. In this example the PCG algorithm becomes a better
alternative when N×M is greater than 4000, which is a suitable reso-
lution for two-dimensional inversion of real data.
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Figure 1 – Absolute values of diagonal (k = 1) and off-diagonal (k > 1) components of the matrix L.
Figura 1 – Valores absolutos dos componentes da matriz L, ao longo da diagonal (k=1) e fora da diagonal (k>1).

Figure 2 – Comparison of CPU times of Cholesky factorization (CF) and preconditioned conjugate gradient (PCG) methods.
Figura 2 – Comparação do tempo de CPU da fatoração de Cholesky (FC) e do método de gradientes conjugados precondicionado (GCP).
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LINEARIZED INVERSION

Let 1 2≤ ≤p . The Lp norm of an M-dimensional vector

vvvvv = (v1,…vM)T  is given by v
p i

p

i

M p

v=










=
∑

1

1

.

Let us introduce an iterative scheme to minimize the
objective function proposed by Scales and Gersztenkorn
(1986):

E x s x sa i i a i i
i

M p

m m( )= ( )− ( )
=
∑ ρ ρ, , ,

1
, (11)

where ρa i ix s,( )  and ρa i ix sm, ,( )  are the observed and theoreti-

cal apparent resistivities, respectively. Note that E(m) is the L
p
 norm

of the error of the theoretical apparent resistivities to the power p. We
linearize ρ
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Substituting (12) into (11), we find a quadratic function of m,
whose minimum satisfies

G R G m G R dk
T

k k k
T

k k( ) =∆ ∆ . (13)

Where ∆m = (m
k+1

 – m
k
). By using a regularization factor

λ (MENKE, 1989) we compute the new solution m
k+1

 as

m m G R G I G R dk 1 k k
T

k k k
T

k k+ = + +( )»  .
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∆ (14)

In particular, the method with p = 2 and λ = 0 corresponds to
the plain least squares method. The row i of the sensitivity matrix G

k
 is

weighted by the i-th diagonal component of the matrix R
k
, which is a

function of the deviation between the observed resistivity values, and

the ones computed  from current model m
k

(PORSANI; NIWAS;
FERREIRA, 2001).

To increase the robustness of the algorithm, we apply a logarith-
mic scaling to the free parameters and to the field data (RIJO et al.,

1977). Moreover, given a tolerance parameter ε, we set rk i
p

, =
−ε 2

if ρ ρ εa i i a i ix s x s, , ,( )− ( ) ≤� m .

We employ a harmonic measure of fitness (PORSANI et al., 2000)
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The ratio Φ varies within [-1,1], and approaches 1 as

ρa k i ix sm , ,( )  approaches ρa i ix s i M,( ) ≤ ≤( )1 . The compo-

nents of the sensitivity matrix are approximated by forward differences
(MCGILLIVRAY; OLDENBURG, 1990). We employ a conjugated gradient

method to evaluate mk+1  from (14). Let A G R G I= +k
T

k k λ .
We have that:

p Ap p G R G p p p
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l l
T

k
T

k k l l
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k l l
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l l k l
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= + =

λ

λ ,    
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which motivates modifying the conjugated gradient algorithm to avoid
the computation of G R Gk

T
k k :

Steps of the conjugated gradient
algorithm for Lp inversion

• s d G x0 0= −∆ k k ;

• r G R0 »= −k
T

k s x0 0 ;

• p r0 0=  and q G0 k p0 ;

• for l n r toliter l= ≥( )0 1, ,. . ., .

- x xl l l l+ = +1 α p ,  where 
r r

l
l
T

l

l
T

k l l
T

l

=
+

α
q R q p pλ

;

- s s ql l l l+ = −1 α ;

- r G R s xl k
T

k l+ + +−1 1 λ l 1 ;

- p = r pl l l+ + +1 1 βl , where βl
l

l

r r

r r
l
T

l 1
T
+ +

+

1 1 ;

- q G pk k k= ;
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When λ = 0, the algorithm designed by Gersztenkorn, Bednard
e Lines (1986) for 1D inversion of the acoustic wave equation is recovered.

