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[1] The passive flux meter (PFM) measures local cumulative water and contaminant fluxes
at an observation well. Conditional stochastic simulation accounting for both spatial
correlation and data skewness is introduced to interpret passive flux meter observations in
terms of probability distributions of discharges across control planes (transects) of wells. An
estimator of the effective number of independent data is defined and applied in the
development of two significantly simpler approximate methods for estimating discharge
distributions. One method uses a transformation of the t statistic to account for data
skewness and the other method is closely related to the classic bootstrap. The approaches
are demonstrated with passive flux meter data from two field sites (a trichloroethylene
[TCE] plume at Ft. Lewis, WA, and a uranium plume at Rifle, CO). All methods require
that the flux heterogeneity is sufficiently represented by the data and maximum differences
in discharge quantile estimates between methods are �7%.

Citation: Klammler, H., et al. (2012), Contaminant discharge and uncertainty estimates from passive flux meter measurements, Water
Resour. Res., 48, W02512, doi:10.1029/2011WR010535.

1. Introduction
[2] Subsurface contaminants are a well-known threat to

groundwater at source locations and as contaminant plumes
that may emerge. Identification, monitoring, risk assess-
ment (including transport modeling), and the design of
remediation strategies are fundamental engineering tasks
related to this problem. Over the past decades these tasks
and have received significant research efforts from the the-
oretical to the field level [U.S. Environmental Protection
Agency (EPA), 1998, 2004; Einarson and Mackay, 2001;
Rao et al., 2002; Stroo et al., 2003]. Historically, estimates
of contaminant source mass remaining and/or contaminant
concentration in a plume have been used to characterize
contaminated sites. However, more recently, contaminant
mass discharge from a source zone at a given control plane
(transect) has been recognized as more useful, since it

directly quantifies the contaminant mass released from a
source per unit time, which may impact a potential receptor
[Einarson and Mackay, 2001; Interstate Technology and
Regulatory Council (ITRC), 2010].

[3] Current field measurements supporting estimation of
contaminant mass discharge employ one of three basic
approaches: integral pump tests (IPT) [Teutsch et al.,
2000; Bockelmann et al., 2001, 2003], multilevel sampling
(MLS) [Borden et al., 1997; Einarson and Mackay, 2001],
and passive flux meter measurements (PFM) [Hatfield
et al., 2004; Annable et al., 2005]. IPT uses inverse model-
ing on monitored contaminant concentrations at one or
more pumping wells. This approach has the advantage of
interrogating a large and continuous portion of the aquifer;
however, it requires prior knowledge (or separate measure-
ment/assumption) of certain aquifer properties. In addition,
significant alterations of groundwater flow and contaminant
transport regimes are induced, such that contaminated
groundwater is often extracted for surface disposal. MLS
uses separate measurements of local contaminant concen-
trations, hydraulic conductivities, and the hydraulic gradi-
ent at a control plane. Estimates of contaminant mass
discharges require spatial interpolation of concentrations
and conductivities as well as assumptions about the hydrau-
lic gradient for the calculation and summation of local
mass fluxes. While these are potential sources of uncer-
tainty, less hydrogeological knowledge or assumptions are
required than for IPT and the natural flow field remains
practically undisturbed. The PFM provide direct measure-
ments of local cumulative (i.e., time integrated or averaged)
contaminant mass fluxes as depth profiles along monitoring
wells, without necessarily requiring hydraulic conductivity
and gradient data. Besides inherent measurement errors in
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local fluxes, spatial interpolation of fluxes over unsampled
portions of a transect is the main source of uncertainty in
PFM-based mass discharges estimates.

[4] None of the above approaches are capable of deliver-
ing error-free estimates of mass discharges. As a result,
Jarsjö et al. [2005] perform uncertainty analysis for an
IPT, while Li et al. [2007], Schwede and Cirpka [2010],
Troldborg et al. [2010], and Cai et al. [2011] use geostatis-
tical conditional stochastic simulation approaches for quan-
tification of uncertainty in mass discharge estimates from
MLS measurements. To reduce estimation uncertainty, Li
and Abriola [2009] present a multistage and multicriteria
strategy for multilevel sampling. Comparative theoretical
and field studies of different methods are available by
Kübert and Finkel [2006], Herold et al. [2008], Goltz et al.
[2009], and Belland-Pelletier et al. [2011]. Taken together,
these studies recommend pump test methods in highly het-
erogeneous settings where ‘‘point’’ sample methods suffer
from large interpolation uncertainties, and identify PFM
measurements as less error prone than MLS methods. The
latter is related to the fact that PFMs directly measure local
mass fluxes along continuous vertical sampling lines rather
than concentrations (to be multiplied by collocated and
simultaneously measured or estimated water fluxes) at a fi-
nite number of MLS points.

[5] The objective of the present study is to investigate
methods for estimating probability distributions of water
and contaminant mass discharges from PFM measure-
ments. If the empirical distribution of the sampled PFM
fluxes is representative of the transect (i.e., if it accurately
indicates the frequency of occurrence of each sampled and
unsampled flux value in the transect), then the arithmetic
sample mean gives an unbiased estimate of the spatial
mean of all fluxes in the transect. In the presence of irregu-
lar sampling patterns, this representativeness can be
achieved by application of a declustering technique [Goo-
vaerts, 1997], which assigns smaller weights to more
closely spaced data (‘‘clusters’’) and larger weights to more
largely spaced data; hence, the name ‘‘declustering.’’ Clas-
sical and bootstrap statistics provide tools for quantifying
uncertainty about mean estimates of sample data; however,
the inherent assumption of independent and identically dis-
tributed (i.i.d.) data is commonly violated by the presence
of spatial correlation [Journel, 1994] between observed
fluxes.

[6] In contrast, the principles of kriging are founded on
correlated random variables. However, the definition of
probability distributions for estimation errors requires ei-
ther the assumption of mulitvariate Gaussianity [Goovaerts,
1997] or data transformations, e.g., indicator kriging or as
in the work of Kitanidis and Shen [1996]. The typically
large ranges of variability (e.g., coefficients of variation
near or above one) of contaminant mass fluxes, in combina-
tion with the physical requirement of non-negativity, lead
to strong deviations from Gaussianity characterized by pos-
itive skewnesses. Data transformations required to obtain
Gaussian distributions are necessarily nonlinear leading to
biased estimates of mean transect fluxes when back-trans-
formed after averaging. Methods to determine probability
distributions of mean transect fluxes in the presence of
irregular sampling patterns, spatial correlation, and non-
Gaussianity are limited. Geostatistics offers the conditional

stochastic simulation approaches cited above as well as a
method using resampling from conditional stochastic simu-
lation [Journel, 1994]. Moreover, Zhu and Morgan [2004]
and Chen and Shao [1999] apply the block bootstrap
method for inference of distributions of spatial means in
the case of data correlation. However, no explicit guide-
lines for the choice of bootstrap block size and shape in de-
pendence of sample number, pattern (especially irregular
and sparse patterns), and correlation structure are presently
available, neither may the actual shape and size of the tran-
sect be accounted for.

[7] Here we present and demonstrate a conditional sto-
chastic simulation approach and two simpler approximate
methods for determining probability distributions of con-
taminant mass discharges from PFM field data. Section 2
focuses on stochastic simulation: section 2.1 uses the
unconditional stochastic simulation paradigm to introduce
the concepts of randomization and ordinary block kriging
as well as fundamental assumptions and the required varia-
bles. This includes the derivation of a so-called ‘‘weighted
data dispersion variance.’’ Section 2.2 is a step-by-step out-
line of the conditional simulation approach taken in the
case studies and emphasizes guidelines for reliable vario-
gram inference as well as for the validation of results. A pa-
rameter termed ‘‘missing variance’’ ��2 [-] is proposed to
quantify the representativeness of PFM flux data with
respect to local flux heterogeneity over a transect. Section 3
is dedicated to the introduction and discussion of an ‘‘effec-
tive number of independent data’’ ne [-], which forms the
basis for the development of the two approximate methods
in section 4. These approximate methods avoid performing
stochastic simulation and may represent more practical
tools for field engineers. Field data from a TCE plume at
Ft. Lewis, WA, and from a uranium plume at Rifle, CO, are
used in section 5 for demonstration and a discussion of the
results including a validation of the approximate methods
against conditional stochastic simulation. Also, an example
of how to quantify expected benefits in terms of uncertainty
reduction due to additional PFM sampling is presented.
Finally, section 6 contains an evaluation of the assumptions
initially taken based on the case study results.

