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“Do not conform to the pattern of this world,

but be transformed by the renewing of your mind.

Then you will be able to test and approve what Gods will is

his good, pleasing and perfect will

(Bible, Romans 12:2)



ABSTRACT

I empirically analyze the performance of a term structure model, in which each instantaneous

forward rate is driven by a different stochastic shock, namely, string market model. This model

was employed to pricing interest rates derivatives traded in the Brazilian financial market. I find

that the market use four risk factors to pricing the option on DI futures. How the option on

IDI index has the same underlying variable (interbank deposit rates) to the option on DI futures,

both are connected by no-arbitrage relationship through the correlation structure of interest rates.

Accordingly, to identify arbitrage opportunities between these two derivatives, the string market

model was calibrated with the option on DI futures and then, used to pricing a sample of the

option on IDI index. The empirical investigation show that there is no systematic mispricing

between these two options. However, the prices of a sub-sample of the “near the money” option

on IDI index, deviate considerably from the no-arbitrage values implied by the market prices of

the option on DI futures.

Keywords: Interest Rates. Financial Economics. Arbitrage. Derivative.



RESUMO

Eu empiricamente analiso a performance de um modelo de estrutura a termo, em que cada taxa

de juros futura possui choques estocásticos diferentes, nomeadamente, "string market model".

Este modelo foi empregado para precificar derivativos de taxas de juros negociados no mercado

financeiro brasileiro. Foi identificado que o mercado utiliza quatro fatores de risco diferentes

para precificar a opção sobre o futuro de DI. Como a opção sobre o índice IDI possui o mesmo

ativo-objeto (taxa dos depositos interbancários) que a opção sobre o futuro de DI, ambas estão

conectadas por uma relação de não arbitragem devido a estrutura de correlação das taxas de

juros. Consequentemente, para identificar oportunidades de arbitragem entre estes dois instru-

mentos financeiros, o "string market model"foi calibrado com a opção sobre futuro de DI e en-

tão, utilizado para precificar uma amostra da opção sobre o índice IDI. A investigação empírica

mostrou que não há desvios de preços de forma sistematizada entre as duas opções. Contudo,

os preços de uma sub-amostra de opções "próxima do dinheiro"da opção sobre o índice IDI,

desviaram-se consideravelemente dos valores requeridos pela relação de não arbitragem.

Palavras-chaves: Taxas de juros, Economia Financeira, Arbitragem, Derivativos.
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1 INTRODUCTION

The search for risk-sharing, the financial deregulation and the development of information tech-

nology have been leading a fast growth to the derivative market. Many firms around the world

manage their risk exposure on fluctuations in interest rates using these type of instruments. Ac-

cording with ISDA (International Swaps and Derivatives Association), almost 94% of the 500

biggest companies of the world use derivatives to protect themselves against undesired fluctua-

tion in the interest rates 1. In accordance with this institution, the global notional value2 of the

interest rate derivatives market was approximately $ 436.8 trillion in the end of 2017. Then, is

of enormous importance a well-specified and efficient pricing model for these type of financial

instruments.

Usually, the derivatives are used with the purposes of hedging, to get protection against unde-

sired variations on prices (commodities, energy), currencies, rates (interest, inflation), among

others. Adopting a position on the derivative market opposed of the position on the spot mar-

ket. Meanwhile, there are another types of uses, like leverage (allow the improvement at the

portfolio return with a cost lower than buy another assets), speculation (when adopt a position

on derivative market without the correspondence position on the spot market, aiming for profit,

exclusively) and, finally, arbitrage, that is the main topic of this study. The arbitrageurs seek

distortions in financial assets prices, like approximately similar security that are sold in two

different markets for different prices, with the objective to buy the cheaper security and sells the

more expensive one and when occurs the market prices correction, the arbitrageur dissolve his

position with profit.

In Brazil, the most trade derivative is the DI (interbank deposit rate) futures contract and this is

an of the most liquidity contract in the world3 (approximately 1.5 million of contracts are traded

daily). Its dynamics are similar to swaps contract, one party operating in DI rate, the floating

rate and the counterparty is active in a fixed rate. Another type of contingent claims, that also

have as underlying variable the DI rates, are: the option on average one-day interbank deposit

1 In accordance with the ISDA, 471 companies that was interviewed at 2018, reported the utilization of inte-

rest rates derivatives. The report about the data set of derivative markets was obtained in the ISDA site, on

06/30/2019. Available in < www.isda.org/researchnotes/isdaresearch.html>, accessed on 30 jun. 2019.
2 The notional value is the quantity in money concerned in a transaction (HULL et al., 2009). For example,

let’s assume an interest rate swap, the company A issues R$ 1 mi in debentures to be pay monthly on 120

installments with interest of 10% a.a, the economic analysts of this firm believe that the interest rates will fall

soon, then, they deserve exchange a fixed rate by the floating rate, to have less financial outlay. Meanwhile, the

investment fund B has a portfolio of bonds with market value of R$ 1 mi, if the interest rates increase the bonds

will lose value, because this the fund deserve migrate to a fix rate to get protection against the depreciation of

yours bonds. Consequently, the investment fund B and the firm A agree to get in a swap contract of interest

rates. A will pay to B in a future date (1 year for example) the SELIC rate on the capital of R$ 1 mi and will

receive of B 10% on R$ 1 mi.
3 In accordance with <http://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-

data/consultas/mercado-de-derivativos/resumo-das-operacoes/resumo-por-produto> accessed on 30 ago.

2019
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rate index (henceforth, the option on IDI index) and the option on one-day interbank deposit

futures (henceforth, the option on DI futures).

How these two options sharing the same underlying variable, financial theory implies no-arbitrage

relation that must be satisfied by the option on IDI index and the option on DI futures. The op-

tion pricing theory (MERTON et al., 1973) implies that the relation between these options are

drive primarily by the correlation structure of the forward rates, because this, no-arbitrage rela-

tionship must be satisfied.

Significant part of the literature about interest rates derivatives, in accordance with Jarrow, Li

e Zhao (2007), approaching two subjects. The first one is related to the unspanned stochastic

volatility, the risk factors that pricing interest rates derivatives are not the same of the term

structure. The second one, is about the relative valuation of Caps e Swaptions4, how these

two options has the same underlying variable, both prices movements are correlated to the

movements of the term structure of interest rate, this involve a no-arbitrage relation between

these two derivatives. However, according to Longstaff, Santa-Clara e Schwartz (2001a) and

Jagannathan, Kaplin e Sun (2003), there is an important mispricing between caps and swaptions,

verified through the use of various multifactor term structure models, what has been called by

the “swaptions/caps puzzle”.

For the valuation framework, i adapted for the DI rates, the model of Longstaff, Santa-Clara e

Schwartz (2001a) (henceforth LSS model), developed to simulate the evolution the term struc-

ture of the London Interbank Offered Rate (Libor rate) in continuous time. One of the mains

innovations of my model consist in the development of the genetic algorithm to capture the ave-

rage implied volatility of the options. The algorithm’s objective is to find an implied volatility

that best pricing a set of options that has the same maturity, with the Black (1976) model.

This dissertation has as one of its contributions an empirical analysis about the behavior of the

prices of financial instrument traded on the securities exchange. The hypothesis that the investor

are rationale bring great implications to the behavior of the asset markets, if this hypothesis are

true, there should be no arbitrage opportunities, or at least, a correction very fast on mispricing

assets. Therefore, an empirical analysis about the behavior of the prices and an evaluation on its

arbitrage opportunities is an important channel to identify how the rational the investors really

are. This work evaluated over 61 weeks, 8.396 options and the empirical results provide an

evidence that there is not systematic arbitrage opportunities between the option on IDI index

and the option on DI futures. Nonetheless, for a little part of the sample, there were significant

mispricing, what can lead a gain with arbitrage.

Beyond the empirical contributions, there are theoretical ones, which refers to the specifications

4 The swaption is an option that confer to his owner the right to enter in a swap contract of interest rates, and is

divided in two types: the payer swaption and the receiver swaption. With the payer swaption, the buyer has the

right to enter in a swap contract to receive the floating rate and pay the fixed rate. The receiver swaption is the

opposite. Already the Caps is a derivative that the buyer receive a payment at the end of each period in which

the interest rate exceed the strike of the option agreed at the moment of the purchase.
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of equations that expresses the payoffs of the options and the DI forward rates with continuous

time capitalization. Carreira e Jr (2016) and Santos e Silva (2015) exhibit the payoff of the op-

tion on DI futures with the annual interest rates and annual capitalization, however, to promote

computational tractability and simplify the equations, i adapted these equations to expresses it

with annual interest rates and continuous time capitalization, also is present new expressions for

the payoff of these derivatives. I present in a sequence of equations, a method to get the forward

rate with continuous time capitalization and the bond prices, with the use of the unit price-PU

of the DI futures contract, that are published by the São Paulo Securities Exchange (henceforth

B3, fantasy name of securities exchange).

The rest of this work is organize as follows. In chapter I, i present some principles of the modern

theory of finance, among them: the stochastic discount factor, the risk neutral probability mea-

sure, the risk-free rate, the risk correction and the risk sharing. Chapter II report the financial

instruments utilized in the empirical investigation and its payoffs equations. In Chapter III, i de-

velop the string market model adapted for the DI interest rates. Chapter IV reports the empirical

findings and Section IV concludes.



11

2 OVERVIEW ABOUT THE MODERN THEORY OF FINANCE

The neoclassic theory of finance is based on assumptions that allows the pricing of uncertainty

cash flow. In a model of competitive equilibrium of the asset market, the price are endogenous

obtained, from the aggregate decision economic agents, by means of the pricing function that

maps future uncertainty payoffs in today’s price.

A model is characterized by its assumptions and one of the most important assumption of the

pricing function is the no-arbitrage principles (NA). The arbitrage exist when is possible to get

an strategy of investment that allow a positive payoff with a probability bigger than zero and a

negative payoff with zero probability, without any initial investment (ROSS, 2009).

The minimal requirement is the wealth preference, people prefer more wealth than fewer, there-

fore, asset that are sold in some market with price smaller than the other, will attract attention

of investors that will buy in the market with smaller price to sell in the market with the biggest

price, such that this opportunities of gain will be exhausted in competitive markets.

NA is also a necessary condition to the equilibrium of financial market. If there is an arbitrage

opportunity, the demand and supply of this asset can be infinite, what is inconsistent with an

equilibrium. So, the study of the implication of NA is a fundamental theme in the modern theory

of finance.

The principles of NA is consequence of the law of one price (LOOP). The LOOP require that

two asset that have the same payoff in every states of the wold in the future, must be sold at

the same price, otherwise, we would have an arbitrage opportunity. This assumption is very

important in the asset pricing function, to avoid the occurrence of different price of assets that

have the same payoff.

The other assumption used at the literature (JARROW, 2002) about asset pricing model, include:

i) an economy without friction (without transaction costs, without restriction in the buy and sell

of assets); ii) competitive markets (every trader is price taking).

Over time, because of the advances in the information technology and the increase in the compe-

tition of banks and brokers, the fee charged in the negotiation of assets sold in financial market

have been fallen. Thereby, because of the decreasing impact and the complication that this fee

generate in models, we assume an economy without transaction costs.

2.1 THE STOCHASTIC DISCOUNT FACTOR

Consider an economy with asset negotiation beginning at time zero, the uncertainty in this

economy is characterized by the probability space (Ω, F, Pr), where ω ∈ Ω represent the states

of the world, Pr is a probability measure associated with the states of the world and F is a

σ − algebra that represent the measurable event. To simplify the exposition, we use only two
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periods, t and t+1. Let πt,t+1 be the operator of valuation at date t, this operator point out prices

to portfolio of payoffs pt+1 in the space Pt+1. Pt+1 is specified here as a set of payoffs at t+1 to

portfolio of assets available to acquisition at time t and It is the set of all random variables that

are measurable with respect to Ft.

Hansen e Richard (1987) formalized the existence of diverse property of the set Pt+1. Below,

we enumerate the two fundamental assumptions:

Assumption 1: allow that the pricing function π : Pt+1 → It, be value additive: to any p1
t+1 and

p2
t+1 in Pt+1 and any w1 and w2 in It,

π(w1p
1
t+1 + w2p

2
t+1) = w1π(p1

t+1) + w2π(p2
t+1) (2.1)

Despite the non-linearity of the SDF, in many models, with relation to the factors, the relation

between the SDF and the payoffs is linear. This means that if the payoff of an asset is the double

of another in all states of the world, then it price must be the double of the other, then the pricing

function is linear.