NUMERICAL EXAMPLES

Inversion of synthetic data

We consider the model of a buried dike outlined in Figure 3. The
vertical electrical soundings are performed throughout 21 stations with
a set of 19 s-values. Noise is introduced when AB/2 = 17.5m,
47.5m, 87.5m and 107.5m.

The horizontal grid employs 252 nodes. Five nodes are distrib-
uted in geometric progression on both ends, while the increment be-
tween interior nodes is 5m. The vertical grid employs 26 nodes with
non-uniform spacing.

In the experiment it is assumed that the location and size of the
blocks are known. The initial solution is m

0
=ρ(1,1,1,1)T,

ρ =500Ωm. Figure 4 compares the performance of inversions in the
norms L

1
 and L

2
 without regularization (λ = 0).

Figure 5 shows three VES corresponding to stations 1, 7 and 11,
inverted using L

1
 and L

2
 norms. We compare results of apparent

resistivities resulting from two extreme scenarios: when the dike width is
zero (ρ

0
) and when the width is infinite (ρ∞). These scenarios yield

horizontally layered media, and can be considered as lower and upper
bounds of the influence of the dike; that is, ρ

0
 does not take the dike

into account, while ρ∞ is driven by the resistivity of the dike and the
upper layer (FERREIRA, 1999).

Both inversions delivered exact block resistivities  when outlier
noise is removed (note that Φ(m

10
) = 1). Otherwise, the resistivities

were accurately computed in the L
1

norm (Table 1).

Figure 3 – 2-D model represented by a vertical dike of resistivity value of 150 Ωm intruded in a medium of 1000 Ωm,
and covered by a layer of resistivity value of 80 Ωm.

Figura 3 – Modelo bidimensional de um dique vertical com resistividade de 150 Ωm incrustado em um meio de 1000 Ωm,
e coberto por uma camada com 80 Ωm de resistividade.

Figure 4 – Performance of linearized inversion algorithms on synthetic data according to equation (15) in both L1 and L2 norms.
The results on the left employed the exact data, while the ones on the right employed data perturbed with outlier noise.

Figura 4 – Performance dos algoritmos de inversão linearizada de dados sintéticos, medida de acordo com a equação (15),
nas normas L1 e L2. Os resultados à esquerda utilizaram parâmetros exatos, enquanto nos resultados à direita os parâmetros

foram perturbados com ruído localizado.
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TTTTTable 1able 1able 1able 1able 1 – Results of linear inversion of resistivity considering
synthetic data with outlier noise.

TTTTTabela 1abela 1abela 1abela 1abela 1 – Resultados da inversão linear de resistividade
considerando dados sintéticos com ruído localizado.

Inversion of field data

Our next experiment concerns field data acquired near Conceição
do Coité, Brazil (PINHEIRO NETO, 2000). This area has an aquifer whose
average yield is 1.78 m3/h with up to 7278mg/l of total dissolved
solids.

Twenty VES were acquired, and they are shown in Figure 6(a).
In order to fit data to the finite-difference grid, we interpolated the VES
curves to evaluate the apparent resistivity with an initial spacing
AB/2 = 7.5m and uniform increments of 5m.

The media parametrization is based on a partition into 27×5
blocks. We estimated the thickness of each layer by the average thick-

Figure 5 – VES on stations 1 (a), 7 (b), and 11 (c) obtained from the inverted models in the L1 norm (left) and the L2 norm (right).
The theoretical apparent resistivity values when the dike width is zero (ρ0) or infinite (ρ∞) are also shown.

Figura 5 – SEVs nas estações 1 (a), 7 (b), e 11 (c) obtidas dos modelos invertidos nas normas L1 (esquerda) e L2 (direita).
Mostramos também os valores teóricos da resistividade aparente quando a largura do dique é zero (ρ0 ) ou infinita (ρ∞).
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ness calculated at each station by using 1D VES inversion. The initial
model had ρ = 40Ωm in the first four layers and ρ = 300Ωm in
the bottom layer. The horizontal grid was similar to the horizontal grid
used in the synthetic model. We employed 302×9 nodes.

We performed 10 iterations of linearized inversion in the norms
L

1
and L

2
 with the same regularization factors λ = 0.001 and

λ = 0.1 in the L
1
 and L

2
 norms, respectively. The percent relative

errors with respect to the interpolated data were similar and under 45%
as illustrated in Figure 7.

