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Abstract 

Modern telecommunication networks often employ handheld devices, with a trend 

towards wearable devices. For medical purposes, there are even implanted devices that 

communicate via a radio frequency interface. All these devices have an antenna in common, 

whose input impedance varies when parts of the human body or objects made of metal are 

close. This variation can degrade the performance of the power amplifier of the radio 

frequency interface. So, it is of high interest to find possibilities to protect radio frequency 

power amplifiers against such load impedance variation. 

One possible strategy to protect the power amplifier is by means of an automatic 

impedance matching system, which dynamically adjusts the matching network between the 

power amplifier and the antenna dynamically according to the impedance variation. In order 

to adjust the matching network correctly, it is important to obtain accurate information about 

the antenna input impedance. A good way to do this is by measuring the power amplifier’s 

load reflection coefficient. 

A number of scientific works have explored various ways of gaining information about the 

load reflection coefficient using diode power detectors. Diode power detectors generally 

require linearization techniques, especially when being subjected to strong input power 

variations as can be expected in the transmission path. 

This work explores the use of a combination of injection locking and quadrature amplitude 

demodulation to overcome this problem. A complete reflection coefficient measurement 

system was designed and evaluated by means of computer simulations and measurements. 

These measurements on a printed circuit board setup show the basic function of the system, 

while at the same time paving the way for a future integrated circuit setup. An average 
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absolute error of 0.044 at 30 dBm and 0.024 at lower power levels (11 dBm, 18 dBm, 24 dBm) 

was found in the computer simulations. In the measurements, an average absolute error of 

0.146 and a maximum absolute error of 0.28 was obtained. 
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Resumo 

Nos sistemas de comunicação modernos, a mobilidade e portabilidade dos dispositivos 

são uma tendência. Para fins médicos, há ainda dispositivos implantados que se comunicam 

através de uma interface de radiofrequência (RF). Todos esses dispositivos fazem uso de 

antenas, cuja impedância de entrada varia com a proximidade de outros objetos, tais como a 

cabeça do usuário. Esta variação pode ser problemática para o amplificador de potência, o 

qual é parte fundamental na interface de radiofrequência. Por isso, é de grande interesse para 

a indústria encontrar possibilidades para a proteção dos amplificadores de potência de RF 

contra a variação de impedância de carga. 

Uma abordagem possível para proteger o amplificador de potência é feita utilizando um 

sistema automático de adaptação de impedâncias, o qual ajusta dinamicamente a rede de 

adaptação entre o amplificador de potência e a antena, de acordo com a variação de 

impedância. Para ajustar a rede de adaptação corretamente, é importante obter informações 

acerca da impedância de entrada da antena. Uma boa maneira de fazer isso é através da 

medição do coeficiente de reflexão da carga do amplificador de potência. 

Existe na literatura diferentes maneiras de medir componentes do coeficiente de reflexão 

da carga ou medir o coeficiente total na forma polar usando detectores com diodos. Para esse 

método, geralmente, faz-se necessário o uso de técnicas de linearização, especialmente 

quando o sistema está submetido a fortes variações na potência de entrada, como se pode 

esperar no caminho da transmissão. 

Este trabalho explora a utilização de uma combinação da técnica do injection locking e da 

demodulação em quadratura para superar este problema. Um sistema completo de medição 
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do coeficiente de reflexão foi projetado, avaliado por meio de simulações com o software 

Keysight ADS (Advanced Design System) e, em seguida, implementado. Medições em uma 

placa de circuito impresso mostram as funções básica do sistema, enquanto que ao mesmo 

tempo, abrem caminho para um futuro projeto em circuito integrado. Um erro absoluto médio 

de 0,044 a 30 dBm e 0,024 em níveis mais baixos de potência (11 dBm, 18 dBm, 24 dBm) foi 

encontrado nas simulações de computador. Nas medições, um erro absoluto médio de 0,146 

e um erro absoluto máximo de 0,28 foi obtido. 

  



 

v 

 

Table of Contents 

List of Figures ..............................................................................................................................xi 

List of Tables .............................................................................................................................. xv 

List of Acronyms ...................................................................................................................... xvii 

1 Introduction ............................................................................................................................ 1 

2 RF Impedance Measurement Techniques .............................................................................. 7 

2.1 Return-Loss-Bridge .......................................................................................................... 8 

2.2 Six-Port and Similar Techniques ...................................................................................... 9 

2.3 Directional Coupler and Circulator................................................................................ 10 

2.4 Polar Reflection Coefficient Measurement ................................................................... 13 

2.5 Cartesian Reflection Coefficient Measurement ............................................................ 14 

2.6 Injection Locking ........................................................................................................... 17 

3 Reflection Coefficient Measurement System ....................................................................... 19 

3.1 Overview ....................................................................................................................... 20 

3.2 MOSFET Power Amplifier .............................................................................................. 21 

3.3 Directional Coupler ....................................................................................................... 24 

3.4 Power Splitters / Attenuators ........................................................................................ 26 

3.4.1 For Incident Wave .............................................................................................. 27 

3.4.2 For Reflected Wave ............................................................................................ 28 

3.5 Preamplifier for Injection Locking ................................................................................. 29 

3.5.1 RF Amplifier BGA6489 ....................................................................................... 30 

3.5.2 Balun and Impedance matching to 75 Ω ........................................................... 31 



 

vi 

3.6 Quadrature Injection Locking Oscillator (QILO) ............................................................ 32 

3.6.1 Input Buffers ...................................................................................................... 33 

3.6.2 Oscillator Core ................................................................................................... 36 

3.6.3 Quadrature Operation ....................................................................................... 38 

3.6.4 Oscillator Including Bias Networks .................................................................... 39 

3.6.5 Output Buffers ................................................................................................... 39 

3.6.6 Impedance Matching to 50 Ω ............................................................................ 40 

3.6.7 Simulation Results of Output Buffers ................................................................ 40 

3.6.8 Simulated QILO Output Signals after Buffers..................................................... 41 

3.6.9 Simulations of Oscillator Behavior under Injection Locking .............................. 42 

3.7 Quadrature Demodulator: Mixers and Filters ............................................................... 45 

3.7.1 Model of Mixer Mini-Circuits ASK-1-KK81 ......................................................... 47 

3.7.2 Filters ................................................................................................................. 48 

3.8 Low Frequency Amplifiers (LFA) .................................................................................... 49 

3.8.1 AD8616 Operational Amplifier .......................................................................... 49 

3.8.2 Non-Inverting Amplifier Configuration .............................................................. 50 

3.8.3 Keysight ADS Simulation Model of AD8616....................................................... 51 

3.9 Simulation Results of Complete Analog Measurement Block ...................................... 52 

3.9.1 Output Signals and Calculated Reflection Coefficients ..................................... 52 

3.9.2 Simulation Time vs. Settling Time ...................................................................... 54 

3.9.3 Parasitics ............................................................................................................ 55 

3.10 Analog to Digital Converters (ADC) and System Processor ........................................... 57 

3.10.1 STM32F429 Microcontroller .............................................................................. 57 

3.10.2 Analog Limitations of the STM32F429 Discovery Board ................................... 58 

3.10.3 STM32F303 Microcontroller and STM32F3 Discovery Board ............................ 59 

3.10.4 Combination of the two Discovery Boards ........................................................ 59 

3.11 Measuring and Control Software .................................................................................. 61 

3.11.1 First Version using the three ADCs of the STM32F429 ...................................... 61 

3.11.2 Second Version using the four ADCs of the STM32F303 ................................... 63 

3.12 Impedance Matching Network ..................................................................................... 66 

4 Measurements on a Printed Circuit Board Setup ................................................................. 71 



 

vii 

4.1 Printed Circuit Boards ................................................................................................... 71 

4.2 Power Amplifier Board .................................................................................................. 75 

4.2.1 S-Parameters ...................................................................................................... 75 

4.2.2 Output Power and 1dB Gain Compression Point .............................................. 76 

4.2.3 Power Added Efficiency ..................................................................................... 78 

4.3 Oscillator Board ............................................................................................................. 79 

4.3.1 First PCB Setup ................................................................................................... 79 

4.3.2 Tombstone Setup of Oscillator........................................................................... 80 

4.4 Frontend ........................................................................................................................ 82 

4.4.1 Phase shift of Signals at the RF-Inputs of the Mixers ........................................ 82 

4.4.2 Performance for Input Signals Generated using Splitters and Delay Lines ....... 83 

4.4.3 Correction Algorithm ......................................................................................... 91 

4.5 Measurements of Complete System ............................................................................. 95 

5 Conclusion ............................................................................................................................ 97 

References ................................................................................................................................ 99 

A. Appendix – Final Program F303 .......................................................................................... 105 

A.1 MAIN.C ........................................................................................................................ 105 

A.1.1 Includes and Variables ..................................................................................... 105 

A.1.2 Main Function .................................................................................................. 106 

A.1.3 Filtering and Averaging Function ..................................................................... 107 

A.1.4 Timer Configuration Function .......................................................................... 108 

A.1.5 Analog-to-Digital Converter Configuration Function ....................................... 109 

A.1.6 Serial Peripheral Interface Configuration Function ......................................... 112 

A.2 STM32F30X_IT.C .......................................................................................................... 113 

A.2.1 Includes and Standard Exception Handlers ..................................................... 113 

A.2.2 Timer 3 Interrupt Handler ............................................................................... 113 

A.2.3 Direct Memory Access 1 Channel 1 Interrupt Handler (ADC12) ..................... 114 

A.2.4 Direct Memory Access 2 Channel 2 Interrupt Handler (SPI TX) ...................... 115 

A.2.5 Direct Memory Access 2 Channel 5 Interrupt Handler (ADC34) ..................... 115 

B. Appendix – Final Program F429 .......................................................................................... 117 

B.1 MAIN.C ........................................................................................................................ 117 



 

viii 

B.1.1 Includes, Defines, Variables and Function Prototypes .................................... 117 

B.1.2 Main Function .................................................................................................. 118 

B.1.3 Reflection Coefficient Calculation and Correction Function ........................... 119 

B.1.4 Limiter Function ............................................................................................... 120 

B.1.5 Matcher Function ............................................................................................ 122 

B.1.6 State Switcher Function ................................................................................... 122 

B.1.7 Timer 4 Configuration Function ....................................................................... 123 

B.1.8 Output Pin Configuration Function ................................................................. 123 

B.1.9 Serial Peripheral Interface Configuration Function ......................................... 124 

B.1.10 Matching States Initialization Function ........................................................... 125 

B.1.11 Display Initialization Function .......................................................................... 125 

B.2 STM32F4XX_IT.C .......................................................................................................... 127 

B.2.1 Includes, Variables, Standard Exception Handlers........................................... 127 

B.2.2 Timer 4 Interrupt Handler ............................................................................... 127 

B.2.3 Direct Memory Access 2 Stream 0 Interrupt Handler (SPI RX) ........................ 127 

B.3 MICROGUI.C ................................................................................................................ 128 

B.3.1 Includes, Defines, Types and Variables ............................................................ 128 

B.3.2 Function to Deserialize Configuration Values .................................................. 129 

B.3.3 Function to Check Buttons for Touch Event ..................................................... 129 

B.3.4 Draw Buttons Function .................................................................................... 130 

B.3.5 Draw Value Box Function ................................................................................. 130 

B.3.6 Function to Program Flash Memory ................................................................ 131 

B.3.7 GUI Refresh Function ....................................................................................... 131 

B.3.8 Function to Check Window 1 for Touch ........................................................... 132 

B.3.9 Function to Check Window 2 for Touch ........................................................... 132 

B.3.10 Function to Check Window 3 for Touch ........................................................... 133 

B.3.11 Function to Redraw Window 1 ........................................................................ 134 

B.3.12 Function to Redraw Window 2 ........................................................................ 134 

B.3.13 Function to Redraw Window 3 ........................................................................ 134 

B.3.14 Function to Redraw the Values that were Received from SPI ......................... 135 

B.3.15 Function to Redraw the Reflection Coefficient Chart ...................................... 135 



 

ix 

B.3.16 GUI Initialization Function ............................................................................... 136 

B.4 SMITHCHART.C ............................................................................................................ 137 

B.4.1 Includes, Defines and Variables ....................................................................... 137 

B.4.2 Function to Convert a Normalized Impedance to Reflection Coefficient ........ 137 

B.4.3 Function to Draw a Circle with Constant Real Part .......................................... 137 

B.4.4 Function to Draw a Circle with Constant Imaginary Part................................. 137 

B.4.5 Function to Fill Arrays with Values for Fast Redraw of Smith Chart ................ 138 

B.4.6 Smith Circles Drawing Function (Based on Arrays) .......................................... 138 

B.4.7 Alternative Smith Circles Drawing Function .................................................... 139 

C. Appendix – Matching Circles MATLAB Script ...................................................................... 141 

C.1 Matching Network Script ............................................................................................ 141 

C.2 FDrawCircles Function ................................................................................................. 143 

D. Appendix –MATLAB Script for Correction of TML .............................................................. 145 

 



 

x 

  



 

xi 

 

List of Figures 

Figure 1.1: A typical Radio Frequency Power Amplifier ............................................................. 1 

Figure 1.2: Load Impedance Mismatch and Reflected Power .................................................... 2 

Figure 1.3: PA Protection by (a) Clamping, (b) Gain Adjustment ............................................... 3 

Figure 1.4: Power Amplifier with Automatic Impedance Matching System .............................. 4 

Figure 2.1: Return Loss Bridge (Z0 = 50 Ω) .................................................................................. 8 

Figure 2.2: Schematic of Six-Port-Technique with incident (a) and outgoing (b) waves. ........... 9 

Figure 2.3: Circulator, positions for measuring incident (Vi) and reflected (Vr) wave marked 10 

Figure 2.4: Two Transformer Directional Coupler .................................................................... 11 

Figure 2.5: Measuring the Reflection Coefficient in Polar Form .............................................. 13 

Figure 2.6: Measuring the Reflection Coefficient in Cartesian Form (IQD) .............................. 15 

Figure 2.7: Non-Synchronous Cartesian Measurement ........................................................... 15 

Figure 2.8: Injection Locking Principle ...................................................................................... 17 

Figure 3.1: Block Diagram of the Designed Solution ................................................................ 20 

Figure 3.2: Position of Power Amplifier in System ................................................................... 21 

Figure 3.3: Designed Power Amplifier ...................................................................................... 21 

Figure 3.4: Power Delivered to Load PL vs. Frequency and PAVS (Simulation) .......................... 22 

Figure 3.5: Power Gain GP vs. Frequency and PAVS (Simulation)............................................... 23 

Figure 3.6: Position of Directional Coupler in System .............................................................. 24 

Figure 3.7: ADC-15-4 Simulation Model ................................................................................... 25 

Figure 3.8: Position of Splitters in System ................................................................................ 26 

Figure 3.9: Splitter/Attenuator for Incident Wave (in Measuring Path) ................................... 27 



 

xii 

Figure 3.10: Splitter/Attenuator for Reflected Wave (in Measuring Path) ............................... 28 

Figure 3.11: Position of Preamplifier in System ....................................................................... 29 

Figure 3.12: BGA6489 and Periphery ....................................................................................... 31 

Figure 3.13: Balun and Fixed Impedance Matching Circuit ...................................................... 31 

Figure 3.14: Position of QILO in System ................................................................................... 32 

Figure 3.15: Single Frequency Inj. Locking ............................................................................... 33 

Figure 3.16: One of Two Cascode Input Buffers of the QILO .................................................... 34 

Figure 3.17: Input Impedance of one of the Input Buffers ...................................................... 34 

Figure 3.18: Output Impedance of one of the Input Buffers ................................................... 35 

Figure 3.19: Output Spectrum of one of the Input Buffers for 400MHz 1Vp Input ................. 35 

Figure 3.20: Differential RC-Oscillator ...................................................................................... 36 

Figure 3.21: Oscillator Model for Small-Signal Open-Loop Transfer Function ......................... 37 

Figure 3.22: Quadrature Connections in Coupled Oscillator ................................................... 38 

Figure 3.23: QILO without Buffers ............................................................................................ 39 

Figure 3.24: Two Stage Common Collector Output Buffer ....................................................... 39 

Figure 3.25: Output Buffer Impedance Matching .................................................................... 40 

Figure 3.26: Signals before, in and after Output Buffer for Trapezoid Input Signals ............... 40 

Figure 3.27: Output Signals of QILO ......................................................................................... 41 

Figure 3.28: Spectrum of Output Signal Out000 (VRMS) ........................................................... 41 

Figure 3.29: Minimum Input Amplitude for Injection Locking ................................................. 43 

Figure 3.30: Phase and Output Amplitude during Inj. Locking for 1 MHz Difference to f0 ...... 43 

Figure 3.31: Position of Mixers and Filters in System ............................................................... 45 

Figure 3.32: Ideal Mixer Operation for Two Input Frequencies ............................................... 45 

Figure 3.33: Ideal Mixer (black) and Filter (red) Operation for Same Frequency Inputs ......... 46 

Figure 3.34: Model of Mixer ASK-1-KK81 ................................................................................. 47 

Figure 3.35: Used RC-Low-Pass-Filter ....................................................................................... 48 

Figure 3.36: Position of Low Frequency Amplifiers in System ................................................. 49 

Figure 3.37: Low-Frequency-Amplifier Schematic ................................................................... 51 

Figure 3.38: Keysight ADS Model of AD8616 ........................................................................... 51 

Figure 3.39: Reflection Coefficients as Calculated from Simulation Data ................................ 54 

Figure 3.40: Position of ADCs and Processor in System ........................................................... 57 



 

xiii 

Figure 3.41: STM32F429 Discovery Board (product photograph by ST) .................................. 58 

Figure 3.42: STM32F3 Discovery Board (product photograph by ST) ...................................... 59 

Figure 3.43: First Version of Software (3 ADCs) ....................................................................... 62 

Figure 3.44: Hardware for Testing the First Version of the Software ....................................... 62 

Figure 3.45: Final Version of Software (4 ADCs) ....................................................................... 64 

Figure 3.46: Hardware for Final Version of Software ............................................................... 64 

Figure 3.47: Screenshots of Edit Function (v1.5) and of Main Screen (v2.1) ........................... 65 

Figure 3.48: Schematic of Variable IMN with Impedance Inverters (inv.) ................................ 66 

Figure 3.49: Example Matching Circles for an allowed Error of Γ of 0.28 ................................ 67 

Figure 4.1: The three unpopulated PCBs (three copies each, still wrapped in foil) ................. 72 

Figure 4.2: Power Amplifier ...................................................................................................... 73 

Figure 4.3: Quadrature-Injection-Locking-Oscillator with Voltage Pre-Amp. and Buffers ....... 73 

Figure 4.4: Frontend ................................................................................................................. 74 

Figure 4.5: Measurement Setup for Obtaining the S-Parameters ............................................ 75 

Figure 4.6: PA S11 ...................................................................................................................... 76 

Figure 4.7: PA S21 ...................................................................................................................... 76 

Figure 4.8: Power Delivered to Load PL vs. Frequency and PAVS (Measured) ........................... 77 

Figure 4.9: Power Gain GP vs. Frequency and PAVS (Measured) ............................................... 78 

Figure 4.10: Oscilloscope Screen of QILO Output .................................................................... 79 

Figure 4.11: Test Setup for Oscillator Measurement ................................................................ 80 

Figure 4.12: Tombstone Oscillator Setup ................................................................................. 81 

Figure 4.13: PCB Containing Wilkinson Power Splitters and Delay Lines ................................. 82 

Figure 4.14: Technique to Measure the Parasitic Phase Angles at the Mixers’ RF Inputs. ...... 83 

Figure 4.15: Test Setup for Frontend Measurements............................................................... 83 

Figure 4.16: Block Diagram of Used Test Setup ........................................................................ 84 

Figure 4.17: Core of Setup for Condition 1 and 2 ..................................................................... 85 

Figure 4.18: Core of Setup for Condition 3 and 4 ..................................................................... 85 

Figure 4.19: Core of Setup for Condition 5 ............................................................................... 86 

Figure 4.20: Diagram of Measured ReflectionCoefficients ...................................................... 90 

Figure 4.21: Coordinate System Transformation (just shown for Vr, but Vi is the same) ........ 92 

 



 

xiv 

  



 

xv 

 

List of Tables 

Table 3.1: S-Parameters of BGA6489 Model at 400 MHz ......................................................... 30 

Table 3.2: Output Signals of QILO, Amplitude and Phase ........................................................ 42 

Table 3.3: Behavior under Injection Locking ............................................................................ 44 

Table 3.4: Some Features of the AD8616 ................................................................................. 50 

Table 3.5: Simulation Results of Complete Analog Measuring Subsystem .............................. 53 

Table 3.6: Capacitor Values for Matching Circles ..................................................................... 68 

Table 4.1: Power Amplifier - Comparison Simulation / Measurements ................................... 78 

Table 4.2: Conditions for Test of Frontend with Delay-Board .................................................. 84 

Table 4.3: Reflection Coefficients Γi for Test of Frontend with Delay-Board ............................ 87 

Table 4.4: Raw Measurement Data Obtained Using Delay-Board ............................................ 88 

Table 4.5: Corrected Measured Reflection Coefficients and Differences to Ideal Values ........ 89 

Table 4.6: Comparison of Errors with References .................................................................... 91 

 

  



 

xvi 

  



 

xvii 

 

List of Acronyms 

A Attenuation 

ADC Analog to digital converter 

ADS Advanced design system 

AIM Automatic impedance matching 

ax Ingoing wave at port x 

bx Outgoing wave at port x 

C Capacitor 

C1, C2, C3 Capacitors of variable impedance matching network 

CBC Base-collector-capacitance 

CPL Coupled port 

Cx Quadrature coupling capacitor 

D Directivity 

DC Direct current 

E, F, G, H Proprietary correction values (segmented transmission line) 

EPC Equivalent parallel capacitance 

Err Absolute error 

ESL Equivalent series inductance 

ESR Equivalent series resistance 

f0 Free-running frequency of oscillator 

F303 STM32F303 microcontroller (ST Microelectronics) 

F3DISCO STM32F3 discovery board (ST Microelectronics) 



 

xviii 

F429 STM32F429 microcontroller (ST Microelectronics) 

F429DISCO STM32F429 discovery board (ST Microelectronics) 

fc Cutoff-frequency 

fRF RF-frequency 

gc Current gain 

GND Ground 

GP Power gain 

GT Transducer power gain 

I_out In-phase component of parasitic phase angle inside Frontend 

IC Integrated Circuit 

IDE Integrated development environment 

IN Input port 

IQD IQ-Demodulation / Quadrature amplitude demodulation 

ISM Industrial, scientific and medical 

ISO Isolated port 

j Imaginary unit 

K Rollett stability factor 

LC Inductor-Capacitor 

LCCI Laboratório de concepção de circuitos integrados 

LED Light emitting diode 

LF Low frequency 

LFA Low frequency amplifier 

LO Local oscillator (input of mixers) 

MICS Medical implant communication service 

MOSFET Metal oxide semiconductor field effect transistor 

N Winding ratio of a transformer 

op-amp Operational amplifier 

ox Offset measured by ADC x 

PA Power amplifier 

PAE Power added efficiency 

PAVS Power available from source 



 

xix 

PCB Printed circuit board 

pi Re{Vi} 

PL Power delivered to load 

pr Re{Vr} 

PWR Power 

Q Quality factor 

Q_out Quadrature component of parasitic phase angle inside Frontend 

QAi Input impedance matching network 

QAo Output impedance matching network 

qi Im{Vi} 

QILO Quadrature injection locking oscillator 

qr Im{Vr} 

R Resistor 

rB Base resistance 

RC Resistor-Capacitor 

RF Radio frequency 

RL Return loss 

RLB Return loss bridge 

SAR Successive approximation register 

Sij S-Parameter between port j and port i. If i=j, reflection coefficient at this port. 

SMT Surface mounting technology 

SRF Self-resonant frequency 

SWR Standing wave ratio 

sx Scaling factor for ADC x 

t Time 

TRA Transmitted/Output port 

TX Transmitting 

UHF Ultra high frequency band 

Vi Incident wave 

Vi_I, c In-phase component of incident wave 

Vi_Q, d Quadrature component of incident wave 



 

xx 

Vinj,p Amplitude of the signal that is injected into the oscillator 

VNA Vector network analyzer 

Vosc,p Oscillation amplitude of oscillator 

Vr Reflected wave 

Vr_I, a In-phase component of reflected wave 

Vr_Q, b Quadrature component of reflected wave 

VSWR Voltage standing wave ratio 

VT Thermal voltage (ca. 26 mV) 

Vx Voltage at port x 

vx Voltage measured by the ADC x 

Z0 Reference impedance 

ZL Load impedance 

ZS Source impedance 

α Angle between X-Axis and A-Axis of non-rectangular coordinate system 

β Angle between X-Axis and B-Axis of non-rectangular coordinate system 

γ Angle between X-Axis and C-Axis of non-rectangular coordinate system 

Γi Ideal value for measured reflection coefficient (from VNA) 

Γin Input reflection coefficient 

ΓL Load reflection coefficient 

Γmin Allowed reflection coefficient error (real value, just magnitude) 

Γt Reflection coefficient seen at input of directional coupler 

Δ Rollett stability factor delta value 

δ Angle between X-Axis and D-Axis of non-rectangular coordinate system 

θ Phase deviation due to injection locking 

θa Absolute output phase deviation due to injection locking 

τ Time constant 

ϕ Phase difference between reflected and incident wave 

ω Angular frequency 

ω0 Free-running angular frequency of oscillator 

ωinj Angular frequency of the signal that is injected into the oscillator 

 



 

 

1 

1 Introduction 

This dissertation explores aspects of automatic impedance matching systems for 

protecting the radio frequency (RF) power amplifier (PA) against variations of the load 

impedance. It focuses on the impedance measuring block of such a system. This chapter 

introduces the RF PA, the problem of load impedance variation and possible solutions to 

protect the power amplifier, ending with the impedance measuring block of an automatic 

impedance matching system. 

 

The purpose of a radio frequency power amplifier is generally to amplify the signal in the 

transmitting (TX) path of a RF communication system before feeding it into the antenna. A 

typical RF PA comprises of an active element (e.g. a transistor), two bias networks and two 

fixed impedance matching networks, one for the input (QAi) and another one for the output 

(QAo) as shown in Figure 1.1. 

 

Figure 1.1: A typical Radio Frequency Power Amplifier 

 



 

 

2 

The output impedance of the blocks before the PA (such as a driver stage or a filter) and 

thus the source impedance (ZS) for the PA is often well defined. The same is not necessarily 

true for the load impedance (ZL), that often varies according to effects of objects close to the 

antenna. Even so, RF PAs are generally designed for a given load impedance, often 50 Ω. 

 

To make an RF PA less sensitive to variations of the load impedance ZL is of high interest. A 

mismatch condition between the output of the PA and the load impedance is a common state 

in portable RF transmission systems, where the antenna appears as a load impedance which 

is varying with its close surroundings such as the head or hand of the user or the metal of a 

car or lift cabin [1], [2]. A load impedance mismatch results in power reflected back to the PA 

as shown in Figure 1.2. This severely degrades the performance of the PA and can, in certain 

conditions, even destroy it [3]. 

 

 

Figure 1.2: Load Impedance Mismatch and Reflected Power 

 

The performance degrading effect of load impedance mismatch on the PA is already 

known for quite a time, and many scientific works have been done to mitigate it. Earlier works 

tended to focus on preventing the PA from being destroyed by clamping the output voltage to 

an allowable value as shown in Figure 1.3 (a) or by reducing the gain of the PA depending on 

the output voltage or the reflected signal as shown in Figure 1.3 (b) [4], [5]. These approaches 

don’t fully address the performance degradation of the PA induced by the load mismatch. They 

only remove the problem of over voltage, but not of degradation of efficiency, phase distortion 

and non-linearity. 