Assumption 2: Afford the continuity of pricing function. If {pj : j = 1, 2, ...} is a sequence of

payoffs in P that converge conditionally to zero, so, to any ǫ > 0, limj→∞Pr{| π(pj) |> ǫ} = 0.

With this assumption, we can infer that small payoffs has small prices.

Hansen e Richard (1987) demonstrated that, under a suitable set of assumption, that include the

two outlined above, there exist an single payoff p∗ in Pt+1 that satisfies:

π(pt+1) = 〈pt+1, p∗〉Ft
(2.2)

For all pt+1 in Pt+1. Moreover, Pr{|| p∗ ||}Ft
> 0} = 1, where || p∗ ||= [〈p∗, p∗〉Ft

]
1

2 . The

assumption outlined in the equation 2.2, say that there exist a unique payoff p∗ ∈ Pt+1 such

that π(pt+1) = E(p∗pt+1) for all pt+1 ∈ Pt+1. I demonstrated in equation 2.1, that the pricing

function is linear, in equation 2.2, I express the same function as result of inner product, this

is possible due of Riesz theorem of representation, according to which, any linear function can

be represented by an inner product. Important to say that if the market is not complete, there

exist a infinite number of random variable that satisfies pt = E[p∗pt+1], for example, for any ǫ

orthogonal to p∗, we will have pt = E[(p∗ + ǫ)pt+1], since E(ǫpt+1) = 0.

If in the space of payoffs Pt+1 there exist a contingent claim for the S states of the world possible

to occur at t+1, then, Pt+1 = Rs and the market is complete. Consider here a contingent claim,

as a financial instrument that pay one unit of the numeraire good, only if arise at t+1 the state s

of the world, else occur a state different of s (considering the individual states by s), nothing is

payed. With the hypothesis of complete market, then, it would have for all states s of the world

a contingent claim.
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There is a convenient interpretation to p∗, when π does not have arbitrage opportunities in Pt+1.

A pricing function πt at the space of payoff Pt+1, is not allow arbitrage opportunities if, to

any pt+1 ∈ Pt+1 such that Pr(pt+1 ≥ 0) = 1, P r({πt(pt+1) ≤ 0} ∩ {pt+1 ≥ 0}) = 0. In other

words, if the payoff is positive, with probability bigger than zero, then, its price must be positive

in order that not allow arbitrage opportunities.

According with Hansen e Richard (1987), for each t=1,2,3..., let It be the set of all random

variables that are measurable with respect to Ft, then I define,

P + = {p emIt+1 : E(p2 | F ) < ∞} (2.3)

For all p1 and p2 in P +, I consider the following assumption, that imply that the pricing function

can be represented by a inner product,

〈p1, p2〉F = E(p1p2 | F ). (2.4)

With the assumption 2.3 and 2.4 satisfied, then π do not have any arbitrage opportunities in P +

if, and only if, Pr{p∗ > 0} = 1. I can interpret p∗ as a equilibrium measure of the marginal

rate of intertemporal substitution of consumption between the time t and t+1, I call the random

variable p∗ as a stochastic discount factor and, thereafter, I will use the notation p∗ = mt+1.

The multi-period version of mt+1 to represent a process of stochastic discount is {Mt+1 : t =

1, 2, ...}, which can be expressed as:

Mt+1 =
t+1
∏

j=1

mj (2.5)

Accordingly, the price of an asset at the date zero that pay pt+1 in units of numeraire good at

t+1, is equal to,

π0,t+1(pt+1) = E(Mt+1pt+1 | F0) (2.6)

2.2 RISK NEUTRAL PROBABILITY MEASURE

Suppose a bond issued at the date t, with face value at t+1 of R$ 1,00, if this bond is risk-free,

then for any state of the world that is possible to occur at the maturity, the investor will receive

R$ 1,00. Consequently, the price of this bond is given by E[mt+1 | F0], that is the discount rate

for risk-free assets.
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Harrison e Kreps (1979) utilize the variable m (stochastic discount factor) defined above, to

introduce a new probability measure that allow that the price of assets can be calculated starting

of its expected payoffs. To build the risk neutral probability measure, consider the expression

below, with the pricing operator for a single period,

πt,t+1(pt+1) = E(mt+1 | F0)Ẽ(pt+1 | Ft) (2.7)

where,

Ẽ(pt+1 | Ft) = E

([

mt+1

E(mt+1) | Ft)

]

pt+1 | Ft

)

(2.8)

With this, the pricing operator is simplified and becomes the multiplication of the expected

value of two random variable, the first is the expected payoff at t+1 obtained with the risk

neutral probabilities measure, Ẽ(. |t). The second variable is the discount factor for the risk-

free assets and have the function to bring out the payoff at time t+1 to time t. In essence, the risk

neutral measure aim to capture a type of preference represented by a linear utility function, with

these type of preference, the agents will be risk neutral. This means that the investor will not

demand risk premium for the more volatile asset, whats matter for the decision-making, with

this type of preference, is only the expected value of the payoff (variance is not important).

The risk neutral valuation is very useful in continuous time process, because it works only using

the mean, is not necessary use the covariance, as will be demonstrate in the next section.

The stochastic discount factor (SDF) can be decomposed into the following manner,

Mt+1 = M̄t+1Dt+1 (2.9)

where,

M̄t+1 =





t+1
∏

j=1

E(mj | Fj−1)



 (2.10)

is the discount factor for risk-free asset and,

Dt+1 =
t+1
∏

j=1

mj

E(mj | Fj−1)
=

Mt+1

M̄t+1

(2.11)
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Dt+1 is a martingale that point out risk neutral probabilities to events in Ft+1, then E(Dt+1 |

Ft) = Dt. The fundamental theorem of asset pricing set up the connection between the equiva-

lent martingal probability measure, cited above, and the absence of arbitrage opportunities.

In an economy where there isn’t arbitrage opportunities in none trading strategy, the product of

SDF with the value of any self-financing trading strategy V, must be a martingale,

V (t) = Et

[

Vt+1
Mt+1

Mt

]

Based with this expression, I can enunciate the fundamental theorem of asset pricing:

Theorem. The two statement below are equivalent to a model X of financial asset pricing:

• X is arbitrage-free (NA);

• Exist a probability measure Qr (risk neutral measure) equivalent to Pr (physics probabi-

lity measure) in the space of probability (Ω, F, Pr).

To explain what is a self-financing strategy V, consider below, the set of all assets trading in an

economy, with a stochastic process in ℜd+1,

(S0
t , S1

t , ..., Sd
t )t∈T

Where T = {0, 1, ..., T} represent the negotiation dates. S0
t means the risk-free bond, it isn’t

a random variable because independently of states of the world, have the same payoff, on the

other hand, (S1
t , ..., Sd

t ) are random variables that represent the price at time t to d different

assets.

The trading strategy φ denote the quantity of asset purchased by the investor to create his port-

folio, represent the separation of capital between different assets, φ0 is the quantity of risk-free

bond that compose the portfolio and φd is the quantity of asset d,

φ = (φ0
t , ..., φd

t )T
t=0

For a time t, the vector (φ0
t , ..., φd

t )T
t=0 denote the portfolio in this date and the value of this

portfolio (Vt) is obtained by the following manner,
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Vt(φ) = φt.St =
d
∑

i=0

φi
tS

i
t ∀t ∈ T, t ≥ 1.

An strategy is calling self-financing if, and only if,

φt.St = φt+1.St t = 1, ..., T − 1

The investor, over the trading dates, don’t use they resources to consume and also, don’t add

new values, based with this information until the date t, the investor build they portfolio and in

each date he can readjust the quantity of any asset. However, the evolution of his wealth in a

self-financing strategy occur only with the appreciation or depreciation of the asset price that

belongs to the portfolio.

2.3 THE INVESTOR’S PROBLEM

Suppose an investor with a utility function U(ct, ct+1) = u(ct) + βEt[u(ct+1)], such that

U ′(ct, ct+1) > 0 and U ′′(ct, ct+1) < 0. Then, he is a risk-averse agent (because the concave

utility function), such that, for investment in risk asset (risk in the sense of larger volatility

and absence of information about the investment’s return), is required a risk premium, in other

words, for this type of investor, the utility of the lottery expected value is bigger than the expec-

ted utility of a lottery. This relation only becomes an equality when exists a risk premium.

The goal of the investor is maximize his utility function, to accomplish this objective, he must

do optimal choices in each period between consumption and savings. To formalize the problem

in a simplified way, I consider a temporal horizon with only two times, I assume also that there

is not restriction about the acquisition or sale of the payoff pt+1 at the prices pt, in the other

words, he can purchase the desired quantity. Thus, this problem are represented by the equation

below,

Max U(ct, ct+1) = u(ct) + βEt[u(ct+1)], st. (2.12)

ct = et − ptδ, (2.13)

ct+1 = et+1 − pt+1δ. (2.14)

Where ct is the consume at time t, et represent the consume if the investor does not buy any asset,

δ is the quantity of asset chosen and pt+1 is the payoff at t+1. ct+1 is the consume in a future

period, which become uncertainty and random, the β denote the impatient rate (a subjective

discount rate), the more impatient are the agent, the bigger are the disposal to consume at the



17

present his resources, because his discount rate is high. This mean that the expectation of return

must be high in order to make this type of agent save instead of consume.

Replacing the restriction inside the objective function and deriving with respect to δ, I obtain

the first order condition to get the optimal choice of consumption and saving,

ptu
′(ct) = Et[βu′(ct+1)pt+1] (2.15)

or

pt = Et

[

β
u′(ct+1)

u′(ct)
pt+1

]

(2.16)

Taking the decision of buy an asset, instead of consume, the investor has a loss in his marginal

utility, whose magnitude is computed by u′(ct)pt. However, Et[βu′(ct+1)pt+1] is the increase in

his expected utility by virtue of the gain the payoff pt+1 at t + 1. The investor will buy or sell an

asset until the marginal loss matches the marginal gain.

If the agents are utility maximizer, then, there is a direct connection between his marginal rate of

intertemporal substitution of consume and the stochastic discount factor (COCHRANE, 2009),

pt = Et(mt+1pt+1) (2.17)

mt+1 ≡ β
u′(ct+1)

u′(ct)
(2.18)

Therefore, the SDF (mt+1) is used to represent valuation operator in dynamics economies and

constitutes an essential part of the pricing function. The pricing operators point out prices for the

assets that are trading in competitive markets, with the use of payoffs that may occur between

several states of the world.

I demonstrate above, that the basic pricing equation arise by the first order condition of the

investor’s problem. Accordingly, the main objective is not to obtain bigger returns on investment,

but maximize his utility function. In the financial market, there is the desire of larger returns

and less variance of the portfolio (the return is a good and the variance is a harm), however, this

objective are considered as intermediate.

2.4 THE RISK-FREE RATE

I can represent the return of an investment in the asset I between the time t and t+1, through

the ratio Ri = pt+1/pt, then, the present value is 1 and the payoff is the return. If the rate of

appreciation of an asset were, for example, 10%, so, the return is represented for 1.1.
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The return of the asset i, Ri, can be express by the following manner,

1 = E(mRi). (2.19)

The risk-free rate is the theoretical rate of return of an investment that remunerate by a rate r,

regardless of the state of the world at the maturity, in other words, is a firmed rate of return of

an investment that offer none risk for your creditor. At the American economy, for example, is

denoted by the short-term interest rates pays by the U.S treasury. If I utilize the expression 2.19

above to represent the return of the risk-free asset, I will have,

1 = E(mRf ) (2.20)

1 = E(m)Rf (2.21)

Rf =
1

E(m)
(2.22)

To analyze the implication of equation 2.22 above, I take the utility function with constant

relative risk aversion (CRRA),

u(c) =
c1−δ − 1

1− δ
δ 6= 1

Based on this utility function and its derivative u′(c) = c−δ, I sketch the risk-free rate as,

Rf =
1

β

(

ct+1

ct

)δ

. (2.23)

With the equation 2.23 outlined above, I can say that:

1. If the subjective discount rate β be high and, consequently, it value be low to cause a

larger discount, the economy will have a high interest rates to convince individuals with

higher impatient rate to saving today, in order to consume more in the future.