2. Stochastic Simulation Approach
2.1. Fundamental Concepts, Assumptions, and
Variables

[8] Without actually generating any realizations, we use
the unconditional stochastic simulation (Monte Carlo) para-
digm in section 2.1 to review the concepts of randomiza-
tion and ordinary block kriging as well as to define the
fundamental assumptions and variables required. An exam-
ple of a geometrical setup of the problem at hand is illus-
trated in Figure 1. The goal is to estimate the probability
distribution of mass discharge Q [M/T] across a rectangular
transect T containing n [-] local (‘‘quasi-point’’) PFM
measurements qiPFM (i ¼ 1, 2, . . ., n) [M/(L2T)] of mass
fluxes along observations wells. Hereby, it is assumed that
qiPFM are error-free. Unconditional stochastic simulation
can deliver realizations q(u) of a random function (or sto-
chastic process) representing possible spatial distributions
of local fluxes q at locations described by coordinate vector
u inside a transect. The unconditional realizations are
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interpreted as (partially) unknown scenarios of the real
world with an equal likelihood of occurrence, where one
single realization is assumed to perfectly match the real-
world situation. The problem is that this single realization
may not be identified and the outcomes of different realiza-
tions are used to make probabilistic statements about the
unknown real-world situation. The constraints typically
imposed in unconditional stochastic simulation are those of
a given point or univariate distribution pdf(q) and a particu-
lar spatial correlation structure (variogram �[h] or covari-
ance function C[h], where h is a spatial separation vector).
Up to second order, pdf(q) is defined by its mean �0 and
variance �2

0 ¼ Cð0Þ, where the random function q is called
second order stationary, if �0 and C(h) are location inde-
pendent. Not considered in the present work are determinis-
tic trend functions that may be combined with random
function q(u) ; nor do we consider uncertainties in the type
and parameters of C(h). For the remainder of section 2.1
C(h) does not have to be specified, while it is inferred from
sample data qiPFM for each practical example presented
below. In cases where the spatial variance in q increases
continuously with the size of the domain investigated, such
that process variance �2

0 and, hence, covariance function
C(h) are not defined, the variogram �(h) and the intrinsic
hypothesis (i.e., stationarity of the increments [Journel and
Huijbregts, 1978]) may still be used in what follows.

[9] Each unconditional realization may be fictitiously
sampled for fluxes qi [M/(L2T)] at the n locations of actual
PFM field measurements qiPFM and a discharge may be
estimated. Similarly, a respective true discharge Q across
the transect may be computed for each unconditional real-
ization resulting in a specific estimation error (i.e., esti-
mated minus true value) per realization. Over many
unconditional realizations the estimation errors form a dis-
tribution, which may be used as a performance (uncer-
tainty) metric of the discharge estimate adopted. In what
follows, rather than working with discharge Q over transect
T of known size A [L2], the mean transect flux qT ¼ Q/A
[M/(L2T)] over T will be used as the magnitude to be esti-
mated. Thus, for each unconditional realization, a value of
qT may be computed by

qT ¼
1

A

Z
T

qðuÞdu; (1)

which follows a probability distribution of variance �2
qT

given by [Journel and Huijbregts, 1978]

�2
qT
¼ 1

A2

Z
T

Z
T

Cðu� vÞdu dv; (2)

where v is a coordinate vector analogous to u. Note that
equation (2) is nothing but the average value of C(h) over
all possible pairs of locations within T. In the same way as
for qT, the fictitiously sampled fluxes qi of each uncondi-
tional realization are used to compute estimates q of qT

through the linear operator

q ¼
Xn

i¼1

�iqi; (3)

where in the present work �i are taken to be the ordinary
block kriging weights [Journel and Huijbregts, 1978;
Goovaerts, 1997; Kitanidis, 1997]. Moreover, the ensem-
ble variance �2

q of q is known to be

�2
q ¼

Xn

i¼1

Xn

j¼1

�i�jCðui � ujÞ; (4)

which, in analogy to equation (2), is nothing but the
weighted average of C(h) over all possible pairs of sam-
pling locations ui and uj. Finally, the covariance �2

qqT

between qT and q results as

�2
qqT
¼ 1

A

Xn

i¼1

�i

Z
T

Cðui � vÞdv; (5)

which represents the weighted average of C(h) over all pos-
sible combinations of one sampling location ui and a loca-
tion v in T. With this, over many unconditional realizations,
the random estimation error e ¼ q � qT possesses an en-
semble mean value of zero (unbiasedness) and an ensemble
variance �2

e of

�2
e ¼ �2

q þ �2
qT
� 2�2

qqT
; (6)

which is obtained as the variance of the difference of two
correlated random variables qT and q. Using ordinary block

Figure 1. PFM sampling locations over transect at Ft. Lewis, WA.
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kriging weights in equation (3) assures that �2
e is a mini-

mum under the constraint that
Pn
i¼1
�i ¼ 1. The denomination

‘‘ordinary kriging’’ (versus ‘‘simple kriging,’’ for example)

refers to the fact that
Pn
i¼1
�i ¼ 1 is used to impose unbiased-

ness, such that the mean �0 of pdf(q) of the stochastic pro-
cess does not appear in the estimator (equation (3)). In turn,
‘‘block kriging’’ (versus ‘‘point kriging,’’ for example) indi-
cates that the estimated variable qT is defined as a spatial
average over a domain T (‘‘block’’ in traditional mining
language) rather than at a single point.

[10] In addition to evaluating the estimator in equation
(3) for each unconditional realization, one may also com-
pute a respective spatial variance s2 of the weighted histo-
gram of the (fictitiously) measured local fluxes qi in each
realization. Hereby, �i are to be interpreted as declustering
weights [Journel and Huijbregts, 1978; Goovaerts, 1997]
used to estimate the frequency or probability of occurrence
of each value qi over the transect (rather than over the sam-
pling locations), such that

s2 ¼
Xn

i¼1

�iðqi � qÞ2: (7)

[11] The mean of s2 over many unconditional realiza-
tions is called the ‘‘weighted data dispersion variance’’ �2

D�
equal to

�2
D� ¼ �2

0 � �2
q; (8)

as derived in the appendix and with �2
q from equation (4).

For generating unconditional realizations it is important
that �2

D� be close to �2
0, such that the variability of the

underlying process is well represented by the data. In the
same way, an unweighted dispersion variance of local
fluxes over the transect may be defined as [Journel and
Huijbregts, 1978]

�2
DT ¼ �2

0 � �2
qT
; (9)

with �2
qT

from equation (2). Thus, �2
DT is the mean variance

of local fluxes (i.e., dispersion) inside transect T taken over
many unconditional realizations. Note that the difference
between equations (2) and (9) is that �2

qT
is the ensemble

(i.e., over many realizations) variance of a spatial mean,
while �2

DT is the ensemble mean of a spatial variance; the
sum of both is equal to �2

0. Analogous observations apply
to �2

q and �2
D�. Equations (6), (8), and (9) exist under the

intrinsic hypothesis and respective expressions in terms
of the variogram are obtained by simply substituting –�(h)
for C(h) and, consequently, zero for �2

0 [Journel and
Huijbregts, 1978].

2.2. Conditional Simulation for Discharge Estimation

[12] As mentioned in the introduction (section 1), differ-
ent conditional simulation approaches have recently been
applied for contaminant discharge estimation. Conditional

simulation differs from unconditional simulation in that all
conditional realizations honor (reproduce) the measured
data values at their locations. Moreover, for the conditional
simulation near PFM sampling locations it is sufficient that
�2

D� is close to �2
DT (equations (8) and (9)). This is a less

restrictive condition than for unconditional simulation,
since �2

DT < �2
0 (spatial data dispersion grows with domain

size), and a dimensionless parameter ��2 termed ‘‘missing
variance’’ is defined here as

��2 ¼ �
2
DT � �2

D�

�2
DT

: (10)

[13] This magnitude quantifies the relative portion of
variability contained in the domain of interest T, which
is not actually described by the available data after declus-
tering. A graphical illustration of all steps involved in the
conditional simulation approach is given in Figure 2 with
further descriptions given here:

2.2.1. Variogram Analysis of Raw Data qiPFM (Step A)
[14] Figure 1 shows an example of a rectangular transect

with monitoring wells and PFM flux measurement intervals
(typically �30 cm in length), indicated by dots at the center
of each interval. For each dot, spatial coordinates and an
observed value of qiPFM are available for the generation of
an experimental variogram and structural analysis [Journel
and Huijbregts, 1978] to obtain a first estimate of the spa-
tial covariance function C(h). The experimental variogram
points for shorter lag distances jhj are typically better
defined (based on more data pairs) and contain more impor-
tant information for spatial interpolation (simulation). As a
consequence, a good variogram fit near the origin is consid-
ered more valuable than at larger lag distances [Kitanidis,
1997].

2.2.2. Data Declustering Using Ordinary Block
Kriging Weights (Step B)

[15] In the present work, the transect is identical to the
simulation domain and it is roughly defined as extending
one half-well separation distance beyond the lateral-most
wells in the horizontal direction and from the bottom of the
bottom-most to the top of the top-most PFM sampling
interval. To achieve a representative flux distribution over
the transect from irregularly spaced data, declustering is
required. In the present work, the ordinary block kriging
weights �i from equation (3) are used for this purpose
[Journel and Huijbregts, 1978] as they accommodate the
spatial arrangement of the sampling locations, the spatial
correlation structure, as well as the position and size of the
transect. The declustered data histogram is denoted by
pdf�(qiPFM) to indicate that the declustered frequency of
occurrence of local flux qiPFM is equal to �i rather than 1/n.