The region of low resistivity near station S5 of the computed
models (Figure 6) is consistent with the presence of a water well near
this station. The low resistivity between stations S14 and S16 is consist-
ent with the evidence of salinization between stations S12 and S17.

Figure 6 – Pseudo-section of apparent resistivity values generated by 20 unevenly spaced VES (a). The symbols (+) below each
VES indicate the AB/2 position where the measurements were performed. Contours of the apparent resistivity values generated

from linearized inversion in the L1 norm (b) and L2 norm (c).
Figura 6 – Pseudo-seção de valores de resistividade aparente gerados por 20 SEVs com espaçamento não-uniforme (a).

Os símbolos (+) abaixo de cada SEV indicam a  abertura AB/2 com que as medidas foram feitas. Pseudo-seção de valores
de resistividade aparente gerados por inversão linearizada nas normas L1 (b) e L2 (c).
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Figure 7 – Pseudo-section of percent relative error of the theoretical apparent resistivity values with respect
 to the observed apparent resistivity values for the linearized inversion algorithm in the L1 norm (a) and the L2 norm (b).
Figura 7 – Pseudo-seção do erro relativo dos valores teóricos de resistividade aparente gerados por inversão linearizada

nas normas L1 (a) e L2 (b) com respeito aos valores de resistividade aparente observados.

GENETIC AND HYBRID ALGORITHMS

Genetic algorithms (GA) employ the concepts of survival of the
fittest, crossover, and mutation to generate a set of free parameter vec-
tors that progressively approach field data. These methods fit into the
class of global, probabilistic optimization methods. Genetic algorithms
are based on the principle of natural selection and genetics. Detailed
descriptions of GA are given by Holland (1975) and Goldberg (1989),
and theory and examples of geophysical applications can be found in
Sen and Stoffa (1995). Basically, in the GA the model free parameters
are coded in binary form. The algorithm starts with an ensemble of ran-
dom models, and a new ensemble is generated similarly to the biologi-
cal mechanism of reproduction that exists in nature. The models are

chosen for reproduction with a probability proportional to their fitness
value, and pairs of models are selected at random and exchange part of
their binary chain. The crossover points are selected at random and all
the bits to the right side are interchanged with a crossover probability,
generating new models. To assure genetic variability in the population,
a mutation process is adopted by changing at random a bit inside the
binary chain based on a fixed probability. The new set of models are
accepted with an update probability by comparing them with the models
in the previous generation. The process of selection, crossover and muta-
tion is applied until the fitness values converge, i.e., until the mean
fitness approaches the highest fitness value in the population.

We start by randomly selecting a set (or population) of free pa-
rameter vectors m

g,j
, 1 ≤ j ≤ P, and g = 0. We refer to each m

g,j
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as a model. In the second step, we evaluate the fitness Φ(m
g,j

) of
each model according to equation (15). Then, we perform the following
genetic operations.
• Selection:Selection:Selection:Selection:Selection: we select a limited number of models in pairs for

reproduction. They are selected by a non-uniform probability function
given by

P
T

T
s g j

g j

g j

m
m

m
,

,

,

exp /

/
( )=

( )





( )



=∑

Φ

Φexp
1j

n
, (17)

where T = T
0
γg is associated with the temperature in the simulated

annealing method. The temperature is used to de-emphasize the differ-
ences in the fitness values of the models in the initial generations and to
exaggerate their differences at later generations (STOFFA; SEN, 1991).
• Crossover:Crossover:Crossover:Crossover:Crossover: each pair exchanges free parameter data with a fixed

probability Px; two new models are generated. Each component
m i Mgj

y 1≤ ≤( )  of a model mmmmmg,,j is restricted to a prescribed
resolution; that is,

m m m mgj
i

i i m ii
∈{ }+,min ,min ,max, ,...,∆ (18)

• Mutation:Mutation:Mutation:Mutation:Mutation: a random change with fixed probability P
m

may take place
in each member of all pairs. Mutation helps to preserve the population
diversity and leads to new search regions.

• Update:Update:Update:Update:Update: each new model mg
∗  is compared with a randomly chosen

current model mg j, . If Φ Φm mg g j
∗( )> ( ), , then m

g,j
is

replaced by mg
∗  according to a fixed probability P

u
.