 

 

ZL 
(antenna) 
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Figure 1.3: PA Protection by (a) Clamping, (b) Gain Adjustment 

 

Other works also include outphasing amplifiers or balanced PA and passive power 

combining networks comprising transmission line structures such as couplers and hybrids, 

sometimes together with tuning elements [6]-[9]. Also, distributed active transformer 

structures have been used [10]-[12]. All these techniques have in common that the 

susceptibility to load impedance variations can be made lower, but they still do not present 

the best possible matching condition to the PA output. 

 

Instead, it is possible to construct an Automatic Impedance Matching (AIM) System, using 

tunable or reconfigurable impedance matching networks composed of transmission lines or 

inductors and capacitors together with RF switches [3], [13], [14], or tuning elements such as 

varactors [15]-[17]. Many of the more recent works have explored this method, and some of 

them have been done at the Universidade Federal da Bahia, developing a general approach to 

designing such impedance matching networks [3]. This method matches the varying load 

impedance dynamically and, as such, always presents a minimal mismatch condition to the 

output of the PA. The higher the number of possible matching states, the lower is the 

maximum remaining mismatch. This work will explore aspects of an AIM System. As presented 

in Figure 1.4, an AIM System comprises of three components: The variable impedance 

matching network (which is controlled), the control block (using measured information about 

the load impedance) and the measuring block (for obtaining information about the load 

impedance). 
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Figure 1.4: Power Amplifier with Automatic Impedance Matching System 

 

In order to tune or reconfigure the matching/combining circuit, or to change the phase in 

the outphasing amplifier configuration, it is necessary to acquire information about the actual 

impedance ZL, or alternatively about the load reflection coefficient ΓL. The load reflection 

coefficient is the quotient of the reflected wave Vr over the incident wave Vi as shown in 

equation (1.1) [18], or alternatively can be expressed by means of source and load impedance 

as shown in equation (1.2) [18]. If needed, ZL can be calculated from ΓL via equation (1.3) [18], 

using the known source impedance ZS. 

 �� � ���� (1.1) 

 �� � ��	�
����
 (1.2) 

 �� � � �	�	���			��. (1.3) 

Many recent works in the area of automatic impedance matching systems already 

explored the variable impedance matching network and the search algorithms [14]-[16]. 

Instead, this work focuses on the less researched reflection coefficient measuring block of the 

AIM System and in parts on the control block, though an indication for the variable impedance 

matching block will also be given. 
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The objective of this work is the development of a new reflection coefficient measurement 

system, including computer simulations and measurements with a discrete setup. Additional 

blocks of an automatic impedance matching system are also considered. 

This work is divided into five chapters. In chapter 2 a bibliographic review with general 

considerations about the most common existing techniques for measuring the reflection 

coefficient is presented. In this chapter, the injection locking phenomenon and its use in a 

measurement system is also approached. 

In chapter 3 the proposed reflection coefficient measurement system is discussed in detail 

together with simulation results of the functional blocks and of the whole system. The control 

block and the variable impedance matching network are considered in this chapter as well. 

In chapter 4 the measurement setups and results for validating the function of the system 

are presented. 

The final chapter 5 draws conclusions and presents perspectives for future works. 
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2 RF Impedance Measurement Techniques 

In general, the load impedance and the reflection coefficient are complex numbers. If just 

the magnitude of the reflection coefficient is of interest, ordinary Standing Wave Ratio (SWR) 

or Return Loss (RL) meters can be used. Voltage SWR (VSWR) and RL are real numbers and can 

be calculated from the magnitude of the reflection coefficient |ΓL| using the following 

equations (2.1) and (2.2) [18]. 

 ���� � �	�	|��|�			|��|. (2.1) 

 �� � −20 log |��|. (2.2) 

In an automatic impedance matching system, however, it is difficult to match the load if 

only the magnitude of the reflection coefficient is measured and the phase is omitted. Such 

an approach requires complicated search algorithms to find an optimal matching state. In the 

following sections, different approaches to measure the reflection coefficient as a complex 

number will be detailed, making the use of simple matching algorithms possible. 
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2.1 Return-Loss-Bridge 

The schematic of a typical return-loss-bridge (RLB) is given in Figure 2.1 [19]. A RLB allows 

to measure the reflection coefficient directly if the output is analyzed as a complex number 

and not just its magnitude [20]. This can be done in polar form or in Cartesian form like 

discussed in more detail in the sections 2.4 and 2.5. However, the RLB has one big 

disadvantage: 75% of the power fed into it by the RF source is lost in the resistors, making it 

impractical at the output branch of an RF power amplifier. 

 

 

Figure 2.1: Return Loss Bridge (Z0 = 50 Ω) 
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2.2 Six-Port and Similar Techniques 

Another technique for measuring the reflection coefficient is the six-port reflectometer as 

proposed in [13]. The phase information is derived by computation from measuring the 

amplitude (related to the power) at four defined points in an interferometer circuit [21]. This 

technique is more suitable for use after a PA, as it allows for higher powers to be passed 

through the measuring circuit. Normally, there are no resistors in the power path. The resulting 

insertion losses for the six port technique are typically below 1dB in the main path, comparable 

to couplers. A schematic of the six-port reflectometer technology is shown in Figure 2.2. 

The voltage Vx on each port x (x = 1, 2, 3 or 4), and also the amplitude |Vx| that is sampled 

by the detectors, can be expressed by means of the ingoing wave ax and outgoing wave bx, and 

the reference impedance Z0 using the following equation (2.3): 

 �� � ��� ∙ !"� # $�% (2.3) 

As a6 and b6 are a function of the constant S-Parameters of the six-port-network, the 

known reflection coefficients of the detectors and the other ingoing and outgoing waves, it is 

possible to find the desired reflection coefficient at port 6 from V1, V2, V3, and V4. 

Under certain conditions however, the computation algorithm can be very sensitive to 

small variations in V1, V2, V3, and V4 and the S-parameters of input 5, what is not desirable 

under conditions where noise, for example picked up by the antenna from external sources, 

and modulation artifacts of the PA itself can occur. This technique generally relies on diode 

power detectors, for which linearization techniques must be applied. 

 

Figure 2.2: Schematic of Six-Port-Technique with incident (a) and outgoing (b) waves. 
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2.3 Directional Coupler and Circulator 

An alternative for the six-port technique to measure the reflection coefficient is using a 

device to separate the incident signal from the reflected signal. Both directional coupler and 

circulator allow to separate these two signals, but an RF circulator is normally an expensive 

and bulky device made with ferrite materials [22] and incompatible with IC technology. 

However, it allows for additional protection of the PA, as the reflected power is directed to 

another port than the output of the PA. In [23], active quasi-circulators made of transistors are 

presented, but in this case the whole quasi-circulator circuit has to be designed for relatively 

high power levels, has to be protected against load mismatch and reduces the performance of 

the PA. A schematic on where to measure the incident signal and the reflected signal in a 

circulator setup is shown in Figure 2.3. 

 

	Γ � ���� 
Figure 2.3: Circulator, positions for measuring incident (Vi) and reflected (Vr) wave marked 

 

Directional couplers do not protect the PA from the reflected power. They direct power 

from the main input port (IN) to the main output port (TRA) and vice-versa, and the 

attenuation in the main path can be quite low, typically between 0.1dB and 4dB [24]. Even so, 

this attenuation is the main disadvantage, as it reduces the efficiency of the RF transmission 

system.  

The important property of the directional coupler is that it directs a portion of the incident 

signal to a third port called “coupled” (CPL) and a portion of the reflected signal to a fourth 

port, often called “isolated” (ISO), making them available for measurement. 
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The magnitude of the signals at the CPL and ISO ports is often considerably smaller than 

the one of the signals at the IN and TRA ports. Commercially available are coupling values 

between 3dB and 50dB, and for measuring in the power range of interest mostly used are 

values between 15dB and 20dB [24]. A coupling value of 15dB means that the signal at the CPL 

port is 15dB lower than the incident signal at the IN port. 

Directional couplers are relatively inexpensive devices and can be miniaturized. 

Directional couplers for higher frequencies (in the >1 GHz range) are frequently made of 

parallel transmission lines [25] or slotted hollow wave guides [26]. However, for the 400 MHz 

frequency range, this leads to large dimensions of the coupler, making it difficult to integrate 

on a chip. Other approaches have been explored, especially those composed of a single 

transformer and capacitors [27] (narrow band), capacitors and inductors [28]-[30] or two 

cross-connected transformers [31] (wide band, schematic shown in Figure 2.4). 

 

 

Figure 2.4: Two Transformer Directional Coupler 

 

The coupler made of one transformer and capacitors has already been successfully 

integrated on a chip [27]. The approach using capacitors and inductors has also been 

implemented as integrated circuit [28]-[30]. 

The two-transformer wide band approach has only been applied as discrete coupler with 

wire wound transformers, but also has some potential for miniaturization. 

According to [31], the S-Parameters of a loosely coupled symmetric (winding ratios N1 = N2 

= N) two transformer directional coupler are shown in the following equations (2.4) to (2.8). 

 ��' � �() ≅ − �(+, - 0 (2.4) 

 ��� � −�(( � �)) � −�'' ≅ − �(+. - 0 (2.5) 
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 ��( � �)' ≅ 1 (2.6) 

 ��) � −�(' ≅ − �+ (2.7) 

 �01 � �10 (2.8) 

The directivity D is calculated by equation (2.9): 

 2 � 20 log 34,.,3 � 20 log 3	.545 3 � 20 log|26(| (2.9) 

The directivity is a number describing how well the coupler separates the incident wave 

from the reflected wave. It is given as positive value (the higher the better), but also negative 

values can be found in the literature, equivalent to the inverse of the equation given here. S13 

denotes the strength of the coupling between IN and CPL, S24 is the strength of the coupling 

between TRA and ISO. These coupling strengths are design parameters of the coupler. S14 and 

S23 are the undesired coupling to the other port and should ideally be zero. S11, S22, S33 and S44 

denote the reflection coefficients at the respective ports and should ideally be zero as well. S12 

is linked to the insertion loss of the coupler and should ideally be one (0dB). The approximate 

values are the ideal for such a directional coupler, but in reality, not obtainable.  
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2.4 Polar Reflection Coefficient Measurement 

In [32] it is suggested to measure only the phase difference ϕ between the forward and 

the reflected signal using amplitude limiters and a Gilbert multiplier cell acting as high 

frequency phase detector. In addition, they support the opinion that the amplitude ratio is 

much less important than the phase information and therefore can be omitted. However, in 

matching circuits with a higher number of possible configurations or tuning steps this does not 

allow an optimal matching, as the information about the magnitude of the reflection 

coefficient is lost. This limitation can be overcome by additionally measuring the amplitude of 

the incident |Vi| and the reflected voltage |Vr| [33]. So in total three analog signals have to 

be measured as shown in Figure 2.5. In this text, this will be referred to as measuring the 

reflection coefficient in polar form.  

 

 

Figure 2.5: Measuring the Reflection Coefficient in Polar Form 

 

The reflection coefficient is calculated from the measured values using the following 

equation (2.10): 

 � � |��||��| e8⋅: (2.10) 

  

Phase Detector 
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2.5 Cartesian Reflection Coefficient Measurement 

Another approach is the measurement of the reflection coefficient in Cartesian form. This 

means that the amplitudes of the real and of the imaginary component of the reflection 

coefficient are measured separately [20]. This can be accomplished by synchronous IQ-

demodulation (IQD, also known as quadrature amplitude demodulation) of the reflected signal 

which is an amplitude detection of the in-phase with the incident signal and 90° out-of-phase 

components as shown in Figure 2.6. For sinus shaped signals VLOI, VLOQ and Vr, corresponding 

to the in-phase and quadrature local oscillator signals and the reflected signal, as shown in 

equation (2.11) the operation of the mixers can be described as in equation (2.12) and (2.13): 

 �; � < ∙ cos!?@ # A% , 	��CD � 2 ∙ cos!?@%, ��CE � 2 ∙ sin!?@% (2.11) 

 ��CD ∙ �; � 2 ∙ cos!?@% ∙ < ∙ cos!?@ # A% � < ∙ cos!A% # < ∙ cos!2?@ # A% (2.12) 

 ��CE ∙ �; � 2 ∙ sin!?@% ∙ < ∙ cos!?@ # A% � < ∙ sin!A% # < ∙ sin!2?@ # A% (2.13) 

The double frequency component of the results is removed by a low pass filter, it remains 

the DC content as shown in equations (2.14) and (2.15): 

 < ∙ cos!A% � ReI< ∙ e8:J � �K_M (2.14) 

 < ∙ sin!A% � ImI< ∙ e8:J � �K_P (2.15) 

Detection of the incident signal Vi amplitude is also necessary. This can be done 

synchronously, in other words like in equation (2.14), with ϕ = 0. So, there are in total three 

analog signals to be processed, similar to the polar case. 
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Figure 2.6: Measuring the Reflection Coefficient in Cartesian Form (IQD) 

 

The reflection coefficient is calculated from the measured values using the following 

equation (2.16): 

 � � �;_D�0_D # j �;_E�0_D  (2.16) 

However, as will be shown in this work, it is possible to obtain the reflection coefficient in 

Cartesian form if the IQ-demodulation (IQD) is not synchronous. This means the reference 

signal for the mixing operation is not in phase with Vi. Just the frequency has to be equal and 

the phase only has to be constant during one measuring run, so it can be slowly varying. To 

accomplish this, a fourth analog signal is introduced. Basically, IQD is not only executed for the 

reflected signal, but also for the incident signal (Figure 2.7). This way information is obtained 

about the phase between the incident signal and the signal used as reference for the IQD, 

known as local oscillator (LO). This is crucial when using an injection locking oscillator to 

generate the quadrature LO signals as proposed here. 

 

 

Figure 2.7: Non-Synchronous Cartesian Measurement 

 

Variable 

Phase Shift 
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The reflection coefficient is calculated from the measured values using the following 

equation (2.17), that is nothing else than the quotient of two complex numbers Vr = a+jb over 

Vi = c+jd: 

 � � ���� � RS�TUS.�U. # j TS	RUS.�U. (2.17) 

All methods for measuring the reflection coefficient rely on the measurement of 

amplitude information, what can either be done by synchronous demodulation or by diode 

power detectors. Synchronous demodulation offers high linearity of the output voltage versus 

the input amplitude, but introduces a higher level of complexity to the circuit because of the 

mixers. 

Diode detectors are inherently nonlinear, what can be undesirable. Especially in systems 

with a strong variation in transmission power as can be found in digitally modulated systems, 

the nonlinearity of the diode power detectors can be a problem. Often, the nonlinearity makes 

linearization techniques necessary. For example, a logarithm circuit can be used for 

linearization. Linearization techniques add complexity to the circuit or the control software, so 

that synchronous demodulation or techniques derived from it become interesting.  

This work will explore the use of injection locking to overcome some of the phase accuracy 

and complexity limitations of quadrature amplitude demodulation. 
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2.6 Injection Locking 

The injection locking phenomenon has already been described for mechanical pendulum 

clocks by Christiaan Huygens as early as in the 17th century, but it is also the focus of 

contemporary research. It can be applied to a wide range of physical systems such as 

electronics and laser optics, whenever there are oscillators coupled in some way. Injection 

locking means that an oscillator can lock to the frequency of a signal that is injected into the 

oscillator from an external source. Once it is locked to the external frequency it does not 

oscillate on its original frequency anymore (Figure 2.8). 

 

  

Figure 2.8: Injection Locking Principle 

 

However, there will be a phase shift between the injected signal and the locked oscillator 

output signal, depending on the injected amplitude and the difference between the injected 

signal and the natural frequency of the oscillator. If the injected signal amplitude is too small 

or the frequency is too far away from the natural frequency of the oscillator (outside the lock 

range), no injection locking occurs. 

The one sided lock range is defined by equation (2.18) [34]: 

 ?� − ?0V1 � WX(E ∙ ��YZ,[�\]^,[ ∙ �
_�	`�YZ,[.

`\]^,[.
, (2.18) 

Where ω0 is the free-running frequency of the oscillator, Vosc,p its peak oscillation amplitude, 

ωinj is the frequency of the injected signal, Vinj,p is the peak amplitude of the injected signal and 

Q is the quality factor of the oscillator. 

V
o1

 = V
osc,p

·cos(ω
0
·t) 

V
o2

 = V
inj,p

·cos(ω
inj

·t) 

V
o3

 = V
osc,p

·cos(ω
inj

·t + θ) 
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It is clear that a lower quality factor means a wider lock range. The complete lock range is 

two times the one sided lock range, symmetrical around ω0. 

The behavior of an oscillator under injection of an unrelated signal is described by the 

Adler equation (2.19) [34]: 

 
UaUb � ?� − ?0V1 − WX(E ∙ ��YZ,[�\]^,[ ∙ sin!c%, (2.19) 

When injection locking occurs, equation (2.20) applies: 

 
UaUb � 0, (2.20) 

From equations (2.19) and (2.20), the phase between the injected and the output signal 

can be calculated as shown in equation (2.21): 

 c � sin	� d!?� − ?0V1% ∙ (EWX ∙ �\]^,[��YZ,[e. (2.21) 

So, the phase can theoretically be used to measure the injected amplitude, once the 

difference between the free running frequency of the oscillator and the injected frequency is 

known. However, the usefulness of this relationship between phase and injected amplitude 

for measuring the amplitude directly is not better than the use of a much simpler diode power 

detector, because it is nonlinear. 

Nevertheless, the technique proposed in this work is to apply injection locking to generate 

the 0° and 90° LO-signals from the incident signal for the Cartesian method, this way already 

removing the amplitude information as required for the IQD. 

 

In the following chapter, the design of a complete Cartesian reflection coefficient 

measurement system based on this technique will be presented. 
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3 Reflection Coefficient Measurement System 

This chapter shows the proposed UHF reflection coefficient measurement block based on 

injection locking and quadrature amplitude demodulation in detail. It also explores other 

aspects of an automatic impedance matching system such as the control block and software, 

and the variable impedance matching network. 

The system frequency was chosen to be in the range of 400 MHz (low UHF). This frequency 

is sufficiently high to get high frequency effects (it allows for extrapolation into the middle and 

higher UHF range), but also sufficiently low that the wavelength is big enough (in the 0.7 m 

range) to make it challenging to integrate wave guide structures. Also, antenna mismatch 

occurs often in the MICS band (Medical Implant Communication Service, 402 to 405 MHz, 

limited to 25 µW output power to minimize interference), as the devices that operate in this 

band are frequently worn close to the body or implanted. There is an ISM band (Industrial, 

Scientific and Medical, 433.050 to 434.790 MHz) in this frequency range as well. This band 

allows higher output powers and license free operation, but it is only defined for region 1 

(Europe, Africa and Middle East). 
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3.1 Overview 

The measurement subsystem features injection locking to generate the quadrature 

signals from the incident wave signal to enhance the quality of the quadrature phase shift for 

measuring the reflection coefficient in Cartesian form. 

Drawbacks of the injection locking technique such as the amplitude dependent variable 

phase shift are removed by using one additional mixer and correcting the error 

mathematically in the control block. 

As shown in Figure 3.1, the measurement subsystem consists of the following blocks: 

Power Amplifier (PA), Directional Coupler (A.), Power Splitters (B.), Preamplifier (C.), 

Quadrature Injection Locking Oscillator (D.), Mixers and Filters (E.), Low Frequency Amplifiers 

(F.) and the Microcontroller including Analog-to-Digital-Converters (ADC) and System 

Processor / Control Block (G.). 

 

 

Figure 3.1: Block Diagram of the Designed Solution 

 

The reflection coefficient Γ is calculated from the four analog values a, b, c and d (Figure 

3.1) by equation (2.17) from section 2.5 that is repeated here for convenience: 

 � � ���������� 	 j ����������  (2.17) 
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3.2 MOSFET Power Amplifier 

The position of the power amplifier block in the measurement system block diagram is 

shown in Figure 3.2: 

 

 

Figure 3.2: Position of Power Amplifier in System 

 

The power amplifier is the block that is being protected against load mismatch by the 

automatic impedance matching system. It amplifies the RF power from an external signal 

generator and feeds it into the system (the main input of the directional coupler). The 

schematic of the used amplifier is shown in Figure 3.3. 

 

Figure 3.3: Designed Power Amplifier 
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The power amplifier was designed for an output power of 1 W (30 dBm). The used 

transistor model is the PD84002 LDMOS transistor [35] from ST Microelectronics that supports 

up to 2 W output power. Initially operating point simulations were used to determine the bias 

conditions. Then the parameters of the amplifier such as impedances, output power and 1dB 

compression point, were optimized in several iteration steps using computer simulations. The 

impedance matching networks at output and input were manually adjusted in several 

iterations for maximum output power, using a constant 50 Ω load, because the load pull 

simulation did not converge (the transistor model did not work with the ADS load pull 

simulation). 

The 1dB compression point found using computer simulations was at 30.2 dBm output 

power with a gain of 21.2dB and the small signal gain was about 22dB. 

The input impedance was optimized to a value close to 50 Ω by simulating the S11 of the 

amplifier and adjusting it to a value close to 0. In the final configuration, a magnitude of S11 of 

0.003 (about -50dB) was found. The output impedance was not optimized to 50 Ω, but for 

maximum output power into 50 Ω by adjusting the output impedance matching network in 

various iterations. In every iteration step, the stability of the circuit was checked using the 

Rollett stability factor K and the Δ value. The values for the final configuration were K = 1.57 

and Δ = 0.49, ensuring that the amplifier is unconditionally stable. 

The simulated power delivered to the load (PL) of the amplifier versus the frequency and 

the power available from the source PAVS is shown in Figure 3.4. 

 

 

Figure 3.4: Power Delivered to Load PL vs. Frequency and PAVS (Simulation) 
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For the condition that source and load reflection coefficients are zero (matched to 50 Ω), 

but the input reflection coefficient S11 and the output reflection coefficient S22 of the amplifier 

are not zero, equations (3.1) to (3.3) are valid. S21 is the forward transmission coefficient of 

the PA. The transducer power gain GT is shown in equation (3.1), the power gain GP is 

calculated from the S-Parameters of the PA as shown in equation (3.3). 

 � � ��
���� �

�����	���������	��	����
�����	���������	��� 	!�"��� � |$%&|% (3.1) 

 
����
�'( �

�����	���������	��� 	!�"���
�����	)*+"�	��	�� � &

&�|!,,|� (3.2) 

 �� � ��
�'( �

�����	���������	��	����
�����	)*+"�	��	�� � |!�,|�

&�|!,,|� (3.3) 

The simulated power gain of the PA versus frequency and PAVS is shown in Figure 3.5. 

 

 

Figure 3.5: Power Gain GP vs. Frequency and PAVS (Simulation) 

 

In Figure 3.4 is shown that the output power of the PA can be greater than 30 dBm and 

that it does not change a lot for varying frequency. In Figure 3.5 the gain compression can be 

observed, the 1dB gain compression point being at about 9 dBm PAVS that results in 30.2 dBm 

output power.  
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3.3 Directional Coupler 

The position of the directional coupler block in the measurement system block diagram is 

shown in Figure 3.6: 

 

 

Figure 3.6: Position of Directional Coupler in System 

 

The directional coupler splits a fraction of the total power on its main path (IN to TRA) into 

incident signal and reflected signal and makes each one available on a separate output (CPL 

and ISO, respectively). The phase relationship between both is maintained. After the 

directional coupler, the incident and the reflected measurement signal are fed into the power 

splitters / attenuators. 

 

A printed circuit board (PCB) setup allows a better access to measuring points inside the 

circuit than an integrated circuit (IC) setup and it makes fine tuning of the component values 

possible, so, it was decided to do a PCB setup. For such a setup, there are many directional 

couplers with various properties available as ready-to-buy components. The Mini-Circuits 

ADC-15-4 directional coupler [36] was chosen due to its properties (frequency range, 

attenuation, directivity, package style) and its availability in the LCCI. 

Mini-Circuits does not supply an Keysight ADS simulation model for the coupler. 

Additionally, some simulations such as the transient analysis do not accept a S-Matrix as input. 

So a model based on the two transformer topology [31] and four resistors to simulate losses 

was built up. The winding ratio and the values of the resistors were adjusted to match the S-

Parameters given in the datasheet [36] using computer simulations. 
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The resulting schematic is shown in Figure 3.7. 

 

 

Figure 3.7: ADC-15-4 Simulation Model 

 

After adjusting the resistors and the winding ratio, the simulation model showed an 

insertion loss of 0.57dB. The datasheet gives between 0.56dB and 0.61dB for the real device. 

The simulated directivity was 24.4dB compared to the datasheet value between 24.5dB and 

25.6dB. The coupling was 15.3dB, equal to the datasheet value. The input and coupled return 

loss were both 24.1dB, compared to datasheet values of 24.4dB to 26.4dB. The output return 

loss was with 28.6dB a bit lower than the datasheet values of 31.5dB to 34.5dB. All values are 

for a frequency of 400 MHz. The small differences in the simulated values compared to the 

datasheet values are because the exact inner construction of the ADC-15-4 coupler is 

unknown, but as it is wide band, it was assumed that the two transformers topology is 

sufficiently accurate. An ideal coupler would have an insertion loss and all reflection 

coefficients of zero. 
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3.4 Power Splitters / Attenuators 

The position of the power splitters / attenuators blocks in the measurement system block 

diagram is shown in Figure 3.8: 

 

 

Figure 3.8: Position of Splitters in System 

 

The power splitters are located in the measurement branch of the system, not in the 

power path. They serve a double purpose: to attenuate the power of the two measurement 

signals from the coupler to allowable values for the following blocks, and to split and direct 

the remaining power into five channels (to the input of the preamplifier, as well as to the RF 

inputs of the four mixers). All inputs and outputs are impedance matched to 50 Ω. As 

attenuation is necessary anyway, it is practical to use resistive power splitters for this purpose 

(these also have less influence on the phase of the signals than a Wilkinson divider). 

The power splitters / attenuators were calculated using the following equations (3.4) to 

(3.6) [37]. An attenuation A of 6dB means an output amplitude of half the input. An 

attenuation A of 9.54dB results in an output amplitude of one third the input. For one fourth 

output, two stages of one half were cascaded, for one sixth output, a one half and a one third 

stage were cascaded. The reference impedance Z0 equals 50 Ω. The next closest 1% resistor 

values were chosen. 

Y-6dB-Splitter: 

 R1 = R2 = R3 = Z0/3, (3.4) 
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T-Attenuator: 

 -�* � -�"� � ./ &/
�
�0�&

&/ ��0�&
, (3.5) 

 -���� � 2 ∙ ./ &/ ��0
&/ �,0�&

 (3.6) 

3.4.1 For Incident Wave 

The incident wave splitter directs its input, the incident wave signal Vi, into three channels: 

The input of the preamplifier for injection locking (having 1/6 of the amplitude of the Vi signal), 

and the RF inputs of the in-phase and of the quadrature Vi mixers (each having 1/4 of the 

amplitude of the Vi signal). The values of the resistors are shown in Figure 3.9. 

 

 

Figure 3.9: Splitter/Attenuator for Incident Wave (in Measuring Path) 
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3.4.2 For Reflected Wave 

The reflected wave splitter directs its input, the reflected wave signal Vr, into the RF inputs 

of the in-phase and of the quadrature Vr mixers (each having 1/4 of the amplitude of the Vr 

signal). The values of the resistors are visible in Figure 3.10. 

