
Universidade Federal da Bahia

Instituto de Matemática

Programa de Pós-Graduação em Ciência da Computação

AN APPROACH FOR RECOVERING
ARCHITECTURAL VARIABILITY FROM

SOURCE CODE

Crescencio Rodrigues Lima Neto

TESE DE DOUTORADO

Salvador

19 de Fevereiro de 2019

CRESCENCIO RODRIGUES LIMA NETO

AN APPROACH FOR RECOVERING ARCHITECTURAL
VARIABILITY FROM SOURCE CODE

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientadora: Christina Von Flach Garcia Chavez

Co-orientador: Ivan do Carmo Machado

Salvador

19 de Fevereiro de 2019

Ficha catalográfica elaborada pelo Sistema Universitário de Bibliotecas (SIBI/UFBA),
 com os dados fornecidos pelo(a) autor(a).

Lima-Neto, Crescencio Rodrigues
 An Approach for Recovering Architectural
Variability from Source Code / Crescencio Rodrigues
Lima-Neto. -- Salvador, 2019.
 164 f. : il

 Orientadora: Christina von Flach Garcia Chavez.
 Coorientador: Ivan do Carmo Machado.
 Tese (Doutorado - Programa de Pós-graduação em
Ciência da Computação) -- Universidade Federal da
Bahia, Instituto de Matemática e Estatística, 2019.

 1. Software Product Lines. 2. Product Line
Architecture. 3. Software Architecture. 4.
Variability. 5. Software Architecture Recovery. I.
Chavez, Christina von Flach Garcia. II. Machado, Ivan
do Carmo. III. Título.

To my family...

ACKNOWLEDGEMENTS

First, I would like to thank my family. Especially to my father and mother, without their
guidance I would never get this far; my brother and sister for the constant support; my
wife and kids for their understanding. I love them and appreciate the efforts they have
put into giving me the conditions to finish this work.

I would like to grateful acknowledge my advisors, Christina and Ivan. They provided
me with many helpful suggestions and encouragement during this work as well as the
challenging research that lies behind it.

The results of this thesis could not be achieved without the support of the aSide Labs
and Reuse in Software Engineering (RiSE) Labs. My gratitude to all my friends from the
research labs. I also thank my friends and colleagues that I have met during my journey
in Salvador since 2011.

There were a lot of people that directly or indirectly participated with me along my
Ph.D. path. However, it will not be possible to remember of all of them now. My excuses
for the ones I forgot. My thanks are extended for the Fundação de Amparo à Pesquisa do
Estado da Bahia (Fapesb) and Federal Institute of Bahia (IFBA) for partially supporting
this research project.

Finally, I would like to thank God for giving me the wisdom to perform this work.

vii

Try not to become a man of success, but rather

try to become a man of value.

—ALBERT EINSTEIN

RESUMO

Engenharia de Linha de Produto de Software (SPLE) tem sido amplamente adaptada
para aplicação de reuso sistemático em famílias de sistemas. Devido ao alto investi-
mento prévio necessário para adoção de SPLE, organizações geralmente começam com
abordagens de reuso oportunistas (e.g., sistemas que são clonados e modificados). No en-
tanto, problemas de manutenção aparecem ao gerenciar um grande número de sistemas
semelhantes onde cada um implementa e evolui características particulares. Uma solução
viável para resolver esse problema é migrar para Linhas de Produto de Software (SPLs)
usando uma abordagem extrativa. Essa iniciativa, em suas fases iniciais, inclui a definição
de uma Arquitetura de Linha de Produtos (PLA) para apoiar a derivação de produtos
variantes e também permitir a customização de acordo com as necessidades dos clientes.
Desta forma, o uso sistemático de técnicas de Recuperação de Arquitetura de Software
(SAR) permitem a recuperação da PLA e mantêm a PLA alinhada com o desenvolvi-
mento. Nosso objetivo é fornecer uma abordagem para recuperar PLAs e diretivas para
apoiar a recuperação das PLAs. Nós reunimos conhecimento por meio de revisões da
literatura e estudos exploratórios para caracterizar o estado-da-arte e identificar opor-
tunidades de pesquisa em técnicas e ferramentas de SAR que apoiam a recuperação de
variabilidade arquitetural a partir de informações provenientes do código fonte para uma
família de produtos. O uso de técnicas e ferramentas de SAR para recuperar uma PLA
que documenta informação sobre variabilidade no nível arquitetural pode atacar proble-
mas relacionados com a adoção, design, e evolução de SPLs. Infelizmente, poucos estudos
investigam a recuperação de PLA e também fornecem avaliação empírica. Um dos prin-
cipais problemas da abordagem extrativa é a explosão da variabilidade na representação
arquitetural. Nossa abordagem é baseada na identificação da variabilidade em nível ar-
quitetural por meio da extração de informações do código fonte dos variantes. Para
avaliar nossa abordagem, realizamos um conjunto de estudos empíricos. Os resultados
forneceram evidencias de que nossa abordagem é capaz de recuperar PLAs, identificar
a variabilitdade a nível arquitetural e filtrar variantes exclusivos através da eliminação
de pacotes e classes específicas sem precisar remover os variantes completamente. Nós
consideramos que a PLA recuperada pode ajudar especialistas do domnínio na tomada
de decisão para apoiar a adoção de SPLE.

Palavras-chave: Linha de Produto de Software, Arquitetura de Linha de Produto de
Software, Recuperação de Arquitetura de Software.

xi

ABSTRACT

Software Product Line Engineering (SPLE) has been widely adopted for applying system-
atic reuse in families of systems. Given the high upfront investment required for SPLE
adoption, organizations commonly start with more opportunistic reuse approaches (e.g.,
a single system that they clone and modify). However, maintenance problems appear
when managing a large number of similar systems where each of them implements and
evolves particular characteristics. One viable solution to solve this issue is to migrate
to SPLs using an extractive approach. This initiative, in its early phases, includes the
definition of a Product Line Architecture (PLA) to support the derivation of product
variants and also to allow customization according to customers’ needs. In this way, the
systematic use of Software Architecture Recovery (SAR) techniques enables PLA recovery
and keeps the PLA aligned with development. Our objective is to provide an approach
to recover PLAs and guidelines to support the PLA recovery. We gathered knowledge by
means of literature reviews and exploratory studies to characterize the state-of-the-art
and identify research gaps on SAR techniques and tools that support the recovery of ar-
chitectural variability information from source code for a family of products. The use of
SAR techniques and tools to recover a PLA that documents variability information at the
architecure level may address issues related to SPL adoption, design and evolution. Un-
fortunately, few studies investigate PLA recovery and also provide empirical evaluation.
One of the main issues in the extractive approach is the explosion of the variability in the
PLA representation. Our approach is based on identifying variability on architectural
level by extracting information from variants’ source code. To evaluate our approach, we
performed a set of empirical studies. The results provided evidence that our approach
is able to recover PLAs, identify the variability at architectural level, and filter outliers
variants, allowing the elimination of exclusive packages and classes without removing the
whole variant. We consider that the recovered PLA can help domain experts to take
informed decisions to support SPL adoption.

Keywords: Software Product Lines, Product Line Architecture, Software Architecture
Recovery.

xiii

CONTENTS

List of Figures xix

List of Tables xxii

List of Acronyms xxiv

Chapter 1—Introduction 1

1.1 Problem statement . 2
1.2 Objectives . 3
1.3 Research Questions . 3
1.4 Research Methods . 4

1.4.1 Part 1. Literature Review . 4
1.4.2 Part 2. Concept . 4
1.4.3 Part 3. Empirical Studies . 5

1.5 Contributions of this Thesis . 5
1.6 Out of Scope . 6
1.7 Thesis Outline . 6

Chapter 2—Background 9

2.1 Software Product Lines . 9
2.1.1 Software Product Line Engineering 12
2.1.2 Variability Management . 14

2.2 Software Architecture . 16
2.2.1 Architecture Descriptions . 17
2.2.2 Architecture Variability . 20

2.3 Product Line Architecture . 22
2.4 Software Architecture Recovery . 24

2.4.1 Processes . 25
2.4.2 Techniques . 26
2.4.3 Tools . 27
2.4.4 Product Line Architecture Recovery 28

2.5 Reuse Assessment . 28
2.6 Chapter Summary . 30

xv

xvi CONTENTS

Chapter 3—A Systematic Mapping Study on Product Line Architecture Recov-
ery 33

3.1 Motivation . 33
3.2 Research Process . 34

3.2.1 Research Questions (RQs) . 34
3.2.2 Search Strategy . 35
3.2.3 Selection Criteria . 35
3.2.4 Data Sources . 36
3.2.5 Data Collection . 36
3.2.6 Data Analysis . 36
3.2.7 Quality Assessment . 38

3.3 Outcomes . 38
3.3.1 Characteristics of the studies . 39
3.3.2 Results . 40
3.3.3 RQ 1: How does the relationship between PLA and SAR evolve

over the years? . 41
3.3.4 RQ 2: How does the existing solution proposal support PLA recovery? 42
3.3.5 RQ 3: What are the PLA recovery trends? 44

3.4 Discussion . 45
3.4.1 Main Findings . 45
3.4.2 Limitations of the Review and Threats to Validity 51

3.5 Related Work . 51
3.6 Chapter Summary . 52

Chapter 4—An Approach for Recovering PLA from Source Code of Variants 53

4.1 Overview . 53
4.1.1 Purpose of the PLA recovery . 55
4.1.2 Illustrative Example . 55

4.2 A Metamodel for PLA Description . 58
4.3 PLA Recovery . 58

4.3.1 Techniques . 58
4.3.2 Activities . 62
4.3.3 Supporting Tools . 65

4.4 Guidelines for PLA Recovery . 67
4.4.1 Clone-and-Own . 67
4.4.2 Generate Variants . 70
4.4.3 Analyze #ifdefs . 72

4.5 Related work . 74
4.6 Chapter Summary . 75

CONTENTS xvii

Chapter 5—Exploratory Study on PLA Recovery 77

5.1 Design . 77
5.1.1 Planning . 77
5.1.2 Study Design . 79
5.1.3 Exploratory Study materials . 80
5.1.4 Subjects . 81
5.1.5 The Study Projects . 81

5.2 Execution . 81
5.2.1 Procedure . 82

5.3 Analysis and Interpretation . 82
5.3.1 RQ 1: Does SAVaR provide a precise and reliable version of the

implemented PLA? . 83
5.3.2 RQ 2: How much detail is needed to represent the recovered PLA? 83
5.3.3 RQ 3: Do the metamodels (for PLA design) support on the under-

standing of the recovered PLA? 83
5.3.4 Feedback . 84
5.3.5 Metrics Analysis - Descriptive Statistics 85

5.4 Discussion . 87
5.4.1 Main Findings . 87
5.4.2 Variability Identification . 88
5.4.3 Amount of details in the PLA recovery 88
5.4.4 Filtering the recovered PLA . 89
5.4.5 Analyzing the recovered PLA based on Metamodels 90
5.4.6 Analyzing the changes from SAR to PLA recovery 91
5.4.7 Threats to Validity . 91

5.5 Related Work . 92
5.6 Chapter Summary . 92

Chapter 6—Recovering the PLA of 15 open source SPL projects 95

6.1 Study Design . 95
6.1.1 Research Questions . 95
6.1.2 Hypotheses . 96
6.1.3 Metrics . 96
6.1.4 Analysis Procedure . 97

6.2 Study Operation . 97
6.2.1 SPL Projects analyzed . 97
6.2.2 Preparation . 98
6.2.3 Data collection . 99

6.3 Data Analysis . 99
6.3.1 Descriptive Statistics . 99
6.3.2 Draw Product Line Results . 100
6.3.3 Video on Demand Results . 101
6.3.4 Zip Me Results . 101

xviii CONTENTS

6.3.5 Game of Life Results . 101
6.3.6 Graph Product Line Results . 102
6.3.7 Prop4J Results . 102
6.3.8 BankAccount and BankAccountV2 Results 103
6.3.9 DesktopSearcher Results . 104
6.3.10 PayCard Results . 104
6.3.11 PokerSPL Results . 104

6.4 Discussion . 104
6.4.1 Answers to the Research Questions 104
6.4.2 General Findings . 106
6.4.3 Threats to Validity . 107

6.5 Chapter Summary . 107

Chapter 7—Case Studies 111

7.1 Recovering the PLA of the Apo-Games 112
7.1.1 Case Study . 113
7.1.2 Threshold Configurations . 114
7.1.3 Results . 114
7.1.4 Discussion . 117
7.1.5 RQ1 - How similar the variants are 117
7.1.6 RQ2 - Correlation between variants’ size and likely outliers 119
7.1.7 RQ3 - Impact of outliers removal in the recovery of better PLAs . 119
7.1.8 Threats to Validity . 119

7.2 Recovering the PLA of 10 open source projects 120
7.2.1 Preparation . 122
7.2.2 Analysis and Interpretation . 122
7.2.3 Threats to Validity . 123

7.3 Chapter Summary . 124

Chapter 8—Conclusion 129

8.1 Related work . 129
8.2 Contributions . 130
8.3 Research Limitations . 130
8.4 Future Research Directions . 131
8.5 Contributions so far . 132

Appendix A—Mapping Study on PLA Recovery - Primary Studies and data set147

A.1 List of Journals . 147
A.2 List of Conferences . 148
A.3 Primary studies . 149

CONTENTS xix

Appendix B—Recovering PLA from Variants’ Source Code – Additional Material151

B.1 Motivating example additional material 151
B.1.1 MobileMedia Variants’ extracted architecture 151
B.1.2 MobileMedia SPL recovered PLA 151

Appendix C—Exploratory Study on Product Line Architecture Recovery - Data
set 157

C.1 Consent form . 157
C.2 Background Questionnaire . 157

LIST OF FIGURES

1.1 Thesis Outline . 7

2.1 Conceptual elements of SPL and SA . 10
2.2 Feature Model for MobileMedia. 11
2.3 Core Asset Development . 13
2.4 Product Development . 14
2.5 Excerpt from ISO/IEC/IEEE 42010 and design elements 17
2.6 The 4+1 view model . 19
2.7 DSM for MobileMedia . 20
2.8 MDG for MobileMedia . 21
2.9 Excerpt from Feature Variability Extension 22
2.10 Variability Model for MobileMedia . 23
2.11 A bottom-up process . 25
2.12 A top-down process . 26

3.1 Paper selection flowchart . 37
3.2 Temporal view of the studies . 39
3.3 Timeline . 41
3.4 Research types per research contribution 43
3.5 Number of studies per SAR taxonomy axes 44
3.6 Contribution type versus research type versus research questions 46
3.7 Evolution lines identified . 47
3.8 Empirical studies over the years . 47
3.9 Research type over the years . 48
3.10 SAR coals vs. research type vs. empirical 49
3.11 SAR processes over the years . 50
3.12 SAR goals vs. SAR processes vs. SAR techniques 50

4.1 PLA Recovery Main Phase . 54
4.2 Operation phase in details . 54
4.3 Extracted information from three Variants (packages and relations) . . . 56
4.4 Recovered PLA – development view . 57
4.5 Recovered DSM of the PLA . 58
4.6 Conceptual elements of SPL and SA . 59
4.7 PLA recovery based on variants’ architecture 60
4.8 PLA recovery based on #ifdef directives. 61
4.9 Application of the threshold in the MobileMedia (classes) 63

xxi

xxii LIST OF FIGURES

4.10 PLA Recovery Details . 65
4.11 Sugestion of tool chain for Clone-and-Own guideline 70
4.12 Sugestion of tool chain for Generate Variants guideline 72
4.13 Sugestion of tool chain for Analyze #ifdefs guideline 74

5.1 Study Design Phases . 80
5.2 Research Question 1 Answers . 83
5.3 Research Question 2 Answers . 84
5.4 Research Question 3 Answers . 84
5.5 Approach feedback part 1 . 85
5.6 Approach feedback part 2 . 85
5.7 Boxplot – Component Reuse Rate per group 86
5.8 Boxplot – Relation Reuse Rate per group 87
5.9 Recovered Information isolated by the feature Comment 89
5.10 Example of class with all the recovered information 90

6.1 The overall recovery process: activities, inputs and outputs. 98
6.2 Boxplot of Component Reuse Rate per PLA 100
6.3 Design Structure Matrix for GOL . 102
6.4 Design Structure Matrix for Prop4J . 103
6.5 Comparing SSC and SVC metrics . 108
6.6 Correlation analysis . 109

7.1 Variants’ architectural similarity graph 114
7.2 Concept lattice with variants in the games 115
7.3 LOC per Exclusive Variants - Packages (cor. 0.51) 116
7.4 LOC per Exclusive Variants - Classes (cor. 0.80) 116

B.1 Extracted information from MobileMedia Variant 4 151
B.2 Extracted information from MobileMedia Variant 5 152
B.3 Extracted information from MobileMedia Variant 6 152
B.4 Extracted information from MobileMedia Variant 7 153
B.5 Extracted information from MobileMedia Variant 8 153

C.1 Recovered Design Structure Matrix - Project SPL Web Store 160
C.2 Recovered PLA (module view) - Project SPL Web Store 161
C.3 Recovered Design Structure Matrix - Project SPL Message 162
C.4 Recovered PLA (module view) - Project SPL Message 163

LIST OF TABLES

2.1 Metrics used to evaluate the PLA. 29
2.2 Recovered Metrics for MobileMedia . 30
2.3 CRR for MobileMedia . 30
2.4 RRR for MobileMedia . 31

3.1 Study Quality Assessment Criteria . 38
3.2 Classification of Reviewed Studies . 40
3.3 Number of studies per research type . 42
3.4 Solution proposal per research contribution 43
3.5 Number of studies per research question 51

4.1 MobileMedia variants’ description . 55
4.2 Guidelines for PLA Recovery. 68

5.1 SPL Projects – Metrics . 82
5.2 Study Execution Agenda . 82
5.3 Recovered Metrics from the PLAs . 86

6.1 SPL Projects analyzed and Metrics collected for PLAs 99
6.2 CRR Measures for DPL elements . 100
6.3 CRR Measures for Prop4J . 105
6.4 Comparisons that rejected the null hypothesis RQ1 105
6.5 Comparisons that rejected the null hypothesis RQ2 106

7.1 Describing the study according to GQM 113
7.2 Apo-Games Projects – Metrics summary 113
7.3 Recovered Metrics from the PLAs (Packages) 117
7.4 Recovered Metrics from the PLAs (Classes) 118
7.5 PLA Metrics after eliminating some variants and Threshold analysis . . . 118
7.6 Describing the study according to GQM 121
7.7 Analyzed Projects . 122
7.8 Recovered Metrics from the PLAs . 126

8.1 SPL Projects . 133

A.1 List of Journals . 147
A.2 List of Conferences . 148
A.3 Selected primary studies . 149

xxiii

xxiv LIST OF TABLES

C.1 Consent Form . 158
C.2 Characterization form used . 159
C.3 Subjects’ Profile . 164
C.4 Subjects Experience with Programming Language 164

LIST OF ACRONYMS

ADL Architecure Description Language

CAD Core Asset Development

DSM Design Structure Matrix

FCA Formal Concept Analysis

IDE Integrated Development Environment

GQM Goal Question Metric

GUI Graphical User Interface

PD Product Development

PLA Product Line Architecture

PLAR Product Line Architecture Recovery

SA Software Architecture

SAR Software Architecture Recovery

SAVaR Software Architecutre Variability Recovery

SEI Software Engineering Institute

SLR Systematic Literature Review

SMS Systematic Mapping Study

SPEM Software and Systems Process Engineering Meta-model

SPL Software Product Line

SPLA Software Product Line Architecture

SPLE Software Product Line Engineering

UFBA Federal University of Bahia

UML Unified Modeling Language

XML eXtensible Markup Language

xxv

Chapter

1
I have no special talents, I am only passionately curious – Albert Einstein

INTRODUCTION

Variability is a relevant characteristic of software systems (HILLIARD, 2010; GALSTER;
AVGERIOU, 2011a). Supporting variability is essential to manage commonalities and
differences across software, and to accommodate reuse in different organizations and prod-
uct versions (GALSTER; AVGERIOU, 2011b). Ideally, variability should be identified
and managed early in the life cycle (THIEL; HEIN, 2002a). Moreover, since variability
can be a complex and multi-faceted concept, it should be treated as a first-class citizen
in software architecture documentation (GALSTER et al., 2013).

In Software Product Lines (SPL), variability is often handled during feature modeling
and product configuration (APEL et al., 2013). At the software architecture level, vari-
ability may be supported by a Product Line Architecture (PLA), a core architecture for
every SPL product that documents the variation points and variants defined in the SPL
variability model (POHL; BöCKLE; LINDEN, 2005). The PLA is expected to provide
high-level descriptions of mandatory, optional, and variable components in the SPL, and
their interconnections (GOMAA, 2004). When explicitly documented, the PLA can be
useful in different contexts that require variability management. It enables companies to
amortize the effort of software design and development over multiple products, thereby
reducing costs (BOSCH, 1999).

For instance, legacy software systems commonly have not been created with an SPL
perspective (ANGERER et al., 2014). It is not uncommon for small and medium-sized
companies to slowly migrate legacy software systems to SPLs and adopt it using a clone-
and-own approach, by copying, adding or removing functions from existing products.
This approach leads to ad-hoc product portfolios of multiple yet similar variants (RUBIN;
CHECHIK, 2012; FISCHER et al., 2014). With the growth of products portfolio, the
management of variability and reuse becomes more complex. In this context, a PLA for
the candidate SPL could be recovered from existing variants with the support of software
architecture recovery techniques.

SPL evolution can also benefit from a documented PLA. In this case, an existing SPL
with a feature model and automatic product generation, may be subject to the addition

1

2 INTRODUCTION

of new features or the removal of deprecated ones. In this context, a PLA could be
recovered from existing variants to support development activities such as improving the
SPL source code.

Software Architecture Recovery (SAR) aims at providing solutions to problems related
to the absence of a documented software architecture (DUCASSE; POLLET, 2009). A
software architecture can be recovered from source code and other available information
sources (DUCASSE; POLLET, 2009; CLEMENTS et al., 2010). In the context of SPL,
PLA recovery requires the analysis of several product variants to support variability
identification and then variability documentation at the architecture level.

The need for variability identification from a (possibly) large number of product vari-
ants that implement common and variable features poses challenges to the PLA recovery
process. First, variability leads to a potentially large configuration space, that grows
exponentially based on the number of configuration options that can be set, which in
turn makes variability identification a computationally expensive task. Also, variabil-
ity identification at architectural level will demand additional effort from architects and
engineers. The variability representation may include potential noise in the common
structure, require specific analysis, and hinder overall understanding. Software engineers
developing or maintaining products based on a PLA require considerable knowledge of
the rationale and concepts underlying the SPL and the concrete structure of the reusable
assets that are part of the PLA (BOSCH, 1999). Moreover, some product variants may
become highly unrelated to their predecessors and become outliers (WILLE et al., 2018).
The inclusion of outlier variants in PLA recovery may increase the effort for variability
identification. Finally, different product implementation strategies may require different
recovery techniques.

SAR in the context of SPL is yet an underexplored research topic (LIMA-NETO et al.,
2015). Existing work on reengineering product variants into an SPL is mostly focused on
variability management at the requirements level (SHATNAWI; SERIAI; SAHRAOUI,
2016). Moreover, existing research on PLA recovery neither addresses the aforementioned
challenges nor provides sound empirical evaluation or detailed information to guide re-
covery and support study replication (SINKALA; BLOM; HEROLD, 2018).

1.1 PROBLEM STATEMENT

There is a lack of SAR approaches that provide architectural variability models to sup-
port variability management at the software architecture level (KOSCHKE et al., 2009;
LIMA-NETO et al., 2015; SHATNAWI; SERIAI; SAHRAOUI, 2016). These architec-
tural models provide an explicit bridge between variability represented in feature models
and variability implemented in product variants. For SPLs, the PLA is expected to play
such role. Therefore, the main problem investigated in the scope of this thesis is:

Existing software architecture recovery approaches lack adequate support for
recovering product line architectures.

By “lack of adequate support” we mean that existing bottom-up approaches do not
address or address partially the recovery of variability information and its representation
at the software architecture level that take into account:

1.2 OBJECTIVES 3

• The different implementation of variability mechanisms that may generate or end
up with variants’ source code that may have different characteristics (for instance,
the presence of #ifdef annotations);

• The influence of the size of configuration options on the recovering process and
strategies to tame it;

• The need for guidelines to ease architecture recovery for SPL projects;

• The need of empirical studies to validate the recovery process and its outputs, under
different perspectives.

1.2 OBJECTIVES

The main objective of this thesis is to investigate and provide adequate support for recov-
ering product line architectures to be used in the context of variability management at
the software architecture level. This objective is decomposed and reified in the following
specific objectives:

1. Investigate the state-of-the-art on bottom-up PLA recovery;

2. Propose a systematic approach for recovering PLAs using bottom-up process, tech-
niques, and tool support;

3. Evaluate SAVaR by recovering the PLA of real-world projects.

1.3 RESEARCH QUESTIONS

Based on the research objectives, we define the main research question that drives this
investigation:

How to achieve variability-aware PLA recovery in a systematic way?

The following research questions address problems related to PLA recovery:

RQ1 How do different variability implementation mechanisms affect PLA recovery?
With this question we aim to understand variability implementation mechanisms
and investigate the need for different variability-aware recovery techniques. For
instance, how do existing (bottom-up) SAR techniques deal with annotation-based
variability in the variants’ source code? And how do such techniques deal with
clone-and-own variants’ source code? Chapter 5, Chapter 6, and Chapter 7 focused
on answering this research question.

RQ2 How can we tame the influence of the size of configuration options on the variability
identification efficiency?
With this question we investigate the impact of the SPL variability spectrum in a
PLA recovery process based on product variants. We analyze how the integration of

4 INTRODUCTION

outlier variants demand additional effort for identifying the mandatory and variable
elements of the recovered PLA. We perfomed studies on Chapter 6 and Chapter 7
to answer this research question.

Furthermore, we are concerned with the soundness of PLA recovery processes and
with the accuracy and understandability of the recovered PLAs. Therefore, we aim to
address the following research question as well:

RQ3 Are the PLAs recovered from variants accurate and understandable?
With this question, we investigate if the recovered PLA is accurate with respect
to variability implemented in product variants and if variability-aware architecture
models are easy to understand in SPL adoption and evolution scenarios. Chapter 5
presents the empirical study to answer this research question.

1.4 RESEARCH METHODS

Based on the research objectives and questions, we applied a combination of methods,
to gain an in-depth understanding of the research problem and to strengthen our study
conclusions (HESSE-BIBER, 2010).

1.4.1 Part 1. Literature Review

The initial part of the thesis comprises the analysis of existing literature that supports
this investigation, as a means of devising our research questions, and narrowing down the
possibilities to consider. Moreover, it guided the early steps of our research.

No systematic literature reviews that investigated software architecture recovery in
the context of SPL were found. Therefore, we performed a systematic mapping study
(SMS) (LIMA-NETO et al., 2015) to gather data and evidence from primary studies in
which these two fields meet. Moreover, we performed a systematic literature review (SLR)
to synthesize evidence about metamodels used by PLA modeling, design or recovery
approaches (LIMA; CHAVEZ, 2016).

Some findings from these studies are the lack of studies that address PLA recovery
and the lack of guidelines to support the PLA recovery. Moreover, most of the exist-
ing metamodels to design PLA considered the variability representation using variation
points.

1.4.2 Part 2. Concept

The second part describes the core of this research.
First, we performed an exploratory study to analyse the feasibility of adapting existing

SAR tools and techniques to support the design of PLAs (LIMA-NETO et al., 2015).
We recovered the architecture of the SPL variants to create the PLA. Furthermore, we
developed a semiautomatic approach to support PLA recovery from the source code of
clone-and-own SPL products.

Then, we proposed a Software Architecture Variability Recovery (SAVaR), an ap-
proach to PLA recovery with the goal of providing variability-aware software architecture

1.5 CONTRIBUTIONS OF THIS THESIS 5

documentation for SPLs, while addressing the problems presented in Section 1.1. SAVaR

supports variability identification based on the source code of the variants. We devel-
oped tool support to extract, identify and document architecture variability information
for SPL from products implemented with different strategies. Variability traceability is
supported by means of a single metamodel used to generate architectural views. Finally,
a set of documented guidelines supports SAVaR and provide guidance to developers and
architects.

1.4.3 Part 3. Empirical Studies

We performed a set of empirical studies to evaluate SAVaR . First, we performed an
exploratory study to analyze how to recover PLAs by applying SAVaR with the purpose
of understanding with respect to its effectiveness and reliability from the point of view
of developers and recoverers in the context of SPL projects in an academic environment
(Chapter 5). This exploratory study helped us to improve SAVaR and related guidelines.

Secondly, we performed studies with several open-source SPL projects to assess the
quality of the PLAs recovered with the support of SAVaR (Chapter 6). The objective of
the second study was to analyze a PLA with the purpose of understanding how variability
affects architecture recovery with the PLAR tool from the point of view of architects
performing variability identification in the context of SPL projects.

Finally, the objective of the last study was to evaluate whether SAVaR supports a
cost-effective PLA recovery by means of the identification and removal of outliers. We
performed two studies: the first one focused on recovering the PLA for the Apo-Games
project in the context of variants developed using clone-and-own strategy and the second
study focused on recovering the PLAs of 10 open source SPL projects (Chapter 7).

1.5 CONTRIBUTIONS OF THIS THESIS

This thesis focuses on variability-aware software architecture recovery for SPL. We ad-
dress PLA recovery to provide high-level architectural models for the variability imple-
mented in SPL products, and therefore extend variability management with variability-
aware architectural assets that can be used in the context of SPL adoption and evolution.

The main contributions of this thesis include:

1. Summary of the state-of-the-art on PLA, with challenges and primary studies that
address different aspects of the research area;

2. Analysis of gaps, challenges, insights, and problems faced by SPL architects and
developers during PLA design;

3. SAVaR , an approach that supports PLA recovery, with variability identification and
filtering of outlier variants. Threshold analysis, outliers filtering and metrics-based
analysis were combined to improve the recovery process and the recovered PLAs.

4. A set of guidelines to document and systematize the SAVaR recovery process.

6 INTRODUCTION

Finally, we performed a set of empirical studies with different open source SPLs to
evaluate the proposed approach. These studies contribute to evidence-based software
engineering by providing data and procedures that may support replication by other
researchers interested in the field of PLA recovery.

1.6 OUT OF SCOPE

The following topics are out of the scope of this thesis:

• The concept of reference architectures. There seems to be a misconception in some
related work on what is a PLA and what is a reference architecture. We focus our
study on the former because we investigated the SPL variants source code;

• Hybrid and top-down software architecture reconstruction processes. Nevertheless,
they were included in the SMS to cover the research in the SAR field and identify
possible gaps. In this thesis, we focus on bottom-up processes.

• The use of dynamic analysis techniques and models. We focus on static analysis.
For this reason, extracted information during runtime was not considered.

1.7 THESIS OUTLINE

Figure 1.1 presents the thesis outline. Chapter 2 introduces the necessary background
for this thesis. Chapter 3 presents the SMS conducted in this thesis. We discuss the
relationship between SAR and PLA that leads to important findings in the research area.
Chapter 4 describes the SAVaR approach and the guidelines developed to support the
PLA recovery. Chapter 5, 6, and 7 evaluate the SAVaR approach and discuss the findings
and suggestions for improvement. Finally, Chapter 8 concludes the thesis and discusses
future work.

Appendix A presents supporting material for the SMS, Appendix B provides com-
plementary information about SAVaR and Appendix C provides supporting material for
Chapter 5 that includes information about subjects and questionnaires.

1.7 THESIS OUTLINE 7

Figure 1.1 Thesis Outline

Chapter

2
Don’t complain; just work harder. – Randy Pausch

BACKGROUND

This chapter presents the conceptual background that supports our research. Figure 2.1
is used to guide the presentation of background on SPL (Section 2.1), software archi-
tecture (Section 2.2), product line architecture (Section 2.3), and software architecture
recovery (Section 2.4). Terms and definitions introduced along the text in italics, e.g.
(Concept Name) refer to the conceptual elements presented in the figure. Other impor-
tant background on reuse assessment is presented in Section 2.5. Background on PLA is
presented in Chapter 3.

2.1 SOFTWARE PRODUCT LINES

A Software Product Line (SPL) is a set of software products offered by a producer to
customers, which provides the production for a mass market cheaply than individual
product creation (POHL; BöCKLE; LINDEN, 2005).

Clements and Northrop (2001) define a SPL as “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission developed from a common set of core assets in a prescribed
way”. A “core asset” is anything used to produce multiple products (source code, software
architecture, test infrastructure, test cases, test data, production plans, etc). The assets
are designed to handle the range of variability defined in the SPL scope, and each one is
accompanied by an attached process.

Apel et al. (2013) state that “instead of developing software systems from scratch,
they should be constructed from reusable parts. Instead of composing software systems
always in the same way, they should be tailored to requirements of the customer, where
customers can select from a large space of configuration options.”

SPL products share a set of commonalities and have variabilities that make them
unique (POHL; BöCKLE; LINDEN, 2005). A commonality is a characteristic that is
common to all products. On the other hand, a variability is a characteristic that may
be present in some products, but not in all (LINDEN; SCHMID; ROMMES, 2007).
Commonalities and variabilities are described in terms of features (GOMAA, 2004).

9

10 BACKGROUND

Figure 2.1 Conceptual elements of Software Product Lines and Software Architecture –
adapted from (THIEL; HEIN, 2002b)

A Featureq is a “prominent or distinctive user-visible aspect, quality, or characteristic
of a software system or systems” (KANG et al., 1990). Each SPL feature can be manda-
tory (Mandatory Feature) or variable (Variable Feature). Mandatory features must be
present in all SPL products. On the other hand, SPL products can differ from each other
by their variable features; such features are ‘variable’ assets that will be present only
in some products. A variable feature can be categorized as an optional or alternative
feature. Optional features are present in only some SPL products. When two or more
features are alternatives to each other, only one of them can be present in a given product.
Feature Variability is represented by variable features. In the context of our research, we
are interested in Architectural Variability and how it addresses feature variability.

Features can be organized by means of tree-like structures known as feature mod-
els (KANG et al., 1990). A Feature Model represents variability and describes different

2.1 SOFTWARE PRODUCT LINES 11

types of features, their relationships and dependencies. Each feature in the model may
have a set of child features with a given type of relationship: mandatory, optional, or
alternative. They describe the features that can appear in a member of the SPL, to
separate the mandatory features from the variable ones, and to indicate how the variable
features can appear (CZARNECKI; EISENECKER, 2000).

Feature models are used to create Feature Configurations that in turn are used to
derive Architecture Configurations which describes the components necessary to compose
the architecture of a product. Figure 2.1 shows the relationships among these concepts.

Figure 2.2 presents the feature model for MobileMedia (FIGUEIREDO et al., 2008).
It is an SPL for applications that manipulate photo, music, and video on mobile devices.
The developers used a previous SPL called MobilePhoto (YOUNG, 2005) as core for
developing seven new releases. To implement Mobile Media, the developers extended
the core implementation of MobilePhoto by including new mandatory, optional, and
alternative features.

Figure 2.2 Feature Model for MobileMedia.

The mandatory features of the MobileMedia are: create/delete media (photo, music
or video), label media, and view/play media. The alternative features are just the types
of media supported: photo, music, and/or video. Moreover, the optional features are:

12 BACKGROUND

sms transfer, sort media, copy media, set favourite media, delete album, capture photo,
and capture video. The mandatory features of MobileMedia are applicable to all the
mobile phone devices. The optional and alternative features are configurable on selected
mobile phones depending on the API support they provided.

2.1.1 Software Product Line Engineering

The concept of Software Product Line Engineering (SPLE) can be traced back to the late
1960s (APEL et al., 2013). Apel et al. (2013) suggest that “instead of developing software
systems from scratch, they should be constructed from reusable parts. Instead of com-
posing software systems always in the same way, they should be tailored to requirements
of the customer, where customers can select from a large space of configuration options.”