These steps create a new generation m1 1, j j P≤ ≤( ) . We
can go back to the second step, and repeat the process until the g-th
generation has a model m

g,j
 such that Φ mg J,( )  is sufficiently close

to one, or until g reaches the maximum number of generations NG.
We combine the genetic with the linearized inversion methods,

generating a hybrid (GA-LI) algorithm (PORSANI et al., 1993). As shown
in Figure 8, the hybrid algorithm starts with an initial ensemble of ran-
domly selected 2D resistivity models. Synthetic 2D VES corresponding to
each model are computed and compared with the data to generate the
fitness function for each model. The fitness functions from the current
generation are compared to those from the previous generation and kept
subject to an update probability. We next find the best model in each
generation and apply the LI method. At the end of each GA  iteration, we
set

m m m0 1= ( )= ( ) ≤ ≤{ }m j Pg J g j, ,, max , ,       g,JΦ Φ (19)

apply the iterative method (14) to m
0
, and if the resulting model m

k

satisfies Φ(m
k
) > Φ(m

g,J
), it is accepted into the population re-

Figure 8 – Flow chart for the combined GA and LI algorithm.
Figura 8 – Fluxograma do algoritmo GA combinado com LI.
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placing m
0
. The algorithm then proceeds as in AG. The genetic opera-

tors of selection, crossover and mutation are applied to the models to
provide the next generation of 2D resistivity models for evaluation.

INVERSION OF FIELD DATA

This section illustrates the improvement of the hybrid approach
over genetic algorithms. We consider the same settings as in the experi-
ment with linearized algorithms.

The probabilities associated with the genetic algorithm are set
similarly to earlier cases (CHUNDURU et al., 1995; SEN; STOFFA, 1995):
P

c
 = 0.6, P

m
 = 0.01 and P

u
 = 0.95. The resolution of the free

parameters is shown in Table 2. Moreover, T
0
 = 5 and γ = 0.98.

Both algorithms employ 200 generations with a fixed population
of 250 models. The hybrid algorithm performs ten iterations of the

linearized inversion algorithm, under the L
2

norm. Notice that the hybrid
approach led to a considerable decay of the relative error (Figure 9). The
best models of genetic and hybrid algorithms are shown in Figure 10.

TTTTTable 2able 2able 2able 2able 2 – Parameters that define the resolution of each model component for
the experiment with field data according to equation (18).

TTTTTabela 2abela 2abela 2abela 2abela 2 – Parâmetros que definem a resolução de cada componente do
modelo para o experimento com dados de campo,

de acordo com equação (18).

Figure 9 – Pseudo-section of percent relative error of the theoretical apparent resistivity values with respect
to the observed apparent resistivity values for the genetic algorithm (a) and the hybrid GA-LI algorithm (b).

Figura 9 – Pseudo-seção do erro relativo dos valores teóricos de resistividade aparente gerados pelo algoritmo
genético (a) e pelo algoritmo híbrido GA-LI (b) com respeito aos valores de resistividade aparente observados.
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DISCUSSIONS AND CONCLUSIONS

This article extends previous work in 1D resistivity inversion for
2-D inversion of sets of vertical electrical sounding. We incorporate the
linearized inversion approach into a genetic algorithm. The best model,
found  at the end of each generation of the GA, was improved by using
the LI method.  By doing so, we found that a combined GA-LI approach
performs better than a pure GA, and better than a pure LI run.  The
hybrid algorithm was tested to simultaneously invert families of syn-
thetic and measured VES data using a 2D resistivity model. The GA-LI
algorithm accelerates the convergence to the global optimum.

Our experience using the hybrid GA-LI algorithm indicates that
employing linearized inversion on initial steps of the GA-LI algorithm
may overemphasize a local search, specially if the best models are near
local optima. On the other hand, a typical GA performance curve grows
faster in the first generations, which suggests that this method is effi-
cient on identifying the neighborhood of the global optimum. The growth
is slower in the following steps and tends to saturation. Therefore LI
refinement is more appropriate in later steps. A key question is when
linearized inversion should take place. Another question is whether hy-

brid methods can be improved with more complex local search methods
(for instance, multiple re-weighted least-square methods). These ques-
tions contribute to a deeper understanding of 2D inversion of geophysi-
cal problems.
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