 

 

Figure 3.10: Splitter/Attenuator for Reflected Wave (in Measuring Path) 
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3.5 Preamplifier for Injection Locking 

The position of the preamplifier block in the measurement system block diagram is shown 

in Figure 3.11: 

 

 

Figure 3.11: Position of Preamplifier in System 

 

The quadrature injection locking oscillator (QILO) was designed as a relatively high power 

oscillator to minimize the necessary amplification after it, as detailed in section 3.6. The 

injection signal was fed into the base of the oscillator’s transistors that is connected to the 

collector of the adjacent transistor. As the oscillation amplitude at the injection point is 

relatively high, the injected signal amplitude also has to be relatively high to have effect. A 

preamplifier was included, given the direct incident signal after the directional coupler was 

too weak to achieve locking. To avoid the same design effort that was made for the power 

amplifier, a ready-made RF amplifier block was used. A balun was added to convert the single 

ended amplifier output to a differential signal as needed by the oscillator. 

As only the voltage amplitude has to be adjusted, this could also be done using a passive 

network comprising of capacitors and inductors, what would allow a very low power 

consumption. However, for a laboratory setup, it was decided that the advantage of the RF 

amplifier block of a low S12 was more important, avoiding RF energy flowing backwards and 

possibly interfering with the measurement of the incident signal Vi. The LO-RF isolation is an 

important design parameter of the mixers. This means that the back coupling through the 

mixers is generally low. 
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3.5.1 RF Amplifier BGA6489 

The RF amplifier BGA6489 is a broadband 50 Ω gain block with a maximum output power 

of 20 dBm. To make use of the maximum dynamic range of the amplifier, its input signal had 

to be attenuated additionally (this is done in the power splitter). At 8 V supply voltage, only a 

39 Ω resistor, a 68 nH inductor and small ceramic capacitors are needed for the amplifier’s 

operation. The schematic is shown in Figure 3.12, more information can be obtained from the 

datasheet [38]. For the transient simulations, there was also a simulation model constructed 

for this amplifier, as the model supplied by NXP only includes the S-Parameters at various 

frequency points. The model also includes clipping for amplitudes greater than 6.75 V. The S-

Parameters of the simulation model are compared to the datasheet values in Table 3.1 

 

Table 3.1: S-Parameters of BGA6489 Model at 400 MHz 

(Magn./Angle) S11 S12 S21 S22 

Datasheet [38] 0.11 / 21.64° 0.06 / -0.35° 12.31 / 149.28° 0.14 / -46.54° 

Simulation 

Model 
0.116 / 7.43° 0 12.28 / 139.46° 0.134 / -100.96° 

 

 

The schematic for the BGA6489 from the datasheet was adopted. 

It is industry standard to combine several capacitors of different values for high frequency 

blocking. The idea is to reduce the effect of the self-resonant frequency (SRF) of the capacitors. 

In impedance vs. frequency diagrams of capacitors, the SRF is the point where the impedance 

is at its minimum. The SRF can be low, for example about 50 MHz for 0805 size 10 nF ceramic 

X7R surface mounting technology (SMT) capacitors [39] and is generally higher for smaller 

values of capacitance. So capacitors with smaller values have a lower impedance at higher 

frequencies than capacitors with higher capacitance. Combining them in parallel can supply a 

reasonably low impedance in a wider frequency band. 
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Figure 3.12: BGA6489 and Periphery 

 

3.5.2 Balun and Impedance matching to 75 Ω 

For converting the single ended output of the amplifier to a differential signal, a balun was 

included into the block. As the used balun has 75 Ω impedance and the amplifier 50 Ω, an 

impedance matching network was included after the amplifier. The matching circuit is shown 

in Figure 3.13. It was obtained using the Smith-Chart-Utility of Keysight ADS. 

 

 

Figure 3.13: Balun and Fixed Impedance Matching Circuit 
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3.6 Quadrature Injection Locking Oscillator (QILO) 

The position of the quadrature injection locking oscillator block in the measurement 

system block diagram is shown in Figure 3.14: 

 

 

Figure 3.14: Position of QILO in System 

 

The QILO produces 0° and 90° phase shifted signals from the incident wave signal Vi. The 

amplitude of the output signals is independent of the input signal amplitude. 

The absolute output phase θa depends on the input amplitude for any oscillator that is 

injection locked to an external signal. The relative phase difference between the outputs stays 

constant. Thus, the oscillator will produce signals with a phase of θa+0° and θa+90°. As θa is 

generally unknown, additional effort is necessary in the quadrature demodulator block of the 

system to remove this phase uncertainty error term and recover the reflection coefficient 

information. This effort can consist of including an additional mixer for the quadrature 

component of the incident signal. This means there is an in-phase and a quadrature signal for 

both the incident and the reflected signal. Then the variable phase shift can be removed by 

applying equation (2.17). 

As the output signals of the QILO will be used as local oscillator (LO) signals in the 

quadrature demodulator block, it was decided to use relatively high oscillation amplitudes in 

order to limit the necessary amplification of the QILO output signals to a minimum, reducing 

possible influence on the signal phases. 

Nevertheless, to reduce loading of the oscillator core and for impedance matching, output 

buffers were included in the oscillator design. 
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Also, to reduce loading the oscillator with low impedance input signals, input buffers with 

a high impedance output were included. To remove an additional 180° phase uncertainty error 

term, a single frequency injection locking scheme (shown in Figure 3.15) was used instead of 

the more common double frequency input at the frequency defining capacitor [40] or at the 

foot current sources (like it is normally done for injection locked frequency dividers). For a 

differential oscillator, this makes the application of two input buffers necessary. 

 

 

Figure 3.15: Single Frequency Inj. Locking 

 

3.6.1 Input Buffers 

The input buffers apply a cascode circuit to achieve a high output impedance. For the 

same reason, a parallel resonant circuit is used at the output collector of the cascode circuit 

for biasing. The quality factor of the resonant circuit is defined and made lower than the pure 

LC quality factor by an additional series resistor to make the circuit reasonably wide band. 

In an integrated setup, additional transistors could be used for biasing instead of the 

resonant circuit. The input is matched to the 37.5 Ω single / 75 Ω differential output 

impedance of the preceding balun. The circuit including all biasing elements is shown in Figure 

3.16. The two input buffers feed their output signal to the bases of the transistors in the 

oscillator core. 
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Figure 3.16: One of Two Cascode Input Buffers of the QILO 

 

The frequency response of the input buffers’ input and output impedance is shown in 

Figure 3.17 and Figure 3.18, respectively. As desired, the resonant network at the output 

generates a high impedance close to 400 MHz. The output spectrum of one input buffer for 

1V input amplitude is shown in Figure 3.19. 

 

Figure 3.17: Input Impedance of one of the Input Buffers 
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Figure 3.18: Output Impedance of one of the Input Buffers 

 

 

Figure 3.19: Output Spectrum of one of the Input Buffers for 400MHz 1Vp Input 
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3.6.2 Oscillator Core 

A differential RC oscillator topology was chosen instead of an LC topology because RC 

oscillators generally have a lower quality factor what translates into a wider lock range, see 

equation (2.18). The basic used topology is shown in Figure 3.20. 

 

  VO(t) = a·sin(ω0·t) 

Figure 3.20: Differential RC-Oscillator 

 

In an integrated circuit setup, current sources are used for biasing the circuit. As this is 

difficult in a PCB setup, a combination of resistors and DC-feeds (inductors) was used. In the 

chosen differential RC topology, the frequency is mainly defined by two resistors R and one 

capacitor C.  

The open loop small signal transfer function of the oscillator core can be calculated using 

a simple linear transistor model with the base resistance rB, the current gain gc and the base-

collector-capacitance CBC, shown in equation (3.7) and in Figure 3.21. 

4 � 5�"�5�* � 

62 ∙ - ∙ 789 ∙ 6:; 	 1= ∙ > 	:;= ∙ 7
?16 ∙ - ∙ A8 ∙ 7 ∙ 789% ∙ >% 	 2 ∙ 789 ∙ 6- ∙ 7 ∙ 63 ∙ :� ? 1= ? 4 ∙ - ∙ 789 ∙ 6:� 	 1= ? 2 ∙ A8 ∙ 7= ∙ > 	 7 ∙ :� ? 2 ∙ 789 ∙ 6:� 	 1= 

  (3.7) 
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Figure 3.21: Oscillator Model for Small-Signal Open-Loop Transfer Function 

 

Using the Barkhausen stability criterion (Re{H}=1 and Im{H}=0), the free running 

oscillation frequency ω0 can be found, as shown in equation (3.8). 

 D/ � E %∙F�GH
I∙F�∙�H∙9HJ∙69�%∙9HJ= (3.8) 

For the BFG520 transistor, gc is typically 120 (but can vary between 60 and 250), CBC is 0.3 

pF, and rB can be calculated by equations (3.9) [41] 

 A8 � KL∙MN)J  (3.9) 

Where the thermal voltage VT is about 26 mV at 25 to 35 °C, and the collector current IC is 

20 mA in this application. This leads to equation (3.10). 

 A8 � 156	Ω (3.10) 

The design values are shown in equations (3.11) and (3.12). 

 ω0 = 2·π·400·106 Hz (3.11) 

 R = 200 Ω (3.12) 
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With these values, the calculated value for C is shown in equation (3.13). 

 C ≈ 6.5 pF (3.13) 

However, the frequency changes considerably when using the topology for quadrature 

operation. Unluckily, it was not possible to analyze the effect of variation of gc in the computer 

simulations. 

 

3.6.3 Quadrature Operation 

The simplest way to generate quadrature output signals is by coupling two differential 

oscillator cores together via coupling elements using one straight pair of connections and one 

crossed pair as shown in Figure 3.22. In the classical approach, transistors are used as coupling 

elements. Instead, it was decided to use the capacitor coupling scheme from [42], because it 

is easier to implement in a discrete setup, and because it promises lower phase noise. 

However, this raises the free running frequency of the quadrature oscillator with higher used 

capacitance Cx, as described in [42]. 

 

 

Figure 3.22: Quadrature Connections in Coupled Oscillator 

The output signals ideally have the form of equations (3.14) and (3.15): 

 VO1(t) = a·sin(ω0·t) (3.14) 

 VO2(t) = a·cos(ω0·t) (3.15) 
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3.6.4 Oscillator Including Bias Networks 

The designed oscillator, including bias networks, is depicted in Figure 3.23. The output 

signals of the circuit can be obtained at the collectors of the transistors and are connected to 

the output buffers via coupling capacitors. 

 

Figure 3.23: QILO without Buffers 

 

3.6.5 Output Buffers 

The output buffers should have a high input impedance and a low output impedance. The 

conventional choice for obtaining this behavior is a common collector circuit. As one stage 

was not enough to combine a high input impedance with a reasonably high output power, a 

two stage setup was applied. The complete two stage setup is shown in Figure 3.24, having an 

output impedance of 300 Ω. This impedance then had to be matched to 50 Ω. 

 

Figure 3.24: Two Stage Common Collector Output Buffer 
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3.6.6 Impedance Matching to 50 Ω 

LC impedance matching circuits were applied to match the 300 Ω output impedance of 

the output buffers to 50 Ω. A topology that blocks DC and is relatively wide-band was chosen. 

The schematic is shown in Figure 3.25 and was obtained using the Smith-Chart-Utility of ADS. 

 

Figure 3.25: Output Buffer Impedance Matching 

3.6.7 Simulation Results of Output Buffers 

The time-domain voltage signals along the signal path in the output buffers are shown in 

Figure 3.26. It is visible that the output buffers shape a trapezoid input signal (the raw 

oscillator core signal contains harmonics, a trapezoid signal is an approximation) to a more 

sinusoid output signal while also doing the impedance matching. The real input signal will 

contain less harmonic content than is present in a trapezoid signal and thus will allow even 

better output signals to be generated. Vbuf1o is the voltage at the output of the first stage, 

Vout the voltage at the output of the second stage and Vomat after the impedance matching. 

 

Figure 3.26: Signals before, in and after Output Buffer for Trapezoid Input Signals 
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3.6.8 Simulated QILO Output Signals after Buffers 

In Figure 3.27 and Figure 3.28 the output signals of the whole oscillator with no input at 

the input buffers are shown. It is visible that they are almost sinusoidal. The exact shape of 

the signals is not so important as they are only used as local oscillator signals in the mixers, 

but it is important that the harmonic content does not have an amplitude greater than about 

0.3 V, so that the mixers do not produce additional frequencies at their outputs. This is the 

case. However, the output power must be between 4 dBm (1.0 Vpp at 50 Ω) and 10 dBm (2.0 

Vpp at 50 Ω). In fact, all amplitudes are 1.9 Vpp, with maximum error 0.01 V, and all phases 

are close to multiples of 90°, with maximum error 0.6°, as shown in Table 3.2. 

 

Figure 3.27: Output Signals of QILO 

 

 

Figure 3.28: Spectrum of Output Signal Out000 (VRMS) 
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Table 3.2: Output Signals of QILO, Amplitude and Phase 

Signal Amplitude P-P (V) Phase (°) 

Out000° 1.90 Reference (0) 

Out090° 1.89 89.4 

Out180° 1.90 179.9 

Out270° 1.89 269.5 

 

3.6.9 Simulations of Oscillator Behavior under Injection Locking 

The behavior of the oscillator under injection locking was investigated. For 1, 2, 3, 4 and 5 

MHz difference between the injected signal and the free-running frequency ω0=2·π·f0 of the 

oscillator, the minimum amplitude for injection locking was found, shown in Figure 3.29. Also, 

for 1 MHz difference frequency, the input to output phase and output amplitude for output 

signal Out000° and various input amplitudes was evaluated, shown in Figure 3.30. All data of 

the computer simulations under injection locking are shown in Table 3.3. As the minimum 

amplitude for injection locking at 1 MHz difference was 0.4 Vpp (differential) and the 

maximum input amplitude of the input buffers is about 3.9 Vpp (differential), an input 

amplitude dynamic range of more than 19dB was achieved. For a change of 13dB of the input 

amplitude, the output amplitude only changed 0.5%. 

The oscillator for these simulations had the following configuration: 

C = 1.8 pF, Cx = 0.4 pF, R = 200 Ω. It displayed an f0 of 406.1 MHz. 
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Figure 3.29: Minimum Input Amplitude for Injection Locking 

 

 

Figure 3.30: Phase and Output Amplitude during Inj. Locking for 1 MHz Difference to f0 
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Table 3.3: Behavior under Injection Locking 

Inj. Diff. 

Amplit. (V) 

Inj. Freq. 

(MHz) 

Out. Freq. 

(MHz) 

Phase (°) / 

Comment 

Output 

Amplitude 

Vout (V) 

Change 

Vout % 

1.7 401 401 39.0   

1.6 401 404 No Lock   

1.4 402 402 36.2   

1.3 402 402.4 No Lock   

1.3 403 403 20.3   

1.2 403 403 24.7   

1.1 403 403 33.4   

1.0 403 403.6 No Lock   

1.1 404 404 7.3   

1.0 404 404 10.9   

0.9 404 404 18.9   

0.8 404 404 24.7   

0.7 404 404.5 No Lock   

1.8 405 405 -17.5 0.974 0.1 

1.3 405 405 -13.9 0.973 0.0 

0.8 405 405 -8.0 0.971 -0.2 

0.6 405 405 1.5 0.970 -0.3 

0.5 405 405 8.0 0.969 -0.4 

0.4 405 405 23.3 0.969 -0.4 

0.3 405 405.3 No Lock   
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3.7 Quadrature Demodulator: Mixers and Filters 

The position of the mixer and filter blocks in the measurement system block diagram is 

shown in Figure 3.31: 

 

 

Figure 3.31: Position of Mixers and Filters in System 

 

The purpose of the mixers is to do a frequency conversion of the input signals down to 

DC. Basically, an active mixer performs a multiplication of its two input signals (RF input and 

Local Oscillator (LO) input). A passive mixer chops the RF signal in the frequency of the LO 

signal. Any of both operations leads to the production of new frequencies in the output signal 

[43]. When applying two frequencies f1 and f2 to the mixer inputs, the mixer produces a mix 

of mainly two frequencies at its output: the sum f2 + f1 and the difference f2 - f1 of the input 

frequencies, shown in Figure 3.32. 

 

 

Figure 3.32: Ideal Mixer Operation for Two Input Frequencies 

 

If both frequencies are the same, the difference frequency is zero (the desired DC) and 

the sum is simply the double frequency. Here the purpose of the low-pass filters becomes 
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obvious: they remove the high frequency content of the output signal and (in the ideal case) 

just pass the DC content on. This is symbolically depicted in Figure 3.33. 

 

 

Figure 3.33: Ideal Mixer (black) and Filter (red) Operation for Same Frequency Inputs 

 

It is possible to consider the operation of one mixer with both inputs at the same 

frequency and one filter together as the operation of a phase and amplitude sensitive 

synchronous rectifier. If both inputs of the mixer are in-phase, the DC output of the mixer-

filter-block is at its maximum, the amplitude of the RF signal times a gain or loss factor (active 

mixers may have a gain, passive mixers usually have losses). If the two inputs of the mixer are 

in quadrature, the output of the mixer-filter-block is ideally zero (there can be some offset). 

If there are two mixer-filter-blocks, that are both fed with the same RF signal and two 

different LO signals with the same frequency and a known (ideally 90° / quadrature) phase 

relationship (they cannot be in-phase), both the relative phase and amplitude of the RF signal 

can be reconstructed. This is known as quadrature amplitude demodulation and widely used 

in digital communication frontends. 

Here, the incident signal Vi and the reflected signal Vr are both processed using quadrature 

amplitude demodulation. As the absolute phase of the LO-signals is unknown due to the 

amplitude dependent variable phase shift introduced by the QILO, but the relative phase 

between the four LO signals is fixed and well defined, it is necessary to obtain the phase of Vr 

as well as Vi. This way, in the following calculation of the reflection coefficient (basically the 

complex division of Vr by Vi), the variable phase shift θ is removed. This becomes clearer in 

the polar form of the division of the two complex values shown in equation (3.16). It is equal 

to the division of their magnitudes and the difference of their phases ϕr + θ and ϕi + θ. 

 Γ � |MR||MS| TU∙V6WR�X=�6WS�X=Y (3.16) 
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As the variable phase shift is the same for both complex values at any moment in time, 

given the division is only done for values that were all sampled at the same time, the difference 

operation removes this part. 

 

3.7.1 Model of Mixer Mini-Circuits ASK-1-KK81 

The mixer Mini-Circuits ASK-1-KK81 [44] was chosen because it has a reasonable 

performance at 400 MHz. It is a double balanced (passive) diode ring mixer. For an integrated 

setup, both active or passive mixers could be used. Especially the setup in [45] can be 

interesting for the application. 

As most of the computer simulations for the final system were transient simulations, a 

simulation model for this use had to be developed (Mini Circuits supplies performance data, 

but no model). According to the diagram in the datasheet and the performance data, the 

schematic in Figure 3.34 was used with an RF diode model available in Keysight ADS (MBD101) 

[46]. The impedance matching at the RF input port was necessary to obtain a performance 

close to the given data. 

The model of the mixer has an LO VSWR of 2.62 (datasheet 3.2, 7 dBm LO power) and an 

RF VSWR of 1.23 (datasheet 1.2) at 400 MHz and -2.3 dBm RF power (that translates to 25 

dBm RF power at the coupler input). Between -0.3 dBm and -2.3 dBm the VSWR is better than 

1.25. 

 

Figure 3.34: Model of Mixer ASK-1-KK81 
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3.7.2 Filters 

Only the signal voltage is of interest at this point, so simple RC filters were used because 

they are less tolerance dependent than more complex filters and have a reasonable RF 

performance without making the use of special RF amplifiers necessary. Also, the design 

complexity was kept to a minimum, what is also reasonable for a proof-of-concept design.  

There exists a trade-off between the time constant / delay time of the filter and the 

attenuation of the RF. The attenuation A (in dB) of a frequency fRF much higher than the cutoff 

frequency fc of the low-pass filter is 20dB per decade, shown in equation (3.17). The time 

constant τ and the cutoff frequency fc are linked via equation (3.18) [47]. Finally, equation 

(3.19) describes how the time constant τ and the component values of the filter (resistor R 

and capacitor C) are connected. 

 Z � 20 ∙ log&/ _�`a�L b (3.17) 

 c� �	 &%d∙e (3.18) 

 f � - ∙ 7 (3.19) 

The attenuation at 400 MHz was chosen to be about 80dB. This value makes sure that the 

following 12 bit ADC will not convert the RF. Even if the RF amplitude was as high as 0.6 V after 

the mixer (that is 3 V at the ADC input because of the operation of the LFAs described in the 

next section), the filter would attenuate this to less than ½ of the resolution of the ADC (the 

ADC has 212-1=4095 steps in a 3 V interval). The result is a cutoff frequency of a factor 104 

lower than the RF to be attenuated. For fRF=400 MHz, this means fc = 40 kHz. Then τ becomes 

about 4 µs. To account for component tolerances (mainly of the capacitor) and to achieve an 

attenuation of a bit more than 80dB, a τ of 5 µs was chosen (so for settling to 0.1%, the time 

is about 35 μs and fc becomes about 32 kHz). For a resistor of 50 kΩ, this results in a capacitor 

of 100 pF. The resulting filter is shown in Figure 3.35. 

 

Figure 3.35: Used RC-Low-Pass-Filter 
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3.8 Low Frequency Amplifiers (LFA) 

The position of the low frequency amplifier blocks in the measurement system block 

diagram is shown in Figure 3.36: 

 

 

Figure 3.36: Position of Low Frequency Amplifiers in System 

 

The LFAs adjust the signal range as output by the filters to the input range of the ADCs. 

This way the resolution of the ADC is utilized to a higher extent. Unluckily, they also amplify 

the offset of the mixers and the noise of the whole system, so the gain cannot be too high. 

This architecture was chosen, because the mixers do not allow too high RF amplitudes, so 

some amplification in the end was necessary. The subsystem is to be used with a power 

amplifier, what means that the signal amplitudes will also not be too low. The LFAs use a 

symmetric supply of ±1.5 V relative to the RF system ground. However, the ADC ground is 

connected to the -1.5 V rail, so for the ADC, all signals have an offset of about 1.5 V and the 

ADC input is limited to 3 V, just as required by the ADC supply voltage. For an integrated circuit 

however, other techniques for offset adjustment can be realized. 

 

3.8.1 AD8616 Operational Amplifier 

The AD8616 is a dual low cost precision operational amplifier (op-amp) from Analog 

Devices. The chosen small-outline-8-pin (SO-8) package uses the standard pin assignment for 

two amplifier 8 pin packages, what makes it easy to replace it by another op-amp if needed.  
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Some of the features of the AD8616 are shown in Table 3.4. Especially the low offset and 

the low noise are important for the application. More information about this operational 

amplifier can be found in the datasheet [48]. 

 

Table 3.4: Some Features of the AD8616 

Rail-to-Rail Inputs and Outputs 

Offset Voltage 65 µV maximum 

Input Currents 1 pA 

Noise 8 nV/√Hz 

Gain-Bandwidth-Product (GBWP) > 20 MHz 

Slew-Rate 12 V/µs 

Package SO-8 (standard pin assignment) 

 

3.8.2 Non-Inverting Amplifier Configuration 

The non-inverting configuration was chosen due to its high input impedance in order not 

to load the RF filter. Additionally, it is easy to reduce the gain for RF to unity by adding another 

capacitor. So only very few components are needed to complete the ADC input driver as 

shown in Figure 3.37 for one of four channels.  

The 2 kΩ resistor at the input serves to protect the AD8616 from excessive currents at its 

input when the power supply is switched off (the filter capacitor could discharge over the 

protection diodes of the AD8616). The gain was chosen to be 5 to make sure there will never 

be an overdrive condition of the ADC for possible output signals of the mixer. The mixer output 

signal will always have an absolute value of less than 0.3V. So the Signal seen by the ADC will 

always be in the interval of 0 V to 3 V (1.5 V ± 1.5 V). In fact, the signals will normally be less 

than 0.2 V after the mixer, what translates to 1.0 V limit after the LFA, so the interval will be 

0.5 V to 2.5 V. 
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Figure 3.37: Low-Frequency-Amplifier Schematic 

 

3.8.3 Keysight ADS Simulation Model of AD8616 

To be able to simulate the whole system including the LFAs, a simplified model of the 

AD8616 operational amplifier was built using the OpAmpIdeal block from Keysight ADS, some 

additional capacitors for the inputs and one fixed and two controlled current sources at the 

power supply pins. The model is shown in Figure 3.38. Together with the gain defining resistors 

as described before, the model performed as expected with a gain of 5 for DC. Slew rate and 

offset were not modeled. 

 

 

Figure 3.38: Keysight ADS Model of AD8616 
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3.9 Simulation Results of Complete Analog Measurement Block 

The output signals of the complete analog measurement block without ADCs and control 

block were evaluated using computer simulations. From the output signals, reflection 

coefficients were calculated and compared to the expected ideal reflection coefficients. 

Parasitic effects were evaluated and included in the simulations. 

 

3.9.1 Output Signals and Calculated Reflection Coefficients 

The data of Table 3.5 was obtained by simulating the whole system with defined load 

impedances. However, some interconnecting transmission lines that would add phase shift 

were omitted in this simulation. 

As visible in Figure 3.39, the reflection coefficients calculated from these data closely 

resemble the expected ideal reflection coefficients for that load. The biggest errors were 

found for magnitude one and argument 45°+n·90° (n = 0 to 3). It could be expected that the 

system would show less accuracy at magnitudes close to one and high input power, as this is 

a total mismatch. So a high power signal is reflected and can lead to the production of 

harmonics that interfere in the mixing operation. However, this condition is improbable in an 

AIM system, as the impedance is always sufficiently well matched in such a system. It can be 

observed that the 30 dBm values are in general less accurate. They show an average absolute 

error of 0.044 while all the lower power levels show an average absolute error of 0.024. It is 

also observed a remaining phase shift at the 30 dBm values that is not compensated by the 

system. But these errors can still be tolerated for use in an AIM system with an allowable 

maximum VSWR of 1.3. Relative errors were not calculated as the smith chart is centered at a 

reflection coefficient of zero, what would give infinite relative errors for the matched state. 

As the maximum value for the reflection coefficient is one, the absolute errors are equal to 

percent full scale relative errors when multiplied by 100. 