2. The higher is the difference between ct+1 and ct, the greater will be the impact on interest

rates. If the consume possess a sharp grown rate, the economy also will have higher inte-

rest rates. High interest rates increase the intertemporal substitution of consume between

today and future period, it is a stimulus for the postponement of the consumption to the

future.
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3. The interest rates is an increase function of the parameter δ that represent the risk aver-

sion. The higher is δ, the greater will be the curvature of the utility function and the

risk aversion, accordingly, this type of investor look for maintain a pattern of consume

with smooth shifts, at that fashion, is necessary a high interest rates to convince him to

substitute today’s consume to tomorrow’s one.

2.5 RISK CORRECTION

The covariance can be represented by the following manner: cov(m, pt+1) = E(mpt+1) −

E(m)E(pt+1) and how p = E(mpt+1), isolating to pt+1, I have,

pt = E(m)E(pt+1) + cov(m, pt+1)

How the risk-free rate is given by Rf = 1
E(m)

, then,

pt =
E(pt+1)

Rf
+ cov(m, pt+1)

The first term is a very useful form of calculation the net present value. If the investors has a

linear utility function and consequently, are risk neutral, the price would be obtained based on

the expected value of the payoff, carried out until the present time by the risk-free rate. The risk

neutrality imply that the agents are indifferent with relation to the volatility and what matter on

his decision-making, is the expected value of the payoff.

The second term of the equation above is the risk correction. The risk correction of an asset is

given by the covariance between the asset’s payoffs with the marginal utility of consumption. An

asset with a positive correlation with consumption is less valued than the other that have none or

negative correlation. To understand this logic, suppose a recession in which the consumer have

his financial situation worsened, if he own an asset whose value fall in recession, then, he will

be in the worst situation than if he own an asset that is not correlated with consumption.

Assets that have negative correlation with consume are more valued because it can be employed

in the portfolio to diminish its variance, preserving its expected value. This type of asset have

a net present value bigger than its payoffs in the future discounted by the risk-free rate, for

example, a holder of an insurance might have his purchase power recovered, upon a sinister has

affected his wealth, so, the insurance’s payoff and the consume must have negative correlation.

For this reason, people buy insurance, despite the premium charged by the insurance companies

is greater than the expected value of the payoff discounted by the interest rates.
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Considering the basic equation of the expected returns: 1 = E(mRi) and applying the decom-

position of the covariance, I get,

1 = E(m)E(Ri) + cov(m, Ri)

Substituting by the risk-free rate,

1 =
E(Ri)

E(Rf )
+ cov(m, Ri)

And isolating the return,

(1− cov(m, Ri))Rf = E(Ri)

E(Ri)−Rf = −Rfcov(m, Ri)

E(Ri)

Rf
− 1 = −cov(m, Ri)

How, in general, the investor is risk averse, the assets have an expected rate of return that is

equal the risk-free rate plus a risk adjustment, this excess of return is equal to−cov(m, Ri). It is

worth mentioning that the risk correction is not a function of the volatility σ2(pt+1), what matter

here is the covariance between the stochastic discount factor and the payoff, if cov(m, pt+1) = 0,

then pt = E(pt+1)/Rf .

2.6 RISK SHARING

As provided by Ross (2013), only the risks that cannot be avoided with the diversification th-

rough assets portfolio are priced, then only aggregate macroeconomic shocks matter for risk

prices. Part of the empirical research in macroeconomics seek to identify shocks to quantify its

impact on the economics variables, meanwhile, the asset pricing model point out prices for the

exposition to this shocks, because its can cause impact on the cash flow of the investment.

In accordance with Cochrane (2009), assume an economy whereby the marginal rate of substitu-

tion to any investor is equal to the price of the contingent claim, since the price of the contingent

claim is the same for all investor, we get the equality below to investor i and j,

βi u
′(ci

t+1)

u′(ci
t)

= βj u′(cj
t+1)

u′(cj
t)

(2.24)
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If the investor has the homothetic utility function, then, the consume grow up at the same reason

among them.

ci
t+1

ci
t

=
cj

t+1

cj
t

This equality say that the variation rate of the consume between time t and t+1 is the same for all

individuals, then, consumer’s shocks effect is proportionally equal among them. In a complete

market of contingent claim, everybody sharing all risks, at this way, when someone are affected

for a shock in his income, this shock affect all the other in the same proportion. I am not saying

that the consume is the same for all individuals, but that the variation between the two periods

are the same, if one grow up 10%, the other perceive an elevation at 10%.

With this suppositions, any idiosyncratic risk that can affect the income is sharing among the

investors, the existence of the contingent claim is that permit this sharing, working as type of

insurance. The unique risks that cannot be insurable, are the macroeconomics risks, because it

would be impracticable insure an asset’s portfolio against all macroeconomics risks, the price of

these contingent claim would be extraordinarily high. Like this, only aggregate shocks should

matter, such that, the stochastic discount factor m, that priced all assets, is not affected by the

idiosyncratic risk.

Any payoff can be decomposed in two parts, the first one correlated with the stochastic discount

factor (SDF) and the second one that is not correlated. How, in general, the SDF is estimated

through macroeconomic variables, then, the part that is not correlated with the SDF account for

the idiosyncratic risk, are the suppressed variables in the model that has significant correlation

with the payoff.

Only the systemic risk matter in the pricing function, the idiosyncratic risk not affect prices.

Consider that ǫ embody the suppressed variables in the model and that has correlation with the

payoff, then, E(mǫ) = 0.

The assumption exposed above, about risk sharing and the null pricing of the idiosyncratic risk,

are very strong and cause profound implications on the asset pricing models. Nonetheless, in

real world there is no complete markets, as well as complete risk sharing, as a result, this issue

motivated a vivid debate at the literature about the empirical evidence related for the pricing of

the idiosyncratic risk. In accordance with ??), this type of risk is priced. Campbell et al. (2001)

decomposed the stock market return in tree components: the return originated by the market, a

residual return due the firm’s industry and the other due merely by the firm’s specificities, the

authors conclude that there was in the U.S stock market, between 1962 to 1997, a tendency of

growth in the idiosyncratic volatility.

An argument that underpin the thesis that the idiosyncratic risk matter, is related of the absence

of investment’s diversification in the manner recommended by the economic theory. The inves-
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tor’s portfolio are affected by the idiosyncratic volatility, not only because of the incomplete

market and the absence of hedge for this type of risks, but due to the absence of the diversifi-

cation. In accordance with Campbell et al. (2001), the number of stocks necessary to obtain a

certain level of diversification have been increased, what become increasingly difficult to indi-

vidual investor and resource managers stand exempted of the idiosyncratic volatility.

However, the assumption that prices are only affected by macroeconomics factors draws atten-

tion to the importance for the financial instruments that aid the risks sharing. The innovation

and creativity observed in derivative markets has helped banks, funds and individuals investors

to protect their assets and some of the forces that drives this movement is a better risk sharing.
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3 INTEREST RATE DERIVATIVES MARKET

In this section, I outline the characteristics of the derivatives evaluated in this study. In the

complex of interest rate derivatives traded in the B31, I select only the instrument related to

the DI rate, that are the most traded. In this category, are included: one-day interbank deposit

futures, the option on IDI index and the option on DI futures.

3.1 ONE-DAY INTERBANK DEPOSIT FUTURES

The One-day Interbank Deposit Futures, known as DI Futures, is a derivatives contract whose

object of negotiation is the interest rate, comprised between the trading date and the maturity

date of the contract. The product has notional value of R$ 100.000,00 at the maturity (each

contract correspond to 100.000 points and each point amount to R$ 1.00). This is an operation

based on the expectations of the future behavior of the one-day interbank deposit rate (DI rates,

calculated by CETIP Custody and Settlement and expressed as a percentage rate per anuum

compounded daily based on a 252-day year) verified in the period between the trade date and

the last trading date of the contract.

DI futures contract is used to hedge and manage risk exposures of liabilities, like debts and

risk of assets, like government bonds. DI rate is based on interbank transactions, as the same

way of the Libor rate. Because of the great liquidity that it has, constitutes a reference to the

Brazilian economy, which expresses the expectations about the behavior of interest rates for

future periods.

DI futures is one of the most volatile interest contract in the world, which bring many oppor-

tunities for trading. This allows speculation and arbitrage opportunities across the entire term

structure of interest rates, moreover, this type of product are used for the hedging transactions,

because the DI futures contract protect investment funds, companies and individuals investor

from changes in interest rates, reducing the exposure to floating or fixed rates.

Future contracts has as one of the main characteristics, the margin account, that is used to cover

eventual losses of the operation. To buy a future contract of any commodity or index, there is

not a cost at the moment of the purchase, therefore, is necessary deposit a guarantee margin

the will be used to allow the investment with controlled risk. The daily cash flow of the margin

account can be expressed as,

1 that include: Extended Consumer Price Index (IPCA) Futures, Futures on the Average Rate of One-Day Re-

purchase Agreements, Options on the Index of the Average Rate of One-Day Repurchase Transactions, DI x

IPCA Spread Futures, DI x U.S. Dollar Spread Futures, Structured Transactions of Forward Rate Agreement

on DI x U.S. Dollar Spread, DI x U.S. Dollar Swap, U.S. Dollar Spread Futures Contract Referencing One-Day

Repurchase Agreements, Forward Rate Agreement on One-Day Repurchase Agreements X U.S. Dollar Spread,

U.S. Dollar Swap with Reset Referencing One-Day Repurchase Agreements
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MCF T
t = CP T

t − TP T
t

MCF is the cash flow of the margin account accounted at the date t, but paid on the next day.

The CP is the unitary price-PU at the date of entry in the future contract, adjusted by the rate

traded at the initial moment (between date t and T). The TP is the PU at the date of entry in the

future contract, adjusted by the DI rate (between date t and the date T).

I consider a continuous trading economy with a continuum of default free discount bonds, trade

with different maturities. The bonds are trading at the dates T ∈ [0, τ ]. P (t, T ) express the

bond’s price at the time t ∈ [0, T ], that has face value of R$ 1,00 at the maturity, and T is

the date of bond’s maturity. I require that P (T, T ) = 1 for all T ∈ [0, τ ], P (t, T ) > 0 for all

T ∈ [0, τ ] and t ∈ [0, T ].

The unit price (PU) of the one-day interbank deposit futures contract is defined by,

PU(t, T ) =
100, 000

(1 + r/100)(T−t)/252
(3.1)

Where r is the interest rate contracted; the difference T-t, represent the reserve day, comprised

between the trading date (t), inclusive, and the maturity date of the contract (T), exclusive;

reserve day is a business day for the purposes of financial market transactions, as established

by the National Monetary Council. It is highlighted that the DI futures contract has value of R$

100.000,00 at the maturity, then, the PU represent the R$ 100.000,00 discounted by the interest

rate contracted.

The bank calendar in the Brazil use annual periods of 252 business day and the capitalization

of the DI futures contract occurs only at the business day verified between the trade day and the

maturity date, inclusive.

To obtains the annual forward interest rates with annual capitalization, I apply the following

equations, to t ≤ Ti ≤ Tj ,

f(t, Ti, Tj)
annual =

(

PU(t, Ti)

PU(t, Tj)

)
252

Tj−Ti

− 1 for all Ti and Tj ∈ [0, τ ], t ∈ [0, T ] (3.2)

Where Ti and Tj represent the maturities dates of the contract. PU(t, Ti) is the unit price at time

t of a contract that has maturity at Ti. Thus, f(t, Ti, Tj) is the term rate at the time t between the

dates Ti and Tj .

To simplify the equations and facilitate the numerical implementations of the model, I use all

interest rates with continuous time capitalization. Therefore, I use the following expressions to
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get the annual forward rate with continuous time capitalization.

f(t, Ti, Tj)
continuous = log(1+f(t, Ti, Tj)

annual) for all Ti andTj ∈ [0, τ ], t ∈ [0, T ] (3.3)

I apply the expression 3.3 for all historic series, therefore, how the maturity of the DI futures

contract is always at the first business day of the month, the number of business day up to ma-

turity are different between the several trading dates, such that, becomes necessary perform a

interpolation scheme to align the rates to the same number of business day up to maturity. I

perform the piecewise polynomial interpolation (cubic spline) to present a smooth curve, alre-

ady that the curve with breaks and spikes allow the arbitrage opportunities, moreover, is more

feasible assume that the forward rates curve does not present discontinuities.