2.2.3. Conversion to Gaussianity Through Normal
Score Transformation (Step C)

[16] Because of typically skewed data distributions, this
step is required in order to take advantage of the properties
of Gaussianity and to allow for using a relatively simple
algorithm for the generation of Gaussian realizations.
Theoretically, Gaussianity has to be achieved for the joint
distribution of the random function at all locations (multi-
Gaussianity), however, as a consequence of generally
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limited amounts of data for verification, we limit our atten-
tion to univariate Gaussianity (i.e., the transformation of
pdf�[qiPFM] to a normal distribution). The present work uses
normal score transformation [Goovaerts, 1997], which is a
numerical technique using a piecewise linear transformation
function to achieve Gaussianity. In other words, the declus-
tered data histogram is converted to a standard normally dis-
tributed histogram (zero mean and unit variance) by simply
mapping respective quantiles onto each other. This is, if all
measured fluxes qiPFM are arranged in ascending order, then
flux qjPFM corresponds to a weighted cumulative distribution

function value cdf�(qjPFM) � �j

2 þ
Pj�1

i¼1
�i [Goovaerts, 1997],

and the respective quantile of the normal distribution yields
the normal score transform qins of qiPFM. Thus, a correspon-
dence table between qiPFM and qins is constructed.

2.2.4. Variogram Analysis of Normal Score Data qins

(Step D)
[17] In the same way as under step A, variogram analysis

is performed on qins to fit a respective covariance function
Cns(h). Because step C converts the declustered data into

Figure 2. Flowchart for conditional simulation approach (section 2.2) and approximate methods
(section 4).
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a standard normal distribution of unit variance, Cns(h) is fit-
ted, such that the declustered normal score dispersion
variance �2

D�ns, obtained from equations (4) and (8) with
Cns(h) instead of C(h), is �1. This helps in assuring that
Cns(h) is compatible with the conditioning data and that the
simulated normal scores over the transect are close to
standard normally distributed. The latter is required, such
that pdf�(qiPFM), which was particularly determined for the
transect, is reproduced by the conditional simulation output
after back-transformation in step H.

2.2.5. Joint Variogram Analysis of Raw Data and
Normal Scores With Adjustment of C(h) to Meet
Weighted Data Dispersion Variance (Step E)

[18] Distributions of contaminant fluxes are typically
positively skewed with many small data values and few
very large ones. It is well known (and because of the squar-
ing of flux differences involved) that the experimental var-
iogram of the raw data is quite sensitive to large values,
which may complicate a reliable fitting of C(h) through
step A. More robust measures of dispersion (avoiding squar-
ing) or variogram analysis on transformed data (avoiding
large values, but preserving ranks) do not affect the spatial
correlation features along the lag distance axis [Deutsch
and Journel, 1992], and may thus be used to assist with
inferring spatial correlation lengths. This also applies to nor-
mal score data [Chiles and Delfiner, 1999] as obtained from
step C and as such, we perform a joint modeling of C(h)
and Cns(h) to assure that they have the same correlation
lengths. Moreover, given the declustered PFM flux histo-
gram pdf�(qiPFM), its variance s2

PFM is obtained by equations
(3) and (7) with qiPFM instead of qi, and s2

PFM is used as an
estimator of its ensemble mean �2

D� [Journel and Huij-
grebts, 1978] to further improve the fit of C(h). In other
words, C(h) is modified (e.g., through adjusting horizontal
and vertical variogram sills), such that �2

D� from equation
(8) is approximately equal to s2

PFM. A convenient property
of this approach is that a scaling of the variance axis of C(h)
does not affect �i and, consequently, s2

PFM at all. Because of
the normal score transformation, Cns(h) is also relatively ro-
bust with respect to changes in �i through range adjustments
and a single manual iteration for fitting of C(h) is performed
in this work. Overall, as apparent from Figure 2, C(h) is
determined based on three sources of information: the ex-
perimental variogram of raw data qiPFM for variogram fit-
ting near the origin, the weighted data dispersion variance
�2

D� estimated by s2
PFM to adjust scaling on the variance

axis, and the correlation length(s) of the normal score vario-
gram to adjust scaling along the distance axis.

2.2.6. Check for Representative Flux Sampling (Step F)
[19] The ‘‘missing variance’’ ��2 from equation (10)

can be computed prior to any conditional simulation and
elevated values may indicate that local flux heterogeneity
pdf(q) over the transect is not sufficiently represented by
the data collected. If this is the case, it may still be reasona-
ble to quantify discharge and uncertainty in terms of an
error variance �2

e without, however, being able to make
reliable statements about the exact distribution of the esti-
mation error (by any method considered herein). To over-
come this limitation, additional PFM measurements or
alternative approaches including complementary data, such

as contaminant concentrations, hydraulic head, and/or
conductivities [Schwede and Cirpka, 2010; Troldborg
et al., 2010] may be required. While further investigation is
needed to see whether a maximum admissible value for
��2 may be defined, the case studies in section 5 indicate
that ��2 smaller than �5% leads to satisfactory results for
discharge distributions.

2.2.7. Conditional Simulation Using qins and Cns(h)
(Step G)

[20] LU decomposition (lower-upper triangle or also
known as Cholesky decomposition) [Goovaerts, 1997] is
chosen as a fast algorithm for multi-Gaussian conditional
simulation of up to several thousand grid points. It pos-
sesses the advantage that all data and grid locations are
considered simultaneously as a whole, rather than as little
portions inside local neighborhoods. This avoids approxi-
mation errors, which may deteriorate the simulation per-
formance in terms of histogram or variogram reproduction.

2.2.8. Back-Transformation and Spatial Averaging
(Step H)

[21] The resulting conditional realizations of normal
scores are back-transformed into fluxes by the inverse of
the transformation in step C, which is quantile matching
(with linear interpolation) in the inverse direction. At the
tails, i.e., outside of the range of qiPFM measured, extrapola-
tion models have to be chosen (‘‘distributional extrapola-
tion’’). It was found, however, that with sufficiently dense
PFM sampling, enough data is available, such that this
choice does not influence results (i.e., the missing variance
��2 and consequent probability of simulating local flux
values outside the range of measured fluxes are sufficiently
small). Hence, the lower tail is linearly extrapolated to
zero, which is generally equal to the minimum data value if
transects span entire plumes, while the upper tail is limited
to the maximum data value. Given the conditionally simu-
lated fluxes at all grid points, spatial averaging is per-
formed on each realization to obtain conditionally
simulated values of transect average fluxes q

ðjÞ
Tc (by using a

discrete form of equation (1)). The additional subscript ‘‘c’’
indicates that qT is conditioned to measured fluxes and the
index ‘‘j’’ denotes the number of the realization that qTc

corresponds to. Knowing that a total number N (i.e., j ¼ 1,
2, . . ., N) of conditional realizations are generated, a dis-
crete approximation of the conditional cumulative distribu-
tion function cdf(qTc) may be obtained. The latter is
regarded as the probability distribution of the unknown
transect average flux qT in the field [Goovaerts, 1997]. The
ensemble mean qTc of cdf(qTc) approximated by

qTc ¼
1

N

XN

j¼1

qðjÞTc ; (11)

is used as a conditional simulation based estimate of the
true qT, while the respective estimation error variance is
given by

�2
ec ¼

1

N

XN

j¼1

�
qðjÞTc � qTc

�2
: (12)

[22] In the present work, N ¼ 1000 conditional realiza-
tions are used, which results in insignificant uncertainty
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(because of a finite number of realizations) in equations
(11) and (12) as well as in cdf(qTc) over the principal range
of interest (i.e., approximately between 0.01 and 0.99 quan-
tiles). Once cdf(qTc) is known, a multiplication of quantiles
by transect area A produces the cdf of transect discharge Q
as cdf(Q) ¼ cdf(AqTc).

2.2.9. Validation of Results (Step I)
[23] As a consequence of good histogram reproduction,

qTc from equation (11) should be in good agreement with
the mean of pdf�(qiPFM). By step B, the mean of
pdf�(qiPFM) is again equal to the ordinary block kriging
estimate qPFM obtained from equation (3) with actual sam-
ple values of qiPFM. Furthermore, Gaussian conditional
simulation algorithms are based on the properties of simple
kriging [Goovaerts, 1997]. It is known that these properties
are well approximated by those of ordinary kriging, if a
sufficient amount of data is available within the domain of
interest (i.e., small ��2 [Emery, 2007]). Thus, the error
variance �2

ec from equation (12) should be in good agree-
ment with �2

e from equation (6). Note that both variances
are independent of higher order moments (e.g., distribution
skewness of pdf[qiPFM]) and that issues related to condi-
tional bias (i.e., overestimation of variance in areas of low
variability and underestimation of variance in areas of high
variability) do not arise in the present situation. This is
because estimation is over the whole transect encompassing
all data and both high and low variability zones. Thus, as
indicated by Figure 2, the output of the conditional simula-
tion method may be validated to some degree by verifying
qPFM � qTc and �2

e � �2
ec. Significant discrepancies may

indicate errors in the implementation of the conditional
simulation routine or the possibility of improvements in
variogram fits (within the requirements of steps A, D, and
E). If none of the above is the case, then a conditional sim-
ulation approach based on transformation of a multi-Gaus-
sian field may be inadequate for the data at hand.