For this simulation the last setup of the QILO with C = 2.2 pF, Cx = 0.8 pF, R = 200 Ω was 

used, displaying an f0 of 417.3 MHz. A system frequency of 416 MHz was chosen for obtaining 

a reasonable amplitude range for injection locking. 
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Table 3.5: Simulation Results of Complete Analog Measuring Subsystem 

Input Load Raw Output Signals Refl.Coef.Calc Refl.Coef.Ideal Error Calc-Ideal 

Power Imped. (Ω) a (V) b (V) c (V) d (V) Re Im Re Im Re Im ABS 

30 dBm 50 -0,0147 0,0007 0,9326 -0,1568 -0,0155 -0,0018 0,0 0,0 -0,0155 -0,0018 0,0156 

30 dBm 0 -0,9186 0,1492 0,9441 -0,1565 -0,9725 -0,0032 -1,0 0,0 0,0275 -0,0032 0,0277 

30 dBm 50M 0,8934 -0,1468 0,9213 -0,1555 0,9691 0,0042 1,0 0,0 -0,0309 0,0042 0,0312 

30 dBm -j50 -0,1972 -0,9120 0,9328 -0,1562 -0,0464 -0,9855 0,0 -1,0 -0,0464 0,0145 0,0486 

30 dBm +j50 0,1485 0,9137 0,9328 -0,1564 -0,0048 0,9787 0,0 1,0 -0,0048 -0,0213 0,0219 

30 dBm 10-j20 -0,5342 -0,4153 0,9384 -0,1567 -0,4820 -0,5230 -0,5 -0,5 0,0180 -0,0230 0,0293 

30 dBm 50+j100 0,5032 0,4284 0,9270 -0,1559 0,4524 0,5382 0,5 0,5 -0,0476 0,0382 0,0611 

30 dBm 10+j20 -0,4164 0,5037 0,9384 -0,1565 -0,5188 0,4503 -0,5 0,5 -0,0188 -0,0497 0,0532 

30 dBm 50-j100 0,3817 -0,5083 0,9270 -0,1562 0,4902 -0,4658 0,5 -0,5 -0,0098 0,0342 0,0356 

30 dBm 350 0,6904 -0,0846 0,9241 -0,1558 0,7415 0,0335 0,75 0,00 -0,0085 0,0335 0,0345 

30 dBm 7,1429 -0,7171 0,0882 0,9412 -0,1566 -0,7565 -0,0321 -0,75 0,00 -0,0065 -0,0321 0,0328 

30 dBm 14+j48 0,0851 0,7094 0,9327 -0,1564 -0,0352 0,7547 0,00 0,75 -0,0352 0,0047 0,0355 

30 dBm 14-j48 -0,1260 -0,7079 0,9327 -0,1563 -0,0076 -0,7603 0,00 -0,75 -0,0076 -0,0103 0,0128 

30 dBm 100 0,3090 -0,0198 0,9286 -0,1579 0,3269 0,0343 0,33 0,00 -0,0064 0,0343 0,0349 

30 dBm 40+j30 0,0139 0,3265 0,9324 -0,1581 -0,0432 0,3429 0,00 0,33 -0,0432 0,0095 0,0442 

30 dBm 25 -0,3382 0,0218 0,9362 -0,1583 -0,3550 -0,0367 -0,33 0,00 -0,0217 -0,0367 0,0427 

30 dBm 40-j30 -0,0458 -0,3249 0,9324 -0,1580 0,0097 -0,3468 0,00 -0,33 0,0097 -0,0135 0,0166 

30 dBm 70+j40 0,2477 0,2306 0,9295 -0,1580 0,2180 0,2851 0,25 0,25 -0,0320 0,0351 0,0475 

30 dBm 70-j40 0,2045 -0,2572 0,9298 -0,1569 0,2592 -0,2329 0,25 -0,25 0,0092 0,0171 0,0194 

30 dBm 26,9+j15,4 -0,2355 0,2572 0,9355 -0,1573 -0,2898 0,2262 -0,25 0,25 -0,0398 -0,0238 0,0464 

30 dBm 26,9-j15,4 -0,2777 -0,2271 0,9355 -0,1570 -0,2491 -0,2846 -0,25 -0,25 0,0009 -0,0346 0,0346 

30 dBm +j120,71 0,6906 0,5298 0,9247 -0,1555 0,6327 0,6793 0,71 0,71 -0,0744 -0,0278 0,0795 

30 dBm -j120,71 0,4618 -0,6924 0,9244 -0,1574 0,6094 -0,6453 0,71 -0,71 -0,0977 0,0618 0,1156 

30 dBm +j20,71 -0,5005 0,6819 0,9406 -0,1578 -0,6358 0,6183 -0,71 0,71 0,0713 -0,0888 0,1139 

30 dBm -j20,71 -0,7231 -0,5071 0,9406 -0,1578 -0,6598 -0,6498 -0,71 -0,71 0,0473 0,0573 0,0743 

11 dBm 50 -0,0008 0,0014 0,0580 -0,0966 -0,0146 0,0000 0,0 0,0 -0,0146 0,0000 0,0146 

11 dBm 0 -0,0580 0,0941 0,0600 -0,0972 -0,9678 0,0010 -1,0 0,0 0,0322 0,0010 0,0322 

11 dBm 50M 0,0540 -0,0926 0,0560 -0,0959 0,9646 -0,0006 1,0 0,0 -0,0354 -0,0006 0,0354 

11 dBm -j50 -0,0960 -0,0557 0,0581 -0,0965 -0,0154 -0,9849 0,0 -1,0 -0,0154 0,0151 0,0216 

11 dBm +j50 0,0927 0,0610 0,0581 -0,0965 -0,0398 0,9845 0,0 1,0 -0,0398 -0,0155 0,0427 

11 dBm 10-j20 -0,0761 0,0189 0,0590 -0,0969 -0,4919 -0,4862 -0,5 -0,5 0,0081 0,0138 0,0160 

11 dBm 50+j100 0,0744 -0,0160 0,0570 -0,0962 0,4621 0,4993 0,5 0,5 -0,0379 -0,0007 0,0379 

11 dBm 10+j20 0,0174 0,0776 0,0590 -0,0969 -0,5041 0,4864 -0,5 0,5 -0,0041 -0,0136 0,0142 

11 dBm 50-j100 -0,0209 -0,0742 0,0570 -0,0962 0,4755 -0,4994 0,5 -0,5 -0,0245 0,0006 0,0245 

11 dBm 350 0,0406 -0,0690 0,0565 -0,0961 0,7177 0,0000 0,75 0,00 -0,0323 0,0000 0,0323 

11 dBm 7,1429 -0,0436 0,0711 0,0595 -0,0970 -0,7322 0,0003 -0,75 0,00 0,0178 0,0003 0,0178 

11 dBm 14+j48 0,0695 0,0459 0,0581 -0,0965 -0,0315 0,7387 0,00 0,75 -0,0315 -0,0113 0,0334 

11 dBm 14-j48 -0,0721 -0,0417 0,0581 -0,0965 -0,0123 -0,7389 0,00 -0,75 -0,0123 0,0111 0,0165 

11 dBm 100 0,0173 -0,0300 0,0559 -0,0972 0,3091 0,0002 0,33 0,00 -0,0242 0,0002 0,0242 

11 dBm 40+j30 0,0308 0,0206 0,0566 -0,0974 -0,0207 0,3285 0,00 0,33 -0,0207 -0,0049 0,0213 

11 dBm 25 -0,0192 0,0327 0,0573 -0,0976 -0,3354 -0,0001 -0,33 0,00 -0,0021 -0,0001 0,0021 

11 dBm 40-j30 -0,0326 -0,0175 0,0566 -0,0974 -0,0114 -0,3285 0,00 -0,33 -0,0114 0,0048 0,0123 

11 dBm 70+j40 0,0367 -0,0078 0,0561 -0,0972 0,2236 0,2481 0,25 0,25 -0,0264 -0,0019 0,0265 

11 dBm 70-j40 -0,0112 -0,0363 0,0561 -0,0972 0,2307 -0,2479 0,25 -0,25 -0,0193 0,0021 0,0194 

11 dBm 26,9+j15,4 0,0085 0,0394 0,0585 -0,0967 -0,2596 0,2447 -0,25 0,25 -0,0096 -0,0053 0,0110 

11 dBm 26,9-j15,4 -0,0385 0,0101 0,0585 -0,0967 -0,2530 -0,2449 -0,25 -0,25 -0,0030 0,0051 0,0060 

11 dBm +j120,71 0,1052 -0,0247 0,0553 -0,0969 0,6593 0,7094 0,71 0,71 -0,0478 0,0022 0,0479 

11 dBm -j120,71 -0,0313 -0,1050 0,0553 -0,0969 0,6787 -0,7105 0,71 -0,71 -0,0284 -0,0034 0,0286 

11 dBm +j20,71 0,0258 0,1089 0,0582 -0,0978 -0,7066 0,6845 -0,71 0,71 0,0005 -0,0226 0,0226 

11 dBm -j20,71 -0,1069 0,0277 0,0582 -0,0978 -0,6896 -0,6832 -0,71 -0,71 0,0175 0,0239 0,0296 

18 dBm 50+j100 0,1678 0,0370 0,2056 -0,1408 0,4716 0,5028 0,5 0,5 -0,0284 0,0028 0,0285 

24 dBm 50+j100 0,3105 0,1435 0,4580 -0,1881 0,4699 0,5063 0,5 0,5 -0,0301 0,0063 0,0307 
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Figure 3.39: Reflection Coefficients as Calculated from Simulation Data 

 

3.9.2 Simulation Time vs. Settling Time 

To filter out the RF content of the output signals of the whole system, i.e. to reduce the 

amplitude of the RF content sufficiently, simple first order filters have to have a relatively big 

time constant τ. This means that the settling time (about 7τ for an error smaller than 1/1000) 

also gets big compared to the time period of the RF signal that is being analyzed. The used RF 

filter had a settling time of about 35 μs compared to a time period of the RF signal of only 

0.0025 μs. In other words, the simulation time becomes long and the maximum time step 

small, what leads to high computation load and long duration of simulations. 
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The advantage of using a low order filter is the lower sensitivity to component tolerances 

and parasitics compared to a filter with a steeper roll-off like a higher order Chebychev. So it 

is expected that a low order RF-filter made from discrete components behaves more like the 

simulated one. 

 

3.9.3 Parasitics 

The effect of most parasitics was evaluated for all analog parts of the system. The majority 

of analyzed parasitic effects were found to have a small influence. Transmission line effects 

were modeled and evaluated, but some of the transmission lines were omitted in the 

complete system performance simulations for the sake of simplicity of the model of the circuit 

to ensure convergence. 

In the QILO, the parasitics simulations included imperfections of the frequency defining 

components of the oscillator such as equivalent series resistance (ESR), equivalent series 

inductance (ESL) and equivalent parallel capacitance (EPC), as well as the parasitic capacitance 

of the tracks in the oscillator and the parasitic inductance of the longer tracks between the 

two parts of the quadrature oscillator (quadrature connects). Other parasitic track 

inductances were not directly taken into account. Instead, transmission line models for all the 

tracks in the PA, the Preamplifier, the QILO including the input- and output buffers and all 

other RF parts of the circuit were used. 

The influence of the ESR of the capacitors (0.2 Ω worst case [49]) and the EPC of the 

resistors (0.05pF for 0603 package worst case) as well as the track capacitances in the 

oscillator (about 2.1 pF worst case) were found to have only a small influence on the system 

(about 2% worst case change in oscillator's free-running frequency f0), while the ESL of the 

capacitors in the quadrature interconnects had an influence of about 8.5% on the oscillator's 

f0. This ESL value of 220 nH was found by adjusting the self-resonant frequency (SRF) of the 

capacitor Cx (0.8 pF) to 380 MHz and is probably not very realistic. The SRF of a 100pF 1206 

NP0-ceramic capacitor is 380 MHz [50], with a ESL of 1.75 nH, a similar or even lower value of 

ESL should be expected for the 0.8pF 0603 capacitor, generating an SRF of at least 4.25 GHz 

and thus a negligible influence on the QILO.  
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A strong influence of the transmission lines in the quadrature interconnects of the QILO 

was found. This can make the oscillator run at a completely different frequency, for example 

a difference in f0 of 200% or more, depending on the position of the capacitors in the 

transmission lines and the total length. As it is expected that this effect can be neglected when 

the system is produced in integrated circuit technology, this effect was not taken into account 

in the complete system performance simulations. Because it was not possible to remove the 

transmission lines completely in the PCB layout, their effect was used as a part of the 

quadrature interconnect mechanism, providing part of the 90° phase shift between the two 

oscillator cores. 

In the Frontend that holds all circuit parts besides the PA, the Preamplifier and the QILO, 

the main influence of the parasitics was the one of the transmission lines. Especially the 

transmission line between the unknown impedance input and the directional coupler is 

critical, as it has various sections with different impedances and lengths. The behavior of this 

transmission line was simulated and a correction equation was derived. The correction of the 

measurement values is covered in more detail in section 4.4.3. 

Also, the transmission lines between the coupler incident and reflected outputs and the 

RF-inputs of the mixers were evaluated. They contribute a constant phase shift for constant 

frequency that is strongly dependent on the properties of the used PCB material, especially its 

permittivity. However, this phase shift can easily be removed through a calibration process in 

the software of the system processor, for example by transforming the values measured in a 

skew coordinate system into an orthogonal Cartesian one as is shown in section 4.4.3. If space 

on the PCB is not a constraint, it is also possible to remove this effect in the layout by making 

the transmission lines all same length. Thus, these transmission lines were omitted in the 

complete system performance simulations. All other transmission lines were modeled as such 

and used in the simulations.  
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3.10 Analog to Digital Converters (ADC) and System Processor 

The position of the analog to digital converter blocks and the system processor / control 

block in the measurement system block diagram is shown in Figure 3.40: 

 

 

Figure 3.40: Position of ADCs and Processor in System 

 

The ADCs convert the analog low frequency signals from the low frequency amplifier (LFA) 

blocks to digital signals that can be used by a digital control block, the system processor. The 

system processor calculates the reflection coefficient from the digital signals and, in a 

complete automatic impedance matching system, acts on the variable impedance matching 

network. The ADCs have a direct influence on the control speed of the system, so it is desirable 

if they have a high conversion speed. On the other hand, the accuracy of the measurement of 

the reflection coefficient depends on the resolution of the ADC. Higher resolution generally 

means lower speed. Modern ADCs are frequently integrated into microcontrollers and can 

reach several million samples per second (MSPS) at a resolution of 12 bit. There are faster and 

more accurate ADCs available on the market, but it was decided to stay with something that 

can be integrated into a microcontroller with standard processes. 

 

3.10.1 STM32F429 Microcontroller 

The STM32F429 (F429) is a flagship microcontroller of ST Microelectronics [51]. It 

combines the ARM Cortex M4 Core that includes a floating point unit and DSP functionality 

with many peripherals, especially three advanced 12-bit 2.4MSPS successive approximation 

(SAR) analog to digital converters (ADC) and a graphics accelerator enabling the direct use of 
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LCD-TFT-Displays. It supports a master clock rate of up to 180 MHz. These features make it a 

good choice for digital signal processing and control, though it is by far not as powerful as a 

modern personal- or single-board-computer, what would be exaggerated for the application. 

Especially the three ADCs and the availability and relatively low cost were a good argument 

for using this device. 

 

3.10.2 Analog Limitations of the STM32F429 Discovery Board 

The STM32F429 discovery board (F429DISCO shown in Figure 3.41) connects all general 

purpose input-outputs of the F429 microcontroller to headers, allowing the user to measure 

signals or to connect further electronics [52]. However, there is already quite a lot of digital 

electronics connected to the F429 on the discovery board (especially the display), effectively 

preventing the use of more than three pins for analog signals. This means that, even though 

the microcontroller could convert many more channels than three sequentially or alternating, 

the discovery board does not allow this. As it turned out later in the project, this is a severe 

limitation. The solution for this problem is the use of another microcontroller and discovery 

board for the ADC operation as will be detailed in the next section. 

 

 

Figure 3.41: STM32F429 Discovery Board (product photograph by ST) 
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3.10.3 STM32F303 Microcontroller and STM32F3 Discovery Board 

The STM32F303 (F303) also incorporates an ARM Cortex M4 Core with floating point unit 

and DSP functionality, but operates at a lower frequency than the F429 (up to 72 MHz, in this 

project 64 MHz clock speed were used) [53]. It is part of ST Microelectronics' 

mainstream/analog microcontroller line and incorporates ultra fast timers, comparators, 

operational amplifiers and four advanced 12-bit 5 MSPS SAR ADCs. Also, the STM32F3 

discovery board [54] (F3DISCO, shown in Figure 3.42) has more free pins than the F429DISCO. 

This allows more than the necessary four analog signals to be connected. Additionally, it is 

possible to configure all four ADCs to sample simultaneously. This has the advantage that 

there is no error in the measurement of the reflection coefficient when it is varying. If the four 

values were recorded at different times, they would not necessarily represent the same 

reflection coefficient. 

 

 

Figure 3.42: STM32F3 Discovery Board (product photograph by ST) 

 

3.10.4 Combination of the two Discovery Boards 

It is easily possible to combine the two discovery boards by means of a digital interface. 

This could be an asynchronous or a synchronous serial interface or a parallel interface. After 

checking the F429DISCO for free interfaces, it was decided to use a Serial Peripheral Interface 

(SPI) connection. The asynchronous alternative was ruled out because the F3DISCO's clock 
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source is less accurate, what could lead to bit errors on an asynchronous interface. It would 

be possible to solder a crystal onto the board, but in factory configuration, this is not 

populated, and the internal RC oscillator is used. 

The main reason for combining the two boards was to have the display of the F429DISCO 

together with the four ADCs of the F3DISCO. However, there is no need for the display in a 

possible final system, and the F303 is by far fast enough for all operations that are necessary 

for impedance matching, so theoretically, the whole digital part of the automatic impedance 

matching system could be the F303 or even a simpler microcontroller. 
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3.11 Measuring and Control Software 

The measuring and control software is being executed by the system processor and 

completes the measurement system. Amongst other purposes, it is responsible for the last 

step in the reflection coefficient measurement, the calculation of the reflection coefficient 

from the four input values. 

 

3.11.1 First Version using the three ADCs of the STM32F429 

In the beginning of the project, it was not clear that the injection locking oscillator would 

produce a variable phase shift. Especially, a scheme to do injection locking and phase locking 

in the same oscillator was evaluated [40]. Unluckily it was found that this scheme would be 

rather complicated to test at 400 MHz with discrete components, and a possible 180° phase 

uncertainty (because of its inherent double frequency operation) could not be ruled out. 

However, this scheme would have allowed to do the measurement of the reflection coefficient 

by measuring only three low frequency analog values. 

This was the starting point for the first version of the microcontroller software that was 

written in the beginning of the project. It already incorporated most of the blocks of the final 

program besides the measurement value correction. For instance, there were already drivers 

for AD-converters, timers, output pins and the display, filtering and decimation of the analog 

values, calculation of the reflection coefficient and analysis and control of the most adequate 

switching combination to be used for the variable impedance matching network as well as 

showing the actual state of the process on the display. 

The software modules are depicted in Figure 3.43. The Matcher / State Switcher algorithm 

is based on the matching circles theory described in [3]. It is assumed that it is possible to find 

the best matching condition based on a geometric distance calculation to the centers of the 

available matching circles and comparing with the radiuses. A matching state is chosen when 

the corresponding circle is hit and the last matching circle is left. 
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Figure 3.43: First Version of Software (3 ADCs) 

 

As there was no variable impedance matching network available at this point, the state of 

the switching outputs was shown using LEDs (to make the control action work in an open loop 

system, it was only executed when a button was pressed). The three input voltages were 

generated using potentiometers, as there was also no measurement circuit available at this 

time (as this could produce reflection coefficients with a magnitude greater than one, a Limiter 

software module had to be included). This hardware setup is shown in Figure 3.44. 

 

 

Figure 3.44: Hardware for Testing the First Version of the Software 
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3.11.2 Second Version using the four ADCs of the STM32F303 

When it became clear that there would be a variable phase shift between the input of the 

system and the outputs of the QILO, a solution was necessary, as this would make the 

measurement of the reflection coefficient with three LF analog values impossible. This 

solution consisted of using a fourth mixer and thus generating a fourth LF analog signal that 

needed to be measured. Using quadrature measurement for the forward as well as for the 

reflected voltage made it possible to remove the phase shift directly in the calculation of the 

reflection coefficient. However, as noted before, the STM32F429 has only three ADCs to 

measure signals simultaneously, and the used discovery-board only allows the connection of 

three analog signals. So it was necessary to change or modify the platform. To minimize the 

necessary training time and implementation work, it was decided to keep using the 

STM32F429 discovery for calculation of the reflection coefficient, variable impedance 

matching network state control operation and displaying the state and moving the ADC-

operation and the filtering to the most similar microcontroller available that has four equal 

ADCs that can sample simultaneously. 

In this case, the STM32F303 microcontroller and the STM32F3 discovery board were 

chosen. The main changes to the software were to split it in two parts, one for the F429 and 

one for the F303, add a fourth channel to the ADC, to the filtering and the reflection coefficient 

calculation routines and add routines to send the filtered values from the F303 to the F429 via 

the SPI interface. Furthermore, means of correcting the measured values were introduced into 

the software, including an editing function and saving the correction values to the flash 

memory of the microcontroller. 

The combination of the modules of this software version is shown in Figure 3.45. A photo 

of the digital part of the measurement subsystem comprising of the two microcontroller 

discovery boards and a board with LEDs simulating the variable impedance matching network 

is shown in Figure 3.46. A two screenshots of the F429 display are shown in Figure 3.47. A 

listing of the program can be found in Appendix A and B. The used integrated development 

environment (IDE) was EmBlocks (now EmBitz) [55] 
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Figure 3.45: Final Version of Software (4 ADCs) 

 

Figure 3.46: Hardware for Final Version of Software 
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Figure 3.47: Screenshots of Edit Function (v1.5) and of Main Screen (v2.1) 
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3.12 Impedance Matching Network 

The variable impedance matching network (IMN) is not part of the measurement block, 

but of an automatic impedance matching system that can be constructed using the 

measurement block. In Figure 3.1, it would be between the coupler and the load. The IMN 

needs to be able to match complex impedances above and below 50 Ω, with an imaginary part 

less than, equal to or above zero. Ideally, all possible reflection coefficients should be 

matchable. Distributed topologies are not preferred for frequencies as low as 400 MHz, 

especially when having a solution for integration on an IC in mind. The simplest lumped 

passive network that theoretically allows for matching all impedances (with a positive, non-

zero real part) is a three component T or Pi-Network, with all of its components variable [56]. 

Two component lumped passive networks can generally only match half the area of the Smith 

Chart. 

As the T-topology has two of its components not connected to ground, making all of its 

components variable (electronically controllable) is generally more elaborate. Capacitors 

generally consume less space and have a higher Q-factor and accuracy than inductors 

considering a future IC implementation. So the preferred solution is the Pi-Network with two 

capacitors to ground and one inductor between input and output. 

The variable inductor can conveniently be transformed into a variable capacitor to ground 

by using two identical passive impedance inverters, each also a Pi-Network consisting of two 

constant (for constant frequency) capacitors and one constant inductor, with the impedances 

of –j·50 Ω and +j·50 Ω, respectively (at 400 MHz, this results in about 8 pF and 20 nH). The 

result is shown in Figure 3.48. 

 

Figure 3.48: Schematic of Variable IMN with Impedance Inverters (inv.) 

This topology has already been proposed in [56]. Here, the topology is analyzed 

numerically according to the matching circles theory proposed in [3] for some combinations 

of values of the three variable capacitors with the help of a MATLAB script (see Appendix C).  
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The matching circles depict the area on the Smith chart each configuration of the variable 

impedance matching network can match with a given allowed error. Different configurations 

of the matching network will have different circles. Basically, a reflection coefficient in the 

matching circle (blue) is transformed to a new reflection coefficient close to the center of the 

smith chart (inside the red circle). This reduces the magnitude of the reflection coefficient to 

an allowable value ( |Γin| < Γmin ). It is assumed that the variable capacitors consist of banks of 

fixed capacitors with discrete values connected to ideal switches. 

In the MATLAB script, the system equation is entered in convenient steps that keep each 

partial equation small and minimize the probability of errors. In the top part of the script, 

three vectors for the desired values of the capacitors are defined. The script only analyzes the 

combination of all three values with index 1, then the combination of all three values with 

index 2, and so on. This way, full control over which combinations to analyze is given. Also, a 

proprietary function to display the circles in the smith chart was written. Figure 3.49 shows 

the output of the script for some combinations of C1, C2 and C3 as an example, demonstrating 

that the whole smith chart area can be matched. Matching reflection coefficients with a 

magnitude close to unity is generally difficult, and matching a total mismatch condition is 

impossible. 

 

Figure 3.49: Example Matching Circles for an allowed Error of Γ of 0.28 

Re{Γ} 
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The values of the capacitors C1, C2 and C3 used for calculating and drawing the matching 

circles shown in Figure 3.49 are shown in Table 3.6: 

Table 3.6: Capacitor Values for Matching Circles 

Circle C1 (pF) C2 (pF) C3 (pF) 

1 1 10 2 

2 0.5 10 5 

3 5 10 0.5 

4 0.5 8 8 

5 0.5 28 2 

6 25 10 0.5 

7 9 4.4 0.5 

8 9 2 0.5 

9 0.5 4.4 10 

10 9 7.2 0.5 

11 25 2 2 

12 0.5 28 10 

 

The MATLAB script first calculates the output impedance of the matching network in each 

configuration when the input is terminated with 50 Ω, and from this the (complex) load 

reflection coefficient S22 for a 50 Ω load. S22 and the real valued allowed error Γmin are then 

inserted into the equations (3.20) and (3.21) for the complex center and the real valued radius 

[3], and the result is handed over to the circle display routine.  

 7TghTA � !��∗ ∙6&�jkSl=
&�|!��∙jkSl|� (3.20) 

 -mn5o> � jkSl∙6&�|!��|�=&�|!��∙jkSl|�  (3.21) 
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In the following chapter, measurements on the PCB implementation of the proposed 

reflection coefficient measurement block and their results are presented. The PCB setup 

comprising of three PCBs is introduced and the function tests and results of each PCB are 

reported. 
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4 Measurements	on	a	Printed	Circuit	Board	Setup	

To test the function of the measurement block, a printed circuit board (PCB) setup was 

designed and manufactured and its performance was evaluated at 400 MHz using the 

microcontroller boards with dedicated software described in sections 3.10 and 3.11, 

respectively, and an Agilent E4438C (250 kHz - 3.0 GHz) Signal Generator, an Agilent E5071C 

(100 kHz - 8.5 GHz) Vector Network Analyzer (VNA), an Agilent 34401A (6.5 Digit) Precision 

Multimeter and a Maury Microwave Corp. 8045C Coaxial Slide Screw Tuner (0.9 – 12.4 GHz). 

As the tuner was used outside its range, an additional cable length was necessary to generate 

phases in a range of more than about 160°. Finally, an Agilent E4404B (9 kHz - 6.7 GHz) 

Spectrum Analyzer and an Agilent Infinii Vision MSO7104B (1 GHz, 4 GSa/s) Oscilloscope were 

used to test subsystems such as the QILO. 

4.1 Printed	Circuit	Boards	

First, three Printed Circuit Boards (PCB) were designed and manufactured. For the design, 

the layout functions of Keysight ADS were used, and Gerber data was exported. The Gerber 

data of the three boards were then sent to the German Würth Electronic PCB manufacturing 

service. Solder stop mask and silk screen were not used. It was decided to let the boards 

produce professionally because of the higher quality surface options such as gold, that simplify 

soldering, and because of the vast number of vias. Vias are contacts between top- and bottom 

layer by means of a metallized hole. It is recommended to use many vias in parallel for RF 

designs to reduce parasitic inductance. 
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Standard FR-4 material was used instead of a specialized RF material in order to reduce 

costs and to gain higher mechanic stability. RF materials are often slightly flexible, what is not 

good for the used ceramic capacitors especially and for surface mount devices in general. 

During layout, it was attempted to reduce track lengths and other parasitic effects where 

possible. Where it was not possible, transmission lines with defined impedances were used, 

though it was found that these impedances are not so well defined for standard FR-4 material 

after all, as the thickness of the material can vary by around 0.1mm and the relative 

permittivity can vary from about 4.1 to 4.9 (typical value 4.6), as well as the track widths can 

show a variation in the order of 0.1 mm depending on the used technology. Simulations with 

Keysight ADS LineCalc show a variation of the impedance in the order of 13%, while the 

electrical angle varies in the order of 9% for a nominal 50 Ω transmission line on a 1.6 mm 

thick PCB with the given variation of the PCB parameters. 