With the DI rates for the diverse maturities of the DI futures contract, f(t, Ti, Tj), one obtains

the bond prices that pay R$ 1,00 at the maturity,

P (t, Tj) =
1

exp
(

f(t, t, Tj)
T−t
252

) for all Tj ∈ [0, τ ], t ∈ [0, T ] (3.4)

The spot interest rates at time t, r(t) is the forward rate at time t for the maturity t, embody the

instantaneous interest rate practiced on the trade date t,

r(t) = f(t, t, t) for all t ∈ [0, τ ] (3.5)

The DI futures contract also can be expressed by the following manner, separating the fixed part

from the float part,

PV _fixed =
∑

t

CδtPOfixed
t Λt = C

∑

t

δtPOfixed
t Λt

PV _float =
∑

t

rtδtPOfloat
t Λt

How,

PV _fixed = PV _float

Then,

C =

∑

t rtδtPOfloat
t Λt

∑

t δtPOfixed
t Λt

Where:
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• PV _fixed is the fixed leg of the future contract and PV _float is the float leg of the

future contract;

• POfixed
t is the the trading price in PU, updated up to time t by the traded interest rate and

POfloat
t is the PU updated up to time t by the effective DI interest rate;

• C - Contracts rate (fixed leg);

• Λt - discount factor for payment date t and rt - forward rate (floating rate of future pay-

ment)

• δt - day count fraction;

3.2 OPTIONS ON INTEREST RATES

In this section, I described some of the main characteristics of the options evaluated in this work,

including: the option on DI futures and the option on IDI index.

3.2.1 Option on One-Day Interbank Deposit Futures

At the exercise day of the contract, the buyer and the seller receive a position in the one-day

interbank deposit futures contract. The buyer receive a long position on the future contract

and the seller receive a short position on the future contract. Basically, this is an instrument of

negotiation of forward rates, already that the underlying asset of the option is the future contract

with maturity at the date subsequent to the maturity of the option.

Let T1 be the exercise date of the option and T2 the maturity date of the future contract, the

option’s payoff can be expressed in T1 by the following manner,

payoff [T1] = Q.max



cp.



FUTT1,T2
−

100.000

exp
(

k.
(

T2−T1

252

))



 , 0





The equation above was adapted of Carreira e Jr (2016), to represent the payoff with the interest

rate in continuous time. Where: i) Q: contract quantity; ii) max(A,B): operator that compute the

maximum value between A and B; iii) cp: variable that define if the option is of the type call

or put; iv) FUTT1,T2
: is the notional value of future contract at T1. Has value of R$ 100.000 at

the maturity, before the maturity, its value is determined by the market, in accordance with the

expectation of interest rates between the actual date and the maturity date; v) k: strike2 price,

defined as rate with continuous capitalization; vi) T2 − T1: business days between T1 and T2,

counted at the base 252 business days, according to bank calendar.

2 strike price (or exercise price) is the fixed price at which the owner of the option can buy (in the case of a call),

or sell (in the case of a put), the underlying security
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Under the classification of B3, the rule of functioning of the option depend of the type: i) Type

1 (D11): when the object of the option is the future contract with maturity in 3 months after

the maturity of the option; ii) Type 2 (D12): when the object of the option is the future contract

with maturity in 6 months after the maturity of the option; iii) Type 3 (D13): when the object

of the option is the future contract with maturity in 1 year after the maturity of the option; iv)

Type 4 (D14): when the object of the option is the future contract with maturity specified by the

exchange securities.

How the underlying asset has expiration date posterior to the derivative maturity, what is negoti-

ated is a forward rate, between the maturity of the option and the maturity of the future contract.

This contract expose the investor to the parallel and slope shift of the term structure of interest

rates.

It is worth noting that this options are european type, the exercise occur only at the maturity

date, when the price of the future contract of DI are greater than the exercise price, for call

options; or below to the exercise price, for put option, of automatic form. It is noteworthy to

point out that the price here is defined as rate.

With a little of algebra is possible transform the payoff above to a format similar to the swaption,

in order to simplified its estimations computationally,

payoff [T1] = Q.100.000.max.



cp.





1

exp
(

r.
(

T2−T1

252

)) −
1

exp
(

k.
(

T2−T1

252

))



 , 0



 (3.6)

Where r is the annual rate with continuous time capitalization between T1 and T2, k is the

exercise price of the option (published in rates by the B3).

payoff [T1] = Q.K.max



cp.





exp
(

k.
(

T2−T1

252

))

− exp
(

r.
(

T2−T1

252

))

exp
(

r.
(

T2−T1

252

))



 , 0



 (3.7)

Where,

K =
100.000

exp
(

k.
(

T2−T1

252

))

Is possible to obtain a simplification through the conversion of exponential rates to linear rates,

exp
(

k.
(

T2 − T1

252

))

= 1 + kl.
(

T2 − T1

252

)

(3.8)

exp
(

r.
(

T2 − T1

252

))

= 1 + rl.
(

T2 − T1

252

)

(3.9)
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Substituting (3.8) and (3.9) on the numerator of (3.7),

payoff [T1] = Q.K.
(

T2 − T1

252

)

.max



cp.





kl − rl

exp
(

r.
(

T2−T1

252

))



 , 0



 (3.10)

The last step consist in obtain the payoff on T2 and from the multiplication of the factor of

adjustment between the two periods exp
(

r.
(

T2−T1

252

))

by the payoff in T1,

payoff [T2] = Q.K.
(

T2 − T1

252

)

.max (cp. [kl − rl] , 0) (3.11)

The rate rl represent the DI rate linearized, simulated between T1 and T2, already the rate kl, is

the conversion of the strike of the option to the linear rate. Therefore, the expression 3.11 above,

denote the payoff of the option at the maturity date of the future contract.

Below, Ideveloped equations to show the present value of this type of options, separating the

fixed from the float part,

PV _fixed =
∑

t

CδtPOfixed
t Λt = k

∑

t

δtPOfixed
t Λt

PV _float =
∑

t

rtδtPOfloat
t Λt

Where:

• POfixed
t is the trading price in PU at the date T1, of a contract that has maturity in T2,

updated up to time t by the contracts rate;

• POfloat
t is the PU at the date T1 with the interest rates between T1 and T2 equal to strike

price (defined as interest rate, updated up to time t by the effective DI interest rate);

• k - strike price defined at interest rate;

• Λi - discount factor for payment date i and ri - forward rate (floating rate of future pay-

ment);

• C - Contract rate (fixed leg);

• δi - day count fraction.

And,
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POfixed
t =

100, 000
(

1 + C
100

)T2−T1/252
. exp(Cδt)

POfloat
t =

100, 000
(

1 + k
100

)T2−T1/252
. exp(rtδt)

3.2.2 Option on The Average One-Day Interbank Deposit Rate Index (IDI)

The object of negotiation is the DI average rate, comprised between the purchasing date of the

option and the maturity date. The average one-day interbank deposit rate index (IDI) is an index

daily updated by the One-Day Interbank Deposit Rate (DI rate), the index actually used has

base date 01/02/2009 and value in this date of R$ 100000.00. The expression 3.12 that follow,

express the correction form of index, that have daily capitalization, in accordance with Carreira

e Jr (2016),

IDIT = IDIbasedate

T
∏

ti=basedate

(1 + CDIti
)

1

252 (3.12)

This instrument resemble the instruments highly used in international markets to protect against

fluctuations in interest rates, known as caplet and floor. Combining many options, are possible

create strategical figures that allow the protection or speculation of the monetary policy. Unlike

to the future contract, do not exist cash flow between the parts, relating daily adjustment.

For an option with maturity at the date T, the payoff is given by,

payoffT +1∗ = Q.max (cp. [IDIT −K] , 0) (3.13)

Where i) Q: quantity of contracts; ii) max(A,B): operator that compute the maximum value

between A and B; iii) cp: variable that define if the option is of the type call or put; iv) IDIT :

is the IDI index value with maturity at the date T. It is worth highlighting that the DI rate of any

day is released at the end of the same day, therefore, the index of the date T is obtained only in

T+1; v) K: option strike, established in value.

The payoff also can be express by the following manner,

payoffT +1∗ = Q.max
(

cp.
[

IDIt. exp
(

r.
(

T − t

252

))

−K
]

, 0
)

(3.14)

The equation above was adapted of Carreira e Jr (2016), to represent the payoff with the interest

rate in continuous time. Where IDIt is the index value at the date t and r is the annual interest
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rate with continuous time capitalization, comprised between t and T . Already T − t, are the

business day comprised between the dates t and T .
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4 THE VALUATION MODELS

4.1 BLACK MODEL

The basic model of option valuation in the fixed income market is the Black (1976), where the

price is quoted in terms of the implied volatility. For illustration, below follows a description of

the model for the option on DI futures, assuming that the linear interest rates between T1 and

T2, rl, has log-normal distribution with volatility expressed of annual form, denoted by σ.

c = DCDI
t,T2

.K. (T2 − T1) .
(

rl
T1,T2

.N(d1)− kl
T1,T2

.N(d2)
)

(4.1)

d1 =
ln
(

rl
T1,T2

kl
T1,T2

)

+ 0.5.σ2. (T2 − T1)

σ.
√

(T2 − T1)

d2 =
ln
(

rl
T1,T2

kl
T1,T2

)

− 0.5.σ2. (T2 − T1)

σ.
√

(T2 − T1)

Where,

• c: option premium

• DCDI
t,T2

: discount factor between the date t and T2, based on the curve of DI future;

• K = 100.000
exp(k.(T2−T1))

;

• k: option strike, defined in rate;

• σ: volatility;

• T2 − T1: business day, considering the bank calendar, between the maturity of the option

and the future contract subjacent for the option;

• kl
T1,T2

=

(

exp
((

log (1 + k) . (T2−T1)
252

))

− 1
)

(T2−T1)
252

;

• rl
T1,T2

: linear interest rates between T1 and T2. How it is a rate based on DI curve and that

comprehend a future period, this rate is obtained from the curve of future interest rates.

To obtain rl
T1,T2

, firstly is necessary adjust, of t to T1, the bond price at time t that has face value

of R$ 1,00 in T2, namely, P (t, T2),

P (T1, T2) = P (t, T2) exp
(

f(t, t, T1).
(

T2 − T1

252

))

(4.2)
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What the expression 4.2 make is adjust a bond that expire in T2, from the date t up to date T1.

Based on the bond price at the date T1, is possible calculate the interest rate, with continuous

capitalization, between T1 and T2,

rcontinuous
T 1,T2

= log

(

1

P (T1, T2)

)

.
252

(T2 − T1)
(4.3)

Finally, to get the linear rate that are used in the expression 4.1, are necessary applies the equa-

tion below,

rlinear
T1,T2

=
(

exp
(

rcontinuous
T 1,T2

.
(

T2 − T1

252

))

− 1
)

.
252

T2 − T1

(4.4)

4.1.1 Implied Volatility

Using the Black model, is possible to get the implied volatility from the traded prices. How the

Black model quote the prices depart of the implied value of σ, which sets the model price equal

to the market price, to obtain the implied volatility is necessary invert the model. To do this, I

used a genetic algorithm that is characterized by having three main stages: selection, crossover

and mutation. The appendices contain more details about the algorithm.

4.2 STRING MARKET MODEL

For Longstaff, Santa-Clara e Schwartz (2001b), is necessary the development of economically

well-specified models, grounded on the real dynamic of the term structure and that embody

multiples factors, for the optimal strategies of hedging and investments can be achieved. To

implement a model that capture the dynamic of the term structure of DI interest rates, I adapted

the LSS model (that are based on the Libor rate) to fit the entire DI rate curve. Accordingly, the

term structure is driven by multiple factors, then, the use of models with a single factor to pricing

interest rates derivatives can produce hedging and investment strategies sub-otimals. The widely

famous Black (1976) model, that employ a single factor, is unable to capture the volatility smile.

This expression is employed to denote the plotting result of the implied volatility and the strike,

that look like a smile, however, The Black model predict that the implied volatility curve will

be flat.

Goldstein (2000), Longstaff, Santa-Clara e Schwartz (2001a) and Santa-Clara e Sornette (2001)

shaped the evolution the term structure as a stochastic string. In this approach, that is a gene-

ralization of the model of Heath, Jarrow e Morton (1992), is possible to generate a dynamic

and shape of the interest rate curve much more rich. The main innovation consist in which

each forward rate f(t, Ti, Tj) behave as a distinct random variable, that has its own dynamic,

although must be correlated with the other points of the curve.