3. Effective Number of Independent Data ne

3.1. Purpose, Definition, and Basic Properties

[24] The implementation of the conditional simulation
approach of step G may not be a straightforward task for
practitioners. In an effort to offer simpler alternatives,
which closely approximate well-calibrated conditional sim-
ulation results (i.e., successfully validated in step I), an
effective number of independent data ne is defined and pro-
posed for use with two estimation methods from classic in-
dependent and identically distributed (i.i.d.) statistics. The
parameter ne contains information about the transect and
sampling geometries as well as of the spatial correlation
structure. Similar to Kitanidis [1997, p. 157], Deutsch
[2004], or Klammler et al. [2011] it is defined by

ne ¼
�2

D�

�2
e

; (13)

where �2
e is the ordinary block kriging variance of equation

(6) and �2
D� is the weighted data dispersion variance of

equation (8). In analogy to classical statistics of uncorre-
lated data, ne acts as a proportionality factor between the
variance of observed data (�2

D� or its estimator s2
PFM, see

the appendix) and the variance of a mean estimate (�2
e).

This means that the ratio in equation (13) between the spa-
tial variance of the n correlated flux data and the ensemble
variance of the error of the transect mean estimate is equal
to the ratio of the variance of ne hypothetical data values
(which are statistically independent) and the variance of
their mean estimate (compare ‘‘standard error equation’’
from i.i.d. statistics). Thus, in terms of the error variance of
a mean estimate, n correlated data achieve the same var-
iance reduction as ne uncorrelated data. It may be observed
that the effective number of independent data ne is unaf-
fected by the scaling of C(h) along the variance axis, since
both �2

D� and �2
e are scaled by the same factor. Further-

more, in the same way as �2
D� and �2

e , ne exists under the
intrinsic hypothesis and can range from zero to infinity.
That is, ne ¼ 0 is obtained for a single-point sample leading
to the trivial case of �2

D� ¼ 0, while ne ! 1 is obtained
when the entire transect is sampled. The latter corresponds
to complete sampling of a finite population in classical sta-
tistics, where uncertainty is totally removed. Intuitively
speaking, in the range ne < n, redundancy between nearby
sampling locations prevails, while for ne > n the favorable
effect of correlation between sampled and unsampled loca-
tions is predominant, which decreases the interpolation
uncertainty between monitoring wells.

3.2. Properties of ne Related to PFM
Discharge Estimation

[25] From above, it may be understood that ne acts as a
kind of effective parameter quantifying the efficiency of a
sampling pattern in terms of variance reduction between
data dispersion (observed flux heterogeneity) and estima-
tion error of the spatial mean. In order to analyze some gen-
eral aspects related to ne and PFM discharge estimation,
section 3.2 assumes regularly spaced monitoring wells
along a rectangular transect with a constant number of 10
vertical PFM sampling intervals. Evaluating equations (2),
(4), and (5) for the computation of ne generally requires nu-
merical methods [Journel and Huijbregts, 1978] and direct
statements about the quantitative behavior of ne for practi-
cal purposes are difficult to make. For this reason, Figure 3
(bold continuous lines) shows a normalized representation
of the order of magnitude of ne as a function of the number
of PFM wells nw [-], horizontal and vertical correlations
lengths ah and av [L], as well as transect width X [L] (x
direction) and depth Y [L] (y direction). The spherical co-
variance model [Goovaerts, 1997] is used for C(h) and inte-
gration is performed on discretized transects of 10 � 200
(depth per width) rectangular cells. This implies that each
PFM well corresponds to a grid column and the sampling
over depth is exhaustive as it is typical for PFM measure-
ments (every cell in a PFM grid column is considered
‘‘sampled’’ corresponding to a PFM sampling interval).
Each chart in Figure 3 corresponds to a particular value of
avX/(ahY) representing the aspect ratio of the transect after
scaling to isotropic correlation length. In Figure 3f av ¼ 1,
which reduces the problem to one-dimension in the x direc-
tion and, hence, ah/X is used for the abscissa as opposed to
av/Y in Figures 3a–3e. For ah ¼1, in contrast, the problem
is reduced to the y direction, which is entirely sampled, thus
leading to �2

e ¼ 0 and ne ¼ 1 (no uncertainty left). Both
cases correspond to zonal anisotropies [Goovaerts, 1997]
and may be relevant for PFM applications. The former
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(av ¼ 1) is known as a random areal trend and can reflect
the fact that certain wells are located in high- and others
in low-flux zones (e.g., plume core versus periphery). The
latter (ah ¼ 1) typically reflects random stratigraphic
layering. Apparent irregularities of contour lines for �2

e=�
2
0

and ne over certain ranges in Figure 3 are caused by a type
of periodicity appearing when ah reaches multiples of the
PFM well-separation distance. Without disturbing the gen-
eral tendency of ne, the strongest effect occurs at ah ¼ X/nw.
The periodicity is found to be an artifact of the spherical co-
variance model adopted and it is not observed with the
smoother exponential covariance function. For either model
of C(h), the contour lines of ne share similar characteristics
and become horizontal as ah > X and av > Y, i.e., when
C(h) becomes linear over the extent of the transect. In such

a case (e.g., Rifle case study in section 5.2), ne becomes in-
dependent of the individual values of ah and av reducing to
a function of the anisotropy ratio ah/av only.

[26] The structure of C(h) may be nested, which means
it consists of a number m [-] of substructures Cj(h) of
different geometric or zonal anisotropies such that

CðhÞ ¼
Pm
j¼1

CjðhÞ. According to the principle of factorial

kriging [Goovaerts, 1997], the substructures may be
regarded as related to mutually independent stochastic sub-
processes, which add up to the composite process corre-
sponding to C(h). As a consequence, dispersion and
estimation variances of the subprocesses (�2

D�j and �2
ej,

respectively) also add up to the respective variances of the

Figure 3. Contour lines of �2
D�=�

2
0 (dashed lines), �log 10�

2
e=�

2
0 (thin continuous lines), and log 10ne

(bold continuous lines) for PFM transects of avX/(ahY) ¼ {1, 2, 5, 10, 20, 1} in (a)–(f), respectively.
PFM wells are assumed to be regularly spaced (�i ¼ 1/n) and possess 10 vertical sampling intervals.
Spherical model for C(h).
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composite process, and ne from equation (13) can be
expressed more generally as

ne ¼

Xm

j¼1

�2
D�j

Xm

j¼1

�2
ej

¼

Xm

j¼1

�2
ejnej

Xm

j¼1

�2
ej

: (14)

[27] Note that the same declustering weights obtained
for the compound covariance function C(h) under step B in
section 2.2 are used for all variogram components in equa-
tion (14). If data are approximately regularly spaced, the
contour lines of �2

D�=�
2
0 (dashed) and �2

e=�
2
0 (thin continu-

ous) in Figure 3 may be applied to individual substructures
of a nested C(h) to approximate ne through equation (14).
For each substructure, �2

0 in Figure 3 has to be taken as the
variance of that substructure only. The last expression in
equation (14) shows that the compound ne may also be rep-
resented as a weighted sum of all substrutures’ nej, where
weighting is proportional to the relative contribution �2

ej=�
2
e

of each structure to the total estimation error �2
e .

[28] Figures 3 provides a means to evaluate the sensitivity
of ne with respect to the (somewhat subjective) choice of var-
iogram ranges and the number of PFM wells installed over a
transect. The latter is of interest for the evaluation of the ben-
efit of additional sampling in terms of uncertainty reduction
in discharge estimates. Under the hypothesis that C(h) is not
significantly different after additional sampling, Figure 3
shows, for example, that over most of the range represented
(especially for av/Y > 0.5), doubling the number nw of PFM
wells approximately increases ne by a factor of 100.5 � 3.
For shorter correlation lengths (e.g., approaching a nugget
variogram and data independence), ne � n is known from
section 3.1 and a proportional increase in nw leads to the

same proportional increase in n and, hence, ne. Thus, it may
be stated that doubling the number nw of wells results in an
overproportional increase in the effective number of inde-
pendent data ne by a factor between �2 and 3. By virtue of
the final expression in equation (14), this remains valid also
for nested variogram structures. However, by inspection of
equation (15) or Figure 4 in section 4.1, for example, it is
seen that the width of confidence intervals is (inversely) pro-
portional to

ffiffiffiffiffi
ne
p

. This means that doubling nw may be
expected to decrease the width of confidence intervals about
a discharge estimate underproportionally by a factor between
�

ffiffiffi
2
p
� 1:4 and

ffiffiffi
3
p
� 1:7. This is in agreement with Kübert

and Finkel [2006], who numerically simulate contaminant
transport and PFM measurements in heterogeneous aquifers
and who observe that the reduction in estimation uncertainty
due to increasing nw decreases as nw grows.