Krueger (2009) argues that the first generation of SPLs – from the 1980s to 1990s
when SPL has gained momentum in the software industry (APEL et al., 2013) – de-
scribed patterns of software development behavior that later became Software Product
Line Development (SPLD). Krueger (2009) discussed the new methods behind a new gen-
eration of SPL successes. He argued that the early generation made SPL development
very different from single system development. However, the new generation case studies
reduced these differences considerably.

The main difference between single-system development and SPL development is the
change of context: instead of an individual system, stakeholders aim to developing a set
of products or portfolio of individual systems that share common and variable compo-
nents (APEL et al., 2013). This shift suggests a modification of companies strategy: it is
necessary to restructure all the sectors, from the infrastructure to the business organiza-
tion. Moreover, SPL adoption demands management and technical improvements. The
integration of these two elements is fundamental for SPL success. Such changes allow the
building of a family of products instead of only one application.

SPLE comprises three key activities: Core Asset Development (CAD) aims to de-
velop assets for reuse; Product Development (PD) assembles reusable assets in product
instances; and finally, Management handles technical and organizational management
(LINDEN; SCHMID; ROMMES, 2007). Pohl, Böckle and Linden (2005) uses the term
Domain Engineering (DE) instead of CAD, and Application Engineering (AE) in place
of PD.

2.1.1.1 Core Asset Development.
CAD/DE comprises activities that support the development of common assets, and ther
evolution in response to product feedback, new market needs, and so on (CLEMENTS;
NORTHROP, 2001). Figure 2.3 shows the CAD activity along with its outputs and
influential contextual factors. CAD is iterative; the rotating arrows suggest that its
inputs and outputs affect each other. This context influences the way in which the core
assets are produced. For instance, to expand the SPL, the scope may admit new classes
of systems to examine possible sources of legacy assets. Restrictions will determine which
preexisting assets are candidates for reuse (NORTHROP, 2002).

CAD is divided in five subprocesses: (i) domain requirements encompasses all activi-

2.1 SOFTWARE PRODUCT LINES 13

ties for eliciting and documenting the common and variable requirements of the product
line, (ii) domain design encompasses all activities for defining the reference architecture
of the SPL, (iii) domain realization deals with the detailed design and the implementa-
tion of reusable software components, (iv) domain testing is responsible for the validation
and verification of reusable components, and (v) evolution management deals with the
economic aspects of the SPL, in particular with the market strategy (POHL; BöCKLE;
LINDEN, 2005).

Figure 2.3 Core Asset Development (NORTHROP, 2002)

2.1.1.2 Product Development.
The PD/AE activity has as its main goal the creation of individual products by reusing
the core assets previously developed. CAD outputs (product lines scope, core assets and
production plan), in conjunction with the requirements for individual products are the
main inputs for PD activity. Figure 2.4 illustrates the PD along with its output and
influential contextual factors.

PD is divided in four subprocesses: (i) application requirements encompasses all ac-
tivities for developing the application requirements specification, (ii) application design
encompasses activities for producing the application architecture, (iii) application realiza-
tion creates the considered application, and finally (iv) application testing comprises the
activities necessary to validate and verify an application against its specification (POHL;
BöCKLE; LINDEN, 2005).

The rotating arrows in Figure 2.4 indicate iteration and involved relationships. This
activity has an obligation to give feedback on any problems or deficiencies encountered
with the core assets, in order to keep the core asset base in accordance with the products.

14 BACKGROUND

Figure 2.4 Product Development (NORTHROP, 2002)

2.1.1.3 Management.
Management comprises technical management and organizational management. Tech-
nical management is responsible for requirements control and the coordination between
CAD and PD. Organizational management is responsible for managerial and organiza-
tional activities.

The common set of assets and the plan for how they are used to build product do
not just materialize without planning, and they certainly do not come free. They re-
quire organizational foresight, investment, planning and direction. They require strategic
thinking that looks beyond a single product. The disciplined use of the assets to build
products does not just happen either. Management must direct, track, and enforce the
use of the assets. Software product lines are as much about business practices as they
are about technical practices (CLEMENTS; NORTHROP, 2001).

2.1.2 Variability Management

Variability management is a key activity in SPL engineering. Variability provides the re-
quired flexibility for product differentiation and diversification (CHEN; BABAR; CAW-
LEY, 2009). SPL engineering manages dependencies among variants and supports their
instantiation in the SPL life cycle (SCHMID; JOHN, 2004). The management includes
identifying the commonalities and variations over a set of system artifacts – requirements,
architecture, code, and tests (SHULL; BABAR; CHEN, 2010).

Variability management comprises tasks such as elicit and describe variability in soft-
ware artifacts in the logical and implementation views. The logical representation focuses
on the problem domain by structuring the features combination. On the other hand, the

2.1 SOFTWARE PRODUCT LINES 15

variability representation in source code points to the solution domain because it imple-
ments the features using a specific mechanism (JARING; BOSCH, 2004; SVAHNBERG;
GURP; BOSCH, 2005). The increased variability makes the SPL source code more
complex than in single systems. As a consequence, the SPL source code is harder to
understand (KäSTNER; APEL; KUHLEMANN, 2008).

Moreover, variability management encompasses dependencies establishment and man-
agement among different variabilities. It also supports the variabilities exploitation to
either build and evolve an SPL (CHEN; BABAR, 2011). In this way, effective methods,
techniques, and tools to provide adequate support are necessary because management
takes place at different levels of abstraction considering all generic development assets
(BOSCH et al., 2002; SINNEMA; DEELSTRA, 2007; CHEN; BABAR, 2011).

2.1.2.1 Variability Modeling.
Variability modeling is one key aspect of the variability management. Several approaches
have been introduced for modeling variability in an SPL (KANG et al., 1990; CZAR-
NECKI; EISENECKER, 2000; GOMAA, 2004; SCHMID; JOHN, 2004; POHL; BöCKLE;
LINDEN, 2005; DHUNGANA; GRüNBACHER; RABISER, 2011).

Feature modeling is a popular technique proposed by Kang et al. (1990) to han-
dle variability modeling. It has been used in different software development paradigms,
such as feature-oriented programming (BATORY, 2003; APEL et al., 2013), genera-
tive programming (CZARNECKI; EISENECKER, 2000), and model-driven development
(TRUJILLO; BATORY; DIAZ, 2007). This technique introduced the concept of feature
models.

In the context of SPL, feature models are considered as a standard model to represent
variability (KANG et al., 1990; CZARNECKI; EISENECKER, 2000; CHEN; BABAR,
2011). However, feature modeling is just one of many ways used to describe variability.
Alternative approaches to model variability are Orthogonal Variability Model (OVM)
technique (POHL; BöCKLE; LINDEN, 2005), Decision Models (WEISS; LAI, 1999), and
Compositional Variability Management (CVM) (ABELE et al., 2010).

2.1.2.2 Variability Implementation.
Variability implemented in the source code should be in conformance with the variability
models early defined in feature modeling and architecture design. To satisfy the SPL
final product requirements, variability mechanisms are used in the development process
to enable multiple configurations of an SPL.

The literature provides a significant amount of variability implementation mecha-
nisms. Among the existing variability mechanisms, we could enlist conditional compila-
tion, inheritance, parameterization, and overloading as the most widely used ones (SVAHN-
BERG; GURP; BOSCH, 2005; BOSCH; CAPILLA, 2013). These mechanisms consider
the variability in different steps during the development life cycle (SVAHNBERG; GURP;
BOSCH, 2005; KIM; HER; CHANG, 2005; MOHAN; RAMESH, 2007; DEELSTRA;
SINNEMA; BOSCH, 2009; APEL et al., 2013). Choosing the appropriate variability
mechanism to use in the artifacts development is a critical project decision. It is worth to

16 BACKGROUND

mention that this investigation concerns the variability issues at the architectural level.
Hence,we focus on how the variability implementation affects its representation at this
level of SPL projects.

Fritsch et al. (2002) defined that architectural patterns, design patterns, idioms, or
guidelines for coding are variability mechanisms as well. There are three main character-
istics a mechanism must offer: (i) implementation of the specified options, (ii) a technique
to select the options for a certain product configuration, and (iii) the binding time (Bind-
ing Time). The latter refers to the time a variation was assigned to a variation point and
the latest time – during the development – a variation can be found in a variation point
(DEELSTRA; SINNEMA; BOSCH, 2009).

Tools such as Feature IDE (MEINICKE et al., 2016) and pure::variants (BEUCHE,
2013) support SPL development and variability management. For instance, the T-Wise
Test (HENARD et al., 2014) configuration implemented in FeatureIDE deals with the
combinatorial explosion regarding the products configurations.

2.2 SOFTWARE ARCHITECTURE

The software engineering community provided several definitions for software architecture
(SA), each one emphasizing specific aspects of it (SHAW; GARLAN, 1996; GARLAN,
2000; BASS; CLEMENTS; KAZMAN, 2003; CLEMENTS et al., 2010; TAYLOR; MED-
VIDOVIC; DASHOFY, 2009).

Shaw and Garlan (1996) stated that “the architecture of a system defines that sys-
tem in terms of computational components and interactions among those components”.
Common terminology for architectural design elements (Design Element) included “com-
ponent” as a locus of computation, “connector” as a locus of interaction between compo-
nents, and “configuration” as a set of attached components and connectors that provides
some functionality. Accordingly, Bass, Clements and Kazman (2003) defined SA as the
system structure, which consists of software elements, externally visible properties, and
the relationships among elements (BASS; CLEMENTS; KAZMAN, 2003).

Definitions have evolved to include the importance of design decisions and rationale
besides the focus on the top-level decomposition of a system (or a set of systems) into its
main components. Taylor, Medvidovic and Dashofy (2009) emphasize the role of principal
design decisions and define SA as the set of principal design decisions made during the
development and evolution. For this reason, making the SA sound and persistent is
critical for using the potential it offers as an enabler for software development in an
efficient and effective way, particularly in scenarios of increasing system size, evolution,
and complexity (ROST et al., 2013).

The ISO/IEC/IEEE 42010 standard for architecture description (ISO/IEC/IEEE. . . ,
2011) defines SA as “the fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution”.

A compilation of definitions for SA can be found in SEI website1. In this work, we
use the standard definition (ISO/IEC/IEEE. . . , 2011), complemented by the one from
(TAYLOR; MEDVIDOVIC; DASHOFY, 2009).

1<https://bit.ly/2S3hTSt>

2.2 SOFTWARE ARCHITECTURE 17

Figure 2.5 Excerpt from ISO/IEC/IEEE 42010 and design elements – adapted from (THIEL;
HEIN, 2002b)

SA is important for different stakeholders (Stakeholder) with different perspectives
or viewpoints. When explicitly documented, SA is relevant for several activities such
as software development, analysis, maintainability, and evolution. Stakeholders of an
SPL are parties with interests in that SPL. They have concerns (Concern) with respect
to the SPL-of-interest considered in relation to its domain. A concern could be held
by one or more stakeholders. They arise throughout the life cycle from SPL needs and
requirements, from design choices and from implementation considerations.

2.2.1 Architecture Descriptions

The Joint Technical Committee ISO/IEC in cooperation with the Software and Systems
Engineering Standards Committee of the Computer Society of the IEEE prepared the
ISO/IEC/IEEE 420102 (ISO/IEC/IEEE. . . , 2011) to address the creation, analysis, and
sustainment of architectures of systems by means of architecture descriptions.

2<https://www.iso.org/standard/50508.html>

18 BACKGROUND

An Architecture Description is the set of artifacts that document an architecture. It
comprises one or more architecture views. An Architectural View is a representation of
the software architecture that addresses one or more stakeholders’ concerns as can be
seen in Figure 2.5.

Moreover, an architecture view describes the architecture of the SPL-of-interest ac-
cording to an architecture viewpoint. A Viewpoint defines the perspective from which
an architecture view is taken. It defines: how to construct and use an architecture view;
the information that should appear in the architecture view; the modeling techniques for
expressing and analyzing the information; and a rationale for these choices. An architec-
ture viewpoint frames one or more concerns. A concern can be framed by more than one
viewpoint.

For instance, Clements et al. (2010) in their approach to SA description (mostly
compliant with the ISO/IEC/IEEE 42010 standard) present three kinds of architectural
viewpoint (or viewtype, as they define it): Module, Component-and-Connector and Al-
location. The Module views are concerned with documenting a system’s principal units
of implementation. Component-and-connector views document the system’s unity of
execution. Allocation views document the relations between a system’s software and
nonsoftware resources of the development and execution environments.

An architectural view consists of one or more Architecture Models that uses appro-
priate modelling conventions notation to address the concerns. These conventions are
specified by the model kind governing that model. Within an architecture description,
an architecture model can be part of more than one architecture view. In the following
subsections, we will present architecture view models used in this thesis.

2.2.1.1 Development Views.

Kruchten (1995) proposed the 4+1 architectural model to represent SA from different
viewpoints. The model is organized in five views, as depicted in Figure 2.6: logical,
development, process, physical, and the fifth view combines the former ones as a means
to illustrate and explain the overall architecture.

The development view, at the top right corner of Figure 2.6 presents the devel-
opment view that illustrates a system from a developer’s perspective. This view is
also known as the implementation view. It describes the system components. Com-
ponents are represented as collections of source code artifacts (e.g. classes and packages)
and system connectors as relations between these system components (e.g. calls, uses,
sets) (KRUCHTEN, 1995).

Listing 2.1 describes an excerpt of the MobileMedia source code. The methods
getByteFromImage() and addImageData() were implemented using #ifdef annnota-
tion. When a developer select the #ifdef includeSmsFeature these methods in the
configuration they will be present on the product source code.

// #ifdef includeSmsFeature
/* [NC] Added in scenario 06 */
public byte[] getByteFromImage(Image img){

int w = img.getWidth ();
int h = img.getHeight ();

2.2 SOFTWARE ARCHITECTURE 19

Figure 2.6 The 4+1 view model, extracted from (KRUCHTEN, 1995)

int data_int [] = new int[w * h];
img.getRGB(data_int , 0, w, 0, 0, w, h);
byte[] data_byte = new byte[w * h * 3];
for (int i = 0; i < w * h; ++i){

int color = data_int[i];
int offset = i * 3;
data_byte[offset] = (byte) ((color & 0xff0000) >> 16);
data_byte[offset + 1] = (byte) ((color & 0xff00) >> 8);
data_byte[offset + 2] = (byte) ((color & 0xff));

}
return data_byte;

}

public void addImageData(String photoname , Image imgdata , String albumname)
throws InvalidImageDataException , PersistenceMechanismException {

try {
byte[] data1 = getByteFromImage(imgdata);
addMediaArrayOfBytes(photoname , albumname , data1);
} catch (RecordStoreException e) {
throw new PersistenceMechanismException ();

}
}
//#endif

Listing 2.1 Excerpt of MobileMedia source code

DSM. The Design Structure Matrix (DSM; also referred to as dependency structure
matrix) is a visual representation of a system in the form of a square matrix repre-
senting relations between the system elements (EPPINGER; BROWNING, 2012).
The system elements are labeled in the rows to the left of the matrix and in the
columns above the matrix. These elements can represent packages, classes, modules
and product components.
Figure 2.7 presents the MobileMedia’s DSM. It describes the packages relationships.
For instance, the package datamodel calls 18 methods in the package controller.

Module Dependency Graph. Module Dependency Graph (MDG) represents the soft-
ware elements (such as packages, classes, modules, and so on) and relationships used

20 BACKGROUND

Figure 2.7 DSM for MobileMedia

in the architectural description of traditional systems (MANCORIDIS et al., 1999).
Figure 2.8 presents MobileMedia packages and its relationship.

2.2.2 Architecture Variability

The Software Architecture discipline treats the variability as a quality attribute and a
cross-cutting concern (GALSTER; AVGERIOU, 2011b; GALSTER et al., 2013). More-
over, SA considers variability in a broader scope and acknowledges that variability is a
Concern for different stakeholders, and in turn affects other concerns. Figure 2.9 presents
the architecture variability extension.

Variability is a relevant characteristic of the architectures of software systems (HILLIARD,
2010; GALSTER; AVGERIOU, 2011b) – either single systems, SPL, and system of sys-
tems. It is a key fact of “most, if not all systems” and therefore a relevant concern
for the architectures of those systems (HILLIARD, 2010) – that should be early man-
aged and identified during architecting over discovering and addressing it later in the life
cycle (THIEL; HEIN, 2002a).

As defined by the ISO/IEC/IEEE 42010, the description of an architecture should be
organized into multiple views. Each view addresses one or more stakeholder concerns. In
the context of SPL, each architecture view contains Architectural Variability to cope with
the variety of characteristics that must be implemented for the different SPL members.
Architectural variability reflects the existence of alternative design options that could not
be bound during architectural modeling. Architectural variability is usually expressed by
a set of architectural variation points (see Figure 2.9).

Architectural variability can be summarized in an Architectural Variability Model, de-

2.2 SOFTWARE ARCHITECTURE 21

Figure 2.8 MDG for MobileMedia

scribed by a set of the Architectural Variation Point. An architectural variation point
represents the architectural elements responsible for describing the PLA variability. It
shows part of the architectural solution of the architectural variability. The set of archi-
tectural variation points needs to be consistently resolved and bound to concrete design
options.

Figure 2.10 presents the architectural variability model for MobileMedia proposed by
Shatnawi, Seriai and Sahraoui (2016). The large boxes denote design decisions (depen-
dencies). For instance, core architecture refers to components that should be selected to
create any concrete PLA. In MobileMedia, there is one mandatory component manipu-
lating the base controller of the product. This component has two variants. A group
of Multi Media Stream, Video Screen Controller, and Multi Screen Music components
represents design decision regarding the implementation of a alternative feature.

Variability is represented and facilitated through the SA. In this way, variability in
the architecture is a complex concept and dealing with it is a multi-faceted activity that
should be treated as first-class citizen in software architecture (GALSTER et al., 2013).
Consequently, to develop the appropriate support for architects to deal with variability,
it is worth to comprehend the various problems software architects come across when
attempting to carry out variability-related tasks (GALSTER; AVGERIOU, 2011a).

So far, variability has primarily been addressed in the SPL domain (GALSTER;
AVGERIOU, 2011b, 2011a; CHEN; BABAR, 2011; GALSTER et al., 2013). In this

22 BACKGROUND

Figure 2.9 Excerpt from Feature Variability Extension – adapted from (THIEL; HEIN, 2002b)

way, to address the variability in the architectural level of SPL projects, the SPL com-
munity introduced the notion of Product Line Architecture (AHMED; CAPRETZ, 2008).
PLA captures the central design of all products including variability and commonalities
of several products instances (VERLAGE; KIESGEN, 2005).

Haider, Woods and Bashroush (2018) performed a SLR to capture and summarize
the state-of-the-art in representing variability in SA. The authors states that variability
representation at the SA is mostly related to SPL context. Moreover, they found that
UML (including various extensions) and Architecture Description Languages (ADL) were
the most used notations to represent variability in SA.

2.3 PRODUCT LINE ARCHITECTURE

A Product Line Architecture – or Software Product Line Architecture (SPLA) – is the core
architecture that represents a high-level design for all the products of an SPL, including
variation points and variants documented in the variability model (POHL; BöCKLE;
LINDEN, 2005). Because the development of an SPL involves the implementation of
different structures, processes, interfaces and activities, it is relevant for SPL practitioners
to pay sufficient attention to its architecture.

A PLA stands for a SPL as much as a single system software architecture stands for
a SPL product instance. The PLA provides for an explicit high-level representation that
is variability-aware. This means that besides an overall description of the “core” elements
and relationships present in the architecture of all SPL products, the PLA must include

2.3 PRODUCT LINE ARCHITECTURE 23

Figure 2.10 Variability Model for MobileMedia (SHATNAWI; SERIAI; SAHRAOUI, 2016)

a high-level description of variable elements and their relationships that will be specific
to some products after product configuration. Different product instances share the SPL
“core architecture”.

According to Martínez-Fernández et al. (2013), the terms Reference Architecture (RA)
and PLA are sometimes used indistinctly. The term RA is used to refer to “a core ar-
chitecture that captures the high-level design for the application of the SPL” (POHL;
BöCKLE; LINDEN, 2005) or “just one asset, albeit an important one, in the SPL asset
base” (CLEMENTS; NORTHROP, 2001). However, out of the SPL context, RA and PLA
are considered different types of artifacts (NAKAGAWA; ANTONINO; BECKER, 2011;
ANGELOV; GREFEN; GREEFHORST, 2012; EKLUND et al., 2012; GALSTER et al.,
2013). Angelov, Grefen and Greefhorst (2012) claim that a PLA is a RA whereas not
every RA is a PLA. A PLA is just one SPL asset (CLEMENTS; NORTHROP, 2001). A

24 BACKGROUND

RA provides standardized solutions for a broader domain whereas a PLA provides a stan-
dardized solution for a smaller subset of the software system of a domain (NAKAGAWA;
ANTONINO; BECKER, 2011). Moreover, PLAs address variability points and more
formal specification to ensure clear and precise behavior specifications at well-specified
extension points (ANGELOV; GREFEN; GREEFHORST, 2012). In contrast, RAs have
less focus on capturing variation points (NAKAGAWA; ANTONINO; BECKER, 2011;
ANGELOV; GREFEN; GREEFHORST, 2012; EKLUND et al., 2012).

A PLA Description is an architecture description enriched with explicit information
about the variability model of the SPL. This means that PLA architecture models must
be concerned with the representation of Architectural Variation Points.

For PLAs, architectural views are extended with architectural variability represen-
tation. In this work, variability information is represented in development views and
architectural elements such as packages and classes.

2.4 SOFTWARE ARCHITECTURE RECOVERY

The concern about recovering architectural information (or “high level” design informa-
tion) started in the 1990s along with the formal study of software architecture. Early re-
search work investigated and integrated reverse engineering technology with architectural
representations (CHIKOFSKY; CROSS, 1990; WATERS; CHIKOFSKY, 1994; HARRIS;
REUBENSTEIN; YEH, 1995).

Software Architecture Recovery (SAR) (GALL et al., 1996; MENDONCA; KRAMER,
1996) stands for the research field concerned with the use and integration of concepts from
reverse engineering and software architecture.

According to Gall et al. (1996), recovering the architecture of software systems requires
more than just reverse engineering tools. It is necessary to balance information about
design decisions and logical functions with informal domain knowledge, domain standards,
and developers coding guidelines.

The majority of the studies identified by Ducasse and Pollet (2009), considered SAR
as the process of extracting architectural information from software systems. The most
used techniques that support architecture recovery extracts information from the system
source code (GARCIA; IVKOVIC; MEDVIDOVIC, 2013).

According to Mendonca and Kramer (1998), SAR can facilitate system understanding
and maintenance. The authors proposed a concern regarding the use of SAR to support
product families focusing on the recovery of legacy systems from the same domain. They
argued that SAR helps in the identification of commonalities within a family of related
system and also fosters the possibility of system structure reuse in the development of
new systems.

Some research uses the term “software architecture reconstruction” as a synonym for
SAR, for instance, early work of Kazman and Carrière (1999). Deursen et al. (2004)
state that SA reconstruction is the process of obtaining a documented architecture for
an existing system, although, such a reconstruction can make use of any possible re-
source. Ducasse and Pollet (2009) defined SA reconstruction as a reverse engineering
approach that aims at reconstructing architectural views of a software application. The

2.4 SOFTWARE ARCHITECTURE RECOVERY 25

authors also identified other terms in the literature to refer to reconstruction: reverse
architecture/architecting, architecture extraction/mining/recovery/discovery.

2.4.1 Processes

There are three processes for architecture reconstruction (DUCASSE; POLLET, 2009):
bottom-up, top-down and hybrid processes. Often, “recovery” refers to a bottom-up
process, while “discovery” refers to a top-down process.

Figure 2.11 A bottom-up process: From source code, (1) views are extracted and (2) re-
fined (DUCASSE; POLLET, 2009).

Bottom-up process. Bottom-up processes recover the architecture using low-level
knowledge (e.g. source code structural information) (DUCASSE; POLLET, 2009).
They raise the abstraction level in a progressive way, starting with source code
– through a series of chunking and concept assignments steps (TILLEY; PAUL;
SMITH, 1996) – until reaching a high-level understanding of the application.
Moreover, bottom-up processes (see Figure 2.11) – also called architecture recovery
processes – are related to the description of extract-abstract-present cycle (TILLEY;
PAUL; SMITH, 1996). With the support of source code analysis, the authors
suggest a repository population by querying to yield abstract system representations
in an interactive form to reverse engineers.
In the context of this thesis, we focus on using and adapting existing bottom-up
processes, techniques, and tools to recover PLAs. We create a source code model
based on low-level knowledge (source-code). We raise the abstraction level and we
represent the PLA using development views.

Top-Down Process. Top-down processes (see Figure 2.12) aim to discover the ar-
chitecture by formulating conceptual hypotheses. In other words, top-down pro-

26 BACKGROUND

cesses are opposite from bottom-up processes. They start with high-level knowl-
edge (e.g. requirements of architectural styles) until matching them to the source
code (DUCASSE; POLLET, 2009).
Moreover, the top-down approach starts with a pre-existing notion of the system
functionality and progresses to the system components. The refinement method in-
cludes hypotheses creation, verification, and modification until is possible to explain
the entire system (TILLEY; PAUL; SMITH, 1996).
The extraction of logical views depends on the analysis of requirements models, use
cases, and activity models. In such cases, top-down processes are used because they
start with high-level knowledge and aim to discover the architecture by formulating
hypotheses (DUCASSE; POLLET, 2009).

Figure 2.12 A top-down process: (1) A hypothesized architecture is defined. (2) The archi-
tecture is checked against source code. (3) The architecture is refined (DUCASSE; POLLET,
2009).

Hybrid Process.
The combination of bottom-up and top-down processes allow the implementation
of hybrid processes. In this way, techniques can be used to abstract the low-level
knowledge – recovered from bottom-up processes. The refinement of high-level
knowledge – discovered from top-down processes – can be confronted with the
previously extracted views (DUCASSE; POLLET, 2009).
Hybrid processes compare the conceptual or prescriptive architecture against the
concrete or descriptive architecture (TAYLOR; MEDVIDOVIC; DASHOFY, 2009).
Moreover, hybrid approaches often explore architectural hypothesis provided by
top-down techniques combined with bottom-up reverse engineering strategies (PASHOV;
RIEBISCH, 2004).

2.4.2 Techniques

The recovery of different software architecture views requires the use of different ex-
traction techniques (STAVROPOULOU; GRIGORIOU; KONTOGIANNIS, 2017). Most

2.4 SOFTWARE ARCHITECTURE RECOVERY 27

SAR approaches adopt static analysis techiques to recover design-time information in
module views (CLEMENTS et al., 2010) or development views (KRUCHTEN, 1995).
With respect to behavior and runtime information, dynamic analysis techniques can be
used to reconstruct component-and-connector views, e.g. process views.

For recovering development views, most SAR techniques are based on source code
static analysis and clustering. They groups entities into clusters, where each cluster
represents a component of the system’s architecture (STAVROPOULOU; GRIGORIOU;
KONTOGIANNIS, 2017).

Ducasse and Pollet (2009) classify techniques with respect to their automation level:

Quasi-manual techniques.
Quasi-manual techniques provide support on the understanding manually extracted
architectural elements. In this context, researchers proposed slightly assisted quasi-
manual techniques such as Constructed-Based Techniques and Exploration-based
techniques. The former reconstructs the software architecture by manually ab-
stracting low-level knowledge. The latter gives reverse engineers an architectural
view of the system by guiding them through the highest level artifacts of the imple-
mentation. In such cases, the architectural view is closely related to the developer’s
view (DUCASSE; POLLET, 2009).

Semiautomatic techniques.
Semiautomatic techniques automate repetitive aspects of SAR. Some examples of
such techniques are (i) Abstraction-based tecniques that aim to map low-level con-
cepts with high-level concepts and (ii) Investigation-based tecniques that map high-
level concepts with low-level concepts. The high-level concepts considered cover a
wide area from architectural descriptions and styles to design patterns and fea-
tures (DUCASSE; POLLET, 2009).

Quasi-automatic techniques.
Quasi-automatic techniques automate the SAR with tool support. Some examples
are (i) Formal concept analysis that is a branch of lattice theory, (ii) Clustering al-
gorithms which identify groups of objects whose members are similar in some way,
(iii) Dominance analysis for identifying related parts in an application, and (iv) De-
pendency Structure Matrix which is used to analyze architectural dependencies in
software by showing compact manner dependencies between source code entities
such as classes and packages (DUCASSE; POLLET, 2009).

2.4.3 Tools

Tools can be used to support the SAR processes and techniques. They allow the SAR
automation and eliminate repetitive tasks. Some tools focus on software structure extrac-
tion such as Stan4J, Analizo, and Struct101. Other tools focus on providing visualization
of the recovered information. For instance, tools such as Archvis, Rigi, Graphviz and
CodeCrawler are used to visualize graph representations of software views.

Some tools such as Bunch, ACDC, and Arcade implements clustering algorithms for
presenting and grouping source code entities as boxes. Moreover, tools like SoftArch

28 BACKGROUND

supports both static and dynamic visualization of software architecture components at
varying levels of abstraction.

2.4.4 Product Line Architecture Recovery

As stated by Medvidovic, Egyed and Grünbacher (2003), the term recovery refers to a
bottom-up process. Therefore, architecture variability recovery comprises tasks to re-
covering variability-aware architectural models, often from low-level artifacts such as the
source code of software products. In the context of this thesis, we are interested in
architecture variability recovery for SPL, or PLA recovery. This means that architec-
tural abstractions must be variability-aware and aligned with the SPL terminology. In
Chapter 3, we exploit and discuss PLA recovery in detail.

2.5 REUSE ASSESSMENT

PLAs can be used to assess some quality dimensions of the SPL such as reusability.
For instance, reuse assessment comprises on reflecting the presence of design component
characteristics that allow a design to be reapplied to a new component without effort and
preventing the propagation of errors to other variants. In the context of this work, PLA
components and their relationships are used to support SPL reuse assessment.

According to Cordeiro and OliveiraJr (2018), software metrics can support PLA eval-
uations. The use of software metrics helps in the understanding, controlling and im-
provement of activities and/or artifacts (FENTON; BIEMAN, 2014). To select the right
metrics to our thesis, we searched the literature to identify metrics related to PLA and
SAR. Table 2.1 describes the metrics used in this thesis to support reuse assessment of
SPLs. Some metrics have been defined for the quality assessment of PLAs (ZHANG et
al., 2008). Their definitions are provided below.

SSC (Structure Similarity Coefficient) is used to measure the similarity between PLA
components, while SVC (Structure Variability Coefficient) is used to measure the structure
variability of the PLA. Given Cc, the number of common components in the PLA, and
Cv, the number of variable components.

RSC (Relation Similarity Coefficient) is used to measure the similarity between PLA
relations, and RVC (Relation Variability Coefficient) measures the variability of PLA re-
lations. Given Rc, the number of common relations in the PLA, and Rv, the number of
variable relations, RSC and RVC are defined as follows.

The SSC and SVC metrics are highly related given that the sum of SSC and SVC will
be always 1. Values close to 1 for SSC means that there are few optional components,
and values close to 0 means that the PLA of the different variants does not have many
components in common. We can draw similar conclusions regarding the RSC and RVC

metrics because the same relationship happens between them.
The CRR (Componenet Reuse Rate) is used to calculate the reuse rate of each PLA

element. The Ex(Mi) - returns 1, if component i is present in the product architecture,
0 otherwise. On the other hand, the RRR (Relationship Reuse Rate) is used to calculate
the reuse rate of each PLA relationship. The Ex(Mj) - returns 1, if relationship j is

2.5 REUSE ASSESSMENT 29

present in the product architecture, 0 otherwise.
The metrics CM Class Mandatory calculates the number of classes implementing the

mandatory features and CO Class Optional calculates the number of classes implementing
the optional features.

Besides, the metrics OP Optional Relation and MR Mandatory Relation use the same
principle to calculate the number of mandatory and optional relations.

The PLTV (PLTotalVariability) is a metric that estimates the PLA variability based
on the metrics CO and OR results.

Table 2.1 Metrics used to evaluate the PLA.
Metric Description Formula Source

SSC SSC calculates the overall similarity between
PLA components.

|CC |
|CC |+|CV | (ZHANG et al., 2008)

RSC RSC calculates the overall similarity between
PLA relationships.

|RC |
|RC |+|RV | (ZHANG et al., 2008)

SVC SVC calculates the overall variability between
PLA components.

|CV |
|CC |+|CV | (ZHANG et al., 2008)

RVC RVC calculates the overall variability between
PLA relationships.

|RV |
|RC |+|RV | (ZHANG et al., 2008)

CRR Calculates the component reuse rate of each
component of the PLA

P
i Ex(Mi)
|M| ⇥ 100% (ZHANG et al., 2008)

RRR Calculates the relationship reuse rate of each
component of the PLA

P
j Ex(Mj)

|M| ⇥ 100% (ZHANG et al., 2008)

CM Calculates the number of packages or classes
implementing the mandatory features

P
CC (OLIVEIRA et al., 2008)

CO Calculates the number of packages or classes
implementing the optional features

P
CV (OLIVEIRA et al., 2008)

MR Calculates the number of relationships imple-
menting the mandatory features

P
RC (OLIVEIRA et al., 2008)

OR Calculates the number of relationships imple-
menting the optional features

P
RV (OLIVEIRA et al., 2008)

PLTV Estimates the number of variable components
found on PLA

P
RV +

P
CV (OLIVEIRA et al., 2008)

Legend: CC - Total number of Common Components; RC - Total number of Common Relationships; CV - Total
number of Variable Components; RV - Total number of Variable Relationships; M - Total number of variants;
Ex(Mi) - returns 1, if component i is present in the product architecture, 0 otherwise. Ex(Mj) - returns 1, if
relationship j is present in the product architecture, 0 otherwise.

Table 2.2 shows the metrics for MobileMedia. The project presents high number of
variable elements (CO - 52) and relations (OR - 148) against a low number of mandatory
elements (CM - 7) and relations (MR - 3). As a consequence, we highlight the high structure
variability coeficient (SVC - 0.88) and relation variability coeficient (SVC - 0.98).

Table 2.3 presents the component reuse rate (CRR) values for the packages of Mobile-
Media. For instance, the package lancs.midp.mobilephoto.lib.exceptions presents

30 BACKGROUND

Table 2.2 Recovered Metrics for MobileMedia
SSC SVC RSC RVC CO OR CM MR

0.12 0.88 0.02 0.98 52 148 7 3

CRR of 87.5% while the packages ubc.midp.mobilephoto.core.ui presents CRR of 100%
indicating that the package is implemented in all the variants.

Table 2.3 CRR for MobileMedia
Package CRR

lancs.midp.mobilephoto.lib.exceptions 87.5
ubc.midp.mobilephoto.core.comms 37.5
ubc.midp.mobilephoto.core.threads 100.0
ubc.midp.mobilephoto.core.ui 100.0
ubc.midp.mobilephoto.core.ui.controller 100.0
ubc.midp.mobilephoto.core.ui.datamodel 100.0
ubc.midp.mobilephoto.core.ui.screens 100.0
ubc.midp.mobilephoto.core.util 100.0
ubc.midp.mobilephoto.sms 37.5

Table 2.4 presents the relationships reuse rate (RRR) values for the MobileMedia
project. For instance, the relationship between Package A (ubc.midp.mobilephoto.core.ui)
and Package B (ubc.midp.mobilephoto.core.ui.controller) presents RRR of 100%,
which meas that this relationship is implemented in all the variants.

2.6 CHAPTER SUMMARY

This chapter introduced general concepts of SA (and its recovery) and SPL (including de-
tailed discussion about PLA). In a nutshell, SPL exploits commonalities among products
to reduce costs, time to market, and improve the software quality. On the other hand,
SPL provides the variability management allowing the organization to achieve economies
of scope and provides the capability of mass customization.

Because the development of an SPL involves the implementation of different struc-
tures, processes, interfaces and activities, it is relevant for SPL practitioners to pay suf-
ficient attention to its architecture. In this context, the PLA enables the maximization
of the architecture reuse across several products. PLA recovery provides information to
support the understanding of the variability mechanism implemented. Next Chapter,
we discuss the current state-of-the-art on the relationship between SAR and PLA, and
leverage existing gaps towards PLA recovery.