33

Below follow the dynamic of the evolution of the forward rate on the risk neutral measure,

dFi = αiFidt + σiFidZi (4.5)

Where αi is a not specified drift, σi is a deterministic volatility function and dZi is the brownian

motion.

Although the model is specified in terms of the forward rate, I consider more efficient implement

it using the vector of the bonds prices that pay R$ 1 at the maturity. With this prices, is possible

obtain the forward rate with continuous time capitalization in accordance with the expression

below,

Fi = log

(

P (t, Ti + τ)

P (t, Ti)

)

.
τ

252
(4.6)

Where τ denote a certain quantity of business day. How I choose a discretization of the data

based on the difference between the expiration date of the DI futures, τ express the difference

in business day between the maturity Ti + τ and Ti.

The model has as fundamental characteristic the evolution of the bonds prices, based in a sto-

chastic differential equation with two terms, the drift extracted from the spot interest rates and

a second term, diffusion, basically composed by the multiplication of a jacobian matrix with a

matrix of implied covariance (both will better explained below). Applying the Itô’s rule to the

vector P of the bond prices, obtains its dynamic evolution (in appendices are demonstrated the

derivation), that is estimated under the neutral risk measure,

dP = rPdt + J−1σFdZ (4.7)

Where r is the spot interest rate1 (is the rate comprised between t and t+1, is the equivalent to the

yield of the bond with the shorter maturity in each trading date), σFdZ is a vector formed by the

terms σiFidZi of the equation 4.5 above, J−1 is the inverse jacobian matrix obtained through the

derivation of the forward (F1, F2...F29) with respect to the discount bond (P1, P2...P30). How the

maturity of the option evaluated in this study occurring up to thirtieth maturity of the DI future

contract, are necessary only thirty different maturities to build the model, then, the jacobian

matrix is represented below, with diagonal values, since each forward rate depend only of the

two discount bond to be obtained.

1
T0 is considered the initial maturity date, then σ(Ti − T0) = 0 for Ti ≤ T1, where T1 is the first maturity of

the bond, therefore, it don’t affect the diffusion term at the equation 4.7
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The dynamic of P, provided above by the equation 4.7, give a complete specification to the

evolution of the term structure and is based with this expression that I simulated the bond

prices for future periods and from this prices, I extract the forward rates between each period.

Therefore, the expectation of return of all bonds is equal to the spot rate under the risk neutral

measure (at this measure, there is no return associating with the risk premium, the expected

return of an asset is equal to the risk-free rate).

From the vector of the negotiated rates at a particular date in the DI futures market, is possible

draw the vector of the bond prices, the term rate between the maturity of the future contract, the

Jacobian matrix and the spot rate. The only matrix that is necessary to be estimated for the other

source of data is the instantaneous matrix of variance-covariance, which is estimated with the

use of the implied volatility of the traded options.

4.2.1 The Model is Arbitrage-Free

In this economy there exist an accumulation factor that begin with a value corresponding to R$

1.00 and is adjusted by the short term interest rate.

B(t) = exp
(∫ t

0
r(y)dy

)

(4.8)

Let Z(t, s) = P (t,s)
B(t)

be the relative price of the bond. In agreement with Harrison e Kreps (1979),

if exist a equivalent martingale measure P ∗, hence, there is not arbitrage opportunities. In this

equivalent probability measure P ∗, (Z(t, s1), Z(t, s2)...Z(t, sn)) are martingales.

Now, consider the system of equations below, b(t, T ) represent the excess return above the risk-

free rate of the bond with maturity at T, γi represent the risk price of the factor “i” and the

ai(t, Tj) represent the covariance between the bond’s (that has maturity in Tj) return with the

i-th factor. If exist a equivalent martingale measure P ∗, then, the necessary condition denoted by

the equation below remains valid, even more, if the covariance matrix is nonsingular, then, the
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probability measure P ∗ is unique, for a complete demonstration to this association, see Heath,

Jarrow e Morton (1992).
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In a world with risk neutral investors, the risk price that is represented by γ is null, considering

that P ∗ represent the risk neutral measure, is necessary to clean up of the evolution of the

bond prices the risk premium. In the expression 4.7, that represent the evolution of the prices

under P ∗, the drift only contain the spot interest rate, considered here as the risk-free rate, then,

the expected rate of return on all bonds is equal to the spot rate under the risk neutral measure.

Moreover, the string market model is able to replicate of the exact form the initial term structure,

with this, the model is arbitrage free.

4.2.2 Implied Covariance Matrix

The instantaneous variance-covariance matrix used in the model are obtained in a date t, with

the use of the prices of the options on one-day interbank deposit futures traded at the same date

t. Any covariance matrix is symmetric and positive semidefinite2 by virtue of this necessary and

sufficient condition, I use the procedure below to estimate the matrix.

The historic correlations matrix can be decomposed by the following manner H = UΛ0U
′

where Λ0 is a diagonal matrix of eigenvalues (non-negative) and the N columns of U correspond

to the eigenvectors. On the assumption that the instantaneous variance-covariance matrix of

the interpolated interest rates percent variations3 share the same eigenvectors of the historic

correlations matrix, the implied instantaneous covariance matrix, Σt, can be expressed of the

following manner,

Σt = UtΨtU
′

t (4.9)

Where Ψ is a diagonal matrix with non-negatives values, that represent the eigenvalues of the

Σ matrix that best fit the model to the market date. The i-th diagonal element of Ψ can be

interpreted as the instantaneous variance of the i-th factor that command the evolution of the

interest rates at the date t.

2 A matrix is positive semidefinite if, and only if, its eigenvalues are all positive.
3 the percent variations matrix is obtained through the matrix of interpolated forward rates, which is drawing for

the variation of the rate at the date Tj subtracted of the rate in Tj−1, divided by the rate at the date Tj−1
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Considering that the eingevectors of the historic correlation matrix are view as factors, then, the

same factors that generate the historic correlation matrix, also generate the implied covariance

matrix, Σt, nonetheless, the variance of these factors differ from the historic values.

To obtain the implied covariance matrix, is necessary build the matrix Ψ, with values that best

fit the model prices with the market prices. The elements that make up the diagonal matrix Ψ

are values that minimize the root mean squared error (RMSE) of the objective function, in other

words, values that minimize the percent difference between the market prices and model prices

of these options.

An analytic solutions to Ψ becomes quite complex, given the stochastic nature of the model.

The solutions via simulations is a inviable alternative because of the time required to reach

out the convergence. To obtains Ψ, I use a numeric solutions that imply on obtain the historic

covariance matrix of the forward rate percent variations and, henceforth, substitute the diagonal

elements of this matrix by the square of the implied volatility for the option on DI futures, after

this, I have the new covariance matrix Ω.

By the inversion of the Black model, is possible achieve different values for volatility of options

with the same maturity. Because this, I developed a genetic algorithm to find a unique volatility

that minimize the difference between the Black model prices and the market prices for many

options that have the same maturity. After the attainment of these volatility, I substitute its by

the respective element in the diagonal of the historic covariance matrix.

Therefore, through an iterative process that compare, for a particular maturity, the real prices of

the options and the prices obtained by the Black model, the volatility are adjusted, such a way

that the price obtained must be closest as possible of the market price. This iterative process

are realized for each maturity separately, with the objective to find for each maturity date of the

option on DI futures, the implied volatility that best fit the market price.

Subsequently, after the substitution of the historic variance by the variance that best fit the Black

model to market prices, I use the singular value decomposition-SVD to extract the eigenvalues

of the new covariance matrix, Ωt = USV T where S is the diagonal matrix with the eigenvalues.

The decomposition SVD consist to find the eigenvectors and eigenvalues of ΩtΩ
′

t and Ω′tΩt. The

eigenvectors of ΩtΩ
′

t are in the columns of V and the eigenvalues of Ω′tΩt are in the columns

of U, already the singular values of S represent the square root of the eigenvalues of ΩtΩ
′

t and

Ω′tΩt.

I utilize the larger eigenvalues of the diagonal matrix S to build the Ψ matrix, although 30

eigenvalues are necessary to obtain a full rank matrix, the implied covariance matrix with lower

rank can be applied, only is need to define N eigenvalues to form Ψ and leave the 30-N elements

of the diagonal with zero value.

After obtains the elements of the diagonal matrix Ψ, I build the covariance matrix Σ = UΨU ′

and then simulate 2.000 paths of the vector of bond prices until the maturity, where these prices
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evolve accordingly with equation 4.7. To reduce the variance of the simulated values, I utilize

antithetic variates. To simulate the evolution of the bond prices between the beginning date and

the first maturity of the DI futures contract, I use the complete matrix Σ and J in the version 30

by 30, afterward, the first forward rate becomes the spot rate, leaving only 29 bonds to being

simulate for the next period, whereas the bond with the shorter maturity achieve its expiration

date and obligatorily has face value of R$ 1.00 at this date. Therefore, to maintain the time

homogeneity of the model, is necessary exclude the first line and columns of Σ and J , this

process is repeated up to maturity of the longer bond.

With the matrix of the bond prices simulated, is possible found the forward rates between the

various maturities. To obtain the price of the option on DI futures, are necessary achieve the

forward rate between T1 and T2, in accordance with 4.6, and this rate is taken from the bond

price that has it expiration date in T2 at the date T1. With this price is possible found the forward

rate between T1 and T2, that comprehend the underlying traded object of these options. With

the forward rate achieved accordingly with expression 4.6, is possible obtain the rate rl that

compose the equation 3.11.

After to get the payoff at T2, are necessary bring it to the date t, the trading date. Then, I

multiply the payoff at T2 by the stochastic discount factor accumulated among the dates t and

T2:
∏T2−1

i=0 P (i, i+1). Afterwards, I simulate 2.000 paths, in accordance with the steps described

above, and finally, I take the average of the prices over all paths.
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5 EMPIRICAL RESULTS

In this chapter are present the empirical results about the time series of the derivatives evaluated

in this study, as well as, the likelihood ratio test and evidences about the performance of the

string market model. In conducting this study, I used tree types of different financial instruments:

the DI futures contract, the option on IDI index and the option on DI futures. All data are

obtained from the B3 site1.

5.1 EMPIRICAL RESULTS ABOUT THE TIME SERIES OF THE DERIVATIVES

The sample of the DI futures contract consist on weekly observations, from oct/15 to jan/19,

preferentially at friday after the market has closed. Contain 164 different days and each day has,

approximately, 40 maturity date. The data are available by B3 in unit price-PU.

The sample of the option on DI futures comprehend the period of 11/03/2017 to 01/18/2019

(61 weeks), with all the options of the sample at the money2. The sample contain 2.196 options,

being 36 for each week. The sample of the option on IDI index also comprehend the period of

11/03/2017 to 01/18/2019 (61 weeks). Altogether, were 6.100 options evaluated, being 100 for

each day. Also all the options are at the money.

With the times series of interpolated DI interest rates, the graph 1 describe the futures interest

curve between oct/15 until jan/19. In the graph is possible to note the fall of the short-term

interest rates, however, despite the fall of the long-term interest rate, this decline was significant

lower. The Central Bank usually handles the short part of the curve, then, the long-term rates

tend to be less susceptible to interventions of the monetary authority, which contribute for its

volatility be less than the volatility of the short-term interest rates.

Based on the data set mentioned above, the histogram of the forward rate percent variation of

a particular maturity are presented in figure 2. These histograms offer an estimate of the true

probability distribution of the behavior of DI futures contract.

The objective is build a model of bond prices evolution underpinned from the forward rate

(under the equation 3.4, the bond prices are function of the forward rate) in such a way that this

model provide a reasonable approximation of the true probability distribution. A model that are

enough simple to be computable, but sufficient rich to be realistic (JARROW, 2002).

The figure 3 present the interest rate curve at six different rates, between the end of 2015 and the

beginning of the 2019. On the period considered, occurred different types of curves, what help

to understand the macroeconomic instability among these period. In 10/23/2015, the short-term

rates was at a high level, above the 13.5% a.a, the interest curve was upward sloping until the

1 available at <http://www.b3.com.br> consults made through 05/01/2018 to 03/20/2019.
2 An option is said at the money if the spot price of the underlying asset of the derivative be equal or above the

strike price.
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Figure 1 – Evolution of the future interest rates - DI futures contract. The data set consist of

observations weekly extracted from oct/15 to jan/19, preferentially to friday closing

rates. The sample contain data of 164 different days and for each day there are ap-

proximately 40 maturity dates. The rates was interpolated with the cubic spline

Font: Compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.

second year, but the long-term rates were reporting a downturn. The scenario was of the high

inflation, the IPCA (Broad Consumer Prices Index) reach at the end of 2015, 10.67% over the

last 12 months. To control the inflation, the Central Bank raised the SELIC rate to 14.15%, in

07/29/2015.