[29] Further inspection of Figure 3 shows that the rela-
tive data dispersion variance �2

D�=�
2
0 increases with nw until

PFM well separation becomes smaller than ah. At this point
the observed data represent practically all of the variability
�2

DT=�
2
0 contained in the transect and data dispersion cannot

increase any more with nw. Based on results of the case
studies below, it may be tentatively stipulated, for example,
that distributional extrapolation is acceptable as long as the
declustered (weighted) data dispersion variance accounts
for at least 95% of the transect dispersion variance (i.e.,
��2 < 0:05). Lines for ��2 ¼ 0:05 in Figure 3 are not
shown for clearness of the plots, but they are found to be
close to the contour lines of ne ¼ 30, such that the approxi-
mate condition ne � 30 may be given to contain distribu-
tional extrapolation within 5%. For a transect of given
parameters X/Y, nw, and ah, reducing av decreases avX/(ahY)
and results in an increase in ne, which may be attributed to
less correlation (less data redundancy) in the vertically
aligned data. In contrast, a decrease in ah increases avX/

Figure 4. Contour lines of t0ne�1;1�0:05=
ffiffiffiffiffi
ne
p

(thick lines) and �t0ne�1;1�0:95=
ffiffiffiffiffi
ne
p

(thin lines) as functions
of an effective number of independent data ne (equation (13) or (14)) and declustered data coefficient of
skewness b (equation (18)) for use in equation (15).
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(ahY) and decreases ne, which reflects the reduced correla-
tion between sampled and unsampled (to be interpolated)
locations. In other words, short-vertical and large-horizon-
tal correlation scales, as typical for hydrogeological field
situations, tend to increase ne. This acts favorably on the
uncertainty of discharge estimates, when sampling in the
vertical direction is dense and indicates, in agreement with
Kübert and Finkel [2006], a significant potential for the
PFM method to deliver reliable discharge estimates.

4. Approximate Methods Using ne

[30] Section 4 presents two relatively simple methods
from classical i.i.d. statistics, which both make use of ne to
approximate conditional simulation results. One applies a
transformation of the t statistic, which is capable of
accounting for distribution skewness and the other method
uses the classic bootstrap on the full pdf�(qiPFM). Steps J
and K in Figure 2 illustrate how ne and the approximate
methods are implemented in the present work and how they
circumvent the need for conditional simulation to arrive at
an approximation of cdf(qTc). The idea of the approximate
methods is based on the fact that the averaging of ne inde-
pendent data following a distribution pdf�(qiPFM) leads to
the same mean estimate and error variance as averaging
over the spatially correlated random function through the
conditional simulation approach. This means that the first-
and second-order statistics of spatial averaging are exactly
honored by using ne, while the influence of spatial correla-
tion on higher-order moments is approximately incorpo-
rated through ne and its effect due to the central limit
theorem. Similar to step I above, step L in Figure 2 vali-
dates results up to second order, but may only indicate
errors in the implementation of the approximate methods.

4.1. Transformation of the t Statistic

[31] Willink [2005], Zhou and Dinh [2005], as well as
Yanagihara and Yuan [2005] independently present identi-
cal methods for improved determination of nonparametric
confidence intervals for mean estimates of a wide range of
skewed i.i.d. samples. The method is based on a transforma-
tion of the common Student’s t statistic leading to a parame-
ter denoted as t2, T1, and ~t by the above authors,
respectively. For the present purpose, we propose the use of
this method in combination with pdf�(qiPFM) and ne instead
of pdf(qiPFM) and n as in the i.i.d. case. With this, the quan-
tile q� of the distribution of the spatial mean estimate, which
is not exceeded by a probability �, is approximated by

q� ¼ qPFM �
t0ne�1;1��sPFMffiffiffiffiffi

ne
p ; (15)

where sPFM is the declustered data standard deviation
obtained as the square root of equation (7) by using qiPFM

instead of qi and qPFM instead of q. Thus, a two-sided 1–2�
confidence interval about the mean estimate qPFM from
equation (3) results as [q�, q1��], where t0ne�1,1�� in equa-
tion (15) is a cubic function of the classic Student’s t vari-
able tne�1,1�� for ne�1 degrees of freedom [Willink, 2005],

t0ne�1;1�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6aðtne�1;1�� � aÞ3

p
�1

2a
: (16)

[32] This transformation is graphically represented in
Figure 4 and incorporates distribution asymmetry in the pa-
rameter a in terms of the declustered sample coefficient of
skewness b,

a ¼ b

6
ffiffiffiffiffi
ne
p ; (17)

b ¼

Xn

i¼1

�iðqiPFM � qPFMÞ
3

s3
PFM

:
(18)

[33] Equation (17) reflects the consequence of the central
limit theorem that both variance and skewness of the distri-
bution of the mean estimate decrease with ne. For symmet-
ric distributions (b ¼ 0) or large ne, a becomes small and
equation (16) reduces to t0ne�1,1�� ¼ tne�1,1��. Otherwise,
for positive skewness (b > 0), equation (16) results in
asymmetric confidence intervals, which reflect a larger
probability of underestimation and which work toward the
requirement of non-negativity (confidence intervals shifted
to right). For two-sided confidence intervals of 1–2� � 0.99
and i.i.d. samples, Willink [2005] concludes that equation
(16) is appropriate for ne � 30.

4.2. Bootstrap

[34] The bootstrap [Efron and Tibshirani, 1998] is a
method based on distribution resampling, which is applica-
ble to a diverse range of statistical problems. In its simplest
form it consists of randomly drawing (with replacement) n
values from an i.i.d. sample to compute a desired sample
statistics (e.g., mean). Repeated performance of this pro-
cess populates a distribution, from which a mean estimate
and uncertainty intervals can be inferred. From a geostatis-
tical standpoint, bootstrapping may be considered as a
degenerate form of unconditional stochastic simulation
over n locations, which are spatially uncorrelated. Similar
to Klammler et al. [2011], in the present work, we propose
and demonstrate the use of the bootstrap by resampling ne

times with equal likelihood from the declustered data distri-
bution pdf�(qiPFM). For computational convenience, it is
noted that this is equivalent to resampling ne times from the
unweighted (i.e., raw) sample distribution pdf(qiPFM),
where each datum is drawn with probability �i.

5. Application to Estimate Discharges From
PFM Field Measurements
5.1. Estimating TCE Discharge at Ft. Lewis, WA,
Military Base

5.1.1. Ten Well Scenario
[35] At Ft. Lewis, WA, Military Base extensive use of

TCE as a degreasing substance led to the emergence of
numerous TCE plumes in the groundwater. For one of the
plumes investigated, transect limits (width X ¼ 64.3 m,
depth Y ¼ 7.6 m, area A ¼ XY ¼ 490 m2), PFM well loca-
tions, and segmentation are illustrated in Figure 1. Approx-
imately uniform well spacing of 6 m results in nw ¼ 10
wells with �21 PFM sampling intervals per well of 35 cm
in length leading to a total of n ¼ 204 local flux measure-
ments. The experimental variogram points for the horizontal
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and vertical directions are depicted in Figures 5a and 5b for
the normal scores and the raw data, respectively. Perform-
ing steps A through E of the proposed method (see section
2.2 and Figure 2), the sum of two spherical models is cho-
sen to represent Cns(h) and the following parameters are fit-
ted: �2

0ns1 ¼ 0.4, ah1 ¼ 25 m, av1 ¼ 3 m, and �2
0ns2 ¼ 0.85,

ah2 ¼ 25 m, av2 ¼ 1. The same correlation ranges are
adopted for C(h) and the respective sills are fitted as �2

01 ¼
4.5 g2/(m4 d2) and �2

02 ¼ 9 g2/(m4 d2). Both �2
D�ns � 1 and

�2
D� � s2

PFM, as indicated by the horizontal lines in Figures
5a and 5b, are satisfied to approximately 61% and the fit to
the experimental variogram points, especially for short lag
distances, appears to be quite good. At larger lag distances
the fit becomes worse; however, the variogram sills do
represent the correct average degree of variability. Using
C(h) from Figure 5b and �i from ordinary block kriging,
equations (3), (7), and (18) (with qiPFM instead of qi) give
an estimated mean TCE flux over the transect of qPFM ¼
1.53 g/(m2 d), a declustered data dispersion variance s2

PFM ¼
10.7 g2/(m4 d2), and a coefficient of skewness b ¼ 3.10. The
respective declustered histogram is depicted in Figure 5c
with a ‘‘missing variance’’ ��2 from step F amounting to
�3%.

[36] The variogram analysis indicates both larger statisti-
cal continuity as well as a higher degree of variability in the
horizontal direction. The former may be attributed to hori-
zontally more continuous hydrogeological conditions of aq-
uifer and source zone, while the latter reflects variability in
local fluxes between plume center and lateral periphery.

Applying Figure 3 to the first variogram structure with avX/
(ahY) ¼ 1.0, nw ¼ 10 and av1/Y ¼ 0.4 gives �2

D�1=�
2
01 ¼

0.91 and �2
e1=�

2
01 ¼ 10�3.2 (Figure 3a). For the second

structure with ah2/X ¼ 0.4 and nw ¼ 10, respective varian-
ces �2

D�2=�
2
02 ¼ 0.72 and �2

e2=�
2
02 ¼ 10�2.2 are obtained

(Figure 3f). From this ne � 177 is determined from equa-
tion (14), which is close to ne ¼ 169 from direct application
of equation (13) with �i from ordinary block kriging.
Besides rounding errors (e.g., chart readings are only to the
first decimal of the exponents), the difference is due to the
assumption of equal well and sample spacing in Figure 3.
The assumption of 10 vertical PFM intervals per well in
Figure 3 can be shown to be of minor significance, because
for the range depicted (av/Y � 0.1) additional samples are
increasingly redundant (correlated to previous samples).
Finally, validation by step I (see Figure 2) indicates accept-
able properties of the conditional simulation output: The
discrepancies between qPFM and qTc and between �2

e and
�2

ec amount to �4% each. Figure 6a is a representation of
the spatial distribution of the ensemble means of local
fluxes (20 vertical � 160 horizontal grid elements) from
1000 conditional realizations and illustrates an estimated
position and shape of the plume core. Figure 6b contains
the estimated cumulative distribution functions (cdf’s) of
TCE discharge Q ¼ AqTc illustrating good agreement
between conditional simulation and the approximation
methods. Means and standard deviations of all methods are
listed in the top part of Table 1 for comparison to ‘‘target
values’’ from block kriging. Table 1 further lists the 5%

Figure 5. Horizontal (continuous lines) and vertical (dashed lines) experimental variograms of (a) nor-
mal scores and (b) raw data with spherical model fits for TCE fluxes from 10 wells at Ft. Lewis, WA. (c)
Declustered data histogram.
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and 95% quantiles of estimated discharge distributions
showing maximum discrepancies of �7% between condi-
tional simulation and the approximation methods.