2.6 CHAPTER SUMMARY 31

Table 2.4 RRR for MobileMedia
Package A Package B RRR

ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.controller 100.0
ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.datamodel 100.0
ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.screens 37.5
ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.sms 25.0
ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui 100.0
ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui.datamodel 100.0
ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui.screens 100.0
ubc.midp.mobilephoto.core.ui.controller lancs.midp.mobilephoto.lib.exceptions 87.5
ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.sms 37.5
ubc.midp.mobilephoto.core.ui.datamodel ubc.midp.mobilephoto.core.util 100.0
ubc.midp.mobilephoto.core.ui.datamodel lancs.midp.mobilephoto.lib.exceptions 87.5
ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui.datamodel 100.0
ubc.midp.mobilephoto.core.ui.screens lancs.midp.mobilephoto.lib.exceptions 62.5
ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui 25.0
ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui.controller 25.0
ubc.midp.mobilephoto.core.util ubc.midp.mobilephoto.core.ui.datamodel 100.0
ubc.midp.mobilephoto.core.util lancs.midp.mobilephoto.lib.exceptions 87.5
ubc.midp.mobilephoto.sms lancs.midp.mobilephoto.lib.exceptions 37.5
ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.comms 37.5
ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui 37.5
ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.controller 37.5
ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.datamodel 37.5
ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.screens 37.5

Chapter

3
To dream is to wake up on the inside. – Mário Quintana

A SYSTEMATIC MAPPING STUDY ON PRODUCT
LINE ARCHITECTURE RECOVERY

Product Line Architecture recovery brings an important additional benefit to those com-
monly credited to the architecture recovery of single systems (DUCASSE; POLLET,
2009): the possibility of managing variability at the architectural level (SHATNAWI;
SERIAI; SAHRAOUI, 2015). It supports keeping SPL assets such as architectural doc-
umentation and design artifacts up-to-date (PINZGER et al., 2003).

PLA recovery must support the identification of commonalities and variability within
the SPL products from one or more sources of information. For instance, PLA recov-
ery processes may focus on representative members of the product line resulting in the
architectural description for each product line member (EIXELSBERGER, 2000).

However, no literature reviews which investigated SAR with focus on SPL, PLA or
variability management were found. In this context, we performed a SMS to gather data
and evidence about research work that combines PLA and SAR.

This Chapter presents an overview to summarize and categorize the state-of-the art on
PLA Recovery. Section 3.2 details the review process. Section 3.3 presents the outcomes
and findings. Section 3.4 presents discussion the findings and describes the threats to
validity of this work. We discuss the related work in Section 3.5. Section 3.6 presents the
chapter summary.

3.1 MOTIVATION

According to Shatnawi, Seriai and Sahraoui (2016), few approaches reported in the lit-
erature support PLA recovery. The recovery of variability is one of their limitations.
Moreover, they recovered only some variability aspects and missed the recovery of the
whole PLA.

We define the goal of our study using the Goal-Question-Metric (GQM) approach
(WOHLIN et al., 2012) as follows:

33

34 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

Analyze the literature on PLA and SAR for the purpose of characterization with
respect to its relationship, evolution, support to PLA recovery, and research trends from
the point of view of researchers and practitioners in the context of the SPL engineering
field.

Thus, the contributions of this Chapter are (i) review the literature about the relation-
ship between PLA and SAR, and its evolution over the years, (ii) investigate how existing
approaches support PLA recovery, and (iii) identify research trends on PLA recovery.

3.2 RESEARCH PROCESS

The research design for this study was based on systematic literature review guidelines
(KITCHENHAM; CHARTERS, 2007; BRERETON; BUDGEN; KITCHENHAM, 2016)
to aim at a credible and fair evaluation of studies on PLA recovery. An important step is
the protocol development. The protocol maps systematically the steps performed in the
review and increases its rigor allowing study replication.

The review process, from planning to reporting, was carried out during twelve months
by four software engineering researchers: one PhD student, and three researchers with
expertise in SPL and architecture. All participants have experience in SPL projects in
both industry and academia.

3.2.1 Research Questions (RQs)

Based on the study main goal, our review objective is to answer the following research
questions:

• RQ 1: How has the relationship between PLA and SAR evolved over the
years?
This research question aims to provide an overview of the research area. We seek
to understand the relationship between SAR and PLA, and to investigate how this
relationship evolved over the years. We verified the contribution type (Approach,
Framework, Method, Process, Tool, and so on) and type of empirical research (Ex-
periment, Case Study, Survey, and so on (EASTERBROOK, 2007)) performed in
each study and how the research groups use them (Are the groups using the contri-
butions from others?). We analyzed studies addressing the same issue – performed
by the same authors in the majority of the cases – to verify its evolution over the
years.

• RQ 2: How does the existing solutions support PLA recovery?
The goal of this question is to identify how the existing solutions, as reported in
the literature, support PLA recovery. In this context, we identified the research
type (Solution Proposal, Validation Research, Evaluation Research, Philosophical
Papers, Opinion Papers, and Experience Papers (WIERINGA et al., 2005)) per-
formed in the studies. We also verified if the studies adapted the existing SS solution
proposal to recover PLA in the context of SPL projects. Moreover, we searched
the solution proposal developed exclusively to recover PLAs. We also extended

3.2 RESEARCH PROCESS 35

the analysis of this RQ by performing an exploratory study, in which we used an
existing clustering algorithm – commonly used to SAR in SS projects – to recover
the architecture of SPL products.

• RQ 3: What are the PLA recovery trends (according to SAR taxonomy
axes)?

By answering this question, we mapped some trends identified in the studies during
the last few years. The objective of this question is to determine the SAR taxonomy
axes – goals, inputs (architectural and non-architectural), outputs (visual, architec-
ture, conformance, and analysis), techniques (quasi-manual, semi-automatic, and
quasi-automatic), and processes (bottom-up, top-down, and hybrid) – proposed by
Ducasse and Pollet (2009). We also extended the taxonomy by including elements
focused on PLA recovery.

3.2.2 Search Strategy

The search strategy enables the inclusion of relevant studies in the search results. The
search was based on (i) preliminary searches in key venues such as Software Product Line
Conference (SPLC), European Conference on Software Architecture (ECSA), Working
IEEE / IFIP Conference on Software Architecture (WICSA), International Conference
on Software Engineering (ICSE), International Conference on Software Reuse, and so on.
The lists of Journals and Conferences are detailed in Appendix A, (ii) trial searches using
various combinations of search terms derived from the research questions, (iii) automatic
search by executing search strings on search engines of electronic data sources, and (iv) the
“snow-balling” process (BUDGEN et al., 2008), in which the identified studies references
were analyzed.

When manually searching the venues, we considered title, keywords, and abstract.
On the other hand, the search string for automatic search consisted of three parts: re-
covery AND software architecture AND software product line. The words were combined
through logical OR to form a string, as can be seen on following search string:

(“recovery” OR “recover” OR “reconstruction” OR “reconstruct” OR “refactoring”) AND
(“architecture” OR “architecting” OR “design” OR “designing”) AND (“product line” OR
“product lines” OR “product-line” OR “product family” OR “product families” OR “SPL”
OR “PLA” OR “SPLA”)

We changed the search string according to search features of electronic sources. For
this reason, we used different search strings for different sources. However, these strings
were semantically and logically equivalent.

3.2.3 Selection Criteria

In order to filter the studies and eliminate irrelevant ones (e.g. do not address the research
questions), we adopted the following inclusion and exclusion criteria.

36 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

3.2.3.1 Inclusion: The study must explore SAR in SPL context, or present SAR
solution proposals and how it supports PLA, or presents PLA recovery trends. Moreover,
we only included studies written in English.

3.2.3.2 Exclusion: We excluded studies if their focus, or main focus, was not SAR
or if they did not present topics related with reuse and PLA recovery. Studies available
as abstracts or presentations were excluded.

3.2.4 Data Sources

We performed the search by adjusting the search strings and applied in each digital
database, and all search strings were systematically checked by more than one author.
The list of sources is the following: ACM Digital Library1, Elsevier – Compendex2,
IEEE Computer Society Digital Library3, Science@Direct4, The DBLP Computer Science
Bibliography5, and Scopus6.

Figure 3.1 presents the systematic mapping process and the number of papers identi-
fied at each stage.

3.2.5 Data Collection

Based on the selection criteria, we selected 35 studies. They have been read in details
to extract the data that address each research question. We created an extraction form
to collect data composed by the following information: author(s), year, title, source,
research type, answer for each research question, and information to categorize the study.

During the extraction, we classified some studies in more than one category. Thus,
primary studies can appear more than once. An extracted data record was kept in Ex-
cel spreadsheet for analysis. For each study, we collected the following fields: Author(s),
Year, Title, Venue, Venue Type, Research Type, Contribution Type, Study address PLA,
Study address SAR, Recovery Type, Tool Support, Empirical Study, and quality assess-
ment answers. For each paper, data was extracted by one researcher and checked against
the paper by another researcher. Disagreements were resolved by discussions between
researchers or by consulting an additional researcher. More details can be seen in the
study website7.

3.2.6 Data Analysis

We summarized data from primary studies to answer the research questions. Therefore,
we reviewed data manually to perform a classification scheme that helped to categorize

1<http://dl.acm.org>
2<http://www.engineeringvillage.com/search/quick.url>
3<http://ieeexplore.ieee.org/>
4<http://www.sciencedirect.com/>
5<http://dblp.uni-trier.de>
6<http://www.scopus.com/>
7<https://goo.gl/l39HrF>

3.2 RESEARCH PROCESS 37

Figure 3.1 Paper selection flowchart

the results of this study in tabular form. In this way, we classified the studies according
to contribution type (Approach, Framework, Method, Process, Taxonomy, and Tool) and
empirical research (Experiment, Case study, Survey, Ethnography, and so on) (EAST-
ERBROOK, 2007).

Moreover, we collected the research type facet defined by Wieringa et al. (2005). The
categories are (i) Validation Research – techniques investigated are novel and have not
yet been implemented in practice, (ii) Evaluation Research – techniques are implemented
in practice and an evaluation of the technique is conducted, (iii) Solution Proposal –
a solution for a problem is proposed, the solution can be either novel or a significant
extension of an existing technique, (iv) Philosophical Papers – these papers sketch a
new way of looking at existing things by structuring the field in form of a taxonomy or
conceptual framework, (v) Opinion Papers – these papers express the researcher personal
opinion, and (iv) Experience Papers – explain on what and how something has been done
in practice. It has to be the personal experience of the author.

We identified the SAR taxonomy axes according to Ducasse and Pollet (2009). The
goals verified if the SAR is the basis for redocumentation, reuse investigation, and mi-
gration to product lines, or coevolution of implementation and architecture.

There are three types of SAR processes: (i) Bottom-up processes start with the low-
level knowledge to recover architecture, (ii) Top-Down processes start with the high-level
knowledge to discover architecture by formulating conceptual hypotheses, and (iii) Hybrid

38 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

processes combine bottom-up with top-down processes.
Most SAR approaches are based on source code information and human expertise as

input. However, some exploit other architectural or non-architectural information (DUCASSE;
POLLET, 2009). On the other hand, the studies provide architectural views and infor-
mation about the conformance of architecture and implementation as outputs.

SAR techniques are classified in quasi-manual (i.e. assisted techniques to manipu-
late knowledge), semi-automatic (i.e. automation of some aspects of SAR), and quasi-
automatic (i.e. combination of concept, dominance, and cluster analysis techniques).

3.2.7 Quality Assessment

We defined the quality assessment (QA) to evaluate the credibility, completeness, and
relevance of the studies based on a set of 11 quality criteria. Six of them were adapted
from existing studies, and the remaining five questions were proposed to evaluate specific
questions regarding this literature review. Table 3.1 presents the assessment instrument.
Criteria A, C, G, H, I, and J were adopted from recent SLRs (DYBÅ; DINGSØYR,
2008; MAHDAVI-HEZAVEHI; GALSTER; AVGERIOU, 2013; DERMEVAL et al., 2014;
DING et al., 2014). On the other hand, criteria B, D, E, F, and L were proposed in this
work.

Table 3.1 Study Quality Assessment Criteria
ID Questions Possible Answers

A Is there a rationale for why the study was undertaken? Yes = 1.0, No = 0.0, Partially = 0.5
B Is the paper an extension or complete previous research? Yes = 1.0, No = 0.0
C Is there a clear statement of the aims of the research? Yes = 1.0, No = 0.0, Partially = 0.5
D Does the study reuse an existing SAR technique? Yes = 1.0, No = 0.0
E Does the study clearly describe the PLA recovery? Yes = 1.0, No = 0.0, Partially = 0.5
F Does the study provide guidelines to support PLA recovery? Yes = 1.0, No = 0.0, Partially = 0.5
G Is the study supported by a tool? Yes = 1.0, No = 0.0
H Was the study empirically evaluated? Yes = 1.0, No = 0.0
I Is there a discussion about the results of the study? Yes = 1.0, No = 0.0, Partially = 0.5
J Are the limitations of this study explicitly discussed? Yes = 1.0, No = 0.0, Partially = 0.5
L Does the study describe the variability identification in arch. level? Yes = 1.0, No = 0.0, Partially = 0.5

We determined the questions B, D, G, and H scores using a two-grade scale (Yes/No).
The study received 1.0 point to Yes answer and 0.0 point to No answer. The questions
A, C, E, F, I, J, and L used a three-grade scale, allowing a third answer (0.5) in case the
contribution was not so strong.

We computed the study quality score by summing its answers scores to the questions.
The authors assessed each paper and discussed the discrepancies. They also reevaluated
the studies in case of non-agreement.

3.3 OUTCOMES

We used the extracted data to answer the research questions. Moreover, we describe the
main findings and group the results according to each research question. The following
tables and figures contain the studies number and classification. First, we give an overview

3.3 OUTCOMES 39

of the identified studies and extracted information. Then, we answered the research
questions by analyzing the data.

3.3.1 Characteristics of the studies

The 35 selected studies encompass the years 1998 through the first semester of 2017.
They were gathered from 24 conferences, 1 workshop, and 6 journals. The remaining 4
studies were published as one book chapter, one technical report, and two Ph.D. Theses.
The list of selected studies can be found in Appendix A.

As expected, the greater amount of studies in a single vehicle was found in SPLC
(4 studies), considered the most representative conference for the SPL engineering area,
followed by WICSA (3 studies), International Conference on Software Engineering (3
studies), European Conference on Software Maintenance and Reengineering (2 studies),
and Journal of Systems and Software (2 studies).

Figure 3.2 shows the distribution of studies according to their publication years. Such
a distribution gives us the initial impression that most relevant studies in the field were
found in recent publications, i.e., as of the year 2011, 2014, and 2016.

Figure 3.2 Temporal view of the studies

We notice a trend curve in the data, showing an increasing attention on the use of
scientifically rigorous evaluation methods as a means to assess and make explicit the value
of the proposed approaches for the SAR field.

3.3.1.1 Quality Assessment Results
The quality assessment improved the accuracy of data extraction results. This evaluation
helped to determine the validity of the inferences conducted and verify the credibility and
coherence of the result synthesis.

Table 3.2 right side presents the QA results according to the assessment questions
described in Table 3.1. Only four studies presented scores less than 40% (S1, S8, S18,
and S22). These 11 criteria provided a confidence measure to verify if a particular study
findings provide a valuable contribution to this review.

We identified that three studies published in journals presented the highest quality
scores of the review, S15 (91%), S34 (91%), and S17 (86%). A possible reason is that
journals provide a combination of rigor and increase space for discussing the research

40 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

topics in depth. We identified some studies published in conferences with high-quality
scores – S29 (82%) and S27 (77%).

3.3.2 Results

Table 3.2 presents the list of 35 reviewed studies (33 primary studies and 2 secondary
studies – S11 and S16). Based on the data, we can consider PLA recovery as a recent
research area. For this reason, the findings discussed here should be considered as initial
evidence or tendencies.

Table 3.2 Classification of Reviewed Studies
ID P. R. Pro. E.R. A B C D E F G H I J L Tot. Qual.

S1 • • hyb. C.S. 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 2.5 23%
S2 • • hyb. C.S. 1.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 5.0 45%
S3 • hyb. C.S. 1.0 0.0 0.5 0.0 0.5 0.0 1.0 1.0 1.0 0.0 0.0 5.0 45%
S4 • B.U. - 1.0 0.0 1.0 0.0 0.5 1.0 1.0 0.0 1.0 0.0 0.0 5.5 50%
S5 • • hyb. - 1.0 0.0 1.0 1.0 0.5 0.0 1.0 0.0 1.0 1.0 1.0 7.5 68%
S6 - • hyb. C.S. 1.0 0.0 0.5 1.0 0.0 0.0 1.0 1.0 0.5 0.0 0.0 5.0 45%
S7 • hyb. C.S. 1.0 0.0 1.0 0.0 0.5 0.0 1.0 1.0 1.0 1.0 0.0 6.5 59%
S8 T.D. - 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.0 1.0 1.0 0.0 3.5 32%
S9 • • B.U. C.S. 1.0 0.0 0.5 0.0 0.5 0.0 0.0 1.0 0.5 1.0 0.0 4.5 41%
S10 - • T.D. C.S. 0.0 1.0 0.5 1.0 0.0 0.0 1.0 1.0 0.5 0.0 0.0 5.0 45%
S11 • All sur. 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 0.0 0.0 6.0 55%
S12 • hyb. C.S. 0.5 0.0 1.0 1.0 0.5 0.0 0.0 1.0 0.5 0.0 1.0 5.5 50%
S13 • hyb. exp. 0.5 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 0.5 1.0 8.5 77%
S14 • • hyb. C.S. 1.0 0.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 1.0 1.0 8.5 77%
S15 • • hyb. C.S. 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 10.0 91%
S16 • All sur. 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 0.0 0.0 7.5 68%
S17 • hyb. exp. 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 1.0 1.0 9.5 86%
S18 • - - - 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 4.0 36%
S19 hyb. C.S. 1.0 0.0 0.5 0.0 0.5 0.0 1.0 1.0 1.0 1.0 1.0 7.0 64%
S20 • - - - 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 5.0 45%
S21 • T.D. C.S. 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 6.0 55%
S22 - • B.U. - 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 4.0 36%
S23 • • B.U. C.S. 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 8.0 73%
S24 • - - C.S. 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 7.0 64%
S25 - • B.U. sur. 1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 7.0 64%
S26 • B.U. C.S. 0.5 0.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 5.5 50%
S27 • • hyb. C.S. 1.0 0.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 1.0 1.0 8.5 77%
S28 - • B.U. - 1.0 1.0 0.5 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 5.5 50%
S29 • • B.U. exp. 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 9.0 82%
S30 - • B.U. exp. 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 8.0 73%
S31 - • B.U. C.S. 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 6.0 55%
S32 - • B.U. exp. 1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 8.0 73%
S33 - • B.U. - 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.5 0.0 4.5 41%
S34 • • B.U. exp. 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 10.0 91%
S35 - • B.U. exp. 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 6.0 55%
Legend: [•] Characteristic clearly addressed by the study, [] The study encourages the use of such characteristic,
but do not provide any implementation (e.g., it states an external tool is used, but no detail is provided), [-]
Characteristic not mentioned in the study, [P.] PLA, [R.] Recovery, [Pro.] Process, [hyb.] Hybrid, [B.U.] Bottom-
up, [T.D.] Top-Down, [E.R.] Empirical Research, [C.S.] Case Study, [sur.] Survey, [exp.] Experiment, [Tot.] Total
Score, and [Qual.] Quality Score. Items A to L are described in Table 3.1

Most of the studies (74%) discuss PLA, SAR, and their relationship. Although some of
them (26%) did not address PLA, these studies were included because (i) they considered
at least one SPL aspect such as software reuse or variability, or (ii) they described research
trends adaptable to PLA.

3.3 OUTCOMES 41

A total of sixteen studies proposed the development of tools to support SAR in the
context of SPL projects, four of them use external tools (developed by third parties), but
no detail is provided, and ten studies did not mention any tool support. Without proper
tool support, it may not be feasible in practice to carry out SAR.

Regarding empirical assessment performed on the basis of the proposed SAR ap-
proaches, 54% of the studies presented case studies, 14% presented experiments, 9%
presented surveys, and 23% did not present empirical studies. The numbers indicate the
need of more empirical evaluation.

In combination with Table 3.2, we present a timeline in Figure 3.3 that shows ad-
ditional information. It shows papers distribution over the years until 2017. Moreover,
Figure 3.3 shows how many papers were found in journals, conferences, book chapter,
technical reports, PhD thesis, or workshops. The lines connecting the papers indicate
when a paper was extended to a new publication.

Figure 3.3 Timeline

3.3.3 RQ 1: How does the relationship between PLA and SAR evolve over the
years?

To answer this question, we continue the timeline analysis. As can been seen in Fig-
ure 3.3, the timeline summarizes the studies evolution over the years. We identified three
phases: (i) definition of basic concepts – initial studies considering PLA and SAR; (ii)
field consolidation – first journals addressing PLA and SAR; and, (iii) appearance of new
research trends.

Eixelsberger performed the first studies combining PLA and SAR (S1 and S2). The
author started investigating SAR of embedded software (EIXELSBERGER et al., 1997)
and architectural structure (EIXELSBERGER et al., 1998). Later, the research evolved
to architecture recovery of product lines.

S5 proposed the architecture recovery of individual systems from the same domain and
compared them to allow the SPL Design Reference Architecture (DSSA) creation. The

42 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

study presented techniques along with tools integrated into the reconstruction process to
reduce the manual effort. Similarly, S9 recovered the conceptual architecture from legacy
applications of the same domain. The authors identified services based on the extracted
object relationship diagram.

Further, two studies (S14 and S15) extended the reflexion method to compare product
implementations to the product architecture and to compare product architectures to the
SPL architecture. The studies used clustering algorithms to consolidate software variants
into product lines, assuming that implementations and architectures of the variants are
similar.

From 2011 and on, studies presented trends (further discussed in RQ 3) and demon-
strated the maturity on the development of SAR solution proposals. The studies are
mostly focused on recovering the variability at the requirement level (S2, S5, S9, S21,
S23). Few works aim at PLA recovery focusing the variability at the architectural level
(S9, S14, S15). Only two studies (S29 and S34) proposed fully automated recovery ap-
proach, but it recovered the PLA based on different versions of the same SPL project –
e.g. Health Watcher (GREENWOOD et al., 2007) and MobileMedia (FIGUEIREDO et
al., 2008).

3.3.4 RQ 2: How does the existing solution proposal support PLA recovery?

Table 3.3 shows the amount of studies per research type. Most studies (24 of 35, 73%) pre-
sented solution proposal. Moreover, 11% of the studies performed Evaluation Research,
and 11% are Experience Papers. Two studies are philosophical papers (S11 and S16)
providing the SAR taxonomy, and only one study (S24) performed Validation Research.

Table 3.3 Number of studies per research type
Classes Studies Count

Solution Proposal S1–S8, S12–S15, S17–S19, S21–S23, S26, S28, S29, S31–S35 26
Experience Papers S9, S10, S20, S27 4
Evaluation Research S25, S30, S32, S34 4
Philosophical Papers S11, S16 2
Validation Research S24 1

To provide a detailed view regarding the solution proposals, Table 3.4 organizes only
the studies addressing solution proposal per research contribution. In this way, the studies
presented twelve approaches, nine tools, six methods, four processes, and two frameworks.
These numbers are reflected in Figure 3.4.

Figure 3.4 shows the relationship between research type and research contribution.
We identified three experience papers evaluating approaches and one evaluating process.
Moreover, two studies provided evaluation research for approaches and two for processes.
The two philosophical papers (S11 and S16) provided a taxonomy for SAR and only one
validation research evaluated a process.

Studies S1, and S2 presented a set of methods that use information from members
of a family of legacy software systems to recovery the architectural properties in the

3.3 OUTCOMES 43

Table 3.4 Solution proposal per research contribution
Classes Studies Count

Approach S6, S8, S12, S13, S17, S26, S29, S31–S35 12
Tool S4, S7, S14, S15, S17, S21, S23, S28, S33 9
Method S2, S3, S7, S14, S15, S19 6
Process S4, S5, S18, S21 4
Framework S1, S22 2

Figure 3.4 Research types per research contribution

systems and build architectural descriptions. S3 proposed a bottom-up approach to
recover architectural representations of existing systems and a top-down approach to map
known architecture architectural styles and attributes onto the recovered architecture.

Moreover, S4 describes the process of architecture reconstruction using the Archi-
tecture Reconstruction and Mining (ARMIN) tool. The representation can be used as a
way for identifying components for reuse or for establishing an architecture-based SPL. S5
combines solution proposals (techniques and tools) to analyze related systems, determine
common assets, and integrate these assets into the design of a reference architecture. On
the other hand, S7 proposes a method, called NIMETA, for architecture reconstruction
based on the recovery of the architecturally significant views.

Not always tools implement SAR techniques. For example, S12, S13, and S17 pre-
sented ArchMine, an architecture recovery approach based on dynamic analysis and data
mining. S14 and S15 described a method and supporting tools to compare software vari-
ants at the architectural level. The method consists of the specification of the module
view and the mapping of implementation components onto the module view.

Furthermore, S21 presented a tool-supported approach to reverse engineer architec-
tural feature models. Similarly, S23 proposed a history-sensitive heuristics (supported by
a tool RecFeat) for the recovery of features in code of degenerate program families.

S22 proposed to explore the use of machine learning techniques to automatically
recover software architecture from software artifacts, S28 presented ArchViz a tool that
partially automate the analysis of recovered architectures. S29 and S34 proposed an

44 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

approach to reverse engineer the architecture of a set of product variants. The study
relies on Formal Concept Analysis (FCA) to analyze the variability.

3.3.5 RQ 3: What are the PLA recovery trends?

To identify possible research trends in the context of PLA recovery, Figure 3.5 presents
the results for data extraction. As explained previously, we organized the information
according to SAR taxonomy axes defined by Ducasse and Pollet (2009). Again, one study
can use more than one data source type.

Figure 3.5 Number of studies per SAR taxonomy axes

The numbers in the parenthesis represent the total of studies per each category. As
can be seen in Figure 3.5, for instance, there are 22 studies using Source code, 15 studies
using Textual information, and 9 studies using human expertise as non-architectural
inputs. Regarding SAR process, 43% of the studies defined bottom-up processes, 9%

3.4 DISCUSSION 45

top-down, 34% hybrid, two studies considered these three types, and three studies did
not address any of them.

Regarding the SAR Goal axis, most of the studies focused on Redocumentation (60%)
and Understanding (54%). On the other hand, 26% of the studies (9 out of 35) addressed
Product Line Migration and 23% on Reuse. Moreover, we identified 13 studies addressing
Quasi-Manual techniques, 10 Semi-Automatic techniques, and 10 studies focusing on
Semi-Automatic techniques. Most of the studies (25 out of 35) provided the architecture
as an output from the SAR – 12 of them focused on the PLA.

Based on this previous analysis, we analyzed PLA recovery trends and SAR used to
recovery single systems architecture adaptable to PLA recovery. Primarily, the research
community demands more studies and evidence presenting empirical studies such as per-
formed in S10, S25, and S30. Most of studies consists of solution proposals (73%), next
step suggests the development of studies describing experiments, surveys, and empirical
evaluation.

S22 indicates a trend towards SAR automation. The study goal is to develop tech-
niques allowing automatic architecture recovery from source code. The study proposes
the use of machine learning techniques to automatically recover software architecture. On
the other hand, S23 proposes history-sensitive heuristic for features recovery in source of
degenerating program families.

Another trend is related to design PLA based on reference architectures (S20 and
S24). In S24, the authors present a process, named ProSA-RA2PLA, that uses reference
architectures for building PLAs systematically.

There is a trend related to SAR tools development (S23 and S28). New tools are
necessary to support solution proposal (e.g. approaches, frameworks, heuristic, methods,
etc) in PLA recovery. One brief example might clarify this concept, it is feasible to use
SAR tool to recover reference architectures and enable PLA construction (as proposed in
S20 and S24).

S27 characterizes a research trend related to architectural bad smells in the context
of PLA through an exploratory study. Recently, S29 and S34 presented research trends
related to identify variability and dependencies among architectural variants at the ar-
chitectural level.

3.4 DISCUSSION

In the following, we provide a summary of the main findings, limitations to the review,
and threats to validity.

3.4.1 Main Findings

The goal of this review is to identify the studies to define PLA recovery by analyzing the
relationship between PLA and SAR over the years, verify whether the existing solution
proposal are being used in PLA recovery, and identify the PLA recovery trends.

While most of the identified studies are solution proposal, few studies provide details
on empirical assessment they conducted to validate whether their proposal delivered

46 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

interesting results. Figure 3.6 shows the relationship among contribution type, research
type, and research questions. Although generalizing the findings may not be feasible at
this point, the gathered evidence indicates the lack of empirical evaluation, and according
to Table 3.3, a small number of opinion or theoretical studies investigate the area. We
identified only one study providing guidelines to support the PLA recovery (S4).

Figure 3.6 Contribution type versus research type versus research questions

3.4.1.1 Answering RQ1
Figure 3.7 shows the seven Evolution Lines (EL) we identified during the analysis. We
found that some studies evolved from conference papers to journals (e.g. EL1 – S11
evolved to S16, EL3 – S12 and S13 evolved to S17, and EL7 – S29 evolved to S34).
Probably because journals provided more space for the authors to describe their work
in details. In other words, studies discussed their research topic in depth. In S20, the
authors explored the use of reference architectures in the development of SPL artifacts.
Further, the authors evolved the research to S24, presenting a process to systematize the
use of existing reference architectures to build PLA.

Moreover, we observed that most of the ELs was performed by the same research
group. In other words, the groups did not use the solution proposal from other groups,
except for EL2 and EL6. In the former, the researchers analyzed a set of studies to define
SAR taxonomy. In the latter, the research group performed a comparative analysis of
studies.

During our review, we also identified the evolution of SAR techniques (S25 and S30),
processes (S18 and S24), and tools (S28 and S29). They became more complex in solving
specific issues of SAR field – for instance, by improving the precision and recall of the
clustering algorithms. Moreover, we found tools developed to support heuristics (S23),

3.4 DISCUSSION 47

Figure 3.7 Evolution lines identified

approaches (S17 and S19), and frameworks (S22).
Figure 3.8 shows the number of empirical studies over the years. We identified that

the number of Case Studies remains constant since 2011. The main likely reason is
the high number of solution proposals, researchers investigate their solutions and apply
them in Case Studies. Moreover, we observed that since 2015 there is at least one study
performing controlled experiments. This evidence can indicate the concern with more
rigorous evaluation.

Figure 3.8 Empirical studies over the years

Even with the evolution in this aspect, there is no standardization regarding inputs
and outputs compromising the comparison among the existing tools and techniques. For
this reason, we identified a small number of studies carrying out controlled experiments.
Moreover, the majority of the research groups work independently without reusing the
solution proposed by other groups – as we raised in the previous EL analysis. We verified
the reuse of tools in few studies (S25 and S30); probably because the research groups

48 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

prefer to develop tools focused on their context which is reasonable when working with
specific problems.

The SAR field supports PLA recovery by providing solution proposal adaptable to
SPL context (e. g. adapted processes, tools, approaches, frameworks, and so on). Few
works focused on fully automated recovery of variability at the architectural level (S29
and S34).

3.4.1.2 Answering RQ2
Most of the solution proposals are used to recover the architecture from legacy systems
source code to create the SPL reference architecture (S1, S2, S3, S4, S5, S12, S13, S17,
S22). In other words, these solution proposals support the migration from legacy code
into SPL and five of them (S3, S4, S12, S13, and S17) presented architecture mining
techniques to migrate legacy systems into product line.

As Figure 3.9 shows, new approaches, tools, and techniques were developed to address
specific problems such as recovering architectural variability (S22, S29, and S34), recovery
of feature models (S21 and S23), and static architecture variants reconstruction, allowing
module view reconstruction (S14 and S15).

Figure 3.9 Research type over the years

Since 2009, there is at least one solution proposal per year. As a matter of fact,
because of the appearance of new solutions over the few years, we believe that SAR
solution proposals used to recover single systems architecture could be used to recover
software architecture of SPL projects. For example, it is feasible to adapt the architecture
recovery techniques presented in S25 and S30 to solve PLA recovery challenges.

Another example, S28 developed ArchViz, a tool to compare recovery architectures
that also could be used to support PLA.

Figure 3.10 shows the analysis of SAR goals combined with research type and empirical
evaluation. As can be seen, the majority of solution proposal focused on documentation
and understanding. In addition, most of the studies performed case studies.

3.4.1.3 Answering RQ3
We identified the following research trends:

• T1: Architectural variability recovery (S22, S29, and S34);

3.4 DISCUSSION 49

Figure 3.10 SAR goals vs. research type vs. empirical

• T2: Development of empirical studies (S20, S24, S25, S27, and S30);

• T3: PLA reconstruction based on reference architecture (S20 and S24);

• T4: Web-based tools implementation to support PLA recovery (S21, S23, S28, and
S33);

• T5: PLA recovery to identify architectural bad smells in the SPL context (S27);

• T6: Search based techniques to recover PLA (S35).

Furthermore, the appearance of new development trends such as Cloud Computing
(CC) (ZHANG et al., 2010; MOLLAH; ISLAM; ISLAM, 2012) enables the development
of new solutions in the PLA recovery research field. As earlier mentioned in this chapter,
there is an opportunity of extending these new technologies to solve some PLA recovery
challenges. Because CC eliminates the platform dependency, the development of web-
based tools (S28) could solve the SAR input and output standardization problem.

We identified that since 2012 the studies focused on bottom-up SAR process (see
Figure 3.11). Evidence indicates that it is because the academia and industry focused on
the development of new tools that allow the information extraction from source code.

Figure 3.12 presents the analysis of three SAR axes, SAR goals, SAR processes, and
SAR techniques. Most of the studies focused on bottom-up processes with the goals
of redocumentation and understanding through the use of Semi-Automatic techniques.

50 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

Figure 3.11 SAR processes over the years

Combined with the information from Figure 3.11, we confirmed the trend line towards of
bottom-up processes.

Figure 3.12 SAR goals vs. SAR processes vs. SAR techniques

There is a number of studies that did not explicitly answer the research questions.
Table 3.5 presents the mapping between the studies and the research question. Even with
some studies addressing the research questions, more evidence is required to consolidate
the research field on PLA recovery. This topic is still an emerging research area and
further investigation is necessary.

3.5 RELATED WORK 51

Table 3.5 Number of studies per research question
RQ Studies Count

RQ1 S1–S9, S11–S17, S19, S21, S23, S27, S29, S32–S35 25
RQ2 S1–S5, S7, S8, S10, S12–S15, S17, S19, S21, S23, S26, S29, S31, S34 20
RQ3 S18, S20–S32, S34, S35 16

3.4.2 Limitations of the Review and Threats to Validity

During automatic search, our main objective was to ensure the selected papers complete-
ness. As mentioned, we searched a number of key venues. We also excluded irrelevant
papers to reduce the researchers bias that affect the paper selection process. In this sense,
there are some threats to the validity of our mapping, which we briefly describe along
with the mitigation strategy for each threat.

• Publication bias: We cannot guarantee that all relevant primary studies were se-
lected. It is possible that some relevant studies were not chosen during the search
process. We mitigated this threat as much as possible, by following references in
the primary studies.

• Research questions: The research questions we defined cannot provide complete
coverage of the SAR field. We considered this as a threat, however, we discussed
with researchers from our group and with an expert in the area to validate the
questions.

• Search conducted : Although digital databases have incompatible search rules, we
adapt our search strings for each digital database.

3.5 RELATED WORK

Pollet et al. (2007) presented a process-oriented software architecture reconstruction tax-
onomy. The authors proposed a classification based on the life time of SAR approaches.
SMS, in 2009, Ducasse and Pollet (2009) extended the research. The authors analyzed
briefly some aspects of SAR in the SPL context.