A photo of the structured top layer of the three boards is shown in Figure 4.1. The Frontend 

is visible on the upper left of the photo, three copies of the PA can be seen on the lower left 

and the QILO is shown on the right. Later, the boards were populated with components and 

characterized. Populating the boards was done in steps, always measuring the basic function 

of the parts of the circuit once one step was completed, this way making sure the components 

and blocks of the circuit were connected correctly. Photos of the populated boards are shown 

in Figure 4.2, Figure 4.3 and Figure 4.4. 

 

 

Figure 4.1: The three unpopulated PCBs (three copies each, still wrapped in foil) 
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Figure 4.2: Power Amplifier 

 

 

Figure 4.3: Quadrature-Injection-Locking-Oscillator with Voltage Pre-Amp. and Buffers 
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Figure 4.4: Frontend 

 

Legend for numbers in the photographs 
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4.2 Power	Amplifier	Board	

Measurements on the amplifier board show that it functions reasonably well, but the key 

parameters are almost all less good than they were in the computer simulations, just the 

power added efficiency was better. This is probably due to the poor quality of the computer 

simulation model of the power transistor. Though gain, 1dB compression point and efficiency 

are lower, it was possible to obtain almost 30 dBm output power, though the gain compression 

was more than 2dB during this operation. 

4.2.1 S-Parameters	

As shown in Figure 4.6, the real input reflection coefficient of the amplifier as measured 

with the VNA is not as low as the one obtained in the simulations. Also, shown in Figure 4.7, 

the gain is lower. Small signal S21 at 400 MHz is about 16dB instead of about 22dB. This is 

probably due to the transistor simulation model, that is not too accurate. For example, the 

drain current of the model was in the order of 600 mA while the datasheet gives a drain current 

close to 100 mA for the used bias point of 4 V gate-source voltage. Power amplifiers with 

discrete transistors are often built based on measurement data, it is unusual that the 

manufacturer supplies a model for a power MOSFET. Also, imperfections like parasitics and 

tolerances of the other real components compared to the idealized models of the simulation 

can be a reason, and finally, the PCB itself has parasitic effects like additional capacitance at 

the nodes, and inductance and resistance of the tracks, though the latter two should not have 

too much effect in this design. The measurement setup with the VNA is shown in Figure 4.5. 

 

Figure 4.5: Measurement Setup for Obtaining the S-Parameters 
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VNA 

PA 
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Figure 4.6: PA S11 

 

 

Figure 4.7: PA S21 

 

4.2.2 Output	Power	and	1dB	Gain	Compression	Point	

The 1dB gain compression point at 400 MHz was found to be at 27 dBm output power (12 

dBm input power), using the signal generator at the input and the spectrum analyzer at the 

output of the PA together with an attenuator of 6dB. The input power was raised in steps and 
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the remaining gain was calculated. This 1dB compression point is significantly lower than the 

value from the computer simulations of about 30.2 dBm output power. This, amongst other 

reasons already stated before in section 4.2.1, can partly be due to imperfections of the power 

supply. A voltage regulator with a real output of 6.8 V output was applied, the design supply 

was 7.0 V. This also leads to a lower bias point of the transistor, as the input bias voltage is 

derived from the main power supply via a resistive voltage divider as shown in Figure 3.3. 

A graph of the measured power delivered to the load PL versus the RF frequency for a 

power available from the source PAVS from 0 dBm to 10 dBm is shown in Figure 4.8. The VNA 

does not allow more output power than 10 dBm. The graph was obtained from the S21 

measured by the VNA at different power settings, the measurement setup is the same as in 

Figure 4.5. The power gain GP versus the RF frequency and PAVS, obtained by equation (3.3) 

from the S-Parameters measured by the network analyzer is shown in Figure 4.9. 

 

 

Figure 4.8: Power Delivered to Load PL vs. Frequency and PAVS (Measured) 
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Figure 4.9: Power Gain GP vs. Frequency and PAVS (Measured) 

 

4.2.3 Power	Added	Efficiency	

Power added efficiency (PAE) [57] at 28 dBm output power (630 mW) is about 56%. The 

measured supply current was 160 mA at 6.8 V, that is about 1088 mW and input power was 

14 dBm = 25 mW. The PAE was calculated using equation (4.1). A comparison between 

simulation and measurements is shown in Table 4.1. 

 ��� = ����	�
�
��

∙ 100% →	 �����	����
������

∙ 100% ≈ 56% (4.1) 

Table 4.1: Power Amplifier - Comparison Simulation / Measurements 

 

Pomax (dBm) 
1dB GCP 

(dBm) 
S11 (dB) S21 (dB) PAE (%) 

Simulation 32 30,2 -50 22 37 

Measurement 28 27 -10 16 56 
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4.3 Oscillator	Board	

While the Frontend and the PA were basically working right away, the same is not true for 

the QILO. The following section will describe the problems encountered while testing the 

oscillator board. 

 

4.3.1 First	PCB	Setup	

Due to the parasitics of board and components and the non-ideal isolation of the output 

buffers, it was not possible to obtain the desired operation of the oscillator core at 400MHz. 

However, the oscillator worked in quadrature at about 1.1 GHz, but with a strong phase- and 

amplitude noise and low amplitudes. A photograph of the oscilloscope screen is shown in 

Figure 4.10 and the measurement setup is shown in Figure 4.11. This was obtained using 

variable capacitors (variable in the range 1.0 to 2.5 pF) as the main oscillator capacitors, but it 

was found that the influence of these capacitors on the obtained frequency was negligible. 

 

 

Figure 4.10: Oscilloscope Screen of QILO Output 

 

 



 

 

80 

 

Figure 4.11: Test Setup for Oscillator Measurement 

 

There was a much stronger influence of the oscilloscope on the operation of the circuit, 

especially if a channel was activated for measurement or inactive. This suggests that the 

output buffers do not isolate the circuit from the surroundings very well. Also, the transmission 

lines inside the oscillator, especially the ones for the quadrature connections between the two 

RC oscillator cores, were found to have a strong effect. Tests with injection locking were 

successful for frequencies close to the free oscillation frequency, but as this is far away from 

the desired frequency, no further tests were carried out. 

 

4.3.2 Tombstone	Setup	of	Oscillator	

To overcome the problems with the wrong oscillation frequency, a setup using floating 

wiring and tombstone component placement was adapted. The objective was to minimize 

parasitic transmission line effects. A photograph of this setup is shown in Figure 4.12. In a first, 

very rough measurement when both oscillator cores of the quadrature oscillator were still not 

capacitor coupled (though there may have been parasitic inductive coupling) showed that both 

oscillators were oscillating. This was found by going close to each oscillator with the probe of 

the oscilloscope in high impedance mode and observing the RF amplitude. As soon as both 

cores were coupled, the oscillator did not oscillate anymore. 
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Inj.-Lock. Tests 

Spectrum Analyzer Power Supply Oscilloscope 
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Figure 4.12: Tombstone Oscillator Setup 

 

Though the circuit was assembled very carefully, it is possible that a ceramic capacitor in 

the center of the oscillator was broken during the wiring operation. Unluckily, there is no 

simple way to find out about this. If all components are still intact and connected, it is possible 

that the tolerances of the transistors are the reason why the circuit does not oscillate anymore. 

The tolerances of the other frequency defining components were analyzed using ADS and 

found to be tolerable, though there was a strong influence. Also, it is unknown how accurate 

the model of the used BFG520 transistor is. Finally, the used setup should have less 

transmission line effects, but there are some parasitic inductors. 
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4.4 Frontend	

The Frontend includes the coupler, the splitters, the mixers, the filter and the LFAs. The 

basic function of the components was successfully verified. 

 

4.4.1 Phase	shift	of	Signals	at	the	RF-Inputs	of	the	Mixers	

Unfortunately, it was not possible to measure the phase shift due to parasitic transmission 

lines between the power input of the Frontend and the RF inputs of the mixers directly, as the 

capacitive coupling between the oscilloscope channels in the high impedance mode was too 

strong. So a more refined measurement scheme was applied using 0° and 90° delay blocks and 

power splitters at the inputs of the circuit (shown in Figure 4.13), obtaining the in-phase and 

the quadrature component of the RF signal of each of the four channels. From this, each 

parasitic phase delay could be calculated. A block diagram of the used technique is shown in 

Figure 4.14. Two measurements of all four mixer outputs were made, (a) one time with 0° LO 

input (resulting in I_out), and (b) one time with 90° LO input (resulting in Q_out). 

 

      O 

Figure 4.13: PCB Containing Wilkinson Power Splitters and Delay Lines 

 

The results of the phase delay measurements were α ≈ 106°, β ≈ 130°, γ ≈ 74° and δ ≈ 96°, 

obtained using the ATAN2-function of Excel with each pair of I_out and Q_out values. These 

values are the total phase shift from the “reflected”-input for α and β, and the “incident”-input 

for γ and δ until the RF input of the mixers, respectively. For complete correction, about 28° 

have to be added to the α and β values to transform both values to the same input of the 

board. 

RF-IN 

Out -3dB 0° 
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Out -9dB 90° 
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Out -9dB 0° 

50 Ω Termination 
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Figure 4.14: Technique to Measure the Parasitic Phase Angles at the Mixers’ RF Inputs. 

 

4.4.2 Performance	for	Input	Signals	Generated	using	Splitters	and	Delay	Lines	

The delay blocks from the former measurement were used to generate in-phase and 

quadrature signals from the input RF signal and feed the in-phase signals into two of the LO-

inputs and the quadrature signals into the other two. A photograph of this measurement setup 

is shown in Figure 4.15. 

 

 

Figure 4.15: Test Setup for Frontend Measurements 

 

Most of the blocks in the block diagram (Figure 4.16) are the same as in the system block 

diagram in the beginning of chapter 3. The directional coupler (A.), the splitters/attenuators 
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(B.), the mixers and filters (E.) and the LFA (F.) are all on the Frontend and the ADCs and the 

Control Block (G.) are based on the microcontroller boards. RF-IN denotes the point where the 

signal from the generator is fed in. The Wilkinson power splitters and the delay lines (C. and 

D.) are on the Delay-Board. The 50 Ω resistor is a screwed termination. 

 

 

Figure 4.16: Block Diagram of Used Test Setup 

 

The output signals of the measuring block were recorded for the following test conditions 

(shown in Table 4.2), with IN being the “incident” power (PWR) input of the coupler, and LO 

the local oscillator inputs of the mixers: 

Table 4.2: Conditions for Test of Frontend with Delay-Board 

Condition IN PWR LO PWR Phase IN-LO Γ 

1 -/- 5 dBm -/- -/- 

2 -/- 10 dBm -/- -/- 

3 11 dBm 5 dBm 0° Table 4.3 

4 16 dBm 10 dBm 0° Table 4.3 

5 16 dBm 10 dBm 120° Table 4.3 

  

IN PWR 
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The core of the measurement setup is shown in Figure 4.17 for condition 1 and 2, in Figure 

4.18 for condition 3 and 4 and Figure 4.19 for condition 5. 

 

 

Figure 4.17: Core of Setup for Condition 1 and 2 

 

 

Figure 4.18: Core of Setup for Condition 3 and 4 
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Figure 4.19: Core of Setup for Condition 5 

 

The Reflection Coefficients were adjusted to a value close to the desired value from Table 

4.3. with the help of the Coaxial Slide Screw Tuner and the VNA. The Tuner was always 

terminated with 50 Ω on its far end, and for reproducible handling, only the maximum limit of 

the reflection coefficient was used. For the magnitude 0.5 reflection coefficients, an additional 

3dB attenuator was used between the Tuner and the measuring port of the Device under Test 

(DUT). Either one cable length was used or two cables were connected in series to obtain 

phases beyond the reach of the tuner in this frequency range. 

  

Tuner 

F3DISCO 

Delay-Board 

RF-IN Connected, Electrical Length Diff: 120° Frontend 

Attenuator (3dB) 



 

 

87 

 

Table 4.3: Reflection Coefficients Γi for Test of Frontend with Delay-Board 

Condition |Γi| ∠Γi Condition |Γi| ∠Γi 

A 0 0° L 0.5 -135° 

B 1 -135° M 0.5 -90° 

C 1 -90° N 0.5 -45° 

D 1 -45° O 0.5 0° 

E 1 0° P 0.5 45° 

F 1 45° R 0.5 90° 

G 1 90° S 0.5 135° 

H 1 135° T 0.5 180° 

K 1 180°    

 

The raw measured values are displayed in Table 4.4. After a first correction of the effects 

of parasitic transmission lines in the setup according to the algorithm in section 4.4.3, the 

reflection coefficients and errors in Table 4.5 are obtained, also shown in Figure 4.20. 
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Table 4.4: Raw Measurement Data Obtained Using Delay-Board 

|Γi| ∠Γi ° P dBm LO-IN Phase ° va mV vb mV vc mV vd mV 
0,928 -135 LO10, IN16 0 1645 1538 1560 1721 

0,928 -135 LO10, IN16 120 1538 1692 1282 1462 

0,928 -135 LO5, IN11 0 1566 1538 1526 1606 

0,95 -89 LO10, IN16 0 1554 1389 1570 1726 

0,95 -89 LO10, IN16 120 1682 1701 1286 1472 

0,95 -89 LO5, IN11 0 1515 1458 1535 1609 

0,93 -45 LO10, IN16 0 1325,5 1334,5 1583,5 1726,5 

0,93 -45 LO10, IN16 120 1701 1586 1304 1469 

0,93 -45 LO5, IN11 0 1405,5 1414 1545 1612 

0 0 LO10, IN16 0 1501 1535 1564 1721 

0 0 LO10, IN16 120 1508 1528 1301 1453 

0 0 LO5, IN11 0 1490 1526 1531 1607,5 

1 0 LO10, IN16 0 1270 1479 1582 1722 

1 0 LO10, IN16 120 1595 1415 1321 1460 

1 0 LO5, IN11 0 1365 1479 1540 1609 

0,922 45 LO10, IN16 0 1398,5 1609 1559 1715 

0,922 45 LO10, IN16 120 1451 1361 1318 1440 

0,922 45 LO5, IN11 0 1429 1553 1530 1606 

0,922 88 LO10, IN16 0 1508 1666 1553 1712 

0,922 88 LO10, IN16 120 1365 1400 1309 1437,5 

0,922 88 LO5, IN11 0 1490 1588 1525 1604 

0,933 135 LO10, IN16 0 1607 1662 1551 1718 

0,933 135 LO10, IN16 120 1366 1489 1301 1442,5 

0,933 135 LO5, IN11 0 1538 1593 1521 1603 

0,94 180 LO10, IN16 0 1647 1623 1547 1715 

0,94 180 LO10, IN16 120 1418 1602 1286 1446 

0,94 180 LO5, IN11 0 1564 1578 1521 1603 

0,45 -135 LO10, IN16 0 1568 1529 1565 1725 

0,45 -135 LO10, IN16 120 1529 1610 1294 1459 

0,45 -135 LO5, IN11 0 1528 1528 1531,5 1609 

0,46 -90 LO10, IN16 0 1522 1465 1570 1725 

0,46 -90 LO10, IN16 120 1592 1611 1296,5 1464,5 

0,46 -90 LO5, IN11 0 1499 1494 1535,5 1610 

0,45 -43 LO10, IN16 0 1431 1455 1474 1725 

0,45 -43 LO10, IN16 120 1595 1555 1304 1461 

0,45 -43 LO5, IN11 0 1458 1482 1539 1611 

0,455 0 LO10, IN16 0 1406 1503 1572 1722 

0,455 0 LO10, IN16 120 1551 1485 1312 1458 

0,455 0 LO5, IN11 0 1439 1501 1536 1609 

0,46 45 LO10, IN16 0 1444 1566 1564 1718 

0,46 45 LO10, IN16 120 1482 1448 1311 1448 

0,46 45 LO5, IN11 0 1458,5 1538 1532,5 1607 

0,46 90 LO10, IN16 0 1507 1607 1561 1718 

0,46 90 LO10, IN16 120 1434 1465 1308 1446,5 

0,46 90 LO5, IN11 0 1493 1562 1530 1608 

0,464 135 LO10, IN16 0 1561 1606 1560 1720 

0,464 135 LO10, IN16 120 1433 1508,5 1303 1448 

0,464 135 LO5, IN11 0 1519 1564,5 1529 1607 

0,45 179 LO10, IN16 0 1581 1581 1557,5 1720 

0,45 179 LO10, IN16 120 1468,5 1570 1297 1451 

0,45 179 LO5, IN11 0 1533 1555 1529 1608 

X X LO10, IN0 X 1512 1542,5 1497,5 1534 

X X LO5, IN0 X 1493,5 1531 1497 1516 

 

The measured values ΓL are compared to the ideal values Γi of reflection coefficient after 

correction, resulting in the absolute error, shown in equations (4.2) and (4.3): 

 Re{�##} = Re{%&} − Re{%(} (4.2) 
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 Im{�##} = Im{%&} − Im{%(} (4.3) 

Table 4.5: Corrected Measured Reflection Coefficients and Differences to Ideal Values 

|Γi| ∠Γi ° P dBm LO-IN Phase ° Re{ΓL} Im{ΓL} Re{Err} Im{Err} |Err| 
0,928 -135 LO10, IN16 0 -0,6055 -0,5395 0,0507 0,1167 0,1273 

0,928 -135 LO10, IN16 120 -0,6930 -0,6842 -0,0368 -0,0280 0,0462 

0,928 -135 LO5, IN11 0 -0,6974 -0,3496 -0,0412 0,3066 0,3093 

0,95 -89 LO10, IN16 0 -0,0232 -0,9283 -0,0398 0,0216 0,0453 

0,95 -89 LO10, IN16 120 -0,1023 -1,1512 -0,1189 -0,2013 0,2338 

0,95 -89 LO5, IN11 0 -0,0494 -0,8470 -0,0660 0,1029 0,1223 

0,93 -45 LO10, IN16 0 0,8534 -0,5712 0,1958 0,0865 0,2141 

0,93 -45 LO10, IN16 120 0,5692 -1,0461 -0,0884 -0,3885 0,3985 

0,93 -45 LO5, IN11 0 0,8374 -0,7505 0,1798 -0,0929 0,2024 

0 0 LO10, IN16 0 0,0346 0,0133 0,0346 0,0133 0,0371 

0 0 LO10, IN16 120 0,0663 -0,1695 0,0663 -0,1695 0,1821 

0 0 LO5, IN11 0 0,1280 0,0836 0,1280 0,0836 0,1529 

1 0 LO10, IN16 0 1,1756 0,2111 0,1756 0,2111 0,2746 

1 0 LO10, IN16 120 1,1790 -0,3538 0,1790 -0,3538 0,3965 

1 0 LO5, IN11 0 1,3505 -0,0224 0,3505 -0,0224 0,3512 

0,922 45 LO10, IN16 0 0,5554 0,7929 -0,0966 0,1409 0,1708 

0,922 45 LO10, IN16 120 0,8809 0,5572 0,2290 -0,0948 0,2478 

0,922 45 LO5, IN11 0 0,8676 0,7141 0,2156 0,0621 0,2244 

0,922 88 LO10, IN16 0 -0,1237 0,8461 -0,1558 -0,0753 0,1731 

0,922 88 LO10, IN16 120 0,1013 0,8900 0,0691 -0,0314 0,0759 

0,922 88 LO5, IN11 0 0,1149 0,9480 0,0827 0,0266 0,0869 

0,933 135 LO10, IN16 0 -0,6763 0,3640 -0,0166 -0,2957 0,2962 

0,933 135 LO10, IN16 120 -0,5043 0,5753 0,1555 -0,0844 0,1769 

0,933 135 LO5, IN11 0 -0,5701 0,6611 0,0896 0,0014 0,0896 

0,94 180 LO10, IN16 0 -0,8028 -0,0961 0,1372 -0,0961 0,1676 

0,94 180 LO10, IN16 120 -0,8508 -0,0455 0,0892 -0,0455 0,1001 

0,94 180 LO5, IN11 0 -0,8445 0,1839 0,0955 0,1839 0,2072 

0,45 -135 LO10, IN16 0 -0,2624 -0,2605 0,0558 0,0577 0,0802 

0,45 -135 LO10, IN16 120 -0,3086 -0,4583 0,0096 -0,1401 0,1404 

0,45 -135 LO5, IN11 0 -0,2763 -0,1388 0,0419 0,1794 0,1842 

0,46 -90 LO10, IN16 0 0,0046 -0,4408 0,0046 0,0192 0,0197 

0,46 -90 LO10, IN16 120 -0,0201 -0,6908 -0,0201 -0,2308 0,2317 

0,46 -90 LO5, IN11 0 0,0500 -0,3473 0,0500 0,1127 0,1233 

0,45 -43 LO10, IN16 0 0,3965 -0,0665 0,0674 0,2404 0,2497 

0,45 -43 LO10, IN16 120 0,3161 -0,5903 -0,0130 -0,2834 0,2837 

0,45 -43 LO5, IN11 0 0,4416 -0,2704 0,1124 0,0365 0,1182 

0,455 0 LO10, IN16 0 0,5131 0,1052 0,0581 0,1052 0,1201 

0,455 0 LO10, IN16 120 0,5436 -0,2647 0,0886 -0,2647 0,2791 

0,455 0 LO5, IN11 0 0,6577 0,0237 0,2027 0,0237 0,2041 

0,46 45 LO10, IN16 0 0,3091 0,3817 -0,0162 0,0565 0,0587 

0,46 45 LO10, IN16 120 0,4443 0,1559 0,1190 -0,1693 0,2070 

0,46 45 LO5, IN11 0 0,4955 0,3916 0,1703 0,0663 0,1827 

0,46 90 LO10, IN16 0 -0,0533 0,4353 -0,0533 -0,0247 0,0588 

0,46 90 LO10, IN16 120 0,0700 0,3402 0,0700 -0,1198 0,1388 

0,46 90 LO5, IN11 0 0,0899 0,5273 0,0899 0,0673 0,1123 

0,464 135 LO10, IN16 0 -0,3371 0,2205 -0,0090 -0,1076 0,1079 

0,464 135 LO10, IN16 120 -0,2213 0,2105 0,1068 -0,1176 0,1589 

0,464 135 LO5, IN11 0 -0,2277 0,4016 0,1004 0,0735 0,1244 

0,45 179 LO10, IN16 0 -0,4027 -0,0218 0,0472 -0,0297 0,0558 

0,45 179 LO10, IN16 120 -0,3971 -0,1282 0,0529 -0,1361 0,1460 

0,45 179 LO5, IN11 0 -0,3778 0,1656 0,0721 0,1578 0,1735 

 

The magnitude of the absolute Error |Err| is calculated using equation (4.4) 

 |�##| = ,Re{�##}� + Im{�##}� (4.4) 
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The same equations (4.2), (4.3) and (4.4) apply to the simulation results in Table 3.5. 

 

Figure 4.20: Diagram of Measured ReflectionCoefficients 

 

It remains to be said that the measurements with the ADCs of the STM32F303 

microcontroller contain noise of about 5 mVrms, what makes it difficult to obtain the values 

with high accuracy. It was tried to reproduce this noise in simulations (including quantization), 

but without success. Probably the noise comes from interference of the digital signals of the 

microcontrollers with the measured analog signals. 

Even so it was possible to demonstrate a clear correlation between the measured values 

and the real reflection coefficient attached to the measurement port after mathematical 

correction with a system that was not optimized to the last degree and exhibited many 
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parasitic effects. Average absolute errors of 0.146 and maximum errors of 0.28 were reached 

for the points inside the Smith chart (without the outer limit). In Table 4.6 is shown a 

comparison of these results with other scientific works that also use discrete setups. 

Table 4.6: Comparison of Errors with References 

Reference Err. max. Err. avg. 

[58] (without outer limit of smith chart) 25% -/- 

[59] (without outer limit of smith chart) 37% -/- 

This work, simulation 11 dBm (complete area) 4,8% 2,4% 

This work, simulation 30 dBm (complete area) 11,6% 4,4% 

This work, measurements (without outer limit of smith chart) 28% 14,6% 

 

The errors in Table 4.6 are given as percent of full scale. As the maximum value of a 

reflection coefficient is one, these values can be obtained from the absolute errors through 

multiplication by 100. Reference [58] does not give a number for the error in the text, so it was 

derived from a Smith chart (like Figure 4.20). 

	

4.4.3 Correction	Algorithm	

It was found that the mixers have an RF dependent DC offset of less than 10mV, but it is 

enough to make an offset correction necessary. Together with the offset correction, a scaling 

correction was provided, using the following equations (4.5) to (4.8). This way the losses in the 

directional coupler can be taken into account. Here, a, b, c and d are the corrected measured 

voltages, vx is the voltage measured by the ADCX, ox is the offset voltage and sx is the scaling 

factor. 

 . = (01 − 21) ∙ 41 (4.5) 
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 5 = (06 − 26) ∙ 46 (4.6) 

 7 = (08 − 28) ∙ 48 (4.7) 

 9 = (0: − 2:) ∙ 4: (4.8) 

The phase shifts of the transmission lines between the output of the coupler and the RF-

inputs of the mixers were corrected using a coordinate system transformation (non-

rectangular to Cartesian) as shown in equations (4.9) to (4.12). Here, α, β, γ and δ are the 

angles between X-Axis of the Cartesian coordinate system and the A-, B-, C- and D-Axis of the 

non-rectangular coordinate system, respectively. The values a, b, c, d are the intercepts of the 

measured point on the A-, B-, C- and D-Axis, respectively, shown in Figure 4.21. 

 

 

Figure 4.21: Coordinate System Transformation (just shown for Vr, but Vi is the same) 

 

 ;< = Re(=<) =
6∙>?@A	1∙>?@B

>?@(A	B)
 (4.9) 

 C< = Im(=<) =
1∙DE>B	6∙DE>A

>?@(A	B)
 (4.10) 

 ;( = Re(=() =
:∙>?@F	8∙>?@G

>?@(F	G)
 (4.11) 

 C( = Im(=() =
8∙DE>G	:∙DE>F

>?@(F	G)
 (4.12) 
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The reflection coefficient as seen at the input of the directional coupler is then simply the 

division of the complex voltages Vr by Vi as shown in equations (4.13) to (4.16): 

 %H =
IJ
I

= KJLM∙NJ

K
LM∙N

 (4.13) 

 9OP = ;(
� + C(

� (4.14) 

 Re{%H} =
KJ∙K
LNJ∙N


:QR
 (4.15) 

 Im{%H} =
NJ∙K
	KJ∙N


:QR
 (4.16) 

Furthermore, transmission line effects of the connection between “reflected” input and 

coupler had to be take into account. The correction equation was derived from the impedance 

transformation equations of the transmission line. Unluckily, this transmission line consists of 

several segments with different microstrip widths and thus different impedances, what makes 

the equation rather large. The solution shown in equations (4.17) to (4.27) was found with the 

help of MATLAB symbolic toolbox as well as with numeric techniques. The values E, F, G and H 

are proprietary correction values that depend on the impedances and phase shifts of the single 

segments of the transmission line. As mentioned, they are results of a large equation and are 

best calculated using the MATLAB script shown in Appendix D. 