5.1.2. Seven Well Scenario
[37] Although the above confidence intervals are slightly

asymmetric about the respective means, the large value of ne

causes the discharge distributions to be quite close to normal
(indicated by a small value of a ¼ 0.04 in equation (16)). In
general, however, discharge distributions may strongly

deviate from normality, and to demonstrate the performance
of the proposed approximate methods under such scenarios
the above analysis is repeated after excluding the local flux
data from three wells (third, fifth, and ninth well from left to
right in Figure 1) resulting in n ¼ 141 data points. Follow-
ing again the method of section 2.2 (see Figure 2), for var-
iogram model fitting it is found that all parameters may be
maintained, except for �2

01 ¼ 10.0 g2/(m4 d2), which is
illustrated by Figure 7. This results in a mean, variance,
and coefficient of skewness of the declustered data

Figure 6. (a) Distribution of ensemble means of local fluxes in g/(m2 d) from all conditional realiza-
tions. Crosses indicate PFM well locations according to Figure 1. (b) Cumulative distribution functions
of TCE discharge. Graphs denoted by ‘‘7 wells’’ and ‘‘10 wells’’ compare results from conditional simu-
lation, equation (15), and bootstrap for the respective number of observation wells indicated. Graphs
called ‘‘uncertainty projection’’ compare unconditional simulation, equation (15), and bootstrap for pre-
dicting variance reduction due to additional sampling. One thousand realizations were used for all sto-
chastic simulations and bootstrap.

Table 1. Comparison of ne, D�2, and Selected Statistics of Estimated Discharges From All Methods and Sites Investigateda

Site Discharge Parameter Block Kriging Conditional Simulation t Transformation Bootstrap

Ft. Lewis (10 wells) ne ¼ 169 D�2 ¼ 3% Mean 750 777 765 746
Standard deviation 124 121 130 117

5% quantile – 595 570 550
95% quantile – 985 992 975

Ft. Lewis (7 wells) ne ¼ 77 D�2 ¼ 4% Mean 946 973 977 948
Standard deviation 221 230 241 217

5% quantile – 630 632 610
95% quantile – 1385 1408 1335

Rifle ne ¼ 250 D�2 ¼ 1% Mean 19.0 18.8 19.1 19.1
Standard deviation 1.33 1.38 1.41 1.41

5% quantile – 16.5 16.8 16.7
95% quantile – 21.0 21.5 21.5

aParameters of TCE discharge at Ft. Lewis are in g d�1 and parameters of uranium discharge at Rifle are in mg d�1.
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histogram of qPFM ¼ 1.93 g/(m2 d), s2
PFM ¼ 15.6 g2/(m4 d2),

b ¼ 2.51, and a significantly reduced value of ne ¼ 77 from
equation (13). Although well spacing is even less uniform
in this case than in the 10 well scenario above, application
of Figure 3 with nw ¼ 7 to both variogram structures of Fig-
ure 7b and using equation (14) leads to an excellent approx-
imation of ne � 80 (this calculation is analogous to the
procedure for the 10 wells above and not shown here). Step
F results in a ‘‘missing variance’’ ��2 of �4% and valida-
tion step I provides relative differences between qPFM and
qTc and between �2

e and �2
ec of �4% and 7%, respectively.

The probability distributions of TCE discharge for this sce-
nario are superimposed in Figure 6b and are seen to be in
comparably good agreement similar to the 10 well scenario
considered previously. The center part of Table 1 further
confirms a good matching of the ‘‘target values’’ from
block kriging. However, the degree of skewness of the dis-
charge distributions is more pronounced than in the 10 well
scenario. This is reflected by the right shift (with respect to
mean) of the 5% and 95% quantiles as well as a slight
increase in parameter a to 0.05. It is noted that declustered
sample means (946 versus 750 g d�1) and TCE discharge
estimates from the seven and 10 well scenarios are signifi-
cantly different. However, the confidence interval between
the 5% and 95% quantiles of the seven well scenario almost
fully contains the corresponding interval of the 10 well
scenario.

5.1.3. Uncertainty Projection
[38] Finally, the above methods for uncertainty quantifi-

cation may also be adopted to assess the benefits of obtain-
ing additional PFM measurements in terms of uncertainty
reduction on the discharge estimate. This is termed ‘‘uncer-
tainty projection’’ and is demonstrated by maintaining the
scenario from above, where data is available from seven
observation wells, and where it is intended to perform com-
plementary measurements at three additional wells, such
that the sampling pattern of Figure 1 is again complete.
The principle is most easily illustrated by inspection of
equation (15) revealing that any measure of dispersion or
uncertainty (e.g., confidence interval width on both sides of
the mean estimate or variance of discharge cdf) around a
mean estimate qPFM is purely determined by the last term
of equation (15). Assuming that additional sampling may
change qPFM, but does not significantly alter declustered
data variance, skewness, and spatial correlation structure,
the last term in equation (15) becomes a pure function of ne

and may be determined for future sampling events knowing
only the locations (and not actual values) of additional
observations. In the present case, the projected value of ne

becomes 238 (from equation (13) with sampling locations
and variogram from Figures 1 and 7b, respectively).
Results correspond to the dashed line in the group of graphs
denoted by ‘‘uncertainty projection’’ in Figure 6b. Since
this cdf is independent of qPFM, it is arbitrarily shifted to
qPFM ¼ 0.

[39] In similar ways the bootstrap and stochastic simula-
tion methods may be used for the same purpose. For the
bootstrap approximation, ne is simply increased to the pro-
jected value after additional sampling, and the declustered
sample distribution, from which it is drawn, may be arbitra-
rily shifted (here to qPFM ¼ 0). The result is shown by the
thin continuous line in the group ‘‘uncertainty projection’’
of Figure 6b. With the stochastic simulation approach con-
ditional realizations cannot be generated as long as the
additional data values are unknown. However, following
section 2.1, unconditional realizations may be generated
and fictitiously sampled at the existing and additional sam-
ple locations to obtain respective values of q and qT for
each realization (equations (1) and (3)). From this, a distri-
bution of the estimation errors e ¼ q � qT may be built,
which corresponds to the augmented sampling network.
The respective result is also superimposed in Figure 6b (the
bold continuous line in the group ‘‘uncertainty projection’’)
and shows good agreement with the t transformation and
bootstrap methods as well as with the shape of the actual
discharge distributions for the 10 well scenario.

5.2. Estimating Uranium Discharge at La Quinta
Gallery, Rifle, CO

[40] At the La Quinta Gallery site in Rifle, CO, a former
uranium mill resulted in the persistence of a groundwater
uranium plume on the northern border of the Colorado
River. Measurements of local uranium fluxes in a transect of
X ¼ 3 m and Y ¼ 3.5 m are available from three wells (n ¼
29; A ¼ 10.5 m2) as depicted in Figure 8a. By the same pro-
cedure as above (Figure 2), declustering weights are found by
ordinary block kriging resulting in the histogram of Figure 8b
with qPFM ¼ 1.81 mg/(m2 d), s2

PFM ¼ 4.4 mg2/(m4 d2), and
b ¼ 1.53. A conditional stochastic simulation (1000 realiza-
tions; 31 horizontal � 36 vertical grid elements) is used to
obtain the spatial distribution of ensemble means of local
fluxes in Figure 8c as well as the probabilistic uranium

Figure 7. Analogous to Figures 5a and 5b, but for data from seven wells only.
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discharge distribution of Figure 8d (thick continuous line).
Simulation output is validated by step I, which results in
relative differences between qPFM and qTc and between �2

e
and �2

ec of �1% and 8%, respectively; the ‘‘missing var-
iance’’ ��2 is �1%. Figure 8d also contains cdf’s from the
two approximate methods and agreement in terms of quan-
tile differences is seen to be within �3%. Selected statistics
of the discharge distributions are again summarized in
Table 1 (bottom part).