For example, they affirm that reconstructed architecture is the basis for reuse investi-
gation and migration for product lines. Due to its relevance and because they synthesized
information from previously published studies, in our review, we considered these studies
as secondary studies.

Souza-Filho et al. (2008) presented a systematic review on domain design approaches
to understand and summarize empirical evidence about their activities, identifying direc-
tions, strengths, and weaknesses.

Although, these studies provide relevant evidence, they did not consider PLA recovery
deeply. Thus, in contrast, we aim to review the PLA recovery state-of-the-art and its
evolution over the years, analyze the relationship between SAR and PLA, and identify
SAR trends adaptable to PLA recovery. These research areas can work together and
benefit from each other.

52 A SYSTEMATIC MAPPING STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY

Sinkala, Blom and Herold (2018) performed a mapping study of SAR for SPLs. The
authors interested in the architectural degradation in the context of systems developed
with the clone and own strategy. Although the similarities with our mapping, only 22% of
the identified studies overlap because they focused on the SPL evolution and migration.

3.6 CHAPTER SUMMARY

In this Chapter, we presented a SMS to gather evidence for understanding how PLA
relates to SAR.

Regarding the mapping, the selected studies fell into three thematic groups: under-
stand the relationship between PLA and SAR, characterize how the existing solution
proposals support PLA, and identify the PLA recovery trends.

The PLA and SAR relationship evolved from the definition of basic concepts to provide
solution proposals that solve specific problems. The solution proposals majority are used
to recover the SPL reference architecture based on legacy systems. Only few studies
address empirical evaluation such as experiments, surveys, mixed-methods, and so on. In
this context, more empirical research is still necessary. There is a clear need to establish
standardization for future field studies.

The mapping summarized the information providing a list of primary studies and
identified initial evidence for understanding the relationship between PLA and SAR.

Chapter

4
Energy and persistence conquer all things. – Benjamin Franklin

AN APPROACH FOR RECOVERING PLA FROM
SOURCE CODE OF VARIANTS

This Chapter presents our approach called Software Architecture Variability Recovery
(SAVaR) to recovering architectural variability from variants’ source code. It supports
the identification of the minimal subset of cross-product architectural information that
results in a PLA. SAVaR includes a threshold technique that reduces the explosion of
variability information in the PLA representation.

4.1 OVERVIEW

The aim of SAVaR is to support PLA recovery (and the variability identification) by
systematically using bottom-up SAR tools and techniques in the SPL context through
the use of guidelines to support SAVaR .

We used the Software and Systems Process Engineering Meta-model (SPEM)1 to de-
scribe SAVaR . The following roles are involved in SAVaR : Recoverer, SPL Architect, and
SPL Developer. The recoverer follows the steps described in the guidelines. Both SPL
Architect and Developer could play such a role. The SPL architect understands and
verifies the recovered PLA. Moreover, the SPL developer is responsible for verifying the
recovered information according to the SPL implementation and checking the relationship
between the SPL source code and the PLA.

Figure 4.1 presents an overview of the SAVaR . This representation allows the applica-
tion of SAVaR in different contexts of PLA recovery such as we describe in Section 4.4.

SAVaR receives as inputs: mainly the SPL or variants’ source code and the guidelines
to support SAVaR . Examples of input candidates are SPL products, systems from the
same domain, projects implemented using clone-and-own strategy, etc. The main phases
are: 1○ SPL information collection, 2○ information extraction, 3○ PLA recovery with
variability identification, and 4○ PLA presentation. SAVaR produces four main outputs:
Recovered PLA, reports, collected metrics and DSM.

1<http://omg.org/spec/SPEM/2.0/>

53

54 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Figure 4.1 SAVaR Summary

Figure 4.2 presents the application of SAVaR in details. The SPL information col-
lection 1○ is organized in the following steps. In step a○, the recoverer downloads the
SPL project from the repository and analyzes the source code and other available assets
(step b○). Step c○ demands the instatiation of at least two variants and only happens
with negative answers from the decisions D1 and D2. When the SPL is implemented
using #ifdef directives (Decision D1) or the variants already existis (Decision D2), the
recoverer skips the step c○.

Figure 4.2 SAVaR Operation phase in details

The SPL information extraction 2○ is organized in the following steps. The recoverer
selects the proper extraction information tool step d○ and performs the information ex-
traction in step e○. The next phase, PLA recovery with variability identification 3○ is

4.1 OVERVIEW 55

Table 4.1 MobileMedia variants’ description
Variant Intent Type of Change

V1 MobilePhoto core (YOUNG, 2005) -
V2 Development of exception handling functionality Inclusion of non-functional concern
V3 Development of features to count the number of photo visu-

alization, to sort according to frequency, and to edit photo’s
label

Inclusion of optional and mandatory
features

V4 Development of the feature to specify and view favorite photos Inclusion of optional feature
V5 Development of feature to keep multiple copies of photos Inclusion of optional feature
V6 Development of feature to send a photo via SMS Inclusion of optional feature
V7 Development of features to store, to play, and to organize

music. Transformation of photo management into alternative
feature

Changing one mandatory feature in
two alternative features

V8 Development of videos management feature Inclusion of alternative feature

organized in step f○ identify the mandatory elements present in all the variants, step g○
identify the optional elements present in only part of the variants, step h○ combine the re-
covered information from the previous two steps, and step i○ include detailed information
from packages and methods.

The PLA presentation 4○ is organized in step j○ which is tha application of the
metamodel, step k○ include fine-grained information, and l○ improve the recovered in-
formation. SAVaR provides some techniques to support of this steps.

4.1.1 Purpose of the PLA recovery

Ducasse and Pollet (2009) grouped SAR purposes into six main goals categories. In the
context of this thesis, SAVaR focuses on Redocumenting and Understanding. We selected
these topics because they are aligned with our research interest.

The goal of PLA recovery is to reestablish abstractions of the PLA allowing the
variability identification at the architectural level of SPL projects. In this way, PLA
recovery provides the (re)documentation based on the SPL source code by using bottom-
up recovery processes. Based on the recovered information, software engineers could
understand the implementation of the variability in a higher level of abstraction which
can lead to identifying inconsistencies that are hard to find in the SPL source code.

4.1.2 Illustrative Example

Next, we present the MobileMedia (FIGUEIREDO et al., 2008) which is an SPL for appli-
cations that manipulate photo, music, and video on mobile devices. The developers used
a previous SPL called MobilePhoto (YOUNG, 2005) and added seven change scenarios
leading to eight releases.

We considered these eight releases as variants and we used them as input to SAVaR .
Table 4.1 summarizes the changes made in each release. The scenarios comprise different
types of changes involving mandatory, optional, alternative features, and non-functional
concerns. The purpose of these variants’ changes is to assess the design stability in terms
of how implementations of feature boundaries and their dependencies evolved through
the SPL variants.

56 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Figure 4.3 Extracted information from three Variants (packages and relations)

4.1 OVERVIEW 57

4.1.2.1 Variants’ source code analysis and extraction
Figure 4.3 presents the extracted information of three variants (V1, V2, and V3) of the
MobileMedia project. We used Stan4j tool to extract these dependency graphs. In the
case, we are using package representation for describing the development view. The other
five variants are available at Appendix B.1.

The dependency graphs nodes denote artifacts and edges denote dependencies. An
edge’s weight reflects the dependency’s strength, which is the number of underlying code
dependencies. Moreover, the red lines represent design tangles that is a subgraph with
at least two nodes, where each node is reachable from each other.

MobileMedia designs are mainly determined by the use of the Model-View-Controller
(MVC) architectural pattern (BUSCHMANN et al., 1996). For instance, we can verify
this information by analysing the recovered architecture of the Variants (see Figure 4.3
(a), (b), and (c)), the model is implemented by the package datamodel, view is imple-
mented by the package screens, and controller by the package with the same name.

4.1.2.2 Application of the PLA recovery
Figure 4.4 shows the development view provided by SAVaR . The PLA encompasses a set
of packages. As expected, the modules MVC (controller, screens, and datamodel) are
implemented by all the eight variants. For this reason, SAVaR maps them as core elements
of the PLA. On the other hand, exceptions, comms, and sms are optional because they
are implemented by only some variants.

Figure 4.4 Recovered PLA – development view

Figure 4.5 presents the recovered DSM that is a different representation for the de-
velopment view. Each line and column represent a package. For instance, line 5 and
column 5 represent the package controller. This package calls classes in the packages
datamodel, ui, and screens. The relationship between these packages are mandatory
because they are implemented by all the variants. We used the color blue to repre-
sent the mandatory packages and relationships. On the other hand, the relationships
of controller with exceptions and sms are variable because they are implemented by
some variants. We used the color red to indicate the variability. The additional material
of the recovered PLA for MobileMedia can be found in Appendix B.1.

58 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Figure 4.5 Recovered DSM of the PLA

4.2 A METAMODEL FOR PLA DESCRIPTION

Figure 4.6 presents the metamodel to support SAVaR . We simplified the metamodel pro-
posed by Thiel and Hein (2002b). We updated the metamodel according to the standard
ISO/IEC/IEEE 42010 for describing PLA. Moreover, we included an adaptation of the
architecture variability extension and design element extension. We maintained the com-
ponents used to represent the PLA recovered by SAVaR .

A PLA description (PLA Description) is an architecture description enriched with
explicit information about the variability model (Architectural Variability Model) of the
SPL of interest (SPL-of-interest). This means that PLA architecture models must be
concerned with the representation of architectural variation points (Architectural Vari-
ation Points). The architectural variability models consist of architectural variability
(Architectural Variability) that is represented by different architecture views.

In the context of SAVaR , the PLA architectural views are extended with architectural
variability representation. The metamodel provides support for the PLA description of
SAVaR . The variability information is represented in development views and architectural
elements such as packages and classes. We used the variation point specification (Vari-
antion Point Specification) for describing the optional and mandatory elements. The
former (Optional Element) represents the elements that are implemented by only some
variants and the latter (Mandatory Element) represents the ones that are implemented
by all the variants.

4.3 PLA RECOVERY

This section introduces SAVaR to PLA recovery, a semi-automatic bottom-up SAR pro-
cess that comprises two recovery techniques (Section 4.3.1), and a sequence of extract-
abstract-present activities (Section 4.3.2). Moreover, we present a set of documented
guidelines to help successful PLA recovery with SAVaR in different contexts (Section 4.4).

4.3.1 Techniques

We developed two techniques to address the identification of architectural variability for
a given SPL from source code analysis. The first one relies on the extracted architectures
of variants while the second technique makes use of #ifdef directives in source code.

4.3 PLA RECOVERY 59

Figure 4.6 Conceptual elements of SPL and SA (adapted from (THIEL; HEIN, 2002b))

60 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Both techniques provide high-level source code models annotated with information about
variability. Moreover, we developed a third technique to improve the results of the previ-
ous ones. The technique implements a threshold analysis to reduce the variability in the
recovered PLA. Next, we provide a discussion of the techniques.

4.3.1.1 Extract-and-Merge: recovery based on merging the extracted archi-
tectures of variants.
This technique uses extraction tools to recover a set of architectures, one for each variant.
The recovered architecture for each variant instance is internally represented as a set of
modules and their relationships. Pattern matching based on module name is used to
identify mandatory and optional elements. A module that is present in every recovered
variant architecture is labelled as a “mandatory element” while others are labelled as “op-
tional element”. Relationships between mandatory elements are labelled as “mandatory
relationship”. The set of mandatory elements and relationships, and optional elements
and relationships define the recovered PLA for the SPL and its products (LIMA-NETO
et al., 2015). This technique is useful for PLA recovery in the context of a SPL project
implemented with different variability mechanisms for products portfolio that preserves
the name of mandatory elements in the different products, for legacy systems of the same
domain, and so on.

Figure 4.7 PLA recovery based on variants’ architecture

Figure 4.7 illustrates this technique. The core of the technique is a merging algo-

4.3 PLA RECOVERY 61

rithm (CARDOSO et al., 2017b) whose inputs are the architectures extracted from the
variants and the output is the recovered PLA. The technique identifies and groups manda-
tory elements and their relationships (e.g. see classes A and B, and the relationship be-
tween them), and organizes optional elements and relationships (e.g. classes C, D, and
E, and the afferent relationships, represented with a dashed line).

4.3.1.2 #ifdef-Analysis: recovery based on the analysis of #ifdef directives

This technique focuses on PLA recovering in the context of SPL projects that use condi-
tional compilation as a mechanism to implement the variability. The technique identifies
if an element or relationship is either mandatory or optional by means of the analysis of
the #ifdef directives found in the source code.

Figure 4.8 PLA recovery based on #ifdef directives.

Figure 4.8 presents an excerpt of variability identification based on #ifdef directives.
Classes CommentDao and CommentDaoImpl are defined inside #ifdef directives and
therefore, implement the variability. This means that they are optional classes that may
be found in a subset of SPL products (if selected during product configuration). On

62 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

the other hand, classes defined outside the #ifdef directives (e.g. GenericDao) are
mandatory and will be present in every SPL product.

4.3.1.3 Threshold analysis
We implemented a threshold analysis technique that identifies exclusive elements, that is,
variable elements that are implemented by only a small number of variants, and whose
representation may result in a cluttered visual for the recovered PLA. Therefore, the tech-
nique suggests exclusive elements (and relationships) as candidates to be removed from
the PLA recovery process. The threshold analysis keeps potential variability explosion
under control, by excluding exclusive elements and keeping elements implemented in the
majority of the products.

To determine the threshold configurations to be taken into account during the analysis,
we rely on the frequency of each element (package, class, or relationship) in the variants.
The technique prioritizes the mandatory (core) elements and the elements implemented
in most variants.

Figure 4.9 presents one example of the threshold technique. We applied the technique
using three threshold values (13%, 38%, and 51%) from MobileMedia project. We se-
lected these values from the report provided by SAVaR to present an example of how the
threshold reduce the amount of optional elements. By applying the threshold of 13%, the
elements implemented in less than 13% variants are not considered in the outputs. For
instance, the package BaseMessaging is implemented in less than 13% of the variants.
When the threshold value is raised the package is not considered by SAVaR . As a result,
the DSM’s size was reduced in 19% (see Figure 4.9 (a)). The next technique execution
reduced the DSM’s size in 50% (see Figure 4.9 (b) – Threshold: 38%). In addition, the
third execution of the threshold reduced the DSM’s size in 59% (see Figure 4.9 (c) –
Threshold: 51%).

Moreover, the threshold provides (i) a clear view of the recovered PLA for architects,
(ii) supports developers’ implementation and maintainability tasks by focusing on the
mandatory elements and the elements implemented in most of the variants, and (iii)
allows recoverers to improve variability identification.

4.3.2 Activities

SAVaR supports a lightweight recovery workflow based on a sequence of extract-abstract-
present activities (TILLEY; PAUL; SMITH, 1996). The recovered PLA is represented in
accordance with a reference metamodel (MOON; CHAE; YEOM, 2006; LIMA; CHAVEZ,
2016) that provides a comprehensive conceptual basis for variability at the architectural
level.

4.3.2.1 Extraction
Several analysis and extraction tools that work for single systems can be used to extract

4.3 PLA RECOVERY 63

Figure 4.9 Application of the threshold in the MobileMedia (classes)

64 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

information from individual variants, for instance, Stan4J2 (Java), Struct1013 (Java),
Understand4 (C and Java), Analizo5 (Java, C, C++, and others), and PlantUML Depen-
dency6 (Java). These tools provide low-level source code models for products implemented
in one or more programming languages. The reuse of extraction tools may require the
implementation of adapters to deal with different input/output formats.

The selection of an analysis or extraction tool is based on the programming language
and/or the mechanism used to implement the variability. For instance, Stan4J can be
used to extract source code models from SPLs implemented in Java, and cppstats7, a
toolsuite for analyzing cpp-preprocessor-based SPL, can be used to extract information
from products with variability implemented by means of #ifdef directives.

4.3.2.2 Abstraction with Variability Identification
The two recovery techniques presented in Section 4.3.1 are used to identify (i) mandatory
elements and relationships and (ii) optional elements and relationships. After variability
identification, the variability-aware architectural models that comprise a PLA can be
generated.

In SAVaR , the architectural models conform to the specification of a variability-aware
architectural metamodel (THIEL; HEIN, 2002a; MOON; CHAE; YEOM, 2006; LIMA;
CHAVEZ, 2016), that includes modeling elements for representing mandatory and op-
tional modules and their relationships. Modules can be packages and classes, and other
units of modularization.

According to Galster et al. (GALSTER et al., 2013), the metamodels provide a trade-
off between the separation of concerns and integration of relevant variability information
in single models. It is possible to merge metamodels of views with other metamodels to in-
corporate the needed variability information. Finally, the metamodels ensure traceability
from the SPL source code with the PLA.

We highlight that the implementation of a specific element can differ from one variant
to the other. However, this variability happens in low-level (e.g. the same method
implemented using different algorithms). Our objective is to identify the variability in
architectural level. In this context, the low-level variability (fine-grained granularity) did
not affect the structure of the PLA.

Figure 4.10 shows the PLA recovery inputs and outputs organized in three layers. The
bottom layer (Layer 0) provides source code as input to allow the extraction of structural
information. As outputs of SAVaR , the middle layer (Layer 1) raises the abstraction
level using the information of classes, and the top layer (Layer 2) gathers the classes in
packages.

Layer 2 provides one consolidated package diagram of the PLA. Then, Layer 1 presents
a consolidated class diagram for each package identified in Layer 2. For instance, Package

2<http://stan4j.com/>
3<http://structure101.com>
4<http://scitools.com/>
5<http://www.analizo.org>
6<http://plantuml-depend.sourceforge.net>
7<http://fosd.net/cppstats>

4.3 PLA RECOVERY 65

Figure 4.10 PLA Recovery inputs and outputs.

A is a mandatory package because it is implemented in every Variants (Layer 2). Layer
1 allows the developers to check the classes that implemented Package A (Classes X, Y,
and Z).

4.3.2.3 Presentation
The recovered PLA can be presented using visual notations for development views (e.g.,
UML class diagrams, module dependency graphs or DSMs) enriched to explicitly provide
information about architectural variability and related assets.

Figure 4.8 presents a development view that shows a package (br.com.message.dao)
with three classes and inheritance relationship. The development view explicitly docu-
ments classes as either mandatory or optional, based on the information recovered from
the source code annotated with #ifdef directives. Moreover, the development view is
enriched with boxed code excerpts of the corresponding SPL annotated source code.

4.3.3 Supporting Tools

In our previous study (CARDOSO et al., 2017b), we developed and evaluated the PLAR
tool to support SAVaR . In this thesis, we reviewed the PLAR tool implementation and ex-
tented the tool by implementing new features for supporting SAVaR . The tool automates
the variability identification and serves as a concept proof for the techniques presented in
Section 4.3.1. Its inputs are a set of MDG (Module Dependency Graph) (MANCORIDIS
et al., 1998) files which represent the elements and relationships from the variants; its

66 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

output is the PLA in different formats. These MDG files are extracted from the variants
source code through dependency extraction tools such as: Analizo, DependencyFinder,
STAN4J, Struct101 and so on.

The recovered PLA provides information about modules (which can be represented by
the system classes) (MANCORIDIS et al., 1998) and relationship used in the architectural
description of traditional systems, and information about commonalities and variabilities
to describe the PLA.

The PLAR tool implements the Algorithm 1. The algorithm receives as input a set
of variants. All variants are analyzed, individually, to identify the architectural elements.
They are classes, interfaces, abstract classes, relationship, and so on. If the element
has not been identified yet, then it will be added to the list of PLA elements; else the
technique counts the number of occurrences of the element in the variants. After the
analysis, the algorithm verifies whether each element is either present in every variant
(core) or not (variable).

Algorithm 1 is organized in two parts. The first part analyzes all the variants and
gathers the information. The process is done incrementally, the variants are analyzed in
ascending order according to the files’ names. However, the order does not influence the
recovery results. The second part labels the indentified information from part one and
performs the metrics collection.

4.3.3.1 Tool Functionalities PLAR Tool implements the following features:

1. PLA Recovery Support - The PLAR tool automates the variability identifica-
tion. It compares a set of variants’ structural information and identifies the core
and variable elements;

2. PLA Quality Evaluation support - The tool calculates metrics using the re-
covered PLA information.

3. PLA Visualization Support - The PLAR tool provides representations in differ-
ent formats, which are inputs to visualization tools. The tool provides visualizations
that allow the creation of the PLA module view, highlighting the commonality and
variability, of DSM, and class diagrams. Each visualization was produced to fol-
low the color the pattern of the module view; red represents variability while blue
represents commonality;

4. Threshold Technique Support - The tool implements the threshold technique.
It filters the information according to a determined value. The threshold separates
the PLA elements and provides a clear view for the PLA. The objective is to
reduce the amount of noise in the PLA representation. For instance, by defining
the threshold value of 5%, the elements implements in less than 5% of the variants
are not considered in the SAVaR outputs.

4.4 GUIDELINES FOR PLA RECOVERY 67

Input: P, a collection of N variants, N > 1.
Output: PLA, a collection of common and variable architectural elements

1 begin
2 foreach variant Pi in P do
3 foreach element e or relationship r found on Pi do
4 if the element e or the relationship r has been already identified in

another variant Pj, i 6= j then
5 Add +1 on the number of occurrences of the element e or

relationship r ;
6 Update the information about the variant that contains the element

e or relationship r;
7 end
8 if The element e or relationship r has not been identified then
9 Insert the element e or relationship r on the PLA collection;

10 Mark the element e or relationship r as identified;
11 end
12 end
13 end
14 foreach element e or relationship r identified on the PLA do
15 if the element e or relationship r is on all variants then
16 Mark the element e or relationship r as “core";
17 else
18 Mark the element e or relationship r as “variable";
19 end
20 end
21 end

Algorithm 1: PLA recovery algorithm

4.4 GUIDELINES FOR PLA RECOVERY

We documented some guidelines to help practitioners willing to use SAVaR in their work-
ing settings. Each guideline describes a realistic PLA recovery scenario, and provides a
solution, with steps, hints for improving the PLA recovery and other helpful information.
Table 4.2 presents the name and intent of each guideline.

4.4.1 Clone-and-Own

Intent. Recover the PLA from a set of variants.

Problem.

It’s not uncommon for small and medium-sized companies to adopt SPL using a
clown-and-own strategy, by copying, adding or removing functions from existing
products (RUBIN; CHECHIK, 2012). This approach leads to ad hoc product port-

68 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Table 4.2 Guidelines for PLA Recovery.
Guideline Intent

Clone-and-Own Recover the PLA from a set of variants implemented using clone-
and-own strategy.

Generate Variants Recover the PLA from a set of variants automatically generated.
Analyze #ifdefs Recover the PLA from source code annotated with #ifdef di-

rectives.

folios of multiple yet similar variants (FISCHER et al., 2014). With the growth
of products portfolio, the management of variability and reuse becomes more com-
plex (SHATNAWI; SERIAI; SAHRAOUI, 2015). A PLA for the SPL could be
recovered from its variants and be used to tame complexity, support SPL adoption,
and drive SPL evolution. However, SAR for SPL requires additional effort to iden-
tify the variability spread on several implemented variants and represent them at
the architectural level. In this context, we may ask:
How do you recover a software architecture that unveils variability and commonality
for such a portfolio of clone-and-own related variants?
This problem is difficult because:

• Variants may be large and complex;
• Lack of tools to support the variability identification;
• Each cloned variant may have evolved independently from others;
• The possible number of different variants may be very large, up to 2N , where

N is the number of optional and independent features;
• Project development assets evolve, but the architecture documentation do not

reflect the improvements over the life cycle.

Yet, solving this problem is feasible because:

• There are many SAR techniques for single systems;
• You have the source code of a set of variants;
• Good design practices promote the implementation of well-modularized units.

Solution.
Use the Extract-and-Merge technique with an existing set of variants. Execute
the threshold technique to improve the recovered PLA according to development
interests.

Pre-conditions.

1. Set of variants’ source code developed using clone-and-own strategy available.

4.4 GUIDELINES FOR PLA RECOVERY 69

Steps.

1. Get the variants’ source code;
2. Select an extraction tool to recover the variants’ structural information;
3. Verify the elements names and eliminate information specific to a variant;
4. Perform the variability identification using the PLAR tool support to automate

the process;
5. Analyze the outputs provided by SAVaR (collected metrics, report, and visu-

alization of the recovered PLA);
6. [optional] - Run the threshold analysis according to the specified value (inte-

ger);
7. [optional] - Go back to step 5 and verify the metrics values.

Post-conditions.

1. Set of reports, metrics, DSMs, development views, UML diagrams from the
recovered PLAs according to threshold values.

Hints for improving the PLA recovery.

• Use the report provided by SAVaR to manually identify the elements’ fre-
quency;

• Execute the threshold technique according to the elements’ frequency;
• Select an extraction tool that supports the programming language of the

project. Some tools present limitations regarding the output type. For in-
stance, Understand tool provides the recovered information in tabular data
while Stan4j uses trivial graph format.

Trade-offs.

• The higher the threshold value, the higher will be the elimination of variable
elements.

Suggestion of tool chain.
Figure 4.11 presents the suggested tool chain to support the Clone-and-Own guide-
line. Download of the variants’ source code from the repository using Git. Then,
extract the structural information of all the variants using Analizo or Stan4J. We
used Sublime tool to eliminate information specific to the project such as the project
name and folder organization. We execute the PLAR tool to identify the variability
and core elements of the PLA.

Related Guidelines.
Generate Variants, Analyze #ifdefs.

70 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

Figure 4.11 Sugestion of tool chain for Clone-and-Own guideline

4.4.2 Generate Variants

Intent. Recover the PLA from a set of variants automatically generated.

Problem.

Although the architecture description is part of the SPL adoption process, not all
projects have a PLA documented. The PLA recovery can help developers with
the SPL evolution and maintenance tasks. One alternative is to recover the PLA
based on the SPL products source code. If variants (in this case SPL products)
are generated by tools such as FeatureIDE (MEINICKE et al., 2016), configura-
tion of variants and variant generation are necessary to populate the variants set.
However, it could lead to the optional feature problem that describes a common
mismatch between variability intended in the domain and dependencies in the im-
plementation (KäSTNER et al., 2009). When this situation occurs, some variants
that are valid in the domain cannot be produced due to implementation issues. In
this context, we may ask:

How do you recover a software architecture that unveils variability and commonality
for a portfolio of generated variants?

This problem is difficult because:

• The possible number of different variants may be very large, up to 2N , where
N is the number of optional and independent features;

• Project development assets evolve, but the architecture documentation do not
reflect the improvements over the life cycle.

Yet, solving this problem is feasible because:

• The set of variants can be reduced to using algorithms;

• The existing SAR techniques can be adapted.

4.4 GUIDELINES FOR PLA RECOVERY 71

Solution.

Generate variants that represent different configurations and use them as input to a
technique that combines an existing set of variants to recover the PLA (Clone-and-Own).
Use the Extract-and-Merge technique with an existing set of variants. Execute
the threshold technique to improve the recovered PLA according to development
interests.

Pre-conditions.

1. SPL source code that allow the automatic generation of the SPL variants.

Steps.

1. Generate the variants using a variant generator tool;
2. Select an extraction tool to recover the variants’ structural information;
3. Perform the variability identification using the PLAR tool support to automate

the process;
4. Analyze the outputs provided by SAVaR (collected metrics, report, and visu-

alization of the recovered PLA);
5. [optional] - Run the threshold analysis according to the specified value (inte-

ger);
6. [optional] - Go back to step 4 and verify the metrics values.

Post conditions.

1. Set of reports, metrics, DSMs, development views, UML diagrams from the
recovered PLAs according to threshold values.

Hints for improving PLA recovery.

• Use the report provided by SAVaR to manually identify the elements’ fre-
quency;

• Execute threshold technique to identify possible improvements in the SPL
development;

• Select an extraction tool that supports the programming language of the
project. Some tool presents limitations regarding the output type.

• When compiling every single product is not feasible, FeatureIDE variant gen-
erator provides a T-wise sampling (HENARD et al., 2014) that creates a set
of relevant variants, based on the SPL feature model.

Trade Offs.

• The higher the threshold value, the higher will be the elimination of variable
elements;

72 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

• A variant generator tool is needed;
• Extract all the variants in projects with a high number of optional features

could be cumbersome;
• Select a determinate number of relevant variants can impact on the PLA out-

put precision.

Suggestion of tool chain.
Figure 4.12 presents the suggested tool chain to support the Generate Variants
guideline. Download of the SPL’ source code from the repository using Git. Then,
generate all the variants automatically using Feature IDE or using the Ant build.
Extract the structural information of all the variants using Analizo or Stan4J. We
execute the PLAR tool to identify the variability and core elements of the PLA.

Figure 4.12 Sugestion of tool chain for Generate Variants guideline

Related Guidelines.
Clone-and-Own, Analyze #ifdefs.

4.4.3 Analyze #ifdefs

Intent. Recover the PLA from source code that contains #ifdef directives.

Problem.
Highly configurable software systems allow the efficient and reliable development
of similar software variants based on a common code base. The C preprocessor
CPP, which uses source code annotations that enable conditional compilation, is a
simple yet powerful text-based tool for implementing such systems. However, since
annotations interfere with the actual source code, the CPP has often been accused
of being a source of errors and increased maintenance effort.
How do you recover a software architecture that unveils variability and commonality
for variants created based on #ifdefs directives?
This problem is difficult because:

4.4 GUIDELINES FOR PLA RECOVERY 73

• Projects may be large and complex;

• The source code needs to be inspected or analyzed to identify #ifdefs direc-
tives;

Yet, solving this problem is feasible because:

• Conditional compilation is a rather used technique to variants’ configuration
and is language-independent;

• There are several tools that support the analysis of #ifdef directives;

Solution.

Use the #ifdef-Analysis technique to recover the PLA for a SPL that uses #ifdef
directives to implement variability and guide product generation. Execute the
threshold technique to improve the recovered PLA according to development in-
terests.

Pre-conditions.

1. Project source code developed using #ifdef directives available.

Steps

1. Select an extraction tool to recover the variants’ structural information;

2. Select a tool to extract #ifdefs information;

3. Perform the variability identification using the PLAR tool support to automate
the process;

4. Analyze the outputs provided by SAVaR (collected metrics, report, and visu-
alization of the recovered PLA);

5. [optional] - Run the threshold analysis according to the specified value (Feature
name or File name);

Post conditions.

1. Set of metrics, DSMs, and development views from the recovered PLAs.

Hints for improving the PLA recovery.

• Apply the filters according to feature name or file name.

• Create a Docker8 container and use servers in the cloud to reduce the time
and effort to extract the structural information.

Trade Offs.
8<http://www.docker.com>

74 AN APPROACH FOR RECOVERING PLA FROM SOURCE CODE OF VARIANTS

• Lack of tools to support large-scale projects such as Linux kernel. Tools used
in this context should be robust. They commonly presented some issue such
as run out of memory and stopped to work;

• The PLA recovery demanded time and processing effort. The extraction pro-
cess can take days to finish.

Suggestion of tool chain.

Figure 4.13 presents the suggested tool chain to support the Analyze #ifdefs guide-
line. Download of the SPL’ source code from the repository using Git. Then,
extract the structural information of the project using Analizo. Moreover, extract
#ifdefs information using cppstats tool. We execute the PLAR tool to identify the
variability and core elements of the PLA.

Figure 4.13 Sugestion of tool chain for Analyze #ifdefs guideline

Related Guidelines.

Clone-and-Own, Generate Products.

4.5 RELATED WORK

Chapter 3 presented a SMS that investigated the relationship between PLA and SAR.
Such study provided evidence that the majority of studies addressed some aspects of
SPL. However, they lack detailed information to support the PLA recovery. Existing
proposals to PLA recovery were found (SHATNAWI; SERIAI; SAHRAOUI, 2015, 2016;
LINSBAUER; LOPEZ-HERREJON; EGYED, 2016), and research trends and gaps on
the subject were identified.

Shatnawi, Seriai and Sahraoui (2015) proposed an approach to recover the PLA based
on the comparison of components recovered from different versions of the same SPL. The
authors relied on the Formal Concept Analysis (FCA) to analyze the variability and
created a variability model.

4.6 CHAPTER SUMMARY 75

Later, they extended the study in (SHATNAWI; SERIAI; SAHRAOUI, 2016). They
focused on the recovery of components (combining classes and interfaces). In our the-
sis, different versions were not analyzed. We extracted the structural information from
products of the SPL, and from the SPL source code directly. Moreover, we also collected
information about the variability in classes, packages, and their relationship.

Linsbauer, Lopez-Herrejon and Egyed (2016) presented an approach for extracting
information from sets of related product variants. The authors extracted structural in-
formation from the SPL products source code. Moreover, they compared the information
to recover the Feature Model (FM). We implemented a similar recovery process. However,
instead of recovering the FM, we compare the recovered architecture from SPL products
to recover the PLA.

Existing approaches do not provide support – lack of guidelines (see Chapter 3) – for
different PLA recovery scenarios (commonly they focus only in one context of the PLA
recovery). Moreover, we provide SAVaR to allow the integration of different variability
management approaches in heterogeneous environments.

4.6 CHAPTER SUMMARY

This Chapter introduced SAVaR to support the PLA recovery. In this way, we proposed
a series of phases and activities detailing each one of the steps of SAVaR . Moreover,
we provided a set of guidelines to help SPL architects, developers, and recoverers to
perform these activities as a means to systematize the PLA recovery and ensure a correct
traceability between the SPL source code and its architecture.

Further, we discussed the variability identification in details. To the best of our
knowledge, these two tasks are critical for defining the PLA and consequently for PLA
recovery. Few studies addressed the variability at the architectural level of SPL projects.
Finally, SAVaR gathers information of each PLA recovery execution to facilitate future
recoveries, allow the evolution of the PLA recovery process, and provide the PLA recovery
replication. In the next Chapter, we present an exploratory study performed to evaluate
and improve SAVaR .

Chapter

5
The only true wisdom is in knowing you know nothing – Socrates

EXPLORATORY STUDY ON PLA RECOVERY

This Chapter presents an empirical evaluation aiming to analyze the activities performed
during PLA recovery in the context of SPL projects. This Chapter describes an empir-
ical study conducted in an academic environment with students from a software reuse
graduate course. We carried out the study by following the guidelines for conducting
experiments in software engineering defined by Wohlin et al. (2012).

The remainder of this Chapter is organized as follows: Section 5.1 presents the ex-
ploratory study design. Section 5.2 presents the execution. Section 5.3 discuss the analysis
and interpretation. Section 5.4 discusses our findings and threats to validity. Section 5.5
presents the related work. In Section 5.6, we present the conclusions.

5.1 DESIGN

We investigated the PLA recovery in two scenarios. The first scenario focused on the
PLA recovery directly from the SPL source code. The subjects developed the PLA
using #ifdefs directives. The second scenario focused on the PLA recovery based on the
combination of the recovered architecture of SPL variants (products).

We aimed to investigate the application of SAVaR and the adaptation of existing
SAR recovery tools and techniques in the context of SPL projects. For this purpose, we
reported the study by following the guidelines for conducting experiments in software
engineering (WOHLIN et al., 2012).

5.1.1 Planning

We applied the GQM method (SOLINGEN et al., 2002) to define quantitative measures
and provide the objective assessment.

5.1.1.1 Goal

77

78 EXPLORATORY STUDY ON PLA RECOVERY

The objective of this study is to analyze how to recover PLAs by applying the SAVaR

for the purpose of understanding with respect to its effectiveness and reliability from the
point of view of developers and recoverers in the context of SPL projects in an academic
environment.

5.1.1.2 Questions
To achieve this goal, we defined the following Research Questions (RQ):

• RQ 1: Does SAVaR provide a precise and reliable version of the imple-
mented PLA?

In Chapter 3 the majority of studies addressing PLA recovery focused their empir-
ical evaluation on the application of case studies. Therefore, these studies did not
evaluate the recovered information from the perspective of both architects and de-
velopers. Inspired by the work of Garcia et al. (2013), in which authors verified the
recovered information with architects or developers, we asked the SPL developers
the following two sub-research questions:

- RQ 1.1: Does SAVaR recover the PLA correctly?
By answering this question, we verified if SAVaR provided a precisely recovered
information. We asked the subjects if the recovered PLA was correct and if they
found inconsistencies regarding the project source code and the recovered PLA.
Such a feedback could enable us to improve the SAVaR ’s precision in recovering the
PLA.