The curve, in 12/09/2016, was with downward sloping (inverted), that is uncommon slope. This

type of position denote a expectation of the interest rates reduction at the medium and long term.

In 2016, the IPCA was of 6.29% and the SELIC closed the year at 13.65%. In 2017 and 2018,

the curve again presented upward sloping with the drop of the inflation (the IPCA, in 2017, was

of 2.95% and, in 2018, was of 3.75%) and the SELIC (in 2017, finish at 6.90% and, in 2018,

was 6.40%).
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Figure 2 – Histogram of the percent variation of the DI rate future contract, represent annual

rate with continuous capitalization. The graph are divided based on the business day

until the maturity of the contract, considering a year with 252 business day.

Font: Compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.
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Figure 3 – The future interest curve for many dates, the rates were interpolated using a cubic

spline. The business day is on horizontal axis and are obtained accordingly to the

Brazilian bank calendar

Font: Compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.
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5.2 LIKELI-HOOD RATIO TEST

To estimate the number of factors necessary to pricing the option on DI futures with the string

market model, i used an incremental likelihood ratio test. With the times series of 61 weeks,

with 36 options of each week, i compared models with 1 to 5 factors to verify if there are

statistical difference among them. The covariance matrix is generate by N factors when the

diagonal matrix Ψ has N eigenvalues at the first elements along the diagonal and the remainder

contain zero.

The test work of the following manner: for a model with N factors, i compute the difference

between the market prices and model prices, in the other words, the errors. These errors is square

and then, added. This procedure are applied for each week and then, the squared errors over the

61 weeks are added, thus is obtained the total sum of the squared errors. This same procedure

is applied for a model with N+1 factors. Under the null hypothesis of equality, 61x36=2.196

times the difference between the logarithm sum of the squared errors with N and N+1 factors

has a Chi-Square distribution, with 61 degrees of freedom.

The table below reports the results of the comparisons between the models with 1 to 5 factors,

arranged in the form to allow pairwise comparisons. The difference between the sum of the

squared errors are asymptotically χ2
61 under the null hypothesis of equality for the full sample

with 61 weeks and χ2
30 for the two half samples. The critical value of χ2

61 is 89,59 at the 99%

level of confidence and for χ2
30 is 50,89 for the same level of confidence.

The results present in the upper part of the table 1, show that the relation is statistically signifi-

cant between the model with one versus two factors, two versus three factors and three versus

four factors, namely, the statistical test tell us that these models are different. There are not sta-

tistical relevance only in the comparisons between the model with four versus five factors, these

results imply that the market employ fours factors to pricing the option on DI futures.

Varga (2007) and Almeida et al. (2008), report that three factors (associated with the level,

slope and curvature of the interest rates curve) are necessary to make forecast about the term

structure of interest rates-TSIR in Brazil. Therefore, by applying the string market model to

pricing interest rates derivatives, i find that four risk factors are present on the TSIR, that are

employed by the market to pricing derivatives.

For a more detailed analysis, i realize another likelihood ratio test with the first half of the

sample and after that, with the second half of the sample. By virtue of the electoral year with a

political scenario ex-ante quite uncertain, the division of the sample are adequate to catch up the

pre-electoral period with the first half of the sample. Already the second half of the sample catch

up the post-electoral period. These two sub-samples also provide evidence about the existence

of the four factor.

In accordance with Longstaff, Santa-Clara e Schwartz (2001a), the eigenvalues are interpreted
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Table 1 – The table reports results of the likelihood ratio test, that make pairwise comparisons

between the models with N and N+1 factors. The difference between the sum of the

squared errors is asymptotically χ2
61 under the null hypothesis of equality for the sam-

ple with 61 weeks and χ2
30 for the two half samples. The critical value of χ2

61 is 89,59

at the 99% level of confidence and for χ2
30 is 50,89 for the same level of confidence.

N Factors N+1 Factors Statistical Test P-Value

A. Full Sample

1 2 6,261,40 0.00

2 3 391.05 0.00

3 4 632.97 0.00

4 5 69.31 0.23

B. First Half of the Sample

1 2 2,295.60 0.00

2 3 161.22 0.00

3 4 354.51 0.00

4 5 13.43 1.00

B. Second Half of the Sample

1 2 3,565.70 0.00

2 3 225.59 0.00

3 4 268.18 0.00

4 5 53.52 0.01

Font: Compilation of the author.

as the implied variance of the factors, already the eigenvectors of the implied covariance matrix

are understood as factors of the TSIR.

5.3 EVIDENCES ABOUT THE PERFORMANCE OF THE STRING MARKET MODEL

With the statistical evidence that four factors pricing the option on DI futures, the figure 4, show

four subplots with the time series for each one of the four eigenvalues, from 11/03/2017 to

01/18/2019.

The behavior of the first eigenvalue, that refers to the volatility of the first factor (related with

the parallel shift of the TSIR) had many pattern over the period analyzed. In the end of 2017, the



44

Figure 4 – Time series of the eigenvalues related to the 61 weeks, from 11/03/2017 to

01/18/2019, all options of the sample are at the money. The eigenvalues are obtai-

ned from the implied volatility of the options on one-day interbank deposit futures

Font: Compilation of the author.

volatility was very high, the scenario was of many political uncertainty and investor’s deceptions

with the lack of structural reforms approvals (for example, the social security reform).

Curiously, in the beginning of 2018, the volatility fall, but had been growing gradually over

the year, as far as, the electoral campaign was gathering strength. Even after the election, the

scenario of low volatility registered at the beginning of the year wasn’t restored, the new govern

elected also bring the uncertainty in relation to its promises at the economic field.

The volatility of the second eigenvalue, associated with the slope of the interest rates curve,

was into a threshold of 0.2 in the end of 2017, and in the beginning of 2018, suddenly fall to

approximately 0.03. In July/2018, close to the election, the volatility had raised for a threshold

close to the end of 2017. Only after the conclusion of the first round of elections is that the

volatility return to fall.

The volatility of the third eigenvalue, associated with the curvature, presented values more pro-

nounced at the end of 2017. In 2018, this value had fallen significantly and was maintained at

this level until the end of the sample period.

With relation to the fourth eigenvalue, its implied volatility is close to zero. This value fluctuate
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around 0.007, despite the low value of the average, in the moment of market stress this volatility

can increase and become an important source of TSIR movements, for example, in the electoral

period this volatility reached a value close to 0.012.

5.3.1 Convergence of the Model

The string market model sketched above is calibrate with the use of the option on DI futures.

The objective function, when calibrating the model, is the root mean squared error (RMSE)

that is calculate as the average percentage differences between the market prices and the model

prices. Moreover, i used the model with four factor to measure the RMSE.

In relation to the option on DI futures, the sample contain 36 options for each one of the 61

weeks analyzed and the median RMSE of this sample is 5.8 percent and the standard deviation

is 1.4 percent. The RMSE presented are inside the acceptable expected value, considering the

bid-ask spread3 and trading rates. At the moments of larger volatility, as the end of 2017 and

the beginning of 2018, the RMSE was more higher than the average, accordingly to graph 5,

then, pricing at moments of greater volatility in the market are more challenging.

The input of the string market model are the time series of the DI futures contract and the prices

of the option on DI futures, therefore, i use this model to pricing the option on IDI index and

verify if there are arbitrage opportunities between these two options. The median RMSE is 3.7

percent and the standard deviation is 1,6 percent, the figure 6 present the historic series of the

RMSE of this option.

5.3.2 The “Near the Money” Options and Arbitrage Opportunities

Considering that the model calibrated with the option on DI futures pricing the option on IDI

index with high degree of accuracy, is possible state that there is not arbitrage opportunity of a

systematized manner in this market. Therefore, extracting a sub-samples only with the options

“near the money”4 the RMSE of this sub-samples are significant higher than the RMSE of the

full sample.

The sub-sample of the option on IDI index, with strike price below to 7.5 percent (which i call

here of “near the money”), has a RMSE of 11.35 percent and standard deviations of 45 percent.

The full sample of 6.100 options of this type (100 options for each one of the 61 weeks), 2.013

has strike below to 7.5 percent. Based with this sub-sample, in figure 8 is plotted RMSE, the

analysis of this graph show that for many dates, the pricing error was considerable higher, when

3 The bid-ask spread represent the difference in price that the seller and buyer cast into the trade systems, essen-

tially is the difference between the highest price that the buyer is willing to pay and the smallest price that the

seller is willing to sell. The individual that are willing to sell get the bid and the individual that are willing to

buy get the ask
4 The “near the money” options is the option that has the strike price close to the current market price of the

corresponding underlying security.
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Figure 5 – Time series of the RMSE of the option on DI futures, from 03/11/2017 to 18/01/2019.

All options of the sample are at the money and there are 36 options for each date,

preferentially obtained on friday after the market has closed. The simulated prices

was obtained with the string market model using four factors.

Font: Compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.

the same analysis are realized with the sub-samples of the option on DI futures, a different result

is obtained.

With the full sample of 2.196 options on one-day interbank deposit futures, i draw a sub-sample

of 545 instruments with strike below to 7.5 percent. The RMSE of this sub-sample was of 5.52

percent and the standard deviations of 9.8 percent, differently that was occurred with another

option (option on IDI), the model had a good performance on this sub-samples of the “near the

money” options. Therefore, arbitrage opportunities might appear at specifies cases, where for

the same strike and maturity, a type of options has been well priced while for another type has

been considerable mispricing between the model price and market price.

This is the first work, according with my knowledge, that analyze the relative valuation between

the option on IDI index and the option on DI futures. In relation to the “swaption/caps puzzle”,

Zhao (2010) argument that the unspanned stochastic volatility-USV is an essential factor to

understand why the traditional dynamic term structure models-DTSM has difficulties in the

conciliation of the Caps prices with the Swaption prices. In accordance with the author, the

interest rate derivatives are not redundant financial instruments and cannot be hedging only
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Figure 6 – Time series of the RMSE of the option on IDI index. Comprise the period between

11/03/2017 to 01/18/2019, with all options of the sample at the money, being 100

options for each date, preferentially obtained on friday after the market has closed.

The simulated prices was obtained with the string market model using four factors.

Font: Compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.

with bonds, in other words, the derivatives contain unique information about the term structure.

Jarrow, Li e Zhao (2007) developed a model with stochastic volatility and jumps on the Libor

forward rates, and with this model was possible conciliate the prices between the Caps and

swaptions. Model with stochastic volatility, in accordance with Zhao (2010), are able to better

capture the volatility of these options.

The string market model depicted at this study has been able to conciliate the prices of the

option on IDI index with the prices of the option on One-Day Interbank Deposit. One of the

main difference between the original LSS model with the model presented here, is relate with

the eigenvectors of the historic correlations matrix. In accordance with Longstaff, Santa-Clara

e Schwartz (2001a), the historic correlations matrix of the percent variations on the forward

rate was obtained taken from a five-year period before the beginning of the sample period.

The correlation matrix was decomposed into its spectral representation H = UΛU ′, and U ,

that denote the eigenvectors of the historic correlation matrix, was kept fixed on all dates of

the empirical evaluation. Thus, the instantaneous covariance matrix can be expresses by the

following manner,
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Figure 7 – RMSE of the sub-sample of 2.013 options on one-day interbank deposit rate index

(IDI) classified as “near the money”, from 11/03/2017 to 01/18/2019, with all options

at the money. The simulated price was obtained using the string market model with

four factors.

Font: compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.

Σt = HΨtH
′ (5.1)

In the model presented at this work, the eigenvectors are time-varying, in other words, as far as

the time t pass, the recent data are incorporated into the historic correlation matrix.

Σt = HtΨtH
′

t (5.2)
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Figure 8 – RMSE of the sub-sample of 545 options on one-day interbank deposit futures clas-

sified as “near the money”, from 11/03/2017 to 01/18/2019, with all options at the

money. The simulated price was obtained using the string market model with four

factors.