 E	=	1.8277; (4.17) 

 F	=	6.99413; (4.18) 

 G	=	31.6187; (4.19) 

 H	=	55.1533; (4.20) 

 K	=	F·Re{Γt}	+	E·Im{Γt}	-	G; (4.21) 

 L	=	E·Re{Γt}	-	F·Im{Γt}	+	H; (4.22) 
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 M	=	H·Re{Γt}	-	G·Im{Γt}	+	E; (4.23) 

 N	=	G·Re{Γt}	+	H·Im{Γt}	-	F; (4.24) 

 P	=	L²	+	K²; (4.25) 

 Re{%&} =
&∙SLT∙U

�
 (4.26) 

 Im{%&} =
&∙T	S∙U

�
 (4.27) 

After these corrections, the calculated load reflection coefficient was relatively close to 

the one measured by the VNA (absolute error of less than 0.4, average of less than 0.2, 

discussed in section 4.4.2). These correction equations have also been implemented on the 

microcontroller. It is important to note that most of these corrections will not be necessary 

when integrating the system on an IC, as this will remove most of the transmission line effects. 
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4.5 Measurements	of	Complete	System	

Because of the problems described in sections 4.3.1 and 4.3.2, it was not possible to do 

measurements with the oscillator as part of the system. So, the tests with the Delay-Board in 

section 4.4.2 are the only measurements that allow deductions about the operation of the 

whole system. As not only the reflection coefficient was changed but also the power and the 

phase of the input signals, these deductions are valid for the expected behavior of a working 

oscillator. A clear correlation was shown between the mathematically corrected measurement 

values and the values obtained using the VNA, proving the basic function of the system and 

opening room for further optimization. 

 

The next chapter draws conclusions for this work and indicates perspectives for future 

research that can be derived from it. 
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5 Conclusion	

This Dissertation explored aspects of all blocks of an automatic impedance matching 

system, with a focus on the measuring block. 

First, a discrete 30 dBm power amplifier was designed and showed reduced but still 

reasonable performance in the measurements compared to the computer simulations. An 

output power of almost 28 dBm was achieved. 

Also, the control block and the variable impedance matching network of an automatic 

impedance matching system were reviewed. The matching circles theory from [3] was 

introduced to the matching state control algorithm as well as to a three variable component 

π-network as proposed in [56]. Especially, the latter was analyzed numerically based on 

matching circles. 

Most importantly, a new load reflection coefficient measuring block for use in an 

automatic impedance matching system was introduced and its operation was demonstrated 

using computer simulations and measurements. 

The simulations demonstrated a good performance for such a relatively simple system, 

showcasing a maximum absolute error of 0.116 for extreme values of the reflection coefficient 

and an average absolute error of 0.034. As can be expected in a PCB setup with many 

parasitics, the measurements did not show a performance as good as the simulations. But, 

after mathematically correcting some of the parasitics, the maximum absolute error was less 

than 0.4 and the average absolute error less than 0.2, with the least good values at extremely 

high impedances. This still shows a clear correlation between the reflection coefficients 
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measured by the designed block and the ones measured by the VNA. 

Unlike the simulations, the measurements did not include the Quadrature Injection 

Locking Oscillator but used a replacement because it was not possible to obtain a regular 

operation of the oscillator in the desired band, neither in a regular PCB setup nor in a 

tombstone setup that was built hoping to reduce parasitics. The reason for this are most 

probably the parasitics (such as transmission line effects), and the tolerances of the 

components (especially the transistors). These problems with the oscillator should be easier 

to deal with in an integrated circuit setup. After all, this kind of oscillators is especially suited 

for integration and its function was already demonstrated [42]. 

Altogether, for future research it is recommended to produce a version of the presented 

measuring block as an integrated circuit, as it is expected that it will perform better in this case 

because of less transmission line effects and tolerance problems in the quadrature injection 

locking oscillator and in the parts of the circuit that are currently on the Frontend-PCB. 

Also, a more thoroughly analysis of the application of matching circles to the control 

algorithm can be an interesting research topic, as well as the complete design of a three 

variable component π-network for a given error and number of matching states for a minimum 

number of capacitors. Finally, various impedance matching network topologies can be 

analyzed based on the matching circles theory. 
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A. Appendix	–	Final	Program	F303	

A.1 MAIN.C	

A.1.1 Includes	and	Variables	

#include "stm32f30x.h" 

#include "core_cm4.h" 

#include "stm32f30x_conf.h" 

#include "arm_math.h" 

#include "stm32f30x_it.h" 

#include "stm32f3_discovery.h" 

#include "firCoeffs.h" 

 

#define BLOCK_SIZE               MAX_ADC_VALS 

 

__IO float32_t f32SPI3txValues[4]; 

__IO uint8_t uiSPI3rxValues[16]; 

 

// FIR-Filter instances 

arm_fir_instance_f32 fir1S, fir2S, fir3S, fir4S; 

// Declare state buffers of size (numTaps + blockSize - 1) 

static float32_t fir1StateF32[BLOCK_SIZE + NUM_TAPS - 1]; 

static float32_t fir2StateF32[BLOCK_SIZE + NUM_TAPS - 1]; 

static float32_t fir3StateF32[BLOCK_SIZE + NUM_TAPS - 1]; 

static float32_t fir4StateF32[BLOCK_SIZE + NUM_TAPS - 1]; 

// assign denominator for division in average function (also normalization 

to Volts) 

static float32_t averageDenom = ((float32_t)MAX_ADC_VALS)*4095.0f/3.0f; 

 

static void Timer_Config(void); 

static void ADC_Config(void); 

static void SPI_Config(void); 

static void FilterAndAverageADCvals(float32_t* ADCoutVals); 
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A.1.2 Main	Function	

int main(void) 

{ 

    ADC12ready = false; 

    ADC34ready = false; 

    SPI3ready  = false; 

 

    isOddRun12 = true; 

    isOddRun34 = true; 

    adcRecordIndex12 = 0; 

    adcRecordIndex34 = 0; 

 

    adc1write = &adc1array1[0]; 

    adc1read  = &adc1array2[0]; 

    adc2write = &adc2array1[0]; 

    adc2read  = &adc2array2[0]; 

    adc3write = &adc3array1[0]; 

    adc3read  = &adc3array2[0]; 

    adc4write = &adc4array1[0]; 

    adc4read  = &adc4array2[0]; 

 

    // Call FIR init function to initialize the instance structure. 

    arm_fir_init_f32(&fir1S, NUM_TAPS, (float32_t *)&firCoeffs32[0], 

&fir1StateF32[0], (uint32_t)BLOCK_SIZE); 

    arm_fir_init_f32(&fir2S, NUM_TAPS, (float32_t *)&firCoeffs32[0], 

&fir2StateF32[0], (uint32_t)BLOCK_SIZE); 

    arm_fir_init_f32(&fir3S, NUM_TAPS, (float32_t *)&firCoeffs32[0], 

&fir3StateF32[0], (uint32_t)BLOCK_SIZE); 

 arm_fir_init_f32(&fir4S, NUM_TAPS, (float32_t *)&firCoeffs32[0], 

&fir4StateF32[0], (uint32_t)BLOCK_SIZE); 

 

 SystemCoreClockUpdate(); 

 

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4); 

 

    STM_EVAL_LEDInit(LED3); 

    STM_EVAL_LEDInit(LED6); 

    STM_EVAL_LEDInit(LED7); 

    STM_EVAL_LEDInit(LED9); 

    STM_EVAL_LEDInit(LED10); 

    STM_EVAL_LEDOff(LED3); 

    STM_EVAL_LEDOff(LED6); 

    STM_EVAL_LEDOff(LED7); 

    STM_EVAL_LEDOff(LED9); 

    STM_EVAL_LEDOff(LED10); 

 

    // FPU_Config(); 

    ADC_Config(); 

    SPI_Config(); 

    Timer_Config(); 

 

    while(1) 

    { 

        if (ADC12ready && ADC34ready) 

        { 

            ADC12ready = false; 

            ADC34ready = false; 

 

            STM_EVAL_LEDToggle(LED10); 
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            FilterAndAverageADCvals(&f32SPI3txValues[0]); 

            /* 

            f32SPI3txValues[0] = adc1read[MAX_ADC_VALS-1]; 

            f32SPI3txValues[1] = adc2read[MAX_ADC_VALS-1]; 

            f32SPI3txValues[2] = adc3read[MAX_ADC_VALS-1]; 

            f32SPI3txValues[3] = adc4read[MAX_ADC_VALS-1]; 

            */ 

            // 1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 

register, if DMA Rx is used. 

            // 2. Enable DMA streams for Tx and Rx in DMA registers, if the 

streams are used. 

            DMA_Cmd(DMA2_Channel2, ENABLE); 

            // 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 

register, if DMA Tx is used. 

            SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx, ENABLE); 

            // 4. Enable the SPI by setting the SPE bit. 

            GPIO_ResetBits(GPIOD, GPIO_Pin_0); 

            SPI_Cmd(SPI3, ENABLE); 

        } 

 

        if (SPI3ready) 

        { 

            SPI3ready = false; 

            // 2. Wait until FTLVL[1:0] = 00 (no more data to transmit). 

            while(SPI_GetTransmissionFIFOStatus(SPI3) != 0); 

            // 3. Wait until BSY=0 (the last data frame is processed). 

            while(SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET); 

            // 4. Disable the SPI (SPE=0). 

            GPIO_SetBits(GPIOD, GPIO_Pin_0); 

            SPI_Cmd(SPI3, DISABLE); 

            // 5. Read data until FRLVL[1:0] = 00 (read all the received 

data) 

            if (SPI_GetReceptionFIFOStatus(SPI3) != 0) 

                uiSPI3rxValues[0] = SPI_ReceiveData8(SPI3); 

            // 6. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and 

RXDMAEN bits in the 

            // SPI_CR2 register, if DMA Tx and/or DMA Rx are used. 

            SPI_I2S_DMACmd(SPI3, SPI_I2S_DMAReq_Tx, DISABLE); 

 

            //STM_EVAL_LEDOff(LED10); 

        } 

    } 

} 

 

A.1.3 Filtering	and	Averaging	Function		

static void FilterAndAverageADCvals(float32_t* ADCoutVals) 

{ 

    uint16_t runi; 

    float32_t adc1filtered[MAX_ADC_VALS]; 

    float32_t adc2filtered[MAX_ADC_VALS]; 

    float32_t adc3filtered[MAX_ADC_VALS]; 

    float32_t adc4filtered[MAX_ADC_VALS]; 

 

    // Call the FIR process function 

    arm_fir_f32(&fir1S, adc1read, &adc1filtered[0], (uint32_t)BLOCK_SIZE); 

    arm_fir_f32(&fir2S, adc2read, &adc2filtered[0], (uint32_t)BLOCK_SIZE); 

    arm_fir_f32(&fir3S, adc3read, &adc3filtered[0], (uint32_t)BLOCK_SIZE); 
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    arm_fir_f32(&fir4S, adc4read, &adc4filtered[0], (uint32_t)BLOCK_SIZE); 

 

    // sum all values of one block 

    ADCoutVals[0] = 0.0f; 

    ADCoutVals[1] = 0.0f; 

    ADCoutVals[2] = 0.0f; 

    ADCoutVals[3] = 0.0f; 

 

    for (runi=0; runi<MAX_ADC_VALS; runi++) 

    { 

        ADCoutVals[0] += adc1filtered[runi]; 

        ADCoutVals[1] += adc2filtered[runi]; 

        ADCoutVals[2] += adc3filtered[runi]; 

        ADCoutVals[3] += adc4filtered[runi]; 

    } 

 

    // division for average and normalization to 1V 

    ADCoutVals[0] /= averageDenom; 

    ADCoutVals[1] /= averageDenom; 

    ADCoutVals[2] /= averageDenom; 

    ADCoutVals[3] /= averageDenom; 

} 

 

A.1.4 Timer	Configuration	Function	

static void Timer_Config(void) 

{ 

    NVIC_InitTypeDef NVIC_InitStructure; 

    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 

 

    // System clock configuration 

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); 

    // Enable TIM4 IRQ Channel 

    NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 4; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

    NVIC_Init(&NVIC_InitStructure); 

    // Time Base configuration 

    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); 

    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t) ((SystemCoreClock) / 

100000) - 1; // 100 kHz 

    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

    TIM_TimeBaseStructure.TIM_Period = 199; // 100 kHz / 200 = 500 Hz 

refresh 

    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; 

    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); 

    // Activate Output of Update-Event by TRGO 

    TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update); 

    // TIM IT enable 

    TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); 

    // TIM4 counter enable (time counter) 

    TIM_Cmd(TIM3, ENABLE); 

} 
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A.1.5 Analog-to-Digital	Converter	Configuration	Function	

static void ADC_Config(void) 

{ 

    __IO uint16_t           runVal = 0; 

    NVIC_InitTypeDef        NVIC_InitStructure; 

    GPIO_InitTypeDef        GPIO_InitStructure; 

    DMA_InitTypeDef         DMA_InitStructure; 

    ADC_InitTypeDef         ADC_InitStructure; 

    ADC_CommonInitTypeDef   ADC_CommonInitStructure; 

 

    // Enable peripheral clocks 

    // PC2, PC3, PD11, PD12 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); 

    RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div1); 

    RCC_ADCCLKConfig(RCC_ADC34PLLCLK_Div1); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_ADC12, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_ADC34, ENABLE); 

 

    // Interrupt init 

    NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

    NVIC_Init(&NVIC_InitStructure); 

    NVIC_InitStructure.NVIC_IRQChannel = DMA2_Channel5_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_Init(&NVIC_InitStructure); 

 

    // set all to default 

    ADC_DeInit(ADC1); 

    ADC_DeInit(ADC2); 

    ADC_DeInit(ADC3); 

    ADC_DeInit(ADC4); 

    GPIO_StructInit(&GPIO_InitStructure); 

    DMA_StructInit(&DMA_InitStructure); 

    ADC_StructInit(&ADC_InitStructure); 

 

    // Enable voltage regulators 

    ADC_VoltageRegulatorCmd(ADC1, ENABLE); 

    ADC_VoltageRegulatorCmd(ADC2, ENABLE); 

    ADC_VoltageRegulatorCmd(ADC3, ENABLE); 

    ADC_VoltageRegulatorCmd(ADC4, ENABLE); 

    // wait for startup time to complete 

    for (runVal=0; runVal < 350; runVal++); 

 

    // Configure ADC Channel pins as analog input 

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 

    GPIO_InitStructure.GPIO_Speed= GPIO_Speed_2MHz; 

    GPIO_InitStructure.GPIO_OType= GPIO_OType_PP; 

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 

    // PC2 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; 

    GPIO_Init(GPIOC, &GPIO_InitStructure); 

    // PC3 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; 
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    GPIO_Init(GPIOC, &GPIO_InitStructure); 

    // PD11 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; 

    GPIO_Init(GPIOD, &GPIO_InitStructure); 

    // PD12 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; 

    GPIO_Init(GPIOD, &GPIO_InitStructure); 

 

    // DMA1 Channel1 and DMA2_Channel5 configuration 

    DMA_InitStructure.DMA_PeripheralBaseAddr = 

(uint32_t)(ADC1_2_BASE+0x0C); 

    DMA_InitStructure.DMA_MemoryBaseAddr = 

(uint32_t)&(uiADC12convValue[0]); 

    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; 

    DMA_InitStructure.DMA_BufferSize = 1; 

    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; 

    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; 

    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; 

    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

    DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; 

    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; 

    DMA_Init(DMA1_Channel1, &DMA_InitStructure); 

 

    DMA_InitStructure.DMA_PeripheralBaseAddr = 

(uint32_t)(ADC3_4_BASE+0x0C); 

    DMA_InitStructure.DMA_MemoryBaseAddr = 

(uint32_t)&(uiADC34convValue[0]); 

    DMA_InitStructure.DMA_Priority = DMA_Priority_High; 

    DMA_Init(DMA2_Channel5, &DMA_InitStructure); 

 

    DMA_Cmd(DMA1_Channel1, ENABLE); 

    DMA_Cmd(DMA2_Channel5, ENABLE); 

 

    // Differential Mode DISABLE 

    ADC_SelectDifferentialMode(ADC1, ADC_Channel_8, DISABLE); 

    ADC_SelectDifferentialMode(ADC2, ADC_Channel_9, DISABLE); 

    ADC_SelectDifferentialMode(ADC3, ADC_Channel_8, DISABLE); 

    ADC_SelectDifferentialMode(ADC4, ADC_Channel_9, DISABLE); 

 

 // Set Calibration Mode to Single 

 ADC_SelectCalibrationMode(ADC1, ADC_CalibrationMode_Single); 

 ADC_SelectCalibrationMode(ADC2, ADC_CalibrationMode_Single); 

 ADC_SelectCalibrationMode(ADC3, ADC_CalibrationMode_Single); 

 ADC_SelectCalibrationMode(ADC4, ADC_CalibrationMode_Single); 

 

 // Start calibrations and check end 

 ADC_StartCalibration(ADC1); 

 while(ADC_GetCalibrationStatus(ADC1)); 

 ADC_StartCalibration(ADC2); 

 while(ADC_GetCalibrationStatus(ADC2)); 

 ADC_StartCalibration(ADC3); 

 while(ADC_GetCalibrationStatus(ADC3)); 

 ADC_StartCalibration(ADC4); 

 while(ADC_GetCalibrationStatus(ADC4)); 

 

    // wait for startup time to complete 

    for (runVal=0; runVal < 35; runVal++); 

 

    // Enable all ADCs 

    ADC_Cmd(ADC1, ENABLE); 
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    ADC_Cmd(ADC2, ENABLE); 

    ADC_Cmd(ADC3, ENABLE); 

    ADC_Cmd(ADC4, ENABLE); 

    while(ADC_GetFlagStatus(ADC1, ADC_FLAG_RDY) == RESET); 

    while(ADC_GetFlagStatus(ADC2, ADC_FLAG_RDY) == RESET); 

    while(ADC_GetFlagStatus(ADC3, ADC_FLAG_RDY) == RESET); 

    while(ADC_GetFlagStatus(ADC4, ADC_FLAG_RDY) == RESET); 

 

    // ADC Common configuration 

    ADC_CommonInitStructure.ADC_Mode = ADC_Mode_RegSimul; 

    ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv1; 

    ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; 

    ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular; 

    ADC_CommonInitStructure.ADC_TwoSamplingDelay = 1; 

    ADC_CommonInit(ADC1, &ADC_CommonInitStructure); 

    ADC_CommonInit(ADC3, &ADC_CommonInitStructure); 

 

    // ADC1 regular configuration 

    ADC_InitStructure.ADC_ContinuousConvMode = 

ADC_ContinuousConvMode_Disable; 

    ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; 

    ADC_InitStructure.ADC_ExternalTrigConvEvent = 

ADC_ExternalTrigConvEvent_4; 

    ADC_InitStructure.ADC_ExternalTrigEventEdge = 

ADC_ExternalTrigEventEdge_RisingEdge; 

    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 

    ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable; 

    ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable; 

    ADC_InitStructure.ADC_NbrOfRegChannel = 1; 

    ADC_Init(ADC1, &ADC_InitStructure); 

    ADC_InitStructure.ADC_ExternalTrigConvEvent = 

ADC_ExternalTrigConvEvent_11; 

    ADC_Init(ADC3, &ADC_InitStructure); 

    ADC_InitStructure.ADC_ExternalTrigConvEvent = 

ADC_ExternalTrigConvEvent_0; 

    ADC_InitStructure.ADC_ExternalTrigEventEdge = 

ADC_ExternalTrigEventEdge_None; 

    ADC_Init(ADC2, &ADC_InitStructure); 

    ADC_Init(ADC4, &ADC_InitStructure); 

 

    ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, 

ADC_SampleTime_7Cycles5); 

    ADC_RegularChannelConfig(ADC2, ADC_Channel_9, 1, 

ADC_SampleTime_7Cycles5); 

    ADC_RegularChannelConfig(ADC3, ADC_Channel_8, 1, 

ADC_SampleTime_7Cycles5); 

    ADC_RegularChannelConfig(ADC4, ADC_Channel_9, 1, 

ADC_SampleTime_7Cycles5); 

 

    // Enable ADC1&3 DMA 

    ADC_DMACmd(ADC1, ENABLE); 

    ADC_DMACmd(ADC3, ENABLE); 

 

    // Enable DMA interrupt 

    DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); 

    DMA_ITConfig(DMA2_Channel5, DMA_IT_TC, ENABLE); 

 

    ADC_StartConversion(ADC1); 

    ADC_StartConversion(ADC3); 

} 
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A.1.6 Serial	Peripheral	Interface	Configuration	Function	

void SPI_Config(void) 

{ 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOD, ENABLE); 

    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); 

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE); 

    NVIC_InitTypeDef NVIC_InitStructure; 

    NVIC_InitStructure.NVIC_IRQChannel = DMA2_Channel2_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 5; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

    NVIC_Init(&NVIC_InitStructure); 

    GPIO_InitTypeDef GPIO_InitStructure; 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_11 | GPIO_Pin_10; 

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;      //Als Alternate 

Function 

    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;    //Push-Pull Betrieb 

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;    //Pull-Down 

Widerstand aktiviert 

    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50MHz Update-Rate 

    GPIO_Init(GPIOC, &GPIO_InitStructure); 

    GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_6); 

    GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_6); 

    GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_6); 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; 

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; 

    GPIO_Init(GPIOD, &GPIO_InitStructure); 

    GPIO_SetBits(GPIOD, GPIO_Pin_0); 

    DMA_InitTypeDef DMA_InitStructure; 

    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(SPI3_BASE+0x0C); 

    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&(f32SPI3txValues[0]); 

    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; 

    DMA_InitStructure.DMA_BufferSize = 16; 

    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 

    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; 

    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; 

    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

    DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; 

    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; 

    DMA_Init(DMA2_Channel2, &DMA_InitStructure); 

    SPI_InitTypeDef SPI_InitStructure; 

    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; 

    SPI_InitStructure.SPI_Mode = SPI_Mode_Master; 

    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; 

    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; 

    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; 

    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; 

    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;   

// Clock is derived from the master, slave does not need to be set. 

    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; 

    SPI_InitStructure.SPI_CRCPolynomial = 7; 

    SPI_Init(SPI3, &SPI_InitStructure); 

 

    DMA_ITConfig(DMA2_Channel2, DMA_IT_TC, ENABLE); 

} 

/************************END OF FILE****/ 
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A.2 STM32F30X_IT.C	

A.2.1 Includes	and	Standard	Exception	Handlers	

 

/* Includes -------------------------------------------------------------*/ 

#include "stm32f30x_it.h" 

#include "arm_math.h" 

#include "stm32f30x_conf.h" 

#include "stm32f3_discovery.h" 

 

/* Private functions ----------------------------------------------------*/ 

 

/*************************************************************************/ 

/*    Cortex-M4 Processor Exceptions Handlers OMITTED FOR CLARITY!       */ 

/*************************************************************************/ 

 

// [INSERT STANDARD HANDLERS HERE] 

 

/*************************************************************************/ 

/*            STM32F30x Peripherals Interrupt Handlers                   */ 

/*************************************************************************/ 

 

 

 

 

 

A.2.2 Timer	3	Interrupt	Handler	

void TIM3_IRQHandler(void) 

{ 

  if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) 

  { 

    TIM_ClearITPendingBit(TIM3, TIM_IT_Update); 

 

    STM_EVAL_LEDToggle(LED3); 

  } 

} 
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A.2.3 Direct	Memory	Access	1	Channel	1	Interrupt	Handler	(ADC12)	

void DMA1_Channel1_IRQHandler(void) 

{ 

  if (DMA_GetITStatus(DMA1_IT_TC1) != RESET) 

  { 

    DMA_ClearITPendingBit(DMA1_IT_TC1); 

 

    adc1write[adcRecordIndex12] = (float32_t)uiADC12convValue[0]; 

    adc2write[adcRecordIndex12] = (float32_t)uiADC12convValue[1]; 

 

    adcRecordIndex12++; 

 

    if (adcRecordIndex12 >= MAX_ADC_VALS) 

    { 

        adcRecordIndex12 = 0; 

 

        if (isOddRun12) 

        { 

            isOddRun12 = false; 

            adc1write = &adc1array2[0]; 

            adc1read  = &adc1array1[0]; 

            adc2write = &adc2array2[0]; 

            adc2read  = &adc2array1[0]; 

        } 

        else // even run 

        { 

            isOddRun12 = true; 

            adc1write = &adc1array1[0]; 

            adc1read  = &adc1array2[0]; 

            adc2write = &adc2array1[0]; 

            adc2read  = &adc2array2[0]; 

        } 

 

        STM_EVAL_LEDToggle(LED6); 

        ADC12ready = true; 

    } 

  } 

} 
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A.2.4 Direct	Memory	Access	2	Channel	2	Interrupt	Handler	(SPI	TX)	

void DMA2_Channel2_IRQHandler(void) 

{ 

  if (DMA_GetITStatus(DMA2_IT_TC2) != RESET) 

  { 

    DMA_ClearITPendingBit(DMA2_IT_TC2); 

    // 1. Disable DMA streams for Tx and Rx in the DMA registers, if the 

streams are used. 