- RQ 1.2: Does SAVaR provide a reliable PLA?
To answer this question, the recoverers presented the recovered PLA for the develop-
ers’ verification. Then, we asked the subjects if they trust the information recovered
by SAVaR . This feedback is relevant because the developers understand their SPL
project source code and know the variability implementation. If something went
wrong during SAVaR application, it could compromise SAVaR reliability.

• RQ 2: How much details are needed to represent the recovered PLA?

According to Galster et al. (2013), choosing a variability representation and the
amount of variability is a complex task. By answering this question, we aim to un-
derstand the issues related to identifying the amount of variability in the recovered
PLA. In this way, this RQ was split into the following sub-questions:

- RQ 2.1: Do the developers prefer more detailed information regarding the recovered
PLA?
To answer this question, we asked the developers if the amount of information
provided by SAVaR is enough. We verified if they needed more information related
to the variability at the architecture level. In this way, we can calibrate the proposal
to provide more or less information according to the subjects demands.

5.1 DESIGN 79

- RQ 2.2: Does the amount of information provided by SAVaR compromise the PLA
general view?
On the other hand, in this question, we verified if the amount of information pro-
vided by SAVaR compromise the general view of the PLA. By answering this ques-
tion, we checked if SAVaR led to information overload. In other words, the subjects
may have problems to understand the PLA overall view.

• RQ 3: Do the metamodels (for PLA design) support on the understand-
ing of the recovered PLA?

In a preliminary investigation (LIMA; CHAVEZ, 2016), we identified that meta-
models have been proposed and used for defining languages and notations for rep-
resenting and managing the variations of a PLA. In the context of our exploratory
study, we investigated how these metamodels support understanding of the recov-
ered PLA. This question has been split into two more specific research questions:

- RQ 3.1: Do the metamodels helped on the recovered PLA understanding?
By answering this question, we verified if the metamodels represent the recovered
PLA also allow the understanding of the recovered information. First, we asked
the subjects to select a metamodel from the list identified in our previous work
(LIMA; CHAVEZ, 2016). Then, we asked them if the chosen metamodel helped in
the understanding of the recovered PLA.

- RQ 3.2: Do the metamodels would support the SPL project development?
One of the main objectives of SAVaR is to connect the SPL source code with the
PLA and allow the variability traceability in the architectural level. The metamodel
can be used as a mechanism (i.e. bridge) of connection between the recovered PLA
and the SPL source code. For this reason, we asked the subject if the metamodels
would provide support for their development tasks.

5.1.2 Study Design

According to the steps and guidelines (Generate Variants and Analyze ifdefs defined in
Chapter 4, we organized the study design using SAVaR phases: (i) Information collection,
(ii) Information Extraction, (iii) PLA Recovery, and (iv) Presentation of the Recovered
PLA. Figure 5.1 presents the study design phases and the subjects involved in each phase.
Developers and recoverers performed the activities of phase one and four, the recoverers
were responsible to perform phases two and three.

To perform phase 1, we analyzed the SPL source code and other assets (e.g. Feature
Model) produced by the subjects, and we also interviewed them using data collection
method based on interviews (LETHBRIDGE; SIM; SINGER, 2005). At the end of this
step, we identified the need to gather more information about the variability implemen-
tation such as the type of binding time implemented, the tools and techniques they used
to allow the variability and products instantiation, understand how they configure the
products.

80 EXPLORATORY STUDY ON PLA RECOVERY

Figure 5.1 Study Design Phases

We considered this information relevant because such design decisions might affect
the SPL project development, maintenance, and evolution. Consequently, these decisions
would impact on the PLA definition, variability representation, and may influence the
variability identification.

In Phase 2, the recoverers performed the products’ instantiation by using FeatureIDE
and the structural information extraction from the SPL source code by running the ex-
traction tool. In this way, the recovery technique used different types of input. For this
reason, we developed a set of input converters to allow the synchronization of extrac-
tion tools with recovery techniques. Phase 3 compares the extracted information from
the products and provide the outputs regarding the recovered PLA – including metrics,
reports, diagrams, and so on.

In Phase 4, the developers verified the recovered information. The recoverers asked
them if the recovered PLA and variability representation were correct. We also collected
suggestion of improvements regarding the provided information and SAVaR .

5.1.3 Exploratory Study materials

We designed and used the following materials: Consent Form, Background, Feedback
Questionnaires, list of metamodels to support PLA design, a set of information from the

5.2 EXECUTION 81

recovered PLAs – UML class diagram, Module view, DSM, Report, and metrics.

5.1.4 Subjects

We applied convenience sampling (WOHLIN et al., 2012) in this study. The subjects
were graduate students (one Ph.D. Student and twelve M.Sc. Students) from Advanced
Topics in Software Engineering course (i.e. Software Reuse Fundamentals: Theory and
Practice) at Federal University of Bahia, Brazil. The Ph.D. Student and one master
student acted as recoverers and the other eleven students were organized in two groups.

The classes hosted the ‘experimental lab’ including the selection of subjects and per-
forming the activities of the exploratory study. This course was designed to explain the
fundamental concepts and principles of Software Reuse focusing on the development of
SPL projects.

Moreover, the students acted as SPL developers being responsible for developing an
SPL project from scratch. They provided information necessary to perform the PLA
recovery. Finally, they also verified the recovered information to allow improvements of
the recovered PLAs.

The students defined two groups to implement the SPL projects. The division was
based on the subjects’ expertise in software development and their experience in industry.
The motivation for the subjects to attend the study was based on the assumption that
they would have the opportunity to use the recovered PLA as an asset to improve their
SPL projects.

Two students acted as recoverers. According to Garcia, Ivkovic and Medvidovic (2013)
the recoverer is an engineer producing (i.e. recovering) the architecture – the PLA in the
context of our study. They analyzed the existing SPL information necessary to perform
the PLA recovering activities.

5.1.5 The Study Projects

The subjects developed the SPL projects used in this study. Table 5.1 presents the
projects and metrics – related with implementation such as interfaces, methods, packages,
and classes. The first one consisted of a SPL for the e-commerce domain called SPL Web
Store1. The second one focused on the instant message domain called SPL Message2.
More details about the recovered information can be found in the projects website.

5.2 EXECUTION

The subjects carried out the activities involved in the exploratory study. Table 5.2
presents the study execution agenda. It describes the number of days to perform each
activity, the hours dedicated to the task, the subject responsible, and the phase.

1<http://homes.dcc.ufba.br/~crescencio/WebStoreSPL/>
2<http://homes.dcc.ufba.br/~crescencio/SPLMessage/>

82 EXPLORATORY STUDY ON PLA RECOVERY

Table 5.1 SPL Projects – Metrics
SPL Project Domain TLOC #D #R #P #F #I #M #PAC #C

SPL Web Store e-commerce 5.5k 10 2 10 27 0 422 6 87
SPL Message instant mes. 3.2K 1 2 10 19 12 243 8 46

Legend: [TLOC] Total Lines of Code, [#D] Number of Developers, [#R] Number of Recoverers,
[#P] Number of Products used to recover the PLA, [#F] Number of features, [#I] Number of
Interfaces, [#M] Number of Methods, [#PAC] Number of Packages, [#C] Number of classes

Table 5.2 Study Execution Agenda
Days Activities Length Responsible Phase

1 day Interview with Developers 4 hours Dev. and Rec. 1
1 day Metamodel Identification 4 hours per subject Developers 1
1 day Information Extraction 4 hours per project Recoverers 2
2 days Recovery of the PLAs 1 day per project Recoverers 3
1 day Presentation and Verification of the Recov-

ered PLA
4 hours per group Dev. and Rec. 4

1 day Improvements in the Recovered PLAs 1 hour per project Recoverers 4

5.2.1 Procedure

Initially, the subjects became aware of the study. In the first day, we interviewed the
developers to identify how they implemented the variability in the SPL project. We also
discussed the products instantiation and the techniques they used to allow the products
configuration.

In the second day, we provided a list of metamodels to support the PLA design defined
in our previous work (LIMA; CHAVEZ, 2016). We asked the subjects to select at least
one metamodel to support the PLA design understanding of their project. The subjects
selected the metamodels considering their SPL context and domain.

In the third and fourth days, the recoverers used the information raised in the previous
days to carry the PLA recovery. In the fifth day, the recoverers presented the recovered
information for the developers. The developers verified the recovered PLA – using the
metamodel as template – and suggested improvements for the recovery. They also filled
a feedback questionnaire about the recovered PLA. In the last day, the recoverers applied
the suggestions of improvement and provided the recovered PLA for the developers.

5.3 ANALYSIS AND INTERPRETATION

In this section, we present the analysis and interpretation of the results. We verified
how the subjects answered the research questions. We used the Likert scale (ALBAUM,
1997) to collect the subject answers (i.e. Strongly disagree, Disagree, Neutral, Agree,
and Strongly agree).

5.3 ANALYSIS AND INTERPRETATION 83

5.3.1 RQ 1: Does SAVaR provide a precise and reliable version of the implemented
PLA?

Figure 5.2 presents the subjects’ answers for RQ 1.1 and RQ 1.2. In the former, we asked
the subjects if SAVaR recovered the PLA correctly. As can be seen, they agreed that the
recovered PLAs are in conformance with the project source code. In the later, we asked
the subjects if they trust on the information provided by SAVaR .

Figure 5.2 Research Question 1 Answers

5.3.2 RQ 2: How much detail is needed to represent the recovered PLA?

Figure 5.3 shows the answer of the subjects for RQ 2.1 and RQ 2.2. In RQ 2.1, we
asked the subjects if they preferred more detailed information in the representation of
the recovered PLA – such as packages, abstract and concrete classes, interfaces, and
so on. We presented two recovered PLAs UML class diagrams, the first one organized
the recovered PLA in packages (e.g. dao, facade, and so on), the second ignored these
details. Then, we asked what representation they preferred, and the majority of the
subjects preferred the detailed information against a more abstract representation.

Moreover, in RQ 2.2, we asked the subjects if the amount of the recovered information
provided by SAVaR compromise the PLA general view. As can be seen in Figure 5.3, 24%
of the subjects affirmed that the recovered information compromise their understanding
of the PLA broader view.

5.3.3 RQ 3: Do the metamodels (for PLA design) support on the understanding
of the recovered PLA?

In Figure 5.4, we present the subjects’ answers regarding the RQ 3.1 and 3.2. In the first
RQ, we asked the subjects to choose a metamodel from the list defined in our previous
study (LIMA; CHAVEZ, 2016). Then, we verified if the selected metamodel helped them
to understand the recovered PLA. The majority of the subjects (64%) agreed that the
metamodel supported their understanding of the recovered information.

84 EXPLORATORY STUDY ON PLA RECOVERY

Figure 5.3 Research Question 2 Answers

Figure 5.4 Research Question 3 Answers

Regarding the RQ 3.2, the subjects answered if the metamodel would support their
development activities. Similarly to RQ 3.1, 56% of the subjects agreed that the meta-
model would provide support to their development activities.

5.3.4 Feedback

Moreover, we asked some questions about their personal experience understanding the
recovered PLA. They are complementary to the previous research questions and gave
feedback on aspects that would be improved upon, by comparing the experience with
possible opportunities to improve the results they reported by using SAVaR .

Figure 5.5 shows the results from feedback questions 1 and 2. In the first feedback
question, we asked the subjects if they needed help to understand the information of
the recovered PLA. Half of the subjects needed help, and the other half understood the
recovered information without asking for support. In the second feedback question, we

5.3 ANALYSIS AND INTERPRETATION 85

asked them if the views provided by SAVaR helped in the maintainability of the project
source code.

Figure 5.5 Approach feedback part 1

Figure 5.6 shows the results from feedback questions 3 and 4. In the third feedback
question, we asked the subjects if they would use SAVaR in their professional daily activ-
ities. As can be seen in Figure 5.6, the majority of the subjects (65%) would use SAVaR

in their day-to-day tasks. In the fourth feedback question, we asked the subjects if they
would suggest the use of SAVaR to their colleagues. Once again, the majority of the
subjects (72%) would recommend SAVaR for their colleagues.

Figure 5.6 Approach feedback part 2

5.3.5 Metrics Analysis - Descriptive Statistics

To provide extra information of the recovered PLAs, the subjects analyzed the collected
metric from their projects. Table 5.3 presents the metrics values for the recovered PLAs.

86 EXPLORATORY STUDY ON PLA RECOVERY

The SSC values of the projects were similar (SPL Web Store: 0.70 and SPL Message:
0.63). The same happened with SVC values (SPL Web Store: 0.30 and SPL Message:
0.36). The result indicates 30% of the projects’ elements implements the variability.
Moreover, the SPL Web Store has 20 optional classes, 57 optional relationships, 48
mandatory classes, and 122 mandatory relationships. On the other hand, SPL Mes-
sage has 22 optional classes, 40 optional relationships, 28 mandatory classes, and 54
mandatory relationships.

Table 5.3 Recovered Metrics from the PLAs
SPL Project SSC SVC RSC RVC CO OR CM MR

SPL Web Store 0.70 0.30 0.68 0.32 20 57 48 122
SPL Message 0.63 0.36 0.57 0.42 22 40 38 54

Legend: [SSC] Structure Similarity Coefficient, [SVC] Structure
Variability Coefficient, [RSC] Relation Similarity Coefficient, [RVC]
Relation Variability Coefficient, [CO] ClassOptional, [OR] Option-
alRelation, [CM] ClassMandatory, [MR] MandatoryRelation

5.3.5.1 Descriptive Statistic Analysis
Another collected metric was the Component Reuse Rate (CRR) and Relation Reuse Rate
(RRR). We did not register these metric in Table 5.3 because it provides a measure for
each PLA element and relation. To make it clear to visualize the CRR and RRR values, we
created the boxplot regarding the Component Reuse Rate per group in Figure 5.7 and
the boxplot regarding the Relation Reuse Rate per group in Figure 5.8. Group 1 gathers
the information from SPL Web Store project and Group 2 gathers the information from
SPL Message project.

Figure 5.7 Boxplot – Component Reuse Rate per group

The CRR value was similar in both SPL projects (see Figure 5.7). On the other hand,
we identified a variation regarding the CRR presented in the boxplot (see Figure 5.8).

5.4 DISCUSSION 87

Figure 5.8 Boxplot – Relation Reuse Rate per group

Moreover, we performed statistical tests to verify the relationship among the values. The
tests were primarily presented for a significance level of 5%.

We applied the Wilcoxon/Kruskal-Wallis test (NATRELLA, 2010) to compare the
CRR and RRR values from group 1 and 2. Regarding the CRR, the p-value (p = 0.8) was
higher than the significance level. In other words, there was no difference among the
groups CRR values. The same happened with the RRR values (p = 0.5).

5.4 DISCUSSION

In the following, we provide a summary of the main findings, limitations to the review,
and threats to validity.

5.4.1 Main Findings

During our study, we confirmed the difficulties to find approaches (including tools and
techniques) available to support the PLA recovery in the context of SPL projects. When
they were available, we did not identify guidelines (i.e. documentation) to help stake-
holders in the application of the recovery activity.

For this reason, we created SAVaR and developed the guidelines to support the PLA
recovery. We also implemented some tools and guidelines to support SAVaR . By applying
SAVaR in the context of SPL projects, we identified improvements opportunities and gaps
in SAVaR that were raised by the subjects.

The experience from the subjects varied from just one year working in industry until
subjects between fifteen and thirty years of experience. In both cases, they had the first
contact in the development of SPL project. Regarding their experience, the beginning
of the development was harder than in a traditional project. However, at the end of the
projects, they agreed that SPL could be used in their professional activities because of
the benefits SPL engineering could provide them with.

Regarding the execution of the study, they considered that if the metamodel to design
PLA and SAVaR were used from the beginning of the project, their understanding and

88 EXPLORATORY STUDY ON PLA RECOVERY

development of SPL project could be more efficient and effective. The metamodel would
provide the support to define the PLA, and SAVaR would allow the synchronization of
the developed SPL source code with the PLA and the variability traceability.

Although the effectiveness provided by the SAR tools and techniques, we identified
that the communication with the developers during the application of SAVaR still nec-
essary because it helped in the identification of some project decisions that were not
registered. For instance, during the interview, the developers explained for the recoverers
how they configured the products and implemented the variability. They also provided
the variants configurations.

5.4.2 Variability Identification

During the exploratory study, we observed that the variability identification in architec-
tural level is not considered by recovery tools and techniques from single systems. For this
reason, we focused our efforts on understanding this phenomenon during the application
of SAVaR in the context of SPL projects. We considered this task in SAVaR and verified
how it worked in our study.

The variability identification varies according to the variability mechanism used to
implement the SPL project. For this reason, we proposed the variability identification
by analyzing the #ifdef directives. In the second technique, we proposed the merging
algorithm to identify the variability among the SPL products. During the comparison
of the extracted information from the products, the algorithm identified elements and
relationships that were present in the architecture of the products.

We categorized the elements present in all products as the “core” elements of the
PLA and elements found in a subset of the products as “variable” elements. In some
cases, core elements presented were involved in variable relationships. Variability was
also implemented inside methods. This information was not explicitly represented since
it did not provide any architectural relevant information.

5.4.3 Amount of details in the PLA recovery

Whenever we implemented the traceability of architectural variability, we had the concern
to avoid adding unnecessary information in the documentation. Choosing a variability
representation and the amount of variability in the PLA is not trivial. According to
Galster et al. (2013), “too much variability can cause project failure”. In general, vari-
ability in software should satisfy needs inside a domain or market, and add as little extra
complexity as possible (GALSTER et al., 2013).

We observed this concern during the exploratory study execution. We perceived that
some subjects complained when we asked them to verify the PLA “big picture” (using
the module view).

The subjects used the different views (class diagram, module view, and DSMs) pro-
vided by SAVaR to identify the ideal amount of recovered information (and variability
identification). They analyzed the core elements, the variable ones, and their relationship.

Most of the subjects preferred the DSM because it provided a simpler view of the
recovered PLA. Figure C.1 and Figure C.3 show the recovered DSMs from the SPL

5.4 DISCUSSION 89

projects used by the subjects in the exploratory study. DSMs provide a broader view of
the PLA and facilitate the visual identification of some patterns.

Moreover, SAVaR recovered information about packages and classes. We also created
a representation with variables and methods. However, the visualization almost tripled
in size and we identified that low-level information did not affected the PLA structure.
In other words, such information did not impact in the visualization of the PLA (see
Figure 5.10).

5.4.4 Filtering the recovered PLA

Due to the subjects’ complaints regarding the amount of information provided by SAVaR

, we extracted a simplified view of the PLA. We focused on selecting an optional feature
(e.g. Comment) and its relationships. As Figure 5.9 shows, we identified the Model-
View-Controller (MVC) structure represented by the model (M), facade (V), and dao
(C) packages. Moreover, the classes from the features package activate the variability
implementation “inside” the MVC context.

Figure 5.9 Recovered Information isolated by the feature Comment

We recovered information such as abstract classes – represented with the letter
(e.g. GenericDao), interfaces – represented with the letter (e.g. CommentDao,

90 EXPLORATORY STUDY ON PLA RECOVERY

HelpFacade), and concrete classes – represented with the letter (e.g. FComment

CommentDaoImpl, and HelpFacadeImpl). Regarding the relationship representa-
tion, we identified inheritance with a filled line, and functions call with a dotted line.

To exemplify how the amount of details impacted in the PLA representation, we se-
lected one class (i.e. FComment) and we recovered information about methods, variables,
#ifdefs directives, and so on from that specific class. As can be see in Figure 5.10 , most
of the retrieved information are irrelevant for the architectural representation. For in-
stance, information about user interfaces (e.g. JFrame, JButton, JLabel, and so on),
constructors, getters, and setters did not impact in the PLA and variability identification.

Figure 5.10 Example of class with all the recovered information

On the other hand, we identified that two methods (i.e., listComments() imple-
mented to list the users’ comments and sendComments() implemented to send the
users’ comments) are relevant in the architectural context because they implemented
optional features and should be considered in the recovered PLA representation.

5.4.5 Analyzing the recovered PLA based on Metamodels

We asked the subjects to choose a metamodel from the list defined in our previous study
(LIMA; CHAVEZ, 2016) to support the definition of their recovered PLA. Due to their
lack of experience in PLA design, the metamodels helped on the understanding of the
recovered PLA. Combined with their experience in SPL development, the information
provided by SAVaR helped them in the identification of architectural flaws in the PLA.

Further, we asked them why they choose that specific metamodel. Most subjects
preferred metamodels that represented the PLA according to the feature model. We also
identified that they preferred metamodels that provided a high level of abstraction.

5.4 DISCUSSION 91

The subjects affirmed that the metamodels help them to maintain their PLA. The
metamodels extended their previous knowledge to understand the PLA and the SPL
development. Moreover, it facilitated the variability management in architectural level.

5.4.6 Analyzing the changes from SAR to PLA recovery

During the adaptation of the existing SAR from single system to SPL, we identified
differences between them. For instance, we verified that the developers used the MVC
(Model-View-Controller) structure to implement their SPLs.

We observed that the MVC structure remained the same in both single sistem and
SPL. However, the developers adapted the MVC structure by adding a package called
Feature for activating the optional features.

In other words, when a specific feature is selected, the classes and constructors respon-
sible for implementing that feature appears in the packages from the MVC structure. For
instance, Figure 5.9 presents the instantiation of the Comment Feature. When this fea-
ture was selected in the product configuration, the classes FComment, FCommentDao,
and CommentView appears in the respective packages.

Regarding the PLA, some adaptation is needed to migrate an architecture from single
system to SPL and the goal of SAVaR – as evaluated in this exploratory study – is to
identify the variability at architectural level and provide guidelines to support the PLA
recovery.

5.4.7 Threats to Validity

Following, we describe some threats to the validity of our exploratory study along with the
mitigation strategy for each threat. Below, we list the threats to the validity identified:

5.4.7.1 Conclusion validity
Random heterogeneity of subjects. Wohlin et al. (2012) argued about the risks
when the subjects group is very heterogeneous. In the case of our exploratory study,
we believed that the subjects heterogeneity regarding the experience in industry allowed
the collection of insightful feedback because of the different perspectives. Moreover, the
inexperienced subjects demonstrated resistance in performing the study. For this reason,
we perfomed the analysis according to subjects experience in industry.

5.4.7.2 Internal validity
Instrumentation. This is the effect caused by the artifacts used for the exploratory
study. The subjects developed different SPL projects. In this way, the recovered PLAs were
particular to the SPL project. SAVaR provides the recovery based on the development,
including mistakes introduced by the developers. For this reason, the output provided
by SAVaR varied according to the project.

5.4.7.3 Construct validity
Evaluation apprehension. Some subjects were afraid of being evaluated because the

92 EXPLORATORY STUDY ON PLA RECOVERY

study took place during the reuse course. We identified that one subject was not interested
in participate on the study. To mitigate this issue, we informed that the exploratory study
purpose was to evaluate SAVaR . We also provided this information in the consent form.

5.4.7.4 External validity
Interaction of setting and treatment. This is the effect of not having a material
representative of – for instance – industrial practice. On the other hand, some subjects
had years of experience in the development of industrial projects and provided their
feedback based on the knowledge acquired from these projects.

5.5 RELATED WORK

Garcia et al. (2012) proposed a framework for recovering architectures and then verified
the framework application by recovering the architecture of open source projects (GAR-
CIA; IVKOVIC; MEDVIDOVIC, 2013). The studies did not consider SPL projects.
Based on these studies, we identified and adapted some steps to perform the PLA recov-
ery. We also proposed new ones that are unique to SPL context.

Shatnawi, Seriai and Sahraoui (2016) performed an exploratory study to evaluate their
approach in two SPL projects (e.g. Health Watcher and Mobile Media). The authors did
not consider the involvement of subjects in the recovery process.

Linsbauer, Lopez-Herrejon and Egyed (2016) performed case studies by applying their
approach in the products of 5 SPL projects. However, instead of recovering PLAs, they
recovered Feature Models based on the structure of SPL products.

According to the evidence we raised in Chapter 3, we identified only one study pro-
viding guidelines to support SAR. However, the guideline did not provide details for PLA
recovery. In this way, we used the guidelines defined in Chapter 4 to support the PLA re-
covery in the context of SPL projects. We worked with SPL developers and recoverers to
apply SAVaR . During the recovery, we identified improvements according to the subjects’
feedback.

5.6 CHAPTER SUMMARY

In this Chapter, we presented an exploratory study regarding the initial evaluation of
SAVaR . Our main intention was to verify points of improvement to evolve SAVaR based
in the context of SPL projects working with subjects such as developers and recoverers.

The majority of the subjects agreed that the recovered PLAs provided by SAVaR were
in conformance with their SPL project source code. They also trusted in the recovered
information. Regarding the amount of information, they preferred more detailed rep-
resentation. Moreover, only the inexperienced subjects complained that the amount of
detail in the recovered information compromised their understanding of PLA general view.
Finally, the subjects majority agreed that the metamodel allowed the comprehension of
the recovered PLA and supported them on their development tasks.

One of the exploratory study goals was to identified points of improvement based on
the subjects feedback. During the application of the first version of SAVaR , we collected

5.6 CHAPTER SUMMARY 93

data to perform analysis and allow the replication. Based on the gathered evidence, we
improved SAVaR .

For instance, the most cited issue focused on the module view representation of the
recovered PLA. The subjects complained that it was difficult to deal with the visualization
because of the high number of module and relationships in the representation. In this
way, we proposed to break the PLA in smaller pieces and organize the visualization per
features.

In the next chapter, we present some studies applying SAVaR after the improvements
gathered during this chapter. We recovered the PLAs from 15 SPL projects and verified
the quality of the recovered architectures.

Chapter

6
We are what we repeatedly do. Excellence, then, is not an act, but a habit – Aristotle

RECOVERING THE PLA OF 15 OPEN SOURCE SPL
PROJECTS

This Chapter presents a family of case studies designed to investigate whether PLAs
recovered with SAVaR can be used to support two important tasks: variability identifi-
cation and reuse assessment. In each study we recovered the PLA of an open source
SPL project with the support of SAVaR . The PLAR Tool provided automatic support
for recovering the PLA from the SPL products’ source code, and calculating the reuse
metrics (CARDOSO et al., 2017b).

The remainder of the Chapter is organized as follows. Section 6.1 describes the study
design. Section 6.2 presents the study execution, Section 6.3 discusses the results, and
Section 6.4 interprets it. Finally, Section 6.5 concludes this chapter.

6.1 STUDY DESIGN

This Section presents the study design shared by 15 case studies, its research questions,
hypotheses, and metrics, and discusses the analysis procedure.

We used the Goal/Question/Metric (GQM) approach (SOLINGEN et al., 2002) to
define the objective of this family of empirical studies:

Analyze a product line architecture to understand how variability affects ar-
chitectural recovery with the PLAR tool from the viewpoint of researchers
performing the variability identification in the context of SPL projects.

6.1.1 Research Questions

We defined three research questions and associated them to the set of instrumental reuse
metrics used (ZHANG et al., 2008; OLIVEIRA-JUNIOR; GIMENES; MALDONADO,
2008).

95

96 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

RQ 1 Does the number of SPL products used in PLA recovery impact the
identification of variability in the PLA?

The product generation tool provides the number of SPL products used in PLA
recovery. The PLTV metric is used to estimate the total number of variable elements
expected in the PLA, and the SVC metric is used to calculate the overall variability
of PLA elements.

RQ 2 Is there a relation between the number of optional features in the SPL
and the reuse rate of the recovered PLA?

The product generation tool provides the number of optional features in the SPL.
We used this information together with the SSC metric to estimate the impact of
optional features on the PLA reuse rate.

6.1.2 Hypotheses

In order to answer the research questions, we postulated the following hypotheses:
RQ1 Hypotheses

• H0a – The number of SPL products analyzed does not influence the variability
identification.

• H1a – The variability identification is influenced by the number of SPL products
analyzed.

RQ2 Hypotheses

• H0b – There is no relation between the number of optional features in the SPL and
the number of variation points in the recovered PLA.

• H1b – There is a relation between the number of optional features in the SPL and
the number of variation points in the recovered PLA.

6.1.3 Metrics

The quality of a PLA is evaluated based on the metrics presented in Chapter 2. SAVaR

collects the following data from the SPL project: number of SPL optional features, num-
ber of SPL variation points, number of SPL products (M)) and its recovered PLA (number
of common components (CC), number of variable components (CV), number of common
relations (RC) and number of variable relations (RV). Data to be collected by PLA
assessment includes reuse measurement values for PLA elements and relations.

PLAR generates a dataset containing all the necessary data to proceed with PLA
quality analysis according to its reuse rate.

6.2 STUDY OPERATION 97

6.1.4 Analysis Procedure

Our method for evaluating the effectiveness of the recovered PLA to support variability
identification was based on the correlation analysis of the metrics regarding the number
of products and the metrics related to the variability identification (SVC, RVC, CO (CO),
OR (OR), and optional features). The analysis examines if the number of products (M)
influences the variability identification rate of individual PLAs.

To test our hypothesis related to RQ1, we analyzed the correlation analysis results.
We applied the non-parametric Spearman rank correlation (DANIEL, 1990), to measure
the degree of association between two variables.

Our method for evaluating the effectiveness of the recovered PLA to support reusabil-
ity evaluation was based on the analysis of CRR, which examines whether the number of
optional features (OF) influences the component reuse rate of PLA elements.

To test our hypothesis related to RQ2, we compared the CRR values from 15 SPL
projects. We applied the ANOVA (NATRELLA, 2010) to identify if at least one SPL
presented different CRR value, and the Turkey test (NATRELLA, 2010) to perform a
pairwise comparison between the values.to answer the research questions.

Finally, our method for evaluating the SPL reuse rate was based on a general analysis
of the recovered PLA, and on the individual analysis of each PLA element.

6.2 STUDY OPERATION

6.2.1 SPL Projects analyzed

The SPL projects were selected based on the following criteria: lack of documented PLA
and source code written in Java (a constraint imposed by STAN4J).

The selected SPL projects are:

• Draw Product Line (DPL) - An SPL for drawing applications;

• Video on Demand (VOD) - An SPL for video-on-demand streaming applications;

• Zip Me - An SPL for file compression software;

• Game of Life (GOL) - An SPL that simulates the board game - game of life;

• Graph Product Line (GPL) - An SPL for implementing graph manipulation li-
braries.

• Prop4J - An SPL for arbitrary propositional formulas;

• BankAccount - An SPL to manage bank accounts;

• BankAccountV2 - An improvement of BankAccountSPL with more features;

• DesktopSearcher - An SPL that implements programs for indexing and content
based searching in files;

• Elevator - An SPL used for evaluation in model checking context;

98 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

• ExamDB - An SPL that implements database management systems that manages
exams;

• PayCard - An SPL that implements smartcard-payment software products that
supports optionally transaction logging and statistics;

• PokerSPL - An SPL that implements the poker game variations;

• UnionFind - An SPL that implements the UnionFind algorithms.

Table 6.1 summarizes our sample and presents the number of features (mandatory and
optional), classes and products of each SPL, and the tool used for product generation.

6.2.2 Preparation

Figure 6.1 The overall recovery process: activities, inputs and outputs.

The selected SPL projects were subject to product generation, MDG extraction with
STAN4J, and PLA recovery with the PLAR. Figure 6.1 shows the main activities, inputs,
and outputs of the PLA recovery process used in this study. First, we selected the SPL
products source code. Second, we performed the Information Extraction – from the SPL
product source code – with Stan4J tool. Third, we used the Recovered Information
as input for the PLAR Tool. The tool provided the following outputs regarding the
Recovered PLA: report, metrics, module view, class diagram, and DSM. Finally, we used
some tools such as Graphviz and PlantUML to provide the visualization of the recovered
information.

A product configuration is said to be valid when it obeys the configuration model
dependencies (APEL et al., 2013). For any SPL with a potential high number of products
(e.g. Prop4J can have 5K products), we used the T-Wise method (HENARD et al.,
2014) to generate only a subset of SPL products. The T-wise method takes as input a
configuration model that defines the valid configuration space for the SPL. This model
typically includes a set of configuration options, each of which takes a value from a small
number of discrete settings, and a set of system-wide constraints among configuration
options. Given the model, these methods compute a t-way covering array - a set of
configurations, in which each valid combination of option settings for every combination
of t options appears at least once. Finally, some SPL projects (DPL, VOD, Zip Me,
and GOL) had existing generated products available, so that we could skip product
generation.

6.3 DATA ANALYSIS 99

6.2.3 Data collection

For each SPL project studied, the PLA was recovered and metrics were collected using
the PLAR Tool.

6.3 DATA ANALYSIS

This section presents the statistical analysis of the treatment variables relating to the
data items gathered in the study. First, we present some descriptive statistics for the
dependent and independent variables; next, we present the analysis of each SPL data –
because the SPL projects used different techniques to implement the variability.

In order to evaluate the quality of each recovered PLA, we measured SSC, SVC, and CRR

values. The SPL projects with a high SSC value and a low SVC value indicate that the PLA
is mostly composed of common components. Conversely, projects with high SVC value
and low SSC value indicate that the PLA is mostly composed of variable components.

6.3.1 Descriptive Statistics

Table 6.1 SPL Projects analyzed and Metrics collected for PLAs
SPL #F #FM #OF #P #C Ge. SSC SVC RSC RVC CO OR CM MR

DPL 5 3 2 12 4 NA 0.5 0.5 0.3 0.7 2 2 2 1
VOD 11 6 5 32 42 NA 0.8 0.2 0.7 0.3 10 23 32 55
Zip Me 7 2 5 32 31 NA 0.8 0.2 0.7 0.3 6 14 25 32
GOL 21 12 9 65 21 NA 0.6 0.4 0.7 0.3 8 11 13 24
GPL 38 18 20 155 15 CD 0.6 0.4 0.4 0.6 6 23 9 16
Prop4J 13 0 13 31 14 FH 0.1 0.9 0.0 1.0 13 50 1 0
BankAccount 6 0 6 24 2 FH 1.0 0.0 1.0 0.0 0 0 2 1
BankAccountv2 8 0 8 72 3 FH 0.7 0.3 0.5 0.5 1 1 2 1
DesktopSearcher 22 6 16 462 41 AH 0.3 0.7 0.1 0.9 30 134 11 14
Elevator 6 0 6 20 5 FH 1.0 0.0 1.0 0.0 0 0 11 29
E-mail 6 0 6 40 3 FH 1.0 0.0 1.0 0.0 0 0 3 4
ExamDB 3 0 3 8 4 FH 1.0 0.0 1.0 0.0 0 0 4 5
PayCard 3 0 3 6 7 FH 0.7 0.3 0.4 0.6 2 5 5 3
PokerSPL 11 2 9 28 8 FH 0.5 0.5 0.3 0.7 4 5 4 2
UnionFind 10 2 8 6 4 FH 1.0 0.0 1.0 0.0 0 0 4 4

Legend: [#F] Features [#FM] Mandatory Features [#OF] Optional Features [#P] Product [#C] Classes [Ge.]

Product Generator [NA] Not Available [CD] CIDE [FH] FeatureHouse [AH] AHEAD [CO] ClassOptional
[OR] OptionalRelation [CM] ClassMandatory [MR] MandatoryRelation

Table 6.1 presents the metric results of the recovered PLAs. The SSC metric is used to
calculate the overall similarity of PLA elements; the maximum value is 1. The greater the
value of SSC the better the reuse rate of the PLA elements (ZHANG et al., 2008). The
SVC metric calculates the general variability of the PLA elements; the maximum value
is 1. The greater the value of SVC the worse the reuse rate of the PLA (ZHANG et al.,
2008). The RSC and RVC metrics are similar to SSC and SVC, respectively. However, they
are used to measure the similarity and variability of relations among the PLA elements.