[41] The experimental normal score and raw data vario-
grams (connected dots) with linear variogram model fits
(simple lines) used in the analysis are depicted in Figures
9a and 9b, respectively. The slopes adopted are 0.2 and
0.8 m�1 for normal scores and 1 and 3.2 mg2/(m5 d2) for
raw data (horizontal and vertical, respectively) resulting in
ne ¼ 250 from equation (13). In order to be able to apply
Figure 3 for obtaining an approximate value of ne, it is
assumed that ah/X and av/Y are much larger than one, such
that the shape of the spherical variogram inside the transect
is basically linear. Because the slopes are known and pro-
portional to the reciprocals of the respective ranges, it is
found that av/ah ¼ 1/3.2, leading to avX/(ahY) ¼ 0.27,
which is beyond the range of charts in Figure 3. However,
Figure 3a for avX/(ahY) ¼ 1 with av/Y � 1 may be used to
arrive at a lower bound of ne as �200. Because of the small

amount of data available, fewer data pairs exist within the
lag classes and experimental variogram values are less reli-
able (especially in the horizontal direction). For a reasona-
ble histogram reproduction of the conditional simulation
method it is again observed that �2

D�ns � 1 (horizontal line in
Figure 9a; step D in Figure 2) is an important criterion.
While the latter is achieved to 61%, �2

D�=s2
PFM � 0:9 (step E

in Figure 2) is used as a compromise in the raw data var-
iogram fit of Figure 9b to avoid larger discrepancies
between experimental and theoretical variograms. The
problem in this case seems to be related to the particular
sampling configuration of Figure 8a, where the center well
is shifted downward such that the largest data values at its
bottom and the smallest data values at the top of the lateral
wells (compare Figure 8c, which honors data values)
receive the largest declustering weights. Thus, the declus-
tering process does not affect the data mean very much, but
does significantly inflate s2

PFM to almost 50% above its raw
value before declustering. The experimental variogram, in
contrast, is computed in the classic way from unweighted
data and does not account for this fact. Hence, variogram
fits slightly above the experimental variogram points are
justified in agreement with the requirements of steps D and
E in Figure 2. The linearity of the variograms is a conse-
quence of the smooth trend apparent in Figure 8c. The

Figure 8. (a) PFM sampling locations over transect at Rifle, CO., with (b) declustered data histogram.
(c) Distribution of ensemble means of local fluxes in mg/(m2d) from 1000 conditional realizations. (d)
Uranium discharge distributions from the methods discussed.
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point variance (sill) �2
0 remains unknown, such that equa-

tions (6), (8), and (9) have to be evaluated in terms of the
variogram �(h) rather than C(h) (compare to the remark at
the end of section 2.1). Further evident from Figure 8c is
that the transect does not contain the entire plume such that
results in terms of uranium discharge are limited to the
transect studied, rather than the whole plume.

6. Evaluation of Assumptions and Further
Observations
6.1. Modeling of a Spatial Trend

[42] The approach presented here is generally valid
under the intrinsic hypothesis and no spatial trends are ex-
plicitly modeled. This may be contrary to the intuition that
expected fluxes are higher near the plume core than at its
periphery, for example. However, the fact that stochastic
simulation is used with sufficient PFM data, such that all
locations in a transect are effectively conditioned (corre-
lated) to observed data, results in the automatic modeling
of a spatial trend function. This means that the conditional
simulation output is not stationary [Chiles and Delfiner,
1999] as is nicely reflected by Figures 6a and 8c showing
the spatial distribution of ensemble means of local fluxes.
An analogous argument applies to the stationarity of flux
variance. Thus, the present work takes advantage of suffi-
cient available data to implicitly account for spatial trends,
which avoids the need for explicit trend modeling with re-
spective uncertainties involved. This is further supported
by a closely related discussion of trend modeling related to
kriging by Journel and Rossi [1989]. However, if not all
transect locations were correlated to one or more data loca-
tions, then a relatively small value of ��2 (e.g., < 5%)
would still be sufficient to perform the conditional simula-
tion approach. The latter assures that data is representative
of the flux distribution over the transect, which is what ulti-
mately matters for discharge estimation (rather than the
exact location and shape of the plume within the transect).

6.2. Uncertainties in Choice of Variogram Model and
Parameters

[43] The present work does not account for uncertainties
in the choice of variogram models and their parameters. If
these uncertainties can be reliably quantified, then a Bayes-
ian approach similar to that of Troldborg et al. [2010] may

be combined with the present one. However, the discussion
related to Figure 3 gives an idea about how sensitive ne, the
fundamental parameter influencing discharge uncertainty,
is with respect to changes (or uncertainties) in variogram
ranges. Moreover, theoretical variogram models are not
simply fitted to experimental variogram points. Rather,
joint analysis of normal score and raw data variograms con-
tributes to a reliable choice of variogram ranges and honor-
ing data dispersion variances assists in fitting variogram
sills or slopes (steps D and E in Figure 2). Eventually, if
conditional simulation is performed, successful validation
of the output (step I in Figure 2) may confer additional con-
fidence to variogram models and parameters used. It is fur-
ther noted in this context that the choice of variogram
models used (e.g., spherical in Ft. Lewis case study versus
a possible exponential fit) is rather arbitrary and not
expected to significantly influence results. The reason for
this is that what matters most for the present problem are
integral properties of the variogram over the extent of the
transect (compare equations (2), (4), and (5)), rather than
its exact shape. Meeting these integral properties is assured
by matching the dispersion variances in steps D and E. An
extreme example is the linear variogram of the Rifle case
study, which may be modeled by any variogram type that is
linear near the origin and with appropriate and large
enough sills and ranges (beyond the transect scale). As a
further consequence of this, the present work also neglects
the circumstance [Chiles and Delfiner, 1999] that the raw
data and normal score variograms C(h) and Cns(h) should
be related depending on the properties of the normal score
transform applied (i.e., they would generally not be of the
same type as assumed here).

6.3. Uncertainty in Local PFM Measurements

[44] Measured contaminant fluxes by the PFM method
are associated with a random measurement error (e.g.,
related to sampling and/or analysis), which is assumed neg-
ligible in this study. Because of its causes, measurement
uncertainty is typically considered spatially uncorrelated
and manifests as a nugget variance component in the data
variogram [Kitanidis, 1997]. It may be accounted for in the
conditional simulation approach by conditioning to uncertain
data [Troldborg et al., 2010] as well as in the ordinary block
kriging system [Kitanidis, 1997]. For the case studies pre-
sented, especially from the more reliable vertical variograms

Figure 9. Horizontal (continuous lines) and vertical (dashed lines) experimental variograms of (a) nor-
mal scores and (b) raw data with linear model fits for uranium fluxes at Rifle, CO.
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(Figures 5, 7, and 9), no significant nugget variance is appa-
rent. This demonstrates the fact that flux measurements pre-
dominantly reflect spatial variability, which is over several
orders of magnitude, rather than measurement errors within
a certain percentage range. In addition to this and in agree-
ment with a conclusion by Cai et al. [2011], measurement
errors also undergo a process of averaging such that neglect-
ing them is justified.

6.4. Additional Information

[45] The present work assumes that the only data available
are local PFM flux measurements inside a transect of inter-
est. In principal, the conditional simulation approach using
PFM measurements may be generalized to accommodate
additional types of ‘‘indirect’’ information (e.g., hydraulic
conductivity, head and/or concentration measurements, con-
taminant source properties, etc.) as demonstrated by Schwede
and Cirpka [2010] or Troldborg et al. [2010]. However,
along the lines of section 6.1, we argue that if ��2 is suffi-
ciently small, i.e., if the plume is effectively sampled by the
‘‘direct’’ PFM flux measurements (in the sense that they are
part of the discharge to be estimated), then the expected ben-
efit of including additional ‘‘indirect’’ information is not very
significant. This may especially be the case if rather complex
nonlinear stochastic simulation and conditioning methods
have to be adopted. A closely related advantage of working
with flux data only is the complete linearity of the problem,
which allows for using straightforward ordinary block krig-
ing to define an effective number of independent data for use
in combination with one of the simple approximation meth-
ods presented. Overall, it may be observed at this point that
the methods presented herein are generally applicable to any
linearly averaging quantity measured inside a domain of in-
terest. This includes the estimation of water discharges from
local water flux measurements (e.g., through PFM) as well
as the estimation of mean contaminant concentration over a
transect from MLS measurements (e.g., for alternative dis-
charge estimation).

7. Summary and Conclusions
[46] The problem of determining probability distribu-

tions or confidence intervals for mean estimates of corre-
lated skewed data is known in many fields of science and
engineering. In the present work, estimation and uncer-
tainty quantification of contaminant mass discharges in the
groundwater from local contaminant flux data (based on
passive flux meter, ‘‘PFM,’’ measurements) over a transect
are discussed and demonstrated. Conditional stochastic
simulation appears to represent the state-of-the-art method
for this purpose. It requires a representative flux histogram
over the transect, which is found through data declustering
using ordinary block kriging weights (which account for
spatial correlations as well as transect limits). In order to
achieve reliable histogram reproduction over many realiza-
tions, the importance of considering data dispersion varian-
ces in the process of variogram-model fitting is highlighted.
The declustered data histogram is assumed to correctly
reflect the frequency of occurrence of local fluxes over the
transect. As a consequence, its mean represents an unbiased
estimate of the mean flux over the transect and should be
honored by any discharge estimation method. Based on the

stochastic simulation paradigm, an effective number of in-
dependent data ne is further introduced as an expected fac-
tor of variance reduction between the declustered data
variance and the ordinary block kriging variance. As such,
ne should also be closely honored by conditional simulation
results. Based on ne we further develop two simple ‘‘ap-
proximate’’ methods for estimating discharge and uncer-
tainty. One uses a transformation of the t statistic to
account for skewness, while the other is closely related to
the classic bootstrap method and uses the full declustered
data histogram. Moreover, by means of ne it is shown that
one of the advantages of PFM measurements is the com-
plete sampling of fluxes in the vertical direction, which is
exactly the direction of typically larger spatial variability
(shorter correlation lengths). This leads to less redundancy
between data values and a higher degree of representative-
ness of flux variability in the plume.