Font: compilation of the author. Dataset obtained from the B3 site, available in b3.com.br.
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6 CONCLUSIONS

In this study, I examine the ability of the string market model with one until five factors, to des-

cribe the dynamics of the DI rate. Then, investigate the relative valuation of the option on IDI

index and the option on DI futures, using the estimate model. This investigation was undertaken

because these two options have the same underlying variable, therefore, arbitrage opportuni-

ties can exist between these two financial instruments. The resulting pricing error, between the

model prices and market prices, were computed using the four factors model.

With the use of a genetic algorithm, which capture the volatility that minimize the difference

between the market price of a set of options with the same maturity and the Black model prices,

the instantaneous covariance matrix among forward percent variations were implied from the

market prices of the option on DI futures. Then, the model calibrated with this option data was

used to pricing the option on IDI index.

Evidences about the behavior of the market prices and model prices of these two derivatives are

describe below:

Four risk factors was found. Five versions of the model was simulated, with one to five fac-

tors and then, an incremental likelihood ratio test was applied. The test provide evidences that

the market employ four risk factors in the valuation of the option on DI futures. However, in

accordance with the mentioned literature, two or three factors captures the historical behavior

of term-structure of interest rates movements.

The prices obtained through the string market model converge to market prices. The ave-

rage pricing error is inside to the typical bidask spread. With relation to the sub-sample of “near

the money” options on DI futures, the model had a good convergences. However, with relation

to the option on IDI index, despite the full sample present a low RMSE, with their sub-sample,

the model not had a good performance. These option were overvalued, because theirs market

prices was, in general, higher than the model prices.

Arbitrage opportunities can exist between these two derivatives. However, there is no arbi-

trage opportunity of a systematized manner. I found that the “near the money” options are more

likely to present deviations between the model and market prices. In future research, can be

analyze if the deviations that generate arbitrage opportunities are quickly adjust for the funda-

mental value or, the existence of noise traders promote deviations for a long time.

For future research, to better capturing the volatility smile of the interest rate derivatives, innova-

tions can be implemented to improve the model performance. These developments can involve

more complex and time-consuming computational methods, like: stochastic volatility for each

one of the eigenvalues used in the implied covariance matrix and addition of jumps process

(type of stochastic process that is characterized for discrete movements, random arrival times,

that is called jumps) in the dynamic evolution of the DI rate.
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The times series of factor’s volatility also can be use in macroeconomics models. The uncer-

tainty in the economy is highly associated with the measure of the volatility, moreover, in the

growing literature about the relation between the financial market and the macroeconomic vari-

ables, one of the main factors used to verify this relation is the volatility of the assets prices.
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A DYNAMIC EVOLUTION OF THE BOND PRICES

Let P (t, T ) be the price at time t of a bond that has maturity at the date T, P (T, T ) = 1 and

P (t, T ) > 0. The instantaneous interest rates at time t for a period comprised between t and

T > 0, are denoted by f(t, T ). The spot interest rates r(t), is the instantaneous interest rates

available at time t, with time to maturity t, namely, r(t) = f(t,t). Then,

f(t, T ) = − log
∂P (t, T )

∂T

P (t, T ) = exp(−
∫ T

0
f(t, T )df)

r(t) = f(t, t)

The LSS dynamic of interest rates (i adopt for the DI rate, the same dynamic of the Libor rate),

in the risk neutral measure are,

dF (t, Tj−1)

F (t, Tj−1))
= α̂j−1(t)dt + σ̄j−1(t)dZ̃j−1(t) (A.1)

with,

α̂j−1(t) =
1 + δF (t, Tj−1)

δF (t, Tj−1)

∫ Tj−t

y=Tj−1−t

∫ Tj−t

u=0
Rt(u, y)dydu (A.2)

σ̄j−1(t)dZ̃j−1(t) =
∫ Tj−t

y=Tj−1−t
dZ̃(t, y)σ̄(t, y)dy (A.3)

Rt(u, y) =
cov[df(t, u), df(t, y)]

Ft
= c(t, x, y)σ(t, x)σ(t, y) (A.4)

where

c(t, x, y) =
d[Z(., x), Z(., y)]t

dt
= corr[d[Z(t, x), Z(t, y)]

LSS volatility:

σ2
i−1(t) =

∫ Ti−t

x=Ti−1−t

∫ Ti−t

y=Ti−1−t
Rt(x, y)dxdy (A.5)

Historic Covariance Matrix:

Θij(t) =
∫ Ti−t

x=Ti−1−t

∫ Tj−t

y=Tj−1−t
R(x, y)dxdy (A.6)
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Implied Covariance Matrix:

Σij(t, T0) =
∫ Ti−t

x=T0−t

∫ Tj−t

y=T0−t
R(x, y)dxdy (A.7)

Consider the interval [T0, Tn] and the partition {Tj = T0 + δj}n
j=1, where δ = Tn−T0

n
, then:

P (Tj−1, Tj) = [1 + δF (Tj−1)]
−1 (A.8)

and,

1 + δF (Tj−1) =
P (t, Tj−1)

P (t, Tj)
(A.9)

The bond prices evolve in accordance with:

dP (t) = r(t)P (t) + J−1(t)σ̄(t)F (t)dZ̃(t) (A.10)

where:

P (t) = (P (t, T1), ..., P (t, Tn−1))
′

σ̄(t)F (t)dZ̃(t) = (σ̄0F (t, T0)dZ̃0(t), ..., σ̄n−2F (t, Tn−2)dZ̃n−2(t))

J(t) is the Jacobian matrix, with Jii(t) = −1
δ

P (t,Ti−1)
P 2(t,Ti)

and Ji,i−1(t) = 1
δP (t,Ti)

, for i=1,...,n-1 and

zero for the remainder terms. The introduction of the spot interest rates at the expression A.10

is a manner of impose the no-arbitrage condition. Let apply this assumption at the equation A.1

and verify if the expression A.10 are correct.

Consider that:

P (t, Tj−1) =
P (t, T0)

∏j−2
k=0[1 + δF (t, Tk)]

, j = 2, ..., n (A.11)

So, applying the Itô’s rule to P (t, Tj−1),

dP (t, Tj−1) =
j−2
∑

i=0

∂P (t, Tj−1)

∂F (t, Ti)
dF (t, Ti) +

1

2

j−2
∑

i,l=0

∂2P (t, Tj−1)

∂F (t, Ti), ∂F (t, Tl)
d[F (., Ti), F (., Tl)]t)

+
∂P (t, Tj−1)

∂P (t, T0)
dP (t, T0) +

j−2
∑

i=0

∂2P (t, Tj−1)

∂F (t, Ti), ∂P (t, T0)
d[F (., Ti), P (., T0)]t

+
1

2

∂2P (t, Tj−1)

∂2P (t, T0

d[P (., T0), P (., T0)]t
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Expanding the first term of dP (t, Tj−1)

j−2
∑

i=0

∂P (t, Tj−1)

∂F (t, Ti)
[α̂i(t)F (t, Ti)dt + σ̄i(t)F (t, Ti)dZ̃i(t)] (A.12)

where,

∂P (t, Tj−1)

∂F (t, Ti)
=
−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1) (A.13)

Then,

j−2
∑

i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)[α̂i(t)F (t, Ti)dt + σ̄i(t)F (t, Ti)dZ̃i(t)] (A.14)

Substituting the expression A.2 into the expression above,

j−2
∑

i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)F (t, Ti)

1 + δF (t, Ti)

δF (t, Ti)

∫ Ti+1−t

y=Ti−t

∫ Ti+1−t

u=0
Rt(u, y)dydu

= −P (t, Tj−1)
j−2
∑

i=0

∫ Ti+1−t

y=Ti−t

∫ Ti+1−t

u=0
Rt(u, y)dydu dt

(A.15)

By the symmetry of Rt(x, y), the expression A.15 is equal to,

−P (t, Tj−1)
∫ Tj−1−t

y=T0−t

∫ T0−t

u=0
dyduRt(u, y)dt (A.16)

With relation to the second part of the equation A.12,

j−2
∑

i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)σ̄i(t)F (t, Ti)dZ̃i(t) (A.17)

For the remaining terms, introducing the equation A.3 in A.1,

dF (t, Tj−1)

F (t, Tj−1))
= α̂j−1(t)dt +

∫ Tj−t

Tj−1−t
dyσ̄(t, y)Z̃(t, y) (A.18)

Henceforth, using the following rule: dt2 = 0, dt.dZ = 0 and dZ2 = dt.
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Expanding the second term of dP (t, Tj−1)

1

2

j−2
∑

i,l=0

∂2P (t, Tj−1)

∂F (t, Ti, ∂F (t, Tl)
[α̂i(t)F (t, Ti)dt + σ̄i(t)F (t, Ti)dZ̃i(t),

α̂l(t)F (t, Tl)dt + σ̄l(t)F (t, Tl)dZ̃i(t)]

Applying the rules above:

1

2

j−2
∑

i,l=0

∂2P (t, Tj−1)

∂F (t, Ti, ∂F (t, Tl)

∫ Ti−t

Ti−1−t
dyσ̄(t, y)Z̃(t, y)

∫ Tl−t

Tl−1−t
dyσ̄(t, y)Z̃(t, y)

Once again, by the symmetry of Rt(x, y), the term above reaches zero.

Expanding the third term of dP (t, Tj−1)

Considering the follow dynamic of the bonds prices, according with Bueno-Guerrero, Moreno

e Navas (2016),

dP (t, T0)

P (t, T0)
= r(t)dt−

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y) (A.19)

Then, with relation to the third term,

P (t, Tj−1).

(

r(t)dt−
∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y)

)

(A.20)

Expanding the fourth term of dP (t, Tj−1)

j−2
∑

i=0

δ

1 + δF (t, Ti)
.

1
∏j−2

k=0[1 + δF (t, Tk)]
.P (t, T0).F (t, Ti)

∫ Ti+1−t

Ti−t
dyσ̄(t, y)Z̃(t, y).

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y)

=
j−2
∑

i=0

δF (t, Ti)

1 + δF (t, Ti)
.P (t, Tj−1).

∫ Ti+1−t

Ti−t
dyσ̄(t, y)Z̃(t, y).

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y)

= P (t, Tj−1)
∫ Tj−1−t

y=T0−t

∫ T0−t

u=0
dyduRt(u, y)dt

(A.21)
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Expanding the fifth term of dP (t, Tj−1)

How,

1

2

∂2P (t, Tj−1)

∂2P (t, T0)
= 0 (A.22)

Then, this term are dropped.

Aggregation of the terms

Adding the equations A.16, A.17, A.20 e A.21, and after that, dividing everything by P (t, Tj−1),

dP (t, Tj−1)

P (t, Tj−1)
= r(t)dt−

j−2
∑

i=0

−δP (t, Ti+1)

P (t, Ti)
σ̄i(t)F (t, Ti)dZ̃i(t)−

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y) (A.23)

In accordance with Longstaff, Santa-Clara e Schwartz (2001a) (footnote 12), for y ≤ (T0−t) the

volatility σ(t, y) = 0, in other words, the process are not stochastic and not affect the diffusion

term in equation A.10. Therefore, the last term of the expression A.23 are dropped. Take into

account that:

[J−1(t)]ij =











−δP (t,Ti+1)
P (t,Ti)

if j ≤ i

0 if j > i

i get,

dP (t) = r(t)P (t) + J−1(t)σ̄(t)F (t)dZ̃(t)
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B GENETIC ALGORITHM

Below i outline the genetic algorithm structure, that are responsible to obtains the implied vola-

tility of the options.

1. Starts with a value φ1 for the volatility.

2. Randomly generate a population set φ of solutions around φ1.

3. Let maxit be the maximum number of interactions.

4. iter=1

5. Assess the initial population set φ in the cost function.

6. while item < maxit

7. Select the survivors for the next generation, in this case, the 50% with the best score in

the set φ.

8. for t = 1 to n do

9. The offspring are create by the cross-over between the survivors of the prior generation

(random linear combination).

10. end for

11. Substitute the worst solutions on φ by the offsprings, forming a new set φ.

12. Randomly mutate φ

13. Assesses the new population and classify in increasing order.

14. iter = iter+1

15. end while

Below, i present the codes (language MATLAB), with the explanations. The first part consist to

establish the initial value for the volatility, as close as possible to observed data. Thereafter, it

seeks to find in the vector of business day until the maturity of the option, the line number that

split the different days.

1 v a r i a n c e = 0 . 3 . * ones ( 1 , 1 ) % I n i t i a l v a l u e f o r t h e v o l a t i l i t y

.