The metrics ClassMandatory and ClassOptional calculate the number of manda-
tory and optional classes, respectively. The number of mandatory classes should be
greater than the number of optional classes to indicate a better reuse of PLA com-

100 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

ponents (OLIVEIRA-JUNIOR; GIMENES; MALDONADO, 2008). Besides, the met-
rics OptionalRelation and MandatoryRelation use the same principle to calculate the
number of mandatory and optional relations. It is possible to perform these calculations
because PLAR analyzes the classes and relations captured in the MDG files.

PLTotalVariability is a metric that estimates the PLA variability. Given that
the MDG files were not able to capture detailed information about class methods and at-
tributes, these metrics could not be used at all. Table 6.1 shows the sum of ClassOptional
and OptionalRelation metrics.

The CRR metric is missing from the overview presented in Table 6.1. This metric
provides a measure for each PLA element and relation, as it calculates the amount of
products (ratio) that have a specific element or relation. The closer to one the better: a
high CRR indicates that the element presents a good reuse rate. Values above 50% mean
that the element was used at least in half of SPL products, what indicates a good reuse
rate.

Figure 6.2 Boxplot of Component Reuse Rate per PLA

Figure 6.2 shows a boxplot with the distribution of the reuse rates for each SPL. The
values range from 0 to 100, in which lower values indicate worse results in terms of reuse
rate, and the higher values indicate ones.

6.3.2 Draw Product Line Results

Table 6.1 shows the average reuse rate for its recovered PLA. The SSC value indicates
variability in 50% of the PLA elements, while the RVC value indicates variability in 2/3
of the PLA relations.

Table 6.2 CRR Measures for DPL elements
Element CRRpair CRR8 CRRall

BasicRectangle 100.0 62.5 66.7
Canvas 100.0 100.0 100.0
Line 50.0 50.0 66.7
Main 100.0 100.0 100.0

Table 6.2 presents the CRR values for the PLA elements. The CRRpair, CRR8 and CRRall

6.3 DATA ANALYSIS 101

columns present the CRR value for recovery based on two products, eight products, and
all SPL products configurations, respectively.

The CRR measures for Canvas and Main (two classes implementing common fea-
tures) are 100%. For BasicRectangle, the CRRpair measure is 100% and variability could
not be identified. The CRR8 decreased 35.5% (reaching 62.5%) and CRRall increased 4.2%
(reaching 66.7%). For Line, the CRRpair measure is 50% and some variability could be
identified. The CRR8 remains 50% and CRRall increased 16.7% – reaching 66.7%. DPL
results do not confirm that the number of products used in the PLA recovery influences
the precision of the CRR values for the PLA elements.

6.3.3 Video on Demand Results

The SSC value for VOD is 0.77, indicating that 32 products reused most of its PLA
elements. We found similar results for the PLA relations (see Table 6.1).

The optional classes had a CRR of 50%, that is, these elements were used by half of
the SPL products, indicating high component reuse inside the SPL. However, some re-
lations presented a CRR of 25% and 3.25% indicating that few products used them. For
this reason, the refactoring of the elements involved in this relation should be consid-
ered (ZHANG et al., 2008). Due to space limitation, information about the PLA and the
Table with the CRR values for the 42 classes of the VOD SPL project are only available
at the study website1.

6.3.4 Zip Me Results

The SSC measure was 0.8 indicating the reuse of almost all the elements. The RSC was
0.7, also a high value for reuse of relations (see Table 6.1).

The PLA elements presented high CRR values – 25 common and 6 variable elements
– above 50%. The PLA relations also presented high CRR values – 32 common and 14
optional relations. From the optional relations, 11 presented a CRR value above 50%; the
other relations had a CRR of 25%.

6.3.5 Game of Life Results

The SSC value was 0.62%, indicating a larger amount of common elements rather than
variable ones (see Table 6.1).

Although the GOL results indicated lower SSC values when compared to the VOD
project, some elements were present in almost every GOL product (98% and 73%). In
other words, the reuse rate for GOL is high. We found similar results for CRR and PLA
relations.

Figure 6.3 shows the design structure matrix for GOL PLA. Rows and columns headers
of a DSM are named after PLA elements. The darker items represent the commonalities
of the PLA while the lighter items represent the variable elements. The tool colors the
dependency between two common elements with blue, and between a variable element

1https://bit.ly/2UUMzCv

102 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

and another element using red.
The GOL DSM shows that, unlike GPL and Prop4J, there is not a central node,

i.e. an element that is related to almost every PLA element. The DSM also allows to
visualize that PLA relations are scattered in the elements. We also noticed that some PLA
elements did not have any relation; we believe this is due to features not implemented or
discarded while their classes still remain in source code.

Figure 6.3 Design Structure Matrix for GOL

6.3.6 Graph Product Line Results

The SSC value was 0.6 indicating more common than variable elements. However, the
opposite happened with the relations – the SSC value was 0.42. This scenario indicated
that most of the PLA relations were variable. According to Zhang et al. (2008), this is a
symptom of bad component reuse, suggesting a potential candidate for improvement.

The CRR values indicated that most variable elements presented a high reuse rate.
However, we identified that some elements, such as CycleWorkSpace and GlobalVar-
sWrapper, presented a low CRR value. Furthermore, the majority of relations presented
low CRR values. In other words, CRR values indicate that the PLA has flaws and bad
quality (ZHANG et al., 2008). The elements Graph and Vertex have relationships with
all the other elements.

6.3.7 Prop4J Results

Prop4J has no mandatory features, implementing only optional features. Metrics results
(Table 6.1) reflect this characteristic. In addition, for the absence of mandatory features,

6.3 DATA ANALYSIS 103

this SPL project allowed the generation of 5029 possible configuration of products based
on optional features. For this reason, we instantiated 11 products using T-wise test
configuration (HENARD et al., 2014). After PLA recovery based on a subset of 11
products, we identified only one common element (Node) and 13 variable elements. All
the recovered relations are variable.

Figure 6.4 Design Structure Matrix for Prop4J

Figure 6.4 shows the DSM for Prop4J PLA. The Node element is common to the 11
products analyzed. However, the relations were variable confirming the CRR values. These
results suggest that the PLA has poor quality and that the SPL needs maintenance to
improve the reuse rates.

In Prop4J DSM, we identified two central classes, Node and Prop4J test that relate
to almost every class present in the PLA, which is an indicative of the God class smell
(FOWLER, 2009) and require further investigation.

6.3.8 BankAccount and BankAccountV2 Results

BankAccount SPL implemented the variability in the source code. For this reason, the
SSC and RSC values were 1, and SVC and RVC values were 0. On the other hand, BankAc-
countV2, the second version of the BankAccount SPL, introduced new features to the
SPL.

The implementation of these new features required new classes and relations, which
required the identification of variability in classes and relations that were absent from
the previous version of this SPL. The BankAccountV2 SSC value was greater than 0.5,
meaning that most of its elements are common to all products, what indicates a good
PLA quality (ZHANG et al., 2008).

104 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

6.3.9 DesktopSearcher Results

The values for SSC and RSC were considered low (ZHANG et al., 2008). The SSC value
was 0.26 which means that almost all of its classes are variable among the products. The
CRR presented the same behavior. In most cases, the values were lower than 0.5, what
indicates a need of improvement in the reuse rate.

Theses values indicated that the SPL products tend to have exclusive products that
require specific features in only part of the products (APEL et al., 2013) which we believe
to be the cause of the low reuse rate found in this SPL project.

6.3.10 PayCard Results

PayCard is a small-sized SPL project, with respect to the amount of product configura-
tions, and classes. The project presents good reuse rates with a value of 0.71 for SSC, i.e.,
most of its classes are common to all products. However, the dependencies among classes
presented a value of 0.37 for RSC, which means that most of the relations are variable.

6.3.11 PokerSPL Results

PokerSPL is another small-sized SPL project, regarding the number of classes and prod-
ucts. It presented a 0.5 SSC value meaning that half of its classes are common to all
products. The reuse rates could be better since most of the variability in this SPL was
found on the values assumed by some of its classes attributes.

Accordingly, the CRR values for the SPL relations present similar results. A possible
explanation is that most of the SPL variability is implemented in the values of class
attributes.

6.4 DISCUSSION

In this section we interpret the results and discuss the findings by answering the research
questions.

6.4.1 Answers to the Research Questions

For the first research question, RQ1. Does the number of products used in PLA recovery
affect the precision of the PLA metrics?, we verified if The number of products used in
PLA recovery affected the precision of the PLA metrics.

Figure 6.5 shows SSC (dark grey color) and SVC (light grey color) projects’ metrics
collected during different stages of comparison. We started comparing two products and
added the products gradually until all the products were considered.

We identified that the amount of information regarding the variability increased when
we included more products in the comparison. Moreover, after a certain number of
comparisons, the value of the metrics became constant. For instance, we compared 18
products aiming to recover all the variability details of the Zip Me SPL. We observed
the same pattern on other SPL projects. For example, it was necessary to compare 17
products to recover all the variability details of the VOD SPL.

6.4 DISCUSSION 105

As the PLA recovery process examined and merged more products, the set of elements
and relations that comprise the PLA and metrics values tends to stabilize. The set of
products (after the metrics stabilization) had a common structure. We also identified
this pattern when we analyzed the CRR values with different combination of products in
the recovery. In other words, the sub-set of products has the same architecture.

Table 6.3 presents the CRR values from the Prop4J project. The CRRpair, CRR8 and
CRRall columns present the CRR value for recovery based on two products, eight products,
and all SPL products, respectively. By comparing all the product, we identify the correct
CRR values.

Table 6.3 CRR Measures for Prop4J
Element CRRpair CRR8 CRRall

And 100.0 50.0 54.5
AtLeast 50.0 37.5 36.4
AtMost 50.0 37.5 36.4
Choose 50.0 37.5 36.4
Equals 100.0 37.5 27.3
Implies 100.0 50.0 54.5
Literal 100.0 87.5 90.9
Node 100.0 100.0 100.0
NodeReader 100.0 62.5 54.5
NodeWriter 50.0 75.0 54.5
Not 50.0 50.0 36.4
Or 50.0 37.5 36.4
Prop4JTest 50.0 37.5 36.4
SatSolver 50.0 37.5 45.4

Moreover, to answer the RQ1, we performed a correlation analysis among the variables
of the exploratory study (see Figure 6.6). We identified a high correlation between the
number of variants (in this analysis we considered products as variants) and the variables
that address the variability (CO, OR, SVC, and number of optional features). Table 6.4
shows the Spearman correlation test that rejected the null hypothesis.

Table 6.4 Comparisons that rejected the null hypothesis RQ1
Comparison p-value

Products-CO 7.0e-03
Products-OR 7.0e-03
Products-SVC 2.0e-02
Products-OF 2.0e-03

In the second research question, we used the ANOVA (Analysis of Variance) to test the
variables and the p-value was 1.3e-07. Such evidence allows to reject the null hypothesis
(H0a) of equal population means. Therefore, it is possible to conclude that at least one
PLA has reuse rate significantly different from the others.

To identify the different means, we applied the Tukey test. We performed and ana-
lyzed 105 comparisons, and only 12 of them presented statistically significant differences.

106 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

Table 6.5 shows p-values of the comparisons that rejected the null hypothesis (the SPLs
involved in the test, and the p-value).

Table 6.5 Comparisons that rejected the null hypothesis RQ2
ID Comparison p-value

40 Elevator-DesktopSearcher 2.3e-03
43 GOL-DesktopSearcher 4.4e-02
49 VOD-DesktopSearcher 2.1e-03
50 ZipMe-DesktopSearcher 1.5e-03
57 Prop4J-Elevator 4.0e-05
74 Prop4J-ExamDB 1.9e-02
81 Propo4J-GOL 8.0e-04
92 Prop4J-PayCard 2.2e-02
96 Prop4J-PokerSPL 4.4e-02
100 UnionFind-Prop4J 1.9-e02
101 VOD-Prop4J 7.0e-05
102 ZipMe-Prop4J 4.0e-05

We also highlight the comparisons that rejected the null hypothesis in conformance
with Table 6.5. Based on such data, we identified that Prop4J (in eight comparisons)
and DesktopSearcher (in four comparisons) yielded worse reuse rates among the PLAs
(see Figure 6.2).

We identified that optional features directly impact the reuse rate. The Prop4J pre-
sented the worst results because all their features were optional allowing the instantiation
of 5029 products. Moreover, for the DesktopSearcher SPL, the 16 optional features al-
lowed the creation of 462 products. These scenarios illustrate the complexity involved
during an SPL project development. The variability management is a complex task that
is also reflected in the PLA.

6.4.2 General Findings

Correlation between metrics. From the overall results for the fifteen SPL projects, we
noticed that when the value of SSC was high, the PLA elements presented high CRR

values as well. This may be a preliminary evidence for a correlation between SSC and
CRR metrics.

Some metrics provided support for other metrics. The quantitative metrics CM and CO

counted the number of mandatory and optional classes of the PLAs. They confirmed the
SSC and SVC metrics values.

CM and CO provided support for the SSC, SVC, and CRR metrics. The former validated
and confirmed the values of the latter.

Feature scattering and reuse rate. In projects with better metrics results (Zip Me,
VOD, and GOL, respectively), the classes outnumbered the features, with feature scat-
tering in a significant amount of classes. To perform this analysis, we verified how the
feature selection to build each product was spread through the source code manually and
compared to the metrics collected by the PLAR. The relation between feature scattering
and high reuse rate deserves further investigation.

6.5 CHAPTER SUMMARY 107

6.4.3 Threats to Validity

The following threats to validity are discussed in order to reveal their potential interfer-
ence with our study design.

Internal Validity. PLAR Tool limitations may have impacted the results of the ex-
ploratory study. For instance, the input for PLAR Tool is a MDG file created by STAN4J
and Analizo. Currently, the extracted MDG only supports “call” dependencies between
modules. Inheritance relationships are not extracted.

External Validity. No industrial SPL Projects were used in this exploratory study;
only open source SPL projects created for educational and research purposes were used.
In order to minimize this threat we analyzed SPL projects from different domains.

Construct Validity. relacao ao estudo e os potenciais resultados (casa tambem com
as hipoteses definidas); sera que foram definidas para refletir a realidade? ou ainda, sera
que durante a execucao do estudo, ocorreu algo compativel com um bias, para ajustar os
resultados às expectativas? The recovered PLA from the SPL projects were not verified
by SPL developers. We contact them, but they rarely answer. To minimize this threat
we performed a manual PLA extraction and compared to the results obtained by PLAR
Tool which showed that the variable and common elements were mapped correctly.

6.5 CHAPTER SUMMARY

In this chapter, we presented the application of SAVaR and the results of an exploratory
study to assess the quality of the recovered PLAs from 15 open source SPL projects
implemented in Java. The PLAR Tool was used to support PLA recovery with the
identification of commonality and variation points.

Eleven out of fifteen recovered PLAs had high quality according to the established
criteria indicating high reuse of components during the SPL development phase. The
results provided initial evidence regarding a correlation between the metrics values and
the components reuse rate.

Some of our findings are: the number of products used in PLA recovery affected the
variability identification; the number of optional features affected the components reuse
rate; and there is a correlation between the metrics used to assess SPL reusability based
on the recovered PLAs. These findings suggest that a minimum set of representative SPL
products should be identified and selected for PLA recovery and that component reuse
rate is a candidate metric for SPL reuse assessment.

Other contribution of the study presented in this chapter was the recovered architec-
tural information for each SPL project, because none of them presented PLA documen-
tation. The results of this exploratory study were also used to improve the design and
execution of following empirical studies. In the next Chapter, we present the application
of the SAVaR in the recovery of 10 PLAs and the definition of the PLA for the Apo-Games
project.

108 RECOVERING THE PLA OF 15 OPEN SOURCE SPL PROJECTS

Figure 6.5 SSC and SVC metrics according to the number of products in the comparison

6.5 CHAPTER SUMMARY 109

Figure 6.6 Correlation analysis

Chapter

7
No man ever steps in the same river twice, for it’s not the same river and he’s not the same man. –

Heraclitus

CASE STUDIES

Whenever the PLA documentation is missing, it can be recovered by reverse engineering
the SPL variants. The recovered PLA is a relevant asset for both developers and archi-
tects, and can be used to drive specific activities of SPL development and evolution, such
as understanding the SPL structure and its variation points, and assessing SPL reuse.

To evaluate SAVaR , we applied it in the case of the Apo-Games projects (LIMA et al.,
2018, 2018). The Apo-Games1 is a set of medium-sized games that have been implemented
based on the clone-and-own approach. This case study has been proposed as a good
candidate for research in the context of reverse engineering of variability (KRÜGER et
al., 2018). Apo-Games evolved over time because of the inclusion of new games and
adaptations. These games are composed of Java desktop and Android applications. Java
desktop have evolved since 2006 until 2012. In 2012 the development of Android games
started. In this work, we deal with the Java games of the Apo-Games repository2. The
games source code varies from 1.7 KLOC to 19.6 KLOC. They are medium-sized projects
but cumulate to an overall size of 163.1 KLOC.

The experimentation in this real family of systems showed that SAVaR is able to
identify variant outliers and help domain experts to take informed decisions to support
PLA recovery. Moreover, we performed a study to investigate the use of SAVaR to recover
the PLA for ten SPL projects. For each SPL and recovered PLA, reuse assessment was
supported by existing reuse metrics.

The remainder of the Chapter is organized as follows. Section 7.1 describes the study
on recovering the PLA of the Apo-games. Section 7.2 describes the PLA recovery of 10
open source projects. Section 7.3 draws concluding remarks.

1<http://apo-games.de>
2<http://bitbucket.org/Jacob_Krueger/apogamessrc>

111

112 CASE STUDIES

7.1 RECOVERING THE PLA OF THE APO-GAMES

Along this section, we investigated the application of SAVaR using the projects’ legacy
source code as input. The study focused on analyzing the source code of 20 projects
developed using the Java programming language and 5 projects developed using the
Android framework.

We next describe the evaluation design defined based on the Goal/Question/Metric
(GQM) method (SOLINGEN et al., 2002).

Evaluation goal: evaluating how SAVaR supports the cost-effective PLA recovery through
the identification and removal of outliers.

Research questions: Guided by our evaluation goal we derived the following research
questions.

• RQ1: How similar are the variants? With this question we want to investigate, in
one hand, how similar the variants are. On the other hand, we could also observe
how different the variants are. Since our goal is to deal with outliers, we first need
to figure out the degree of similarity and variability of the variants to determine
which variant is too costly to be included in the PLA recovering process.

– Metric: We relied on the analysis of the Jaccard similarity 3. The Jaccard
similarity measure is defined as the size of the intersection divided by the size
of the union of the sample sets. In our case, the sample sets will be the PLA
components of each pair of variants.

• RQ2: Is there any correlation between the size of the variants and the existence
of outliers? We aim to investigate which are the characteristics that can help
to identify outlier variants. For instance, are variant outliers either the bigger or
smaller games? To what extent the variability of a game makes it too different from
other variants?

– Metric: We applied the correlation analysis between variants’ size (LOC) and
the number of packages and classes exclusive to a variant. We used the Pearson
correlation coefficient analysis.

• RQ3: To what extent removing outliers from the analysis support recovering of better
PLAs? We aim to analyze the quality of the obtained solutions when removing
outliers. The quality of such solutions is evaluated according to eight architectural
metrics. Another point we take into account here is about the implementation level.
We want to investigate the impact of outliers removal in class level and in package
level.

– Metric: We considered the SSC, SVC, RSC, and RVC metrics, described in Chap-
ter 2. We collected these metrics as a result of SAVaR . We applied the threshold
analysis and collected the metrics after the threshold cut.

3<https://en.wikipedia.org/wiki/Jaccard_index>

7.1 RECOVERING THE PLA OF THE APO-GAMES 113

Table 7.1 presents a summary of the GQM method for our evaluation.

Table 7.1 Describing the study according to GQM
Goal Evaluating cost-effectiveness of SAVaR

Purpose Analyze the impact of outliers
With respect to product line architecture recovering
From the point of view Researchers
In the context of SPL extraction from Apo-Games variants

Question Metric

RQ1 Jaccard similarity
RQ2 LOC, number of packages and classes exclusive to a variant
RQ3 SSC, SVC, RSC, RVC

Table 7.2 Apo-Games Projects – Metrics summary
Projects Year KLOC #E #Jr #Ja #T #TJ #P #EP %P #C #EC %C

ApoDefense 2007 12917 - X X - X - - - 66 56 85%
ApoSkunkman 2007 8645 - X - X - 16 6 37% - - -
ApoStarz 2008 6454 - - X X X 11 1 9% 49 8 16%
ApoBot 2009 5857 - - X X X 8 0 - 48 2 4%
ApoSoccer 2009 10736 - X - X - 18 10 55% - - -
ApoCommando 2010 9820 X - - X X 5 0 - 72 18 25%
ApoIceJumpR. 2010 8138 - X - X - 9 0 - - - -
ApoPongBeat 2010 6591 X - - X X 10 1 10% 79 31 39%
ApoIcarus 2011 5851 X - - X X 9 0 - 59 15 25%
ApoMarc 2011 5493 - - X X X 10 2 20% 59 6 10%
ApoMario 2011 17184 - X - X - 14 2 14% - - -
ApoSlitherLink 2011 7313 X - - X X 8 0 - 62 8 12%
ApoNotSoSimple 2011 7558 X - - X X 10 0 - 57 1 2%
ApoRelax 2011 6688 X - - X X 10 0 - 56 3 5%
ApoSimple 2011 19558 X - - X X 16 6 37% 104 48 46%
ApoSnake 2012 6557 - X - X - 10 0 - - - -
ApoSudoku 2012 5517 X - - X X 9 0 - 41 2 5%
ApoImp 2012 6432 - X - X - 12 1 8% - - -

Total - 157309 8 7 4 17 12 185 29 15% 752 198 26%

Legend: [LOC] Lines of Code, [#E] projects available in Eclipse, [#Jr] projects available in Jar files, [#Ja] projects available in
Java files, [#T] TGF files packages, [#TJ] TGF files classes, [#P] Number of Packages, [#EP] Number of Exclusive Packages,
[%P] Percentage of Exclusive Packages over the total [#C] Number of Classes, [#EC] Number of Exclusive Classes, [%C]
Percentage of Exclusive Classes over the total

7.1.1 Case Study

To answer the research questions, we used the Apo-Games variants as input for SAVaR .
From the 20 variants, we excluded three of them because they did not provide information
for allowing the Information Extraction 2○. Concretely, we identified that the developer
did not use the packages structure in the implementation of the projects ApoCheating
and Tutorvolley from 2006. Moreover, we eliminated ApoDefence variant of the packages
analysis because the developer performed obfuscation to the source code and we did not
have access to the original source code for this variant.

Table 7.2 presents the selected information of the variants. From the projects, eight
were available as Eclipse projects, six are only jar files, and five presented only the Java

114 CASE STUDIES

files. We managed to extract 17 TGF files with packages information and 12 TGF files
with classes information.

Regarding the classes analysis, the extraction tool did not support the extraction of
classes information based on jar files. For this reason, we used the projects available in
Eclipse and in Java files.

7.1.2 Threshold Configurations

In this work, a threshold is used to indicate which elements, namely classes and packages,
will not be used as input to recover PLAs. In other words, the threshold allows us to
remove exclusive packages and classes without eliminating the outliers variants.

To determine the threshold configurations to consider during the evaluation, we rely
on a report generated by SAVaR . The report presents the frequency that each class and/or
package exists in the variants based on the report of appeareance frequency, we determine
the threshold configurations.

Let us assume we are dealing with 17 variants, when a class/package X exists in the
implementation of all variants, its percentage of appearance frequency is 100%. On the
other hand, if a class/package Y is in only one variant, then its appearance frequency
is only 6%. In this scenario, there is a threshold configuration of 6% for the recovering
process, which means the classes existent in only one variant will not be considered for
constructing the PLA.

Figure 7.1 Variants’ architectural similarity graph.

7.1.3 Results

In this section, we describe the study results. We performed an initial analysis of the
variants. Figure 7.1 shows a graph where the nodes are the variants and the size of
the nodes are related to the number of packages of each variant. Edges exist between

7.1 RECOVERING THE PLA OF THE APO-GAMES 115

Figure 7.2 Excerpt of the Concept lattice with variants in the games

nodes when the Jaccard similarity between them is higher than zero. This similarity
determines the weight of the edges which is used by the automatic layout of the graph
to approximate similar variants, and to keep off the variants which are different. On the
left side, we observe 4 variants (ApoMario, ApoSoccer, ApoSimple and ApoSkunkman)
which are dissimilar among them and among the rest of the variants. On the contrary,
in the zoomed part, we can observe some variants which are very similar. As an extreme
case, there are completely overlapped variants what indicates that certain games have
the same PLA (e.g., ApoIcarus, ApoSimple and ApoSudoku).

We performed FCA to automatically obtain the representation shown in Figure 7.2
which is known as the pruned concept hierarchy (PETERSEN, 2004). The ApoBot
variant in the upper half of the figure illustrates such a case. By recursively following
the arrows until the root, we can know that ApoBot consists of the packages level,
entity and a set of common packages for all variants (game, org.apogames.image etc.).
In addition, we can find the previously mentioned variants ApoIcarus, ApoSimple and
ApoSudoku that are grouped in the same concept as they consist of the same packages,
and we can observe how some variants have packages that are exclusively specific to one
variant (e.g., ApoMario has the packages help and test which do not appear in another
variant). Both Figures 7.1 and 7.2 are helpful to understand how similar are Apo-Games
variants among them, to visually identify outliers and clusters, and to understand how
packages are distributed among the variants.

Figures 7.3 and 7.4 show the correlation between Lines of Code (LOC) and exclusive
variants’ information (packages and classes implemented for a specific variant). Fig-
ure 7.3 shows the correlation between exclusive packages and the size of the variants and
Figure 7.4 shows the correlation between exclusive classes and the variants’ size. The cor-
relation between exclusive packages and variants LOC is 0.51. Moreover, the correlation
between exclusive classes and variants’ size is even stronger (0.80).

116 CASE STUDIES

Figure 7.3 LOC per Exclusive Variants - Packages (cor. 0.51)

Figure 7.4 LOC per Exclusive Classes (cor. 0.80)

Table 7.3 presents the collected metrics for packages analysis. We executed SAVaR

seven times according to threshold values based on a report generated by SAVaR . The
report identifies the packages and classes according to their existence in the variants. For
instance, when the package or class is implemented in all the products, the report informs
that this package or class appears in the implementation of 100% of the variants. We
also included the analysis where we manually eliminated some variants. Table 7.3 shows
the results of two manual executions we performed acting as domain experts (M. 1st and
M. 2nd). The metrics for the manual experiments were similar to using a threshold of
around the 6%.

When we eliminated packages exclusive to only one variant (threshold of 6%), the
number of optional packages dropped from 35 to 8 packages. In other words, it reduced
the variability (“noise”) in the PLA representation. Moreover, it balanced the SSC and
SVC metrics’ values. We performed this activity manually in our previous study (LIMA
et al., 2018) and it was time-consuming. By applying the threshold technique, the time
and effort were reduced.

7.1 RECOVERING THE PLA OF THE APO-GAMES 117

Table 7.3 Recovered Metrics from the PLAs (Packages)
TH SSC SVC RSC RVC CO OR CM MR

00% 0.15 0.85 0.01 0.99 35 159 6 3

M. 1st 0.30 0.70 0.03 0.97 14 85 6 3
M. 2nd 0.50 0.50 0.07 0.93 6 37 6 3

06% 0.43 0.57 0.05 0.95 8 57 6 3
12% 0.55 0.45 0.08 0.92 5 37 6 3
18% 0.60 0.40 0.10 0.90 6 33 6 3
65% 0.70 0.30 0.30 0.70 3 7 6 3
77% 0.85 0.15 0.43 0.57 1 4 6 3
95% 1.00 0.00 1.00 0.00 0 0 6 3

Legend: [TH] Threshold, [SSC] Structure Similarity Co-
efficient, [SVC] Structure Variability Coefficient, [RSC] Re-
lation Similarity Coefficient, [RVC] Relation Variability
Coefficient, [CO] PackageOptional, [OR] OptionalRelation,
[CM] PackageMandatory, [MR] MandatoryRelation

Table 7.4 presents the collected metrics for classes analysis. We executed SAVaR eleven
times according to different threshold values. When we reduced the abstraction level to
classes, we identified a higher granularity in variability (278 optional classes and only 2
mandatory classes).

As opposed to the analysis of packages, the threshold technique was not so efficient
to reduce the amount of variability in the PLA representation. The metrics values did
not change over the PLA recovery using different values of threshold. We believed this
happened because of the lower number of mandatory classes.

In the report, we identified some classes that are present in 91% of the variants.
For this reason, we used a different strategy to improve the PLA representation. We
eliminated the variants with a high number of exclusive classes to raise the number of
mandatory classes and improve SSC and SVC metrics’ values.

Table 7.5 presents the combination of eliminating variants and then applying the
threshold. We identified that by eliminating one variant, the number of mandatory
classes raised from 2 to 19. However, even eliminating 4 variants with the high number
of exclusive classes, the SSC and SVC metrics did not change. We identified metrics
improvements when we applied the threshold.

7.1.4 Discussion

In this section, we interpret the results and discuss the findings by answering the research
questions.

7.1.5 RQ1 - How similar the variants are

The Jaccard similarity measure indicated that four variants can be considered as outliers,
namely ApoSoccer, ApoSimple, ApoSkunkman, and ApoMario, because they are dissim-

118 CASE STUDIES

Table 7.4 Recovered Metrics from the PLAs (Classes)
TH SSC SVC RSC RVC CO OR CM MR

00% 0.01 0.99 0.00 1.00 278 625 2 0
09% 0.02 0.98 0.00 1.00 80 114 2 0
17% 0.03 0.97 0.00 1.00 68 80 2 0
26% 0.04 0.96 0.00 1.00 54 58 2 0
34% 0.04 0.96 0.00 1.00 51 47 2 0
42% 0.05 0.95 0.00 1.00 46 37 2 0
59% 0.05 0.95 0.00 1.00 37 23 2 0
67% 0.07 0.93 0.00 1.00 27 9 2 0
76% 0.08 0.92 0.00 1.00 24 8 2 0
89% 0.10 0.90 0.00 1.00 18 7 2 0
92% 1.00 0.00 n.a. n.a. 0 0 2 0

Legend: [TH] Threshold, [SSC] Structure Similarity Co-
efficient, [SVC] Structure Variability Coefficient, [RSC]
Relation Similarity Coefficient, [RVC] Relation Variabil-
ity Coefficient, [CO] ClassOptional, [OR] OptionalRela-
tion, [CM] ClassMandatory, [MR] MandatoryRelation

Table 7.5 PLA Metrics after eliminating some variants and Threshold analysis (Classes)
EV SSC SVC RSC RVC CO OR CM MR

0 0.01 0.99 0.00 1.00 278 625 2 0
1 0.08 0.92 0.02 0.98 205 465 19 7
2 0.10 0.90 0.02 0.98 157 365 19 7
3 0.13 0.87 0.02 0.98 126 313 19 7
4 0.15 0.85 0.02 0.98 107 263 19 7

Application of the threshold Analysis

13% 0.26 0.74 0.07 0.93 56 91 19 7
26% 0.32 0.68 0.20 0.80 42 56 19 7
38% 0.38 0.62 0.20 0.80 32 37 19 7
51% 0.46 0.54 0.30 0.70 23 18 19 7

Legend: [EV] Eliminated Variants, [SSC] Structure
Similarity Coefficient, [SVC] Structure Variability Coef-
ficient, [RSC] Relation Similarity Coefficient, [RVC] Re-
lation Variability Coefficient, [CO] ClassOptional, [OR]
OptionalRelation, [CM] ClassMandatory, [MR] Manda-
toryRelation

7.1 RECOVERING THE PLA OF THE APO-GAMES 119

ilar among the other variants. In other words, it will be too costly to be included in the
PLA recovery because they include a high number of exclusive packages (ApoSoccer =
55%, ApoSimple = 37%, ApoSkunkman = 37%, and ApoMario = 14%). We could not
investigate the classes from ApoSoccer, ApoSkunkman, and ApoMario as the Java files
were not available. However, we believe they followed the same pattern as ApoSimple
with a high number of exclusive classes (46% of the classes).

7.1.6 RQ2 - Correlation between variants’ size and likely outliers

The data reveal that for the Apo-Games case study, the differentiation among variants
implementation increases with their size. This is confirmed by the correlation between the
metrics LOC and exclusive variants, which correlate highly. We can explain this correla-
tion with the observation that larger games usually implement more complex mechanisms
and, consequently, are more variable. On the other hand, smaller games tend to share
the same structure (architecture).

7.1.7 RQ3 - Impact of outliers removal in the recovery of better PLAs

In this analysis, we considered the results of applying the threshold technique. The im-
plementation of this technique allowed the reduction of the number of exclusive packages
and classes without removing the outliers variants. In the high-level context (packages),
we identified the reduction of the exclusive packages and the balance between SSC and
SVC metrics in the first cuts of the threshold. However, in the lower-level (classes), the
number of exclusive classes raised due to the granularity of the implementation. We
believed this behavior happened because it is easier to maintain the organization in the
packages than in the classes. For this reason, we eliminated four outliers variants with a
high number of exclusive classes. Only after eliminating these outliers we identified the
improvements in the metrics and in the PLA representation.

7.1.8 Threats to Validity

The following threats to validity are discussed to reveal their potential interference with
our study design.

7.1.8.1 Internal Validity
Selection. Depending on how the subjects are selected from a larger group, the selection
effects can vary. We identified this effect during the selection of the variants in the class
analysis. When we considered all the variants in the recovery, the PLA was composed
by only optional classes. To reduce the noise in the representation, we eliminated the
variants with a high number of exclusive classes. Moreover, due to extraction tools
limitation and unavailability of the source code of some projects, we cannot extract the
classes information of all the variants.

7.1.8.2 External Validity
Interaction of selection and treatment. This is an effect of having a subject population,

120 CASE STUDIES

not representative of the population we want to generalize. The Apo-Games represents
a small portion of the domain we want to generalize (similar variants that can be used
to migrate to SPL domain). However, this study can help in building evidence regarding
the impact of the variability in the context of PLA recovery. Moreover, another issue we
found is related to packages and classes implementing the same logic but, using different
names. We eliminated information specific to projects to reduce this issue impact.

7.1.8.3 Construct Validity
Mono-operation bias. We only considered subjects of the Apo-Games in the case study.
It may under-represent the construct and thus not give the full picture of the problem.
The projects evolved over the years and new ideas were included contributing for the
maturity and raise of the complexity of the projects.

Inadequate preoperational explication of constructs. The constructs are not sufficiently
defined before they are translated into measures or treatments. The theory is not clear
enough regarding the automation effectiveness of PLA recovery and improvement of the
recovered PLA. We based our analysis on metrics analysis and PLA representation. Even
though, it still impossible to eliminate human intervention.

7.1.8.4 Conclusion Validity.
Low statistical power. One threat to this study was the sample size. From the 20 variants,
we considered 17 in the package analysis and only 12 in the classes analysis. However, as
the purpose was to provide evidence on the existence of a correlation between variant size
and exclusive components, and investigate how the threshold improves the effectiveness
of the PLA recovery. To mitigate this treat, we performed the study in Section 7.2.

7.2 RECOVERING THE PLA OF 10 OPEN SOURCE PROJECTS

This section describes the application of the PLA recovery in the context of ten open
source SPL projects from different domains were selected for this study, based on the
following criteria: lack of documented PLA and source code written in Java (a constraint
imposed by STAN4J).

The selected SPL projects are:

• DesktopSearcher - An SPL that implements programs for indexing and content
based searching in files;

• Game of Life (GOL) - An SPL that simulates the board game - game of life;

• Graph Product Line (GPL) - An SPL for implementing graph manipulation li-
braries.