[47] All three methods presented explore two fundamen-
tal properties of the problem: (1) linearity, i.e., the integral
of local fluxes over the transect gives discharge, and (2) the
data sufficiently well represents local flux variability over
the transect. As a consequence of (1), the approaches are
equally appropriate for estimating water discharges from
PFM water flux measurements or for estimating average
concentrations over an MLS transect with respective uncer-
tainties. In order to evaluate (2), the ‘‘missing variance’’
��2 is introduced and found to be smaller than 5% in the
case studies presented. Large values of ��2 indicate that
(2) may not be satisfied (whether an approximate limiting
value exists and how large it is, is still an open question).
In such a case, quantification of an estimation error variance
may still be reliable, while the confidence in discharge
quantile estimates becomes questionable. In order to over-
come the latter, additional PFM sampling or application of
more comprehensive (possibly nonlinear) approaches
including complementary site data [Schwede and Cirpka,
2010; Troldborg et al., 2010] may be required. Whenever
linearity and data requirements are satisfied, the two approx-
imate methods may be of significant practical value for esti-
mating the probability distributions of discharges as they
circumvent the need for implementing the much more
complex tool of conditional stochastic simulation (compare
Figure 2), and do not require the assumption of multi-
Gaussianity of normal scores. Although not utilized in the
present work, the latter also alleviates the need for normal
score transformation, provided that other robust measures of
spatial variability (e.g., variogram of logarithms of fluxes)
are used for joint fitting of variogram ranges. Conditional
simulation, in contrast, may be useful for additional valida-
tion of adopted variogram models (step I in Figure 2), and
in addition to discharge distributions, it delivers spatial in-
formation about plume shape and location.

[48] All of the methods discussed are demonstrated for
two different field sites with PFM data from TCE (Ft.
Lewis, WA) and uranium (Rifle, CO) plumes. Besides the
different types of contaminants, the two selected sites vary
in transect size, number of observation wells, and spatial
correlation structure. The latter may be the case because of
different geological (aquifer heterogeneity) and contami-
nant source conditions as well as the scale of the study
(entire plume versus a portion thereof). Results are based
on 1000 conditional realizations and represented in the
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form of spatial distributions of ensemble means of local
fluxes as well as discharge probability distributions (cdf’s).
For both sites, quantile estimates of discharge from the dif-
ferent methods are seen to agree within �7%. As an addi-
tional hypothetical scenario, some observation wells at Ft.
Lewis were ignored to illustrate the effect that having fewer
data available will increase estimation uncertainty as well
as the skewness of the estimation error distribution. The
same hypothetical scenario is also used to successfully pre-
dict uncertainty reduction due to additional sampling by the
three methods investigated.

Appendix A: Weighted Data Dispersion Variance
[49] The weighted data dispersion variance �2

D� is the en-
semble mean (expectation) of the spatial variance s2 of the
weighted (declustered) data histogram over many uncondi-
tional realizations, which are fictitiously sampled for fluxes
qi at the actual measurement locations. Substituting equa-
tion (3) into (7) and taking the square leads to

s2 ¼
Xn

i¼1

�i qi �
Xn

j¼1

�jqj

 !2

¼
Xn

i¼1

�i q2
i � 2qi

Xn

j¼1

�jqj þ
Xn

j¼1

�jqj

 !2
2
4

3
5:

(A1)

[50] Multiplying �i into the brackets and splitting up the
summation gives

s2 ¼
Xn

i¼1

�iq
2
i � 2

Xn

i¼1

�iqi

Xn

j¼1

�jqi þ
Xn

k¼1

�k

Xn

j¼1

�jqj

 !2

: (A2)

[51] Knowing that
Pn
j¼1
�jqj

 !2

¼
Pn
i¼1
�iqi

Pn
j¼1
�jqj ¼

Pn
i¼1Pn

j¼1
�i�jqiqj further yields

s2 ¼
Xn

i¼1

�iq
2
i � 2�

Xn

k¼1

�k

 !Xn

i¼1

Xn

j¼1

�i�jqiqj: (A3)

[52] Taking the expectation E[] and with
Pn
k¼1

�k ¼ 1 as

imposed with equation (3) leads to

�2
D� ¼ E½s2	 ¼

Xn

i¼1

�iE½q2
i 	 �

Xn

i¼1

Xn

j¼1

�i�jE½qiqj	; (A4)

where the weighting constants are written outside the ex-
pectation operator. Using E½q2

i 	 ¼ �2
0 þ �2

0 and E½qiqj	 ¼
Cðui � ujÞ þ �2

0 (based on stationarity of process mean �0

and variance �2
0) with

Pn
i¼1

Pn
j¼1
�i�j ¼ 1 finally results in

�2
D� ¼ �2

0 �
Xn

i¼1

Xn

j¼1

�i�jCðui � ujÞ; (A5)

where the last term is equal to �2
q from equation (4).

List of Variables

Dimensionless
n number of local flux data collected

ne effective number of independent data; numerical
index ‘‘j,’’ if present, denotes different variogram
components

nw number of wells in transect
m number of nested variogram components
N number of realizations in conditional stochastic

simulation
i,j,k index variables
�i data declustering weights; ordinary block kriging

weights for estimating qT

t Student’s t variable
t0 cubic transformations of t accounting for distribu-

tion skewness
b weighted data coefficient of skewness; coefficient

of skewness of PFM measured flux histogram after
declustering

a auxiliary variable
T transect (spatial averaging domain for which dis-

charge is sought)
��2 ‘‘missing variance’’; portion of flux variability

�2
DT over transect not represented by declustered

data variance �2
D�

Lengths and Areas
x,y horizontal and vertical coordinates

u(i,j),v spatial coordinate vectors of components x and y
h spatial separation vector between two locations

ah,av horizontal and vertical correlation lengths of q() ;
numerical index ‘‘j,’’ if present, denotes different
variogram components

X,Y transect length and depth
A transect area

Fluxes and Discharges
q spatially random function representing local fluxes

within transect
�0 expectation (ensemble mean) of q ; mean of

pdf(q)
qiPFM measured local fluxes from PFM field deployment

qins measured local fluxes from PFM field deployment
after normal score transformation

qPFM Weighted mean of qiPFM; ordinary block kriging
estimate of qT from field data; mean of declus-
tered PFM data histogram; obtained from equation
(3) by using qiPFM instead of qi

qi fictitiously sampled fluxes from unconditional
realizations at actual PFM measurement locations

q weighted mean of qi ; ordinary block kriging esti-
mate of qT for each unconditional realization

qT spatial mean of local fluxes over transect for each
unconditional realization

qTc spatial mean of local fluxes over transect for each
conditional realization

e estimation error (difference between estimate q
and true value qT for each unconditional
realization)

qTc mean of qTc obtained from averaging over many
conditional realizations
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q� �-quantile of qTc (qTc which is not exceeded with
probability �)

Q discharge across transect

Flux and Normal Score Variances
C() spatial covariance function of q ; numerical index

‘‘j,’’ if present, denotes different variogram
components

Cns() spatial covariance function of normal scores (i.e.,
of local fluxes after transformation to standard
normal distribution)

�() (semi) variogram of q
�2

0 variance of q ; variogram sill if existing; numerical
index ‘‘j,’’ if present, denotes different variogram
components

�2
0ns same as �2

0, but for normal scores of fluxes

�2
q

variance of q ; ensemble variance of the declustered
data mean; corresponds to calculating q from equa-
tion (3) for each realization using unconditionally
simulated data at the sampling locations and then
taking the variance over many realizations

�2
qT

variance of qT ; ensemble variance of the transect
mean of q ; corresponds to calculating qT from
equation (1) for each unconditional realization and
then taking the variance over many realizations

�2
qqT

covariance between q and qT ; corresponds to cal-
culating q and qT from equations (1) and (3) for
each unconditional realization and then taking the
covariance between them over many realizations

�2
e variance of estimation error; corresponds to calcu-

lating e ¼ q � qT for each unconditional realiza-
tion and then taking the variance over many
realizations; numerical index ‘‘j,’’ if present,
denotes different variogram components

�2
DT dispersion variance of q over transect; ensemble

mean of the spatial variance of local fluxes in the
transect; corresponds to taking the variance of all q
inside T for each unconditional realization and then
averaging the variances over many realizations

�2
D� declustered data dispersion variance; ensemble

mean of the spatial variance of the declustered
data; corresponds to taking the variance of the
declustered data, which are unconditionally simu-
lated at the sampling locations, for each realization
and then averaging the variances over many real-
izations; numerical index ‘‘j,’’ if present, denotes
different variogram components

�2
D�ns same as �2

D�, but for normal scores of fluxes

�2
ec

variance of qTc from conditional realizations

s2 weighted variance of qi ; declustered data variance
for each unconditional realization

s2
PFM weighted variance of qiPFM; variance of the PFM

measured flux histogram after declustering;
obtained from equation (7) by using qiPFM instead
of qi and qPFM instead of q
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