    DMA_Cmd(DMA2_Channel2, DISABLE); 

 

    STM_EVAL_LEDToggle(LED9); 

 

    SPI3ready = true; 

  } 

} 

 

A.2.5 Direct	Memory	Access	2	Channel	5	Interrupt	Handler	(ADC34)	

void DMA2_Channel5_IRQHandler(void) 

{ 

  if (DMA_GetITStatus(DMA2_IT_TC5) != RESET) 

  { 

    DMA_ClearITPendingBit(DMA2_IT_TC5); 

 

    adc3write[adcRecordIndex34] = (float32_t)uiADC34convValue[0]; 

    adc4write[adcRecordIndex34] = (float32_t)uiADC34convValue[1]; 

 

    adcRecordIndex34++; 

 

    if (adcRecordIndex34 >= MAX_ADC_VALS) 

    { 

        adcRecordIndex34 = 0; 

 

        if (isOddRun34) 

        { 

            isOddRun34 = false; 

            adc3write = &adc3array2[0]; 

            adc3read  = &adc3array1[0]; 

            adc4write = &adc4array2[0]; 

            adc4read  = &adc4array1[0]; 

        } 

        else // even run 

        { 

            isOddRun34 = true; 

            adc3write = &adc3array1[0]; 

            adc3read  = &adc3array2[0]; 

            adc4write = &adc4array1[0]; 

            adc4read  = &adc4array2[0]; 

        } 

 

        STM_EVAL_LEDToggle(LED7); 

        ADC34ready = true; 

    } 

  } 

} 

 

/************************END OF FILE****/  
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B. Appendix	–	Final	Program	F429	

B.1 MAIN.C	

B.1.1 Includes,	Defines,	Variables	and	Function	Prototypes	

/* Includes -------------------------------------------------------------*/ 

#include "stm32f4xx.h" 

#include "stm32f4xx_conf.h" 

#include "system_stm32f4xx.h" 

#include <math.h> 

#include "arm_math.h" 

#include <stdio.h> 

#include "stm32f429i_discovery.h" 

#include "stm32f429i_discovery_ioe.h" 

#include "stm32f429i_discovery_lcd.h" 

#include "stm32f4xx_it.h" 

#include "MicroGUI.h" 

#include "SmithChart.h" 

 

/* Private define -------------------------------------------------------*/ 

 

  #define MESSAGE1      "Reflection Coefficient Control" 

  #define MESSAGE2      "Version:2.1.1 / Author:V.Kible" 

  #define LINENUM       0x17 

  #define FONTSIZE      Font8x12 

 

  #define USE_LCD 

 

/* Private pin and port variables for Matching-LEDs ---------------------*/ 

 

uint16_t gpio_pin_match[7] = 

{ 

    GPIO_Pin_4,  //PB4 

    GPIO_Pin_7,  //PB7 

    GPIO_Pin_11, //PC11 

    GPIO_Pin_4,  //PD4 

    GPIO_Pin_5,  //PD5 
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    GPIO_Pin_7,  //PD7 

    GPIO_Pin_9   //PG9 

}; 

 

GPIO_TypeDef* gpio_port_match[7] = 

{ 

    GPIOB, //PB4 

    GPIOB, //PB7 

    GPIOC, //PC11 

    GPIOD, //PD4 

    GPIOD, //PD5 

    GPIOD, //PD7 

    GPIOG  //PG9 

}; 

 

/* Private variables ----------------------------------------------------*/ 

 

__IO bool mainRoutineActivate; 

__IO bool displaySPIvalsActivate; 

__IO float32_t f32SPI4rxValues[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; 

__IO float32_t f32SPI4copiedValues[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; 

 

/* Private function prototypes ------------------------------------------*/ 

 

//static void FilterAndAverageADCvals(float32_t* ADC_re, float32_t* ADC_im, 

float32_t* ADC_forw); 

static void CalculateReflCoef(vec2D_t* reflCoefRaw); 

static void LimitReflCoef(vec2D_t* reflCoefRaw, vec2D_t* reflCoefLim); 

static void Matcher(vec2D_t* reflCoefLim); 

static void StateSwitcher(void); 

static void Timer_Config(void); 

static void Pin_Config(void); 

static void SPI_Config(void); 

static void Init_MatchStates(void); 

 

#ifdef USE_LCD 

static void Display_Init(void); 

#endif /* USE_LCD */ 

 

/* Private functions ----------------------------------------------------*/ 

 

B.1.2 Main	Function	

int main(void) 

{ 

    vec2D_t   rawReflCoef, limReflCoef; 

 

    mainRoutineActivate = false; 

    displaySPIvalsActivate = false; 

    activeState  = 0; 

    desiredState = 0; 

 

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4); 

 

    Init_MatchStates(); 

    Init_SmithArrays(); 

 

    STM_EVAL_LEDInit(LED3); 

    STM_EVAL_LEDInit(LED4); 
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    STM_EVAL_LEDOn(LED3); 

    STM_EVAL_LEDOff(LED4); 

    STM_EVAL_PBInit(BUTTON_USER, BUTTON_MODE_GPIO); 

 

    Pin_Config(); 

    SPI_Config(); 

    Timer_Config(); 

 

    #ifdef USE_LCD 

    Display_Init(); 

    IOE_Config(); 

    GUI_Init(); 

    #endif /* USE_LCD */ 

 

    while(1) 

    { 

        if (mainRoutineActivate) 

        { 

            mainRoutineActivate = false; 

 

            STM_EVAL_LEDToggle(LED3); // heartbeat 

 

            CalculateReflCoef(&rawReflCoef); 

 

            LimitReflCoef(&rawReflCoef, &limReflCoef); 

 

            Matcher(&limReflCoef); 

 

            #ifdef USE_LCD 

            GUI_Refresh(&rawReflCoef, &limReflCoef); 

            #endif /* USE_LCD */ 

 

            StateSwitcher(); 

        } 

    } 

} 

 

B.1.3 Reflection	Coefficient	Calculation	and	Correction	Function	

static void CalculateReflCoef(vec2D_t* reflCoefRaw) 

{ 

    float32_t aRaw, bRaw, cRaw, dRaw, aCor, bCor, cCor, dCor, denom; 

 

    if ((sinA_B == 0.0f) || (sinC_D == 0.0f)) 

    { 

        reflCoefRaw->x = 0.0f; 

        reflCoefRaw->y = 0.0f; 

        return; 

    } 

 

    aRaw = (f32SPI4copiedValues[0]-aOffset)*aScale; 

    bRaw = (f32SPI4copiedValues[1]-bOffset)*bScale; 

    cRaw = (f32SPI4copiedValues[2]-cOffset)*cScale; 

    dRaw = (f32SPI4copiedValues[3]-dOffset)*dScale; 

 

    aCor = (bRaw*sinA-aRaw*sinB)/sinA_B; // Re{R} 

    bCor = (aRaw*cosB-bRaw*cosA)/sinA_B; // Im{R} 

    cCor = (dRaw*sinC-cRaw*sinD)/sinC_D; // Re{F} 

    dCor = (cRaw*cosD-dRaw*cosC)/sinC_D; // Im{F} 
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    denom = cCor*cCor + dCor*dCor; 

 

    if (denom == 0.0f) 

    { 

        reflCoefRaw->x = 0.0f; 

        reflCoefRaw->y = 0.0f; 

        return; 

    } 

 

    reflCoefRaw->x = (aCor*cCor + bCor*dCor)/denom; 

    reflCoefRaw->y = (bCor*cCor - aCor*dCor)/denom; 

} 

 

B.1.4 Limiter	Function	

static void LimitReflCoef(vec2D_t* reflCoefRaw, vec2D_t* reflCoefLim) 

{ 

    vec2D_t solution1, solution2, startPoint, endPoint; 

    float32_t m, a, b, k, c, d; 

    float32_t squaredDistance1, squaredDistance2, dist1x, dist1y, dist2x, 

dist2y; 

 

    startPoint.x = matchState[activeState].re; 

    startPoint.y = matchState[activeState].im; 

 

    endPoint.x = startPoint.x + reflCoefRaw->x; 

    endPoint.y = startPoint.y + reflCoefRaw->y; 

 

    if ( (startPoint.x != endPoint.x) || (startPoint.y != endPoint.y) ) 

    { 

        if (endPoint.x * endPoint.x + endPoint.y * endPoint.y > 1.0f) 

        { // outside unit circle 

            if (startPoint.x == endPoint.x) 

            { // vertical line 

                d = 1.0f - startPoint.x * startPoint.x; 

                if (d < 0.0f) 

                { // dummy solution, no real solution 

                    solution1.x = 0.0f; 

                    solution1.y = 0.0f; 

                    solution2.x = 0.0f; 

                    solution2.y = 0.0f; 

                } 

                else 

                { // calculate the intersections with the unit circle 

                    arm_sqrt_f32(d, &k); 

                    solution1.x = startPoint.x; 

                    solution1.y = k; 

                    solution2.x = startPoint.x; 

                    solution2.y = -k; 

                } 

            } 

            else // line is not vertical, m is not infinite 

            { 

                m = (endPoint.y - startPoint.y) / (endPoint.x - 

startPoint.x); // slope 

                a = 1.0f + m * m; 

                b = 2.0f * m * (startPoint.y - m * startPoint.x); 

                k = (m * startPoint.x - startPoint.y); 
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                c = k * k - 1.0f; 

                d = b * b - 4.0f * a * c; // discriminant 

 

                if (d < 0.0f) 

                { // dummy solution, no real solution 

                    solution1.x = 0.0f; 

                    solution1.y = 0.0f; 

                    solution2.x = 0.0f; 

                    solution2.y = 0.0f; 

                } 

                else 

                { // calculate the intersections with the unit circle 

                    arm_sqrt_f32(d, &k); 

 

                    solution1.x = (-b + k) / (2.0f * a); 

                    solution1.y = m * (solution1.x - startPoint.x) + 

startPoint.y; 

 

                    solution2.x = (-b - k) / (2.0f * a); 

                    solution2.y = m * (solution2.x - startPoint.x) + 

startPoint.y; 

                } 

            } 

 

            // the desired solution is the one that is closer to the 

endPoint, so calculate a distance measure 

            dist1x = solution1.x - endPoint.x; 

            dist1y = solution1.y - endPoint.y; 

            dist2x = solution2.x - endPoint.x; 

            dist2y = solution2.y - endPoint.y; 

            squaredDistance1 = dist1x * dist1x + dist1y * dist1y; 

            squaredDistance2 = dist2x * dist2x + dist2y * dist2y; 

 

            // compare the two distance measures to decide what solution to 

use 

            if (squaredDistance1 < squaredDistance2) 

            { 

                reflCoefLim->x = solution1.x; 

                reflCoefLim->y = solution1.y; 

            } 

            else 

            { 

                reflCoefLim->x = solution2.x; 

                reflCoefLim->y = solution2.y; 

            } 

        } 

        else // within unit circle 

        { 

            reflCoefLim->x = endPoint.x; 

            reflCoefLim->y = endPoint.y; 

        } 

    } 

    else // startPoint = endPoint, perfectly matched condition 

    { 

        reflCoefLim->x = endPoint.x; 

        reflCoefLim->y = endPoint.y; 

    } 

} 
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B.1.5 Matcher	Function	

static void Matcher(vec2D_t* reflCoefLim) 

{ 

    uint8_t runVal; 

    uint8_t minNumber = 0; 

    float32_t minDistSq = 1000000.0f; 

    float32_t distanceSq; 

 

    float32_t distx = matchState[activeState].re - reflCoefLim->x; 

    float32_t disty = matchState[activeState].im - reflCoefLim->y; 

 

    float32_t activeDistSq = distx * distx + disty * disty; 

 

    // check only if outside active matching state 

    if ( activeDistSq > 

(matchState[activeState].rad)*(matchState[activeState].rad) ) 

    { 

        // find new minimum distance 

        for (runVal = 0; runVal < NUM_MATCH_STATE; runVal++) 

        { 

            distx = matchState[runVal].re - reflCoefLim->x; 

            disty = matchState[runVal].im - reflCoefLim->y; 

 

            distanceSq = distx * distx + disty * disty; 

            if (distanceSq < minDistSq) 

            { 

                minDistSq = distanceSq; 

                minNumber = runVal; 

            } 

        } 

 

        // second check, to prevent the system from oscillating in the not 

matchable area 

        if ( (activeDistSq - minDistSq) > 0.1f) 

                desiredState = minNumber; 

        else    desiredState = activeState; 

    } 

    else desiredState = activeState; 

} 

 

B.1.6 State	Switcher	Function	

static void StateSwitcher(void) 

{ 

    static bool buttonStateOld = false; 

    bool buttonState = STM_EVAL_PBGetState(BUTTON_USER); 

    uint8_t run; 

 

    // if button pressed (only rising edge) 

    if ( (buttonState == true) && (buttonStateOld == false) ) 

    { 

        STM_EVAL_LEDOn(LED4); 

 

        // do control action 

        activeState = desiredState; 

 

        // set outputs accordingly 

        for (run = 0; run < NUM_MATCH_STATE; run++) 



 

 

123 

        { 

            GPIO_WriteBit(gpio_port_match[run], gpio_pin_match[run], ( 

(matchState[activeState].out_pin)&(1 << run) ) >> run ); 

        } 

    } 

    else STM_EVAL_LEDOff(LED4); 

 

    buttonStateOld = buttonState; 

} 

 

B.1.7 Timer	4	Configuration	Function	

static void Timer_Config(void) 

{ 

    NVIC_InitTypeDef NVIC_InitStructure; 

    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 

 

    /* System clock configuration */ 

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); 

    /* Enable TIM4 IRQ Channel */ 

    NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 4; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

    NVIC_Init(&NVIC_InitStructure); 

    /* Time Base configuration */ 

    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); 

    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t) ((SystemCoreClock/2) / 

100000) - 1; // 100 kHz 

    TIM_TimeBaseStructure.TIM_ClockDivision = 0; 

    TIM_TimeBaseStructure.TIM_Period = 19999; // 100 kHz / 20000 = 5 Hz -> 

5 Hz refresh 

    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

    TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); 

    /* TIM IT enable */ 

    TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE); 

    /* TIM4 counter enable (time counter) */ 

    TIM_Cmd(TIM4, ENABLE); 

} 

 

B.1.8 Output	Pin	Configuration	Function	

static void Pin_Config(void) 

{ 

    uint8_t run; 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE); 

 

    GPIO_InitTypeDef GPIO_InitStructure; 

    GPIO_StructInit(&GPIO_InitStructure); 

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;     //Als Ausgang 

    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;    //Push-Pull Betrieb 

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;  //Kein Pull-Up oder 

Pull-Down Widerstand aktiviert 

    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50MHz Update-Rate 
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    for (run = 0; run < NUM_MATCH_STATE; run++) 

    { 

        GPIO_InitStructure.GPIO_Pin = gpio_pin_match[run]; 

        GPIO_Init(gpio_port_match[run], &GPIO_InitStructure); 

        if (run == 0)   GPIO_SetBits(gpio_port_match[run], 

gpio_pin_match[run]); 

        else            GPIO_ResetBits(gpio_port_match[run], 

gpio_pin_match[run]); 

    } 

} 

 

B.1.9 Serial	Peripheral	Interface	Configuration	Function	

void SPI_Config(void) 

{ 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); 

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); 

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI4, ENABLE); 

 

    NVIC_InitTypeDef NVIC_InitStructure; 

    NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; 

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

    NVIC_Init(&NVIC_InitStructure); 

 

    GPIO_InitTypeDef GPIO_InitStructure; 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_4 | GPIO_Pin_5 | 

GPIO_Pin_6; 

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;      //Als Alternate 

Function 

    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;    //Push-Pull Betrieb 

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;    //Pull-Down 

Widerstand aktiviert 

    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50MHz Update-Rate 

    GPIO_Init(GPIOE, &GPIO_InitStructure); 

    GPIO_PinAFConfig(GPIOE, GPIO_PinSource2, GPIO_AF_SPI4); 

    GPIO_PinAFConfig(GPIOE, GPIO_PinSource4, GPIO_AF_SPI4); 

    GPIO_PinAFConfig(GPIOE, GPIO_PinSource5, GPIO_AF_SPI4); 

    GPIO_PinAFConfig(GPIOE, GPIO_PinSource6, GPIO_AF_SPI4); 

 

    DMA_InitTypeDef DMA_InitStructure; 

    DMA_InitStructure.DMA_Channel = DMA_Channel_4; 

    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(SPI4_BASE+0x0C); 

    DMA_InitStructure.DMA_Memory0BaseAddr = 

(uint32_t)&(f32SPI4rxValues[0]); 

    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; 

    DMA_InitStructure.DMA_BufferSize = 16; 

    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 

    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; 

    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; 

    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

    DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; 

    DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; 

    DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; 

    DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; 

    DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; 

    DMA_Init(DMA2_Stream0, &DMA_InitStructure); 
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    DMA_ITConfig(DMA2_Stream0, DMA_IT_TC, ENABLE); 

 

    SPI_InitTypeDef SPI_InitStructure; 

    SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; 

    SPI_InitStructure.SPI_Mode = SPI_Mode_Slave; 

    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; 

    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; 

    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; 

    SPI_InitStructure.SPI_NSS = SPI_NSS_Hard; 

    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;   

// Clock is derived from the master, slave does not need to be set. 

    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; 

    SPI_InitStructure.SPI_CRCPolynomial = 7; 

    SPI_Init(SPI4, &SPI_InitStructure); 

 

    DMA_Cmd(DMA2_Stream0, ENABLE); 

 

    SPI_I2S_DMACmd(SPI4, SPI_I2S_DMAReq_Rx, ENABLE); 

 

    SPI_Cmd(SPI4, ENABLE); 

} 

 

B.1.10 Matching	States	Initialization	Function	

static void Init_MatchStates(void) 

{ 

    uint8_t run; 

 

        matchState[0].re      = 0.0f; 

        matchState[0].im      = 0.0f; 

        matchState[0].rad     = 0.3f; 

        matchState[0].out_pin = 1; 

 

    for (run=1; run<NUM_MATCH_STATE; run++) 

    { 

        matchState[run].re      = 0.5f * arm_cos_f32( 2*PI*((float32_t)run-

1.0f)/((float32_t)NUM_MATCH_STATE-1.0f) ); 

        matchState[run].im      = 0.5f * arm_sin_f32( 2*PI*((float32_t)run-

1.0f)/((float32_t)NUM_MATCH_STATE-1.0f) ); 

        matchState[run].rad     = 0.3f; 

        matchState[run].out_pin = 1 << run; 

    } 

} 

 

B.1.11 Display	Initialization	Function	

#ifdef USE_LCD 

static void Display_Init(void) 

{ 

  //uint8_t aTextBuffer[50]; 

  //sFONT*  pActiveFont; 

 

  /* Initialize the LCD */ 

  LCD_Init(); 

  LCD_LayerInit(); 

 

  /* Eable the LTDC */ 
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  LTDC_Cmd(ENABLE); 

 

  /* Set LCD Background Layer  */ 

  LCD_SetLayer(LCD_BACKGROUND_LAYER); 

 

  /* Clear the Background Layer */ 

  LCD_Clear(LCD_COLOR_WHITE); 

 

  /* Configure the transparency for background */ 

  LCD_SetTransparency(0); 

 

  /* Set LCD Foreground Layer  */ 

  LCD_SetLayer(LCD_FOREGROUND_LAYER); 

 

  /* Configure the transparency for foreground */ 

  LCD_SetTransparency(200); 

 

  /* Clear the Foreground Layer */ 

  LCD_Clear(LCD_COLOR_WHITE); 

 

  /* Set the LCD Back Color and Text Color*/ 

  LCD_SetBackColor(LCD_COLOR_BLUE); 

  LCD_SetTextColor(LCD_COLOR_WHITE); 

 

    /* Set the LCD Text size */ 

  LCD_SetFont(&FONTSIZE); 

 

  LCD_DisplayStringLine(LCD_LINE_0, (uint8_t*)MESSAGE1); 

  LCD_DisplayStringLine(LCD_LINE_1, (uint8_t*)MESSAGE2); 

 

  /* Set the LCD Back Color and Text Color*/ 

  LCD_SetBackColor(LCD_COLOR_WHITE); 

  LCD_SetTextColor(LCD_COLOR_BLUE); 

} 

#endif /* USE_LCD */ 

 

// [ASSERT FUNCTION OMITTED FOR CLARITY] 

 

/* END OF FILE *********************************************/ 
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B.2 STM32F4XX_IT.C	

B.2.1 Includes,	Variables,	Standard	Exception	Handlers	

/* Includes -------------------------------------------------------------*/ 

#include "arm_math.h" 

#include "stm32f4xx_it.h" 

#include "stm32f4xx_conf.h" 

#include "stm32f429i_discovery.h" 

 

/* Private variables ----------------------------------------------------*/ 

extern __IO bool mainRoutineActivate; 

extern __IO bool displaySPIvalsActivate; 

extern __IO float32_t f32SPI4rxValues[4]; 

extern __IO float32_t f32SPI4copiedValues[4]; 

 

/*************************************************************************/ 

/*       Cortex-M4 Processor Exceptions Handlers OMITTED FOR CLARITY!    */ 

/*************************************************************************/ 

 

// [INSERT STANDARD HANDLERS HERE] 

 

/*************************************************************************/ 

/*            STM32F4xx Peripherals Interrupt Handlers                   */ 

/*************************************************************************/ 

 

B.2.2 Timer	4	Interrupt	Handler	

void TIM4_IRQHandler(void) 

{ 

  if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET) 

  { 

    TIM_ClearITPendingBit(TIM4, TIM_IT_Update); 

 

    mainRoutineActivate = true; 

  } 

} 

 

B.2.3 Direct	Memory	Access	2	Stream	0	Interrupt	Handler	(SPI	RX)	

void DMA2_Stream0_IRQHandler(void) 

{ 

  if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) 

  { 

    DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); 

 

    f32SPI4copiedValues[0]=f32SPI4rxValues[0]; 

    f32SPI4copiedValues[1]=f32SPI4rxValues[1]; 

    f32SPI4copiedValues[2]=f32SPI4rxValues[2]; 

    f32SPI4copiedValues[3]=f32SPI4rxValues[3]; 

 

    displaySPIvalsActivate = true; 

  } 

} 

/*************END OF FILE**************/ 
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B.3 MICROGUI.C	

B.3.1 Includes,	Defines,	Types	and	Variables	

/* Includes ----------------------------------------------------------*/ 

#include "MicroGUI.h" 

#include <stdio.h> 

#include "stm32f429i_discovery.h" 

#include "stm32f429i_discovery_ioe.h" 

#include "stm32f429i_discovery_lcd.h" 

#include "SmithChart.h" 

#include <math.h> 

#include "arm_math.h" 

 

#define ABS(X)  ((X) > 0 ? (X) : -(X)) 

 

typedef enum BOOL { false, true } bool; 

 

extern __IO bool displaySPIvalsActivate; 

extern __IO float32_t f32SPI4copiedValues[4]; 

 

TP_STATE* TouchState; 

uint16_t  OldTouchDetected; 

FLASH_Status flashResult; 

uint16_t radioButtonSignal, radioButtonValue, radioButtonFactor, 

windowNumber; 

 

// Memory Region In Flash 

__attribute__((__section__(".user_data"))) const int32_t userConfig[15]; 

 

uint8_t infoTextError[] = "Error writing!"; 

uint8_t infoTextStart[] = "Write Flash?"; 

uint8_t* pInfoText = infoTextStart; 

int32_t configLimitPos[15] = { 1800, 9999, 99999, 1800, 9999, 99999, 1800, 

9999, 99999, 1800, 9999, 99999, 0, 0, 0 }; 

int32_t configLimitNeg[15] = {-1800,-9999,     1,-1800,-9999,     1,-1800,-

9999,     1,-1800,-9999,     1, 0, 0, 0 }; 

 

GUI_button_t button[] = 

{ /* { Caption, Xpos, Ypos, Width, Height } */ 

    {"EDIT", 130, 280, 100,  30 }, 

    {"RI",    10,  60,  40,  30 }, 

    {"RQ",    70,  60,  40,  30 }, 

    {"FI",   130,  60,  40,  30 }, 

    {"FQ",   190,  60,  40,  30 }, 

    {"ANG",   10, 110,  40,  30 }, 

    {"OFS",   70, 110,  40,  30 }, 

    {"SCA",  130, 110,  40,  30 }, 

    {"0.1",   10, 160,  40,  30 }, 

    {"1",     70, 160,  40,  30 }, 

    {"10",  130, 160,  40,  30 }, 

    {"100",  190, 160,  40,  30 }, 

    {"-",   10, 210,  40,  30 }, 

    {"+",  190, 210,  40,  30 }, 

    {"CANCEL",  10, 280, 100,  30 }, 

    {"SAVE",   130, 280, 100,  30 }, 

    {"CANCEL",  10, 160, 100,  30 }, 

    {"SAVE",   130, 160, 100,  30 } 

}; 
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B.3.2 Function	to	Deserialize	Configuration	Values	

void GUI_DeserializeConfigVals(void) 

{ 

    // angle mismatch in 0.1 degrees 

    // copyConfig[0] // RI ANG A --- sinA, cosA 

    cosA = arm_cos_f32( PI*((float32_t)copyConfig[0])/1800.0f ); 

    sinA = arm_sin_f32( PI*((float32_t)copyConfig[0])/1800.0f ); 

    // copyConfig[3] // RQ ANG B --- sinB, cosB, sinA_B 

    cosB = arm_cos_f32( PI*((float32_t)copyConfig[3])/1800.0f ); 

    sinB = arm_sin_f32( PI*((float32_t)copyConfig[3])/1800.0f ); 

    sinA_B = arm_sin_f32( PI*((float32_t)(copyConfig[0]-

copyConfig[3]))/1800.0f ); 

    // copyConfig[6] // FI ANG C --- sinC, cosC 

    cosC = arm_cos_f32( PI*((float32_t)copyConfig[6])/1800.0f ); 

    sinC = arm_sin_f32( PI*((float32_t)copyConfig[6])/1800.0f ); 

    // copyConfig[9] // FQ ANG D --- sinD, cosD, sinC_D 

    cosD = arm_cos_f32( PI*((float32_t)copyConfig[9])/1800.0f ); 

    sinD = arm_sin_f32( PI*((float32_t)copyConfig[9])/1800.0f ); 

    sinC_D = arm_sin_f32( PI*((float32_t)(copyConfig[6]-

copyConfig[9]))/1800.0f ); 

 

    // offsets in 0.1mV int32 to 1V float32 

    aOffset = ((float32_t)(copyConfig[1]+15000))/10000.0f;  // RI OFS 

    bOffset = ((float32_t)(copyConfig[4]+15000))/10000.0f;  // RQ OFS 

    cOffset = ((float32_t)(copyConfig[7]+15000))/10000.0f;  // FI OFS 

    dOffset = ((float32_t)(copyConfig[10]+15000))/10000.0f; // FQ OFS 

 

    // scaling mismatch in 0.1% int32 to part of one 

    aScale = ((float32_t)copyConfig[2])/1000.0f;  // RI SCA aScale 

    bScale = ((float32_t)copyConfig[5])/1000.0f;  // RQ SCA bScale 

    cScale = ((float32_t)copyConfig[8])/1000.0f;  // FI SCA cScale 

    dScale = ((float32_t)copyConfig[11])/1000.0f; // FQ SCA dScale 

 

    // (0=RI 1=RQ 2=FI 3=FQ)*3 + (0=ANG 1=OFS 2=SCA) 

} 

 

B.3.3 Function	to	Check	Buttons	for	Touch	Event	

uint16_t GUI_CheckTouchButtons(uint16_t firstButtonNum, uint16_t 

lastButtonNum) 

{ 

    uint16_t run = firstButtonNum-1; 

    bool buttonTriggered = false; 

 

    while ( (run < lastButtonNum) && (!buttonTriggered) ) 

    { 

        buttonTriggered = ( (TouchState->X >= button[run].Xpos) && 

(TouchState->X <= (button[run].Xpos + button[run].Width ) ) && 

                            (TouchState->Y >= button[run].Ypos) && 

(TouchState->Y <= (button[run].Ypos + button[run].Height) ) ); 

        run++; 

    } 

 

    if (buttonTriggered) return run; 

    else                 return 0; 

} 
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B.3.4 Draw	Buttons	Function	

void GUI_DrawButtons(uint16_t firstButtonNum, uint16_t lastButtonNum, 

uint16_t relativeActiveButtonNum) 

{ 

    uint16_t run = firstButtonNum-1; 

    uint16_t absActiveButton = run + relativeActiveButtonNum; 

    while (run < lastButtonNum) 

    { 

        if (run == absActiveButton) 

        { 

 

            LCD_SetTextColor(GUI_BACK_ACTIVE); 

            LCD_DrawFullRect(button[run].Xpos, button[run].Ypos, 

button[run].Width, button[run].Height); 

            LCD_SetBackColor(GUI_BACK_ACTIVE); 

            LCD_SetTextColor(GUI_TEXT_ACTIVE); 

        } 

        else 

        { 

            LCD_SetTextColor(GUI_BACK_INACTV); 

            LCD_DrawFullRect(button[run].Xpos, button[run].Ypos, 

button[run].Width, button[run].Height); 

            LCD_SetBackColor(GUI_BACK_INACTV); 

            LCD_SetTextColor(GUI_TEXT_INACTV); 

        } 

        LCD_DisplayStringCenteredXY(button[run].Xpos + button[run].Width/2, 

button[run].Ypos + button[run].Height/2, button[run].Caption); 

 

        run++; 

    } 

} 

 

B.3.5 Draw	Value	Box	Function	

void GUI_DrawValueBox(void) 

{ 

    uint8_t aTextBuffer[8]; 

    uint8_t posArr = radioButtonSignal*3 + radioButtonValue; 

 

    LCD_SetBackColor(LCD_COLOR_WHITE); 

    LCD_SetTextColor(LCD_COLOR_BLACK); 

 

    LCD_DrawRect(70, 210, 30, 100); 

 

    sprintf((char*)aTextBuffer, "%ld.%ld", copyConfig[posArr]/10, 

ABS(copyConfig[posArr])%10 ); 

    LCD_DisplayStringCenteredXY(120, 225, aTextBuffer); 

} 
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B.3.6 Function	to	Program	Flash	Memory	

bool GUI_ProgramFlash(void) 

{ 

    uint8_t run; 

 

    copyConfig[14]++; // for test 

 

    FLASH_Unlock(); 

    FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | 

FLASH_FLAG_PGAERR | FLASH_FLAG_PGSERR); 

    flashResult = FLASH_EraseSector(FLASH_Sector_23, VoltageRange_3); 

 

    run = 0; 

    while ( (run < 15) && (flashResult == FLASH_COMPLETE) ) 

    { 

        flashResult = FLASH_ProgramWord((uint32_t)(&(userConfig[run])), 

copyConfig[run]); 

        run++; 

    } 

 

    FLASH_Lock(); 

 

    return (flashResult == FLASH_COMPLETE); 

} 

 

B.3.7 GUI	Refresh	Function	

void GUI_Refresh(vec2D_t* rawReCo, vec2D_t* reflCoef) 

{ 

    OldTouchDetected = TouchState->TouchDetected; 

    TouchState = IOE_TP_GetState(); 

 

    if ( (!TouchState->TouchDetected) && OldTouchDetected ) 

    { // execute whenever touch is released 

        switch (windowNumber) 

        { 

            case 2: 

                GUI_CheckWindow2(); 

                break; 

            case 3: 

                GUI_CheckWindow3(); 

                break; 

            default: 

                GUI_CheckWindow1(); 

                break; // 1 

        } 

 

        // clear screen area 

        LCD_SetBackColor(LCD_COLOR_WHITE); 

        LCD_SetTextColor(LCD_COLOR_WHITE); 

        LCD_DrawFullRect(8, 58, 224, 254); 

 

        // Window Number can change in ButtonCheck Routines 

        switch (windowNumber) 

        { 

            case 2: 

                GUI_RedrawWindow2(); 

                break; 
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            case 3: 

                GUI_RedrawWindow3(); 

                break; 

            default: 

                GUI_RedrawWindow1(); 

                break; // 1 

        } 

    } 

 

    if (windowNumber == 1) 

    { 

        GUI_RedrawReflectionCoefficientChart(reflCoef); 

        GUI_RedrawSPIvals(rawReCo); 

    } 

} 

 

B.3.8 Function	to	Check	Window	1	for	Touch	

void GUI_CheckWindow1(void) 

{ 

    switch ( GUI_CheckTouchButtons(1, 1) ) 

    { 

        case 1: 

            // button 1 pressed, go to window 2, preset values 

            radioButtonSignal = 0; 

            radioButtonValue = 0; 

            radioButtonFactor = 1; 

            windowNumber = 2; 

            break; 

        default: 

            // no button, do nothing 

            break; 

    } 

} 

 

B.3.9 Function	to	Check	Window	2	for	Touch	

void GUI_CheckWindow2(void) 

{ 

    uint8_t posArr = radioButtonSignal*3 + radioButtonValue; 

    int32_t edFact = 1; 

    uint8_t run; 

    for (run = 0; run < radioButtonFactor; run++) edFact *= 10; 

 

    switch ( GUI_CheckTouchButtons(2, 16) ) 

    { 

        case 2: 

            radioButtonSignal = 0; 

            break; 

        case 3: 

            radioButtonSignal = 1; 

            break; 

        case 4: 

            radioButtonSignal = 2; 

            break; 

        case 5: 

            radioButtonSignal = 3; 

            break; 



 

 

133 

        case 6: 

            radioButtonValue = 0; 

            break; 

        case 7: 

            radioButtonValue = 1; 

            break; 

        case 8: 

            radioButtonValue = 2; 

            break; 

        case 9: 

            radioButtonFactor = 0; 

            break; 

        case 10: 

            radioButtonFactor = 1; 

            break; 

        case 11: 

            radioButtonFactor = 2; 

            break; 

        case 12: 

            radioButtonFactor = 3; 

            break; 

        case 13: 

            copyConfig[posArr] -= edFact; 

            if (copyConfig[posArr] < configLimitNeg[posArr]) 

                copyConfig[posArr] = configLimitNeg[posArr]; 

            break; 

        case 14: 

            copyConfig[posArr] += edFact; 

            if (copyConfig[posArr] > configLimitPos[posArr]) 

                copyConfig[posArr] = configLimitPos[posArr]; 

            break; 

        case 15: 

            for (run = 0; run < 15; run++) 

            { 

                copyConfig[run] = userConfig[run]; 

            } 

            windowNumber = 1; 

            break; 

        case 16: 

            pInfoText = infoTextStart; 

            windowNumber = 3; 

            break; 

        default: 

            // no button, do nothing 

            break; 

    } 

} 

 

B.3.10 Function	to	Check	Window	3	for	Touch	

void GUI_CheckWindow3(void) 

{ 

    switch ( GUI_CheckTouchButtons(17, 18) ) 

    { 

        case 17: 

            windowNumber = 2; 

            break; 

        case 18: 

            if ( GUI_ProgramFlash() ) 
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            { 

                GUI_DeserializeConfigVals(); 

                windowNumber = 1; 

            } 

            else pInfoText = infoTextError; 

            break; 

        default: 

            // no button, do nothing 

            break; 

    } 

} 

 

B.3.11 Function	to	Redraw	Window	1	

void GUI_RedrawWindow1(void) 

{ 

    LCD_SetFont(&Font12x12); 

    GUI_DrawButtons(1, 1, 100); 

} 

 

B.3.12 Function	to	Redraw	Window	2	

void GUI_RedrawWindow2(void) 

{ 

    LCD_SetFont(&Font8x12); 

    GUI_DrawButtons(2,   5, radioButtonSignal); 

    GUI_DrawButtons(6,   8, radioButtonValue); 

    GUI_DrawButtons(9,  12, radioButtonFactor); 

    LCD_SetFont(&Font16x24); 

    GUI_DrawButtons(13, 14, 100); 

    GUI_DrawValueBox(); 

    LCD_SetFont(&Font12x12); 

    GUI_DrawButtons(15, 16, 100); 

} 

 

B.3.13 Function	to	Redraw	Window	3	

void GUI_RedrawWindow3(void) 

{ 

    uint8_t aTextBuffer[20]; 

 

    LCD_SetFont(&Font16x24); 

    LCD_SetBackColor(LCD_COLOR_WHITE); 

    LCD_SetTextColor(LCD_COLOR_RED); 

    LCD_DisplayStringCenteredXY(120, 105, pInfoText); 

 

    LCD_SetFont(&Font12x12); 

    LCD_SetTextColor(LCD_COLOR_BLACK); 

    sprintf((char*)aTextBuffer, "WR-OPs:%ld", copyConfig[14]); 

    LCD_DisplayStringCenteredXY(120, 245, aTextBuffer); 

    GUI_DrawButtons(17, 18, 100); 

} 
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B.3.14 Function	to	Redraw	the	Values	that	were	Received	from	SPI	

void GUI_RedrawSPIvals(vec2D_t* rawReflCoef) 

{ 

    uint8_t aTextBuffer[20]; 

    LCD_SetFont(&Font8x12); 

    LCD_SetBackColor(LCD_COLOR_BLUE2); 

    LCD_SetTextColor(LCD_COLOR_BLACK); 

    sprintf((char*)aTextBuffer, "1:%+09ld 2:%+09ld", 

(int32_t)(1000000.0f*f32SPI4copiedValues[0]), 

(int32_t)(1000000.0f*f32SPI4copiedValues[1])); 

    LCD_DisplayStringLine(LCD_LINE_2, aTextBuffer); 

    sprintf((char*)aTextBuffer, "3:%+09ld 4:%+09ld", 

(int32_t)(1000000.0f*f32SPI4copiedValues[2]), 

(int32_t)(1000000.0f*f32SPI4copiedValues[3])); 

    LCD_DisplayStringLine(LCD_LINE_3, aTextBuffer); 

    sprintf((char*)aTextBuffer, "Re:%+09ld", 

(int32_t)(1000000.0f*rawReflCoef->x)); 

    LCD_DisplayStringLine(LCD_LINE_23, aTextBuffer); 

    sprintf((char*)aTextBuffer, "Im:%+09ld", 

(int32_t)(1000000.0f*rawReflCoef->y)); 

    LCD_DisplayStringLine(LCD_LINE_24, aTextBuffer); 

} 

 

B.3.15 Function	to	Redraw	the	Reflection	Coefficient	Chart	

void GUI_RedrawReflectionCoefficientChart(vec2D_t* reflCoefLim) 

{ 

    uint8_t run; 

 

    // Clear drawing area 

    LCD_SetBackColor(LCD_COLOR_WHITE); 

    LCD_SetTextColor(LCD_COLOR_WHITE); 

    LCD_DrawFullRect(18, 58, 204, 204); 

 

    // Draw Smith diagram 

    LCD_SetTextColor(ASSEMBLE_RGB(0xD0, 0xD0, 0xD0)); 

    LCD_DrawQuarterCircle(220, 60, 100, 2); 

    LCD_DrawQuarterCircle(220, 260, 100, 3); 

    LCD_DrawCircle(170, 160, 50); 

    LCD_DrawUniLine(20, 160, 220, 160); 

    DrawSmithCircles(); 

 

    // Draw outer circle 

    LCD_SetTextColor(LCD_COLOR_BLACK); 

    LCD_DrawCircle(120, 160, 100); 

 

    // Draw matching circles in GRAY 

    LCD_SetTextColor(LCD_COLOR_GREY); 

    for (run=0; run<7; run++) 

    { 

        if ( (run != activeState) && (run != desiredState) ) 

        { 

            LCD_DrawCircle( (uint16_t)(120.0f+100.0f*(matchState[run].re)), 

                            (uint16_t)(160.0f-100.0f*(matchState[run].im)), 

                            (uint16_t)(       100.0f*(matchState[run].rad)) 

); 

        } 

    } 
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    // Draw active circle 

    LCD_SetTextColor(LCD_COLOR_BLACK); 

    LCD_DrawCircle( (uint16_t)(120.0f+100.0f*(matchState[activeState].re)), 

                    (uint16_t)(160.0f-100.0f*(matchState[activeState].im)), 

                    (uint16_t)(       100.0f*(matchState[activeState].rad)) 

); 

 

    // Draw desired circle 

    LCD_SetTextColor(LCD_COLOR_BLUE2); 

    LCD_DrawCircle( 

(uint16_t)(120.0f+100.0f*(matchState[desiredState].re)), 

                    (uint16_t)(160.0f-

100.0f*(matchState[desiredState].im)), 

                    (uint16_t)(       

100.0f*(matchState[desiredState].rad)) ); 

 

    // Draw line in RED 

    LCD_SetTextColor(LCD_COLOR_RED); 

    LCD_DrawUniLine((uint16_t)(120.0f+100.0f*(matchState[activeState].re)), 

                    (uint16_t)(160.0f-100.0f*(matchState[activeState].im)), 

                    (uint16_t)(120.0f+100.0f*(reflCoefLim->x)), 

                    (uint16_t)(160.0f-100.0f*(reflCoefLim->y)) ); 

} 

 

B.3.16 GUI	Initialization	Function	

void GUI_Init(void) 

{ 

    uint8_t run; 

 

    windowNumber = 1; 

 

    for (run = 0; run < 15; run++) 

    { 

        copyConfig[run] = userConfig[run]; 

    } 

 

    GUI_DeserializeConfigVals(); 

 

    GUI_DrawButtons(1, 1, 100); 

} 

/***** END OF FILE ******************************************************/ 
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B.4 SMITHCHART.C	

B.4.1 Includes,	Defines	and	Variables	

#include <math.h> 

#include "arm_math.h" 

#include "stm32f429i_discovery.h" 

#include "stm32f429i_discovery_lcd.h" 

#include "SmithChart.h" 

 

#define NUM_PTS 11 

 

uint16_t pts1xx[NUM_PTS+1]; 

uint16_t pts1yp[NUM_PTS+1]; 

uint16_t pts1ym[NUM_PTS+1]; 

uint16_t pts2xx[NUM_PTS+1]; 

uint16_t pts2yp[NUM_PTS+1]; 

uint16_t pts2ym[NUM_PTS+1]; 

 

B.4.2 Function	to	Convert	a	Normalized	Impedance	to	Reflection	Coefficient	

void ZtoReflCoef(float32_t Zre, float32_t Zim, float32_t* RCre, float32_t* 

RCim) 

{ 

    float32_t Zre1 = Zre + 1.0f; 

    float32_t nenner = Zre1*Zre1 + Zim*Zim; 

    *RCre = (Zre*Zre + Zim*Zim - 1.0f)/nenner; 

    *RCim = 2.0f*Zim/nenner; 

} 

 

B.4.3 Function	to	Draw	a	Circle	with	Constant	Real	Part	

void DrawCircleReal(float32_t ZreCirc) 

{ 

    float32_t RCreCirc, dummy, circCenter, circRadius; 

 

    ZtoReflCoef(ZreCirc, 0.0f, &RCreCirc, &dummy); 

    circCenter = (RCreCirc + 1.0f) / 2.0f; 

    circRadius = 1.0f - circCenter; 

 

    LCD_DrawCircle( (uint16_t)(120.0f+100.0f*circCenter), 

                    (uint16_t)(160.0f), 

                    (uint16_t)(       100.0f*circRadius) ); 

} 

 

B.4.4 Function	to	Draw	a	Circle	with	Constant	Imaginary	Part	

void DrawCircleImag(float32_t ZimCirc) 

{ 

    float32_t ZreCirc = 0.0f; 

    float32_t RCreNew, RCimNew, RCreOld, RCimOld; 

 

    ZtoReflCoef(ZreCirc, ZimCirc, &RCreOld, &RCimOld); 

 

    ZreCirc = 0.1f; 
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    for(ZreCirc = 0.1f; ZreCirc < 50.0f; ZreCirc *= 2.0f) 

    { 

        ZtoReflCoef(ZreCirc, ZimCirc, &RCreNew, &RCimNew); 

 

        LCD_DrawUniLine((uint16_t)(120.0f+100.0f*RCreOld), 

                        (uint16_t)(160.0f-100.0f*RCimOld), 

                        (uint16_t)(120.0f+100.0f*RCreNew), 

                        (uint16_t)(160.0f-100.0f*RCimNew) ); 

        LCD_DrawUniLine((uint16_t)(120.0f+100.0f*RCreOld), 

                        (uint16_t)(160.0f+100.0f*RCimOld), 

                        (uint16_t)(120.0f+100.0f*RCreNew), 

                        (uint16_t)(160.0f+100.0f*RCimNew) ); 

 

        RCreOld = RCreNew; 

        RCimOld = RCimNew; 

    } 

 

} 

 

B.4.5 Function	to	Fill	Arrays	with	Values	for	Fast	Redraw	of	Smith	Chart	

void Init_SmithArrays(void) 

{ 

    float32_t G, reZ, reRC, imRC; 

    uint16_t run; 

    for(run = 0; run < NUM_PTS; run++) 

    { 

        G = 2.0f*((float32_t)run)/((float32_t)NUM_PTS)-1.0f; 

        reZ = (1+G)/(1-G); 

        ZtoReflCoef(reZ, 0.33333333f, &reRC, &imRC); 

        pts1xx[run] = (uint16_t)(120.0f+100.0f*reRC); 

        pts1yp[run] = (uint16_t)(160.0f-100.0f*imRC); 

        pts1ym[run] = (uint16_t)(160.0f+100.0f*imRC); 

        ZtoReflCoef(reZ, 3.0f, &reRC, &imRC); 

        pts2xx[run] = (uint16_t)(120.0f+100.0f*reRC); 

        pts2yp[run] = (uint16_t)(160.0f-100.0f*imRC); 

        pts2ym[run] = (uint16_t)(160.0f+100.0f*imRC); 

    } 

    pts1xx[NUM_PTS] = 220; 

    pts1yp[NUM_PTS] = 160; 

    pts1ym[NUM_PTS] = 160; 

    pts2xx[NUM_PTS] = 220; 

    pts2yp[NUM_PTS] = 160; 

    pts2ym[NUM_PTS] = 160; 

} 

 

B.4.6 Smith	Circles	Drawing	Function	(Based	on	Arrays)	

void DrawSmithCircles(void) 

{ 

    uint16_t run, run1; 

    for(run = 0; run < NUM_PTS; run++) 

    { 

        run1 = run + 1; 

        LCD_DrawUniLine(pts1xx[run], pts1yp[run], pts1xx[run1], 

pts1yp[run1]); 
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        LCD_DrawUniLine(pts1xx[run], pts1ym[run], pts1xx[run1], 

pts1ym[run1]); 

        LCD_DrawUniLine(pts2xx[run], pts2yp[run], pts2xx[run1], 

pts2yp[run1]); 

        LCD_DrawUniLine(pts2xx[run], pts2ym[run], pts2xx[run1], 

pts2ym[run1]); 

    } 

    LCD_DrawCircle(145, 160, 75); 

    LCD_DrawCircle(195, 160, 25); 

} 

 

B.4.7 Alternative	Smith	Circles	Drawing	Function	

void DrawSmithCirclesFull(void) 

{ 

    uint8_t run; 

    float32_t circValues[2] = { 0.333f, 3.0f }; 

 

    for(run=0; run < 2; run++) 

    { 

        DrawCircleReal(circValues[run]); 

        DrawCircleImag(circValues[run]); 

    } 

} 

/***** END OF FILE ***********************************/ 
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C. Appendix	–	Matching	Circles	MATLAB	Script	

C.1 Matching	Network	Script	

% Main definitions 

f    = 400e6; % Hz 

 

Gmin = 0.28; % Absolute value 

 

Z0   = 50;  

 

C1   = [1.00e-12;  0.50e-12;  5.00e-12;  0.50e-12;  0.50e-12;  25.0e-12;... 

        9.00e-12;  9.00e-12;  0.50e-12;  9.00e-12;  25.0e-12;  0.50e-12]; 

        % in F (close to PA) 

C2   = [10.0e-12;  10.0e-12;  10.0e-12;  8.00e-12;  28.0e-12;  10.0e-12;... 

        4.40e-12;  2.00e-12;  4.40e-12;  7.20e-12;  2.00e-12;  28.0e-12]; 

        % in F (replacing L, middle of the network) 

C3   = [2.00e-12;  5.00e-12;  0.50e-12;  8.00e-12;  2.00e-12;  0.50e-12;... 

        0.50e-12;  0.50e-12;  10.0e-12;  0.50e-12;  2.00e-12;  10.0e-12]; 

        % in F (close to load) 

 

% values for circuit calculations 

w    = 2.*pi.*f; 

Li   = Z0./w        % H 

Ci   = 1./(Z0.*w)   % F 

Xli  = j.*w.*Li;    % Ohm 

Yci  = j.*w.*Ci;    % S (1/Ohm) 

Yc1  = j.*w.*C1; 

Yc2  = j.*w.*C2; 

Yc3  = j.*w.*C3; 

 

% circuit equations 

Yp1  = Yc1 + 1/Z0 + Yci; 

Zp1  = 1./Yp1; 

Zs1  = Zp1 + Xli; 

Ys1  = 1./Zs1; 

Yp2  = Yc2 + Ys1 + 2.*Yci; 

Zp2  = 1./Yp2; 

Zs2  = Zp2 + Xli; 
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Ys2  = 1./Zs2; 

Ypo  = Yc3 + Ys2 + Yci; 

Zout = 1./Ypo; 

 

% reflection coefficient S22 

S22  = (Zout - Z0) ./ (Zout + Z0); 

S22c = conj(S22); 

 

format long; 

 

% circles 

denominator = 1 - abs(Gmin.*S22).^2; 

cent = S22c.*(1 - Gmin.^2)./denominator 

rad  = Gmin.*(1 - abs(S22).^2)./denominator 

 

FDrawCircles( cent, rad, Gmin ); 

 

%%% END OF FILE %%% 
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C.2 FDrawCircles	Function	

function [ ] = FDrawCircles( center, radius, minGamma ) 

% FDrawCircles draws cicles and smith chart %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    % Input values error check %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    [m,n] = size(center); 

    [o,p] = size(radius); 

 

    if ( (n ~= 1) || (p ~= 1) || (m ~= o) ) 

        error('Both inputs must be vectors and of same size!') 

    end 

     

    if ( sum(imag(radius)) ~= 0.0 ) 

        error('Radius must be pure real vector or value!') 

    end 

     

    % Prepare chart (draw border of smith chart and add labels) %%%%%%%%%%% 

    alpha = linspace(0,2*pi,50); 

    x = cos(alpha); 

    y = sin(alpha);    

    hand = figure; 

    set(hand,'Position',[100,100,700,700]); 

    plot(x, y,'k'); 

    xlabel('Re(\Gamma)','fontsize',16); 

    ylabel('Im(\Gamma)','fontsize',16);  

    hold on; 

 

    % Draw circle of minimum reflection coefficient %%%%%%%%%%%%%%%%%%%%%%% 

    plot(x.*minGamma, y.*minGamma,'r','LineWidth',2); 

     

    % Draw circles with constant real part %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

    plot(0.5 + x./2, y./2,'--k');        % z = 1   --> G = 0   

    plot(0.25 + x.*0.75, y.*0.75,'--k'); % z = 1/3 --> G = - 1/2 

    plot(0.75 + x.*0.25, y.*0.25,'--k'); % z = 3   --> G = + 1/2 

 

    % Draw circles (and line) with constant imaginary part %%%%%%%%%%%%%%%% 

    y = 1 - sin(alpha./4); 

    x = 1 - cos(alpha./4); 

    plot(x, y,'--k', x, -y, '--k'); % the two circles with Im(z)=1 & -1 

     

    G = linspace(-1,0.999,50);      % equal distribution in smith chart 

    beta  = (1+G)./(1-G);           % transform to impedance plane 

    gamma = (beta + j./3 - 1)./(beta + j./3 + 1); % transform back to smith 

    x = real(gamma); 

    y = imag(gamma); 

    plot(x, y,'--k', x, -y, '--k'); % the two circles with Im(z)=1/3 & -1/3 

     

    gamma = (beta + j.*3 - 1)./(beta + j.*3 + 1); 

    x = real(gamma); 

    y = imag(gamma); 

    plot(x, y,'--k', x, -y, '--k'); % the two circles with Im(z)=3 & -3 

     

    plot([-1 1],[0 0],'--k');       % the line with Im(z)=0 
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    % Draw matching circles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    sinAlpha = sin(alpha); 

    cosAlpha = cos(alpha); 

    for run = 1:m 

        text(real(center(run,1)),imag(center(run,1)),int2str(run),... 

            'HorizontalAlignment','center','Color','b'); 

        x = real(center(run,1)) + radius(run,1)*cosAlpha; 

        y = imag(center(run,1)) + radius(run,1)*sinAlpha; 

        plot(x, y,'b','LineWidth',2); 

    end 

     

    hold off; 

end 

 

%%% END OF FILE %%% 
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D. Appendix	–MATLAB	Script	for	Correction	of	TML	

clear all; 

diary('ResultsDiary.txt') 

 

syms Z1 Z2 Z3 Z4 Z5 Z6 Z7 GL 

syms Z01 Z02 Z03 Z04 Z05 Z06 

syms tE1 tE2 tE3 tE4 tE5 tE6 

syms GtRe GtIm GlRe GlIm 

 

assume(Z01,'real') 

assume(Z02,'real') 

assume(Z03,'real') 

assume(Z04,'real') 

assume(Z05,'real') 

assume(Z06,'real') 

 

assumeAlso(Z01 >= 0) 

assumeAlso(Z02 >= 0) 

assumeAlso(Z03 >= 0) 

assumeAlso(Z04 >= 0) 

assumeAlso(Z05 >= 0) 

assumeAlso(Z06 >= 0) 

 

assume(tE1,'real') 

assume(tE2,'real') 

assume(tE3,'real') 

assume(tE4,'real') 

assume(tE5,'real') 

assume(tE6,'real') 

 

assume(GtRe,'real') 

assume(GtIm,'real') 

assume(GlRe,'real') 

assume(GlIm,'real') 

 

%assumeAlso(1.0 >= GtRe >= -1.0) 

%assumeAlso(1.0 >= GtIm >= -1.0) 
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% SYSTEM EQUATIONS 

A = GL == (Z1 - sym(50))/(Z1 + sym(50)); 

B = Z2 == Z01*(Z1+1i*Z01*tE1)/(Z01+1i*Z1*tE1); 

C = Z3 == Z02*(Z2+1i*Z02*tE2)/(Z02+1i*Z2*tE2); 

D = Z4 == Z03*(Z3+1i*Z03*tE3)/(Z03+1i*Z3*tE3); 

E = Z5 == Z04*(Z4+1i*Z04*tE4)/(Z04+1i*Z4*tE4); 

F = Z6 == Z05*(Z5+1i*Z05*tE5)/(Z05+1i*Z5*tE5); 

G = Z7 == Z06*(Z6+1i*Z06*tE6)/(Z06+1i*Z6*tE6); 

H = GtRe + 1i*GtIm == (Z7 - sym(50))/(Z7 + sym(50)); 

 

% SYMBOLIC SOLUTION 

[SGL,SZ1,SZ2,SZ3,SZ4,SZ5,SZ6,SZ7] = solve(A,B,C,D,E,F,G,H, ...    

  GL, Z1, Z2, Z3, Z4, Z5, Z6, Z7); 

% alphabetical order of outputs! 

% Symbolic Solution is very long... 

% Equation of interest is SGL (Solution Gamma Load) 

 

% NUMERIC SOLUTION 

VarNames  = ... 

[Z01,   Z02,   Z03,   Z04,   Z05,   Z06,   tE1, ... 

tE2,        tE3,        tE4,        tE5,        tE6] 

% VarValues from Simulation, tEx is tangent of Ex 

VarValues = ...[50.000,53.863,51.018,62.794,85.083,83.377,0.087488664, ... 

0.098755749,0.102387497,0.013614409,0.007592328,0.188482015] 

 

% Substitute numeric values into Solution Gamma Load 

subGL = subs(SGL, VarNames, VarValues); 

  

% Real and Imaginary Part 

reSubGL = real(subGL) 

imSubGL = imag(subGL) 

 

% Floating Point Solution with 6 Digits 

fpGLre = vpa(reSubGL,6) 

fpGLim = vpa(imSubGL,6) 

 

% Print in better readable form 

pretty(fpGLre) 

%{ 

              12                  12                 11     

#3 (5.51533 10   GtRe - 3.16187 10   GtIm + 1.8277 10  )    

-------------------------------------------------------- +  

                           #1                               

 

           12                  12                  11     

(5.51533 10   GtIm + 3.16187 10   GtRe - 6.99413 10  ) #2 

--------------------------------------------------------- 

                           #1                             

 

where 

 

           2     2 

   #1 == #3  + #2 

 

                  11                  11                  12 

   #2 == 1.8277 10   GtIm + 6.99413 10   GtRe - 3.16187 10 

 

                  11                  11                  12 

   #3 == 1.8277 10   GtRe - 6.99413 10   GtIm + 5.51533 10 

  

%} 
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pretty(fpGLim) 

%{ 

              12                  12                  11 

#3 (5.51533 10   GtIm + 3.16187 10   GtRe - 6.99413 10  ) 

--------------------------------------------------------- 

                            #1 

 

                12                  12                 11 

     (5.51533 10   GtRe - 3.16187 10   GtIm + 1.8277 10  ) #2 

   - -------------------------------------------------------- 

                                  #1 

 

where 

 

           2     2 

   #1 == #3  + #2 

 

                  11                  11                  12 

   #2 == 1.8277 10   GtIm + 6.99413 10   GtRe - 3.16187 10 

 

                  11                  11                  12 

   #3 == 1.8277 10   GtRe - 6.99413 10   GtIm + 5.51533 10 

 

%} 

 

% The factor of 10^11 can be removed because it appears both in  

% numerator and denominator in both factors (divide num and denom 

% by (10^11)^2). Then same numbers can be replaced by same names. 

 

%%% END OF FILE %%% 

 