• Health Watcher - A real web-based system information developed to improve the
quality of the services provided by health care institutions (GREENWOOD et al.,
2007);

7.2 RECOVERING THE PLA OF 10 OPEN SOURCE PROJECTS 121

Table 7.6 Describing the study according to GQM
Goal Evaluating cost-effectiveness of SAVaR

Purpose Analyze the impact of exclusive variable elements
With respect to PLA recovering
From the point of view Researchers
In the context of Extraction from 10 open source projects

Question Metrics

RQ4 SSC, SVC, RSC, RVC

• MobileMedia - An SPL for manipulating photo, music, and video on mobile devices,
such as mobile phones (FIGUEIREDO et al., 2008);

• Prop4J - An SPL for arbitrary propositional formulas;

• Message - An SPL that implements Instant Message products;

• Video on Demand (VOD) - An SPL for video-on-demand streaming applications;

• Webstore - An SPL that implements an online store;

• Zip Me - An SPL for file compression software.

We describe the next SAVaR evaluation using the Goal/Question/Metric (GQM) ap-
proach (SOLINGEN et al., 2002). Table 7.6 presents a summary of the GQM method
for our evaluation.
Evaluation goal: evaluate how SAVaR and guidelines support the cost-effective PLA
recovery through the identification and removal of exclusive variable elements.
Research question:

• RQ4: To what extent the elimination of exclusive variable elements can support the
recovering of a better PLA?

With this research question we focus on the quality of the recovered PLA when removing
exclusive elements, that is, variable elements that appear in a small percentage of variants.
The quality of such PLA is quantitatively evaluated according to architectural metrics.
Another point we take into account is about the implementation level. We want to
investigate the impact of the removal of exclusive elements at the class level.
Metrics: To answer RQ4, we used the SSC, SVC, RSC, and RVC metrics. We applied the
threshold analysis and collected the metrics after the threshold cut.

Table 7.7 presents raw data from the 10 open source projects selected for our em-
pirical evaluation. We selected projects with different number of variants (#V), number
of classes (#C), average number of classes per project (avg), and strategies for variants
generation (Gen.). Moreover, we used different types of variants generation and projects
that provided the variants to verify if SAVaR support them.

122 CASE STUDIES

Table 7.7 Analyzed Projects
Projects #V #C avg #E #R #P Gen.

Desktop Searcher 462 18942 41 12504 30126 10 AH
GOL 64 1344 21 1197 1998 4 NA
GPL 156 2340 15 1843 4341 7 CD
Health Watcher 10 1396 136 1113 4857 11 NA
MobileMedia 8 346 43 243 406 8 NA
Prop4j 452 6328 14 3648 6710 10 FH
SPL Message 10 680 68 493 743 5 Ant
VOD 32 1344 42 1184 2082 3 NA
Webstore SPL 10 710 71 534 1408 4 Ant
ZipME 31 992 32 897 1226 4 NA

Total 1226 33783 483 23746 53897 66 -

Legend: [#V] Number of variants, [#C] Total number of classes analyzed,
[avg] average number of classes per project, [#E] Total number of ele-
ments analyzed, [#R] Total number of relations analyzed, [#P] Number of
execution of SAVaR , [Gen.] Variants generation, [AH] AHEAD, [NA]
Not Available, [CD] CIDE, [FH] FeatureHouse

We used the FeatureIDE (MEINICKE et al., 2016) to generate the variants from
AHEAD, CIDE, and FeatureHouse composers. Projects implemented with #ifdefs used
Ant build for variants generation. We used the other projects variants source code avail-
able in the projects’ repositories.

7.2.1 Preparation

We collected information about the projects and downloaded the source code and other
assets from the repository. We identified the mechanism used to implement the variabil-
ity because the selection of recovery techniques and extraction tools depends on them
(Section 4.3.1).

Then, we extracted each variant structural information. We performed the variability
identification. We mapped the mandatory elements that were implemented in all the
variants and the variable elements that were implemented in only some variants.

With the recovered PLA outputs, we analyzed the metrics and reports. These outputs
were used to suggest improvements to the results. We collected the elements implemen-
tation frequency to define the threshold values.

Based on the threshold, we performed the PLA recovery again. In this way, we
provided a set of recovered PLAs allowing practitioners (architects and developers) to
select the PLA according to their interests.

7.2.2 Analysis and Interpretation

Table 7.8 presents the collected metrics for PLA recovery analysis within the threshold
results. We ran the SAVaR according to threshold values based on a report generated
by SAVaR . The report identifies the elements according to their existence in the variants.

7.2 RECOVERING THE PLA OF 10 OPEN SOURCE PROJECTS 123

For instance, when a class is implemented in all the variants, the report informs that this
class appears in the implementation of 100% of the variants. The complete experimental
setting and results can be found at the website4.

7.2.2.1 Answering RQ4
To answer the research question RQ4, we analyzed the threshold technique results. The
implementation of this technique allowed the reduction of the number of variable classes
without eliminating variants. The technique provides an alternative to the solution we
proposed in our previous study (LIMA et al., 2018). Instead of identifying and eliminating
outliers (variant that introduces a high number of variable elements that are implemented
in only that variant), we keep all the variants during the analysis.

Projects such as GOL, VOD, Webstore, and ZipME allowed a small number of executions
of SAVaR because the SSC and SVC values were balanced. Such balance may indicate that
these projects considered the variability impact upfront during the development phase.

Moreover, the threshold technique allowed us to improve some projects, metrics such
as the MobileMedia results. In this case, the report identified that the majority of the
variants implemented some classes such as AlbumData (87%), AddPhotoAlbum (76%), and
ImageAccessor (75%). In other words, this evidence may point out that, during SPL
evolution, stakeholders should consider the modification of features and these classes to
mandatory.

Projects with high value of SVC and RSC (near to 1) could lead to variability explosion.
For instance, Prop4j project allows the creation of 4100 variants. It is hard to maintain
and propagate the changes in an evolution scenario. In order to support this issue, the
threshold technique improved the results slightly even with a 70% in information reduc-
tion. Our report identified that the majority of the variants implemented two classes:
Literal (99%) and SatSolver (98%). By considering these classes as mandatory, the
values for these metrics improved.

The metrics (high value of SSC and RSC) indicates that GOL, VOD, Webstore, ZipME,
GPL, Message projects variability can be improved. On the other hand, projects with a
high value of SVC and RSC (e.g. Desktop Searcher, MobileMedia, and Prop4j) indicate
that improvements in the definition of mandatory elements are necessary.

We identified that the information reduction provided by the threshold technique
allowed the balance of SSC and RSC metrics, and RSC and RVC metrics. It is relevant to
support and raise the abstraction level in architectural level. Moreover, in some cases,
the technique reduced the information up to 70% and provided the metrics’ balance.

7.2.3 Threats to Validity

The following threats to validity are discussed to reveal their potential interference with
our study design.

4<https://bit.ly/2RYwfU4>

124 CASE STUDIES

7.2.3.1 Internal Validity
Selection. Depending on how the subjects are selected from a larger group, the selection
effects can vary. We identified this effect during the selection of the variants. In some
cases, when we considered all the variants in the recovery, the PLA was composed by only
optional classes. To reduce the noise in the representation, we implemented the threshold
technique.

7.2.3.2 External Validity
Interaction of selection and treatment. This is an effect of having a subject population, not
representative of the population we want to generalize. The selected projects represent
a small portion of the domain we want to generalize. However, it is one more case that
can help in the evidence building regarding the impact of the variability in the context
of PLA recovery. Moreover, another issue we found is related to classes implementing
the same logic but, using different names. We eliminated information specific to projects
to reduce this issue impact and we selected variants in projects developed by the same
team.

7.2.3.3 Construct Validity
Mono-operation bias. We only considered subjects of the open source projects. It may
under-represent the construct and thus not give the full picture of the problem. The
projects evolved over the years and new ideas were included contributing for the maturity
and raise of the complexity of the projects.

Inadequate preoperational explication of constructs. The constructs are not sufficiently
defined before they are translated into measures or treatments. The theory is not clear
enough regarding the effectiveness of PLA recovery and improvement of the recovered
PLA. We based our analysis on metrics analysis and PLA representation. Even though,
we cannot reject stakeholders’ influence.

7.2.3.4 Conclusion Validity.
Low statistical power. The main threat to this study was the sample size. From the 1226
variants, we focused on the classes analysis and their relationships. SAVaR also supports
packages and files abstraction. However, since the purpose of this study was to provide
initial evidence on how the threshold improves the effectiveness of the PLA recovery, we
understand that for generalizing such findings we need a larger sample.

7.3 CHAPTER SUMMARY

PLA recovery can provide useful information for defining the foundations to facilitate
SPL adoption. Instead of working from scratch, the recovered PLA can support the
development and maintenance tasks by providing a starting point. In this context, one of
the main issues is to manage the variability introduced by some variants (i.e. outliers).

In this chapter, we presented the application of SAVaR and the results of two empirical
studies to assess the quality of the recovered PLAs from 10 open source SPL projects.

7.3 CHAPTER SUMMARY 125

We also applied SAVaR to recover the Apo-Games PLA. We performed a formal concept
analysis to identify the outliers. We implemented the threshold analysis to reduce the
number of exclusive components without eliminating the variants of the recovered PLA.
Next chapter, we present the conclusion and future directions of this thesis.

126 CASE STUDIES

Table 7.8 Recovered Metrics from the PLAs
TH SSC SVC RSC RVC CO OR CM MR %rd

Desktop Searcher
00% 0.27 0.73 0.09 0.91 30 134 11 14 -
04% 0.29 0.71 0.11 0.89 28 118 11 14 11%
25% 0.30 0.70 0.16 0.84 25 72 11 14 40%
29% 0.32 0.68 0.18 0.82 24 66 11 14 45%
37% 0.33 0.67 0.19 0.81 22 58 11 14 51%
43% 0.35 0.65 0.20 0.80 21 55 11 14 54%
49% 0.52 0.43 0.38 0.62 10 23 11 14 80%
58% 0.61 0.39 0.42 0.58 7 19 11 14 84%
97% 1.00 0.00 1.00 0.00 0 0 11 14 100%

GOL
00% 0.62 0.38 0.69 0.31 8 11 13 24 -
50% 0.76 0.24 0.80 0.20 4 6 13 24 47%
74% 0.86 0.14 0.88 0.12 2 3 13 24 73%
99% 1.00 0.00 1.00 0.00 0 0 13 24 100%

GPL
00% 0.60 0.40 0.41 0.59 6 23 9 16 -
16% 0.64 0.36 0.43 0.57 5 22 9 16 07%
39% 0.69 0.31 0.48 0.52 4 17 9 16 28%
47% 0.80 0.20 0.59 0.41 2 11 9 16 55%
62% 0.90 0.10 0.89 0.11 1 2 9 16 90%
81% 1.00 0.00 0.10 0.00 0 0 9 16 100%

Health Watcher
00% 0.42 0.58 0.29 0.71 91 550 66 233 -
11% 0.49 0.51 0.32 0.68 67 501 66 233 11%
21% 0.54 0.46 0.38 0.62 55 367 66 233 34%
31% 0.56 0.44 0.40 0.60 51 360 66 233 36%
41% 0.58 0.42 0.51 0.49 46 230 66 233 57%
51% 0.61 0.39 0.53 0.47 42 200 66 233 62%
61% 0.63 0.37 0.62 0.38 39 147 66 233 71%
71% 0.64 0.36 0.66 0.34 37 119 66 233 76%
81% 0.73 0.27 0.81 0.29 25 53 66 233 88%
91% 1.00 0.00 1.00 0.00 0 0 66 233 100%

MobileMedia
00% 0.12 0.88 0.02 0.98 52 148 7 3 -
13% 0.15 0.85 0.03 0.97 41 94 7 3 32%
26% 0.20 0.80 0.05 0.95 29 54 7 3 58%
38% 0.25 0.75 0.08 0.92 22 39 7 3 69%
51% 0.30 0.70 0.10 0.90 17 26 7 3 78%
76% 0.41 0.59 0.30 0.70 10 6 7 3 92%
88% 1.00 0.00 1.00 0.00 0 0 7 3 100%

Prop4j
00% 0.07 0.93 0.00 1.00 13 67 1 0 -
01% 0.08 0.92 0.00 1.00 12 49 1 0 24%
42% 0.09 0.91 0.00 1.00 11 13 1 0 70%
48% 0.10 0.90 0.00 1.00 10 12 1 0 72%
50% 0.12 0.88 0.00 1.00 7 9 1 0 80%
51% 0.20 0.80 0.00 1.00 4 6 1 0 87%
55% 0.25 0.75 0.00 1.00 3 5 1 0 90%
65% 0.34 0.66 0.00 1.00 2 4 1 0 92%

Legend: [TH] Threshold, [SSC] Structure Similarity Coefficient,
[SVC] Structure Variability Coefficient, [RSC] Relation Similarity
Coefficient, [RVC] Relation Variability Coefficient, [CO] Class Op-
tional, [OR] Optional Relation, [CM] Class Mandatory, [MR] Manda-
tory Relation, [%rd] Percentage of reduced variable elements per
threshold cut

Continued on next page...

7.3 CHAPTER SUMMARY 127

TH SSC SVC RSC RVC CO OR CM MR %rd

SPL Message
00% 0.63 0.37 0.57 0.43 22 40 38 54 -
41% 0.84 0.16 0.80 0.20 7 12 38 54 69%
51% 0.86 0.14 0.83 0.17 6 11 38 54 73%
81% 1.00 0.00 1.00 0.00 0 0 38 54 100%

VOD
00% 0.76 0.24 0.70 0.30 10 23 32 55 -
04% 0.76 0.24 0.73 0.27 10 21 32 55 06%
26% 0.76 0.24 0.75 0.25 10 19 32 55 12%
51% 1.00 0.00 1.00 0.00 0 0 32 55 100%

Webstore SPL
00% 0.71 0.29 0.68 0.32 20 57 48 122 -
11% 0.71 0.29 0.70 0.30 20 54 48 122 04%
21% 0.96 0.04 0.91 0.09 2 11 48 122 83%
91% 1.00 0.00 1.00 0.00 0 0 48 122 100%

ZipME
00% 0.80 0.20 0.69 0.31 6 14 25 32 -
51% 0.96 0.04 0.94 0.06 1 2 25 32 85%
54% 1.00 0.00 1.00 0.00 0 0 25 32 100%

Legend: [TH] Threshold, [SSC] Structure Similarity Coefficient,
[SVC] Structure Variability Coefficient, [RSC] Relation Similarity
Coefficient, [RVC] Relation Variability Coefficient, [CO] Class Op-
tional, [OR] Optional Relation, [CM] Class Mandatory, [MR] Manda-
tory Relation, [%rd] Percentage of reduced information per thresh-
old cut

Chapter

8
A journey of a thousand miles begins with a single step – Lao-Tsé

CONCLUSION

This thesis presented the SAVaR , a PLA recovery approach. In this investigation, our
main efforts were mainly focused on understanding how to recover and manage the vari-
ability at the architectural level. The main goal was to achieve PLA recovery in a sys-
tematic way.

In this way, we performed a SMS on the relationship between SAR and PLA (Chap-
ter 3). Moreover, we verified the possibility to adapt the existing solution proposal.

The evidence raised in Chapter 3 provided insights to create the SAVaR approach
(Chapter 4) that considered the tasks to perform the PLA recovery. We also identified
that the existing approaches did not explain how to apply the PLA recovery in details.
As a result, we described all the steps to support PLA recovery and created guidelines
to lead the recovery efficiently. We identified a gap regarding the lack of reuse of the
existing solution. SAVaR focused on the reuse of the existing solution proposal.

In Chapter 5, we performed an exploratory study to evaluate the approach. We
applied it in the context of SPL projects. Then, we gathered the subjects, feedback to
improve SAVaR based on their experience. Chapter 6 and Chapter 7 describe the empirical
studies we performed after the improvements and suggestions raised in Chapter 5. In
Chapter 6, we recovered the PLA of 15 open source SPL projects by applying the proposed
approach. Finally, Chapter 7 describes the application of the PLA recovery approach on
the Apo Games project and on 10 open source SPL projects.

8.1 RELATED WORK

Wu et al. (2011) presented a semi-automatic PLA recovery approach. The authors defined
measures to detect similarity and variability points in software products, source code of
the same domain in order to migrate to the SPL paradigm. The study reports on a
case study carried out with an industrial product line. The assumption is that legacy
products of a same domain have similar designs and implementation that can be used
to build a SPL. In SAVaR , we build the PLA from the products generated by the SPL
project.

129

130 CONCLUSION

Losavio et al. (2013) proposed a reactive refactoring bottom-up process to build a
PLA from existing similar software product architectures of a domain. The main assets
were expressed by UML logical views. Their work is focused on the construction and
representation of a candidate PLA followed by an optimization process to obtain the
final PLA. The refactoring process was applied to a case study in the robotics industry
domain. The focus of our work is the assessment of recovered PLA based on reuse metrics.

8.2 CONTRIBUTIONS

The contributions of this doctoral work are:

• We performed a SMS to investigate SAR and PLA relationship. The study pro-
vided an overview of the state-of-the-art. It allowed the idenfication of gaps and
opportunities for developing the research.

• We proposed SAVaR , an approach to PLA recovery from variants’ source code that
includes guidelines to aid the recovery process. The PLA recovery approach docu-
ments a set of guidelines to recover variability-aware development views from vari-
ants’ source code.

• We proposed and implemented two techniques for variability identification at the ar-
chitectural level. The recovered variability information from SPL projects, together
with its representation at the architectural level provide up-to-date structural PLA
documentation, synchronized with SPL source code, that can be useful for SPL
stakeholders to perform their tasks.

• We proposed and implemented a threshold technique to tame variability explosion
and improve the recovered PLA results. The technique leverages the reduction of
the variability in the recovered PLA while keeping all the available variants in the
analysis. It provides a set of outputs that can be selected according to stakeholders’
interests.

• We evaluated the SAVaR approach by applying it in different contexts and scenarios.
We based on empirical software engineering methods and provided information for
further replications.

8.3 RESEARCH LIMITATIONS

There are some limitations we came across while developing this thesis. They are pre-
sented next.

• Dependency of tools and lack of support for large-scale projects: we depend on some
tools (both from academia and industry) such as Stan4J to propose examples of
tool chain. However, these tools still lack support for SPL projects and variability
identification. For this reason, we developed a tool to support SAVaR . We identified
that the tools’ majority did not support large scale systems;

8.4 FUTURE RESEARCH DIRECTIONS 131

• Manual definition of threshold values: we identified all the values possible and
execute the PLA recovery (automatically) for each value;

• Bring the variability identification to higher levels of abstraction: in the case of
object-oriented projects, we analyze the projects’ packages and classes. In the case
of procedural projects (large scale projects i.e. highly configurable systems), we
analyzed the projects, files and functions;

• Static representation of the PLA: Due to scope limitation, we focused on the static
analysis of the recovered PLA. We used bottom-up processes based on the variants’
source code.

8.4 FUTURE RESEARCH DIRECTIONS

We identified some future directions that might be the focus of further research. Among
them, we can mention:

• Development of new tools and extended tool chain examples: we found some gaps
that can be addressed by the development of new tools. During the research we
developed some converters to allow the transformation of a tools’ output to other
tools’ input. However, there is work to be done to allow the integration of new
tools. Moreover, we believe that extending the tool chains can bring contribution
for recovering the variability in architectural level;

• Create a new representation to raise the abstraction level of SAVaR : a future research
opportunity is raising the abstract level of SAVaR and provide support for the
variability identification in this higher architectural level;

• Interactive visualization of the recovered information: we believe that improve the
SAVaR output visualization by developing an interactive edition of the recovered
PLA and integrate the different outputs;

• Perform the PLA recovery with dynamic analysis tools and techniques: another
research direction is the introduction of dynamic analysis tools and techniques to
improve the variability identification during the variants execution;

• Creation of a decision model to support the PLA recovery: Recovering the PLA of a
project is not a simple task. For this reason, we proposed the guidelines. However,
we believe that by combining the guidelines with a decision model, it could make
accessible to subjects without experience in recovering architecture. Moreover, it
can drive the research to the next level which is the full automation of the PLA
recovery;

• Introduce Search Based Software Engineering (SBSE) in the definition of the thresh-
old values: A future step towards the full automation of the recovery process is the
use of SBSE to allow the automatic definition of the threshold values;

132 CONCLUSION

• Utilize the recovered PLA to identify possible design smells and suggest refactoring
recommendations: based on SAVaR outputs, the recovered information can lead to
suggestions of improvement and design smell identification;

• Consider different versions of a project: by using SAVaR and considering each
version as a variant it can allow to understand how the versions evolved;

• Experimentation with more case studies: another research direction is the evalu-
ation of SAVaR using more case studies, for instance by recovering the PLA of
more complex open source projects. This would allow evaluating SAVaR scalabil-
ity. Moreover, survey with SPL experts can suggest improvements for the approach
steps;

• Deeper analysis regarding feature implementation: investigate how the implemen-
tation of features propagates over the source code and use SAVaR to support the
investigation process.

8.5 CONTRIBUTIONS SO FAR

The knowledge developed during this work have been published. Table 8.1 shows pub-
lished papers. Others were submitted to relevant conferences and journals of the field.

8.5 CONTRIBUTIONS SO FAR 133

Table 8.1 SPL Projects
Paper Title Venue Part.

Related topics publications

Software Architecture Documentation for Developers: A Sur-
vey (ROST et al., 2013) – Conference Paper

ECSA’13 Minor

Unveiling Architecture Documentation: Brazilian Stakeholders in
Perspective (LIMA-NETO et al., 2015) – Technical Report

PGCOMP’15 Major

Thesis related publications

Characterizing Product Line Architecture Recovery (LIMA-NETO;
CHAVEZ; ALMEIDA, 2014) – Extended Abstract

CBSOFT’14 Significant

Initial Evidence for Understanding the Relationship between Product
Line Architecture and Software Architecture Recovery (LIMA-NETO
et al., 2015) – Conference Paper

SBCARS’15 Significant

A Systematic Review on Metamodels to Support Product Line Ar-
chitecture Design (LIMA; CHAVEZ, 2016) – Conference Paper

SBES’16 Significant

Product Line Architecture Recovery: An Approach Proposal (Ex-
tended Abstract) (LIMA, 2017) – Doctoral Symposium

ICSE’17 Significant

Investigating the Recovery of Product Line Architectures: An Ap-
proach Proposal (LIMA; CHAVEZ; ALMEIDA, 2017) – Doctoral
Symposium

ICSR’17 Significant

PLAR Tool – A Sofware Product Line Architecture Recovery
Tool (CARDOSO et al., 2017b) – Tool Paper

CBSoft Tools’17 Major

Investigating the Variability Impact on the Recovery of Software
Product Line Architectures: An Exploratory Study (CARDOSO et
al., 2017a) – Conference Paper

SBCARS’17 Significant

Recovering the Product Line Architecture of the Apo-Games – Chal-
lenge Track (LIMA et al., 2018)

SPLC’18 Significant

Towards an Automated Product Line Architecture Recovery: The
Apo-Games Case Study – Conference Papes (LIMA et al., 2018)

SBCARS’18 Significant

Product Line Architecture Recovery with Outlier Filtering in Soft-
ware Families: The Apo-Games Case Study

JBCS’19 Significant

REFERENCES

ABELE, A.; JOHANSSON, R.; LÖNN, H.; PAPADOPOULOS, Y.; REISER, M.-O.;
SERVAT, D.; TÖRNGREN, M.; WEBER, M. The cvm framework : A prototype tool for
compositional variability management. In: Proceeding of : Fourth International Workshop
on Variability Modelling of Software-Intensive Systems. [S.l.: s.n.], 2010. p. 101–105.

AHMED, F.; CAPRETZ, L. F. The software product line architecture: An empirical in-
vestigation of key process activities. Inf. Softw. Technol., Butterworth-Heinemann, v. 50,
n. 11, p. 1098–1113, 2008.

ALBAUM, G. The Likert scale revisited: an alternate version.(product preference test-
ing). Journal of the Market Research Society, v. 39, n. 2, p. 331–343, 1997.

ANGELOV, S.; GREFEN, P.; GREEFHORST, D. A framework for analysis and design
of software reference architectures. Information and Software Technology, v. 54, n. 4, p.
417–431, 2012.

ANGERER, F.; PRäHOFER, H.; LETTNER, D.; GRIMMER, A.; GRüNBACHER, P.
Identifying inactive code in product lines with configuration-aware system dependence
graphs. In: Proceedings of the 18th International Software Product Line Conference -
Volume 1. [S.l.]: ACM, 2014. p. 52–61.

APEL, S.; BATORY, D.; KASTNER, C.; SAAKE, G. Feature-Oriented Software Product
Lines. [S.l.]: Springer, 2013.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. [S.l.]:
Addison-Wesley Longman Publishing Co., Inc., 2003.

BATORY, D. A tutorial on feature oriented programming and product-lines. In: Proceed-
ings of the 25th International Conference on Software Engineering. [S.l.]: IEEE Computer
Society, 2003. p. 753–754.

BEUCHE, D. pure::variants. In: . Systems and Software Variability Management:
Concepts, Tools and Experiences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
p. 173–182.

BOSCH, J. Product-line architectures in industry: a case study. In: Proceedings of the
1999 International Conference on Software Engineering. [S.l.: s.n.], 1999. p. 544–554.

BOSCH, J.; CAPILLA, R. Variability implementation. In: . Systems and Soft-
ware Variability Management: Concepts, Tools and Experiences. [S.l.]: Springer Berlin
Heidelberg, 2013. p. 75–86.

135

136 REFERENCES

BOSCH, J.; FLORIJN, G.; GREEFHORST, D.; KUUSELA, J.; OBBINK, J. H.; POHL,
K. Variability issues in software product lines. In: Revised Papers from the 4th Interna-
tional Workshop on Software Product-Family Engineering. [S.l.]: Springer-Verlag, 2002.
p. 13–21.

BRERETON, P.; BUDGEN, D.; KITCHENHAM, B. A. Evidence-based software engi-
neering and systematic reviews. [S.l.]: CRC Press, 2016. (Chapman & Hall/CRC inno-
vations in software engineering and software development). ISBN 978-1-4822-2866-3,199-
201-203-2,1482228661.

BUDGEN, D.; TURNER, M.; BRERETON, P.; KITCHENHAM, B. Using Mapping
Studies in Software Engineering. In: Proceedings of PPIG 2008. [S.l.]: Lancaster Univer-
sity, 2008. p. 195–204.

BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P.; STAL, M.
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns. [S.l.]: Wi-
ley Publishing, 1996. ISBN 0471958697, 9780471958697.

CARDOSO, M. P. S.; LIMA, C.; ALMEIDA, E. S. de; MACHADO, I. do C.; CHAVEZ,
C. von F. G. Investigating the Variability Impact on the Recovery of Software Prod-
uct Line Architectures: An Exploratory Study. In: Proceedings of the 11th Brazilian
Symposium on Software Components, Architectures, and Reuse. ACM, 2017. (SBCARS
’17), p. 12:1–12:10. ISBN 978-1-4503-5325-0. Available at: <http://doi.acm.org/10.1145/
3132498.3133835>.

CARDOSO, M. P. S.; LIMA, C.; CHAVEZ, C.; MACHADO, I. do C. PLAR Tool –
A Sofware Product Line Architecture Recovery Tool. In: 8th Brazilian Conference on
Software: Theory and Practice - Tool Session. [S.l.: s.n.], 2017.

CHEN, L.; BABAR, M. A. A systematic review of evaluation of variability management
approaches in software product lines. Inf. Softw. Technol., Butterworth-Heinemann, v. 53,
n. 4, p. 344–362, 2011.

CHEN, L.; BABAR, M. A.; CAWLEY, C. A status report on the evaluation of vari-
ability management approaches. In: 13th International Conference on Evaluation and
Assessment in Software Engineering. [S.l.]: BCS, 2009.

CHIKOFSKY, E. J.; CROSS, J. H. Reverse engineering and design recovery: a taxonomy.
IEEE Software, v. 7, n. 1, p. 13–17, 1990.

CLEMENTS, P.; BACHMANN, F.; BASS, L.; GARLAN, D.; IVERS, J.; LITTLE, R.;
MERSON, P.; NORD, R.; STAFFORD, J. Documenting Software Architectures: Views
and Beyond (2nd Edition). 2. ed. [S.l.]: Addison-Wesley Professional, 2010.

CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns. [S.l.]:
Addison-Wesley, 2001.

REFERENCES 137

CORDEIRO, A. F.; OLIVEIRAJR, E. Size, Coupling and Cohesion Metrics for Product-
Line Architecture Evaluation: Proposal and Experimental Validation. Journal of Com-
puter Science, v. 14, n. 3, p. 408–422, 2018.

CZARNECKI, K.; EISENECKER, U. W. Generative Programming: Methods, Tools, and
Applications. [S.l.]: ACM Press/Addison-Wesley Publishing Co., 2000.

DANIEL, W. Applied nonparametric statistics. [S.l.]: PWS-Kent Publ., 1990. (The
Duxbury advanced series in statistics and decision sciences).

DEELSTRA, S.; SINNEMA, M.; BOSCH, J. Variability assessment in software product
families. Inf. Softw. Technol., Butterworth-Heinemann, v. 51, n. 1, p. 195–218, 2009.

DERMEVAL, D.; VILELA, J.; BITTENCOURT, I. I.; CASTRO, J.; ISOTANI, S.;
BRITO, P. A Systematic Review on the Use of Ontologies in Requirements Engineer-
ing. In: 2014 Brazilian Symposium on Software Engineering (SBES). [S.l.: s.n.], 2014. p.
1–10.

DEURSEN, A. van; HOFMEISTER, C.; KOSCHKE, R.; MOONEN, L.; RIVA, C. Sym-
phony: view-driven software architecture reconstruction. In: Fourth Working IEEE/IFIP
Conference on Software Architecture. [S.l.: s.n.], 2004. p. 122–132.

DHUNGANA, D.; GRüNBACHER, P.; RABISER, R. The dopler meta-tool for decision-
oriented variability modeling: A multiple case study. Automated Software Engg., Kluwer
Academic Publishers, v. 18, n. 1, p. 77–114, 2011.

DING, W.; LIANG, P.; TANG, A.; VLIET, H. van. Knowledge-based approaches in
software documentation: A systematic literature review. Information and Software Tech-
nology, v. 56, n. 6, p. 545 – 567, 2014.

DUCASSE, S.; POLLET, D. Software Architecture Reconstruction: A Process-Oriented
Taxonomy. IEEE Transactions on Software Engineering, v. 35, n. 4, p. 573–591, 2009.

DYBÅ, T.; DINGSØYR, T. Empirical studies of agile software development: A system-
atic review. Inf. Softw. Technol., Butterworth-Heinemann, v. 50, n. 9-10, p. 833–859,
2008.

EASTERBROOK, S. Empirical research methods for software engineering. In: Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering. [S.l.]: ACM, 2007.

EIXELSBERGER, W. Software Architecture Recovery of Product Lines. Phd Thesis (PhD
Thesis) — Universität Klagenfurt Fakultät für Wirtschaftswissenschaften und Informatik,
2000.

EIXELSBERGER, W.; KALAN, M.; OGRIS, M.; BECKMAN, H.; BELLAY, B.; GALL,
H. Recovery of architectural structure: A case study. In: Development and Evolution
of Software Architectures for Product Families. [S.l.]: Springer Berlin Heidelberg, 1998,
(Lecture Notes in Computer Science, v. 1429). p. 89–96.

138 REFERENCES

EIXELSBERGER, W.; WARHOLM, L.; KLöSCH, R.; GALL, H. Software architecture
recovery of embedded software. In: Proceedings of the 19th International Conference on
Software Engineering. [S.l.]: ACM, 1997.

EKLUND, U.; JONSSON, N.; BOSCH, J.; ERIKSSON, A. A reference architecture
template for software-intensive embedded systems. In: Proceedings of the WICSA/ECSA
2012 Companion Volume. [S.l.]: ACM, 2012. p. 104–111.

EPPINGER, S. D.; BROWNING, T. R. Design Structure Matrix Methods and Applica-
tions. [S.l.]: MIT Press, 2012.

FENTON, N.; BIEMAN, J. Software Metrics: A Rigorous and Practical Approach, Third
Edition. 3rd. ed. [S.l.]: CRC Press, Inc., 2014. ISBN 1439838224, 9781439838228.

FIGUEIREDO, E.; CACHO, N.; SANT’ANNA, C.; MONTEIRO, M.; KULESZA, U.;
GARCIA, A.; SOARES, S.; FERRARI, F.; KHAN, S.; FILHO, F. C.; DANTAS, F.
Evolving software product lines with aspects: An empirical study on design stability. In:
Proceedings of the 30th International Conference on Software Engineering. [S.l.]: ACM,
2008. p. 261–270.

FISCHER, S.; LINSBAUER, L.; LOPEZ-HERREJON, R. E.; EGYED, A. Enhancing
clone-and-own with systematic reuse for developing software variants. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. [S.l.: s.n.], 2014. p.
391–400.

FOWLER, M. Refactoring: improving the design of existing code. [S.l.]: Pearson Educa-
tion India, 2009.

FRITSCH, C.; LEHN, A.; STROHM, D. T.; GMBH, R. B. Evaluating variability im-
plementation mechanisms. In: International Workshop on Product Line Engineering The
Early Steps: Planning, Modeling, and Managing. [S.l.: s.n.], 2002. p. 59–64.

GALL, H.; JAZAYERI, M.; KLöSCH, R.; LUGMAYR, W.; TRAUSMUTH, G. Archi-
tecture recovery in ares. In: Joint Proceedings of the Second International Software Ar-
chitecture Workshop (ISAW-2) and International Workshop on Multiple Perspectives in
Software Development (Viewpoints ’96) on SIGSOFT ’96 Workshops. [S.l.]: ACM, 1996.
p. 111–115.

GALSTER, M.; AVGERIOU, P. Handling variability in software architecture: Problems
and implications. In: Proceedings of the 2011 Ninth Working IEEE/IFIP Conference on
Software Architecture. [S.l.]: IEEE Computer Society, 2011. p. 171–180.

GALSTER, M.; AVGERIOU, P. The notion of variability in software architecture: Re-
sults from a preliminary exploratory study. In: Proceedings of the 5th Workshop on Vari-
ability Modeling of Software-Intensive Systems. [S.l.]: ACM, 2011. p. 59–67.

REFERENCES 139

GALSTER, M.; WEYNS, D.; AVGERIOU, P.; BECKER, M. Variability in software
architecture: views and beyond. SIGSOFT Softw. Eng. Notes, ACM, v. 37, n. 6, p. 1–9,
2013.

GARCIA, J.; IVKOVIC, I.; MEDVIDOVIC, N. A comparative analysis of software ar-
chitecture recovery techniques. In: 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering. [S.l.: s.n.], 2013. p. 486–496.

GARCIA, J.; KRKA, I.; MATTMANN, C.; MEDVIDOVIC, N. Obtaining ground-truth
software architectures. In: International Conference on Software Engineering. [S.l.]: IEEE
Press, 2013. p. 901–910.

GARCIA, J.; KRKA, I.; MEDVIDOVIC, N.; DOUGLAS, C. A framework for obtaining
the ground-truth in architectural recovery. In: Proceedings of the 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and European Conference on Software
Architecture. [S.l.]: IEEE Computer Society, 2012. p. 292–296.

GARLAN, D. Software architecture: A roadmap. In: Proceedings of the Conference on
The Future of Software Engineering. [S.l.]: ACM, 2000. p. 91–101.

GOMAA, H. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Redwood City, CA, USA: Addison Wesley Longman Pub-
lishing Co., Inc., 2004.

GREENWOOD, P.; BARTOLOMEI, T.; FIGUEIREDO, E.; DOSEA, M.; GARCIA, A.;
CACHO, N.; SANT’ANNA, C.; SOARES, S.; BORBA, P.; KULESZA, U.; RASHID,
A. On the impact of aspectual decompositions on design stability: An empirical study.
In: . 21st European Conference on Object-Oriented Programming. [S.l.]: Springer
Berlin Heidelberg, 2007. p. 176–200.

HAIDER, U.; WOODS, E.; BASHROUSH, R. Representing variability in software archi-
tecture: A systematic literature review. International Journal of Software Engineering
and Computer Systems, Universiti Malaysia Pahang, v. 4, n. 2, p. 19–37, August 2018.