2
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3 % f i n d t h e l i n e number t h a t s p l i t d i f f e r e n t d a t e s o f o p t i o n ’ s

m a t u r i t i e s .

4

5 f o r i =1 : rows ( opcao_DIa )

6 i f opcao_DIa ( i , 6 ) ~= opcao_DIa ( i +1 ,6 )

7 row1= i

8 b r e a k ;

9 e n d i f

10 e n d f o r

11

12 f o r i =row1 +1: rows ( opcao_DIa )

13 i f opcao_DIa ( i , 6 ) ~= opcao_DIa ( i +1 ,6 )

14 row2= i

15 b r e a k

16 e l s e

17 row2=0

18 e n d i f

19 e n d f o r

20

21 i f row2 >0

22 f o r i =row2 +1: rows ( opcao_DIa )

23 i f i +1 >rows ( opcao_DIa )

24 b r e a k

25 e l s e

26 i f opcao_DIa ( i , 6 ) ~= opcao_DIa ( i +1 ,6 )

27 row3= i

28 b r e a k

29 e l s e

30 row3=0

31 e n d i f

32 e n d i f

33 e n d f o r

34 e n d i f

35

36 i f row3 >0

37 f o r i =row3 +1: rows ( opcao_DIa )

38 i f i +1 >rows ( opcao_DIa )

39 b r e a k

40 e l s e
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41 i f opcao_DIa ( i , 6 ) ~= opcao_DIa ( i +1 ,6 )

42 row4= i

43 b r e a k

44 e l s e

45 row4=0

46 e n d i f

47 e n d i f

48 e n d f o r

49 e n d i f

The second part consist in find the implied volatility that minimize the pricing error for a set of

options with the same maturity. Then, this volatility are inserted in the diagonal of the covari-

ance matrix.

1 i f row3 >0

2 c l e a r pop

3 [ pop ] = g e n e t i c 2 ( v a r i a n c e , 1 , row1 )

4 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row1 , 1 ) ) , . . .

5 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row1 , 1 ) ) ) =pop ( 1 , 1 )

6

7 [ pop ] = g e n e t i c 2 ( v a r i a n c e , row1 +1 , row2 )

8 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) , . . .

9 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) ) =pop ( 1 , 1 )

10

11 [ pop ] = g e n e t i c 2 ( v a r i a n c e , row2 +1 , row3 )

12 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) , . . .

13 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) ) =pop ( 1 , 1 )

14

15 [ pop ] = g e n e t i c 2 ( v a r i a n c e , row3 +1 , rows ( opcao_DIa ) )

16 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 +1 ,1 ) ) , . . .

17 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 +1 ,1 ) ) ) =pop ( 1 , 1 )

18

19 e l s e i f row2 >0

20

21 [ pop ] = g e n e t i c 2 ( v a r i a n c e , 1 , row1 )

22 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row1 , 1 ) ) , . . .

23 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row1 , 1 ) ) ) =pop ( 1 , 1 )

24

25 [ pop ] = g e n e t i c 2 ( v a r i a n c e , row1 +1 , row2 )

26 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) , . . .
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27 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 , 1 ) ) ) =pop ( 1 , 1 )

28

29 [ pop ] = g e n e t i c 2 ( v a r i a n c e , row2 +1 , rows ( opcao_DIa ) )

30 COVV( f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 +1 ,1 ) ) , . . .

31 f i n d ( d a t a s 1 ( : , 1 ) == opcao_DI_du1 ( row2 +1 ,1 ) ) ) =pop ( 1 , 1 )

32

33 e n d i f

At the third part, i show the steps that the algorithm use to find the optimal value. First, randomly

generate a population set φ of solutions around φ1, then, each value of these population are

available in the cost function (this function will be demonstrated in the fourth part).

1 f u n c t i o n [ pop ] = g e n e t i c 2 ( v a r i a n c e , a , b )

2 %% Setup t h e GA

3 f f = ’ b l s _ p r i c e 2 ’ ; % f i l e n a m e o b j e c t i v e f u n c t i o n

4 n b i t s =1 ; % # of o p t i m i z a t i o n v a r i a b l e s

5 Nt= n b i t s ; % # of columns i n p o p u l a t i o n m a t r i x

6 maxi t =150; % max number o f i t e r a t i o n s

7 % GA p a r a m e t e r s

8 p o p s i z e =20; % s e t p o p u l a t i o n s i z e

9 m u t r a t e = 0 . 3 ; % s e t m u t a t i o n r a t e

10 s e l e c t i o n = 0 . 5 ; % f r a c t i o n o f p o p u l a t i o n k e p t

11 keep= f l o o r ( s e l e c t i o n * p o p s i z e ) ; % # p o p u l a t i o n members t h a t

s u r v i v e

12 M= c e i l ( ( p o p s i z e−keep ) / 2 ) ; % number o f m a t i n g s / c r u z a m e n t o s

13

14 i g a =0; % g e n e r a t i o n c o u n t e r i n i t i a l i z e d

15

16 %%%%%%%%%%% CREATE THE POPULATION %%%%%%%%%%%%%%%%

17

18 pop ( : , 1 ) = v a r i a n c e

19

20 f o r k = 2 : p o p s i z e

21 f o r j =1 : n b i t s

22 i f k<5

23 pop ( j , k ) = 0 . 8 * abs ( s t d n o r m a l _ r n d ( 1 ) )

24 e l s e i f k <10

25 pop ( j , k ) = 0 . 6 * abs ( s t d n o r m a l _ r n d ( 1 ) )

26 e l s e i f k <15

27 pop ( j , k ) = 0 . 1 * abs ( s t d n o r m a l _ r n d ( 1 ) )
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28 e l s e i f k<= p o p s i z e

29 pop ( j , k ) = 0 .05 * abs ( s t d n o r m a l _ r n d ( 1 ) )

30 e n d i f

31 e n d f o r

32 e n d f o r

33 %%%%%%%%%%%%%%%%%

34

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% THE COST

FUNCTION

36 f o r i =1 : p o p s i z e

37 c o s t ( i , 1 ) = f e v a l ( f f , pop ( : , i ) , a , b ) % c a l c u l a t e s p o p u l a t i o n

c o s t u s i n g f f

38 e n d f o r

39

40 [ c o s t , i nd1 ] = s o r t ( c o s t ) % min c o s t i n e l e m e n t 1

41 pop=pop ( : , ind1 ’ ) ; % s o r t p o p u l a t i o n wi th l o w e s t c o s t f i r s t

42 minc ( 1 ) =min ( c o s t ) ; % minc c o n t a i n s min of p o p u l a t i o n

43 meanc ( 1 ) =mean ( c o s t ) ; % meanc c o n t a i n s mean of p o p u l a t i o n

44

45 %%%% DO THE SELECTION , SORT THE BETTER TO WORSE

46 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

47 %% I t e r a t e t h r o u g h g e n e r a t i o n s (MAIN LOOP)

48

49 w h i l e iga < max i t %| RMSE < 0 . 0 5

50 i g a = i g a +1; % i n c r e m e n t s g e n e r a t i o n c o u n t e r

51

52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

53 %%%%%%%f a z e r o c r o s s o v e r %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

54 f o r i c =1 :M %M = p o p s i z e − keep / 2

55

56 xp = c e i l ( n b i t s * r and ( 1 , 1 ) ) %numero do

cromossomo

57 dad = c e i l ( r and ( 1 , 1 ) * p o p s i z e * s e l e c t i o n )

58 mon = c e i l ( r and ( 1 , 1 ) * p o p s i z e * s e l e c t i o n )

59

60 i ndx =2*( i c −1) +1; % odd numbers s t a r t i n g a t 1

61
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62 pop ( : , keep+ ind x ) = v e r t c a t ( pop ( 1 : xp , dad ) , pop ( xp +1: n b i t s ,

mon ) )

63 pop ( : , keep+ ind x +1)= v e r t c a t ( 0 . 6 . * pop ( 1 : xp , dad ) + 0 . 4 . * pop ( 1 :

xp , mon ) , . . .

64 0 . 6 . * pop ( xp +1: n b i t s , mon ) + 0 . 4 . * pop ( xp +1: n b i t s , dad ) )

65

66 e n d f o r

67 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

68 % Mutate t h e p o p u l a t i o n

69 nmut= c e i l ( p o p s i z e * n b i t s * m u t r a t e ) ;

70 f o r i =1 : nmut ;

71 c o l = r a n d i ( p o p s i z e ) ;

72 row= r a n d i ( n b i t s ) ;

73 i f c o l ~=1

74 pop ( row , c o l ) = ra nd ( 1 , 1 ) ;

75 e n d i f

76 end

77 %−−−−−−−−−−−−−−−−− EVALUATE THE NEW GENERATION

−−−−−−−−−−−−−−−−−−−−−%

78

79

80 f o r i =1 : p o p s i z e

81 % pop1= r e s h a p e ( pop ( : , i ) , 32 , 31)

82 c o s t ( i , 1 ) = f e v a l ( f f , pop ( : , i ) , a , b ) % c a l c u l a t e s p o p u l a t i o n

c o s t u s i n g f f

83 e n d f o r

84

85 [ c o s t , i nd1 ] = s o r t ( c o s t ) % min c o s t i n e l e m e n t 1

86 pop=pop ( : , ind1 ’ ) ; % s o r t p o p u l a t i o n wi th l o w e s t c o s t f i r s t

87

88 % Do s t a t i s t i c s

89 minc ( i g a ) =min ( c o s t ) ;

90 meanc ( i g a ) =mean ( c o s t ) ;

91

92 en d w h i l e

93 %_______________________________________________________

94 % S o r t t h e c o s t s and a s s o c i a t e d p a r a m e t e r s
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95 [ c o s t , i nd1 ] = s o r t ( c o s t ) % min c o s t i n e l e m e n t 1

96 pop=pop ( : , ind1 ’ ) ; % s o r t p o p u l a t i o n wi th l o w e s t c o s t f i r s t

97

98 e n d f u n c t i o n

Finally, i present the objective function. In the matrix with the data of the options on DI futures,

the lines that appear the options with the same maturity will be selected and these options will

all be evaluated in this function.

1 f u n c t i o n RMSE = b l s _ p r i c e 2 ( v a r i a n c e , a , b )

2

3 g l o b a l opcao_DI P _ r e a l K t a x a _ a n u a l opcao_DI_du2 . . .

4 opcao_DI_du3 opcao_DI_du1 opcao_DI_ taxa P_ t d a t a s 1 p u _ t i t u l o

K _ l i n e a r . . .

5 i ndex_v1 index_v2 index_v3 a j u s t e f a c t o r Rcdi R l i n e a r f a c t o r 1

6

7 %f ó r m u l a de Black 19 76 .

8 d1 = ( l o g ( R l i n e a r ( a : b , 1 ) . / K _ l i n e a r ( a : b , 1 ) ) +0 .5* v a r i a n c e . * (

opcao_DI_du2 ( a : b , 1 ) . / 2 5 2 ) ) . / . . .

9 ( s q r t ( v a r i a n c e ) . * s q r t ( ( opcao_DI_du2 ( a : b , 1 ) . / 2 5 2 ) ) )

10

11 d2 = ( l o g ( R l i n e a r ( a : b , 1 ) . / K _ l i n e a r ( a : b , 1 ) ) −0.5.* v a r i a n c e . * (

opcao_DI_du2 ( a : b , 1 ) . / 2 5 2 ) ) . / . . .

12 ( s q r t ( v a r i a n c e ) . * s q r t ( ( opcao_DI_du2 ( a : b , 1 ) . / 2 5 2 ) ) )

13

14 c = K( a : b , 1 ) . * ( opcao_DI_du2 ( a : b , 1 ) . / 2 5 2 ) . * ( R l i n e a r ( a : b , 1 ) . *

normcdf ( d1 ) − . . .

15 K _ l i n e a r ( a : b , 1 ) . * normcdf ( d2 ) ) . * p u _ t i t u l o ( index_v3 ( a : b , 1 ) , 1 )

16

17 %Room mean s q u a r e e r r o r − a v a l i a r o e r r o de p r e c i f i c a ç ã o

18 RMSE = ( ( P _ r e a l ( a : b , 1 )−c ) . / P _ r e a l ( a : b , 1 ) ) . ^ 2

19 RMSE = sum (RMSE) / ( b−a−1)

20

21 e n d f u n c t i o n