HARRIS, D. R.; REUBENSTEIN, H. B.; YEH, A. S. Reverse engineering to the archi-
tectural level. In: 17th International Conference on Software Engineering. [S.l.]: ACM,
1995. p. 186–195.

HENARD, C.; PAPADAKIS, M.; PERROUIN, G.; KLEIN, J.; HEYMANS, P.; TRAON,
Y. L. Bypassing the combinatorial explosion: Using similarity to generate and prioritize
t-wise test configurations for software product lines. IEEE Transactions on Software En-
gineering, v. 40, n. 7, p. 650–670, 2014.

HESSE-BIBER, S. Mixed Methods Research: Merging Theory with Practice. [S.l.]: Guil-
ford Publications, 2010.

HILLIARD, R. On representing variation. In: 1st International Workshop on Variability
in Software Product Line Architectures. [S.l.]: ACM, 2010.

140 REFERENCES

ISO/IEC/IEEE Systems and software engineering – Architecture description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-
2000), p. 1–46, Dec 2011.

JARING, M.; BOSCH, J. Expressing product diversification — categorizing and classify-
ing variability in software product family engineering. International Journal of Software
Engineering and Knowledge Engineering, v. 14, n. 05, p. 449–470, 2004.

KANG, K.; COHEN, S.; HESS, J.; NOVAK, W.; PETERSON, A. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Pittsburgh, PA, 1990.

KäSTNER, C.; APEL, S.; KUHLEMANN, M. Granularity in software product lines. In:
Proceedings of the 30th International Conference on Software Engineering. [S.l.]: ACM,
2008. p. 311–320.

KäSTNER, C.; APEL, S.; RAHMAN, S. S. ur; ROSENMüLLER, M.; BATORY, D.;
SAAKE, G. On the impact of the optional feature problem: Analysis and case studies. In:
Proceedings of the 13th International Software Product Line Conference. [S.l.]: Carnegie
Mellon University, 2009. (SPLC ’09), p. 181–190.

KAZMAN, R.; CARRIÈRE, S. J. Playing Detective: Reconstructing Software Architec-
ture from Available Evidence. Automated Software Engineering, v. 6, n. 2, p. 107–138,
1999.

KIM, S. D.; HER, J. S.; CHANG, S. H. A theoretical foundation of variability in
component-based development. Information and Software Technology, v. 47, n. 10, p.
663 – 673, 2005.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Software Engineering Group School of, ACM Press,
v. 2, p. 1051, 2007.

KOSCHKE, R.; FRENZEL, P.; BREU, A.; ANGSTMANN, K. Extending the reflexion
method for consolidating software variants into product lines. Software Quality Journal,
Springer US, v. 17, n. 4, p. 331–366, 2009.

KRUCHTEN, P. The 4+1 view model of architecture. IEEE Softw., IEEE Computer
Society Press, Los Alamitos, CA, USA, v. 12, n. 6, p. 42–50, 1995. ISSN 0740-7459.

KRUEGER, C. W. Applied software product line engineering. In: . [S.l.]: Auerbach
Publications, 2009. chap. New Methods behind a New Generation of Software product
line Successes, p. 39–60.

KRÜGER, J.; FENSKE, W.; THÜM, T.; APORIUS, D.; SAAKE, G.; LEICH, T. Apo-
Games - A Case Study for Reverse Engineering Variability from Cloned Java Variants.
In: Proceedings of the 22nd International Systems and Software Product Line Conference
- Challenge Track. [S.l.]: ACM, 2018. (SPLC ’18).

REFERENCES 141

LETHBRIDGE, T. C.; SIM, S. E.; SINGER, J. Studying software engineers: Data col-
lection techniques for software field studies. Empirical Software Engineering, v. 10, n. 3,
p. 311–341, 2005.

LIMA, C. Product line architecture recovery: An approach proposal (extended abstract).
In: 39th International Conference on Software Engineering Companion - Doctoral Sym-
posium. [S.l.]: ACM, 2017.

LIMA, C.; ASSUNCAO, W. K. G.; MARTINEZ, J.; MACHADO, I. do C.; CHAVEZ,
C. von F. G.; MENDONCA, W. D. F. Towards an automated product line architecture
recovery: The apo-games case study. In: VII Brazilian Symposium on Software Compo-
nents, Architectures, and Reuse. [S.l.]: ACM, 2018. (SBCARS ’18), p. 33–42.

LIMA, C.; CHAVEZ, C. A systematic review on metamodels to support product line
architecture design. In: Proceedings of the 30th Brazilian Symposium on Software Engi-
neering. [S.l.]: ACM, 2016. p. 13–22.

LIMA, C.; CHAVEZ, C.; ALMEIDA, E. S. de. Investigating the recovery of product
line architectures: An approach proposal. In: . Mastering Scale and Complexity in
Software Reuse: 16th International Conference on Software Reuse. Springer International
Publishing, 2017. p. 201–207. ISBN 978-3-319-56856-0. Available at: <http://dx.doi.org/
10.1007/978-3-319-56856-0_15>.

LIMA, C.; MACHADO, I. do C.; ALMEIDA, E. S. de; CHAVEZ, C. von F. G. Re-
covering the Product Line Architecture of the Apo-Games. In: Proceedings of the 22nd
International Systems and Software Product Line Conference. [S.l.]: ACM, 2018. (SPLC
’18).

LIMA-NETO, C. R.; CARDOSO, M. P. S.; CHAVEZ, C. v. F. G.; ALMEIDA, E. S.
d. Initial evidence for understanding the relationship between product line architecture
and software architecture recovery. In: 2015 IX Brazilian Symposium on Components,
Architectures and Reuse Software (SBCARS). [S.l.: s.n.], 2015. p. 40–49.

LIMA-NETO, C. R.; CHAVEZ, C. von F. G.; ALMEIDA, E. S. de. Characterizing Prod-
uct Line Architecture Recovery. ICSE 2017 PhD and Young Researchers Warm Up Sym-
posium, Co-located with CBSoft 2014, 2014.

LIMA-NETO, C. R.; CHAVEZ, C. von F. G.; ALMEIDA, E. S. de; ROST, D.; NAAB,
M. Unveiling architecture documentation: Brazilian stakeholders in perspective. CoRR,
TR-PGCOMP-002/2015, 2015. Available at: <http://arxiv.org/abs/1510.06229>.

LINDEN, F. J. van der; SCHMID, K.; ROMMES, E. Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. [S.l.]: Springer, 2007.

LINSBAUER, L.; LOPEZ-HERREJON, R. E.; EGYED, A. Variability extraction and
modeling for product variants. Software & Systems Modeling, Springer, p. 1–21, 2016.

142 REFERENCES

LOSAVIO, F.; ORDAZ, O.; LéVY, N.; BAIOTTO, A. Graph modelling of a refactoring
process for product line architecture design. In: XXXIX Latin American Computing
Conference. [S.l.: s.n.], 2013. p. 1–12.

MAHDAVI-HEZAVEHI, S.; GALSTER, M.; AVGERIOU, P. Variability in quality at-
tributes of service-based software systems: A systematic literature review. Inf. Softw.
Technol., Butterworth-Heinemann, v. 55, n. 2, p. 320–343, 2013.

MANCORIDIS, S.; MITCHELL, B.; CHEN, Y.; GANSNER, E. Bunch: a clustering tool
for the recovery and maintenance of software system structures. In: IEEE International
Conference on Software Maintenance Proceedings. [S.l.: s.n.], 1999. p. 50–59.

MANCORIDIS, S.; MITCHELL, B. S.; RORRES, C.; CHEN, Y.; GANSNER, E. R.
Using automatic clustering to produce high-level system organizations of source code. In:
6th International Workshop on Program Comprehension. [S.l.: s.n.], 1998. p. 45–52.

MARTÍNEZ-FERNÁNDEZ, S.; AYALA, C. P.; FRANCH, X.; MARQUES, H. M. Safe
and secure software reuse: 13th international conference on software reuse, icsr 2013,
pisa, june 18-20. proceedings. In: . [S.l.]: Springer Berlin Heidelberg, 2013. chap.
REARM: A Reuse-Based Economic Model for Software Reference Architectures, p. 97–
112.

MEDVIDOVIC, N.; EGYED, A.; GRÜNBACHER, P. Stemming Architectural Erosion
by Coupling Architectural Discovery and Recovery. In: 2nd Int’l Software Requirements
to Architectures Workshop. [S.l.: s.n.], 2003. p. 61–68.

MEINICKE, J.; THüM, T.; SCHRöTER, R.; KRIETER, S.; BENDUHN, F.; SAAKE,
G.; LEICH, T. Featureide: Taming the preprocessor wilderness. In: Proceedings of the
38th International Conference on Software Engineering Companion. [S.l.]: ACM, 2016.
p. 629–632.

MENDONCA, N. C.; KRAMER, J. Requirements for an effective architecture recov-
ery framework. In: Joint Proceedings of the Second International Software Architecture
Workshop (ISAW-2) and International Workshop on Multiple Perspectives in Software
Development (Viewpoints ’96) on SIGSOFT ’96 Workshops. [S.l.]: ACM, 1996. (ISAW
’96), p. 101–105.

MENDONCA, N. C.; KRAMER, J. Developing an approach for the recovery of dis-
tributed software architectures. In: 6th International Workshop on Program Comprehen-
sion. [S.l.: s.n.], 1998. p. 28–36.

MOHAN, K.; RAMESH, B. Tracing variations in software product families. Commun.
ACM, ACM, v. 50, n. 12, p. 68–73, 2007.

MOLLAH, M.; ISLAM, K.; ISLAM, S. Next generation of computing through cloud
computing technology. In: 2012 25th IEEE Canadian Conference onElectrical Computer
Engineering. [S.l.: s.n.], 2012. p. 1–6.

REFERENCES 143

MOON, M.; CHAE, H.; YEOM, K. A Metamodel Approach to Architecture Variability
in a Product Line. In: Reuse of Off-the-Shelf Components. ICSR 2006. Lecture Notes in
Computer Science. [S.l.]: Springer, Berlin, Heidelberg, 2006. v. 4039.

NAKAGAWA, E. Y.; ANTONINO, P. O.; BECKER, M. 5th european conference on
software architecture. In: . [S.l.]: Springer Berlin Heidelberg, 2011. chap. Reference
Architecture and Product Line Architecture: A Subtle But Critical Difference, p. 207–
211.

NATRELLA, M. NIST/SEMATECH e-Handbook of Statistical Methods. NIST/SEMAT-
ECH, 2010. Available at: <http://www.itl.nist.gov/div898/handbook/>.

NORTHROP, L. M. SEI’s Software Product Line Tenets. IEEE Software, IEEE Computer
Society, v. 19, n. 4, p. 32–40, 2002.

OLIVEIRA-JUNIOR, E. A.; GIMENES, I.; MALDONADO, J. A metric suite to support
software product line architecture evaluation. In: XXXIV Conferencia Latinoamericana
de Informatica. [S.l.: s.n.], 2008. p. 489–498.

PASHOV, I.; RIEBISCH, M. Using feature modeling for program comprehension and
software architecture recovery. In: Engineering of Computer-Based Systems, 2004. Pro-
ceedings. 11th IEEE International Conference and Workshop on the. [S.l.: s.n.], 2004. p.
406–417.

PETERSEN, W. A set-theoretical approach for the induction of inheritance hierarchies.
Electronic Notes in Theoretical Computer Science, v. 53, p. 296 – 308, 2004.

PINZGER, M.; GALL, H.; GIRARD, J.-F.; KNODEL, J.; RIVA, C.; PASMAN, W.;
BROERSE, C.; WIJNSTRA, J. Architecture recovery for product families. In: .
Software Product-Family Engineering. [S.l.]: Springer Berlin Heidelberg, 2003. (Lecture
Notes in Computer Science, v. 3014), chap. 26, p. 332–351.

POHL, K.; BöCKLE, G.; LINDEN, F. van der. Software Product Line Engineering:
Foundations, Principles, and Techniques. [S.l.]: Springer-Verlag New York, Inc., 2005.
467 p.

POLLET, D.; DUCASSE, S.; POYET, L.; ALLOUI, I.; CIMPAN, S.; VERJUS, H.
Towards a process-oriented software architecture reconstruction taxonomy. In: 11th Eu-
ropean Conference on Software Maintenance and Reengineering. [S.l.: s.n.], 2007. p. 137–
148.

ROST, D.; NAAB, M.; LIMA, C.; CHAVEZ, C. von F. G. Software architecture docu-
mentation for developers: A survey. In: Proceedings of the 7th European Conference on
Software Architecture. [S.l.]: Springer-Verlag, 2013. p. 72–88.

RUBIN, J.; CHECHIK, M. Locating distinguishing features using diff sets. In: ACM.
27th IEEE/ACM International Conference on Automated Software Engineering. [S.l.],
2012. p. 242–245.

144 REFERENCES

SCHMID, K.; JOHN, I. A customizable approach to full lifecycle variability management.
Sci. Comput. Program., Elsevier North-Holland, Inc., v. 53, n. 3, p. 259–284, 2004.

SHATNAWI, A.; SERIAI, A.; SAHRAOUI, H. Recovering Architectural Variability of
a Family of Product Variants. In: Software Reuse for Dynamic Systems in the Cloud
and Beyond. [S.l.]: Springer International Publishing, 2015, (Lecture Notes in Computer
Science, v. 8919). p. 17–33.

SHATNAWI, A.; SERIAI, A.-D.; SAHRAOUI, H. Recovering software product line archi-
tecture of a family of object-oriented product variants. Journal of Systems and Software,
2016.

SHAW, M.; GARLAN, D. Software Architecture: Perspectives on an Emerging Discipline.
[S.l.]: Prentice-Hall, Inc., 1996.

SHULL, F.; BABAR, M. A.; CHEN, L. Managing variability in software product lines.
IEEE Software, IEEE Computer Society, v. 27, p. 89–91, 94, 2010.

SINKALA, Z. T.; BLOM, M.; HEROLD, S. A mapping study of software architecture
recovery for software product lines. In: Proceedings of the 12th European Conference
on Software Architecture: Companion Proceedings. [S.l.]: ACM, 2018. (ECSA ’18), p.
49:1–49:7.

SINNEMA, M.; DEELSTRA, S. Classifying variability modeling techniques. Inf. Softw.
Technol., Butterworth-Heinemann, v. 49, n. 7, p. 717–739, 2007.

SOLINGEN, R. van; BASILI, V.; CALDIERA, G.; ROMBACH, H. D. Goal Question
Metric (GQM) Approach. [S.l.]: John Wiley Sons, Inc., 2002.

SOUZA-FILHO, E. D.; CAVALCANTI, R. O.; NEIVA, D. F.; OLIVEIRA, T. H.; LIS-
BOA, L. B.; ALMEIDA, E. S.; MEIRA, S. R. L. Evaluating Domain Design Approaches
Using Systematic Review. In: Proceedings of the 2nd European Conference on Software
Architecture. [S.l.]: Springer-Verlag, 2008. (ECSA ’08), p. 50–65.

STAVROPOULOU, I.; GRIGORIOU, M.; KONTOGIANNIS, K. Case study on which
relations to use for clustering-based software architecture recovery. Empirical Software
Engineering, v. 22, n. 4, p. 1717–1762, Aug 2017.

SVAHNBERG, M.; GURP, J. van; BOSCH, J. A taxonomy of variability realization
techniques: Research articles. Softw. Pract. Exper., John Wiley & Sons, Inc., v. 35, n. 8,
p. 705–754, 2005.

TAYLOR, R.; MEDVIDOVIC, N.; DASHOFY, E. Software Architecture: Foundations,
Theory, and Practice. [S.l.]: Wiley, 2009.

THIEL, S.; HEIN, A. Modeling and using product line variability in automotive systems.
IEEE Softw., IEEE Computer Society Press, v. 19, n. 4, p. 66–72, 2002.

REFERENCES 145

THIEL, S.; HEIN, A. Systematic Integration of Variability into Product Line Architecture
Design. In: Software Product Lines, Second Int. Conf. , SPLC 2, San Diego, CA, USA,
August 19-22, 2002, Proc. [S.l.]: Springer, 2002. (Lecture Notes in Computer Science,
v. 2379), p. 130–153.

TILLEY, S. R.; PAUL, S.; SMITH, D. B. Towards a framework for program understand-
ing. In: Fourth Workshop on Program Comprehension. [S.l.: s.n.], 1996. p. 19–28.

TRUJILLO, S.; BATORY, D.; DIAZ, O. Feature oriented model driven development: A
case study for portlets. In: Proceedings of the 29th International Conference on Software
Engineering. [S.l.]: IEEE Computer Society, 2007. p. 44–53.

VERLAGE, M.; KIESGEN, T. Five years of product line engineering in a small com-
pany. In: Proceedings of the 27th International Conference on Software Engineering. [S.l.]:
ACM, 2005. p. 534–543.

WATERS, R. G.; CHIKOFSKY, E. Reverse engineering: Progress along many dimen-
sions. Commun. ACM, ACM, v. 37, n. 5, p. 22–25, 1994.

WEISS, D. M.; LAI, C. T. R. Software Product-line Engineering: A Family-based Software
Development Process. [S.l.]: Addison-Wesley Longman Publishing Co., Inc., 1999.

WIERINGA, R.; MAIDEN, N.; MEAD, N.; ROLLAND, C. Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion. Requir. Eng.,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 11, n. 1, p. 102–107, 2005.

WILLE, D.; BABUR Önder; CLEOPHAS, L.; SEIDL, C.; BRAND, M. van den; SCHAE-
FER, I. Improving custom-tailored variability mining using outlier and cluster detection.
Science of Computer Programming, v. 163, p. 62 – 84, 2018. ISSN 0167-6423.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B. Experimen-
tation in Software Engineering. [S.l.]: Springer, 2012.

WU, Y.; YANG, Y.; PENG, X.; QIU, C.; ZHAO, W. Recovering object-oriented frame-
work for software product line reengineering. In: Proceedings of the 12th International
Conference on Top Productivity Through Software Reuse. [S.l.]: Springer-Verlag, 2011. p.
119–134.

YOUNG, T. J. Using AspectJ to Build a Software Product Line for Mobile Devices.
Master’s Thesis (Master’s Thesis) — The University of British Columbia (UBC), 2005.

ZHANG, S.; ZHANG, S.; CHEN, X.; HUO, X. Cloud Computing Research and Develop-
ment Trend. In: Second International Conference on Future Networks. [S.l.: s.n.], 2010.
p. 93–97.

ZHANG, T.; DENG, L.; WU, J.; ZHOU, Q.; MA, C. Some metrics for accessing quality
of product line architecture. In: IEEE. International Conference on Computer Science
and Software Engineering. [S.l.], 2008. v. 2, p. 500–503.

Appendix

A
MAPPING STUDY ON PLA RECOVERY - PRIMARY

STUDIES AND DATA SET

This appendix lists the primary studies analyzed in the survey on the relationship between
SAR and PLA, earlier addressed in Chapter 3. We also lists the data set used in the
study and the included studies per venue.

A.1 LIST OF JOURNALS

Table A.1 List of Journals
Journals

ACM Computing Survey
ACM Transactions on Software Engineering and Methodology (TOSEM)
Annals of Software Engineering
Automated Software Engineering
ELSEVIER Information and Software Technology (IST)
ELSEVIER Journal of Systems and Software (JSS)
IEEE Software
IEEE Transactions on Software Engineering
Journal of Systems and Software
Software Process: Improvement and Practice
Software Practice and Experience
Journal of Software Maintenance Research and Practice
Journal of Systems and Software (JSS)
Software Practice and Experience (SPE) Journal
Software Quality Journal
Software Testing, Verification and Reliability

147

148 MAPPING STUDY ON PLA RECOVERY - PRIMARY STUDIES AND DATA SET

A.2 LIST OF CONFERENCES

Table A.2 List of Conferences
Acronym Conference Name

APSEC Asia Pacific Software Engineering Conference
ASE International Conference on Automated Software Engineering
CAiSE International Conference on Advanced Information Systems Engineering
CBSE International Symposium on Component-based Software Engineering
COMPSAC International Computer Software and Applications Conference
ECBS International Conference and Workshop on the Engineering of Computer Based

Systems
ECOWS European Conference on Web Services
ECSA European Conference on Software Architecture
ESEC European Software Engineering Conference
ESEM Empirical Software Engineering and Measurement
FASE Fundamental Approaches to Software Engineering
ICCBSS International Conference on Composition-Based Software Systems
ICSE International Conference on Software Engineering
ICSM International Conference on Software Maintenance
ICSR International Conference on Software Reuse
ICST International Conference on Software Testing, Verification and Validation
ICWS International Conference on Web Services
ISSRE International Symposium on Software Reliability Engineering
GPCE International Conference on Generative Programming and Component Engi-

neering
MODEL International Conference on Model Driven Engineering Languages and Systems
MoTiP Workshop on Model-based Testing in Practice
OOPSLA ACM SIGPLAN conference on Object-Oriented Programming, Systems, Lan-

guages, and App.
PROFES International Conference on Product Focused Software Development and Pro-

cess Improvement
QoSA International Conference on the Quality of Software Architectures
QSIC International Conference on Quality Software
ROSATEA International Workshop on The Role of Software Architecture in Testing and

Analysis
SAC Annual ACM Symposium on Applied Computing
SEAA Euromicro Conference on Software Engineering and Advanced Applications
SEKE International Conference on Software Engineering and Knowledge Engineering
SPLC Software Product Line Conference
VaMoS Variability Modelling of Software-Intensive Systems
WICSA Working IEEE/IFIP Conference on Software Architecture

A.3 PRIMARY STUDIES 149

A.3 PRIMARY STUDIES

Table A.3 Selected primary studies
ID Title Author(s) Venue

S1 Software Architecture Recovery of a Program Family W. Eixelsberger ICSE’98
S2 Software Architecture Recovery of Product Lines W. Eixelsberger Ph.D. Th.’00
S3 MAP - Mining Architectures for Product Line Evaluations C. Stoermer WICSA’01
S4 Architecture Reconstruction Guidelines R. Kazman Tec. Rep.’03
S5 Architecture Recovery for Product Families M. Pinzger PFE’03
S6 Using Feature Modeling for Program Comprehension and

Software Architecture Recovery
I. Pashov ECBS’04

S7 View-based Software Architecture Reconstruction C. Riva Ph.D. Th.’04
S8 Developing Tools for Reverse Engineering in a Software

Product-Line Architecture
C. Chiang IRI’04

S9 Feature-Oriented Re-engineering of Legacy Systems into
Product Line Assets - a Case Study

K. C. Kang SPLC’05

S10 Static Evaluation of Software Architectures J. Knodel CSMR’06
S11 Towards a Process-Oriented Software Architecture Recon-

struction Taxonomy
D. Pollet CSMR’07

S12 Architectural elements recovery and quality evaluation to
assist in reference architectures specification

A. Vasconcelos SEKE’07

S13 Architecture Recovery and Evaluation Aiming at Program
Understanding and Reuse

A. Vasconcelos QoSA’07

S14 Extending the Reflexion Method for Consolidating Software
Variants into Product Lines

P. Frenzel WCRE’07

S15 Extending the reflexion method for consolidating software
variants into product lines

R. Koschke Soft Qual
J’09

S16 Software Architecture Reconstruction: A Process Oriented
Taxonomy

S. Ducasse IEEE Tr.’09

S17 Evaluating reuse and program understanding in ArchMine
architecture recovery approach

A. Vasconcelos JIS’10

S18 Variability Management for Software Product-Line Archi-
tecture Development

Y. Kim JSEKE’11

S19 Recovering object-oriented framework for software product
line reengineering

Y. Wu ICSR’11

Continued on next page...

150 MAPPING STUDY ON PLA RECOVERY - PRIMARY STUDIES AND DATA SET

ID Title Author(s) Venue

S20 Exploring the Use of Reference Architectures in the Devel-
opment of Product Line Artifacts

E. Nakagawa SPLC’11

S21 Reverse Engineering Architectural Feature Models M. Acher ECSA’11
S22 Automatic Software Architecture Recovery: A Machine

Learning Approach
H. Sajnani ICPC’12

S23 History-sensitive heuristics for recovery of features in code
of evolving program families

Nunes et al. SPLC’12

S24 Towards a Process to design product line architectures
based on reference architectures

Nakagawa et al. SPLC’13

S25 A Comparative Analysis of Software Architecture Recovery
Techniques

Garcia et al. ASE’13

S26 Graph Modelling of a Refactoring Process for Product Line
Architecture Design

F. Losavio CLEI’13

S27 Architectural Bad Smells in Software Product Lines: An
Exploratory Study

Sica et al. WICSA’14

S28 ArchViz: a Tool to Support Architecture Recovery Re-
search

Zapalowski et
al.

CBSoft’14

S29 Recovering Architectural Variability of a Family of Product
Variants

Shatnawi et al. ICSR’15

S30 Comparing Software Architecture Recovery Techniques Us-
ing Accurate Dependencies

Thibaud et al. ICSE’15

S31 Variability extraction and modeling for product variants Linsbauer et al. sof.sys.Model’16
S32 Exploring the combination of software visualization and

data clustering in the software architecture recovery pro-
cess

R. Paiva SAC’16

S33 System Architecture Recovery based on Software Structure
Model

A. Darvas WICSA’16

S34 Recovering software product line architecture of a family of
object-oriented product variants

Shatnawi et al. JSS’16

S35 Discovering Software Architectures with Search-based
Merge of UML Model Variants

W. Assunção ICSR’17

Appendix

B
RECOVERING PLA FROM VARIANTS’ SOURCE

CODE – ADDITIONAL MATERIAL

This appendix describes the additional material for Chapter 4.

B.1 MOTIVATING EXAMPLE ADDITIONAL MATERIAL

B.1.1 MobileMedia Variants’ extracted architecture

Figure B.1 presents the extracted information from MobileMedia V4.

Figure B.1 Extracted information from MobileMedia Variant 4 (packages and relations)

Figure B.2 presents the extracted information from MobileMedia V5.
Figure B.3 presents the extracted information from MobileMedia V6.
Figure B.4 presents the extracted information from MobileMedia V7.
Figure B.5 presents the extracted information from MobileMedia V8.

B.1.2 MobileMedia SPL recovered PLA

151

152 RECOVERING PLA FROM VARIANTS’ SOURCE CODE – ADDITIONAL MATERIAL

Figure B.2 Extracted information from MobileMedia Variant 5 (packages and relations)

Figure B.3 Extracted information from MobileMedia Variant 6 (packages and relations)

B.1 MOTIVATING EXAMPLE ADDITIONAL MATERIAL 153

Figure B.4 Extracted information from MobileMedia Variant 7 (packages and relations)

Figure B.5 Extracted information from MobileMedia Variant 8 (packages and relations)

154 RECOVERING PLA FROM VARIANTS’ SOURCE CODE – ADDITIONAL MATERIAL

COMPONENT METRICS

SSC :0.6666667

SVC :0.33333334

COMMON COMPONENTS TOTAL :6

VARIABILITY COMPONENTS TOTAL :3

RELATION METRICS

RSSC :0.3478261

RSVC :0.65217394

COMMON RELATIONS TOTAL:8

VARIABILITY RELATIONS TOTAL :15

Listing B.1 MobileMedia Metrics

Nodes:

lancs.midp.mobilephoto.lib.exceptions - Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7 Variant_8 - appear
(s) in 87% of the projects

ubc.midp.mobilephoto.core.comms - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of the projects

ubc.midp.mobilephoto.core.threads - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7 Variant_8 -
appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7 Variant_8 -
appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.controller - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7
Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.datamodel - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7
Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.screens - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7 Variant_8
- appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.util - Variant_1 Variant_2 Variant_3 Variant_4 Variant_5 Variant_6 Variant_7 Variant_8 -
appear(s) in 100% of the projects

ubc.midp.mobilephoto.sms - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of the projects

Dependencies:

ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.controller - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.datamodel - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.core.ui.screens - Variant_5 Variant_6 Variant_7 - appear(s) in 37%
of the projects

ubc.midp.mobilephoto.core.ui ubc.midp.mobilephoto.sms - Variant_6 Variant_7 - appear(s) in 25% of the projects

ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui.datamodel - Variant_1 Variant_2 Variant_3
Variant_4 Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.core.ui.screens - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.controller lancs.midp.mobilephoto.lib.exceptions - Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 87% of the projects

ubc.midp.mobilephoto.core.ui.controller ubc.midp.mobilephoto.sms - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of
the projects

ubc.midp.mobilephoto.core.ui.datamodel ubc.midp.mobilephoto.core.util - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.datamodel lancs.midp.mobilephoto.lib.exceptions - Variant_2 Variant_3 Variant_4 Variant_5
Variant_6 Variant_7 Variant_8 - appear(s) in 87% of the projects

ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui.datamodel - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.ui.screens lancs.midp.mobilephoto.lib.exceptions - Variant_2 Variant_3 Variant_4 Variant_5
Variant_6 - appear(s) in 62% of the projects

B.1 MOTIVATING EXAMPLE ADDITIONAL MATERIAL 155

ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui - Variant_7 Variant_8 - appear(s) in 25% of the
projects

ubc.midp.mobilephoto.core.ui.screens ubc.midp.mobilephoto.core.ui.controller - Variant_7 Variant_8 - appear(s) in 25%
of the projects

ubc.midp.mobilephoto.core.util ubc.midp.mobilephoto.core.ui.datamodel - Variant_1 Variant_2 Variant_3 Variant_4
Variant_5 Variant_6 Variant_7 Variant_8 - appear(s) in 100% of the projects

ubc.midp.mobilephoto.core.util lancs.midp.mobilephoto.lib.exceptions - Variant_2 Variant_3 Variant_4 Variant_5
Variant_6 Variant_7 Variant_8 - appear(s) in 87% of the projects

ubc.midp.mobilephoto.sms lancs.midp.mobilephoto.lib.exceptions - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of
the projects

ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.comms - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of the
projects

ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of the
projects

ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.controller - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of
the projects

ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.datamodel - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of
the projects

ubc.midp.mobilephoto.sms ubc.midp.mobilephoto.core.ui.screens - Variant_6 Variant_7 Variant_8 - appear(s) in 37% of
the projects

Listing B.2 MobileMedia Report of the PLA recovery

Appendix

C
EXPLORATORY STUDY ON PRODUCT LINE

ARCHITECTURE RECOVERY - DATA SET

This appendix presents the information gathered from the exploratory study prior dis-
cussed in Chapter 5. The set of instruments included in this Appendix comprise the
following forms: Appendix C.1 presents the consent form subjects must be given and
signed before joining the Experimental Study, confirming permission to participate in
the research; then Appendix C.2 details the background questionnaire, intended to
collect data about the subjects background;

C.1 CONSENT FORM

Table C.1 presents the consent form used in the exploratory study.

C.2 BACKGROUND QUESTIONNAIRE

We designed a form to gather background information regarding their programming expe-
rience. Although the target SPL projects were written in Java, we also included questions
about programming experience in other languages. Table C.2 shows a sample of the ques-
tionnaire the students filled out.

Table C.3 presents the exploratory study subjects profile. The age of the subjects
varies from 23 to 47 years. There are subjects with experience in industry development
(from 2 to 30 years). Regarding the experience with SPL, the subjects started to study
the subject. Finally, the same pattern happens with experience with software architec-
ture. Due to the relevance of the topic, we expected a stronger relation with software
architecture. However, even the most experienced subjects did not use SA in your work
daily basis.

Table C.4 shows the subjects experience with the programming languages. Java is the
most popular programming language among the subjects because it is commonly used in
industry. Moreover, the majority of subjects also worked with PHP. Finally, C and C++
are constantly used.

157

158 EXPLORATORY STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY - DATA SET

CONSENT FORM

Subject Name:

The information contained in this form is intended to establish a written agreement, whereby the
student authorizes his/her participation in the exploratory study, with full knowledge of the nature
of the procedures he/she will submit as a participant, with free will and without any duress. This
participation is voluntary and the subject is free to withdraw from the study at any time and no
longer participate in the study without prejudice to any service that is being or will be submitted.

I. STUDY TITLE:
On the behavior of the SAVaR.

II. STUDY GOAL:
Evaluate the accuracy and reliability of SAVaR.

III. RESPONSIBLE INSTITUTION:
Federal University of Bahia (UFBA).

IV. REPONSIBLE RESEARCHERS:
Crescencio Lima, Ph.D. Candidate (UFBA), Ivan do Carmo Machado, Ph.D. (UFBA), and
Christina von Flach Garcia Chavez, Ph.D. (UFBA).

V. CONSENT:
By signing this consent form, I certify that have read the information above and I am sufficiently
informed of all statements, I fully agree to participate on the experiment. So, I authorize the
execution of the research discussed above.

Salvador, BA, Brazil, / /

Signature

Table C.1 Consent Form

C.2 BACKGROUND QUESTIONNAIRE 159

Table C.2 Characterization form used
ID Java

Age Integer
Have you worked as a software developer in academy? Y/N
If Yes, How long did you worked? Integer
Have you worked as a software developer in industry? Y/N
If Yes, How long did you worked? Integer
What are the programming languages your worked? Text
Did you have previous experience developing SPL projects? Y/N
If Yes, How long did you worked? Integer
Did you have previous experience working with software architecture? Y/N
If Yes, How long did you worked? Integer

Figure C.1 shows the SPL Web Store project Design Structure Matrix (DSM). We
provide the DSM details in the project website1. Moreover, in the project website can be
found the recovered PLA (module view), Metrics report, and the inspection report.

Figure C.2 presents the recovered PLA module view of the Web Store project.
Figure C.3 shows the SPL Message project Design Structure Matrix (DSM). We pro-

vide the DSM details in the project website2. Moreover, in the project website can be
found the recovered PLA (module view), Metrics report, and the inspection report.

Figure C.4 presents the recovered PLA module view of the Web Store project.

1<http://homes.dcc.ufba.br/~crescencio/WebStoreSPL/>
2<http://homes.dcc.ufba.br/~crescencio/SPLMessage/>

160 EXPLORATORY STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY - DATA SET

Figure C.1 Recovered Design Structure Matrix - Project SPL Web Store

C.2 BACKGROUND QUESTIONNAIRE 161

F
ig

ur
e

C
.2

R
ec

ov
er

ed
P

LA
(m

od
ul

e
vi

ew
)

-
P

ro
je

ct
SP

L
W

eb
St

or
e

162 EXPLORATORY STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY - DATA SET

Figure C.3 Recovered Design Structure Matrix - Project SPL Message

C.2 BACKGROUND QUESTIONNAIRE 163

F
ig

ur
e

C
.4

R
ec

ov
er

ed
P

LA
(m

od
ul

e
vi

ew
)

-
P

ro
je

ct
SP

L
M

es
sa

ge

164 EXPLORATORY STUDY ON PRODUCT LINE ARCHITECTURE RECOVERY - DATA SET

Table C.3 Subjects’ Profile
ID Age Gender Exp. Ind. Exp. Acad. Exp. SPL Exp. Arch.

1 23 masc. 2 yrs 5 yrs 3 mths study
2 47 masc. 30 yrs - 4 mths study
3 23 masc. 1 mth 4 mths study study
4 27 masc. 3 yrs 2 yrs study 2 yrs
5 24 fem. 2 yrs 3 yrs 6 mths study
6 40 fem. 6 yrs 8 yrs none study
7 33 fem. 15 yrs 5 yrs 1 yr study
8 31 masc. 3 yrs - 6 mths study
9 25 masc. 3 yrs 3 yrs 2 mths 2 yrs

Legend:[Exp. Ind.] Experience in industry, [Exp. Acad.] Experience in
academia, [Exp. SPL] Experience in SPL, [Exp. Arch.] Experience in software
architecture, [masc.] masculine, [fem.] feminine, [yrs] years, [mths] months

Table C.4 Subjects Experience with Programming Language
ID Java PHP Pascal Ruby C C++ C# ASP Other

1 • • - • - - - - •
2 - • • - - - - • •
3 - • - - - • - - -
4 • - - - • • • - •
5 • • - - • - - - -
6 • - • - • - - - •
7 • • - - - - • • •
8 • • • - • • - - -
9 • - - - • • - - -

Legend:[•] subject with professional experience using the programming lan-
guage, [-] no experience with the programming language

